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Abstract— Paving the first mile of Quality-of-Service (QoS)
support has become essential for full deployment and utilization
of QoS proposals in the Internet. Most of existing efforts have
been made to provide network services and control without
paying much attention to how applications can use these services.
In this paper we design and implement a two-tier architecture,
called QoS Gateway (QoSGW), that acts as an interface between
application QoS requirements and network-provided QoS ca-
pabilities. The QoSGW is to support small embedded network
devices that rely on network-provided QoS. Our architecture,
in its full version, is composed of two key components: (i) an
agent that resides on the end-host and provides an adequate
interface for QoS-dependent applications, and (ii) a QoS manager
that provides an interface to network services for the agents.
Using these two components enhances generality and scalability
in providing QoS support for Internet applications and end-
devices. The QoSGW is intended to promote QoS deployment
and facilitate construction of QoS-aware access networks.

I. INTRODUCTION

The past few years have witnessed the convergence of
digital technologies such as television, telephony, publishing,
and computers. This convergence has yielded the emergence
of many QoS-dependent applications on the Internet [1], that
require certain service quality from the underlying network
such as throughput guarantee, reliability, timeliness, and guar-
anteed delivery. For example, a wide variety of home devices
and computing facilities, such as personal desktop computers,
voice over IP (VoIP) phones, home telemetry and automation
devices, home entertainment (mostly multimedia), shared data
storage devices, as well as others, are getting connected
via a Home Area Network (HAN) in what is called “smart
homes.” A HAN, as well as other examples of customer
networks, are usually connected to the external network via
cable modems, digital subscriber line (xDSL), ISDN, optical
fiber, IEEE 802.11 wireless, as well as other standards. Due
to the wide range and the dynamic operation of applications
running on these devices, they require different network re-
sources, and these requirements vary from local (within a
HAN or customer network) to global (end-to-end) resources.
Additionally, different physical media connecting the customer
network to the external network affect the overall performance
of such applications. Maintaining a satisfactory QoS level
for applications in such varying network connectivity and

complex application interactions poses a significant challenge
that requires intelligent resource allocation and admission
control as well as adequate QoS support to handle diverse link
media and dynamic link quality associated with each medium.

On the other hand, with the introduction of new and
different multi-service network technologies to the Internet,
it becomes a tedious job to upgrade every application in order
to accommodate the new technology. Moreover, managing
service contracts with different network service providers as
well as resource usage accounting, increase complexity in
customer network management and end-host devices. There-
fore, an abstraction layer is needed to provide an interface
between the QoS-enabled network and QoS-dependent ap-
plications. This abstraction layer hides all the complexity of
Service Level Agreement (SLA) management, QoS mapping,
admission control, and even data plane traffic handling such
as packet marking and policing.

Previous approaches depend on either putting all of these
functionalities in the end-host operating system (such as IBM
AIX [2] and Windows 2000 [3]) or deploying hardware
devices, called QoS appliances [4–6]. The former approach
does not address the QoS needs of other architectures, like
small-memory devices and embedded systems, and also cre-
ates heavy dependency on the end-host operating systems.
This has the disadvantage of relying on the QoS support
“canned” in the underlying operating system, hence yielding
inflexible solutions and limiting deployability. On the other
hand, the latter approach provides only bandwidth manage-
ment for different applications traffic. However, it does not
provide enough flexibility to export network services up to the
application level. Usually, some kind of mapping or translation
is required between the application QoS requirements and
available network services. The intelligence found in current
QoS appliances is not sufficient enough to provide such QoS
mapping.

