AIRES Toolkit

Version 1.0

AIRES TOOLKIT USER MANUAL

For MOBIES AVIONICS

Version 2.0

Release Date: April 23, 2003

AIRES Group

Real-Time Computing Laboratory

EECS

The University of Michigan

1 Introduction

AIRES for Avionics is a desktop application running under Microsoft Windows for real-time analysis of Avionics Mission Computing. Its input format is Analysis Interchange Format (AIF) XML file describing a system consisting of software components, hardware platform (processors and networks), and component-to-processor mapping; its output format is a summary report in plain text, as well as visual displays of various information.

2 Installation

2.1 Install GME 2000, ESML and AIF Meta-model, ESML2AIF Translator, UDM Libraries, OTIF Framework

 Make sure that the relevant dynamic link libraries (dlls) are in the system path. Please refer to Vanderbilt University website for details:

http://www.isis.vanderbilt.edu/Projects/mobies/default.html
2.2 Build the AIRES Tool

Download Avionics.zip from the AIRES website. Unzip it, open up Avionics.dsw file in MSVC++ 6.0. Set the include and library paths from Tools/Options to contain the folders with UDM library files (.h and .lib). Build and run.

2.3 Install Graphviz

Graphviz is used to visualize component and task graphs. It can be downloaded from:

http://www.research.att.com/sw/tools/graphviz/
Make sure that dotty.exe is in the system path.

3 Using the AIRES ToolKit

3.1 Basic Concepts

Avionics Mission Computing software runs on a military aircraft and controls navigation, display and weapon firing, etc. It is event-triggered, object-oriented, multi-processor, multi-threaded, and runs on top of TAO/RT-CORBA infrastructure and QNX RTOS. There are both periodic threads running at different rates that are typically harmonic to each other, and aperiodic threads triggered by external interrupts.

3.1.1 Event Dependency Graph

Starting from a timer or external aperiodic interrupt, a series of internal events are triggered and propagated between components until eventually the display or actuator components are triggered. There may also be invocation dependencies between component facets and receptacles. The EDG should not contain cycles, nor should it contain any published events without subscribers. These anomalies are detected by AIRES and displayed to the designer.

3.1.2 End-to-End Scheduling

Given a system task graph, including the task-to-platform mapping, we would like to determine if the system is schedulable, assuming the system is scheduled with static priority scheduling. We use the holistic scheduling approach. The basic idea is to treat each end-to-end task chain as a real-time transaction, and set the upstream task’s finish jitter as the downstream task’s release jitter. Please refer to the appendix for the detailed equations. In order to use the tool, it is sufficient to know that the WCRT (worst-case response time) of the last task in an end-to-end task chain has to be less or equal to the deadline of the transaction in order for the system to be schedulable.

3.2 Basic Usage

First, you should create an ESML model in GME, preferably by modifying one of the provided sample models. Run ESML2AIF to get a corresponding xml file in the AIF format. Open the AIF file in AIRES. The left pane is a tree view with two root items, Component View and Task View. Under the Component View subtree, you can view the processors, which contain compnents, which in turn contain ports (subscribe port, publish port, facet and receptacle). The Task View subtree describes the real-time tasks (threads) existing in the system. Tasks contain input ports, which may be subscribe port or facet. Note that ports are assigned to tasks, not components. It is possible for a component to be multi-rate, with different ports assigned different execution rates. The right pane is a listview that displays various details of processors, tasks, components, etc. Most of the entries here are self-explanatory with a few exceptions.

1. Utilization bound is calculated based on the number of tasks on a particular processor by using the well-known RMA equation n*(2^(1/n) – 1). Utilization is the actual utilization of the processor. Usually if the actual utilization is less than the bound, then the system is guaranteed to be schedulable; otherwise the system may or may not be schedulable, and a more exact analysis has to be carried out. However, there is an exception, when a processor contains precedence-constrained tasks triggered by tasks on other processors. Due to release jitter, the system may be unschedulable even though the utilization is less than the bound.

2. BCRT is Best-case response time, and WCRT is worst-case response time. It is useful to know the BCRT in case the system is distributed, and the upstream task’s finish jitter, which is WCRT – BCRT, has an impact on the downstream task’s WCRT.

You can invoke File\Export Text File to save the analysis results in text file format.

You can invoke View\Task Graph to view the system task graph, View\Comp Dependency Graph to view the system component dependency graph, View/Port Dependency Graph to view the system port dependency graph. Note that this assumes you have the dotty.exe file in your system path. If you have a task item highlighted in the treeview, you can invoke View\E2E Timeline to view the end-to-end timeline of a transaction. Each segment/subtask of the end-to-end transaction is represented by a horizontal bar. The right edge of the bar is the global WCRT of the subtask, and left edge is the global WCRT of the preceding subtask in the task chain. Global WCRT means that the WCRT is measured from the release time of the first subtask of the end-to-end transaction. The length of the green portion of the bar is WCRT – BCRT, i.e., the finish jitter of a particular subtask. The purpose of this graph is to give the designer a rough sense of how long each subtask in an end-to-end task chain may be taking, and how the end-to-end latency is distributed across the subtasks. Obviously this is not the only way to visualize this information, and suggestions to improve upon the user interface are most welcome.

