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Abstract
Large multi-port disk arrays typically store data for multiple
applications with diverse performance requirements. Each
application has a different priority, representing the relative
importance of the application to the business. Currently,
performance differentiation and isolation for storage work-
loads is implemented by statically partitioning the disk ar-
ray resources, which results in over-provisioning and under-
utilization of resources. In this paper, we present a feedback
controller for storage workloads to provide performance dif-
ferentiation among multiple applications. Our feedback con-
troller monitors the performance of each application and
dynamically allocates the array resources so that diverse
performance requirements can be met without static par-
titioning. The controller consists of three layers, a set of
application controllers, an arbiter and a port allocator. The
application controller uses an online auto-regressive model
to determine the I/O resources required to meet an appli-
cation’s target. The arbiter employs linear programming
to arbitrate among multiple applications based on priori-
ties, in the case of an overload. The port allocator uses
each application’s demand through a particular port to de-
termine per-port scheduler settings. Our preliminary exper-
iments indicate that the controller can dynamically adjust
the per-port scheduler parameters to achieve application tar-
gets. The controller can also enforce application priorities
and can handle both throughput and latency metrics.

1. INTRODUCTION
The common mode of running applications in corporate en-
vironments is to consolidate them onto shared hardware in
large data centers. This allows benefits such as improved
utilization of the resources, higher performance, and central-
ized management. However, as more applications compete
for shared resources, the system has to be flexible enough
to enable each application to meet its performance require-
ments.

Applications running on the shared storage present very dif-
ferent storage loads and have different performance require-
ments: for example, Online Transaction Processing (OLTP)
applications might present bursty loads and require bounded
IO response time; business analytics may require high through-
put; and back-up applications usually present intense, highly
sequential workloads with high throughput requirements.
When the requirements of all applications cannot be met,
the choice of which application requirements to meet and
which ones to abandon may depend upon the priority of the
individual applications. For example, meeting the I/O re-
sponse time requirement of an interactive system may take
precedence over the throughput requirement of a backup sys-
tem. A data center operator needs the flexibility to set the
performance metrics and priority levels for the applications,
and to adjust them as necessary.

The proposed solutions to this problem in the literature in-
clude using proportional share I/O schedulers (e.g., SFQ [7])
and admission control (I/O throttling) using feedback con-
trollers (e.g., Triage [9]). Proportional share schedulers di-
vide the throughput available from the storage device be-
tween the applications in proportion to the applications’
shares (a.k.a. weights), which are set statically by an ad-
ministrator. Such schedulers alone cannot provide applica-
tion performance differentiation, for several reasons: 1) the
application performance depends on the proportional share
settings and the workload characteristics in a complex, non-
linear, time-dependent manner, and it is difficult for an ad-
ministrator to determine in advance the share to assign to
each application, and how/when to change it; 2) applications
have several kinds of performance targets, such as response
time and bandwidth requirements, not just throughput; and
3) in overload situations, when the system is unable to meet
all of the application QoS requirements, prioritization is nec-
essary to enable important applications to meet their per-
formance requirements.

In this paper, we present an approach that combines an
optimization-based feedback controller with an underlying
IO scheduler. Our controller accepts performance metrics
and targets from multiple applications, monitors the perfor-
mance of each application, and periodically adjusts the IO
resources given to the applications at the disk array to make
sure that each application meets its performance goal. The
performance metrics for the applications can be different:
the controller normalizes the application metrics so that the



Figure 1: Storage system consists of a shared
disk array with independent proportional share I/O
scheduler running at each port.

performance received by different applications can be com-
pared and traded off. Our controller continually models the
performance of each application relative to the resources it
receives, and uses this model to determine the appropri-
ate resource allocation for the application. If the resources
available are inadequate to provide all the applications with
their desired performance, a Linear Programming optimizer
is used to compute a resource allocation that will degrade
each application’s performance in inverse proportion to its
priority. Initial evaluations using this controller with a large
commercial disk array show very promising results.

2. STORAGE CONTROLLER DESIGN
In this section, we first describe our system model. We then
present our design of the storage controller and describe its
components in detail.

2.1 System model
Our system consists of a disk-array with a number of input
ports where applications submit their I/O requests. The
ports all share the same back-end resources and applications
can use any combination of ports. Each port has an inde-
pendent concurrency-limiting I/O scheduler, which controls
the sharing among the I/O requests passing through its port.
Once scheduled, an I/O request is released to the back-end
of the disk array to access a shared array cache and disk
devices. Each application using the system belongs to a ser-
vice class used to indicate the desired level of service. Each
service class has its own specified performance target (either
I/O throughput or latency) and a priority level. In order to
meet the QoS targets of the application classes, an exter-
nal feedback controller periodically polls the disk array to
determine the performance each class is receiving and then
adjusts the parameters of all the schedulers running at each
port of the disk array to meet the performance targets.