To address the above challenges and, at the same time,
to provide QoS accessibility and support to QoS-dependent
applications (or QoS applications for short) and devices, we
present a two-tier architecture, called QoS Gateway (QoSGW),
that acts as a QoS mediator between these applications/devices
and the underlying network QoS infrastructure. The QoSGW



also acts as an abstraction layer that hides the complexity of
the QoS-enabled network from QoS devices and applications.
This has the advantages of shielding the device or the end-host
application from the details of the underlying QoS infrastruc-
ture and facilitating both management and deployment. Our
architecture provides a middleware QoS support for applica-
tions, which does not depend on the end-host operating system
and does not assume QoS-aware applications.1 It also provides
a transparent support for current QoS applications without the
need to modify their source code or operation. We employ
the Differentiated Services (DiffServ) [7] network architecture
as the underlying QoS infrastructure, but the approach is
general enough to be used with other QoS infrastructures. We
implemented a prototype system using the Linux operating
system to prove the functionality and evaluate the performance
of our proposed approach.

This paper is organized as follows. In Section II we present
the basic design and operation of the QoSGW architecture
and discuss the design considerations. Section III details the
components of the architecture. We evaluate the architecture
prototype in Section IV, and we contrast our approach with
others in Section V. Finally, the paper concludes with Sec-
tion VI.

II. BASIC ARCHITECTURE AND OPERATION

The QoSGW architecture is composed of two components:
an agent that resides on each end-host, called QoS Agent, and
a manager working for each group of agents, called QoS Man-
ager. Depending on the size and capability of the supported
device or host, the QoS Agent is to be installed2 to manage
applications traffic. The QoS Agent provides a transparent QoS
support for end-host applications by intercepting their network
connections and directing QoS requests to the QoS Manager
so that it can assign suitable service classes for applications
traffic. The host agent also provides Application Programming
Interfaces (APIs) to register applications for QoS support.
These APIs basically add a QoS profile for each application
to be run on the host in the host database, which defines
all supported applications on that host. The QoS profiles are
used to map application QoS requirements into their equivalent
network-level QoS representations that are later used by the
QoS Manager in assigning service classes. This two-level QoS
mapping done to the application requirements allows more
flexibility and degrees of freedom in meeting application QoS
requirements through available network services. The host
agent keeps track of running QoS applications on the host
as well as their QoS profiles.

QoS Managers, on the other hand, process QoS requests
sent by QoS Agents and allocate network resources and suit-
able service classes to applications traffic. The managers keep
track of the SLA with the network service provider and apply
appropriate policies and admission control to applications

1QoS-aware applications are the ones that use QoS APIs to convey their
QoS requirements.

2Small embedded devices will not be able to accommodate a QoS Agent.

traffic accordingly. They keep two types of SLAs: applica-
tion SLA (appSLA), and network SLA (netSLA). Application
SLA carries per-flow specific parameters. Each appSLA has a
mapping to one netSLA, which, in turn, defines the associated
network service class. Network SLAs are negotiated with the
network service provider (ISP), but the negotiation process
is outside of the scope of this paper. Applications traffic is
mapped to network service classes through packet marking.

Once the QoS Manager has been instructed to support a
particular application traffic, it starts the admission control
process that checks resource availability as well as policy
rules. It also verifies the feasibility of meeting the e2e QoS
requirements for the requested flow through the specified
service class. This process can be summarized as follows: the
manager compares the requested QoS against the available
service classes defined in the list of netSLAs. If a class
matches, then the capacity of that class is examined to see
whether there is enough bandwidth to accommodate the new
request. If there is enough capacity, then the manager starts
an e2e QoS verification procedure that involves a signaling
protocol like RSVP [8]. The result of this e2e verification
procedure determines if the request can be admitted or not. If
the request is admitted, the manager installs a new appSLA,
which defines QoS parameters for that request, and starts
installing traffic classifiers and traffic markers for the traffic
flows.

Finally, a reply is sent back to the host’s QoS Agent
identifying the result of the admission and the QoS mapping
process. Then, the application can either start sending traffic
under the specified network service class or choose to modify
its QoS requirements if the original specifications could not
be met by the network. In the absence of QoS Agent, as in the
case of small and embedded devices, direct device/application
support is provided in the manager to replace the functionality
of the agent. Figure 1 shows a general architecture of using
QoS Agents and QoS Managers to establish services for ap-
plications running on hosts as well as on small and embedded
devices.

