The UDM framework
Arpad Bakay, Endre Magyari

List of contributors:
e Tihamer Levendovszky

I nstitute for Softwar e-Integrated Systems
Vander bilt University
March 2003

Table of Contents

TaDIE OF CONTENEScuiieeeieeeeete ettt bbbt e e 2
1. Architectural deSCriPLiON.........coeiiiiiiiiee e et 3
2. TNEUDM AP ...ttt bbbttt b bbb b bt et nean 6
2.1 Mapping UML ClasseStO UDMooiiiiiiiiieie et 6
pZ 2 o 317070 S 1 1] o OSSP 7
2.3 Creating and deleting ODJECES.........ooiiiiiiiiieie e e 8
2.4 Accessing the meta-iNformMation............ccveeereeieiieesecse e 9
25 AITDULES. ... e e 10
p I N 1 = VA N 1 11 == 12
User code With array attribDULES...........cocuiiieiieieeee e 13
2.6 ASSOCIBLIONScueeuieiesie sttt sttt ettt st b ettt bese e s b st e s bt be st e e e e e e e ntenbe st 14
2.7 CONSITAINTS. ...ttt sttt sttt e s re et e se e s st e besaeesaeeseeeneesreebeenensees 16
2.8 Non-persistent Class attribULES..........ccceieeieee e 16
2.9 Archetype, derived and instance ODJECES.........cocoverireiic e 16
3. USING TNEUDM AP ...ttt 18
3.1 Generating UDM SOUICE fIlESuviieeeieeeeee e 18
3.2 Creating a C++ project that USES UDMcccveieiieircieceee e 18
3.3 GENENIC Program SIIUCIUIE.ccueieiieeieeee ettt st sre e ssee e ee e 19
3.4 Udm::DataNetwork objects and member functions............cccvvevevieeneccnseenie s, 20
3.5 UDM Dat@ ObJECES.eeiueeieeieeieesieeie sttt sttt s sae e sre e 22
4. The UDM API and persistence teChnolOgIeS..........ccvevvieerieiie e 27
4.1 Limitations on the UML capabilItiteSccoouiieeieriireeeee e 27
4.2 The XML DACKENMoooiiieriiieeseieee e 28
4.3 The GME DACKENTocueiieiiiieeeeeee et 29
4.4 The Memory(StatiC) backend..........ccooeveeieeieeii e 33
L1 1Y = o o 15 Y PSS 34
5.LWREE IS XIMI? ettt bbbttt 34
5.2 Conversion to/from XM ..ot e 34
5.3 XMIINPUE FOr UAMLEXE......ccoieeeecieee ettt 34
5. UDM Internal ArChITECIUIE.......ccueiiieeee ettt st 35
5.1 Data NEWOIK CallS......ccuiiiiiiiiiieieeee s 35
5.2 ODJECE CallS...ceiiiiieee e e et 37
I @ =1 o) o= | S 38
54 UML (MEt@) CallS.....cciiiieieiieieieesie ettt s sne s 41
5.5 MiSCAlANE@OUS CAlISccuoiuiiiiiiiicieee e s 42
5.6 UDM TOMI INEEITACEoieeeeeieeeeteeie ettt s 43
L g1 =0l 1= 1= o LU 5 1Y 45
G300 8 Lo [0 1 o | T 45
N 0 0= 00 A USSR 54
UDM t0O0IS dOCUMENTALIONoveeieeiiiiieeie ettt s 54
VISIOUMLZ2XIML .ottt sttt st 54
6o [0 SR 57

UOMIPEL. ...t bbbttt b bbbt bt st et e e et e b et nbe s 60
[o [0 O] o VSRRSO 63
N o 0= 00 [= OSSR 64
Simple UML class diagram, created in GME2000ccceviieiienienieneeesee e 64
Matching GMEMeta 2000 paradigm of the UML ClassDiagram...........cccccevveevereennns 65
XML representation of UML iNfOrMation.c.coieeierirneeneniee e 66
DTD file generated from the XML in Appendix D (generated with Udm.exe)............ 68
.H file generated from the XML in AppendiX D........cccccoverrneriienienenie e 70
Sample UDM-Dased Program.........cccceveereeieseeseeseeseessessseseessesessseessessesssesssessessseenes 74

1. Architectural description

The UDM (Universal Data Model) framework includes the development process and set
of supporting tools that are used to generate C++ programmatic interfaces from UML
class diagrams of data structures. These interfaces and the underlying libraries provide
convenient programmatic access and automatically configured persistence services for
data structures as described in the input UML diagram.

The storage technologies currently supported are as follows:
* XML with an automatically generated DTD file,
*MGA, the native interface of the GME modeling environment [1]
* Memory-based storage.

The framework consists of the following modules (also shown in Figure 1):

*The VisoUML2XML tool, which converts Viso UML
modelsinto XML format.

*The GME UML environment with the GME UML paradigm
and interpreter, which generates equivalent XML files from
GME UML models.

*The Udm program, which reads in the XML files generated
by the above tools, and generates the metamodel -dependent
portion of the UDM API: a C++ source file, a C++ header
file, and an XML document type description (DTD).

* The generic Udm include headers and libraries to be linked
to the user’s program.

«Utility programs to manipulate and query Udm data
(UdmCopy, UdmPat).

UDM can be best used where

* Object-oriented approach is followed to describe the data structures. It basically means
that the object structure is defined first in the form of a class diagram, and only the
attributes, associations and methods defined there are used in the program.

*The data has no native persistence format, so Udm's supported persistence formats
(XML or GME) can be used for persistence. Otherwise, Udm can also be used to
create converters to and from native formats.

Thetypical process of using the UDM is asfollows:

*First, aUML metamodel is created in either of the two supported modeling tools (Visio
or GME).

* The information in the UML diagram is converted to an XML file using either the
VisioUML2XML tool, or the GME interpreter supplied with the GME UML
environment. The format of these XML filesis Udm'’ s representation of UML class
diagram information (partially described by the DTD file Uml.dtd).

*The Udm.exe program is used to generate the paradigm-dependent API files.

* The user includes these files, along with other, generic Udm headers librariesinto a C++
project.

» Changes in the UML diagrams are followed by the same procedure. Since most changes
also change the generated API, modifications in the programs that use it may also be
required.

The simplest caseiswhen asingle UDM interface is used either for reading or writing
data structures. Other scenarios, like trandlators, may use several different UDM API-sin
the same program.

Visio o GMF UMI
LIMI OR
O Udm binary tool
N D Udm generated code
|:] Other tool
VisioUML2XML GME UML
. ()
|:] User supplied code/modules
File input/output or module
> ata exchange
UDM .exe Alternative file input/output
> or module data exchange
<Uml DTD> 127" DTD for XML file
tools
with
direct
XML
access
.h
U Other
D UDM
—> |
M b
User tools
program
with
UDM libs
| :
. i alternative
Figure 1 {_ backend i

For some typical operations, the Udm package also includes generic programs that work

on Udm data. Since these are generic, the data structure information is supplied at run-

time asfilesin the XML UML format.

*UdmCopy is used to port data between different persistent technologies (i.e. XML to
GME or vice versa).

«UdmPat isasimple utility that can be used to interpret Udm data and generate text
output through a simple pattern based query language.

2. The UDM API

The UML description of the data structure is trandlated into C++ class definitionsin a
generated API that is convenient to the programmer, and gives access to al components
of the data structure.

2.1 Mapping UML classesto UDM

Nanespace Exanpl eDiagram{ // assignment to same type
BaseClass Udm : Obj ect Obj ect; int f1(Derivedd ass &) {
DerivedC ass c2 = c;

. .cI ass Based ass : }
public Onject {

/1 fromderived to base
}; int f2(BaseC ass &b, Deriveddass c) {
cl ass Derivedd ass : b = c;
public Basedass { 1}

} /1 from base to derived
} int f3(Derivedd ass &, BaseC ass b) {
DerivedClass /1 check if conpatible
if(b.meta() == Derivedd ass::neta) {
c = b;
}
. }
Class Diagram UDM Header User code example
Figurel.

For each (abstract or concrete) UML classin the source diagram, a C++ classis defined
with the corresponding name (Fig 1.). All the classes belong to a namespace, which is by
default named after the UML diagram (unless overridden by optional parametersto the
VisioUmI2XML or Udm tools).

The class definitions allow the definition of instance variables. Such variables are not true
objects, just handles (references) to existing instance objects, which reside in the backend
(similar to the handle-body idiom defined by Coplien [3].). This has the following
consequences:

*Anuninitialized instance variable is an empty reference (reference to Udm::Null).

*» Several variables may refer to the same instance object, and simple assignment of
variables does not imply the creation of a new instance.

*New objects are always created by the ClassName::Create() static member function,
which is automatically defined for all classes (not shown in Fig. 1). Thisfunction
expects the specification of a parent object (except for asingle root object, every
object must have a parent; see 2.3 for details), and an optional child role.

Inheritance in the UML diagram is reflected as C++ public inheritance. Consequently, all
attribute, composition, and association access methods of the base class are seamlessly
reflected in the derived classes. Multiple inheritance is also supported, with C++
inheritance relations converted to virtual as necessary.

All classesin the hierarchy are descendants of Udm::Object, which defines the generic
functionality of objectsin UDM.

An object can decide itsreal type through the meta() method. Each class has a static and
constant type description object (see 2.4) accessible as xxx::meta. These together make it
possible to determine compatibility between classes, objects and variables. The type
information objects also provide reflection information (associations, attributes).

Note: The VisioUML2XML tool currently does not preserve the abstractness of classes,
thus all classes are regarded as non-abstract.

2.2 Composition

void Siblings(B &bb) {
A class B: public Object { A aa = b. Containi ngA();
Udm : Parent Att r <A> Cont ai ni ngA() ;

Udm : Parent Attr<A> parent () set sibs = A ChldrnB();
1 set iterator bi;
’ for(bi = sibs.begin();
- bi !'= sibs.end();
1 +ContainingA bi +4) {
class A: public Object { /Il process (*bi)
Udm : Chil drenAttr ChldrnB(); }

Udm : Chil drenAttr< B>
B ki nd_children();

=

voi d ChangeParent(B &bb,

* +ChldrnB A &nevaa) {
bb. parent () = newaa;
B
Class Diagram UDM Header User code example

Figure 2.

UML composition (containment) relationships are tranglated into access methods at both
the 'child' and 'parent’ side (Fig. 2.).

These access methods return instances of wrapper classes that can be used to read and
assign new value to the relationships:

Udm::ParentAttr<xx> represents the single parent of an object. It can be
assigned to an object of type xx, or its value can be changed to any xx instance (see the
examplein Fig 2)

Udm::ChildAttr<xx> isused if the maximum multiplicity at the child sideis 1.
It represents the single child of an object. It can be assigned to an object of type xx, or its
value can be changed to any xx instance.

Udm::ChildrenAttr<xx> is used if the maximum multiplicity at the child sideis
>1. It represents the set of child objects. It can be assigned to an object of type set<xx>,
or its value can be changed to a new set<xx> of xx instances.

Objects can access their parent and children in two ways:

1. Access by composition relationship. Returns objects only if they are linked
together with the composition specified. Examples are ContainingA() and ChildrenB() in
Fig. 2 above. Thisisthe more commonly used access method.

2. Access by parent/child type. Returns all parent/child objects that match the
specified datatype (either directly or through inheritance), regardless of the composition
relationship used. Examples are parent() and b_kind_children() in Fig. 2 above.

If thereis only one possible relationship between two objects, the two access methods are
equivalent. Otherwise the set of objects returned by the type-based access are never
smaller than the corresponding relationship-based access.

The two access methods generated on the parent side are:
a.An access based on childroles. If the role has a name on the child side, the
access method is named after the rolename. If the rolename is empty, the
name of the access method is ‘xxx_child’ or *xxx_children’ (depending on
the maximum child multiplicity) where xxx is the classname at the child
side of the composition.
An access based on child class types. The name of the access method is *xxx_kind_child’
or ‘xxx_kind_children’ (depending on the maximum child multiplicity) where xxx is the
classname at the child side of the composition.
Further two access methods are generated on the child side as well:
b.A role-based access, which is named after the parent side role name of the
composition relationship, or, if that name is empty, following the pattern
‘yyy xxx_parent’, where yyy is the rolename on the child side, and xxx is
the classname on the parent side (if the child rolenameis al'so empty, the
form *xxx_parent’ is used).
c.For the child-to-parent direction, there are no type-based access methods
provided, but an additional catch-all ‘parent()’ method is generated, which
returns the actual parent, whichever it is. Its return type is selected as the
most specific type still compatible with all possible parents. If the method
name ‘parent()’ is aready taken (i.e. the UML diagram defines a
composition child role for this class where the parent end is named
‘parent’), this catch-all parent() method is omitted.

2.3 Creating and deleting objects

A basic concept of UDM data networks is objects are organized in asingletree, i.e.
except for asingle root object, all objects have a containing parent. Generally, the
lifetime of UDM objectsis bound to their containment in the object tree. New objects are
always created with their parent explicitly specified, and likewise, an object is deleted
when no other object containsit any longer.

Each UDM class has a static Create method, which is used to create new object
instances:

class A: public Object {

static A Create(const Object &parent,
const ConpositionChil dRole & ole = Udm : NULLCH LDROLE

)i
}

The second argument is optional, if thereis only one valid composition between the
parent and the new child. Otherwise, it needs to be specified to resolve ambiguity.

Objects can be deleted by making it orphan. This can be accomplished in several ways:
1.By setting the parent() (of an object to NULL)
2.By assigning a new child set to the parent, omitting from the set the objects to be
deleted.

Note 1.: Most backend technologies immediately delete objectsin this case. The XML
backend however, allows objects to temporarily exist without a parent, and as long as
thereisareferenceto it, it can be accessed, reconnected to another parent, etc. However,
such orphans are never recorded in the persistent format (i.e. the XML file). Usersof this
technique in XML must be aware that this feature is not provided by all backends.

Note 2.: Some backend techniques (e.g. XML) alow multiple childroles to be
simultaneously active, as long as the parent object is the same (e.g. a‘door’ ina‘hall’
may bean ‘entrance’ and a‘fire_exit’ at the same time). Removing the object from the
child set of onerole only, still keeps the object bound to its parent by the other. Thus, to
delete an object, all roles must be removed, or the role-independent * parent()’ access
function isto be assigned NULL. Note that multi-role composition is not supported by
most backends.

2.4 Accessing the meta-infor mation

The meta-information is also accessible through the API. This capability can be used to
support reflection, dynamic type identification, etc. This meta-interface is actualy aso a
UDM datanetwork by itself (with a memory-based, StaticDataNetwork backend), so the
styles of the two interfaces are the same. The UML diagram of the meta-datanetwork is
shown in Fig. 3.

GenericRole

namel[0.1]: String
isMavigahle[D..1] = true : Boolean

Diagram

narme : String

compositions (0.%

Cornposition
arert
name[0.1]: String
nonpersistent0..1] = false : Boolean
parent {T
child Ralz | 1

parentFole |1 AgsotiationRole asgasiations

CompositionChildRole Azsociation

- rols
CompositionParentfiole min: Integer . :mggz{ T amsermey] NAME[1] String

max: Integer isPriman(0.1] = false : Boolean 0.1| nonpersistent[0..1] = falze : Boolean

HE
545

parentRoles |0..7 childRoles |07 — 1 - | a=sa Parent’
associationRoles (0.

Attribute target (1 tanget (1 taghalues |0.*
type . String tange; Class ass]ocC\ass Tangedvalue
narme : String classes sterentypel0.1] - Ciring |[gssFaren 1aghalies -
dgfvalue[ﬂ_ﬂ_ String attribtes par%‘mx isAbsiract: Boolean |subTypes . name. Str!ng
min Integer = narme - String [0 value[0..1] : String
maK Integer .
nonpersistent]0..11=false : Boolean basaTypes 0.7
The UML diagram of the meta (meta-metamodel)
Figure 3.

Each of the objects mentioned in this section (class object, attribute object, composition
parent- and child role objects, and association role object) have a static member variable
‘meta’, which provides access to the corresponding meta-information. Related
association roles are further bound together by the association object, which is accessible
from the association roles and vice versa. The same technique, a composition classis
used to bind corresponding composition child and parent roles together. For the UDM
interface, all these objects are instances of the C++ classes Class, Attribute,
AssociationRole, CompositionParentRole, CompositionChidRole, Association, and
Composition, respectively (all of these class names are contained in the *Uml’
namespace, which is separate from the namespace of the generated data interface).

Since al the metainformation are implemented by StaticDataNetworks, which are
backends in the memory, you can even change runtime both the meta, and the meta-meta
models of UDM and the currently used API/ClassDiagram.

This feature raises new possibilities. Even more, you can create your metamodel runtime,
based on the meta-meta model (UML), and create/open a data network (any backend)
based with the runtime create diagram as meta information.

2.5 Attributes

Since version UDM 1.30 UDM uses a hew syntax to specify attributes.
The new syntax is compliant with the UML notation guide. (OMG-UML, v1.4)

[volatile] [visibility] name : type-expression[multiplicity ordering] = initial-value

-The*volatile’ keyword isoptional. If it's present it means that the attribute is non-
persistent, and it’s not recorded in the backend. This obsolates the previous way
of declaring non-persistent attributes.

-Thevisibility isone of:

o+ public

o# protected

0- private

0~ package

The visibility marker may be suppressed. Visibility may also be specified by
keywords(public, protected, private, package). Thisis currently not
implemented in UDM, everything gets generates as ‘public’. Thiswill make
sense only when operations will be supported. However, the visibility
information can be obtained as meta-information, and the Uml meta-
metamodel is extended in this direction.

