

AIRES TOOLKIT USER MANUAL

Version 2.0

Released Date: February 2002

AIRES Group

Real-Time Computing Laboratory

EECS

The University of Michigan

AIRES Toolkit Version 2.0

What is new in version 2.0

New features added into this release include:

1. Upgraded the modeling environment from GME 1.2 to GME 2.0. New
functionality supported by GME 2.0 can be found in related GME manuals.

2. Integrated component composition in the modeling environment. The function of
component composition include importing Matlab Simulink/Stateflow diagram in
.mdl files into GME environment, enabling to specify port information of each
component for application construction, and checking the signal consistency of
composed components.

3. Extended the software folder to include component models that can be used as a
repository.

4. Extended the hardware folder to include operating system specification with both
timer and scheduler overheads.

5. Separated interpreters for component to task mapping and schedulability analysis.
The component to task mapping is used to automatically translate a design
component model to a runtime task model, and schedulability analysis is used to
generate runtime properties for tasks. These two functions are now implemented
as separate interpreters triggered by different component icons in the tool bar.
This modification is to enable schedulability analysis for those systems when
manual translation of design model to runtime model is desired. In such a
situation, a user can perform schedulability analysis directly without going
through the steps for component to task mapping.

6. Task graph is extended to include the location of each task. This facilitates the
changes across models of platform and analysis. By using platform reference in
the task graph, the changes of platform such as processor type and OS overheads
will be directly reflected in the task model, and will be used directly for analysis.

7. Added OIL file generation to facilitate the integration of analysis results and code
generation for the system. The generated OIL file specifies only the task
properties and supported objects (such as Alarm and Counter) for a single
processor.

Use of the Fonts

We use different fonts to express different entities in the tool display.
Bold name for a display window
Italic Bold options in a menu or a list in a display
Italic file names used by AIRES toolkit, including example files
Sans serifSans serifSans serifSans serif file locations/directories

1 Introduction

AIRES toolkit consists of a set of plug-in algorithms for design model construction and
reuse, runtime architecture generation and timing and schedulability analysis that are all

AIRES Toolkit Version 2.0

integrated in the GME environment. The objective of developing this toolkit is to support
reuse of design models and components, automatic transformation of design views to
runtime views with the consideration of non-functional constraints, and analysis and
verification of system timing properties. The toolkit is also used as a means of evaluating
the algorithms for composition checking, view transformation, timing assignment and
analysis, which we have developed in the DARPA/ITO MoBIES project context.
Although these algorithms are integrated in the GME environment, they are all
implemented as plug-ins, and should also be integratable in other modeling
environments.

All functional components of AIRES toolkit, such as component composition, view
transformation and timing analysis, are invoked through GME interpreter mechanism,
with each is implemented as an individual interpreter associated to a meta-model. Given
an application design model constructed in GME using the predefined meta-model, the
interpreter will call the plug-in algorithms to analyze the application model. The
following features are supported in current AIRES interpreter:

• Importing Matlab Simulink/Stateflow diagrams into GME environment as
reusable components;

• Modeling software system with reusable components, runtime system with a set
of tasks, and platform with processors, network links and operating systems.

• Detecting any signal inconsistency in the software model;
• Allocating software components in design model to a set of pre-defined tasks;
• Distributing end-to-end timing constraints over a set inter-communicating tasks;
• Assigning tasks to a set of pre-defined processors with tasks’ timing properties;
• Schedulability analysis with a generalized RMA;
• Generating a configuration file with analysis results for each processor.

To create application models for timing, allocation and schedulability analysis in the
GME environment, a meta-model is required. We released a meta-model created by
ourselves for Automotive applications in this package. Users can create their own meta-
model for a target domain, but changing meta-models in GME requires rewriting the
interpreter to convert the modeling information in GME to formats required by our
algorithms.

Although AIRES toolkit is designed and implemented targeting at automating the step-
by-step design procedure starting from design model construction to runtime architecture
construction and analysis to target configuration generation, the functionalities of AIRES
toolkit can be used stand-alone. For example, one can use composition function in
AIRES toolkit to reuse some Simulink block diagram to construct a software model, and
feed it to some other tools for analysis. Similarly, one can also construct a task diagram
from other modeling tools or manually, and perform timing and scheduling analysis using
AIRES toolkit functions, then feed the analysis results to other code generation tool to
generate code.

