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Abstract—Cooperative spectrum sensing has received consid-
erable attention as a viable means to enhance the detection
performance by exploiting spatial diversity in received signal
strengths. However, this is vulnerable to sensing data falsification
attacks due to the distributed nature of cooperative spectrum
sensing. To overcome this problem, we introduce a primary user
emulation test (PUET), under which a trustful central entity (e.g.,
a cellular base station) transmits a test signal while other users
are sensing the spectrum. The core of PUET is to correlate the
reported sensing data with the transmission power of the test
signal. Since this test signal is, in reality, an interference to the
sensing of a primary signal, sensors cannot distinguish the test
signal from the primary signal. Considering this characteristic
of sensors, PUET detects attacks by evaluating the consistency
of channel parameters, which are not known to sensors. By
recognizing this defense mechanism, PUET checks the validity
of reports from each sensor separately. The efficacy of PUET is
validated via experimentation on a testbed deployed in an indoor
environment. Our measurement study shows that PUET achieves
over 95% detection rate while keeping the false alarm rate under
5%.

I. INTRODUCTION

Spectrum scarcity has recently become an important prob-

lem in the field of wireless communications since the demand

for wireless spectrum has been increasing exponentially with

the proliferation of new mobile users and wireless services [1],

while the amount of the total wireless spectrum remains fixed

or is increasing slowly. According to a report of the US Federal

Communications Commission (FCC) [2], wireless communi-

cations services/applications are expected to experience spec-

trum shortage starting from 2013. However, researchers have

also discovered that spectrum is severely under-utilized [3], [4]

due mainly to the current static spectrum allocation policy,

thus calling for more efficient and flexible spectrum access

strategies/policies.

In order to utilize the wireless spectrum more flexibly,

cognitive radio networks (CRNs) were introduced [5], in

which unlicensed secondary users (SUs) opportunistically

reuse spectrum bands licensed by primary users (PUs). Since

PUs have right to use the spectrum at any time, SUs must

discover spectrum holes in time, frequency, and space domains

and can access the spectrum only when PUs are not using the

spectrum in order not to interfere with PUs’ communications.

There have been numerous approaches proposed to protect

PUs’ communications, such as PU signal detection (spectrum

sensing) [6], [7], auxiliary beacon detection [8], and geo-

location database of PUs [9]. In particular, spectrum sensing

has received significant attention for its simple design and

adaptability as it does not require any prior knowledge of

the PU’s signal or networks [10]. SUs sense the channel and

determine the presence of a PU signal by testing measured

received signal strengths (RSSs). To enhance this detection

performance, researchers have introduced temporal and spa-

tial diversities by exploiting sensing scheduling (scheduling

sensing multiple times) [11] and cooperative spectrum sensing

(sharing sensing information among SUs) [12], [13], [14],

respectively.

Cooperative spectrum sensing, however, is vulnerable to

sensing data falsification attacks [15], [16], due to the dis-

tributed nature of spectrum sensing in CRNs. As the goal

of a sensing data falsification attack is to cause an incorrect

decision on the presence/absence of a PU signal, malicious

or compromised SUs may intentionally distort the measured

RSSs and share them with other SUs. Then, the effect of

erroneous sensing results propagates to the entire CRN. This

type of attacks can be easily launched since the openness of

programmable software-defined radio (SDR) devices makes

it easy for (malicious or compromised) SUs to access low-

layer protocol stacks, such as PHY and MAC [17]. However,

detecting such attacks is challenging due to the lack of

coordination between PUs and SUs, and unpredictability in

wireless channel signal propagation, thus calling for efficient

mechanisms to protect CRNs.

In this paper, we propose a mechanism, called PUET, to

detect the falsification of sensing results. PUET resides at a

trustful central entity (e.g., a cellular base station) that trans-

mits a test signal while other SUs are sensing the spectrum.

Since this test signal is, in reality, an interference to the sensing

of a PU signal, SUs’ RSSs should be the sum power of the PU

signal and the test signal. Then, the central entity can detect

attacks by checking if the reported sensing data reflects the

interference caused by the test signals.