If a component or a port is selected in the tree view, you can invoke View/Forward Slice or Backward Slice to view the result of slicing the dependency graphs forward or backward. This information is useful for identifying the components or ports that affect or are affected by a particular component or port.

You can invoke Actions/Assign Threads to run the thread allocation algorithm that assigns component ports to threads. The result is reflected in the tree view. If you answer “Yes” to the dialog asking you if you want to update the AIF file with your allocation results, the AIF file will be updated when you close the AIF file with File/Close.

You can invoke Actions/Assign Components to bring up the component allocation algorithm You can select either the best-fit or first-fit heuristic, and the maximum utilization on each processor. Note that if this value is chosen too low, you may not find a feasible allocation. When you click on the “allocate” button, the text area will be populated with the results of component allocation. When you click on the “UpdateAIF” button, the AIF file will only be updated when you close the file via File/Close.

You can use GME to edit an ESML model. The most important parts relevant to the AIRES tool are:
1. The Interactions folder, where you specify the EDG, i.e., the component interaction topology.

2. The Configurations folder, where you specify the component-to-processor mapping. Note that the component-to-thread mapping is ignored, since the AIRES tool automatically derives it from EDG analysis. Also automatic allocation of components to processors is not yet supported.

3. The ComponentTypes folder, where you specify the WCET of the action triggered by events from the input port.

3.3 Examples

3.3.1 MC__BasicSP

Open MC__BasicSP.mga in GME, and examine the Interactions\InteractionModel folder. You can see that there is a cycle in the EDG. Open up a DOS window and type in “esml2aif MC__BasicSP.mga” to get MC__BasicSP_AIF.xml. Open that file in the AIRES tool by the menu File\Open. A message box pops up that identifies the EDG cycle. You can also create a published event with no subscribers, and the AIRES tool detects that.

The WCETs (Worst-Case Execution Time) of each component is specified in the ComponentTypes folder, where “Action” has a WCET attribute. You can try and specify different WCETs for each component here.

Remove the cycles in EDG by deleting the AF_DATA_AVAILABLE2 event. Go to View\Task Graph to view the system task graph. There is only a single task. Go to View\Comp Graph to view the system component graph. Go to View\E2Etimeline to view the end-to-end timeline of each end-to-end transaction. Since there is only a single task here, the end-to-end transaction consists of a single task, so it’s not very interesting.

3.3.2 MC__BasicMP

This example demonstrates a system with normal and fault modes. Note that we have made a small change to the original model, changing the PILOT_CONTROL to WAYPOINT connection from a SetData() method invocation to an event trigger. This reflects upon an issue we raised by email earlier, than SetData() calls sometimes act in an equivalent role to an event trigger, and should be treated as such.

The specification of the normal and fault modes in GME is not very straightforward. In GME Open MC__BasicMP.mga file. In folder Configurations\Configuration, there are three entries: OCP_P1, OCP_P2, P2_FAILURE_MGMT. OCP_P1 contains FLT_PANEL_DISPLAYRef and PILOT_CONTROLRef of kind NormalComponent, and WAYPOINTRef of kind BackupComponent. This means that in normal mode of operation, components FLT_PANEL_DISPLAY and PILOT_CONTROL are active, while in fault mode the backup component WAYPOINT is activated. OCP_P2 contains WAYPOINTRef as a normal component. Open up the P2_FAILURE_MGMT folder. You can see an atom named “EnableComponents”. Click on the lasso shaped button on the left, then right click on the “EnableComponents” atom. You can see that the WAYPOINTRefRef is now highlighted, which means that in case of a fault, the WAYPOINT NormalComponent on OCP_P2 is deactivated, and the WAYPOINT BackupComponent on OCP_P1 is activated. All of this logic is handled in the ESML2AIF interpreter, so the MC__BasicMP_AIF.xml file simply contains 2 Interactions section, one for the normal mode, and one for the fault mode.

Open MC__BasicMP_AIF.xml in the AIRES tool. You can toggle between normal and fault modes by selecting an entry in the combo box on the toolbar. In normal mode the system is distributed, where FLT_PANEL_DISPLAY and PILOT_CONTROL are located on OCP_P2, and PILOT_CONTROL is located on OCP_P1. In fault mode, all three components are located on OCP_P2.

3.3.3 MC__TestMP

This is a multi-processor application scenario to test the scheduling algorithms. There are two end-to-end transactions spanning two processors with invocation frequencies 25HZ and 40HZ, respectively. The 40HZ transaction starts on BM_PROCESSOR1 and ends on BM_PROCESSOR2, and the 25HZ transaction starts on BM_PROCESSOR2 and ends on BM_PROCESSOR1.

4 Integration with OTIF (Open Tool Integration Framework)

AIRES is integrated into the OTIF framework. The following steps must be followed:

5 Appendix

Here we provide some background theory for the AIRES tool.

5.1 Classic Rate Monotonic Analysis

Given a taskset with rate monotonic priority assignment, that is, tasks with smaller periods have higher priorities than tasks with larger periods, we can use the utilization bound as a sufficient but not necessary schedulability condition.

5.1.1 Utilization Bound

5.1.2 Response Time Calculation

5.2 Holistic RMA for Distributed Systems

PAGE

