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What Should Secondary Users Do Upon
Incumbents’ Return?

Caoxie Zhang and Kang G. Shin, Fellow, IEEE

Abstract—In a cognitive radio network (CRN), secondary users
(SUs) opportunistically utilize idle licensed spectrum bands. We
address the natural questions that arise when the incumbents
or primary users (PUs) return to the channel the SUs are using
opportunistically. Instead of immediately switching to another
idle channel as proposed in almost all existing approaches, the
SUs may opt to wait silently in their current channel until the
PUs depart. This option would be beneficial to the SUs if the
returned PUs stay at the channel only for a short period of time
and the SUs’ channel-switching incurs a non-negligible overhead.
We determine how long the SUs should wait in their current
channel before switching to a new idle channel.
The SUs should also occasionally sense those (called out-of-

band) channels currently not in use for sensing the availability
of spectrum opportunities. We propose an efficient, adaptive
spectrum-sensing technique to detect when a busy out-of-band
channel becomes idle. We also present a spectrum-management
architecture that integrates the SUs’ strategies and facilitates fast
discovery of spectrum opportunities.

Index Terms—Cognitive radio, channel switching, adaptive
sensing, Markov decision process.

I. INTRODUCTION

COGNITIVE radio (CR) has opened a new way to
improve the poor spectrum-utilization problem under

the current static allocation policy. It allows cognitive or
secondary users (SUs) to opportunistically utilize the legacy
or primary channels allocated to licensed or primary users
(PUs). Today’s primary channels are the UHF bands used for
TV broadcast and wireless microphone transmissions. For the
secondary devices, although FCC advocates the incorporation
of geo-location databases and eliminates the requirements
of spectrum sensing in TV bands, it still encourages the
development of spectrum sensing for opportunistic utilization
of other bands [1]. Here we are mainly interested in, but not
limited to, primary channels that are more dynamic than TV
transmissions, on which even cellular or WiMAX networks
may operate. Spectrum sensing is still under development
for secondary devices (with a single radio) and necessary
for highly dynamic bands, for example, with data-intensive
incumbent networks.
The central issue in CRNs is how SUs can make efficient

use of the licensed band while keeping their interference to
the PUs below a specified level. In this paper, we focus on
the design of spectrum access and sensing algorithms for

Manuscript received 1 January 2012; revised 12 May 2012 and 22 July
2012. The work reported in this paper was supported in part by the NSF
under Grant CNS-1160775.
The authors are with Department of Electrical Engineering and Computer

Science, The University of Michigan, Ann Arbor, MI, 48109-2121, USA (e-
mail: {caoxiezh,kgshin}@umich.edu).
Digital Object Identifier 10.1109/JSAC.2013.130308.

Fig. 1. Upon return of PUs, there are two key questions for the SUs to
answer: (Q1) Should the SUs switch or not? (Q2) If the SUs leave the current
busy channel, how to detect the PUs’ departure at low cost? The grey color
in (Q1) represents SUs’ utilization of the primary channels.

fast discovery of dynamically available spectrum resources.
In particular, we are interested in answering an important,
practical question “what should SUs do when the PU returns
to the channel that they are utilizing opportunistically?” Upon
return of the PUs, the SUs must vacate the channel within a
certain time limit to prevent harmful interference to the PUs’
communications. To enable the SUs to quickly discover avail-
able spectrum, we consider two important questions regarding
their choice of actions: (Q1) if the returned PUs finish their
session quickly, should the SUs stay silently on their current
channel or switch to another channel?, (Q2) if the SUs leave
the currently busy (due to the PUs’ return) channel, how
often should they sense this channel to efficiently discover
the PUs’ departure? Fig. 1 illustrates insights behind these
two questions and the corresponding SUs’ strategies. We now
introduce novel and efficient answers to both questions.

A. Wait or Switch

If the PUs’ active session ends quickly enough (e.g., after
transmitting a few data packets in a cellular/WiMAX network),
the SUs may opt to stay silently in the channel until the
PUs leave and regain opportunistic access to the channel. It
could be beneficial for the SUs to wait in the current (busy)
channel as the PUs may depart soon and the SUs’ switching
to another channel is time-consuming. In fact, a channel-
switch can involve searching for an idle channel and setting
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up connections among the SUs. Existing approaches have
not considered this wait-or-switch option, despite its practical
importance. In an unslotted structure of the SUs’ spectrum
sensing and access, once the SUs sense the PUs’ return, they
will immediately switch to another channel [2–4]. In a slotted
structure where the spectrum sensing and access are done at
pre-determined discrete times, the SUs are allowed to stay in a
busy (due to the PUs’ return) band but are forced to wait until
the beginning of the next slot, thus depriving their freedom
to sense and access other channels during the slot [5–8]. We
address this problem by empowering the SUs’ an option to
wait for some time before switching to another idle channel
in an unslotted structure, as illustrated in Q1 of Fig. 1. We
determine how long the SUs should wait in order to minimize
the time that the secondary network services are disrupted until
a new spectrum opportunity is found. We obtain this result
for an arbitrary distribution of the PUs’ occupancy when the
distribution is known to the SUs, e.g., by accessing a geo-
location database.
The problem becomes more challenging if the statistics of

the PUs’ activity are unknown to the SUs. The SUs must
learn the distribution of the PUs’ occupancy on-the-fly, i.e.,
estimating the distribution from the SUs’ observations given
the amount of time they have already waited. The SUs’ goal
then becomes minimization of their overall disruption time
while learning the PUs’ activity pattern. We study how the
SUs make a sequential decision on the wait-time to capture
the tradeoff between learning of the PUs’ activity pattern and
reduction of the SUs’ disruption time.