A. Design Considerations

One important feature of our approach is that it is software-
based architecture, which can be easily reconfigured and
upgraded whenever there is any change in the working envi-
ronment or the network support. This way, it acts as a virtual
QoS stub that hides significant changes in the external network
from the local network, hosts, and applications. Listed below
are some of the design considerations and unique features of
the QoS Manager/Agent approach:

• Isolation: The QoSGW provides an abstraction level that
hides the complexity of the underlying network QoS
infrastructure. It provides a uniform interface for appli-
cations to external networks such as IntServ, DiffServ, or
even IEEE 802 network QoS (Figure 2 illustrates this).

• Closeness and transparency to applications: The use
of an agent that resides on the host and interacts closely
with QoS applications has the virtue of capturing the
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application requirements accurately. At the same time it
provides a transparent QoS support (through a middle-
ware) without the need to modify the applications’ source
code or the underlying end-host operating system.

• Flexibility: By contrast, the use of stand-alone QoS
managers provides support to small and embedded QoS-
dependent devices that cannot accommodate host agents
such as PDAs, IP phones, and others. Also the ability
to support different underlying networks is an important
consideration in the architecture design.

• Easy administration: Administration of a few QoSGWs
in a customer network is relatively easier than managing
every host and device in the network. This includes
policy, resource, or SLA updates. Moreover, controlling
the network policy from a trusted device, QoS Manager,
is securer than distributing the policy among various
trusted and untrusted devices and applications.

• Easy upgrade: Separating functionality inside the
QoSGW is very important to facilitate the upgrade and
update of the architecture components in order to support
future and new network QoS frameworks. Both entities
of the QoSGW follow a modular design that allows
replacement, addition, or even removal of some of the
functionality and protocols involved in the operation.

III. QOSGW DESIGN AND FUNCTIONS

We first detail the design of QoS Agent, specifying the
main building blocks, functions, and their interactions, and
then present the detailed design of QoS Manager.

A. QoS Agent

The main functions of a QoS Agent is to capture appli-
cations’ QoS requirements and other traffic characteristics,
perform initial QoS mapping, and then communicate the
application requirements to the QoS Manager. The QoS Agent
is designed as a middleware that resides on the end-host
and enables applications running on this host to access QoS

in the network. Using a middleware design eliminates the
need for modifications of the host operating system. The
QoS Agent’s functionality is divided into two parts, a QoS
module (QoSmod), which works in the operating system’s
kernel space,3 and a user-space daemon, which is called QoS
daemon (QoSd). The daemon and the module communicate
via a special channel or a device driver.

The QoSmod intercepts applications’ network connections
and contacts the daemon to perform QoS mapping, and
admission control with the QoS Manager. The application has
to be registered with the host agent in order to intercept its
network connections. Specific APIs are used to register new
applications’ QoS profiles in the host database. Before storing
the profile in the database, the agent maps the application’s
QoS requirements to an intermediate form that is composed of
bandwidth, delay, jitter, and loss. These parameters are called
“network-level QoS.” This is the first level of QoS mapping
done to the application requirements. Figure 3 shows the main
building blocks of the QoS Agent as well as their interactions,
and in what follows, we give details of the functionality of
each building block.

1) Socket-Call Capturing Module: QoSmod provides a
transparent interface to registered QoS applications through
intercepting their socket system calls. For each intercepted
socket call, the module notifies the user-space daemon, QoSd,
and delivers important information about the call to the dae-
mon. This information includes the type of the call, the calling
application name, the process identifier, network addresses,
ports, and protocol type. This information is used by QoSd
to locate the QoS profile of the application in the database
and performs QoS mapping. The network addresses and ports
as well as protocol type are sent within the QoS request to
the QoS Manager to be used in traffic classifiers built for
this application traffic on the manager. The QoSmod blocks
the application (similar to waiting for a device) until a reply

3A kernel module in our Linux implementation.
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comes back from the daemon [9]. Once a reply is received
from the daemon, the module decides whether to continue the
connection normally (if the application’s QoS can be met) or
to drop the connection (if the application’s QoS is rejected).
Then, the module unblocks the application with either normal
or error code. Figure 4 shows how QoSmod processes a system
call from a QoS application.