This release contains AIRES meta-model, interpreters for current AIRES functions, and

AIRES Toolkit Version 2.0

an example based on ETC developed using the AIRES meta-model.

2 Installation

Current AIRES toolkit can only run on machines with Microsoft Windows operating
systems due to the availability of GME. Machines with NT 4.0 and 2000 should have
latest service pack installed.

Installation of AIRES toolkit requires about 20 MB free disk space, and GME 2000 pre-
installed on the host.

2.1 Install GME 2000

Download GME 2000 from Vanderbilt University website at:
 http://www.isis.vanderbilt.edu/
For instructions of installing GME, refer to GME user manual.

2.2 Obtain AIRES Toolkit

Download AIRES toolkit v2.0 from AIRES group website at:

http://kabru.eecs.umich.edu/aires
Note: This release of AIRES toolkit works only with GME v2.0. Previous release of
AIRES toolkit v1.0 works only with GME v1.2, and does not have all functionalities
described in this manual. Please refer to AIRES toolkit v1.0 manual for details.

Unzip all the files in the package to a directory (e.g., C:C:C:C:\\\\Aires_Release_v2.0Aires_Release_v2.0Aires_Release_v2.0Aires_Release_v2.0). The
package should include the following components:

• AIRES meta-model defined in two files (user can use either one of them to
registered the meta-model)
� A xml file AIRES_META_MODEL.xml;
� A xmp file AIRES_META_MODEL.xmp;
� A zipped file icons.zip for icons

• AIRES_Release_v2.0 directory contains interpreters:
� Composition.dll: interpreter for component composition and signal checking;
� Comp2Task.dll: interpreter for component-to-task mapping;
� Schedule.dll: interpreter for timing and schedulability analysis, including

deadline distribution, timing attribute assignments, task allocation,
schedulability analysis, and OIL code generation.

• Example directory contains an ETC model as an example:
� Three mdl files from OEP: etc_manager.mdl, etc_monitor.mdl, and

etc_servo_control.mdl;
� A csv file for port specifications: etc_ports.csv

http://www.isis.vanderbilt.edu/
http://kabru.eecs.umich.edu/aires

AIRES Toolkit Version 2.0

To make AIRES toolkit fully function correctly, all components except the example
should be installed.

2.3 Install AIRES meta-model

The package comes with a meta-model that has to be install in GME for all interpreters
and the example work. To install the AIRES meta-model, follow steps below to import
the AIRES meta-model:

• Start GME v2.0
• Create a new project by choosing File->Register Paradigms…
• In the pop-up Select Paradigm window, choose Add from File…
• In the pop-up Open window, point to the directory containing

AIRES_META_MODEL.xml, (for example, in C:C:C:C:\\\\AIRES_Release_v2.0AIRES_Release_v2.0AIRES_Release_v2.0AIRES_Release_v2.0
directory)

• Choose AIRES_META_MODEL.xmp shown in the window, then choose Open, a
new paradigm should be added into the paradigm window with name AIRES.
(See Figure 1.)

• Click Close to close the Select Paradigms window after AIRES meta-model is
installed.

Figure 1. Importing AIRES meta-model

AIRES Toolkit Version 2.0

The AIRES meta-model can also be registered using XML file. Refer to GME v2.0
User’s Manual on how it can be done.

(Note that the user can construct different meta-model as described in GME user manual.
However, to make the AIRES interpreters working properly, the user has to define all
required information used by AIRES algorithms in the meta-model. Otherwise, the
interpreter has to be rewritten to translate the information in GUI to the formats used by
the algorithm.)

2.4 Install Icons for AIRES

AIRES toolkit uses its own icons to represent some components like CPU, input and
output ports, etc. To make the icons display in models, the GME needs to know the
location of these icon files. To install the AIRES icons, do the following:

• Unzip icons.zip file to a directory, for example
C:C:C:C:\\\\AIRES_Release_v2.0AIRES_Release_v2.0AIRES_Release_v2.0AIRES_Release_v2.0\\\\iconsiconsiconsicons

• In GME, choose File->Settings
• In GME properties window, click Add for User Icon Path or System Icon

Path
• Choose the correct location of icons in Select Folder window, then click Open
• Click OK after return from the location selection window.