In our current system, the port IO schedulers have a single
parameter: a per-application-class concurrency bound. The
scheduler limits the number of IO requests outstanding at
the disk array back-end from each application class to its
concurrency bound. For example, if an application class has
a concurrency bound of 2, and it has two I/O requests pend-
ing at the back-end, the scheduler will not send any more
requests from that class to the back-end until at least one of
the pending requests finishes. The total concurrency of the
array (i.e., the total number of IOs permitted at the back-
end from all ports) is limited, either by the system, or by

Figure 2: Architecture of the Storage QoS con-
troller.

an administrative setting; we call this the total concurrency
bound. We show that, by using the concurrency parame-
ter, we can achieve per-application-class QoS targets across
multiple ports even though each scheduler is independent.

We assume that an administrator specifies the QoS tar-
get for each application class. The specification includes
a performance metric, a target, and a priority. The metric
could be the desired throughput (IOs/sec), the bandwidth
(bytes/sec), or the mean IO response time; other choices,
such as the 90th percentile of the response time, are also
possible. The target is the desired value of the metric spec-
ifying the desired performance. The priority provides an
indication of how the application classes should be prior-
itized if the disk array cannot meet the targets of all the
classes.

2.2 Storage QoS Controller
Our storage QoS controller consists of three layers, as shown
in the Figure 2. The first layer is a set of application con-
trollers that estimate the concurrency bound settings per
application that will allow each application to reach its per-
formance target. The second layer is an arbiter, which uses
the application priorities with the concurrency requests and
performance models generated by the application controllers
to determine their global concurrency allocations. Finally,
the port allocator determines the per-port concurrency set-
tings for each application based on its global concurrency
allocation and the recent distribution of its demands across
the ports.

Application controller: Each application has a separate
controller that computes the scheduler concurrency setting
required to achieve its target. The application controller
consists of two modules: a model estimator and a require-
ment estimator.



The model estimator module estimates a linear model for
the dynamic relationship between the concurrency allocated
to the application and its performance. Let yi(t) be the
performance received by application i in control interval t,
and ui(t) be the corresponding concurrency allocated to it.
Then we use the approximation:

yi(t) ≈ yi(t − 1) + βi(t)(ui(t) − ui(t − 1))

The value of the slope βi(t) is re-estimated in every con-
trol interval using the past several measured values of ap-
plication i’s performance. These adjustments allow an ap-
plication’s model to incorporate implicitly the effects of the
changing workload characteristics of all the applications (in-
cluding itself). This linear estimation is designed to capture
approximately the local behavior of the system, where the
changes in the workload characteristics and the concurren-
cies allocated are small. These conditions apply because we
re-estimate the model in every control interval (hence the
workload characteristics do not change very much) and we
constrain the controller to make only small changes to the
concurrency allocations in each interval. We found empir-
ically that the linear model performs reasonably well and
provides an adequate approximation of the relationship be-
tween the concurrency allocations and the performance.

The requirement estimator module uses the model to com-
pute how much concurrency the application requires to meet
its target. This estimate is sent to the arbiter as the applica-
tion’s requested allocation. However, we limit the requested
change from the previous allocation (by 5% of the total con-
currency bound in our current implementation) to ensure
that the system remains in a local operating region where
the estimated linear model still applies. Also, the data from
which the model is estimated is often noisy, and the result-
ing models can occasionally be quite inaccurate. Limiting
the change in concurrency within a control cycle also limits
the harm caused by an inaccurate model. The cost of this
limit is that convergence to a new operating point is slowed
down when application characteristics change, but we found
rate of convergence adequate in empirical tests.

Arbiter: The arbiter computes the applications’ actual
global concurrency settings based on their priorities. In each
control cycle, the arbiter receives the concurrency requests
and the models used to derive them from each of the appli-
cation controllers. There are two cases, the underload case,
where the total concurrency bound is large enough to meet
the independent requests submitted by the application con-
trollers, and the overload case, where the total concurrency
bound is smaller than the sum of the requests. In the case
of underload, the scheduler parameters are set based on the
application controllers’ requests, and any excess concurrency
available is distributed in proportion to the application pri-
orities. In the overload case, the arbiter uses a linear opti-
mization to find concurrency settings that will degrade each
application’s performance (relative to its target) in inverse
proportion to its priority, as far as possible. As in the appli-
cation controllers, we limit the deviation from the previous
allocations so that the estimated linear model is applicable.