In our Linux-based prototype, the module communicates
with the user-space daemon through a special character device
file called /dev/diff0. The module, when loaded, attaches
itself to this device file, and provides read, write, poll, as well
as other necessary functions to serve the file in the kernel
space [9, 10]. The module also creates two message queues,
a “send” queue (sndq) and a “receive” queue (recvq),
for sending and receiving messages to and from the QoSd,
respectively.

The daemon, on the other side, listens to the device file
waiting for any message sent from the kernel module. Mes-
sages sent to the daemon are either reporting a socket call,
informing the daemon of a process state change, or replying
to a request from the daemon. A message reporting a socket
call carries the user and the process identifiers of the calling
process. It also carries the necessary information about the
socket call like the protocol family (e.g., AF INET), the type
of the call (e.g., accept, connect, send), the protocol (e.g., TCP,
UDP), and the sockaddr structure that have the addresses
and port numbers of the two ends of the socket call. A message
reporting a process state change contains the process identifier,
and the current status of the process. Finally, a reply message
to a daemon request contains the result of executing such a
request.

Messages received from the daemon contain a message type,
process identifier, size, and a command from the application
manager. There are two types of commands, either terminating
a certain process (or application) or replying to a socket call
message from the kernel module. Upon receiving a terminate
command or a terminate reply, the kernel module terminates
the process immediately. Figure 5 illustrates the kernel inter-
face in both the daemon and the kernel module and shows
how they work together.
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2) Application Interface and Management: The QoSd pro-
vides a simple API, called RequestQoS(), to specify ap-
plication’s QoS requirements to QoS Agent and hence to the
QoS Manager. The API supports three functions, addQoS,
modQoS, and delQoS. The first function, addQoS, is used
to create a new QoS profile for an application’s traffic and store
it in the host’s QoS database. The profile contains information
about the name of the application, its type, number of flows
generated by the application, traffic profiles of the flows,
required QoS for each flow, user authentication information,
and a unique identifier. Application’s QoS requirements are
mapped first to their equivalent network-level QoS before
being stored in the host database. We refer to this procedure as
“application registration.” Figure 6 illustrates the main steps
for registering an application with QoS Agent, where the QoS
Manager is contacted only to find a matching network service
class. However, the manager does not install traffic controls
until the application starts sending traffic as will be shown
later. After successful creation of the application’s QoS profile,
it can be modified or deleted altogether using modQoS and
delQoS functions, respectively. The API functions can be
used by QoS-aware applications or a manual configuration
interface for other legacy QoS applications.

The Application Manager keeps track of registered QoS
applications running on the host. When an application starts,



QoSmod intercepts the application’s socket call and notifies
the Application Manager while blocking the application. If
the application is registered in the QoS database, then the
corresponding QoS profile is fetched and a QoS request is
built to be sent to the QoS Manager. The QoS Manager
is contacted to perform admission control, network service
class selection, appSLA installation, and traffic control. When
the QoS Manager replies back to the agent, the Application
Manager adds this application to the active list and unblocks
the application to continue normal socket call processing. This
procedure is called “application invocation.” If the application
is not registered, a normal socket call will continue without
contacting the QoS Manager. When an active application
terminates,4 the Application Manager notifies QoS Manager to
delete the associated appSLA and free the resources allocated
to the application’s flows. Figure 7 illustrates the application
invocation procedure.