2.5 Install AIRES interpreters

AIRES toolkit has 3 interpreter components. These interpreters have been packed as a
dynamic link library (.dll file for Windows), and need to be installed in the Windows
Registry to be invoked and function correctly at runtime. To install AIRES interpreters,
execute the following steps:

• Create a new project in GME, for example, ETC_example, by
o choosing File ->New Project….
o Highlight AIRES paradigm in Select Paradigm window, and click Create

New…
o In New window, turn on the Create project file option, then click Next>
o In Open window, type project name ETC_example in File name space,

choose files of type as MGA Files, then click Open.
o The ETC_example project should appear in Browser window at right hand

side of GME, as shown in Figure 2.

AIRES Toolkit Version 2.0

Figure 2. Project ETC_example is created

• Install interpreters

o Click File->Register Components…
o In Components window, choose Install New…
o Point to correct location of interpreter components in Open window, e.g,

C:\AIRES_Release_v2.0\AIRESComponents
o Select Files of type to be Component Files, and choose Composite.dll in the

list.
o Click Open to install composition interpreter. A new line with name

Simulink will appear in Components window.
o Repeat step 2 – 5 to install interpreters for Comp2Task (using file

Comp2Task.dll), Schedule (using file Schedule.dll.
o All interpreters are shown in Figure 3.

AIRES Toolkit Version 2.0

Figure 3. AIRES interpreters are installed

o Choose Close to close the Component windows. Three new icons will appear

in the toolbar, as shown in Figure 4.

AIRES Toolkit Version 2.0

Figure 4. Interpreters shown in toolbar.

The interpreters can then be invoked by clicking corresponding icons. Here is a list of
icon - interpreter pair.

Icon: interpreter for importing Simulink models and composition checking;

Icon: interpreter for component to task mapping;

Icon: interpreter for timing and scheduling analysis.

Note that all AIRES interpreters can be installed individual, and work stand-alone. A user
can decide which interpreter is desired, install and run it as needed without other
interpreters installed.

2.6 Install Graphviz Package (optional)

AIRES toolkit uses a free software package for graphical display of results of component
to task mapping. Installation of this package is optional, and won’t prevent the interpreter
from functioning correctly. The result of component to task mapping interpreter will be
displayed as text output in an output window if Graphviz software package is not

AIRES Toolkit Version 2.0

installed on the machine.

To install Graphviz, downloaded the software package from:
 http://www.research.att.com/sw/tools/graphviz/
Then follow the instructions released with the package.

2.7 Rebuild the AIRES interpreters (optional)

The source code of all algorithms/interpreters built in AIRES toolkit are available freely
upon request from AIRES group at The University of Michigan for any group in DARPA
MoBIES program. Anyone who has the source code can modify them freely for their own
purpose. To rebuild the interpreters, the following software should be installed before the
rebuild can be done:

• Microsoft Visual Studio tools for Visual C++ 6.0 or above;
• GME 2000 v2.0

To rebuild the interpreters, follow these steps:

• Unzip the source code for different interpreters to different directory.
• For each interpreter, open the project file BONComponent.dsw in MSVC.
• Change the project settings in MSVC Project menu (refer to MSVC user guide).

For each interpreter rebuild, one needs to point to correct GME interface location
in the ComponentConfig.h file. This can be done by either manually modify the
line for this location in ComponentConfig.h file, or run ConfigureComponent.exe
tool released with GME 2000 v2.0.

• Choose Rebuild All in Build menu of MSVC.

After the dll file is successfully generated, the interpreter will be automatically registered
in the system. So installation procedure described in Section 2.4 need to be performed.

Rebuilding Composite.dll requires a xerces-c_1_2.dll to be located in the same directory
where the target dll file will be. This file will used by the window register management
tool to correctly perform the interpreter register.