The rest of this paper is organized as follows. Section 2

discusses existing approaches against sensing falsification at-

tacks, differentiating PUET from them. Section 3 describes

the network under consideration and the sensing models with

various attack scenarios. Then, Section 4 presents the design

rationale and the abstract framework of PUET. Section 5

details our attack-detection mechanism with sequential tests

and channel parameter estimation. Section 6 evaluates PUET’s



performance via experiments on a testbed, and Section 7

concludes the paper.

II. RELATED WORK

In order to entice SUs to follow the protocol, i.e., reporting

the sensing results honestly, researchers used game-theoretic

approaches to analyze SUs’ behavior. Duan et al. [18] pro-

posed attack prevention mechanisms with direct and indirect

punishments. Assuming that SUs care for their rewards, their

scheme prevents SUs from reporting falsified sensing data by

setting appropriate reward and punishment functions. Woyach

et al. [19] developed a model for the incentives associated with

attacks and for the tradeoffs between the different elements of

an enforcement structure.

To detect discrepancies among sensing data and ensure

robust decisions in cooperative spectrum sensing, researchers

have studied robust data-fusion in CRNs. Kaligineedi et
al. [20] introduced a trust factor which gives a measure

of reliability of each SU. By applying an outlier detection

method, their data-fusion scheme assigns a lower trust factor to

a SU whose sensing report is extremely high or low, reducing

its effect on the sensing decision. Chen et al. [15] presented

a weighted sequential probability ratio test which introduces

a reputation-based mechanism to the sequential probability

ratio test (SPRT). By increasing the reputation of a SU whose

sensing report is consistent with the majority at each step, their

scheme dynamically adjusts the weight of each SU so that a

SU with higher reputation can have more influence on the

sensing decision. Min et al. [16] proposed a correlation filter

for the detection of abnormal sensing reports by exploiting the

shadow fading correlation in RSSs. Assuming that RSSs at

nearby SUs are correlated, they proposed a clustering method

and data-fusion rules based on the correlation analysis of

sensing reports.

These defense schemes, however, have their own limitations

in that their assumptions may not hold. Game-theoretic attack

prevention assumes that SUs try to maximize their utilities by

following the protocol. However, considering that attackers

outside of a network can compromise SUs inside of the

network, these schemes may not work well if these attackers

do not care about compromised SUs’ utilities. Robust data-

fusion schemes compare sensing data among SUs assuming

that the number of honest SUs are much larger than that

of malicious/compromised SUs which mount sensing data

falsification attacks. Obviously, robust fusion schemes may not

be suitable for detecting attacks when the number of honest

SUs becomes small. Noting that this number can easily be

reversed in a network of a small number of SUs, CRNs are

required to be capable of detecting attacks even when the

number of honest SUs is small.

III. SYSTEM MODELS

A. Network Model

There are two different types of users, PUs and SUs [5].

PUs are legacy users who have the license to use the spectrum

band, whereas SUs do not have license and use the spectrum

only when PUs are not using it, i.e., PUs always have priority

over SUs in accessing the spectrum. Thus, SUs should be

equipped with a cognition engine which will discover spectrum

holes/opportunities. In this setting, a cognitive radio network

(CRN) is a network of SUs.
We assume that there exists a single stationary PU trans-

mitter in the area of interest. Typical examples are TV base
stations and frequency division duplex (FDD) based cellular
base stations. The single PU assumption is reasonable because
such base stations are preplanned and their locations deter-
mined a priori in the cell-planning stage. The PU’s activities
are modeled as a two-state Markov process with ON and
OFF states [21], [22], [23]. ON and OFF states represent
the phases/durations in which the PU is active and inactive,
respectively. When the PU is in ON state, it transmits signals
with fixed transmission power PPU,ON , while it does not
transmit any signal in OFF state:

PPU =

{
PPU,ON the PU is active

0 the PU is inactive.
(1)

The sojourn time in ON/OFF state is assumed, as in [24], to

be exponentially distributed with means 1/μON and 1/μOFF ,

respectively.