3) QoS Mapping: QoS applications may have their own
definitions for QoS and one of the main functions of QoS
Agent is to translate these various definitions to a common
QoS form to be sent to the QoS Manager and hence map it to a
specific network service class. The QoS mapping module takes
care of implementing different mapping algorithms for this
translation process. The module also keeps track of the QoS
database stored on the host, which records all QoS applications
that can run on this host. Records in this database carry
a common form for applications QoS which is referred to
as the “canonical” QoS. This canonical form specifies QoS
requirements for bandwidth, delay, jitter and loss. Specifically,
it consists of a committed information rate (CIR), a peak
rate (PIR), mean delay, maximum delay, jitter, and loss. We
believe that any application’s QoS can be mapped to this
finite set of parameters using the appropriate algorithms.
The QoS database carries also information about the traffic
characteristics of these applications as well as information
about their users. The latter information enables the agent to
treat the same application differently depending on the user.
We use the term “QoS profile” to describe an entry in the
QoS database. A typical application’s QoS profile consists of
the application name (as a unique identifier), user and group
identifiers,5 flow identifiers (addresses and port of the traffic),
protocol, traffic profile, and canonical QoS object.

In this paper we only give an example of this mapping
process; the full set of mapping algorithms is out of the
scope of this paper. Consider a video transmission application
that wishes to transmit frames at a rate of 30 frames/sec.
Each frame can be sent at two different resolutions, a high
resolution of 1280×1024 and a low resolution of 1024×768,
and the application can tolerate the loss of 10% of frames
every 30 consecutive frames.6 At the other end, frames have
to be played back at a specific speed and according to a
play-out timer. If a frame is late by 1/2 of a frame time,

4QoSmod notifies the daemon with application closing connection.
5We assume a UNIX-based or other multi-user system.
6This depends on the codecs used to send frames.

it is considered as lost, and is not played back. Consider
also that the video received is used to activate a control
action based on its content, and this control action has to
be taken within 100 msec.7 The algorithm for this type
of applications is straightforward. The CIR is the rate (in
bits/sec) for transmitting lower resolution frames, and the PIR
is the rate for transmitting higher resolution frames. The delay
would be equal to the control delay (100 msec). The e2e jitter
equals 1/2 × frame size/rate and the loss rate would be a
(1/10× frame size)/(30× frame time) in bits/sec, where
frame time is the frame size divided by the rate. This
shows an example of how to extract the canonical QoS form
from the application’s QoS specifications. However, the job is
not always easy like this example, and it can be a very complex
operation and may also involve the user’s perspective, which
is still an open issue.

QoS requests sent from the QoS Agent to the QoS Man-
ager contains a canonical QoS object specifying the required
application’s QoS after being mapped, and a traffic profile
description of the application traffic flows. The traffic profile
follows the Dual Leaky Bucket (DLB) traffic model and
includes the average rate, peak rate, burst size, average packet
size, and maximum packet size of the flow. In addition to the
QoS and the traffic profile, the agent sends traffic identifiers
to the manager to be used in the traffic classifiers installed on
the manager.

B. QoS Manager

The QoS Manager acts as a QoS server for the set of
agents in the local customer network, and provides an interface
for applications to access various network QoS facilities and
service classes. As shown earlier in Figure 1, the QoS Manager
serves two types of end-hosts: hosts running QoS Agents as
well as hosts and devices that do not have QoS support, e.g.,
small embedded devices. In the latter case, the QoS Manager
performs all the QoS Agent’s functions.

For flexibility and upgradability, the QoS Manager is
composed of two planes, a control plane (called Gateway)
and a data plane (called Diff Agent). The Gateway handles
high-level QoS control functions such as SLA management,
QoS mapping, admission control, and network QoS signaling.
These functions are independent of the underlying network
environment and can work with various QoS network infras-
tructures. The Diff Agent, which handles traffic marking, traffic
classification, and traffic control, is network-specific and tai-
lored to match the supported QoS network infrastructure such
as DiffServ or MPLS. These two components communicate
with each other using standard socket APIs. Therefore, these
components can be located on different machines for fault-
tolerance and scalability.

Our current architecture uses the DiffServ framework as
the underlying QoS network infrastructure, and hence, the
Diff Agent is DiffServ-specific. Figure 8 illustrates the main

7Video sensors are examples of such a situation.
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building blocks of the QoS Manager as well as their interac-
tions, and the following subsections will give details of the
functionality of each building block.