3 Model Construction and Analysis With AIRES ToolKit

3.1 Basic Concept

AIRES toolkit allows designers to import software component models from other
modeling tool (e.g., Simulink/Stateflow), reuse them for constructing different
applications, specify the software structure (design architecture), runtime structure,
physical platform configuration and timing constraints. Timing constraints specified in
MoBIES meta-model include end-to-end deadlines, rate constraints and worst-case
execution times for each task in a runtime structure. In this documentation, we only

http://www.research.att.com/sw/tools/graphviz/

AIRES Toolkit Version 2.0

discuss the elements related to model translation and reuse, signal composition checking,
and timing and scheduling analysis in AIRES toolkit. For detailed information on
creating models, specifying attributes, etc., please refer to related GME documentation.

Components and design architecture. Components are basic building blocks in AIRES
model. Each component has a set of input ports and output ports associated with it as
interfaces to interact with other components in integration. In current AIRES meta-
model, there are 2 types of components and 2 types of ports are defined:

• Dataflow components
• Composite components (called “CompoundComponent in the tool)
• Data ports
• Event ports

Given these components and ports, a software design model (or design architecture) can
be constructed by instantiating components and connecting their ports. Components
modeled in other modeling tools can be imported into AIRES toolkit to form a reusable
repository. A model for an application can then be constructed using the components in
the repository.

Tasks, task graph and runtime architecture. Tasks are basic units for schedule. Each
task can be implemented as a process or thread in operating system, and can have its own
scheduling attributes such as priority, scheduling policy and period. This is different from
the application-level task concept, which in some domain, indicates a whole process from
sensing external status, to computing proper commands and sending them out. In our
terminology, such application-level tasks are called system threads. A system thread can
be implemented as one or more operating system threads/processes (called tasks) with
each does part of the job such sensing data, computation and command output. A task can
also implement multiple system threads in it. System threads are normally specified in
design models, while tasks are usually in runtime models.

A task group consists of a set of tasks and their interactions. Different from the
interactions in design model, the task interactions are normally implemented using inter-
process communications (IPC), which require the underlying system services support and
consume system resources as well. Although the task graph itself can be used to describe
invocation dependency and data dependency, we use it for data dependency in our
AIRES toolkit for now. In current AIRES meta-model, each task has the following
properties:

• Task name
• Input ports and output ports
• WCET
• Rates

Given a set of tasks and their interactions, the runtime architecture can be specified as a
task graph.

Constraints. Constraints are conditions that the system has to satisfy to ensure correct

AIRES Toolkit Version 2.0

behaviors. In AIRES toolkit, we deal with 2 types of timing constraints: end-to-end
deadlines and rates. End-to-end deadlines are the timing constraints applied to system
threads, which indicate the time within which the operation has to be finished. Such an
operation may have multiple steps in between, each of which may be implemented as a
task.

Rate constraints are for individual tasks as well as system threads. Rate constraints
specify how frequently a task/system thread will be executed.

Schedulability Analysis. Schedulability analysis is a process of verifying if all tasks can
satisfy their timing constraints. If the task set is schedulable, it is safe to run them with
assigned properties at runtime, and the system will behave correctly. Otherwise, the
system may fail. The current AIRES toolkit uses a classical fixed-priority schedulability
analysis algorithm, the generic rate-monotonic scheduling analysis, for scheduling
analysis. This algorithm relaxes the assumption of RMA that relative deadlines are equal
to tasks’ periods and all tasks have to be independent. The following information are
defined in AIRES meta-model for scheduling analysis:

• Task graph
• Task attributes, including WCET, rate, task release offsets and deadlines
• Inter-task communication cost
• Task allocations, i.e., on which processor each task will reside and execute

The result of the analysis will provide the information of:

• Whether the task set is schedulable (an Yes/No answer)
• Utilization of each processor

Platform configuration. Platform configuration defines the environment where the
designed software will execute. The platform configuration includes hardware, operating
system, middleware, and network in AIRES toolkit. The platform configuration can be
specified in AIRES toolkit by selecting the corresponding processors and the network
connecting them in current AIRES toolkit. The following platform properties are defined
in the current AIRES meta-model:

3.2 Component Organization

All the models created using AIRES meta-model should have the following three folders
as shown in Figure 5:

AIRES Toolkit Version 2.0

Figure 5. AIRES tool working folders

Hardware component folder: The hardware component folder, HWFolder, contains a
model of the platform configuration, including the processors, interconnection network,
and operating systems on each processor. Figure 6 gives an example of platform
configuration with 2 processors connected via CAN bus and both running with
OSEKWorks.