B. Cost-Effective Detection of PUs’ Busy → Idle Transition

When the PUs’ active period is relatively long, the SUs
need to switch to another idle channel. A remaining question
is then how the SUs detect the availability of the channel they
had opportunistically occupied until the PUs returned. Since
the PUs’ departure from that channel is unknown to the SUs,
the SUs should occasionally sense the channel to determine
when it becomes idle again, as illustrated in Q2 of Fig. 1. This
spectrum-sensing should be scheduled economically since SUs
must spend time that would otherwise be used in accessing
other idle channels. Kim and Shin [9] optimized periodic
sensing, which cannot achieve the best performance and may
sometimes perform poorly. For example, suppose a primary
voice service may either last for a short period of time, say
10s, or last very long, say 30min. The periodic sensing will
inevitably schedule the sensing during the period from the
10-th second to the 30-th minute, thus unnecessarily sensing
the channel many times. Moreover, the SUs may not quickly
detect the PUs’ departure from the channel. The sensing
intervals need not be identical if the SUs knew possible
durations of this voice service. We can sense the channel
more often around the 10-th second and the 30-th minute,
and much less often in between. Such aperiodic or adaptive
sensing can save more time and energy for the SUs. We study
how to schedule sensing to minimize the latency in detecting
the PUs’ departure while limiting the total fraction of time
spent on sensing.

C. Spectrum-Management Architecture

We have considered whether SUs should switch or wait
(Q1) and how they efficiently detect the transition of a busy
channel to become idle (Q2). We also propose a spectrum-
managemetn architecture to allow these SUs’ startegies to
work synergistically under all circumstances. Our spectrum-
management architecture specifies the details of all the oper-
ations SUs need to take, with the goal of fast discovery of
spectrum opportunities upon the PUs’ return.

D. Contributions

We propose novel algorithms for spectrum access and sens-
ing, addressing several important problems in fast discovery
of spectrum opportunities.
In the wait-or-switch problem, unlike existing approaches,

we allow SUs to wait silently in a busy (due to the PUs’ return)
channel as a proactive means for them to acquire a spectrum
opportunity in the future. We derive interesting properties of
how long the SUs should wait when the distribution of the
PUs’ occupancy duration has a monotonic hazard rate, in-
cluding nearly all of well-known positive distributions. When
the distribution is unknown, we formulate a problem as a
Markov decision process to determine the optimal wait-time
while learning the distribution using a Bayesian approach. We
advocate the use of a simple myopic policy for an unknown
exponential distribution of the PUs’ occupancy duration, as it
is easy to implement and performs very close to the optimal
policy obtained by using dynamic programming.
In the problem of detecting PUs’ busy-to-idle transition,

we propose to use adaptive sensing intervals. Obtaining the
optimal adaptive sensing intervals turns out to be intractable as
it introduces an infinite number of variables. So, we introduce
the concept of smooth sensing rate to approximate the times of
sensing and use the variations of calculus to obtain the optimal
sensing rate. Our numerical results show that this approach
yields much better performance than existing periodic sensing,
and is also computationally efficient. We also discuss the
impact of sensing errors on the scheduling of this adaptive
sensing.
Finally, we propose a spectrum-management architecture

that allows SUs to discover spectrum opportunities as quickly
as possible when the PUs return. In this architecture, system
designers can tune the fraction of time for out-of-band sensing
to strike a balance between the exploration and exploitation
of dynamic spectrum opportunities.

II. WAIT OR SWITCH?

When a PU’s occupancy period is short, how long should
the evicted SUs wait in the current channel before switching
to another idle channel? Specifically, we will determine the
maximal wait-time to minimize the average disruption time
experienced by the SUs until they discover a new opportunity.
This maximal-wait strategy is inspired by the early work in
[10] on the use of retry to recover from a failure in computer
systems.
We use a probabilistic model for a primary channel’s busy

period. Suppose the primary channel becomes busy due to
some PU’s return at t = 0, the busy duration is a random
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duration X , with p.d.f. f(x) and c.d.f. F (x). While the SUs
are waiting silently on this primary channel, they continuously
sense the channel. During the wait, they can switch to another
channel, taking an additional (random) time Tswitch to find it
and set up connections there. Here we assume the expected
switching delay E[Tswitch] is known as a priori1. As for the
knowledge of the primary channel’s active distribution F (x),
we consider two different scenarios. In the first scenario,
F (x) is constantly provided to the SUs by a trusted third
party, e.g., the SUs can access parameters of the distribution
via a geo-location database. In this scenario, we characterize
the properties of the optimal wait-time in Sec. II-A. In the
other scenario, the SUs do not have the knowledge of the
PU’s activity pattern initially. The SUs need to estimate the
distribution while minimizing the disruption time. We present
optimal and suboptimal solutions and their evaluations in
Sec. II-B.

A. When Primary Busy Distribution F (x) Is Known

Here we assume that the SUs know a priori the primary
channel’s active distribution, F (x). In the case of cellular
networks, since the stationary period is reported to be 1 hour
[11], the SUs can access the geo-location database on an
hourly basis. Upon return of a PU, the SUs will wait for
a maximal wait-time, tw, before switching. If the primary
channel becomes idle due to the PU’s departure before tw,
i.e., X < tw, since the SUs are constantly sensing the channel,
they can regain opportunistic use and are disrupted only for
the period of time, X . Otherwise (i.e., X ≥ tw), the SUs
will leave the channel at tw, find an idle channel and set up
connections on the channel at tw + Tswitch. So, the disruption
time is a random variable and can be written as

D(tw) =

{
X if X ≤ tw
tw + Tswitch if X > tw.

(1)

We would like to minimize its expected value over the
maximal wait-time tw:

minimize
tw≥0

E[D(tw)] =∫ tw

0

xf(x)dx + P (X ≥ tw)(tw + E[Tswitch]). (2)

We now study properties of the solution to the above
problem. Taking the first derivative of the objective function,
we get

dE[D(tw)]

dtw
= (1− F (tw))(1 − u(tw)E[Tswitch]), (3)

where u(x) = f(x)
1−F (x) is the hazard rate function, also known

as the failure rate function [12], of the primary channel’s active
duration. We will show that the monotonicity of the hazard
rate function decides the structure of the optimal wait strategy.
We will also study the properties of certain distributions with
non-monotonic hazard rates, such as Pareto and lognormal
distributions. Our analysis will then cover almost all well-
known distributions.