1) SLA Management: The QoS Manager acts as an in-
terface between the offered network service classes and the
application’s QoS requirements, and manages SLA with the
network service provider. It maps application requirements to
appropriate network service classes in the SLA. As mentioned
in Section II, the QoS Manager keeps track of two types of
SLAs, network SLA (netSLA) for each network service class,
and per-flow SLA (appSLA) for each active QoS application
as illustrated in Figure 9. This is the second level of QoS
mapping, which maps appSLAs to netSLAs and is illustrated
in Figure 10.

Each netSLA entry consists of a unique identifier, a DiffServ
service class, a list of DSCPs (each with 8 bits) associated with
this service class, allocated bandwidth, available bandwidth,
and a bandwidth sharing indicator (for bandwidth borrowing
from other classes). Entries for netSLAs are stored in a
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database “SLA DB” as shown in Figure 8. On the other hand,
each application flow is associated with an appSLA entry.
Each entry consists of a unique identifier, a flow identifier
(containing source, destination, ports, and protocol type), a
traffic profile of the flow, application’s QoS in the canonical
form, and a pointer to the containing netSLA. As application
flows are admitted, appSLAs are created for each flow and
mapped to suitable netSLAs. Available bandwidths in netSLAs
are adjusted according to subscribing applications.
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2) QoS Mapping and Admission Control: Typically, net-
work service providers specify services classes in their SLAs
in terms of capacity (amount of bandwidth available), latency
(delay), delay variation (jitter), supported packet or frame
sizes, availability (percentage of time available), reliability
(sometimes referred to as loss rate), and schedule of oper-
ations. The QoS Manager maps the QoS of the application
(appSLA) to one of the available services in the SLA (netSLA)
by matching the values of its canonical QoS parameters to the
service specifications. A simple example is the mapping of an
application’s QoS to one of the available service classes in
a DiffServ-based network. For an appSLA that requires delay
and jitter guarantees, it is assigned to a suitable Expedited
Forwarding or EF-based service [11]. For an appSLA that has
requirements on bandwidth and loss, it is assigned to a suitable
Assured Forwarding or AF-based service [12]. By “suitable”
we mean matching the values of individual QoS parameters
with the values of the service specifications. In most cases, this
mapping process is simpler than the first level of application’s
QoS mapping done by the host agent, and mapping algorithms
for other types of networks can be found in [1, 13]. For small
embedded devices, QoS mapping is done solely in the QoS
Manager by manual programming. It simply involves creation
of an appSLA for the device traffic that specifies the required
QoS and the traffic-generation behavior. Then, QoS mapping
and admission control are invoked to assign the device traffic
to a network service class with matching e2e QoS. Mapping
algorithms for different devices will be covered in a future
paper.

The manager admits the appSLA if there is enough available
bandwidth in the corresponding netSLA. The manager also
starts an e2e admission control process, called “e2e QoS
verification” using a well-known signaling protocol, such as
RSVP [8, 14]. The manager invokes the RSVP admission test
by communicating with a co-located RSVP daemon using
RAPI [15]. We assume that RSVP processing along an e2e
path is similar to that in [13, 16]. It is important to note that
the use of RSVP in our architecture is for admission control
only and not for resource reservation. Figure 11 illustrates the
process of e2e QoS verification.

3) Traffic Control and Marking: After admitting a flow, the
manager installs traffic classifiers and traffic policers based on
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the flow identifier and traffic profile in the flow’s appSLA,
respectively. Packet markers, such as those in [17, 18], are
installed for the traffic flows using the DSCP assigned to the
flow from the corresponding netSLA.8 When the flow termi-
nates, the manager deletes the corresponding traffic controls
and markers and frees their resources.