AIRES Toolkit Version 2.0

Figure 6. Example of platform configuration model.

Among the hardware components, the OS component has a set of attributes that can be
specified by designers and will be used for later analysis. These attributes include timer
overhead, context switch overhead and scheduling overhead. The values of these
attributes can be obtained through system profiling/benchmarking or other analysis.

Software component folder: The software component folder, SWFolder, contains the
software components or modules that make up the application. The software components
in this folder may either come from some other modeling tool, or be created in GME
manually. A model in SWFold can be created to store all the available components for a
family of applications, therefore forms a component repository for reuse. A model called
Target has to be constructed for an application, i.e., the Target model is an application
model. The target model consists of interconnected components from both repository and
parts window to form a graph. Attributes like component type, communication cost
between components can be specified in such a graph. The runtime architecture
generation achieved by Comp2Task interpreter will apply only to the Target model. An
example of SWFolder is shown in Figure 7, which contains 2 models, Simulink and
Target. The Simulink model is used as a repository and contains models imported from
Simulink modeling tool, while Target model is an application model constructed using
components in Simulink repository and shown in the main window.

AIRES Toolkit Version 2.0

Figure 7. Example of software component folder

Task folder: The task folder, TaskFolder, contains a task graph, which is generated
according to the results of the component-to-task mapping. Constructing a task model in
TaskFolder according to the outputs of the component to task mapping interpreter is a
manual process in current version of AIRES toolkit. A model in TaskFolder contains a
view of the application as a set of dependent tasks, which is called runtime architecture.
The application model can be further enhanced by specifying the end-to-end timing
constraints between tasks and rate of each task. A deadline constraint should also be
specified on each output task using the Constraint atom in part window to ensure the
deadline distribution and timing assignment algorithm working correctly.

The execution time of the tasks and the inter-task communication cost can be derived
from the output of the component to task mapping function of the interpreter and is
manually input to the model. Figure 8shows an example task graph with timing
constraints specified.

AIRES Toolkit Version 2.0

Figure 8. Example of a task graph with timing constraint

In the following subsections, we will use a model of the ETC application as an example
to explain how different models can be constructed and how the timing analysis can be
done step-by-step.

3.3 Component Repository and Design Model Construction

3.3.1 Repository construction
AIRES toolkit supports model reuse. A user can create a set of component models in the
SWFolder. These models can be constructed and verified individually, and be used for an
application. Such set of models form a component repository for reuse. Figure 9 shows an
example of a component repository with models of 3 components in ETC example.

AIRES Toolkit Version 2.0

Figure 9. An example of component repository

Users can edit the model of each component in the repository by double clicking the
component model in the main window. Since AIRES toolkit focuses on component
structure instead of dynamic behaviors, the edition of a component model includes only
grouping components to form different granularity and changing port information.

3.3.2 Model translation
AIRES toolkit supports directly importing models from other modeling tools. Now,
AIRES model translation supports only directly importing Matlab Simulink block
diagrams in .mdl file. The importing is done through invoking Simulink model importing
and composition checking interpreter in the toolbar component list. After clicking the
Simulink/Composition checking icon, a pop-up window with 3 options: Simulink import,
Signal import, and Signal check, as shown in Figure 10.

AIRES Toolkit Version 2.0

Figure 10. Options for Simulink import and composition check

By clicking Simulink Import button, AIRES tool will bring up a file option window for
choosing the .mdl file. After the file is chosen and open, AIRES tool will automatically
create a model repository in SWFolder with the chosen model listed in it, if the
repository does not exist. Otherwise, AIRES tool will simply add the selected model to
the current repository. A blank Target model will also be generated for application
model construction. In our example, the repository is named Simulink in SWFolder.