-Nameis an identifier string that represents the name of the attribute.

-Typeis either Sring, Real, Boolean or Integer.

-Multiplicity shows the ordering of the attribute, as specified in the UML notation
guide. Examples:

00..1

ol

00.*

ol.*

0l.6

01..3,7..10, 15, 19.*

-The ordering property is meaningful if the multiplicity upper bound is greater than 1.
(array attributes) . Currently, UDM supports this feature in all backend types, and
in case of non-persistent attributes as well.

-Theinitial-value is defined as avalue or alist of values—in case of array attributes -
of the specified type. Thisis fully supported by UDM.

Examples of valid attribute specifiers:

publ i c Model Nane: String="Default Lanp Nane"

ArrayStr:String[0..* ordered] ="second","first"

Arraylnt:Integer[1..* ordered]=5,4,3,2

ArrayBool : Bool ean[0. .* ordered] =fal se, true, fal se, true

ArrayReal : Real [0..* ordered]=9,8,7,6

volatile public TenpArrayStr:String[0..* ordered] ="t enpdef 3", "tenpdef2", "abcdef"
vol atile TenpArraylnt:Integer[0..* ordered]=9,8,5,6

vol atil e TenpArrayReal : Real [0..* ordered] =40, 35, 26, 17

vol atil e TenpArrayBool ean: Bool ean[0..* ordered]=true, fal se,true, fal se

For each UML attribute an access method is defined in the corresponding C++ class (Fig.
4.). These access methods are named after the attribute name, and return an object. These
objects can be converted into or assigned new values of a suitable data type. Supported
UML datatypes are String, Integer, Boolean, and Real (defined as Doublein Visio

diagrams), which are mapped to the C++ data types string (as defined in the Standard
Template Library [STL]), integer, bool, and double respectively.

ClassB class ClassB : public Object { voi d ProcessAttrs(O assA &) {
-ggg : Integer Udm : IntegerAttr ggg(); a. bbb() = “foo”;
if(a.ddd()) {
class ClassA: public CassB { a.rrr() = a.ccc() + 5.0;
Udm : StringAttr bbb(); }
Udm : Bool eanAttr ddd(); a.ddd() = false;
Udm : IntegerAttr ccc(); /'l works for basecl ass
ClassA Udm : Real Attr rrr(); I/ attrs as well
-bbb : String 1 a.ggg() = 55;
-ccc : Integer }
-ddd : Boolean
-rrr : Double
Class Diagram UDM Header User code example
Figure4.

C++ inheritance mechanism provides that attributes defined in a baseclass are also
accessible in its subclasses (as long as names are unique).

UML diagrams may contain access permissions on attributes, but these are not reflected
in the generated interface, where al attributes are considered public.

2.5.1 Array Attributes:

Udm starting from release 25 June 2002 supports attributes of type array.
Arrays can be of Integer, String, Real and Boolean. In the AP, they are mapped to
vectors of coresponding C++ types.

An attribute of type array should be defined as follows:

ArrayStr:String[0..%] [[ettribute is optional
or
ArrayStr:String[1..%] [[ettribute is required

When using attributes of type array with MGA backend, these attributes must be declared
in the GME Meta as attributes of type string. Thisis because MGA does not support
array attributes, and they are implemented in MGA using attributes of type string.

Array attributesin MGA and XML backends are not really implemented, because the
underlying backend does not support them. However, UDM provides this functionality
by using the string attributes of the backends.

In MEM backend, thereisreal suppport for array attributes and it has no performance
penalty over simple-value attributes.

If UDM XML/MGA DataNetworks which use attributes of type array are directly edited,
it should be considered how UDM represents arrays as strings in these backends:

Array of integers and floats: values delimited by *;’

Array of booleans: sequence of ‘true’sor ‘false’s (case insensitive)
delimited by *;’
Array of strings: strings delimited by ‘;’,

‘;” can be escaped by ‘V
‘\" can be escaped by ‘\

User code with array attributes

In user code, array attributes can be set/get in the same was as with simple
attributes.

The only differenceis that not values, but vectors of values are accessed.

Examples:
-Checking the size of the array:

if (person.name())

//the array has elements

if (!person.name())

//the array has no elements

vector<string> names = person.name();
int size = names.size();
//the array has size elements

-getting the attribute values:
vector<string> names = person.name();
-setting the attribute values:

vector<string> names;
nhames.push(“John”);
names.push(“Jerry”);

person.name() = names;

-adding values to the attribute:

vector<string> names;
names.push(“John”);
nhames.push(“Jerry”);
person.name() += names;

-getting the value at an index in the array

string name_0 = person.name()[0];

string name_1 = person.name()[1];

Note: Index isa 0 based index. If no such element exists, either string(), or
double() or long() or bool() is returned. One may check the size of the
vector before addressing individual elements. In such casesthe valueis
undefined.

-setting the value at an index in the array
person.name() [1] = “Jerry”;

Note: If the array is smaller than the index then it’ s filled automatically to
the size requested by index with string(), double&(), long() or bool(); These
values are undefined. Then, the value at the position is changed to rval.

-adding avalue to the value at an index int the array

person.name()[1] += “, jr.”;
Note: When the array is smaller than the index, then the same note applies

asin the case of assignment operator before.
The += operator does not work — and also does not make sense — for

boolean arrays.

Note: The = and the += operators for array of strings, integers, and reals are defined for
all related types:
*In case of string arrays, you can use the operators with right values of type string
and const char *.
*In case of real and integer arrays, you can use the operators with right values of
any numeric type: float, double, long, int

Udm currently does not support UML class operations.

2.6 Associations

Man class Man : public Qbject { /1 assignment to pointerAttr
Udm : AssocAttr<Worman> wi fe(); voi d weddi ngl(Man h, Wnan w) {
} w. husband() = h;
1 | -husband class Wnan : public Object {
-wife Udm : Poi nter At t r<Man> husband();

Udm : StringAttr Nane(); /1 equival ent

Woman } /1 assignnent to assocAttr

-Name : String| voi d weddi ngl(Man h, Wrman w) {
h.wife() += w,

Asymmetric poligam }
man may have
mutiple wifes! /'l query
int wifenanes(Man h, string &s) {
set <Wbrman> wives = h.wife();
set<Woman>::iterator w;
Wi = wives. begin();
while(wi !'= ws.end()) {
s += w ->Name();
W ++;
}

return wves. size();

Class Diagram UDM Header User code example
Figure5.

Associations without an association class (Fig. 5.) are accessed in away very similar to
compositions, with the only difference that associations are symmetric. The access
methods for both ends of the association are named after the corresponding association
role names. Associations without names at either end are considered non-navigablein
that direction, thus no corresponding access method is generated. The type of the wrapper
object returned by an access method again depends on the cardinality of the
corresponding end of the association: it can be read as or written by asingle variable (if
the maximum cardinality is 1) or by an STL set<T> of compatible objects.

Associations represented by association class are also supported. Association classes
display the nature of both classes and associations, i.e. besides the associated peers they
also have attributes, and may participate in associations or containment relationships.
This parallelism is maintained as much as possible, but there are differences to be
observed (e.g. when creating new associations).

The UDM metamodel (Uml.xml) has two optiona parameters for associations:
*isPrimary can be optionally assigned to one of the two association roles, if that role
isregarded as the primary logical direction of the association (looking from the
middle of the association). Inthe UML standard it is usually represented by an

arrow prepended or appended to the association name. E.g . if an association
represents the ‘feedson’ relationship between an animal and something edible,
then the primary association role will probably be the one that points to the food.

*IsNavigableis aflag that optionally indicates that an association is not navigable in
either direction. If this attribute is false, no access method is generated to navigate
the association in that direction (in the tools, UML tools navigability is indicated
with arrows at the ends

2.7 Constraints

Currently, UML constraints are not checked by UDM, but a data backend may optionally
refuse violating operations.

2.8 Non-persistent class attributes

Attributes of automatically defined UDM classes are by default persistent, i.e. they are
stored in the output data. However, it is often desirable to use datain classes that are not
persistent, but used to store temporary information. Such attributes should be declared
using the ‘volatile’ keyword when declaring the attributes.

Non-persistent attributes support the same data types as the ordinary ones.

2.9 Archetype, derived and instance objects

Since version 1.62, UDM supports the sub-typing and instantiation of existing
UDM objects, allowing thus the existence of subtypes and instances. Such instantiated
and/or sub-typed(derived) objects have an archetype object, which is the other end of this
relationship, and it is the object that they are sub-typed(derived) or instantiated from.

Objects with hierarchy (containing children) can aso be derived and/or
instantiated. In such cases the whole sub-tree, rooted at the archetype object, is derived
and/or instantiated. If an object is directly derived/instantiated from it’ s archetype we call
it primarily derived. This means that a primarily derived object can be created only with
explicit user code, like calling CreateDerived() or Createlnstance(). An object is
inherited child when one of it’s parentsis a primarily derived object. Such inherited child
objects are created whenever an object with hierarchy is derived or instantiated. Every
object contained in the sub-tree rooted at the archetype will have their corresponding
derived/instantiated inherited child object in the hierarchy rooted at the new
derived/instantiated object, which is primarily derived.

Attribute values of instantiated/derived objects are kept synchronous with the
values of the corresponding attributes in archetype object as long as they are not modified
alone(only through their archetype). Once an attribute’ s value is modified alone(directly
on derived/instantiated object), the attribute becomes “desynched” from the archetype,
which meansthat it’s value it is not synchronized to the corresponding attribute’ s value in
archetype.

Derived objects can be modified, but inherited child objects(children and links)
can not be removed.

Instance objects can not be modified, but inherited child objects of instance
objects can serve as connection end-points for connection objects(links) outside the
instance object.

Methods for creating & manipulating derived and instantiated objects:

Creation: CreateDerived(), Createlnstance()
Query: Derived(), Instances(), Archetype()

(All non-static member functions of the generated classes.)

3. Usingthe UDM API

3.1 Generating UDM sour cefiles

1.UseVisio or GME with the UML paradigm to create a UML diagram for the data
model of the target application.

2.Use the VisoUML2XML tool, or the UML2XML GME interpreter to generate
XML filesfrom the diagrams.

3.Run Udm.exe to generate a .cpp and a .h file from the XML format. (Udm.exe also
generatesan XML DTD file)

Udm.exe, VisoUML2XML, and the UML2XML interpreter are all included in the Udm
binary release. It also contains the include files, static and dynamic libraries needed to
build aUDM application, along with documentation and examples.

3.2 Creating a C++ project that uses UDM

The easiest way isto start from an existing project (e.g CreateLampModel.dsp), but the
following procedures also include instructions for doing it the hard way:

The following components are needed (and supplied in the distribution):
-Microsoft Visual C++ 6.0 (not included in the distribution)
-The Xerces 1.2 XML Parser headers, library and DLL
-The SGI 3.2 Standard Template Library headers
-The UDM libs (UdmBase.lib, UdmDom.lib and UdmGME.lib)
-The UDM headers

Y our project needs to include the UDM API sources (generated in the previous step) and
your own source files (at least one that defines the main() or WinMain() function).

Step-by step instructions:
1.Create anew project (e.g. aWin32 Console application, or an MFC application) in
Microsoft Visual Studio.
2.Make sure the project includes the SGI STL headers (which are at <install-
dir>/include/stl in the distribution)
—add the STL path to Project/Settings/C+ +/Preprocessor/Additional include
headers
—or add the STL path to the system-wide settings in
Tools/Optiong/Directories/Header files (make sure STL precedes the
standard Microsoft includes)
3.Make sure your project includes the generic UDM headers by adding the header
directory (normally include/udm) to either of the settings mentioned above, or by
copying the header filesto your project directory.
4.Include the UDM base library UdmBase.lib, and at |east one of the backend support
libraries like UdmDom.lib (which requires Xerces-c_1.lib) and UdmGME.lib) in

Project/Settings/Link/General/Object/Library modules. For the debug builds, use
the corresponding debug versions (where the basename endswith*_D’). These
libraries are normally located in the Lib/Udm subdirectory of the distribution (the
location for the Xerces-c_1.lib and Xerces-c_1D.libis Lib/Xerces). You will need
to add these directories to the input library path, or specify libraries with
pathnames, or set the system-wide settings for paths in
Tools/Options/Directoried/Library files accordingly.

5.Make sure al the configurations of your project refer to the * Multithreaded DLL’ or
‘Debug Multithreaded DLL’ run-time libraries in the Project/Settings/C++/Code
Generation/Use run-time library option. The libraries use C++ exceptions, so
you probably also want to enable exception handling.

6.Add the generated UDM API files (a C++ and an H file) to the project. In addition
to these, your project will need to have at least one source file, which defines the
main() (or WinMain()) function.

7.Thefiles that use the API need to include the UDM API header file. The module
that creates the UDM project object (UdmDom::DomDataNetwork if the XML
backend is used), will aso need to include the respective backend definition
header file (" UdmDom.h’ or ‘UdmGme.h’) aswell (thisfileislocated among the
standard UDM headers, e.g. in include/udm).

8.If your project uses the precompiled header features, including all headersin the
master header file (StdAfx.h) of the project is recommended. In any case,
however, the API .cpp file should be set individually to *Not using precompiled
headers’' in the Project/Settings/C++/Precompiled headers/ pane.

9.Set additional options according to your preferences.

To run any application that uses the XML backend, the Xerces DLL (xerces-c 1 2.dll)
must be either in your system path or in the directory of the executablefile.

Also, the generated .DTD file must be available to load XML files. It must be either in
the current execution directory, or be attached to the project as aresource of the same
name (e.g. “SAMPLEDIAGRAM.DTD”, including double quotes), and the custom,
“DTD” resource type. To add resources, an .rc file (and possibly aresource.h file) need to
be inserted into the project.

3.3 Generic program structure

A minima UDM-based application consists of a user-supplied source file (which
#includes the .h file generated by the API generator, and possibly other UDM headers),
the generated C++ file, and the stationary UDM modules, which are provided aslibraries.

Udm isintended not to restrict the program structure in any way. It can be used at any
location or at any time, either throughout the whole application, or just within single
procedures.

Working with UDM begins with creating and opening a DataNetwork object (see below).
Objects in the data tree can be accessed through the root object, which isin turn

accessi ble through the data network, and then navigating (or building up) the rest of the
tree. The DataNetwork object and the data objects in the tree are the primary objects used
throughout the application.

Errorsin the operation of the UDM result in audm_exception exception thrown. The
what() method of the error object contains information on the error.

3.4 Udm::DataNetwor k objects and member functions

The abstract DataNetwork type is used to represent a UDM datatree, or ‘project’.
DataNetwork interface is used to manipulate the data network as awhole, like creating,
loading, closing, and transaction control. DataNetwork is an abstract class, and each
backend provides an implementation to this type, like DomDataNetwork,
GmeDataNetwork or StaticDataNetwork.

If several datatrees are to be used, a corresponding number of DataNetwork objects are
used. Data stored in different data trees are compl etely separated, thus no cross-relations
are allowed. Since Udm generates the interfaces into user-defined namespaces, class
name clashes can also be avoided.

DomDataNetwor k::DomDataNetwor k (const Udm::UdmDiagram & metainfo);
GM EDataNetwork::GM EDataNetwork (const Udm::UdmDiagram & metainfo);
StaticDataNetwork:: StaticDataNetwork (const Udm::UdmDiagram & metainfo);

These constructors create DataNetwork-derived instances and attach them to a
UdmbDiagram. The metainfo parameter represents a metamodel, and is normally available
from the generated header file, where it can be referred to as * Namespace::diagram’ .
(The Udm generated headers must be included anyway. If only asingle Udm diagram is
used, the ‘using namespace’ directive can be used to avoid the necessity to use
namespace qualifiers. With multiple diagrams, however, this may lead to name clashes,
so the use of explicitly qualified names may be necessary.)

A newly constructed DataNetwork needs a backend storage created or opened into it.

void DataNetwork:: CreateNew(
const string & systemname,
const string & metalocator,
const Uml::Class & rootclass,
enum Udm::BackendSemantics sem = Udm::CHANGES PERSIST _ALWAYS

);

Create anew datatree in a backend storage.

systemname is the name used by the backend (a filename or database connection string).
metalocator specifies the metainfo used by the backend (e.g. aDTD for XML backends,
or aparadigm for GME).

rootclassis aclass from the diagram, an instance of which is created as the root object of
the new data network.

sem is one of the predefined semantic constants:

*Udm::CHANGES PERSIST_ALWAYS: committed sequences are immediately
recorded in the original backend (CloseNoUpdate, CloseAs, SaveAs are not
implemented)

*Udm::CHANGES PERSIST_DEFAULT: committed sequences are recorded
in current backed unless CloseNoUpdate, CloseAs, or SaveAsis used

*Udm::CHANGES LOST_DEFAULT: committed sequences are lost unless
Close, CloseAs, or SaveAs are used

(Not all constants are accepted by all backends.)

void DataNetwor k:: OpenExisting(
const string & systemname,
const string & metalocator,
enum Udm::BackendSemantics sem = Udm::CHANGES PERSIST _ALWAYS

);

Read and open a data tree from a backend storage.

systemname is the name used by the backend (a filename or database connection name).
metalocator specifies the metainfo used by the backend. This parameter may be omitted
(by passing an empty string), unless the meta used to create the datais not locatable, or
the metainfo is deliberately changed.

sem is one of the predefined semantic constants, as described above

void DataNetwork::CloseWithUpdate();

Close the data network and record changes in the backend storage. Closing is not
mandatory, since the destructor will close the data network anyway

void DataNetwork::CloseNoUpdate();
Close the data network without recording changes in the backend storage. This function
may not be implemented with all backends.

void DataNetwork:: SaveAs(string systemname);
Save theinfo into a data network into a new backend database specified by systemname.
This function may not be implemented with all backends.

void DataNetwork::CloseAs(string systemname);

Close the datanetwork, and save it to a new database specified by the systemname. This
function may not be implemented with all backends.

void DataNetwor k:: CommitEditSequence();
void DataNetwork::AbortEditSequence();

Edit sequences are the abstractions of simple (non-nestable and automatically chained)
transactions.