More precisely, say that there are n applications, pi is the
priority of application i, ci its current allocation, ui the next
(future) allocation, and fi is the linear model estimating the

performance of application i in terms of ui. li is the limit on
deviation, which we set to 0.05 for all applications. The con-
currency allocations ci and ui are normalized to the range
[0, 1] by dividing the actual allocation by the total concur-
rency bound. The performance values fi(ui) are normalized
to be (performance/target) for throughput and bandwidth
metrics and (target/performance) for latency, in order to
make all normalized performance values better as they in-
crease. In order to compute the future allocations ui, the
arbiter solves the following linear program:

Find u1, . . . , un, ǫ to minimize ǫ subject to:

pi(1 − fi(ui))−pj(1 − fj(uj)) < ǫ

for 1 ≤ i 6= j ≤ n

|ui − ci| ≤ li for 1 ≤ i ≤ n

u1 + · · · + un = min(1, c1 + l1 + · · · + cn + ln).

Note that the quantity in the right-hand side of the last
constraint is a constant for the linear program, and the con-
straint is therefore still linear.

In the LP above, pi(1−fi(ui)) is the fractional tracking error
for application i, weighted by its priority. ǫ is the maximum
difference between the priority-weighted fractional tracking
errors for different applications, and the objective function
tries to minimize this maximum difference. In the limit,
ǫ = 0, and the priority-weighted fractional tracking errors
are equal; for example, in a scenario with two applications,
if application 1 has the priority 1 and a performance value
10% below its target, and application 2 has the priority 2,
then each has a priority-weighted tracking error of 0.1, and
the performance value of application 2 should be 5% below
its target.

Port allocator: The arbiter computes the aggregate con-
currency setting for each application, but this concurrency
has to be translated into per-port settings. Since applica-
tion workloads may be dynamic and non-uniform across the
ports, the port allocator uses the recently observed demand
from each application at the ports to determine how much of
the application’s concurrency should be allocated to a port.
We define an application’s demand at a port as the mean
number of IO requests outstanding from the application at
the port during the previous control interval.

More precisely, let di,j denote the the demand of application
i through port j, and CGi its aggregate concurrency as de-
termined by the arbiter. Then the corresponding per-port
normalized concurrencies are given by:

Ci,j = CGi

„

di,j
Pn

k=1
di,k

«

where n is the number of ports. The normalized concur-
rencies are multiplied by the total concurrency bound and
rounded up to determine the number of application IOs per-
mitted to be scheduled simultaneously from that port. In
addition, we set the concurrency setting to be at least one
for all applications at all ports, in order to avoid blocking
an application that begins sending IOs to a port during the
control interval.



3. EVALUATION
In this section, we present our initial results from a set
of experiments we conducted to evaluate our storage con-
troller. We designed our experiments to determine whether
our controller can adjust the low-level scheduler parameters
to achieve application targets. We also evaluated its ability
to differentiate between multiple applications based on their
priorities. Finally, we looked at the behavior of our con-
troller when applications have different target metrics, for
example a latency target and a throughput target.

We used two HP BL460c blade servers and a high-end XP-
1024 disk array for our experiments. The blade servers are
connected to separate ports of the XP-1024 disk array via
two 4 Gbit/s QLogic Fibre channel adapters. Each of the
blade servers had 8GB RAM, two 3GHz dual core Intel Xeon
processors and used the Linux kernel version 2.6.18-8.el5 as
their operating system. We allocated seven 4-disk RAID-1
logical disks for our experiments on the XP disk array.

Since the XP array did not have an appropriate port sched-
uler that can limit available concurrency to specific work-
loads, we implemented a scheduler in the Linux kernel and
ran it at each of the hosts to emulate independent port
schedulers. The scheduler module creates pseudo devices
(entries in /dev), which are then backed up by the logical
disks at the XP array. Each pseudo device implements a
different service level and we can associate different targets
for these through our controller. The scheduler module in-
tercepts the requests made to the pseudo devices and passes
them to the XP array so long as the number of outstanding
requests are less than the concurrency associated with the
service level. In addition, the scheduler module collects the
performance statistics needed by the controller. The con-
troller polls the scheduler module at each control interval
(every 2 seconds in our experiments) and gathers the statis-
tics to determine overall performance levels achieved by all
the applications classes.

We used a variety of synthetic workloads in our evalua-
tion. Our reference workload is called light, and it consists
of 16KB fixed size accesses generated by 25 independent
threads. These accesses were made to locations selected at
random. 90% of the accesses were reads and the 10% were
writes. We also generated additional workloads based on
light by varying the number of IO generating threads and
the size of the IO requests in our evaluation.

Figure 3 presents the throughput of a light workload and a
second, heavier workload with changing IO size, referred to
as change. Initially, the change workload has 100 threads
generating 16KB IOs. Midway through the experiment, the
change workload starts sending small 4KB IOs instead. The
targets for light and change are 20MB/s and 25MB/s re-
spectively, and their priorities are equal. As the figure shows,
both workloads initially meet their targets. However, when
the request size of change drops, the it is unable to meet its
target. Since the priorities of the two workloads are equal,
the controller moves resources from light to change, so that
the performance of both drops proportionately, which is the
specified behavior. This is most clearly seen in Figure 3(b),
which shows the throughputs of the two workloads normal-
ized (divided) by their target values. The curves for the two
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Figure 3: Performance of a changing workload with
throughput targets. The control interval is 2 sec-
onds.

workloads are superposed, as we expect for equal priorities,
and the performance of each workload goes from 100% of
the target value to around 45% of the target value in the
second half of the experiment.