3.3.3 Application design model construction
A design model can be constructed by selecting components from the component
repository and/or part window, dragging and dropping (or copy and past) them in the
blank target model workspace, customizing them with properties (name, input and output
ports, data size and frequency, etc.), and linking the ports of different components. The
final model should be stored as Target model in SWFolder. Figure 11 shows an ETC
application model constructed by instantiating components in the repository generated
from Simulink models.

AIRES Toolkit Version 2.0

Figure 11. ETC application model

AIRES tool can also check the signal compatibility of the application model. AIRES tool
assume signal name uniqueness1 when performing such checking. To perform the signal
checking, port information should be first imported into the system. Such information can
be constructed manually in any tool and stored in Excel .csv format. To load the port
information into the system, invoking the Simulink and Composition checking
interpreter, click Signal Import button, and choose the right file contains the port
information. Then click the Signal Check button to perform the signal compatible
checking. If there exist any inconsistency between signals, a Signal Composition Result
window will show up to provide the information with those inconsistent signals.

3.4 Runtime Model Generation

AIRES tool support generating runtime model (also called runtime architecture) from
design model. The generation is done through the interpreter of component-to-task
mapping. The algorithm of component-to-task mapping is based on k-way cuts of a

1 This means if any 2 signals in different components with the same name, these 2 signals should be the
same one (come from the same source). For example, tps1 in etc_manager and tps1 in etc_servo_control
should link to the same sensor (signal source), while which_fault output from etc_monitor and which_fault
input to etc_servo_control should be the same one.

AIRES Toolkit Version 2.0

graph. In the current version of the algorithm, minimizing inter-component
communication cost is used as a criteria to group components into tasks.

To perform runtime model generation using component-to-task mapping interpreter, an
application model should exist in SWFolder as Target. This model is used as the input
of the interpreter. The weight of each edge is then defined as the communication cost
between two interactive components, which can be calculated using the data size and
frequency passed along each link. The output of this algorithm is a task graph. The result
will then be generated in both textual and graphic formats. The generated task graph
needs to be manually created and stored in Task Folder.

The steps to perform runtime model generation include::

• Invoke the interpreter by clicking the Comp2Task icon in the component list of
toolbar. There will be a Component-Task Mapping window popped up. Note
that the design model has to have already been constructed and stored in the
SWFolder.

• In the Component-Task Mapping window, a designer can adjust two parameters
used additionally to the communication cost on how the component will be
partitioned into tasks, Max Comp/Task and Number of Tasks. The parameter Max
Comp/Task specifies the maximum components can be in a task, while the
parameter Number of Tasks defines the maximum tasks can possibly exist in the
system. The first parameter is designed for balancing the workload among a set of
tasks, while the second one is designed for controlling system workload.
Currently, Max Comp/Task outweighs the Number of Tasks, meaning that the
algorithm will try to allocate maximum number of components in a task before
moving to another task.

• Click Do Mapping button to perform component-to-task mapping.

The algorithm outputs both textual and graphic results, if the Graphviz tool is installed.
For the ETC example, the result is shown in Figure 12 with given Max Comp/Task = 2
and Number of Tasks = 2.

AIRES Toolkit Version 2.0

Figure 12. An example of component-to-task mapping

The result shown in this example indicates that the software system should be partitioned
into 2 tasks: one with only one component, etc_monitor, inside it, while the other with 2
component, etc_manager and etc_servo_control, inside it. If the Graphviz tool is
installed, the task graph will be shown in Graphviz, as in Figure 13.

Figure 13. Graphic display of the component-to-task mapping

AIRES Toolkit Version 2.0

In current AIRES tool, the runtime model can not be automatically generated according
to the output results. A designer has to manually create the task graph accordingly in the
TaskFolder. A task graph of 3 tasks with each component of ETC in one task is given in
Figure 14. Note that this task graph is not created according to the example of our
component-to-task mapping results. Instead, it is created according to the ETC
specifications given by Automotive OEP ETC example. This also shows that the
components of AIRES tool can work independently for different design requirements.