CommitEditSeguence finalizes changes in an edit sequence (transaction). Depending on
the backend semantics specified when opening the file, the data may or may not be
physically flushed to storage.

AbortEditSeguence revokes changes done through the previous edit sequence
(transaction).

Using either of these methods automatically terminates an edit sequence and starts a new
one. CloseWithUpdate, CloseNoUpdate, SaveAs and CloseAs al so terminate edit
sequences, while CreateNew, OpenExisting and SaveAsautomatically initiate new ones.
Thus the explicit use of CommitEditSequence and AbortEditSequence is optional, but if
they are not used, all edit operations on an open data network are regarded to form a
single edit sequence.

bool DataNetwork::isOpen();
Check if the datanetwork is open.
Object DataNetwork:: GetRootObject();

Get the root object of the data network, Thisis the object created when the whole
backlend storage for this datatree was initialized.

const Uml::Diagram & DataNetwork::GetRootM eta();

Get the metainfo of the data network. Thisis the value specified in the constructor.

Y ou can aso use the SmartDataNetwork class, which initializes a smart data network.
SmartDataNetwork:: SmartDataNetwork (const Udm::UdmDiagram & metainfo);

A SmartDataNetwor k will try to guess the type of the backend based on the
systemname parameter, in the following way:

* xml means DomDataNetwor k

** . mga means GmeDataNetwor k
**.mem means StaticDataNetwor k (no storage)

3.5 UDM Data objects

Data objects are instances of classes defined in UML. It isrelatively straightforward and
intuitive to work with them. Use the generated APl header file as areference to follow
the instructions below.

Objectsthat are instances of UML Classes are all direct or indirect descendants
Udm::Object (whichisaso typedef’d as Object in the generated namespaces).

3.5.1 Creation

static CLASS Create(
const Object & parent,
const Uml::CompositionChildRole & role = Udm::NULLCHILDROLE

);

To create an object, the Create static function of the classis used. The parent object of
the new object must be specified. The second parameter is the composition child role,
which can be omitted, if the containment relationship is unambiguous otherwise. E.g:

/I create aroom within a house

Room livingroom = Room:: Create(myhouse);

/l anew switch is created within an engine. It functions as an emergency switch
Switch secondaryswitch = Switch::Create(engine 11, EmergencySwitch::meta);

3.5.2 Attributes

For each attribute specified in the UML Diagram (or in the optional diagram of
additional, non-persistent attributes), an access method is specified. This access method
returns a smart object, which can be used to set and get the value of the attribute. The
value used to set and get must match the type of the attribute, so there are four smart
objects defined for the four supported attribute types. StringAttr (use STL strings to
set/get), BooleanAttr (use bool), IntegerAttr (use int), Real Attr (use double).

E.g

livingroom.Area() = 550.7;
livingroom.lsHeated() = true;

int height = myhouse.Height();
myhouse.Address() = “ 1745 25th St”;

Note that from the API point of view, thereis no difference between persistent and
temporary attributes.

3.5.3 Inheritance

Inheritance is automatic for the most part, since inheritance isimplemented as C++ class
inheritance. E.g. you can access attributes defined in your base class just as the locally
defined ones.

bool ::1sDerivedFrom(const Class & derived, const Class & base)

I sDerivedFrom() is used to find it out runtime if two meta-classes are in an inheritance
relationship. (Both direct and indirect types of inheritance are detected.)

static CLASS Cast(const Object & a);

To use an object as amore specialized class than its current type, the Cast() method can
be used. Since the true type of objectsis known to the API, it can also cast between
unrelated types, i.e. from one baseclass to another. If, however, the type is unrelated to
the true type of an object, an exception is thrown.

3.5.4 Parents and children

For each navigable composition relationship defined in the UML diagram, an access
method is defined, which returns a ParentAttr <CL ASS> from the child, and a
ChildAttr<CLASS> or ChildrenAttr<CL ASS> from the parent, depending on the
maximum multiplicity of the composition. All access objects are settable, but of course
setting one of them resultsin a change on the other side. The ChildrenAttr<CLASS>
can return or set the children of the object either as a set<> or as a vector<>. When
setting the children with a vector <> of children, their order is preserved and will be the
same when retrieving it as a vector <>. By default, children are ordered by the order they
are created. However, with MGA backend this behavior is not guaranteed, and the order
of children is undefined. Of course, set<> operations also work, but since set<>s are
ordered containers, the order of children cannot be controlled. (The order key isthe
object’ s uniqueld, which again cannot be controlled)

ParentAttr and ChildAttr contain asingle value, it can be simply set/read from/to a
CLASS object. ChildrenAttr must be assigned and read through sets of compatible
objects. To add/remove members of ChildrenAttr one by one, the += and -= operators
can be used.

E.g.
bathroom.parent() = myhouse;
House house = bathroom.parent();

set<Room> allrooms = myhouse.r ooms();

allrooms.insert(newr oom);

myhouse.rooms() = allrooms;

/I the above 3 lines ar e equivalent with thisone, and set could be <vector > as well
myhouse.rooms() += newroom;

3.5.5 Associations

For each navigable association relationship defined in the UML diagram, an access
method is defined, Udm:: AssocAttr<CL ASS> or Udm::Pointer Attr<CL ASS> from
the parent, depending on the maximum multiplicity of the association. CLASS hereis
the most specific common type of the objects on the other side of the relation (. Both
access objects are settable, and of course setting one of them results in a change on the
other side.

Udm::Pointer Attr contains asingle value, it can be ssmply set/read from/to a CLASS
object. Udm:: AssocAttr must be assigned and read through sets of compatible objects.
To add/remove members of Udm:: AssocAttr one by one, the += and -= operators can be
used.

E.Q.
salesman.Clients() += tomwatson; // Udm::AssocAttr

set<Per son> salesclients = salesman.Clients();
salesman.Mother () = annamary; // Udm::Pointer Attr (everyone hasone mother)

3.5.6 Association Classes

Association classes are basically ternary relations between two related Objects, and the
association classitself. The access methods of association classes return an extended
version of access objects returned by simple associations.

The related objects return Udm:: AClassAssocAttr<ACLASS> or
Udm::AClassPointer Attr <ACL ASS> objects depending on the maximum multiplicity
of the association (as seen from the object queried). In contrary to the simple
associations, these objects are parameterized by ACLASS, the type of the association
class. They can be freely used to read the association(s), but direct assignment is not
permitted, except if an Udm:: AClassAssocAttr is‘shrunk’, i.e. assigned a set that is just
asubset of its current value. Similarly assignment of NULL to a AclassPointerAttr isalso
permitted.

To add new associations with classes, the AddLink() and SetLink() methods are used.
Udm::AClassAssocAttr<ACLASS> AddLink(

TARGETCLASS peer,

Object aclassparent

)i

Udm::AClassPointer Attr<ACLASS> SetLink(
TARGETCLASS peer,
Object aclassparent

)i

peer isthe object to associate with, and aclasspar ent is the object which will be the
parent of the association class.

From the association class objects (which are normal objects, accessible through their
containing parents, or through other relationships), the peers on both ends can be
accessed through the Udm: : AssocEndAttr<CL ASS> access objects. This can be used
both to read and to write the target objects.

4. The UDM API and persistence technologies

4.1 Limitations on the UML capabilitites

Reflecting the architecture of several backend services (GME and XML), UDM only
supports single-rooted hierarchies. This meansthat all objects (including instances of
association classes) must have a parent, except for asingle root object, which is created
along with the creation of the database. Thisis usually not a serious restriction, since
creating atop-level container to store multiple, logically ‘root’ objectsis agenerally
applicable workaround.

Depending on the backend technology used, the framework may be able to handle

temporarily orphan objects. However, in other backends (e.g. GME), orphan objects

are automatically deleted.

» Some UML features of less importance or acceptance are not supported:
oAttributes with multiple values, special datatypes (Variant, Date, reference
to other objects)
o0Access qualifiers (public, private, protected)
oQualifier attributes and specifications on associations
oN-ary associations
oConstraints

*Uml Class hames must be unigue and non-empty. Attribute names must also be non-
empty. Other names may be empty.
Auxiliary names are generated for empty association end names. These names
correspond the name the target class, with the first letter turned lowercase, and —if
the maximum cardinality is >1- ‘pluralized’ using asimple algorithm (i.e. ‘s’ or
‘es’ appended).

Inside any Class, the following names will appear as methods, so they must be
unique:

OAttributes names

o0Association end names (on the remote end viewed from the class).

oComposition parentrole names (for compositions where the classis the

child).
oComposition childrole names (where the class is the parent).
oAuxiliary names generated if one of the above names are empty.

» Throughout UDM, performance is considered to be secondary to elegance, so this
approach is probably not optimal for large data trees (>10000-100000 objects
depending the backend).

4.2 The XML backend

The XML backend is based on an extended version of the standard XML-DOM interface.
The UDM generator tool - along with the API definition files- also generatesthe DTD for
the XML files compatible with the input interface definition. The basic XML-processing
facilities provided are loading (parsing) an XML file into the backend, and saving the
backend data structure into an XML file.

The XML backend imposes the following restrictions:

-XML does not have a good technique for representing associations and especially
lacks support for association classes. These UDM features are thus implemented
through specially named XML |D/IDREF éttributes.

-The current version does not do on-the-fly validation when the data tree is modified,
and it isnot validated when it is saved either, so the validity of the generated
XML document is not guaranteed in all aspects. The recommended way to
validate XML output isto reload it again as the last step of generation.

-Thereis single root object, which is created as the first object when adatatreeis
opened (or loaded). The root object cannot be changed.

-The XML backend permits objects to exist without parents temporarily. If such an
object is later attached to any parent, it will become a normal object and recorded
in the persistent data.

4.3 The GME backend

1. General Concepts

The general structure of the UDM-GME interoperation is depicted in thisfigure:

UML Meta |« Defines

Defines
Y
UDM API Level [« Generae— GME UML Model GME Meta
UDM Object GME Model
Offers data— i
Network Level [© oo Level < Defnes

In the GME meta editor a UML class diagram paradigm has been defined. This UML
class diagram will define the classes to be instantiated at run time. The udm.exe utility
(for detailed information please refer to [1]) takes this UML class diagram as its input
and generates the corresponding C++ API with these classes and relationships defined by
the class diagram. Afterwards one can instantiate these classes manually creating an
object network, navigate through the generated relationships and use the provided meta
information at run time.

However we can use GME to create the actual run-time object network. This document
elaborates on the steps necessary to set up such a GME-UDM environment.

The GME backend connects the interface to the MGA library [2]. The operation of the
MGA library is aso based on meta-information stored in its proprietary data format.
Sinceit is essentia to keep the meta-information on both sides consistent, thereis a
GME-based tool available for generating a matching pair of MGA meta-data and UDM
generator input (in XML format) from a UML class diagram.

The GME backend provides functions for creating, opening, and closing GME databases,
aswell asan API for ssimple transaction control. It is also possible to create GME
interpreters and other components based on UDM.

If UDM is used with the GME backend the following limitations and caveats have to be
considered:

1.Names of UML classes and associations must be unique (or empty).
UML does not support non-unigue class and association names (although multiple
associations or composition with empty names are OK, see below). For this
reason, the corresponding GME paradigm is also expected to have globally
unique kindnames (athough GME in general permits using the same name for
metaobjects in different contexts).

2.Attributes
Normal GME attributes are accessed through UML attributes defined under the
same name. The type of the UML attribute must match the GME type specified in
the paradigm. Every UML attribute (which is ever used) must have a
corresponding attribute in the paradigm, but it is not a problem, if an existing
GME attribute has no counterpart in the UML (and is thus inaccessible).

3.Special attributes
The two built-in GME object properties, name and position can be accessed
through special UDM string attributes called ‘name’ and ‘position’. Of course
they are only accessible through UDM if they are defined in the UML diagram.
(If the GME paradigm happens to have attributes called ‘name’ or ‘position’,
those will be inaccessible through UDM.)

4. Associations
Associations in the input UML must be defined in away so that it can be mapped
onto one of the association types supported by GME: references, sets, or
connections. To resolve ambiguities, stereotypes at either end of an association or
the naming of the association and its role names must provide sufficient hints for
identifying the applicable GME association type.
GME imposes complex rules on the relative location of objects bound together by
an association. Since UDM currently does not capture these rules (in UML, these
could only be represented as constraints, which are currently not supported),
operations violating those rules pass through the UDM layer, but they are refused
by the GME backend.
Objects that manifest as foldersin GME cannot be involved in associations.

Thetrickiest part is how to map UML associations onto any of the GME concepts
(references, sets, connections). There are two ways to make sure GME-UDM has
the necessary clues to find out the mapping:

aAssigning special names to association endsin the UML diagram.

-If an association has no association class and has a
navigable end named ‘ref’, the association is
considered to be areference (with the class at the
other end of the association being the reference
object)

-If an association has no association class and has a
navigable end named ‘ members', the association
is considered to be a set (with the class at the
other end of the assoc being the set object)

-If an association has a navigable end named ‘dst’ and
the other end, if navigable is named ‘src’, then the
association is a connection. The association must
either have an association class, or it must have a
non-empty and visible name, which identifies to
the GME connection kind to be used.

b.Using special hintsin the GME paradigm.
If theindications listed at a./ are not present, the GME paradigm must contain
special info to enable mapping:
-If an association (without association class) in the
UML diagram isto be implemented by a GME
reference, the name of the association name must
either be empty or equal to the name of the
reference class (i.e. the class found at one of its
ends). The GME meta-reference must have the
GME registry value ‘/rname’ set to the other
association end name in the UML diagram (see[1]
and [2] for adiscussion on the GME registry). If the
UML reference is navigable in both directions, the
GME meta-reference registry value ‘/rrname’ must
also be set according to the association end name on
the side of the reference class.
-If an association (without association class) in the
UML diagram isto be implemented by a GME s&t,
the name of the association name must either be
empty or equal to the name of the set class (i.e. the
classfound at one of itsends). The GME meta-
reference must have the registry value ‘/mname’ set
to the other association end name in the UML
diagram. If the UML reference is navigable in both
directions, the GME meta-reference registry value
‘/sname’ must aso be set according to the
association end name on the side of the set’s class.
-If an association in the UML diagramisto be
implemented by a GME connection, it must either
have an association class or a non-empty

association name. The name of the association class
or (if there is no association class) the name of the
association must correspond to the name of the
GME meta-connection being used. Furthermore the
meta-connection needs to have the registry values
‘/sname’ and ‘/dname’ be set to the two association
end names of the UML connection (if the
connection is not navigable in both directions,
‘/dname’ must be set to the end name of the
navigable direction, and ‘/sname’ may remain
unset).

Note that if aparadigm allows a classto be involved in several different incoming
or several outgoing connections, approach a./ (i.e. special namesin the UML
diagram) is usually not feasible, since association name ends (‘src’ or ‘dst’ in this
case) must uniquely identify a single association from all UML classes.

The mapping from UML associations to GME concepts is determined when the
GME DataNetwork is created or opened. Associations that cannot be mapped
result in an error. Some other errorslike invalid connections or references, or
trying to establish associations involving folders, result in an error later, when the
operation is attempted.

5.Aspects and constraints
Aspects and constraints are not supported by UDM.

6.Step-by-step description
1.Create the metamodel in using the GME metamodeling environment. The
association role names must remain the default the “src” and “dst”, because
the meta interpreter requires this. The rea role names must be set in the

Attributes edit box in the GME “Attributes’ panel in the following syntax:
sNane=<r ol e_sour ce_nane>
dNarme=<r ol e_desti nati on_nane>

2.Test the paradigm created in the previous step.

3.Using the python script included in the distribution (located in the
distribution_folder\Gme2UmI\Python\ folder), generate the UML class
diagram from the GME metamodel. The script takes a GME meta as input (in
XML format, use File/Export XML menu item in GME) and produces the
class diagram also in XML format. If you do not have python installed you
can download the free Cygwin from www.redhat.com web site.

4.Set the real role names for each association.

5.Add a class named RootFolder to the model which must be a root of the
containment hierarchy.

6.Generate the API with udm.exe.

7.Use your test model from step 2.

4.4 The Memory(Static) backend

UDM stores internally the meta-meta and the meta objects in static, memory
based implementation of the UDM base objects. These static objects can be used for a
custom object network as well, if one doesn’t need runtime, on-the-fly persistency, for
example, when only the API is needed. For this, all you have to do is to create your
objects in a StaticDataNetwor k. This way, your program will operate on memory-based
objects, thus will be much faster.

Since as mentioned earlier, the meta-model objects, and the meta-meta-objects are
stored by these StaticObjects, and they can be accessed exactly the same manner as you
can access other UDM objects. This means, that your program, at runtime, can possibly
change the meta-model and the meta-meta-model information. However, this may be
dangerous. If you change the meta-model, some parts of your generated APl become
invalid. If you change the meta-meta-model, some parts of UDM become invalid.