4) Flexibility in QoS Manager Design: One of the QoSGW
design considerations is flexibility to work with different un-
derlying network frameworks. Figure 12 shows this flexibility
in separating the control plane from the data plane in the
QoS Manager. We can use multiple different data planes
(e.g., DiffServ-specific, IntServ-specific, IEEE 802) that work
with different underlying networks. However, the control plane
remains unchanged. Moreover, the e2e signaling module in the
QoS Manager can be replaced by a compatible module that
uses network-specific signaling protocols (e.g., RSVP, Subnet
Bandwidth Manager or SBM). If the manager is connected to
multiple networks at the same time, then it can switch between
different data planes.

IV. EVALUATION

To demonstrate the effectiveness of the QoSGW in provid-
ing QoS for applications, we conducted several experiments
using the prototype we built. We use a simple network testbed
shown in Figure 13. Linux-based PCs are used in the testbed,
where all PCs are 600 MHz Pentium III with 256 MB RAM
and running Linux kernel 2.4.2 with QoS and traffic control
enabled. The links between all PCs are 100Mbps Ethernet
point-to-point. Host 1 is running an application, which sends
traffic to Host 2 passing through QoS Manager, Router 1, and
Router 2. Both Routers 1 and 2 are DiffServ-enabled routers
implementing a simple Expedited Forwarding (EF) PHB based
on priority scheduling. Host 1 is running QoS Agent that

8Assuming the DiffServ network architecture.
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Fig. 15. TCP throughput – QoSGW activated

has the application’s profile in the QoS database. When the
QoS Manager is active, the application’s traffic is to be
mapped to an EF-based service defined in the manager’s SLA
database; otherwise, the application’s traffic will be treated
as best-effort. In addition to Host 1, both Hosts 3 and 4 are
sending best-effort traffic (as background) to Host 2 that enter
through Routers 1 and 2, respectively, sharing the path and link
bandwidth with the application’s traffic. We use ON/OFF UDP
background traffic with 20 sec ON and 20 sec OFF periods,
and each experiment is executed for a duration of 50 sec.

A. Protection of Important Application Traffic

In the first set of experiments, the application starts sending
TCP traffic, and we compare the two cases of activating and
deactivating the QoSGW. Figure 14 shows the performance of
the application’s traffic in terms of achieved throughput when
the gateway is deactivated. As one can see, the application’s
traffic is not protected, and hence, suffers severely from the
background traffic during the ON period. The loss here is
100%. In Figure 15, the gateway is activated and marks the
application’s traffic as EF traffic, and hence it does not suffer
from any loss.9

9We can see small glitches at times 20 and 45 sec when the ON/OFF traffic
changes mode, but this is negligible.
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In the second set of experiments, the application sends real-
time UDP traffic at a constant rate of 30 Mbps. In Figure 16,
we plot the throughput of the application’s traffic and the
background traffic when the gateway is deactivated. It is clear
that the application could not achieve more than 13 Mbps
during the ON period of the background traffic as no protection
is available. In Figure 17, we activate the gateway and as a
result, the application can achieve the full 30 Mbps target rate
without being affected by the background traffic. Not only
throughput but also jitter and loss are affected. In Figure 18,
we compare the jitter with and without the gateway. Without
the gateway, and during the ON period of the background
traffic, the application’s jitter is between 0.5 and 0.6 msec,
while during the OFF period it is between 0.2 and 0.45
msec. This unpredictability in jitter is undesirable in real-time
applications. When the gateway is activated, the application’s
jitter is almost constant at one level and unaffected by the
background traffic. The application’s loss is plotted in Fig-
ure 19 in the two cases. The application suffers no loss when
the gateway is activated, in accordance with Figure 17.