1In Sec. IV we will describe how to obtain E[Tswitch].

1) Occupancy Distribution with Monotonic Hazard Rate:
There are many distributions with monotonic hazard rate
functions. Some are nondecreasing, such as the gamma and
Weibull distributions, when the shape parameters are greater
than or equal to 1, uniform distribution and Gaussian distribu-
tion2. Some are decreasing, such as the gamma and Weibull
distributions when the shape parameters are less than 1. We
now present two theorems regarding monotonic hazard rate
functions.
Theorem 2.1: When the hazard rate function, u(x), is non-

decreasing in its domain, the optimal maximal wait-time is:

t∗w =

{
0 if E[X ] > E[Tswitch]
+∞ if E[X ] ≤ E[Tswitch].

(4)

The corresponding minimum average disruption time is then
min{E[X ],E[Tswitch]}.
An increasing hazard rate means that the PU will be more
likely to depart its channel as its stay extends. It is therefore
reasonable for the SUs to make a wait-or-switch decision
at the very beginning. The above theorem indicates by only
comparing the two means the SUs can either switch instantly
upon the PU’s return or wait in-band forever. The theorem is
valid for exponential (the hazard rate is a constant) and Erlang
distributions since both correspond to the case of the gamma
distribution’s shape parameters being positive integers.

Proof: Since u(x) is nondecreasing, if there exists any
x∗ such that u(x∗) = 1

E[Tswitch]
, we have dE[D(tw)]

dtw
≥ 0 for

tw < x∗ and dE[D(tw)]
dtw

≤ 0 for tw ≥ x∗. This suggests that
E[D(tw)] be a unimodal function with the maximum being
E[D(x∗)]. Hence, the minimum of E[D(tw)] occurs only at
tw = 0 or tw = +∞.
Theorem 2.2: When the hazard rate function, u(x), is de-

creasing in its domain, the optimal maximal wait-time t∗w
is obtained as follows. If there exists any x∗ such that
u(x∗) = 1

E[Tswitch]
, then t∗w = x∗, and the minimum average

disruption time is E[D(x∗)]. Otherwise (i.e., there does not
exist x∗ such that u(x∗) = 1

E[Tswitch]
), we have the same result

as in (4).
Proof: Since the hazard rate function u(x) is decreasing,

there can exist at most one x∗ such that u(x∗) = 1
E[Tswitch]

.
If there exists such an x∗, by inspecting the first derivative,
we can see that E[D(tw)] is a unimodal function that first
decreases at [0, t∗] and then increases at (t∗,+∞). If there
does not exist such x∗, the first derivative of E[D(tw)] should
always be greater or less than 0, meaning that E[D(tw)] is an
increasing or decreasing function.
2) Results on Occupancy Distributions with Non-

Monotonic Hazard Rates: The actual primary channel
occupancy distribution might not have a monotonic hazard
rate [13]. We study two popular distributions of this class:
Pareto and lognormal. The Pareto distribution belongs to the
family of heavy-tail/long-tail distribution. We can obtain its
hazard rate function as

u(t) =

{
0 if 0 ≤ t < xm
α
t if t ≥ xm,

(5)

2To model positive durations, the Gaussian distribution is left truncated at
0.
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where xm and α are the scale and shape parameters, respec-
tively. One can easily show that only tw = 0 and tw =
αE[Tswitch] can be the local minimum of D0(tw). Thus, the
minimum disruption time is min{E[Tswitch], D0(αE[Tswitch])}.
Dealing with the hazard rate of lognormal distribution

is more complicated analytically. We have the hazard rate
expressed as

u(t) =
exp

(
− (ln t−μ)2

2σ2

)
√
2πtσQ

(
ln t−μ

σ

) . (6)

where μ and σ are the mean and standard deviation of the log-
arithm transform of X , and Q(t) = 1

2π

∫ +∞
t

exp
(
−x2

2

)
dx.

It is shown in [14] that the hazard rate first increases from 0 to
the maximum and then decreases asymptotically to 0. Thus,
the equation u(x) = 1

E[Tswitch]
can have at most two roots,

which can be obtained numerically. From this property, one
can see that 0 and the second root are the local minimum of
E[D(tw)], and are the only candidates for the optimal maximal
wait-time.

B. The Primary Occupancy Distribution F (x) Is Unknown

We now discuss the scenario in which the SUs do not
know the PU’s active distribution. This may be more suitable
if the geo-location database cannot provide the distribution,
and hence, the SUs must estimate it while minimizing the
disruption time on-the-fly. To make an accurate estimation, the
SUs can choose to wait for a long time until the PU leaves,
but suffering from a long disruption time. Or, the SUs can
choose to switch shortly after the PU returned, thus achieving
a short disruption time but lacking accurate estimation due to
incomplete samples of the PU’s busy duration. We formulate
this problem in the form of sequential decision process to
capture the tradeoff between exploration and exploitation, and
seek to minimize the average disruption time of the SUs in
the long run.
Let a decision epoch be the time when the primary channel

the SUs are using opportunistically becomes busy. At each
decision epoch, the SUs make a decision on the maximal
wait-time. Whenever the SUs use this channel again, the next
decision epoch would be the time when the primary channel
becomes busy again. Since the PU’s occupancy duration is
a random variable X , given a maximal wait-time tw, we
have the following two possible outcomes. When X ≤ tw,
since the SUs are constantly sensing the channel, they can
learn the exact realization of X . We call this outcome a
type-0 observation. When X > tw, the SUs will switch to
a new channel at time tw, so they only know the fact of
X > tw, which is an incomplete sample of X . We term this
outcome a type-1 observation. We can therefore represent all
the outcomes as a 2-tuple (I, t), where I is a single-bit flag
and t a time duration. I = 0 represents a type-0 observation,
under which t is the realization of X and t ≤ tw. I = 1
represents a type-1 outcome, under which t = tw. Let (Ii, ti)
(i = 1, 2, . . . , n) be the past outcomes up to n decision epochs.
For tractability, we assume that the PU’s occupancy dis-

tribution f(x) is exponential with an unknown parameter
θ, i.e., fθ(x) = θe−θx. We assume a Bayesian approach:

the exponential parameter θ is a random variable, and its
distribution, fI(θ), also known as a prior distribution, follows
the gamma distribution:

fI(θ) � Ga(θ;α, β)