However, the static data network can be dumped in an efficient binary format to a
file. Thisfilewill have a“.mem” extension, and it’s not for human consumption. But one
can use this for fast data backup and read-back. It’s important to understand that changes
in a data network loaded from a binary file are not recorded on the fly to the file. They
may be recorded upon an explicit SaveAs() or CloseWithUpdate() call, or by the
destructor when the data network variable goes out of the scope, and it was opened with
either CHANGES PERSIST ALWAYS or CHANGES PERSIST DEFAULT
backend semantics.

The StaticDataNetwork is not a “type-safe” data network. That means, if you are
using the lower-lever API (Objectimpl calls), you have to specify the type of the object,
as an Uml::Class, upon creation. StaticDataNetwork objects, StaticObjects store only a
reference to the supplied type in the constructors. For this reason, you must make sure
that those Uml::Class-es which are referenced by StaticObjects as their types are not
freed until there is no reference.

You can overcome this situation by using the SafeTypeContainer static global
class, which allows you to get a copy of a type that no doubt will exist until it is
referenced. To help those willing to write paradigm & backend independent UDM code,
there is a DataNetwork call which can tell whether the backend currently in use is type
safe or not. An example code for thisis for example in the UdmCopy function:

if (p_dstBackend->IsTypeSafe())
p_dstChild=p_dstRoot->createChild(theOther(*p_currRole), p_srcChild->type());

else

{
const Uml::Class & safe_type = Uml::SafeTypeContainer::GetSafeType(p_srcChild->type());
p_dstChild=p_dstRoot->createChild(theOther(*p_currRole), safe_type);

b

5. UDM and XMI

5.1 What isXMI?

XMl isan interchange format for metadata that is defined in terms of the Meta
Object Facility(MOF) standard, a pair of parallel mappings between MOF metamodels
and XML DTDs, and between MOF metadata and XML documents.

The XMI specification also specifies the UML.dtd concrete XML DTD, required
for the transfer of UML models (class diagrams) using XMI.

From version 1.40, the UDM framework supports XMI version 1.0 by providing
conversion tools between XMI/UML(v1.3) and UDM metadata.
This makes possible that:
a.) any UDM classdiagram can be exported in XMI format an thus can
serve as an input for other tools, like code-generators
b.) XMI metadata exported by other UML modelling tools Ican serve as an
input for the UDM framework, UDM API can be generated directly from XMI metadata.

5.2 Conversion to/from XM

The conversion between UDM metadata format and XM is done by a set of
XSLT transformation scripts processed with Xalan XSLT processor engine.

UdmXmi.dll containsthe XSLT scripts and the code which does the
transformation.

The tools UdmT oXmi.exe and XmiToUdm.exe are command line utilitiesto
transform between the two formats. Both of them has two mandatory arguments: source
and destination XML filename. Since the source XML needsto be parsed, the tools
expect the corresponding UML.DTD file to be in the same directory.

5.3 XMI input for Udm.exe

From version 1.40 the UDM .exe code-generator accepts metadata in both UDM
and XMI format. When the input isin XMI format, the use of the -d switch is mandatory:
the path specified this way should contain the UDM version of the UML.DTD. In the
current directory or in the same directory with the input XMI should be the OMG
version of the UML.DTD. Thisis needed to parse the XMI input.

5. UDM Internal Architecture

roatobject Dhject

‘ 1

LidmDiagram metainto | DataMetwork |4, 1
(tnifevaidy vaid [0 " | ISmanDataNatwork imp [1
mﬁ1 Ohjectimpl
Lml:Diagram /_)’5‘
»
CorbabDataMetwork

]

DomDataketwork GmeDatabetwork ||| StaticDatabetwork

StaticOhject Domobject

[|
CORBADRjeCt GmeOhject

Figure- Udm Internal Arhitecture

5.1 Data Network calls

evirtual void DataNetwork(const Udm::UdmDiagram &metaroot);

The one and only DataNetwork constructor. The metainformation is passed as an

UdmbDiagram.
Implemented in all the back-ends.

«Unsigned long uniqueld()
Retrieves the unique Id of the DataNetwork. Implemented at the abstract DataNetwork class.

evirtual void CreateNew(const string &systemname,
const string &metalocator,
const Uml::Class &rootclass,
enum BackendSemantics sem = CHANGES_PERSIST_ALWAYS) =0;

Creates a new datanetwork.

Systemname - the name of the file

Metalocator - only DOM backend will need this, and it must be the name of the
corresponding .dtd file, without the extension

Rootclass - type of the root object

Sem - default behavior of the backend. See earlier in this document.

Implemented in all the back-ends.

evirtual void OpenExisting(const string &systemname,

nrr

const string &metalocator = ",
enum BackendSemantics sem = CHANGES_PERSIST_ALWAYS) =0;

Opens an existing data network from a file.

Systemname - the name of the file

Metalocator - DOM will need if the XML file header does not contain correct or
relevant information about the location of the corresponding .dtd file.

Sem - the default behavior of the backend.

Implemented in all the back-ends.

«Void CloseWithUpdate() = 0;
Closes an opened data network and records the changes in the file.
Implemented in all the back-ends.

«Void CloseNoUpdate();
Closes an opened data network without recording the changes in the file.
Implemented in all the back-ends.

«Void SaveAs(string systemname);

Saves an opened data network to a different file name. Does not close it.
Implemented in all the back-ends.

«Void CloseAs(string systemname);
Closes an opened data network. If it was opened with CHANGES_PERSIST_ALWAYS or

CHANGES_PERSIST_DEFAULT then it saves before closing it.
Implemented in all the back-ends.

*Bool isOpen();

Determines whether a data network is opened (either with CreateNew, or with OpenExisting) or not.
Implemented in all the back-ends.

«Void CommitEditSequence() ;
Transaction control. Commits an edit sequence. Implemented only in GME backend.
«Void AbortEditSequence() ;
Transaction control. Aborts an edit sequence. Implemented only in GME backend.
*Object GetRootObject();
Obtains the root object of the data network. Implemented in all the back-ends.
«Object ObjectById(Object::uniqueld_type);
Obtains an object by its ID.
Implemented in all the back-ends.
Note:
DOM & GME back-ends maintain unique Ids for objects within the same data network, and
these Ids are usually preserved when saving to and reloading form a file.
STATIC back-ends maintain a unique Id in a process, and Static Object Ids are not
preserved when saving to and reloading from a file. Thus, StaticDataNetwork::ObjectBylId() returns

the object even if it does not belong to the data network, but exists. If it does not exist, exception is
thrown.

«static void RegisterBackend(const string &sig,
const string &ext,
DataNetwork *(*crea)(const UdmDiagram &))
A backend can be registered to Smart Data Network operation.
When invoked with extension ext, the function crea will be invoked for creating the data network.
Sig is a descriptive name, characteristic to the backend.
estatic void UnRegisterBackends()
Un-register all registered back-ends.
estatic string DumpBackendNames()
Dump registered back-end names to a string.
«static DataNetwork *CreateBackend(string filename, const UdmDiagram &metainfo)
Creates a backend by deducing its type from the filenamée's extension.

evirtual bool IsTypeSafe()

Returns whether the backend copies (safe) or just references the types passed to constructor
function.

5.2 Object calls

«ObjectImpl *__impl() const
Retrieves the implementation of the object. Returned implementation is not cloned by the function
itself. If one creates an object out of this pointer, it should first clone it.

*Object()
Default constructor. The implementation will be a special NULL, Udm::__null.

*Object(ObjectImpl *i)

Copy constructor, that takes an implementation and creates an object. Previous implementation, if
not NULL, is released.

*Object(const Object &a)

Copy constructor, that takes an object and with its implementation creates a new object.
new implementation is cloned.

«const Object &operator =(const Object &a)

Assignment operator; takes an object and copies its implementation to the assigned object.
Previous implementation is released; new implementation is cloned.

estatic Object Cast(const Object &a, const Uml::Class &meta)

Static cast function that casts Object a to type meta; It throws exception when types are unrelated,
and thus the cast is invalid.

«static Object Create(const Uml::Class &meta,
const Object &parent,
const Uml::CompositionChildRole &role)

Static object factory function which creates an object of type meta with parent, via role.
Parent and meta parameters are mandatory. Role can be Udm::__null, if the containment is
unambiguous.
«string getStringAttr(const Uml::Attribute &meta) const
«void setStringAttr(const Uml::Attribute &meta, const string &a)

«bool getBooleanAttr(const Uml::Attribute &meta) const
«void setBooleanAttr(const Uml::Attribute &meta, bool a)
«long getIntegerAttr(const Uml::Attribute &meta) const
«void setIntegerAttr(const Uml::Attribute &meta, long a)
edouble getRealAttr(const Uml::Attribute &meta) const
«void setRealAttr(const Uml::Attribute &meta, double a)

Attribute set’ers and get'ers. Meta mandatory parameter specifies which attribute to set or to get.
«set<Object> getAssociation(const Uml::AssociationRole &meta) const
Retrieves all the associated objects with a given role name. If no role specified, an empty set is
;f?ttl#g?ﬂﬁction is invoked on one end of the association with association classes, the association
classes are returned.
«void setAssociation(const Uml::AssociationRole &meta, const set<Object> &a)
Resets the associated objects with a given role name to the new set a;
«const Uml::Class &type() const;
Retrieves the type of an object.
« set<Udm::Object> derived() const;

Retrieves the derived objects (subtypes) of an object.
For each class is generated a Derived() function which returns objects of the same type.

«set<Udm::Object> instances() const;

Retrieves the derived objects (subtypes) of an object.
For each class is generated an Instances() function which returns objects of the same type.

«Udm::Object archetype() const;

Retrieves the archetype object of an object.
For eacg class is generated an Archetype() function which returns objects of the same type.

«bool hasRealArchetype() const;

Returns true if the object is primary derived. Returns false if is not. Throws exception if it's not
derived at all.

*bool operator ==(const Object &a) const
«bool operator !=(const Object &a) const
»bool operator <(const Object &a) const
*bool operator >(const Object &a) const
«bool operator <=(const Object &a) const
*bool operator >=(const Object &a) const
*bool operator !() const

«operator bool() const

Operators that return a boolean value. The operations are actually evaluated on the unique Ids of the
operands’ implementations, and the result is returned.

5.3 Objectl mpl calls

evirtual ObjectImpl *clone();
Returns itself, and increment its reference counter.

evirtual void release();

Decrements the reference counter.
evirtual Udm::DataNetwork *__getdn();

Returns the data network this implementation belongs to.
evirtual const Uml::Class &type() const;

Returns the type of the ObjectImpl.
evirtual uniqueld_type uniqueld() const;

Returns the unique Id of the ObjectImpl.

evirtual string getStringAttr(const Uml::Attribute &meta) const;

evirtual void setStringAttr(const Uml::Attribute &meta, const string &a);
evirtual bool getBooleanAttr(const Uml::Attribute &meta) const;

evirtual void setBooleanAttr(const Uml::Attribute &meta, bool a);
evirtual long getIntegerAttr(const Uml::Attribute &meta) const;

evirtual void setIntegerAttr(const Uml::Attribute &meta, long a);
evirtual double getRealAttr(const Uml::Attribute &meta) const;

evirtual void setRealAttr(const Uml::Attribute &meta, double a);

Attribute setters and getters. Meta always specifies the attribute to operate.
evirtual ObjectImpl *getParent(const Uml::CompositionParentRole &role) const;

Retrieves the parent, if the role matches. If not, returns Udm::__null;
Note that in all back-ends an object can have only a single parent.

evirtual void setParent(ObjectImpl *a, const Uml::CompositionParentRole &role);

Sets the parent via the specified parent rofe. If the composition is not ambiguous, ro/e can be
omitted.

evirtual void detach();

Removes the object from the data network by removing all its associations and from its parent
children.

evirtual vector<ObjectImpl*> getChildren(const Uml::CompositionChildRole &meta, const Uml::Class &cls) const;
Returns the children of type c/s via child role meta.
Both of them can be omitted, in any combination.
If metais omitted, all the children of type c¢/s are returned.
If clsis omitted, all the children via role meta are returned.
If both parameters are omitted, all the children are returned.

evirtual void setChildren(const Uml::CompositionChildRole &meta, const vector<ObjectImpl*> &a);

Resets some subsets of children. Elements of vector a can be of different types.

Child role can be omitted when for all the objects in vector a the containment is unambiguous.

If child role is omitted, the function will deduce an unambiguous composition child role for each
distinct type in vector g, All existing children via rolenames deduced this way are detached if they
are not present in the new vector/

evirtual ObjectImpl *createChild(const Uml::CompositionChildRole &childrole, const Uml::Class &meta)

Creates a child of the given type and via the given child role. Child role can be omitted if the
containment between these two type is unambiguous.

evirtual vector<ObjectImpl*> getAssociation(const Uml::AssociationRole &meta, int mode =
Udm:: TARGETFROMPEER) const;

Retrieves the associations via the given association role.
When there is an association with an association class, the mode parameter specifies which objects
are to be returned:

TARGETFROMPEER - the other end of the association(default)
CLASSFROMTARGET - the association class (from either end)
TAGETFROMCLASS - either end from the association class
evirtual vector<Udm::ObjectImpl*> getDerived() const;
Retrieves the derived objects (subtypes) of an object.
evirtual vector<Udm::ObjectImpl*> getInstances() const;
Retrieves the derived objects (subtypes) of an object.
evirtual Udm::ObjectImpl* getArchetype() const;
Retrieves the archetype object of an object.

«bool hasRealArchetype() const;

Returns true if the object is primary derived. Returns false if is not. Throws exception if it's not
derived at all.

evirtual void setAssociation(const Uml::AssociationRole &meta, const vector<ObjectImpl*> &nvect, int mode =
Udm:: TARGETFROMPEER);

Resets the associated objects via the provided association role. The role can’t be omitted.

Mode has the same meaning as above, except that TARGETFROMPEER is invalid when setting up an
association with association class.

54UML (Meta) calls

«const AssociationRole theOther(const AssociationRole &role);
«const CompositionChildRole theOther(const CompositionParentRole &role);
«const CompositionParentRole theOther(const CompositionChildRole &role);
Gets the other end of two-legged Uml classes: Composition, Association
«Class classByName(const Diagram &d, const string &name);
Finds a class by its name in a diagram.
eset<Class> AncestorClasses(const Class &c);
Get all the classes specified as ancestors, including self
eset<Class> DescendantClasses(const Class &c);
Get all the classes specified as descendants, including self
eset<Class> ContainerClasses(const Class &c);
Get classes directly specified for this class as parents (both ancestors and descendants are ignored)
eset<Class> ContainedClasses(const Class &c);
Get classes directly specified for this class as children (both ancestors and descendants are ignored)
eset<Class> CommonAncestorClasses(const set<Class> &cs);
Get classes that are ancestors of all the classes in a set
eset<Class> AncestorContainerClasses(const Class &c);
Get classes that are ancestors of all the classes in a set
eset<Class> AncestorContainedClasses(const Class &c);

Get classes this object or its ancestors specify as parents (ancestors in child are extracted,
descendants of parents are ignored)

eset<Class> AncestorContainedDescendantClasses(const Class &c);

Get classes this object or its ancestors specify as children (ancestors in parent are extracted,
descendants of children are ignored)

eset<AssociationRole> AssociationTargetRoles(const Class &c);
All the other ends of associations (ancestors are ignored)
eset<AssociationRole> AncestorAssociationTargetRoles(const Class &c);

All the other ends of associations this class can have (including those defined in ancestors)

«set<AssociationRole> AncestorAssociationRoles(const Class &c);

All local ends of associations this class can have (including those defined in ancestors)
«set<CompositionParentRole> CompositionPeerParentRoles(const Class &c);

All the other ends of compositions defined for this class as child (ancestors are ignored)
«set<CompositionParentRole> AncestorCompositionPeerParentRoles(const Class &c);

All the parent ends of compositions this class can participate in (including those defined for
ancestors)

eset<Attribute> AncestorAttributes(const Class &c);
All attributes this class can have (including those defined in ancestors)
«Composition matchChildToParent(Class c, Class p);

Find the single way a class can be contained by another, return NULL none or if multiple roles are
found.

*bool IsDerivedFrom(const Class &derived, const Class &base);
Returns true if derived derives from base.
*bool IsAssocClass(const Class &cl);
Returns true if class cl is an association class.
*bool IsAssocClass(const Association &ass);

Returns true if the association belongs to an association class.

5.5 Miscellaneous calls

«Void UdmUstil:: CopyObjectHierarchy(Udm::ObjectImpl* p_srcRoot, Udm::ObjectImpl* p_dstRoot,
Udm::DataNetwork* p_dstBackend);

Utility that copies a sub-tree from a data network to another data network.
Consistent (same) meta information is assumed in both data networks. If there are links pointing out
from the sub tree of the source data network, exception is thrown.
«int CopyObjectHierarchy(Udm::ObjectImpl* p_srcRoot, Udm::ObjectImpl* p_dstRoot, Udm::DataNetwork*
p_dstBackend, copy_assoc_map &cam)

Same function, but it provides a mapping of some source objects (those inserted by the caller in the
map) to their respective destination objects.

«String UdmUtil:: ExtractName(Udm::Object ob);

This function will search for an attribute named “name” and it found, it will extract its name.
«Static const Uml::Class& Uml::SafeTypeContainer::GetSafeType(const Uml::Class &a);

Static function to obtain a type object which won't be deleted until released with RemoveSafeType().
«Static void Uml::SafeTypeContainer::RemoveSafeType(const Uml::Class &a);

Release a safe type object.

