07-06-2003: A number of enhancements have been made to AIRES:

1. Invoking “Avionics.exe” starts AIRES in standalone mode. In order to integrate into the OTIF framework, make sure that OTIF backplane is running, and invoke “Avionics.exe –otif”. If the –otif option is specified while OTIF is not running, the application will exit with an error.

2. Context-sensitive menus can be invoked by right clicking on tree items. For example, right-clicking on a processor allows you to view a Gantt Chart display of the real-time scheduling timeline; right-clicking on a component/port allows you to view dotty displays of forward or backward slicing of component/port dependency graphs.

3. There is one more executable TaskPlotting.exe that should be put in the system path. Avionics.exe invokes TaskPlotting.exe to display the scheduling Gantt Chart. Also, AIRES relies on the existence of C:\temp folder for storing temp files. Make sure this folder exists.

4. You can now right click on a task in the Task View and show the dependency graph just for this task (thread rate).

5. For dotty graphs showing forward or backward slicing of the component graph, we hide the GetData method call in typical control-push-data-pull interaction for the purposes of clarity. For example, GPS supplies a DataAvailable event to AirFrame, which in turn calls GetData() on GPS. In the forward slice from GPS, we only show the event trigger to AirFrame, not the method call from AirFrame. However in the overall component and port dependency graphs, we show both types of connections, with solid lines denoting event triggers and dotted lines denoting method calls.

6. In the tree view, selecting a component in Component View displays backward and forward connections this component has with its neighbor components, including the port names, connection type (event or invocation), connection name (event name or method name), etc. Note that the RepresentativeSP model provided by Mark lacks connections between receptacles and actions, therefore all the method names are shown as “Not Specified”. For the OEP scenario models bundled with ESML distribution, all the method names such as “GetData1” are displayed correctly.

7. Small UI improvements include keeping the tree and list views sorted alphabetically.

Some clarifications on the issues:

1. Utilization is the current utilization of the processor, while utilization bound is the theoretical upper bound on system utilization in order to maintain system schedulability. Note that real-time scheduling theory says that for a task system with arbitrary periods, the utilization bound is less than 1.0. If the utilization is below the utilization bound, the system is guaranteed to be schedulable; while if the utilization is above the utilization bound, the system may or may not be schedulable, and a more detailed analysis of response times is needed, which is indeed performed within AIRES.

2. WCRT = Worst-Case Response Time, BCRT = Best-Case Response Time. WCET = Worst-Case Execution Time, BCET = Best-Case Execution Time. WCRT is larger than WCET for all tasks except the highest priority one, due to preemptions caused by higher priority tasks. The task is schedulable if WCRT < Deadline, not-schedulable otherwise.

3. CxtSwitchTime is currently always set to 0. Ideally it should be a constant parameter for the RTOS (VxWorks) and CPU combination, set in the ESML model and get reflected in the AIF file. Note that this is the time for a SINGLE context switch. If the system contains lots of tasks, CxtSwitchTime is still the same, even though the total number of context switches will increase. This is reflected in the real-time analysis algorithms.

4. We will take into consideration later other comments such as locking components to processors for allocation, and distribution costs for multiprocessor scheduling.