= θα−1βαe−θβΓ(α)
−1

; α > 0, β > 0. (7)

where (α, β) are the hyperparameters, and Γ(x) is the gamma
function. The gamma prior is a conjugate prior [15], i.e., the
posterior distribution still follows the gamma distribution in
our problem. To show this, let us first look at the likelihood
function for the i-th outcome (Ii, ti)

L(θ|(Ii, ti)) ∝
{

fθ(ti) = θe−θti if Ii = 0
Pθ(X > ti) = e−θti if Ii = 1.

The posterior distribution after the i-th outcome (Ii, ti) can
then be obtained by the Bayes formula:

f(θ|(Ii, ti)) ∝ fI(θ)L(θ|Ii, ti)
∝
{

θαe−θ(ti+β) if Ii = 0
θα−1e−θ(ti+β) if Ii = 1.

(8)

The form of the posterior density implies that it can only be a
gamma density. The gamma hyperparameters are adjusted by

(α, β)← (α+ 1, β + ti) if Ii = 0

(α, β)← (α, β + ti) if Ii = 1 (9)

Thus, the gamma prior is a conjugate prior under the likelihood
function. This conjugate property of the gamma prior in our
problem can greatly facilitate subsequent analysis.
We now formulate the problem in the framework of Markov

decision process (e.g., see [16],[17]). Let the decision epochs
be T = {1, 2, . . . , N}, N ≤ ∞. To represent the system
state, the Bayesian approach allows us to represent it as
the gamma hyperparameters (α, β) at each decision epoch,
as it represents the prior distribution of θ and therefore,
all the available information the SUs can know about the
PU’s occupancy distribution. The action the SUs can take
is the maximally waiting at each decision epoch. The state-
transition dynamic is the likelihood of transiting to the next
state, i.e., another gamma hyperparameters, given current state
and current action. We represent the dynamic as follows: given
current state (α, β) and current maximal wait-time tw, we may
have two types of observation.
For type-0 observations, suppose the outcome is (I, t) =

(0, x) where x ≤ tw, then the next state would be (α+1, β+
x), with the transition probability density function averaged
over the prior distribution as:

f((α+ 1, β + x)|(α, β)) =
∫ ∞

0

fθ(x)fI(θ)dθ

= α(x + β)−α−1βα; x ≤ tw.
(10)

For type-1 observations, the outcome can only be (I, t) =
(1, tw), and the next state is (α, β+ t+w) with the transition
probability averaged over the prior distribution as:

P ((α, β + tw)|(α, β)) =
∫ ∞

0

Pθ(X > tw)fI(θ)dθ

= (tw + β)−αβα. (11)
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The immediate cost is the expected disruption time in
current state (α, β) given an action tw, averaged over the prior
distribution:

d(tw, α, β) =

∫ ∞

0

Eθ[D(tw)]fI(θ)dθ, (12)

where Eθ[D(tw)] is the immediate disruption time under an
exponential distribution with parameter θ from (2):

Eθ[D(tw)] = e−θtw

(
E[Tswitch]− 1

θ

)
+

1

θ
. (13)

After some algebraic manipulations, we can represent
d(tw, α, β) as⎧⎪⎨
⎪⎩

β
α−1 +

(
β

tw+β

)α (
E[Tswitch]− tw+β

α−1

)
if α 	= 1

βE[Tswitch]
tw+β + β log tw+β

β if α = 1.
(14)

Now, we have the decision epochs (i = 1, 2, . . . , N), states,
denoted as Si � (αi, βi) ((αi, βi) are the gamma hyper-
parameters at the i-th decision epoch), actions tiw (maximal
wait-time at the i-th decision epoch), the system dynamics
((10) and (11)) and immediate expected cost d(tiw, Si), the
only remaining part to completely describe a Markov decision
process is the objective: find a sequence of actions, i.e., a
policy, to minimize the overall cost, i.e., disruption time:

minimize
π

E

[
N∑
i=1

γi−1d(tiw, Si)

∣∣∣∣∣S1 = (α1, β1)

]
, (15)

where π � (t1w, t
2
w, . . . , t

N
w ), γ (0 ≤ γ ≤ 1) is the discount

factor, and S1 is the initial prior. The Markov property enables
us to focus on policies that only depend on current state,
instead of the entire history.
The standard technique for solving Markov decision process

is to use dynamic programming. Let the optimal value function
of state (α, β) starting at the n-th decision epoch be:

Vn(α, β) = min
π

E

[
N∑
i=n

γi−nd(tiw , Si)

∣∣∣∣∣Sn = (α, β)

]
.

We can then characterize Vn(α, β) by relating it to the next
states’ value functions, considering all possible type 0 and
1 observations. (16) is the Bellman optimality equation, and
the optimal policy, i.e., maximal wait-time is the minimizer
of (16). It is trivial to modify (16) for the case of an infinite
horizon by eliminating the subscripts of the value function, so
it is omitted.
1) Myopic Policy: Solving (16) as well as storing the

optimal policy suffers the curse of dimensionality in dynamic
programming. The state and the action spaces are continuous
and unbounded, so obtaining the exact solution is generally
intractable. Therefore, we use a suboptimal but easily com-
putable method. Our idea is to use a myopic strategy without
considering the future actions. We will also show that this
myopic policy is surprisingly close to the optimal policy in
our evaluations.