5.6 UDM TOMI interface

These calls are defined as member functions of the class Udm::Object
«Structure to identify an association:

struct AssociationInfo

{
// clsAssociation can be empty (UML::Class()) - simple association.
const Uml::Class & clsAssociation;
string strSrcRoleName;
string strDstRoleName;
)7

«Structure to identify a composition:

struct CompositionInfo

{

string strParentRoleName;
string strChildRoleName;

)7
«Retrieves the adjacent objects of an object associated via simple association or association class.
The returned set can be empty. Composition relationships are not considered here.
set<Object> GetAdjacentObjects();

«Retrieves the adjacent objects of an object. The adjacent objects are of the type of clsType or derived from it. The
returned set can be empty. Composition relationships are not considered here.

set<Object> GetAdjacentObjects(const Uml::Class & clsDstType);

«Retrieves the adjacent objects of an object via link instance of ascType.
The adjacent objects are of the type of clsType or derived from it.
The returned set can be empty. Composition relationships are not considered here.
Parameter clsType can be null.

set<Object> GetAdjacentObjects(const Uml::Class & clsDstType, const AssociationInfo& ascType);
«Get attributes by name. These are INEFFICIENT functions using iteration. These functions return false if the
attribute with the specified type and attribute name does not exist. Hence these parameters are specified in the
metamodel, it can be serious error. If no problem they retrieve true.
bool GetIntValue(string strAttrName, int& value);
bool GetStrValue(string strAttrName, string& value);
bool GetRealValue(string strAttrName, double& value);
bool GetBoolValue(string strAttrName, bool& value);
virtual bool SetIntValue(string strAttrName, int value);
virtual bool SetStrValue(string strAttrName, const string& value);
virtual bool SetRealValue(string strAttrName, double value);
virtual bool SetBoolValue(string strAttrName, bool value);
*Returns the parent object.
Object GetParent();
«Retrieves all children not considering types and role names.
set<Object> GetChildObjects(Object object);
«Retrieves all children considering child types but not role names.

set<Object> GetChildObjects(const Uml::Class & clsType);

«Retrieves all children considering role names and child types. To ignore child types set clsChildType to Uml::Class().
set<Object> GetChildObjects(const CompositionInfo& cmpType, const Uml::Class & clsChildType);
«Gets the objects of the association class from between two objects.
set<Object> GetAssociationClassObjects(Object dstObject, const AssociationInfo& ascType);
«Gets the two peers from an object of association class type
pair<Object,Object> GetPeersFromAssociationClassObject();
«Creates an object of clsType
Object CreateObject(const Uml::Class & clsType);

«Creates a link of a simple association or an association with association class. If ascType.clsAssociation is not valid a
simple association will be tried. On error results in false, true otherwise.

bool CreateLink(Object dstObject, const AssociationInfo& ascType);
*Removes an object from the persistent storage.

void DeleteObject();

6.Interpretted UDM
6.1 Udm Cint

UdmCint isaruntime, interactive ANSI C++ interpretter which on-the-fly
compiles and evaluates arbitrary code on UDM abjects. The language is about 85%
coverage of ANSI C++. The standard C library and the standard template library (STL)
are supported. For more information about Cint please see the Cint documentation, which
isincluded in the binary distribution.

The UdmCint framework consists of:

-UdmCint API, which isaset of callswhich can be used in
compiled context to set up an interpretter context.

-UdmPseudol nterface APl , which isa set of classes that can be
used in both the compiled and the interpreted context. Thus, the
data structures defined here are used to exchange data between
the intepreted and compiled context.

6.1.1 TheUdm Cint API:

The Udm Cint APl is defined in the header file Udmint.h, which must be included
when this functionality is needed.

evoid cint_init(char * cint_switches, void (*msg_handl er)(char *));
Initializes the Gnt interpeter engine.

cint_switches —switches that need to be passed to the engine
nsg_handl er -a call-back function which can handle error and warni ng
nessages

evoi d cint_destroy();

Clears the Cint interpreter context, and all the nenory and resources
allocated for it. After this call, the interperter shouldn’'t be used.

evoi d cint_add_object(Udm: oject o, string nane);

Defines a UdnPseudoObject in the interpreted context, in the current
scope. Basically, this call will place a single |line which declares a
UdnPseudoObj ect with the given name, and it will initialize it with the
proper object and datanetwork ids of the object o. Thus, the scope of this
variable will depend on the current context of the interpreter. If it’'s
outside of any block, it will have a global scope, if it’s issued in a

bl ock, than it will have a | ocal scope, which is the current bl ock.

The only way to renove a gl obal variable added with this call is to
destroy and re-init the interpreter.

evoid cint_ipretter();

Starts an interactive Udm C nt session. Arbitrary code can be executed
contai ning declaration, conditional statenents, control |oops, etc.

By hitting <ENTER> at the end of the line the code will be executed,

unl ess there are unbal anced begin block ‘{‘ characters. In such cases it

will wait for further input lines until the block is closed with the

bal ancing ‘}’ characters, and then the block will be eval uated. Wen
entering a block in multiple lines, the pronpt al ways changes accordingly,
di splaying an extra ‘{‘ character for each unbal anced ‘{‘. Wen

eval uation occurs, the return value of the expression is printed

sint cint_int_calc(string code);
edoubl e ci nt_doubl e_cal c(string code);

Eval uat es the expression, which can not contain declaration or conditiona
statements. Depending on the expected type of the return value of the
expression, the nore appropiate function should be used

sint cint_int_eval (string code);
edoubl e ci nt_doubl e_eval (string code);

Eval uat es the expression, which can contain declaration or conditiona
statements. However, it can not contain function defintions. Depending on
the expected type of the return value of the expression, the nore

appropi ate function should be used

echar* cint_|load_text(const char *nanedmacro);
cint_load_text()loads null termnated string as source code. It can
contain any kind of C/C++ syntax that C nt supports. The text is once
saved into a tenporary file, then read by Cnt. The tenpoprary file is
automatically renoved when it is unl oaded
cint_load_text() returns name of the tenporary file in a static buffer
You can use that nanme for unloading. |In an event of failure
cint_load_text() returns O

sint cint_loadfile(const char *filenane);
cint_loadfile() |oads source code or DLL(Dynam c Link Library) at runtine
This is just a wapper function. Refer to the G_loadfile() Gnt APl cal
docunent ati on

«int cint_unloadfile(const char *fil enane);

cint_unloadfile() unloads a |loaded file at runtime. This is just a w apper
function. Refer to the G _unloadfile() G nt APl call docunentation

6.2.2 The UdmPseudol nterface API:

Basically, the most important class defined by this API isthe class
UdmPseudoObject, which is awrapper of the Udm::Object class, and can beinitiaized
with an object and a data network Id. The class UdmPseudoObjectS represents an
unordered collection of UdmPseudoObject-s. Strings are passed by reference, as objects
of type cint_string, class which is also defined by this API. Two more structs are defined,
Associationl nfo and Compositionl nfo, which are basically the very same thing as the
structs introduced by the TOMI interface, Udm:: Object: : Associationlnfo and
Udm:: Object: : Compositionlnfo, the difference is the type of the members, while their
semantic remains the same.

This APl is defined in UdmCint.h. The classes defined here are automatically
known to the interpreter context, so it does not have to be included in the beginning of the
interpreted code. Even if the intended use of this API isto be used in interpreted context,
however, as the examples will show, they can be used in compiled context aswell. In this

particular situation, the include file UdmCint.h needs to be included in the compiled
code.

In dependency order:

class cint string

cint_string objects are neant to be created in interpreter context, and on the
stack. This way, there are no nmenory allocation/deallocation and buffer overflow
i ssues between the interpreted and the preconpil ed code; The allocation always
occurs when the variable is declared, with a predefined size. The cint_string

al ways knows how many bytes were allocated, and will refuse copying nore bytes to
the buffer. The deallocation will occur when the variable (in the interpreter’s
context) goes out of scope or (in case of global variables) the interpreter is
destroyed, or, with the operator=(cint_string & rn) operator an other cint_string
i s assigned.

cint_string();

creates a NULL string, no allocation occurs.
This instance is not able to hold any characters.

cint_string(int length);

creates a new string which can accommodate | ength characters.
However, the value of the string is undefined at this stage.

cint_string(const char * frm;

creates a new string out fromthe NULL termnated frm The length will be
equal to strlen(frm. The string is copied, so frmcan be rel eased.

cint_string& operator=(const cint_string& frm;
assigns a new string to this. If this is not a NULL string, then it’'s
buffer is freed first. A new buffer is allocated, and a copy of frnis
buffer is stored, so frmcan go out of scope.

bool CopyFron(const char * frm;
copies a string into this's buffer. This is expected to be a not-NULL
string. (i.e. constructed with either with cint_string(int length) or
cint_string(const char * frm). If frmis longer than the buffer of this,
then only that count of characters are copi ed which the buffer can
accommpdate. If the size of frmis less then the length of the buffer,
then the buffer is padded with null bytes. (strncpy behaviour). Returns
with the value of the overflow nenber vari able.

bool operator ! () const;

returns true if the string is a NULL string. (no currently allocated
buf fer)

operator bool () const;

returns true if the string is not a NULL string. (there is a currently
al | ocated buffer)

int comp(const char * conpare_to) const;
strenmp() functionality.
bool overfl ow,

public menber variable which is set to true by the CopyFronm() function, if
the string to be copied was |arger than the buffer.

const char * buffer() const;

returns a pointer to the internal buffer. It should not be freed by the
cal ler.

struct

Associ ationl nfo

struct

this struct has the sane senantics as Udm : Object:: Associationinfo and is
used to call TOM functions fromthe interpreted context.

cint_string assoc_cl ass;
the name of the association class, if any. It can be a NULL cint_string,
whi ch neans that the structs represents an association w o an associ ati on
cl ass.

cint_string SrcRol enane;
cint_string DstRol enane;

the name of the roles. Cannot be a NULL cint_string.

Associ ati onl nfo(const char *src, const char *dst, const char *assoc);
Associ ationlnfo(cint_string src, cint_string dst, cint_string assoc);

Constructors just for convenience.

Conposi tionlnfo

this struct has the same semantics as Udm: Qoj ect:: Conpostionlnfo and is
used to call TOM functions fromthe interpreted context.

cint_string parentRole;
cint_string chil dRole;

the name of the roles. Cannot be a NULL cint_string.

Conposi tionl nfo(const char *pr, const char *cr);
Conposi tionlnfo(cint_string pr, cint_string cr);

Constructors for convenience.

cl ass UdnPseudoOhj ect S

this is an unordered contai ner of UdnPseudoObject-s, a class which is defined
right after this one in this docunent.

This class is meant to be instantiated on the stack, in the interpreted context,
with a predefined size paraneter. References to objects created this way then can
be passed to those nethods of class UdnPseudoObject, which are supposed to return
a set of UdnPseudobj ect -s.

UdnPseudoOnj ect S(i nt | ength);

A buffer is allocated which can hold | ength nunber of UdnPseudoObject-s.
If length is zero, no allocation occurs.

UdnPseudoObj ect S(const UdnPseudoObj ect S & rn;

A buffer is allocated and all UdnPseudoOhject-s are copied fromfrm if
any.

UdnPseudoOhj ect S& oper at or =(const UdnmPseudoCbj ectS & rm;

Current buffer is freed. A new buffer is allocated and all
UdnPseudoOhj ect-s are copied fromfrm if any.

bool operator !() const;

returns true if the container does not contain any UdnmPseudoObj ect.
operator bool () const;

returns true if the container contains at |east one UdnmPseudo(bj ect.

UdnPseudoOhj ect & operator[](const int index) const;

returns a reference to the UdnPseudoCbj ect at the zero-based index
position in the container. If the index is beyond the length of the
container, the overflow public bool variable is set to true and the
UdnPseudoObj ect at the | ast position is being returned.

voi d Set At (const int index, UdnmPseudoChject& iten;
copies itemto the UdnPseudoObj ect at the zero-based index position in the
container. If the index is beyond the | ength of the container, the
overflow public bool variable is set to true and the UdnPseudoObj ect at
the last position is being set.

bool overfl ow,
indicates an index overflow during SetAt() and [] operations.

int GetLength() const;

returns the | ength of the container.

cl ass UdnPseudoOhj ect

this class is a wapper class for Udm: Cbject. Basically, it has a
correspondi ng nethod for all the Udm: Object nethods, the Udm: Object!|npl nethods. These
met hods del egate the call to the corresponding Udm: Object or Udm: Object!lnpl nethod,
after doing sonme trivial transformation between different types.

UdnPseudoObj ect () ;
constructs a NULL object
UdnPseudoObj ect (unsi gned | ong dn_id, unsigned |ong ob_id);
constructs an object with the given data network and object id
UdnPseudoObj ect & oper at or =(const UdnPseudoObj ect & frn;
assi gnnent operator.
static bool GetlLastError(cint_string& buffer);

retrieves the last error, if any. The result is stored in buffer.

It should be checked after any nethod call on this object that returned

false. The return value is true, if there was an error, and in this case

the description is copied to buffer. Invoking this nmethod clears the error
condition. Only the last error can be retrieved.

bool type(cint_string &uffer) const;

stores the name of the object’s type in buffer. Returns false, if there
was an error.

bool uni quel d(unsigned |ong & d) const;

stores the uniqueld of the object in id. Returns false, if there was an
error.

bool getParent(const cint_string &role, UdnPseudoObject &val ue) const;
stores a UdnPseudoObj ect in value which is bound to the parent object.
prole is the name of the parentrole, which can be NULL. The met hod behaves
the same way as Oojectlnpl::getParent() does.
Returns false, if there was an error.

bool set Parent (UdnPseudoObj ect &parent, const cint_string &prole);

set a the object bound to parent as parent for the object.

prole is the name of the parentrole, which can be NULL. The met hod behaves
the same way as Objectlnpl::setParent() does.
Returns false, if there was an error.

bool detach();

removes the object fromthe object network.
Behaves the sane was as Objectl|npl::detach() does.
Returns false, if there was an error.

bool get Children(const cint_string &role, const cint_string &kind,
UdnPseudoOoj ect S &val ue) const;

stores UdnPseudoObj ects bound to the children in val ue.

crole is the name of the child role, which can be NULL.

Kind is the name of the Um::C ass type of children to be returned, which
al so can be NULL.

Behaves the sane way as Objectl|npl::getChildren() does.

If crole and/or kind are NULL, Objectlnpl::getChildren() will be called
accordingly, with NULL ConpositionChildRole or NULL Cl ass, respectively.
Returns false, if there was an error.

bool set Children(const cint_string &crole, const UdnPseudoOhj ectS &val ue);

sets the object’s children via role crole to the objects bound to
UdnPseudoOoj ects in val ue.

crole is the name of the child role, which can be NULL.

Behaves the sane way as Objectl|npl::setChildren() does.

If the crole is NULL, then Objectlnpl::setChildren() will be invoked
accordingly, with a NULL ConpositionChildRol e.

Returns false, if there was an error.

static const TARGETFROWPEER = O0;
static const TARGETFROMCLASS 1;
static const CLASSFROMIARGET 2;

static constants which can also be found with exactly these values in the
Udm nanespace.

bool getAssociation(const cint_string &ss_role, UdnPseudoObj ectS &val ue, int node
= TARGETFROWPEER) const;

stores UdnPseudoObj ects bound to the associations via role with nane
ass_rol e in val ue.

ass_role is the name of the association role, which cannot be NULL.
Behaves the same way as Objectlnpl::getAssociation() does.

Returns false, if there was an error.

bool setAssociation(const cint_string &ss_role, const UdnPseudoObjectS &val ue,
int nmode = TARGETFROVWPEER) ;

sets the associated objects via role ass_role to the objects bound to
UdnPseudoOoj ects in val ue.

ass_role is the name of the association role, which cannot be NULL.

Behaves the sanme way as Objectlnpl::setAssociation() does.

Returns false, if there was an error.

bool SetlntVal (const cint_string &ane, |ong val ue);

bool Set Real Val (const cint_string &ane, double val ue);

bool SetStrVal (const cint_string &ane, const cint_string & val ue);
bool SetBool Val (const cint_string &ane, bool val ue);

attribute setter functions.

name is the name of the attribute to be set, which can not be NULL.
Return false if there was an error. If false is returned, and
GetLastError() is also false, then the attribute with that nane and type
does not exist.

bool
bool
bool
bool

bool
bool
bool

GetIntVal (const cint_string &ane, |ong &val ue);

Get Real Val (const cint_string &ane, double &val ue);

Get StrVal (const cint_string &ane, cint_string & value);
Get Bool Val (const cint_string &ane, bool &val ue);

attribute getter functions.

name is the name of the attribute to be set, which can not be NULL.
Return false if there was an error. If false is returned, and
GetLastError() is also false, then the attribute with that nane and type
does not exi st.

Get StrVal () uses cint_string:: CopyFron() to store the string in val ue.

Get Adj acent Obj ect s(UdnPseudoObj ect S &val ue);
Get Adj acent Qbj ect s(const cint_string &Ist_type, UdnPseudoObjectS &val ue);
Get Adj acent Obj ect s(const cint_string &Ist_type, const Associationlnfo & ass,

UdnPseudoObj ect S & val ue);

bool
bool
bool

Get Par ent (UdnPseudoObj ect &val ue);
Get Chi | dObj ects(const cint_string & type, UdnPseudoOhj ectS &val ue);
Get Chi | dObj ect s(const Conpositionlnfo &ci, const cint_string & type,

UdnPseudoObj ect S &val ue);

bool

Get Associ ati onCl assObj ect s(const UdnPseudoObj ect &dst Obj ect, const

Associ ationlnfo & ai, UdnmPseudoCbjectS &val ue);

bool
bool
bool
bool

Get Peer sFromAssoci ati onC assObj ect (UdnPseudoObj ect S &val ue) ;
CreateObj ect (const cint_string & ype, UdnmPseudoCbject &val ue);
Creat eLi nk(UdnPseudoObj ect &dst, const Associ ationl nfo& ass_type);
Del et eObj ect () ;

the wrapping functions of TOM API.