B. Overhead

We now consider the overhead in the gateway operation in
supporting application’s traffic. The first overhead is associated
with application registration using the RequestQoS() API.
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This is usually done once for each application running on
the host and can be performed as part of the application
installation. Thus, no major overhead in this step. Second, at
application startup time, the QoS Agent intercepts the appli-
cation’s connection and contacts the QoS Manager for QoS
processing. This process involves a message from the kernel
module to the daemon, followed by QoS profile lookup, then a
network message from the agent to the manager, followed by
a sequence of function calls to SLA and admission control.
Without accounting for the e2e RSVP QoS verification, the
manager replies back to the agent with an admission result
message and installs the required traffic controls (this involves
messages between the Gateway and the Diff Agent), then the
agent unblocks the application and traffic starts transmission.
Although this involves a number of messages to process the
QoS request, only two of them are significant: the network
messages between the agent and the manager.10

We measured the overhead caused by all these operations
which was about 0.22 sec. Although the prototype is not
optimized for performance, we find the setup time is not a
major overhead, especially when it is executed only once at
the application startup. Measuring the performance of RSVP
signaling is outside the scope of this paper. The only overhead

10Assuming both components of the manager are on the same machine.

left to account for is the overhead of marking the application’s
traffic on the egress interface of the manager. This process is
done inside the Linux kernel’s traffic control [19] code and it
adds only a call to ipv4 get dsfield() function which
changes the DS-field in the IP headers of each packet. This
adds an insignificant overhead in the packets’ path. Overall,
the overhead of the QoSGW is insignificant compared to its
added value.

V. RELATED WORK

A similar architecture to the QoSGW was presented in [20],
which is called the QoS Broker. The QoS Broker orches-
trates resources at the end-points and coordinates resource
management across layer boundaries. Their architecture is
tailored to ATM and manages application, network, and system
QoS parameters. The QoS Broker architecture shares some
common features with the QoSGW, such as hiding network
configuration and operational details from applications and
higher layers, and the use of a module-structured design, but
the main difference is the use of two-tier architecture in the
QoSGW. This has the advantages of easy upgrade, support for
heterogeneity, resource aggregation, and security.

Two examples of QoS-enabled Residential Gateway (RG)
are presented in [21, 22]. The first system mainly controls
bandwidth allocation for different devices in a HAN. The
authors classified home-generated traffic into seven categories
based on bandwidth requirements. The second system works
on layer 2 (MAC) and layer 3 (network), and is compliant
with existing standards such as IEEE LAN Subnet Bandwidth
Manager (SBM), and RSVP. The QoSGW architecture pro-
vides a more general architecture in terms of functionality and
deployment environment.

Providing QoS APIs through the socket layer has been
presented in [23] and called QoSockets. The authors introduce
an extension to the UNIX socket interface that support e2e
application QoS management. Although they share a similar
goal with our architecture, the main disadvantage of their ap-
proach is the lack of transparent support. For the applications
to take advantage of the new socket calls, they have to be
reprogrammed to use the QoS APIs. Our architecture provides
a transparent support for both types of applications, those that
are not using the APIs and those that use the APIs.

In [24], a QoS Library Redirection (QLR) approach was
presented on Microsoft Windows systems. The authors use
a similar idea of intercepting socket calls from the Import
Address Table (IAT) on Windows, and redirect the calls to
add packet marking to the traffic before starting. However, this
work is considered a subset of our architecture as no considera-
tion for QoS mapping, SLA management, or admission control
were presented in QLR. The QoSGW architecture provides a
complete integrated system, not just APIs, for providing QoS
support to applications.

VI. CONCLUSIONS

In this paper we presented a QoSGW architecture for
providing QoS support to QoS-dependent applications and



devices in customer networks. The architecture is composed
of two main components or tiers: an agent that resides on the
end-host and provides an adequate interface to QoS-dependent
applications, and a QoS manager that provides an interface to
network QoS capabilities for the agents. Our system acts as a
QoS mediator between applications/devices and the underlying
network QoS infrastructure. It also acts as an abstraction level
that hides the complexity of the QoS network from devices
and applications and provides easy management and deploy-
ment for QoS. Using the two-component approach provides
better generality and scalability. We have built a prototype on
Linux operating system implementing the main functionality
of the overall design to test the operational correctness and
to demonstrate the importance of our system in supporting
real-time applications. We are planning to study different QoS
mapping algorithms to be used within the QoSGW as this is
one of the most important functionalities of the architecture. A
system like ours will promote QoS deployment and facilitate
building QoS-aware customer networks.
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