Suppose at each decision epoch, the gamma hyperparame-
ters are S = (α, β), we would like to find a maximal wait-time
to minimize the immediate expected disruption time:

t∗w(α, β) = argmin
tw≥0

d(tw, α, β) = (αE[Tswitch]− β)
+
, (17)

where (.)+ is the projection on nonnegative real numbers. The
minimizer in (17) is true for any α > 0 in (14).
The policy can proceed as follows: at each decision epoch

with a prior (α, β), choose the maximal wait-time determined
by (17), then update the hyperparameters according to the
observations by the rule (9), and then repeat the policy at
the next decision epoch. We choose the initial prior to be
(α, β) = (1, 0). The SUs only need to store two variables
(α, β) in the memory and the update only takes 5 operations
(9) and (17)). This myopic policy is therefore much simpler
than the optimal policy and still preserves the learning of the
PU’s activity pattern.
2) Evaluation of Optimal and Myopic Policies: Since ob-

taining the exact solutions of the optimal policy is intractable,
we try to obtain approximate solutions as close to the optimal
solution as possible. First, we discretize and bound all contin-
uous variables. We let the action (i.e., maximal wait-time tw)
be in the range [0, Tmax] and uniformly divide the interval into
K points. Likewise, we discretize the state space (α, β) and
also approximate the integration in the Bellman optimality
equation (16). By choosing Tmax and K large enough, we
can get a close approximation to the exact solutions. We
use backward induction to obtain the value function, from
which the optimal policy is obtained. Under our approximate
dynamic programming (ADP), the run-time complexity is
O(N3K2) and space complexity is O(N3K).
We first vary the exponential parameter θ and let the optimal

and myopic policies run over the horizon. Therefore, they
have to estimate the distribution while minimizing the average
disruption time. Their performance is plotted in Fig. 2. The
solid lines represent the long-term average disruption time, i.e.,
the mean of all N disruption time. We also compare them with
a genie bound, in which there is a genie who knows the exact
θ at no cost, and therefore, can obtain the smallest disruption
time as min(1/θ, 1/E[Tswitch]) by Theorem 2.1. As one can
see from the two figures, both policies’ performance are close
to that of the genie bound. The optimal policy has in general
a smaller variance than the myopic policy. It is surprising that
the myopic policy has better performance when 1/θ is greater
than E[Tswitch].
For a direct comparison of the two policies, we generate θ

from a gamma distribution with (α, β) = (1,E[Tswitch]), and
then run the two policies to obtain the average disruption time.
We vary E[Tswitch] and compare them in Fig. 3. We can see that
the myopic policy is always within 1% of the approximated
optimal policy.
We also evaluate its effectiveness on three non-exponential

distributions, Weibull, gamma and truncated Gaussian, al-
though the myopic policy is derived from an exponential distri-
bution. Surprisingly, as can be seen from Fig. (4), the myopic
algorithm yields a disruption time very close to the genie
bound obtained via Theorem 2.1 (as the three distributions
under study have increasing hazard rates). Considering the fact
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Vn(α, β) = min
tw≥0
{d(tw, Sn) + γ

∫ tw

0

Vn+1(α+ 1, β + x)f((α + 1, β + x)|Sn)dx+ γVn+1(α, β + tw)P ((α, β + tw)|Sn)}.
(16)

(a) ADP (b) Myopic policy

Fig. 2. SUs’ long-term disruption time achieved by using approximate dynamic programming (ADP) and myopic policies. The two policies run without
knowing the PU’s occupancy distribution. The parameters of the system are: N = 50, E[Tswitch] = 50 (unit of time), and γ = 1. The parameters of ADP
are Tmax = 1000 (unit of time) and K = 1000. We choose the initial prior to be (α, β) = (1,E[Tswitch]) when solving ADP.

Fig. 3. Direct comparison of the myopic policy with the policy obtained by
approximate dynamic programming in terms of long-term average disruption
time V . The relative loss stands for (V Myopic − V ADP)/V ADP.

that (1) the computation overhead of ADP is large enough
to inhibit practical usage and (2) the myopic policy is very
simple to implement and works well even for non-exponential
distributions, we advocate its use for this problem.

III. EFFICIENT DETECTION OF PUS’ BUSY→ IDLE
TRANSITION

So far, we have discussed how long the SUs should wait
before switching to an idle channel in case the PUs return to
the channel the SUs are utilizing opportunistically. In case the

SUs decide not to wait but to leave the current channel, they
need to efficiently sense this out-of-band channel to detect
when it becomes idle again.
The PU’s departure from its channel can only be discovered

by its occasional sensing by the SUs. The time gap between
the departure and its detection is called the discovery latency
as shown in Fig. 1. On the other hand, since SUs use time
that would otherwise be used for in-band spectrum access, we
should limit the average fraction of time used for the out-of-
band sensing. Periodic sensing is inadequate for this since it
only has one degree-of-freedom, i.e., using the same sensing
interval. A better option is to use different sensing intervals
to detect the time instants that are likely to be the end of the
PU’s active period, which we call adaptive sensing.
Beginning at time 0 when the SUs leave the current busy

channel, we can characterize the remaining duration of the
PU’s stay, X̃ , with c.d.f. F̃ (x):

F̃ (x) = P (X ≤ x+ tw|X > tw) =
F (x+ tw)− F (tw)

1− F (tw)
(18)

where tw is the time when the SUs leave this channel. The
SUs are not using this channel but sense the channel at time
instants t0 = 0 < t1 < t2 < . . .. The p.d.f. f̃(x) is supported
at [0, limn→∞ tn). Every time the SUs sense the channel, they
spend τ , and the average fraction of time spent on sensing
should not exceed r1, which is a parameter determined by
the system designer. We assume the SUs sense and report
the PU’s presence/absence accurately, given sufficient sensing
time τ . We will later discuss the impact of sensing errors.
Here we focus on the impact of the PU’s activity pattern on
the scheduling of sensing.
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(a) Weibull (β = 2)

(b) Gamma (β−1 = 20)

(c) Truncated Gaussian (σ = 10)

Fig. 4. Running the myopic algorithm on non-exponential distributions:
Weibull, gamma and truncated Gaussian.