Overvi ew of differencies:
Ret urn val ue:

same as the return value of the corresponding TOM call, unless the
Udm : Cbj ect coul d not be found based on the Ids. In this case the
TOM nethod is not invoked, false is returned, and an error
condition is set, GetLastError() returns true and gives a
description of the error.

cint_string instead of Un::C ass argunent types:

in these wapper functions types are identified with a cint_string
paraneter with the name of the class instead of Um::d ass. The
real Um::Class type paraneter is obtained via a

Un ::findd assByNane() on the set of classes of the neta diagram

Example code using the UdmCint API:

code which creates a UdmPseudoODbject in interpreted context, and invokes a
method on it:

int main(int argc, char *argv[])
{
Udm::SmartDataNetwork nw(diagram);
nw.CreateNew(argv[1],"LampDiagram”, RootFolder.meta);
{
RootFolder rrr = RootFol der::Cast(nw.GetRootObj ect());
Lamp lamp = Lamp::Create(rrr);
lamp.name() = "Host Lamp ";
lamp.ModelName() = "Tester lamp";

cint_init(NULL, myDisplay);
cint_add_object(lamp," host_lamp");

string code =" host_lamp.SetStrVal(\" name\" \" cint changes the name\");" ;
cint_ipretter();
cint_int_calc(code);

}

code which creates a UdmPseudoODbject in compiled context, and invokes a
method on it in interpreted context(UdmCint.h must be included):

}

int main(int argc, char *argv[])

Udm::SmartDataNetwork nw(diagram);
nw.CreateNew(argv[1],"LampDiagram”, RootFolder.meta);
{
RootFolder rrr = RootFolder::Cast(nw.GetRootObject());
Lamp lamp = Lamp::Create(rrr);
lamp.name() = "Host Lamp ";
lamp.ModelName() = "Tester lamp";

cint_init(NULL, myDisplay);
UdmPseudoObject pseudo_lamp(dn_id, o_id);

char code[200];

sprintf(code, " UdmPseudoObject * p_pseudo_lamp = (UdmPseudoObject *) %ld;\n", & pseudo_lamp);
cint_int_eval(code);

sprintf(code, " UdmPseudoObject pseudo_lamp =*p_pseudo_lamp;\n");

cint_int_eval(code);

sprintf(code,” pseudo_lamp.SetStrval(\" name\" \" cint changes the name!\");");

cint_int_eval(code);

Appendix A

UDM tools documentation

VisoUML2XML

NAME
Vi si oUML2XML - convert Visio UML cl ass diagrans into Udm XM.- UML
representation

AUTHOR
Jason Garrett - garrettjt@use.vanderbilt.edu
Ar pad Bakay - arpad. bakay@anderbilt. edu
SYNOPSI S
Vi si oUML2XM. [options] [<inputfile>] [<outputfile>]
<inputfile> The path to a Visio diagram
<outputfil e> The path to the output XM

(if <inputfile> has ‘.vsd extension
output filenane defaults to that nane
wi th extension changed to ‘.xm ")

Options:

-s -silent Sil ent nobde: do not generate output
unl ess a failure occurs
In silent node at |east <inputfil e> needs
to be specified

-n -nanedi ag <nane> Speci fy <name> for the diagram
(if <inputfile> has ‘.vsd extension
di agram name defaults to the base portion
of that name)

-? -h -hel p <nane> Di spl ay hel p
(in addition to ‘-, ‘/’ is also considered as option prefix)
DESCRI PTI ON

Vi si oUML2XM. converts Mcrosoft Visio 2000 UML cl ass diagrans to
an XM. representation conformant to UML.dtd (see files)
The program starts up Visio and accesses its data through its
Aut ormation interface.

The programcan be run in two nodes. In silent node, the files
and names to work with are specified on the conmand |ine as described
above.

In GU node, a dialog box is presented, which allows setting or
changi ng the options, and control the steps of the conversion
i ndi vidual ly. The EXPRESS conmand executes the whol e sequence, and in
its effect it is simlar to the silent node operation

The program can handl e diagrams with nultiple sheets. ‘Enable
sheet resolution’ is an option (default on, accessible only fromthe
QU), to nerge identically named cl asses on separate sheets in the
docunent. Since it is nornmally a useful feature, the availability as an
option has nmostly historical reasons.

The program has been tested with Visio 2000 SR1

TIPS AND TRI CKS

To create class diagrans for processing by Visi soUM2XM., the “Un
Static Structure” section of the “UML Model Diagrani tenplate is to be
used. Due to the use of undocurented functions, probably only Visio2000
can be used, no earlier or later versions.

The conversion tool only processes the follow ng stencils: d ass,
Bi nary Association, Association Cl ass, Conposition, and Generalization
O hers are ignored, and relationships to themresult in errors.

In order to enable the conversion tool to understand certain settings,
t hey rmust be made visible through the ‘ Shape Display Options’ settings
in the context nenu. The settings that nay need to be applied in
addition to the default ones are: Name (for associations), Attribute
Multiplicities, End Navigability.

Associ ation cl asses can only have straight association lines, so it is
not feasible to represent self-associations with classes in an el egant
way. The wor karound provided for such situations is the follow ng:
1.Create sinple, non-stencil auxiliary lines (accessible through the
tool bar) to roughly connect the ends of the association and the
target cl asses.
2.Create inconing endpoints on these lines on the end close to the
associ ation, and outgoi ng endpoints at the ends close to the
target class.
3.Draw the line ends until the association ends snap onto the ends
of the auxiliary lines, and the aux lines snap onto the target
cl ass.
4.You nmay use a sequence of nultiple auxiliary lines, but nmake sure
they are all connected with outgoing ends toward the target
cl asses.
5.Unfortunately, the association navigability indicators and end
nanes remain to be displayed at the ends of the origina
associ ation |ine.

Theoretically, navigability should be indicated on every rel ationship
in a diagram Since by default this is not displayed, as a convenience
Vi si oUML2XM. provi des two options to assunme navigability even if arrows
are not displayed. These checkboxes are ‘Regard naned associ ations as

navi gabl e’ (for associations with a nane), ‘Conpositions are always
navi gabl e’ (in both directions, regardl ess of the presence of nanes).

Navigability determnes if UDM generates methods for accessing these
relationships. If navigability is set, but there is no nane, a nane is
autonmatically generated fromthe target class nane. See paragraph 2.2
in the UDM APl docunentation for details. Automatically generated names
may collide, which can only be corrected by specifying nanes on

rel ati onshi p ends.

The only recorded aspect of attribute multiplicities is whether it is
allowed to have 0 values. In this case, the attribute is generated as
‘optional’. The upper linmt of attribute nultiplicity is always
considered to be 1.

Rel ati onshi p end nanes specify the nanes of the roles, while the nane
of the relationships (visible on the center) specifies the nane of the
Associ ation or Conposition itself. If the nane is not visible, the

rel ati onshi p has no name recorded, which is valid. Although not yet
used by UDM the direction information, if present and visible, is also
recorded in the XML file. Care should be taken since direction arrows
may easily point in the wong direction: a forward arrow desi ghates
that the primary direction is fromthe first end to the second, (vice
versa for the backward arrow). This always applies, even if the second
end is on the left, and the first end is on the right, when the
direction arrow synbol suggests just the opposite.

LI M TATI ONS
The following restrictions apply, nostly due to the rudi nentary
features of Visio automation interface:

-When the programstarts up Visio, it cones up as an application and
may hide the Visi oUML2XM. di al og.

-Al t hough no update operations are initiated, sonetinmes Visio
automatically nodifies the input file (e.g. if it is created by a
previ ous version) and thus brings up a confirmation dial og box
when the file is about to be cl osed.

-The programis rather slow.

FI LES
um . dtd : the generated XML is conpliant with this DTD.
The standard location of this file is in the
/docunents subdirectory of the distribution

Last change: 11 Cct 2001

Udm

NAME
Udm - generate APl and DTD from UML cl ass Di agram representation
AUTHOR

M kl os Naroti - nmar ot i @mt h. vander bi | t. edu

Ar pad Bakay - ar pad. bakay@anderbi |l t. edu

Endre Magyari - endr e. magyari @anderbilt. edu

SYNOPSI S

Udm <i nput nane> [<nanebase>][-t <tenpdi agranr] [-d <DTD path>] -m

<i nput nane> The nane of the input XM. docunent
(Conformant to the um .dtd file)

<namebase> The basenane of the output docunents
(.h, .cpp, .dtd), and also the nanespace
the APl is defined in.

-m A special .cpp format is generated, which
creates a static data network which does not
require neta information. Ur.cpp, the neta-
nmet a nodel should be generated with this
swi tch.

-d the path where the DID file are searched. |If
not provided, the PATH is searched if a DIDis
needed.

-C A special .CPP format is generated, which
i nstead of creating the neta-objects as static
data network, creates a data network containing
obj ects w appi ng CORBA proxi es of already
exi sting neta-objects in a renote server.

-S [Experinental] C# code generation for the
M crosoft .Net platform It can be used
together with the —m switch.

DESCRI PTI ON
Udm generates APl and .dtd files froman XM representation of a
UML diagram These XM.-s are usually extracted fromsone UML tool I|ike

Visio (using VisioUML2XM.), or GVE-UM. (using the associated
i nterpreter)

The APl files are necessary for conpiling UDM applications, as
described in the ‘Creating a C++ project using UDM section of the UDM
docunent at i on.

FI LES

um . dtd : the input XML files are conpliant with this
DTD. Udm contains a copy of this file as an
attached resource. The ‘-d option can be used
to specify a different DID file.

Last change: 28 Apr 2001

UdmBackendDump

NAME
UdnBackendDunp - generate a human readabl e textual representation
O an object network regardl ess of its meta-nodel

AUTHOR
Ti hamer Levendovszky- tihamer.| evendovszky@anderbilt. edu

SYNOPSI S
UdnBackendDunp <backend_fil e. nga>| <backend file.xm >
<backend neta file.xnl >
<backend_fil e. nga> The nane of the GVE DataNetwork file
<backend file.xnl > The nane of the DOM Dat aNetwork file

<backend neta file.xnm > The nane of the DOM Dat aNet wor k XM.-
Metafile

DESCRI PTI ON

UdnBackendDunp generates a textual description of an object
network. It dunps out all the nmeta(classes, associations, conpostions)
and instance(objects, links) entities in a textual representation

Last change: 08 Jun 2002

UdmViz

NAME

UdnVi z - generates a textual representation froma Udm backend
file to the standard output that serves as an input of the dot.exe from
ATT GraphViz graph displaying utility (it can be downl oaded from
http://ww. research. att.conf sw tool s/ graphvi z/ downl oad. htnl).

AUTHOR
Ti hanmer Levendovszky- tihamer.|evendovszky@anderbilt. edu

SYNOPSI S
UdnVi z <backend_fil e. nga>| <backend file.xm >
<backend_neta_file.xnm > <flags>

<backend fil e. nga> The nane of the GVE DataNetwork file
<backend file.xnl > The nane of the DOM Dat aNetwork file

<backend neta file.xm > The nane of the DOM Dat aNetwor k XM.-
Metafile

<fl ags> [-<a>| <l ><al >] —a: aggregate hierarchy —
I: links, role names —al: both. Default(if flags are omtted): -I.

DESCRI PTI ON

UdnVi z generates a textual description of an object network for
an ATT GraphViz digestible format to the standard output. This is
anot her way to display an object network froma Udm backend.

SAMPLE
Exporting the aggregation hierarchy fromnodel.xm to a GF
pi cture:
UdnVi z nodel . xml neta.xm -a > x. dot
dot -Tgif x.dot > x.gif

Last change: 08 Jun 2002

UdmPat

NAME
UdnPat — process Udm data to produce text output as defined in a
sinmple pattern script.

AUTHOR
Arpad Bakay - arpad. bakay@anderbilt. edu

SYNCPSI S
UdnPat <i ndat a> <di agrane <patternfil e>

<indata>: input Udmdata. If the file extension is none of the
wel | -known values (e.g. ‘.nga or ‘.xnml’), the prefixes
‘GVE:’ or ‘DOM’ are used to indicate the backend type.
E g.:
DOM <donfi |l ename> : open as DOM data (i.e. an XM
file)
GME: <proj ectconnstr> : open as GVE data
nane_w t hout _prefix. ext : guess type based on
ext ensi on
<diagranp: the UML.-XM. file that was used to create the data
<patternfile> the nane of the pattern script

DESCRI PTI ON

UdnPat reads Udm data while processing a pattern script to
generate output to one or several files. The pattern file may contain
plain text, which is copied to the output verbatim and special pattern
instructions (funtions |ike $! EVAL_FORALL and macros |i ke $Nane), that
are evaluated, and their result is inserted into the output. Pattern
i nstructions have arguments. A significant group of arguments are text
argunents, which can again contain any mixture of plain text or pattern
i nstructions.

The nost relevant instructions are the ones that retrieve
information fromthe input Udmdata. It is possible to access
attributes (e.g. $Nanme), and iterate through associations and
cont ai nnment rel ati onshi ps
(e.g. EVAL_FORALL(EmergencySwitch, “...”"), to locate and query objects.

UdnPat al ways accesses Udm data in read-only node.

UdnPat is a generic application, i.e. the neta infornmation
(class, attribute, relationship definitions) on the data is not
provided runtine, but conpile-tine, in formof an UML XM. file,
speci fied by the <diagran> argunent.

The pattern is always evaluated in the context of an Udm object,
which is used when evaluating pattern instructions. Some pattern
instructions ($!EVAL_W TH, and $! EVAL_FORALL) change the context when
eval uating their text argunments.

Data printed before an output file is specified is sent to the
standard output. Therefore, the first non-coment pattern is typically
$! TO FILE() conmand, that specifies the output |ocation

$<varname>
Eval uate variable or attribute <varnane> and return its value in the
out put .

First, the set of variables is searched for <varnane> (vari abl es
are defined by $!DEFINE, see bel ow)

Next if <varname> is “name”, return the nane of the current

obj ect

O herwi se read and return current object's the attribute
identified by <varnane>

If none is defined, report error

$IEVAL_FORALL (<fieldspec>, <textarg>)

Get any nunber (including 0) of objects identified by fieldspec
iterate through them

and evaluate arg2 in their context.

<fi el dspec> nmay contain one of the follow ng specifications containing
access qualifiers:

Chi | dRol e: <r ol enanme> the children of this childrole

Chi | dType: <ki ndname> the children of this kind

Par ent : the parent of this object if any
Tvpe: The Um ::Class object that represents
ype: the type (metainfornmation)

t he peer objects of associations of the
specified role

t he association classes of the
specified role

AssocPeer : <ar ol enane>
AssocC ass: <ar ol enane>

If omitting the above access qualifiers (e.g. ChildType:, AssocPeer:)
does not cause anmbiguity, the role or kind names (or the keywords
‘parent’ and ‘type’) can also be used al one.

$! EVAL_W TH(<f i el dspec>, <textarg>)

Get the single object identified by fieldspec and evaluate arg2 in its
context, return the result

See above the specification of <fieldspec>

$!' | FEMPTY(<t ext argl>, <textarg2>)
If argl evaluates to an enpty string, evaluate arg2 and return the
result

$! TO_FI LE(<ar g>)
Close current output file, and start witing to the file specified by
arg

$! DEFI NE(<var nanme>, <t extarg>)
Create or redefine the variable identified by varnane to contain the
current value of textarg

$! POSTI NCR(<var nane>)
I ncrenent variable varnane by 1, and return its original value (its
val ue nust be | egible as a nunber)

$! SEQ(<t extargl>, <textarg2>, ...)
Eval uate textargs one by one and append their result

$! PAD(<wi dt h>, <textarg>)
Make sure the output of textarg is at |east ABS(<w dth>) characters

wi de. The string is left-justified if <width> > 0, and right justified
if <0

$! COWENT(<arg>) <arg> is a conment. No output is generated
Separating verbatimtext and pattern instructions

The text of the pattern file is copied verbatimto the output, unless a
pattern instruction (beginning with $) is detected. A pattern
instruction nust fit into a single line, but physical |ines can be
nmerged into a single |ogical one by specifying \ as the last character
of the first line. *$ and ‘\’' characters are produced using ‘\$ and
‘\\" respectively.

Text argunents within functions are evaluated in a simlar fashion, but

1. they may be surrounded by double quotes (“ “) to indicate the
borders of the string. Gtherwise, a string is termnated by the first
unquoted ‘,’ or ‘)’

2. ‘\t’ and ‘\n’” is converted to tab and newl i ne characters in the
gener at ed out put .

FI LES

um . dtd : the <diagrant file nust be conpliant with this
DTD. UdnmPat contains a copy of this file as an
attached resource.

Last update: 20 December 2001

UdmCopy

NAME
UdnCopy - replicate a data network in another persistence engine.

AUTHOR
Ar pad Bakay - arpad. bakay@anderbilt.edu

SYNCPSI S
UdnTCopy <i ndat a> <out dat a> <di agrank [<net al ocat or >]

<i ndat a> the nane of the input data (filename or GVE
connection string). If the file extension is none of
the well-known values (e.g. ‘.nmga’ or ‘.xm’), the
prefixes "GVE:’ or ‘DOM’ are used to indicate the
backend type.