In the second experiment, we used two workloads with dif-
ferent target metrics: the light workload with a through-
put target of 25 MB/s and a different variant of the change

workload with a latency target of 10ms. In this experiment,
the change workload varies the number of IO generations
threads in three phases; it uses 100 threads in the first phase,
25 threads in the second phase, and 5 threads in the third
phase. Figure 4 presents the normalized performance of
both of these workloads. In the first phase of the experi-
ment, neither of the two workloads are able to meet their
targets due to high intensity (100 threads) of the change

workload. In the second phase, change reduces its intensity
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Figure 4: Workloads with different target metrics.
The light workload has a throughput target of 20
MB/sec and the heavy workload has a latency target
of 10ms.

to 25 threads and as a result, both workloads are able to
meet their respective targets: light achieves a throughput
of about 25 MB/s and change experiences a reduction in its
latency to about 10ms. Finally, in the last phase of the work-
load change reduces its intensity by using only five threads,
and as a result, the light workload is able to further boost
its throughput to about 38 MB/s without hurting the la-
tency goals of the change workload. Note that, the change

workload can not reduce its latency further as its requests
are no longer queued (but instead dispatched directly); as a
result the storage controller allocates the excess concurrency
not used by the change workload to the light workload.

In the last experiment, we used two workloads light and
heavy; the latter workload uses 100 threads to issue its re-
quests. In this experiment, both heavy and light workloads
start with equal priority in the first half of the experiment
until the 90th control interval. Then, we adjusted the prior-
ity of the heavy workload to be four times that of the light

workload. Figure 5 shows the effects of the priorities. It
shows that the arbiter controller throttles the light work-
load so that the heavy workload is four times closer to its
target compared to the light workload in the second phase
of the experiment.

4. RELATED WORK
Prior work on controlling storage resources include systems
that provide performance guarantees in storage systems [2,
4, 7, 12]. However, one has to tune these tools to achieve
application-level guarantees. Our work builds on top of our
earlier work, where we developed an adaptive controller [9]
to achieve performance differentiation, and efficient adaptive
proportional share scheduler [5] for storage systems.

In prior work, feedback controllers have been proposed [2,
9] to implement application prioritization requirements by
using client throttling. A centralized controller monitors
the state of the storage device and the application clients,

0

5

10

15

20

25

30

35

40

45

50

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172

Control Interval

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

light heavy Target(L) Target(H)

(a) Throughput

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171

Control Interval

N
o

rm
a

li
z
e

d
 P

e
rf

o
rm

a
n

c
e

light heavy Target

(b) Normalized Performance

Figure 5: Effects of workload priorities.

and then directs the clients to reduce or increase their IO
request rate so that the requirements of the highest prior-
ity (or most demanding) client can be met. This approach
can handle somewhat more complex prioritization require-
ments than a simple proportional share scheduler, but has
the disadvantage that, by the time the clients implement
the throttle commands, the state of the storage device may
have changed; as a result, the controller may not be work-
conserving, and the utilization of the storage device may be
kept unnecessarily low.

In recent years, control theory has been applied to computer
systems for resource management and performance control
[6, 8]. Examples of its application include web server per-
formance guarantees [1], dynamic adjustment of the cache
size for multiple request classes [11], CPU and memory uti-
lization control in web servers [3], adjustment of resource
demands of virtual machines based on resource availability
[15], and dynamic CPU allocations for multi-tier applica-



tions [10, 14]. In our prior work [13], we have developed
a MIMO controller that can adjust the resource shares for
multiple virtual machines to achieve application targets. In
contrast, this work focuses on building a control system for
a shared disk array with multiple ports. We also introduce
the notion of resource control using dynamic concurrency
bounds to provide performance differentiation across multi-
ple ports.

5. CONCLUSIONS
In this paper, we presented a storage controller that dynam-
ically allocates storage resources to multiple competing ap-
plications accessing data on a multi-port shared disk array.
The controller consists of three layers, a set of application
controllers, an arbiter and a port allocator. The application
controllers determine the required I/O resources to meet ap-
plication performance goals, and the arbiter uses application
priorities to arbitrate in the case of overload. The port allo-
cator uses each application’s demands through a particular
port to determine the per-port concurrency. Our prelimi-
nary experiments show that our controller can achieve ap-
plication targets by automatically adjusting the scheduler
parameters. The controller can also enforce different appli-
cation priorities and different targets for multiple applica-
tions.
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