When the PU’s remaining active period, X̃ , ends within the
interval [tk−1, tk), the SUs detect the PU’s departure at tk
with the discovery latency tk− X̃ . Since the SUs have sensed
this channel k times, the fraction of time spent on sensing

until then is kτ
tk
. Considering all possibilities of X̃ , we would

like to minimize the average discovery delay upon detection
of the channel to be idle:

minimize
0<t1<t2<...

∞∑
k=1

∫ tk

tk−1

(tk − x)f̃(x)dx (19)

subject to
∞∑
k=1

∫ tk

tk−1

kτ

tk
f̃(x)dx ≤ r1. (20)

Inequality (20) suggests the average fraction of time spent
on sensing should be no greater than r1. The above optimiza-
tion is, in general, difficult to achieve since the channel can be
sensed infinitely frequently, and is also non-convex for most
of the distributions. In what follows, we take a suboptimal
approach by introducing the concept of smooth sensing rate.
We use the calculus of variations to obtain the optimal
sensing rate and thus to approximate the optimal discrete
times of sensing. The idea of using a smooth sensing rate
is similar to that in [18, 19] using the continuous inspection
rate to obtain the optimum inspection policies in reliability
theory [12]. Let us introduce n(x), a smooth function, to
approximate the number of times to sense per unit of time.
Then,

∫ t

0
n(x)dx is the number of times to sense until time t.

The key approximation is that two successive sensing times, tk
and tk+1, are close enough such that tk+1−tk ≈ 1/n(tk). So,
we have the following approximation of the average discovery
delay:

∞∑
k=1

∫ tk

tk−1

(tk − x)f̃ (x)dx ≈
∞∑
k=1

∫ tk

tk−1

1

2n(x)
f̃(x)dx

=

∫ ∞

0

f̃(x)

2n(x)
dx. (21)

The average fraction of time for the out-of-band sensing of
this busy channel is approximately:∫ ∞

0

τ
∫ x

0 n(t)dt

x
f̃(x)dx = τ

∫ ∞

0

n(t)

∫ ∞

t

f̃(x)

x
dxdt.

(22)
By letting g(x) =

∫∞
x

f̃(t)
t dt, we can formulate a functional

optimization problem as

minimize
n(x)>0

∫ ∞

0

f̃(x)

2n(x)
dx

subject to τ

∫ ∞

0

n(x)g(x)dx ≤ r1. (23)

The above constrained optimization can be solved by
minimizing the Lagrangian L(n(x), γ) over a nonnegative
continuous function n(x):

L(n(x), γ) =

∫ ∞

0

(
f̃(x)

2n(x)
+ γτn(x)g(x)

)
dx− γr1, (24)

where γ is the Lagrange multiplier. The integrand has a lower
bound achieved at

f̃(x)

2n(x)
= γτn(x)g(x) or n(x) =

√
f̃(x)

2γτg(x)
. (25)
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n(x) should also exhaust the constraint (23), and substitute
n(x) into (23). We can then obtain the Lagrange multiplier γ
as

γ =

τ

(∫∞
0

√
f̃(x)g(x)dx

)2

2r21
. (26)

Therefore, n(x) can be explicitly expressed as a function of
f̃(x). The sequence of discrete sensing times {tk} are obtained
from n(x):∫ tk

0

n(x)dx = k; k = 1, 2, . . . (27)

A. Evaluation of Adaptive Sensing

We now evaluate the performance of the above adaptive
sensing by comparing it with periodic sensing. First, we seek
to obtain an optimal periodic sensing strategy. Suppose the
sensing period is x, then the sensing times are tk = kx
(k = 1, 2, . . .). Substituting tk into the original optimization
problem (20), we can solve a single variable nonlinear opti-
mization.
Let us consider the cases when the PU’s remaining busy

duration follows three commonly used distributions for mod-
eling positive duration: the Weibull distribution, the gamma
distribution and the truncated Gaussian distribution:

Weibull: f̃(x) = βα−βxβ−1e−(
x
α )

β

,

Gamma: f̃(x) = xα−1βαe−xβΓ(α)−1,

Truncated Gaussian: f̃(x) =
fGaussian(x;μ, σ)

1− FGaussian(0;μ, σ)
,

where fGaussian(x;μ, σ) is a Gaussian density with mean μ and
standard deviation σ.
In our numerical examples, we fix the scale parameters

and vary the shape parameters of all the distributions. The
sensing time is set to τ = 1 (unit of time), and we require the
average sensing overhead not greater than 1%. We compare the
proposed adaptive sensing with the optimal periodic sensing
in Fig. 5. The adaptive sensing is shown to outperform
the periodic sensing significantly in most situations. It is
interesting to observe that when the shape parameters of the
Weibull and gamma distributions are less than 1 (when the
shape parameter is 1, both distributions reduce to exponential
distributions), both distributions have a decreasing hazard rate
and the performance gap turns out to be insignificant.

B. On the Impact of Sensing Errors

Either energy or feature detection, even with the sophis-
ticated collaborative sensing, inevitably introduces sensing
errors due to the receiver noise and channel fading, resulting
in miss detection (reporting idle when the primary channel
is in fact busy) and false alarm (reporting busy while the
primary channel is idle). Here we discuss the impact of sensing
errors on the scheduling of adaptive sensing. First, we will set
the miss-detection error to be negligible by moving along the
receiver operating characteristic curve. Thus, we only need to
focus on false alarms, not on both, which would otherwise
make the problem much more difficult to analyze. In order to

(a) Weibull (α = 100)

(b) Gamma (β−1 = 100)

(c) Truncated Gaussian (μ = 100)

Fig. 5. Comparison of adaptive sensing with periodic sensing in terms of
discovery latency of the PU’s busy→idle transition. The PU’s busy duration
follows three different distributions.

combat false alarms, the SUs have to sense more frequently
to capture the possibly missed opportunities. Increasing the
sensing frequency incurs more overhead, so we need to re-
design the sensing intervals to re-balance between minimizing
discovery delay and limiting the sensing overhead.
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Fig. 6. Varying false alarm rate for three distributions: gamma (α =
2, β−1 = 200), Weibull (α = 200, β = 1), Truncated Gaussian (μ =
30, σ = 10)).