<out dat a> the nane of the output data (filenane or GVE
connection string). If the file extension is none of
the well-known values (e.g. ‘.mga’ or ‘.xm’), the
prefixes ‘GVE:’ or ‘DOM’ are used to indicate the
backend type.

<di agr anp the XML representation of the UWML di agramthat
describes the data structure to be copi ed.

<net al ocat or >t he nane of the backend technol ogy-specific neta-
information the new datanetwork will use. If it is a
DOM networ k, <netal ocator> is a DID file
specification. If the output is a GVE project,
<met al ocator> i s the paradi gm nane
If <netalocator> is omtted, the name attribute
of the diagramin the XM. file specified by
<di agranm» is used as the |ocator.

DESCRI PTI ON

UdnTCopy copi es an existing Udm data network into a new one.

Ei ther of them may use any of the supported backend technol ogi es (DOM
or GVE

UdnTCopy is a generic application, i.e. the nmeta information
(class, attribute, relationship definitions) on the data is not
provided runtine, but conpile-tinme, in formof an UML XM. file,
speci fied by the <di agram> argunent.

The entities specified by the paranmeters nmust be conpatible with
each other. <diagranr nmust be conpatible to both <netal ocator> and
<indata> (e.g. created by a Udm application that used Udm source
generated from <di agranr). <outdata> is generated to be conpatible with
<di agr anp.

FI LES

um . dtd : the <diagrant file nust be conpliant with this
DTD. UdmCopy contains a copy of this file as an
attached resource. The ‘-d’" option can be used
to specify a different DID file.

Last update: 20 December 2001

Appendix B

Simple UML class diagram, created in GM E2000

ElectricDevice

narme[0..1] : String

RaoaotFalder MaxvaltageRating[0..1] . Real — ElectricTerminal
Dot a0 ‘j - [Typer 1 string
- ire iti =
name[0.1] - String — position[0..1] : String
“ | Amps[0.1]: Real End1 (0.."Endz (0.7
F'Iug Lamp Function Switch Switch
hogin Swkeh .
o 1 o Amps[0.1]: Real
Farmat[d..1] ; Btring ModelNa:ne : Btring Safe[0.1] : Baolean
dst |07
Bulb
SrG
voltage[D..1] : Real [0F M
Wiattage[1]: Real 1.7 0
ControlLink

Appendix C

M atching GM EM eta 2000 par adigm of the UML ClassDiagram

ElectricDevice
==hlodel==
MaxTempRating : field o
MaxvoltageRating . field - -
endz | ElectricTarminal
Wire [==Atom==
==Zonnection== | ________

Plug T * Type field
zzhodel== - Amps field Bl 0"
Infiar field
Format: field [57

Switch

Bulb
<=Model== Larnp FunctionSuitch ==Model==
==Model== .o

Voltage © field MainSuiteh | Info - field
Waﬁage'- field g“? ModelMarne * fiald 05 gafe kool
- h 1 Amps : field

dst 0.7

0.

ContralLink
....... ==Cannactions==

Appendix D
XML representation of UML information.
(Created with UML2XML GME2000 Interpretter from the Diagram in Appendix B)<aml

verson="1.0"?>
<IDOCTY PE Diagram SYSTEM "uml .dtd">
<Diagram name ="LampDiagram">

<!-- Generated by the UML2XML interpreter -->

<Class _id="id000022" name= "Wire" isAbstract= "false" childRoles=" id000013" association =
"id00005">
<Attribute name="Amps" type= "Real" min="0" max="1"/>
</Class>
<Class _id="id000023" name="Plug" isAbstract= "false" baseTypes=" id000024" childRoles="
id000019" >
<Attribute name="Format" type="String" min="0" max="1"/>
</Class>
<Class _id="id000024" name= "ElectricDevice" isAbstract="true" subTypes=" id000026 id000023
id000025 id000029" parentRoles=" id00008 id000012" childRoles= " id000011" >
<Attribute name="MaxV oltageRating" type= "Real" min="0" max="1"/>
<Attribute name="MaxTempRating" type="Integer" min="0" max="1"/>
<Attribute name= "position" type="String" min="0" max="1"/>
<Attribute name="name" type="String" min="0" max="1"/>
</Class>
<Class _id="id000025" name="Switch" isAbstract= "false" baseTypes=" id000024" associationRoles="
id00001" childRoles=" id0O0007 id0O00015" >
<Attribute name="Amps" type= "Real" min="0" max="1"/>
<Attribute name="Safe" type= "Boolean" min="0" max="1"/>
</Class>
<Class _id="id000026" name= "Bulb" isAbstract= "false" baseTypes= " id000024" associationRoles="
id00000" childRoles=" id000021" >
<Attribute name="Voltage" type= "Rea" min="0" max="1"/>
<Attribute name="Wattage" type="Rea" min="1" max="1"/>
</Class>
<Class _id="id000027" name= "ControlLink" isAbstract= "false" childRoles=" id000017" association =
"id00002">
<Attribute name="name" type="String" min="0" max="1"/>
</Class>
<Class _id="id000028" name= "ElectricTermina" isAbstract="false" associationRoles=" id00003
id00004" childRoles=" id0O0009" >
<Attribute name="Type" type= "String" min="0" max="1"/>
<Attribute name= "position" type="String" min="0" max="1"/>
</Class>
<Class _id="id000029" name="Lamp" isAbstract= "false" baseTypes= " id000024" parentRoles="
id00006 id000014 id000016 1d000018 id000020" >
<Attribute name="ModelName" type="String" min="1" max="1"/>
</Class>
<Class _id="id000030" name= "RootFolder" isAbstract= "false" parentRoles=" id000010" >
</Class>
<Association _id="id00002" name= "ControlLink" assocClass = "id000027">
<AssociationRole _id="id00000" name="src" min="0" max="-1" target= "id000026" />
<AssociationRole _id="id00001" name="dst" min="0" max="-1" target= "id000025" />
</Association>
<Association _id="id00005" name= "Wire" assocClass = "id000022">
<AssociationRole _id="id00003" name="End1" min="0" max="-1" target= "id000028"/>
<AssociationRole _id="id00004" name="End2" min="0" max="-1" target= "id000028"/>

</Association>
<Composition>
<CompositionParentRole _id="id00008" target= "id000024"/>
<CompositionChildRole _id="id00009" min="0" max="-1" target= "id000028" />
</Composition>
<Composition>
<CompositionParentRole _id="id000012" target= "id000024" />
<CompositionChildRole _id="id000013" min="0" max="-1" target= "id000022" />
</Composition>
<Composition>
<CompositionParentRole _id="id00006" target= "id000029"/>
<CompositionChildRole _id="id00007" name="MainSwitch" min="1" max="1" target= "id000025"/>
</Composition>
<Composition>
<CompositionParentRole _id="id000014" target= "id000029"/>
<CompositionChildRole _id="id000015" name= "FunctionSwitch" min="0" max="-1" target=
"id000025" />
</Composition>
<Composition>
<CompositionParentRole _id="id000016" target= "id000029"/>
<CompositionChildRole _id="id000017" min="0" max="-1" target= "id000027" />
</Composition>
<Composition>
<CompositionParentRole _id="id000018" target= "id000029" />
<CompositionChildRole _id="id000019" min="1" max="1" target="id000023"/>
</Composition>
<Composition>
<CompositionParentRole _id="id000020" target="id000029"/>
<CompositionChildRole _id="id000021" min="1" max="-1" target= "id000026" />
</Composition>
<Composition>
<CompositionParentRole _id="id000010" target= "id000030"/>
<CompositionChildRole _id="id000011" min="0" max="-1" target= "id000024" />
</Composition>
</Diagram>

Appendix E

DTD file generated from the XML in Appendix D (generated with Udm.exe)

<?2ml version="1.0" encoding="UTF-8"?>
<!-- generated on Wed Feb 06 22:34:29 2002 -->

<IELEMENT Plug (WirelElectricTerminal)*>
<IATTLIST Plug

MaxTempRating
MaxVoltageRating

CDATA #IMPLIED
CDATA #MPLIED

position CDATA #MPLIED
name CDATA #IMPLIED
Format CDATA #MPLIED
>
<IELEMENT Wire EMPTY >
<IATTLIST Wire
_id 1D #MPLIED
Amps CDATA #MPLIED
End2_end_ IDREF #MPLIED
Endl end_ IDREF #MPLIED

>

<IELEMENT Switch (WirelElectricTerminal)*>
<IATTLIST Switch

_id ID #MPLIED
__child_assNMTOKENS #MPLIED
MaxTempRating CDATA #IMPLIED

MaxVoltageRating CDATA #IMPLIED
position CDATA #MPLIED
name CDATA #MPLIED
Safe (trueffalse) #MPLIED
Amps CDATA #IMPLIED

src IDREFS #MPLIED
>

<IELEMENT Bulb (Wire|ElectricTerminal)*>
<IATTLIST Bulb
_id ID
MaxTempRating CDATA #MPLIED
MaxVoltageRating CDATA #IMPLIED
position CDATA #MPLIED
name CDATA #MPLIED
Wattage CDATA #REQUIRED
Voltage CDATA #MPLIED
dst IDREFS #MPLIED

#MPLIED

>

<IELEMENT ControlLink EMPTY >
<IATTLIST ControlLink
_id 1D #MPLIED
name CDATA #MPLIED
dst end_ IDREF #MPLIED
sc_end_ IDREF #MPLIED
>

<IELEMENT ElectricTermina EMPTY>
<IATTLIST ElectricTerminal
_id 1D #IMPLIED
position CDATA #MPLIED
Type CDATA #IMPLIED
End2 IDREFS #MPLIED
Endl IDREFS #IMPLIED
>

<IELEMENT Lamp (Plug|Wire|Switch[Bulb|Control Link|ElectricTerminal)* >
<IATTLIST Lamp

MaxTempRating CDATA #IMPLIED

MaxVoltageRating CDATA #MPLIED

position CDATA #MPLIED

name CDATA #MPLIED

ModelName CDATA #REQUIRED
>

<IELEMENT RootFolder (Plug|Switch|BulbjLamp)* >

APPENDIX F.

H file generated from the XML in Appendix D.

(generated with Udm.exe)

#ifndef MOBIES_LAMPDIAGRAM_H

#define MOBIES_LAMPDIAGRAM_H

/I header file LampDiagram.h generated from diagram LampDiagram
1/ generated on Wed Feb 06 22:34:29 2002

#ifndef MOBIES UDMBASE_H

#include" UdmBase.h"
#endif

namespace LampDiagram {

typedef Udm::Object Object;

class Plug;
classWire;

class ElectricDevice;

class Switch;
class Bulb;

class ControlLink;
class ElectricTerminal;

classLamp;

class RootFolder;

void Initialize();
extern Udm::UdmDiagram diagram;

classWire: public Object {

public:

__Create(meta, parent, role); }

static Uml::Class meta;

Wire() { }

Wirg(Udm::Objectimpl *impl) : Object(impl) { }

Wire(const Wire & master) : Object(master) { }

static Wire Cast(const Object & a) { return __Cast(a, meta); }

static Wire Create(const Object & parent, const Uml::CompositionChildRole & role = Udm::NULLCHILDROLE) { return
static Uml::Attribute meta Amps,
Udm::RealAttr Amps() const { return Udm::RealAttr(impl, meta_Amps); }

static Uml::CompositionParentRole meta_ElectricDevice parent;
Udm::ParentAttr<LampDiagram::ElectricDevice> ElectricDevice_parent() const { return

Udm::ParentAttr<LampDiagram::ElectricDevice>(impl, meta_ElectricDevice parent); }

Udm::ParentAttr<LampDiagram::ElectricDevice> parent() const { return

Udm::ParentAttr<LampDiagram::ElectricDevice>(impl, Udm::NULLPARENTROLE); }

static Uml::AssociationRole meta_ End2_end_;
Udm::AssocEndAttr<LampDiagram::ElectricTerminal> End2_end() const { return

Udm::AssocEndAttr<L ampDiagram::ElectricTerminal>(impl, meta_ End2_end_); }

static Uml::AssociationRole meta_End1_end_;
Udm::AssocEndAttr<LampDiagram::ElectricTerminal> End1_end() const { return

Udm::AssocEndAttr<L ampDiagram::ElectricTerminal>(impl, meta_End1_end_); }

b

class ElectricDevice: public Object {

public:

return __Create(meta, parent, role); }

static Uml::Class meta;

ElectricDevice() { }

ElectricDevice(Udm::Objectimpl *impl) : Object(impl) { }

ElectricDevice(const ElectricDevice & master) : Object(master) { }

static ElectricDevice Cast(const Object & a) { return __Cast(a, meta); }

static ElectricDevice Create(const Object & parent, const Uml::CompositionChildRole & role = Udm::NULLCHILDROLE) {
static Uml::Attribute meta_MaxTempRating;

Udm::Integer Attr MaxTempRating() const { return Udm::Integer Attr(impl, meta_ M axTempRating); }

static Uml::Attribute meta_M axVoltageRating;
Udm::RealAttr MaxVoltageRating() const { return Udm::Real Attr(impl, meta_M axVoltageRating); }

static Uml::Attribute meta_position;
Udm::StringAttr position() const { return Udm::StringAttr(impl, meta_position); }

static Uml::Attribute meta_name;
Udm::StringAttr name() const { return Udm:: StringAttr(impl, meta_name); }

static Uml::CompositionChildRole meta_Wire_children;

Udm::ChildrenAttr<LampDiagram::Wire> Wire_children() const { return Udm::ChildrenAttr<LampDiagram::Wire>(impl,
meta_Wire_children); }

static Uml::CompositionChildRole meta_ElectricTerminal_children;
Udm::ChildrenAttr<LampDiagram::ElectricTerminal> ElectricTerminal_children() const { return
Udm::ChildrenAttr<L ampDiagram::ElectricTerminal>(impl, meta_ElectricTerminal_children); }

Udm::ChildrenAttr<LampDiagram::Wire> Wire_kind_children() const { return
Udm::ChildrenAttr<LampDiagram::Wire>(impl, Udm::NULLCHILDROLE); }

Udm::ChildrenAttr<L ampDiagram::ElectricTerminal> ElectricTerminal_kind_children() const { return
Udm::ChildrenAttr<L ampDiagram::ElectricTerminal>(impl, Udm::NULLCHILDROLE); }

static Uml::CompositionParentRole meta_RootFolder_parent;
Udm::ParentAttr<LampDiagram::RootFolder> RootFolder_parent() const { return
Udm::ParentAttr<L ampDiagram::RootFolder>(impl, meta_RootFolder_parent); }

Udm::ParentAttr<L ampDiagram::RootFolder> parent() const { return Udm::ParentAttr<L ampDiagram::RootFolder>(impl,
Udm::NULLPARENTROLE); }

classPlug : public ElectricDevice {
public:
static Uml::Class meta;

Plug() { }

Plug(Udm:: ObjectImpl *impl) : ElectricDevice(impl) { }
Plug(const Plug & master) : ElectricDevice(master) { }

static Plug Cast(const Object & a) { return __Cast(a, meta); }

static Plug Create(const Object & parent, const Uml::CompositionChildRole & role = Udm::NULLCHILDROLE) { return
__ Create(meta, parent, role); }

static Uml::Attribute meta_Format;
Udm::StringAttr Format() const { return Udm::StringAttr(impl, meta_Format); }

static Uml::CompositionParentRole meta_L amp_parent;
Udm::ParentAttr<LampDiagram::Lamp> Lamp_parent() const { return Udm::ParentAttr<LampDiagram::Lamp>(impl,
meta_Lamp_parent); }

Udm::ParentAttr<LampDiagram::ElectricDevice> parent() const { return
Udm::ParentAttr<LampDiagram::ElectricDevice>(impl, Udm::NULLPARENTROLE); }
h

class Switch : public ElectricDevice {
public:
static Uml::Class meta;

Switch() { }

Switch(Udm::Objectimpl *impl) : ElectricDevice(impl) { }
Switch(const Switch & master) : ElectricDevice(master) { }
static Switch Cast(const Object & a) { return __Cast(a, meta); }

static Switch Create(const Object & parent, const Uml::CompositionChildRole & role = Udm::NULLCHILDROLE) { return
__Create(meta, parent, role); }

static Uml::Attribute meta_Safe;
Udm::BooleanAttr Safe() const { return Udm::BooleanAttr(impl, meta_Safe); }

static Uml::Attribute meta Amps;
Udm::RealAttr Amps() const { return Udm::RealAttr(impl, meta_Amps); }

static Uml::AssociationRole meta_src, meta_src_rev;
Udm::AClassAssocAttr<LampDiagram::ControlLink, LampDiagram::Bulb> src() const { return
Udm::AClassAssocAttr<LampDiagram::ControlLink, LampDiagram::Bulb>(impl, meta_src, meta_src_rev); }

static Uml::CompositionParentRole meta_FunctionSwitch_L amp_parent;
Udm::ParentAttr<LampDiagram::Lamp> FunctionSwitch_Lamp_parent() const { return
Udm::ParentAttr<LampDiagram::Lamp>(impl, meta_FunctionSwitch_Lamp_parent); }

static Uml::CompositionParentRole meta_M ainSwitch_Lamp_parent;
Udm::ParentAttr<LampDiagram::Lamp> MainSwitch_Lamp_parent() const { return
Udm::ParentAttr<LampDiagram::Lamp>(impl, meta_MainSwitch_L amp_parent); }