Figure 14. Example task graph with 3 tasks for ETC

3.5 Platform Model Construction

Before any analysis can be performed, a platform model with hardware and operating
systems should exist in the hardware folder HWFolder. The following steps are required
to construct a platform configuration model:

• Create a blank model in the workspace, for example ETC_Platform.
• Drag and drop CPU, OS and CANBUS components from the part window in

the workspace, and connect them as desired.
• Rename the components in the workspaces to reflect the real part used for the

system.
• For OS components, a set of attributes can be assigned, including timer

AIRES Toolkit Version 2.0

overhead, scheduling overhead and context switch time. Values of these
attributes can be measured individually.

Figure 15 shows an example of platform model with 2 processors both running
OSEKWorks operating system and connected through a CAN bus network in
HWFolder.

Figure 15. Example platform model for ETC

3.6 Deadline Distribution and Timing Assignments

Deadline distribution is a step to partition end-to-end timing constraints over a set of
tasks with/without precedent constraints so that the overall timing constraints can be
satisfied. The partitioned deadlines and the corresponding release offsets will then be
assigned to tasks as their timing properties for scheduling and runtime control.

This function of AIRES tool might be an optional step for some embedded system
designs in current practices as some timing attributes such as rates and deadlines are
already given. For such cases, this step can be omitted.

To do the deadline distribution and timing assignments, the following steps are required:

AIRES Toolkit Version 2.0

• Specify the timing constraints for the task graph in TaskFolder by selecting
Constraint atom in part window and linking them with tasks at the start and end.
Right-click the constraint added to the model to specify the values of each
constraint. Task attributes such as rate constraints and worst-case execution time
(WCET) can also be specified by right-clicking the task icon in the model and
assigning values for each attribute. Multiple specifications are required if there are
multiple constraints. For those tasks that are not subject to rate constraints,
uncheck the value so that the timing assignment algorithm can assign proper
values for those tasks automatically.

• Invoke the interpreter by clicking the deadline distribution and scheduling
analysis interpreter icon in the toolbar component list.

• Three options will be shown in the Real-Time Analysis window: Deadline
distribution, Allocation+distribution, and OK. Click on the Deadline
Distribution button to invoke the deadline distribution.

All tasks in the task graph should subject to some deadline constraints in order to perform
the distribution and assignment correctly. If there exists some task that is without any
constraint, the interpreter will consider the specification as incomplete, and give an error
message.

The results of deadline distribution are release offsets and deadlines for each task in the
system. This can be used for sequencing and scheduling the tasks in the later stage.
Figure 16 shows the results of deadline distribution and timing assignment for ETC
(constraints can be found in the example come with the package).

Figure 16. Deadline distribution results

AIRES Toolkit Version 2.0

Note that the later implementation of the system should use to the result given by the
deadline distribution in order to satisfy the end-to-end timing constraints as well as the
task dependencies.

3.7 Task Allocation and Schedulability Analysis

Task allocation is a process to assign tasks to different processors on a platform so that all
constraints can be satisfied. Schedulability analysis then checks whether the set of tasks
allocated to each process are schedulable. Current version of AIRES toolkit considers
both processor utilization and communication cost between processors. The algorithm
uses only first-fit for allocation, and generalized RMA for schedulability analysis.

Task allocation and scheduling analysis requires that the rate of each task be known prior
to analysis. This can be ensured by specifying the period of each task in the model or by
running deadline distribution prior to invoking Task Allocation and Scheduling.
Correlation constant CF is used to allocate heavily communicating tasks together so that
they will run on the same processor to minimize the usage of network bandwidth.

Current version of AIRES tool packs the deadline distribution, task allocation,
schedulability analysis and OIL file generation in a single interpreter. To do the task
allocation and schedulability analysis, follow the steps below:

• Invoke the schedulability analysis interpreter after the task graph has been
constructed in TaskFolder. Run deadline distribution or assign task rate attribute
before perform task allocation and schedulability analysis.

• Click on Allocation+distribution button to run the task allocation and
schedulability analysis.

• In the Allocation and Scheduling Result window, specify the correlation
constant CF as needed.

• Choose the scheduling policy used for this analysis. Only RMA is supported in
this version

• Click the Schedule button after all selections are done. The analysis results will be
shown in the text area of the window.