Let PFA (0 ≤ PFA < 1) be the false alarm probability.
Here we continue to use the smooth sensing rate to approxi-
mate the discrete sensing times. Due to space limit, we omit
the intermediate derivations and present the following final
optimization problem:

minimize
n(x)>0

∫ ∞

0

1 + PFA

2n(x)(1 − PFA)
f̃(x)dx

subject to
∫ ∞

0

n(x)(1 − F̃ (x))dx +
PFA

1− PFA
≤

r1

(
E[X ] +

∫ ∞

0

1 + PFA

2n(x)(1 − PFA)
f̃(x)dx

)
.

(28)

The solution for the sensing rate is the minimizer of the
Lagrangian and is obtained as

n(x) =

√
(1 − γr1)(1 + PFA)f̃(x)

2γ(1− PFA)(1 − F̃ (x))
. (29)

The Lagrange multiplier γ can be computed by substituting
n(x) from (29) into (28). Therefore, n(x) can be explicitly
expressed and the discrete sensing times can be obtained as
in (27).
We evaluated the impact of sensing error for three different

PUs’ active distributions by plotting the solution of (29)
and also periodic sensing in Fig. 6. If the false alarm rate
is low (less than 0.5), the discovery delay under adaptive
sensing is found not affected much. However, if the false
alarm rate is very high, the discover delay is found to increase
exponentially. As for periodic sensing the discovery delay is
shown to be more sensitive to false alarm rate.

IV. OUT-OF-BAND SENSING OF IDLE PRIMARY CHANNELS

Thus far, we discussed the sensing of an out-of-band busy
channel. When this channel is detected to be idle but not
chosen for opportunistic access, it should be used as a backup
for future access. The idle channel still needs to be sensed
occasionally, but more frequently than a busy channel in order
to provide reliable estimation of the channel’s availability for

future usage. Periodic sensing thus becomes attractive here, as
it can only incur a marginal loss in discovery latency compared
to adaptive sensing. Therefore, all out-of-band idle channels
are used as backups, and sensed periodically to estimate the
channels’ availability. We focus on how to efficiently allocate
the sensing periods of different idle channels such that the
evicted SUs can use the sensing-based estimation to switch to
an idle channel very quickly.
When the evicted SUs decide to switch to an idle channel,

they can use various algorithms to search for the target channel
[2–4] based on the statistics of the channels’ availability. Here
we do not address the search algorithms. We address how to
optimize the sensing in order to benefit from these algorithms.
The key assumption here is that the duration of an idle

channel is i.i.d. exponentially-distributed, which reflects that
the PUs’ arrivals at the channel follow a Poisson process. In
actual cellular networks, inter-arrival times of calls have also
been reported to be exponentially-distributed [11].
Suppose there are M idle primary channels and let 1

λi
be

the mean duration of each idle channel. Channel i is sensed
at the interval of Ti, and each sensing takes τi with a perfect
report. For each idle channel i, let t̃i, (0 < t̃i < Ti) denote
the time elapsed since the last sample. Then, the probability
of detecting the channel to be idle at current time is Pi(t̃i) =
e−λi t̃i . We are interested in its average over the elapsed time
t̃i, and the average probability of detecting channel i to be
idle is

Pi =
1

Ti

∫ Ti

0

Pi(t̃i)dt̃i =
1− e−λiTi

λiTi
. (30)

Without loss of generality, suppose the SUs that decide to
switch will sense and search for the out-of-band idle channels
in the order of {1, 2, . . . ,M}. Once the SUs discover an
idle channel, it takes a constant time tsetup to set up new
connections among themselves and the search process ends.
If all searched idle channels are found busy, the SUs will wait
for a mandatory retry time, tretry, and then search again for an
idle channel. The retry time should be much greater than the
subsequent search time. Let τM+1 = tretry.
When the SUs search and detect channel i first to be idle, it

takes a total time
∑i

j=1 τj + tsetup with probability
∏i−1

j=1(1−
Pj)Pi. The switching delay, which is the time for the SUs to
set up new connections when they decide to switch, has the
expected value as

E[Tswitch] =

M+1∑
i=1

⎛
⎝i−1∏

j=1

(1− Pj)

⎞
⎠Pi

i∑
j=1

τj + tsetup. (31)

We would like to minimize this average search time
E[Tswitch], while limiting the overall sensing overhead of
all out-of-band idle channels to the ratio r2. We can then
formulate the optimization problem as

minimize
T1,T2,...,TM

E[Tswitch] =
M+1∑
i=1

τi

i−1∏
j=1

(1− Pj) + tsetup

subject to
M∑
i=1

τi
Ti
≤ r2. (32)
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Fig. 7. Spectrum-management architecture for CRNs. Backup (candidate)
channels are out-of-band idle (busy) channels.

1− Pi is found to be a concave and increasing function of
Ti. Therefore, the objective function is not convex. Minimizing
such a function can be very difficult. However, since the
sensing period should be much smaller than the mean idle
duration, we have λiTi � 1 and a very good approximation
for e−λiTi as 1 − λiTi +

(λiTi)
2

2 ). The objective function is
then approximated as

E[Tswitch] ≈
M+1∑
i=1

τi
2i−1

i−1∏
j=1

λjTj + tsetup. (33)

Both the objective (33) and the constraint (32) functions are
posynomials, and the problem becomes a geometric program-
ming (GP) problem, which is in fact a convex optimization.
GP can be solved efficiently and reliably using, for example,
the interior-point method [20]. On the other hand, the original
problem (32) without the approximation is a non-convex
optimization. Solving it requires tricky tuning of parameters
and always leads to a local optimal solution.