Udm::ParentAttr<LampDiagram::ElectricDevice> parent() const { return
Udm::ParentAttr<LampDiagram::ElectricDevice>(impl, Udm::NULLPARENTROLE); }
h

classBulb : public ElectricDevice{
public:
static Uml::Class meta;

Bulb() { }

Bulb(Udm::ObjectImpl *impl) : ElectricDevice(impl) { }
Bulb(const Bulb & master) : ElectricDevice(master) { }

static Bulb Cast(const Object & a) { return __Cast(a, meta); }

static Bulb Create(const Object & parent, const Uml::CompositionChildRole & role = Udm::NULLCHILDROLE) { return
__ Create(meta, parent, role); }

static Uml::Attribute meta_Wattage;
Udm::RealAttr Wattage() const { return Udm::RealAttr(impl, meta_Wattage); }

static Uml::Attribute meta_Voltage;
Udm::RealAttr Voltage() const { return Udm::RealAttr(impl, meta_Voltage); }

static Uml::AssociationRole meta_dst, meta_dst_rev;
Udm::AClassAssocAttr<LampDiagram::ControlLink, LampDiagram::Switch> dst() const { return
Udm::AClassAssocAttr<LampDiagram::ControlLink, LampDiagram::Switch>(impl, meta_dst, meta_dst_rev); }

static Uml::CompositionParentRole meta_L amp_parent;
Udm::ParentAttr<LampDiagram::Lamp> Lamp_parent() const { return Udm::ParentAttr<LampDiagram::Lamp>(impl,
meta_Lamp_parent); }

Udm::ParentAttr<LampDiagram::ElectricDevice> parent() const { return
Udm::ParentAttr<LampDiagram::ElectricDevice>(impl, Udm::NULLPARENTROLE); }
h

class ControlLink : public Object {
public:
static Uml::Class meta;

ControlLink() { }

ControlLink(Udm::Objectimpl *impl) : Object(impl) { }
ControlLink(const ControlLink & master) : Object(master) { }

static ControlLink Cast(const Object & a) { return __Cast(a, meta); }

static ControlLink Create(const Object & parent, const Uml::CompositionChildRole & role = Udm::NULLCHILDROLE) {
return __Create(meta, parent, role); }

static Uml::Attribute meta_name;
Udm::StringAttr name() const { return Udm::StringAttr(impl, meta_name); }

static Uml::CompositionParentRole meta_L amp_parent;
Udm::ParentAttr<LampDiagram::Lamp> Lamp_parent() const { return Udm::ParentAttr<LampDiagram::Lamp>(impl,
meta_Lamp_parent); }

Udm::ParentAttr<LampDiagram::ElectricDevice> parent() const { return
Udm::ParentAttr<LampDiagram::ElectricDevice>(impl, Udm::NULLPARENTROLE); }

static Uml::AssociationRole meta_dst_end_;

Udm::AssocEndAttr<LampDiagram:: Switch> dst_end() const { return Udm::AssocEndAttr<LampDiagram::Switch>(impl,
meta_dst_end_); }

static Uml::AssociationRole meta_src_end_;
Udm::AssocEndAttr<LampDiagram::Bulb> src_end() const { return Udm::AssocEndAttr<LampDiagram::Bulb>(impl,
meta_src_end_); }

b

class ElectricTerminal : public Object {
public:
static Uml::Class meta;

ElectricTerminal() { }

ElectricTerminal(Udm::ObjectImpl *impl) : Object(impl) { }
ElectricTerminal(const ElectricTerminal & master) : Object(master) { }
static ElectricTerminal Cast(const Object & a) { return __Cast(a, meta); }

static ElectricTerminal Create(const Object & parent, const Uml::CompositionChildRole & role = Udm::NULLCHILDROLE)
{ return __Create(meta, parent, role); }

static Uml::Attribute meta_position;
Udm::StringAttr position() const { return Udm::StringAttr(impl, meta_position); }

static Uml::Attribute meta_Type;
Udm::StringAttr Type() const { return Udm::StringAttr(impl, meta_Type); }

static Uml::AssociationRole meta_End1, meta End1 rev;
Udm::AClassAssocAttr<LampDiagram::Wire, LampDiagram::ElectricTerminal> End1() const { return
Udm::AClassAssocAttr<LampDiagram::Wire, LampDiagram::ElectricTerminal>(impl, meta_End1, meta_End1_rev); }

static Uml::AssociationRole meta_End2, meta_End2_rev;
Udm::AClassAssocAttr<LampDiagram::Wire, LampDiagram::ElectricTerminal> End2() const { return
Udm::AClassAssocAttr<LampDiagram::Wire, LampDiagram::ElectricTerminal>(impl, meta_End2, meta_End2_rev); }

static Uml::CompositionParentRole meta_ElectricDevice parent;
Udm::ParentAttr<LampDiagram::ElectricDevice> ElectricDevice_parent() const { return
Udm::ParentAttr<LampDiagram::ElectricDevice>(impl, meta_ElectricDevice parent); }

Udm::ParentAttr<LampDiagram::ElectricDevice> parent() const { return
Udm::ParentAttr<LampDiagram::ElectricDevice>(impl, Udm::NULLPARENTROLE); }
h

classLamp : public ElectricDevice {
public:
static Uml::Class meta;

Lamp() {}

Lamp(Udm::Objectimpl *impl) : ElectricDevice(impl) { }
Lamp(const Lamp & master) : ElectricDevice(master) { }
static Lamp Cast(const Object & a) { return __Cast(a, meta); }

static Lamp Create(const Object & parent, const Uml::CompositionChildRole & role = Udm::NULLCHILDROLE) { return
__Create(meta, parent, role); }

static Uml::Attribute meta_M odelName;

Udm

Udm::StringAttr M odelName() const { return Udm:: StringAttr (impl, meta_M odelName); }

static Uml::CompositionChildRole meta_FunctionSwitch;
Udm::ChildrenAttr<L ampDiagram::Switch> FunctionSwitch() const { return
::ChildrenAttr<LampDiagram::Switch>(impl, meta_FunctionSwitch); }

static Uml::CompositionChildRole meta_MainSwitch;
Udm::ChildAttr<LampDiagram:: Switch> MainSwitch() const { return Udm::ChildAttr<LampDiagram:: Switch>(impl,

meta_MainSwitch); }

Udm

static Uml::CompositionChildRole meta_ControlLink_children;
Udm::ChildrenAttr<LampDiagram::ControlLink> ControlLink_children() const { return
::ChildrenAttr<LampDiagram::ControlLink>(impl, meta_ControlLink_children); }

static Uml::CompositionChildRole meta_Plug_child;
Udm::ChildAttr<LampDiagram::Plug> Plug_child() const { return Udm::ChildAttr<LampDiagram:: Plug>(impl,

meta_Plug_child); }

static Uml::CompositionChildRole meta_Bulb_children;
Udm::ChildrenAttr<LampDiagram::Bulb> Bulb_children() const { return Udm::ChildrenAttr<LampDiagram::Bulb>(impl,

meta_Bulb_children); }

Udm

Udm::

Udm::

Udm::

Udm::

Udm::

retur

Udm

Udm::

Udm::

Udm::

Udm::

Udm::

Udm::

Udm::ChildrenAttr<LampDiagram::Plug> Plug_kind_children() const { return
::ChildrenAttr<LampDiagram::Plug>(impl, Udm::NULLCHILDROLE); }

Udm::ChildrenAttr<L ampDiagram::ElectricDevice> ElectricDevice_kind_children() const { return
ChildrenAttr<LampDiagram::ElectricDevice>(impl, Udm::NULLCHILDROLE); }

Udm::ChildrenAttr<LampDiagram:: Switch> Switch_kind_children() const { return
ChildrenAttr<LampDiagram::Switch>(impl, Udm::NULLCHILDROLE); }

Udm::ChildrenAttr<LampDiagram::Bulb> Bulb_kind_children() const { return
ChildrenAttr<L ampDiagram::Bulb>(impl, Udm::NULLCHILDROLE); }

Udm::ChildrenAttr<LampDiagram::ControlLink> ControlLink_kind_children() const { return
ChildrenAttr<LampDiagram::ControlLink>(impl, Udm::NULLCHILDROLE); }

Udm::ParentAttr<Udm::Object> parent() const { return Udm::ParentAttr<Udm::Object>(impl,
NULLPARENTROLE); }

class RootFolder : public Object {
public:
static Uml::Class meta;

RootFolder() { }

RootFolder (Udm::Object!mpl *impl) : Object(impl) { }
RootFolder(const RootFolder & master) : Object(master) { }

static RootFolder Cast(const Object & a) { return __Cast(a, meta); }

static RootFolder Create(const Object & parent, const Uml::CompositionChildRole & role = Udm::NULLCHILDROLE) {
n __ Create(meta, parent, role); }

static Uml::CompositionChildRole meta_ElectricDevice _children;
Udm::ChildrenAttr<L ampDiagram::ElectricDevice> ElectricDevice_children() const { return
::ChildrenAttr<LampDiagram::ElectricDevice>(impl, meta_ElectricDevice children); }

Udm::ChildrenAttr<LampDiagram::Plug> Plug_kind_children() const { return
ChildrenAttr<LampDiagram::Plug>(impl, Udm::NULLCHILDROLE); }

Udm::ChildrenAttr<LampDiagram::ElectricDevice> ElectricDevice kind_children() const { return
ChildrenAttr<L ampDiagram::ElectricDevice>(impl, Udm::NULLCHILDROLE); }

Udm::ChildrenAttr<LampDiagram:: Switch> Switch_kind_children() const { return
ChildrenAttr<LampDiagram:: Switch>(impl, Udm::NULLCHILDROLE); }

Udm::ChildrenAttr<LampDiagram::Bulb> Bulb_kind_children() const { return
ChildrenAttr<L ampDiagram::Bulb>(impl, Udm::NULLCHILDROLE); }

Udm::ChildrenAttr<L ampDiagram::Lamp> Lamp_kind_children() const { return
ChildrenAttr<LampDiagram::Lamp>(impl, Udm::NULLCHILDROLE); }

Udm::ParentAttr<Udm::Object> parent() const { return Udm::ParentAttr<Udm::Object>(impl,
NULLPARENTROLE); }

}
#endif //MOBIES_LAMPDIAGRAM _H

APPENDIX G.
Sample UDM -based program

#include" LampDiagram.h"
#include <UdmGme.h>
#include <UdmDom.h>

I these must be included to make SmartDataNetwork work

using namespace L ampDiagram;

int main(int argc, char* argv[])

{

if(argc<2) {

}
try {

cout << " Usage: Createl ampM odel <Udmdataname>\n" ;
return -1;

Udm::SmartDataNetwork nw(diagram);
nw.CreateNew(argv[1]," LampDiagram", RootFolder.meta);

{

RootFolder rrr = RootFolder::Cast(nw.GetRootObject());

Lamp doubleBulbLamp = Lamp::Create(rrr);
doubleBulbLamp.name() =" HighLight XL 150" ;

doubleBulbL amp.M axVoltageRating() = 220.0;
doubleBulbLamp.MaxTempRating() = 200;

ElectricTerminal termA = ElectricTerminal::Create(doubleBulbL amp);
ElectricTerminal termB = ElectricTerminal::Create(doubleBulbL amp);
termA .position() =" (500,20)" ;

termB.position() =" (500,85)" ;

Plug thePlug = Plug:: Create(doubleBulbL amp);
thePlug.position() =" (500,150)" ;

thePlug.name() =" Plug";

ElectricTerminal pltl = ElectricTerminal::Create(thePlug);
pltl.position() =" (20,100)";

ElectricTerminal plt2 = ElectricTerminal::Create(thePlug);
plt2.position() =" (20,200)" ;

/I create mainswitch and itsterminals

Switch mainSwitch = Switch::Create(doubleBulbL amp, Lamp::meta_M ainSwitch);

mainSwitch.position() =" (300,100)" ;

mainSwitch.name() =" MainSW";

ElectricTerminal mst1 = ElectricTerminal::Create(mainSwitch);
mst1.position() =" (20,100)";

ElectricTerminal mst2 = ElectricTerminal:: Create(mainSwitch);
mst2.position() =" (220,100)" ;

Ilcreate switchesand itsterminals

Switch switchl = Switch:: Create(doubleBulbL amp, Lamp::meta_FunctionSwitch);

switchl.position() =" (300,250)" ;

switchl.name() =" SW1";

ElectricTerminal slt1 = ElectricTerminal::Create(switchl);
sit1.position() = " (20,100)";

ElectricTerminal slt2 = ElectricTerminal::Create(switchl);
slt2.position() =" (220,100)";

Switch switch2 = Switch:: Create(doubleBulbLamp, Lamp::meta_FunctionSwitch);

switch2.position() =" (300,250)" ;

switch2.name() =" SW2";

ElectricTerminal s2t1 = ElectricTerminal::Create(switch2);
s2t1.position() =" (20,100)";

ElectricTerminal s2t2 = ElectricTerminal:: Create(switch2);
s2t2.position() =" (220,100)";

/I Create bulbs with terminals

/I wire up the lamp

Bulb bulbl = Bulb::Create(doubleBulbLamp);
bulbl.name() =" Bulb1";

bulbl.position() =" (100,150)" ;

ElectricTerminal b1t1 = ElectricTerminal::Create(bulbl);
bitl.position() =" (220,100)";

ElectricTerminal b1t2 = ElectricTerminal::Create(bulbl);
b1t2.position() =" (220,200)" ;

Bulb bulb2 = Bulb::Create(doubleBulbL amp);
bulb2.name() =" Bulb2";

bulb2.position() =" (100,150)" ;

ElectricTerminal b2t1 = ElectricTerminal::Create(bulb2);
bitl.position() =" (220,100)";

ElectricTerminal b2t2 = ElectricTerminal:: Create(bulb2);
b1t2.position() =" (220,200)" ;

/lcreate wiresin the lamp

/lconnect them

Wirewl = Wire::Create(doubleBulbL amp);
Wirew2 = Wire::Create(doubleBulbL amp);
Wirew3 = Wire::Create(doubleBulbL amp);
Wirew4 = Wire::Create(doubleBulbL amp);
Wirew5 = Wire::Create(doubleBulbL amp);
Wirew6 = Wire::Create(doubleBulbL amp);
Wirew?7 = Wire::Create(doubleBulbL amp);

/Nive onnections

//#1: connect plug 1 to main switch input
w1.End1l_end() = plt1;

w1.End2_end() = mst1;

11#2, #3: connect main switch output to swl, sw2 inputs
w2.End1_end() = mst2;
w2.End2_end() = slt1;

w3.End1_end() = mst2;
w3.End2_end() = s2t1;

11#4: connect sw1 output to bulb 1
w4.End1_end() = slt2;
w4.End2_end() = b1tl;

1#5: connect sw2 output to bulb 2
w5.End1_end() = s2t2;
w5.End2_end() = b2t1;

/lground connections:

11#6, #7 connect plug 2 to bulbs
w6.End1_end() = plt2;
w6.End2_end() = b1t2;

w7.End1_end() = plt2;
w7.End2_end() = b2t2;

/l assign valuesto a few attrs

w1.Amps() = 3.5;
w2.Amps() = 4;
w3.Amps() =5;
w4.Amps() = 11;
w5.Amps() = 12;
w6.Amps() = 13;
w7.Amps() = 15.0;

bulbl.Wattage() = 55;
bulb2.Wattage() = 155;
doubleBulbL amp.M odelName() =" Super DoubleLight 155" ;

s1t1.Type() = string(" Copper");
s1t2.Type() = string(" Aluminium");

Ilcreating control links

ControlLink cl1 = ControlLink::Create(doubleBulbL amp);
cll.src_end() = bulbl;

cll.dst_end() = switchl;

cll.name() =" Bulb 1 switcher";

ControlLink cl2 = ControlLink::Create(doubleBulbL amp);
cl2.src_end() = bulb2;

cl2.dst_end() = switch2;

cl2.name() =" Bulb 2 switcher";

set<ControlLink> |ks = doubleBulbLamp.ControlLink_kind_children();

for(set<ControlLink>::iterator 11 = Iksbegin(); I1!= Iks.end(); 11++) {

cout << " Control: " << string(I1->name()) <<" *;

cout << " Bulb: " << string(Bulb(I1->src_end()).name()) <<" ";

cout << " Switch: " << string(Switch(I1->dst_end()).name()) << endl << endl;
}

1/ test how ObjectByID works

Udm::Object oo = nw.ObjectByld(bulbl.uniquel d());
Bulb uu = Bulb::Cast(00);

cout << long(uu.Wattage()) << endl;

}

nw.CloseWithUpdate();

catch(const udm_exception & €)

cout << " Exception:
return(-1);

<< ewhat() << endl;

try { /I reload the data to seeif it isvalid
Udm::SmartDataNetwork nw(diagram);
nw.OpenExisting(argv[1],"", Udm::CHANGES _LOST_DEFAULT);

RootFolder doubleBulbLamp = RootFolder:: Cast(nw.GetRootObject());

}
nw.CloseNoUpdate();
cout << " Basically, all isOK" <<endl ;

catch(const udm_exception & €)
cout <<" Exception:
return(-1);

{
<< ewhat() <<endl;

}
return 0,

References:

1.GME 2000 User’s Manual (Version 2.0, December 2001 or later version) ISIS,
Vanderbilt University

2.The MGA Library (September 2000 or later version) Arpad Bakay / 1SIS,
Vanderbilt University

3.Advanced C++ Programming Styles and Idioms. COPLIEN, J. O. Addison-
Wesley, Reading, Mass., 1992.