The results of task allocation and scheduling will show information of individual tasks,
including its name, rate and WCET. For each task, the analysis will also indicate which
cluster the task is in (a cluster may contain one or more tasks), response time of each
task, resource consumption of each task, and the location (processor) on which the task
will be executed. The analysis will also provide the utilization of each processor. Figure
17 shows the result for an ETC example with end-to-end deadline=5000 us.

AIRES Toolkit Version 2.0

Figure 17. Analysis results of ETC example

Alternatively, a designer can specify the location of tasks’ executions. (This is the case
given by the ETC example.) To do so, one can add the CPU reference in each task by

• Enter the allocated task
• Choose a processor in HWFolder by right-click it, and select Edit->Copy
• Paste the processor in task by right-click and choose Paste->As Reference

After all tasks have been allocated, the above steps for schedulability analysis can be
performed to generate the scheduling analysis result. Figure 18 shows that the analysis
results with tasks are manually allocated on 2 processors (etc_manager and
etc_servo_control are on processor 1, while etc_monitor is on processor 2.)

AIRES Toolkit Version 2.0

Figure 18. Analysis results with manual task allocation

3.8 OIL File Generation

Since OSEKWorks operating system is widely used for vehicle control applications, we
build an OIL file generator in AIRES toolkit to facilitate the implementation of runtime
system. The OIL file is a configuration file in OSEKWorks to specify the system objects,
including CPU, task, scheduling policy, alarm, system counter, network and messages, in
an implementation. AIRES tool now generates an OIL file with only a subset of objects
related to scheduler (CPU, task, alarm and system counter) defined in OIL specifications.

In AIRES toolkit, the OIL file is generated according to the timing and scheduling
analysis results. Since the system objects and their attributes defined in an OIL file is
closely related to how the tasks are implemented (e.g., explicitly schedule task by calling
ChainTask() function call, and explicite task termincation by calling TerminateTask()),
we assume that the implementation of each individual task will also follow the
information given by the analysis tool, and are built with all mechanisms required for the
schedule.

It is now required in current AIRES tool to perform OIL file generation after
schedulability analysis, and the generation can only be invoked by clicking the Generate

AIRES Toolkit Version 2.0

OIL button in Allocating and Scheduling Results window. Following steps are required
to generate OIL file:

• Perform schedulability analysis first, as described in Section 3.7.
• Choose Generate OIL in Allocating and Scheduling Results window after

schedulability analysis is done.
• In the pop-up file selection window, give a file name for generated OIL file, then

choose Open.
• If the OIL file is generated successfully, there is a message window popped up

with the full path of the generated OIL file.
• If there are multiple processors in the platform model, the OIL file generator will

generate an OIL file for each processor separately.

4 Contact Information

For further help or feedback, please contact any of the following persons:

• Kang G. Shin (kgshin@eecs.umich.edu)
• Jeong Chan Kim(jchankim@eecs.umich.edu)
• Sharath Kodase (skodase@eecs.umich.edu)
• Shige Wang (wangsg@eecs.umich.edu)

mailto:kgshin@eecs.umich.edu
mailto:skodase@eecs.umich.edu
mailto:wangsg@eecs.umich.edu

	AIRES TOOLKIT USER MANUAL
	Version 2.0
	Released Date: February 2002
	AIRES Group
	Real-Time Computing Laboratory
	EECS
	The University of Michigan

	What is new in version 2.0
	Use of the Fonts

	Introduction
	Installation
	Install GME 2000
	Obtain AIRES Toolkit
	Install AIRES meta-model
	Install Icons for AIRES
	Install AIRES interpreters
	Install Graphviz Package (optional)
	Rebuild the AIRES interpreters (optional)

	Model Construction and Analysis With AIRES ToolKit
	Basic Concept
	Component Organization
	Component Repository and Design Model Construction
	Repository construction
	Model translation
	Application design model construction

	Runtime Model Generation
	Platform Model Construction
	Deadline Distribution and Timing Assignments
	Task Allocation and Schedulability Analysis
	OIL File Generation

	Contact Information