V. PUTTING THEM ALL TOGETHER

We have shown that the state of a primary channel—
active or idle, in-band or out-of-band—can lead to very
different strategies. We now present a spectrum-management
architecture for CRNs that deal with different channel states
by integrating individual modules. The overall architecture is
depicted in Fig. 7.
All primary channels are managed by one of the three

modules: the in-band channels module for in-band spectrum
access and sensing, the backup channels module for out-of-
band sensing of idle channels, and the candidate channels
module for out-of-band sensing of busy channels. The names
of backup and candidate channels are borrowed from IEEE
802.22, a standard near completion for opportunistic utiliza-
tion of TV channels [21].
The in-band channels module manages all primary channels

that are currently being used opportunistically by the SUs.
This module requires SUs to access the primary channels and
limit interference to the returning PUs as specified in IEEE
802.22. We do not address the in-band sensing and access
here (e.g., see [22]). Once the SUs detect a primary signal,
they wait for a maximal amount of time before switching
to a new channel. The maximal wait-time is computed as
in Section II. During the wait, if the current evicted channel
becomes idle, the discovery process ends. Otherwise, the SUs

will switch to a new idle channel according to the estimated
channels’ availability provided by the backup channels module
that performs the out-of-band sensing of idle channels. Arrow
(1) in Fig. 7 indicates such an information flow and the new
idle channel that is imported to the in-band channels module.
At the same time, if SUs decide to switch to another channel,
the original busy channel will be sent to the candidate channels
module for out-of-band sensing of busy channels, as indicated
in arrow (2).
The candidate channels module allows SUs to sense every

busy channel economically, in the order of time, computed
in Section III to minimize the delay in discovering the PU’s
actual departure. Once a channel is sensed to be idle, it will
be sent to the backup channels module as indicated in arrow
(3).
The backup channel module periodically senses all idle

channels, and the sensing periods are optimized, as in Section
IV, to provide reliable estimation of channel availability to the
in-band channel module and minimize the switching delay
when the SUs decide to switch channel. Once a channel is
sensed busy, it will be sent to the candidate channels module
in arrow (4).
The objective of the architecture is to minimize the disrup-

tion time of the SUs when the PUs return. Each module seeks
to optimize this objective directly or indirectly. Specifically,
the in-band channels module tries to minimize the disruption
time when the SUs are evicted, which, in turn, depends on the
switching delay. The backup channels module, therefore, at-
tempts to minimize the switching delay, which can be reduced
if there are more idle channels in the backup channels module.
The candidate channels module, therefore, tries to discover a
busy channel that becomes idle, as quickly as possible. This
decomposition of tasks is inherently not optimal, but provides
manageable modularity that allows us to optimize each module
independently.
The three modules are operating in a time-division manner.

The fraction of time allocated to each module is controllable.
We can adjust the sensing overhead for each out-of-band busy
channel as well as the overall fraction of time in sensing out-
of-band idle channels. Therefore, system designers can make
a tradeoff between exploitation (the in-band channels module)
and exploration (the backup and candidate channels modules)
of dynamic spectrum opportunities.

VI. RELATED WORK

Finding temporal opportunities is a classical problem in
CRNs. Existing approaches to this problem may be divided
into two categories. The first category considered a slotted
structure of the SUs’ spectrum sensing and access [5–8, 23–
25]. The objective is to maximize the SUs’ expected rewards
in terms of effective utilization of idle channels. They mainly
focus on the SUs’ response to the primary’s activity, whether
being one-slot memory [7, 8, 23] or memory-less [5, 6, 24, 25],
whether the statistics are known [7, 23, 25] or unknown [5, 6,
8, 24]. Under this slotted structure, when the SUs sense the
channel to be busy, they will be forced, by the mathematical
model, to wait until the next slot to make a decision. This can
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be very inefficient in gathering the channels’ availability infor-
mation if the SUs’ sensing time is much smaller than the data
transmission time. Our work belongs to the second category
which considered use of an unslotted sensing and transmission
strategy, [2–4]. However, all the previous approaches assume
that whenever the SUs sense a channel that is busy (or probe
the data rate of the channel to be undesirable), the SUs will
immediately leave the channel. In fact, the SUs may choose to
stay silently in the evicted band for future reuse if the primary
busy duration lasts relatively short. We derive the optimal
time for the SUs to switch and propose a learning strategy
to estimate the primary’s activity pattern while minimizing
the disruption time of the SUs on-the-fly.
Out-of-band sensing is necessary to explore dynamic spec-

trum opportunity. Rather than using periodic sensing in [9],
we use an adaptive sensing to efficiently detect a busy primary
channel to be idle as quickly as possible.
The in-band spectrum sensing and access has been ad-

dressed in [22, 26–28] for efficient utilization of the currently-
available white space while protecting the legacy users. Many
sensing techniques have been proposed to accurately detect the
presence/absence of a primary signal, such as collaborative
sensing [29, 30]. We do not address the in-band access and
sensing here.
Note that the measurement results in cellular networks [11]

guided our approach to sense the primary’s busy channel
adaptively and economically. A CRN is implemented in [31]
on top of the DTV white space, with an additional scanner
sensing all channels. In this paper, we assume the SUs are
equipped with a single radio that can either sense or access a
channel at a time, not both.

VII. CONCLUSION

In this paper, we have developed strategies for SUs when
the PUs return to the channel the SUs are using opportunis-
tically. It would be interesting to consider an extension of
the proposed approach for multiple secondary networks. One
challenging issue associated with this extension is how to share
the sensing and control information among different secondary
networks. If there is a dedicated (e.g., control) channel for
SUs to exchange information, one may be able to achieve a
better utilization. For example, secondary networks can exploit
receiver diversity [29], and different secondary networks can
switch to different primary channels when the PUs return.
These are matters of our future inquiry.
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