The CRN under consideration is overlaid on the current

infrastructure-based cellular system. It consists of a single base

station (BS) and a set of end-users, called consumer premise
equipments (CPEs), which are associated with the BS. Thus,

one-hop wireless links can be established between the BS and

CPEs. Based on the current cellular system, we assume both

the BS and CPEs are stationary. We will initially consider a

single-cell CRN and will later cover a multi-cell CRN.

It is important to note that the PU is unaware of the CRN’s

existence. That is, the PU doesn’t care about the CRN’s

existence or operation since the PU has the license of, and

hence the right to use, the spectrum at any time. Consequently,

we assume there is no coordination between the PU and the

CRN. For spectrum sharing in a more general setting than

the digital TV band (i.e., 802.22), we will assume a CRN’s

reliance on spectrum sensing for its operation, instead of

relying solely on geo-location databases of the PU’ activities.

Note that assuming no coordination between the PU and the

CRN will yield more general and realistic solutions.

In order for the CRN to opportunistically exploit a channel

licensed by the PU, the BS schedules the sensing of the

channel during quiet periods (QPs), i.e., when SUs do not

transmit data. We assume that the length of a QP is short

enough, compared to the BS’s ON/OFF sojourn time, such that

no ON/OFF transition happens in the middle of a QP. During

a QP, all CRN nodes are not allowed to transmit any signal

while letting CPEs sense the channel. The CPEs report their

sensing results to the BS immediately after each QP. Based on

these sensing reports, the BS decides on the presence/absence

of PU signals and announces the decision to CPEs whether or

not to use the channel. In our model, the CRN considers only

a single spectrum band or channel. Therefore, when there is

a PU signal in the channel, the CRN’s data communication

must wait until the channel becomes idle. Fig. 1 shows the

information flows of cooperative spectrum sensing in a CRN.



Fig. 1. Information flows of cooperative spectrum-sensing.

Fig. 2. The frame structure in the CRN.

B. Sensing Model

Fig. 2 shows the structure of frames in the CRN, which are

scheduled by the BS for transmission. Each frame consists of

QP, sensing report slot, access-decision announcement slot,

and data transmission slot for uplink (UL) and downlink

(DL). The sensing results acquired by CPEs within a QP

(or distortions thereof) will be reported to the BS during the

subsequent sensing report slot. Based on these reports, the BS

makes a decision on the presence/absence of a PU signal and

then transmits it as 1-bit information in an access-decision

announcement slot. Data communications among the CRN

nodes take place in the data transmission slot. The idea of

allocating sensing report and access-decision announcement

slots after every QP is widely adopted in CRNs [18]. To reduce

SUs’ potential interference to the PU, we assume that the CRN

uses spread-spectrum for sensing reports and access-decision

announcements as in [25].

In each QP, all the CPEs sense the channel and each

collects M RSS samples via energy sensing. Energy sensing

has the advantage of simple design and fast response [24].

Energy sensing typically takes less than 1ms, whereas feature

sensing/detection takes much longer (e.g., 24.2ms for the field

sync detector [26]).
We use a widely adopted signal propagation model in which

the signal strength at a receiver at time t, Pr(t), is expressed
as [27]:

Pr(t) = g(t)Pt(t), (2)

where Pt(t) is the transmitted signal strength at time t and
g(t) the channel gain at time t between the transmitter and
the receiver. The channel gain is assumed to follow a random
distribution (e.g., Rayleigh or Rician distribution) with a prob-
ability density function (p.d.f.) f(μg, σ

2
g) when the transmitter

and the receiver are stationery. Then, the distribution of a

single RSS sample at CPE i, Si, can be expressed as

Si ∼
{
f
(
Ni, N

2
i

) H0 (no primary signal)

f
(
RPU,i +Ni, R

2
PU,i +N2

i

)
H1 (a primary signal exists),

(3)

where Ni is the average noise power at CPE i and RPU,i the

average received primary signal strength at CPE i when the PU

is active [16], [28]. RPU,i is the product of gPU,i and PPU,ON ,

where gPU,i is the average channel gain between the PU and

CPE i. Note that we use Ni, instead of the thermal noise power

No, since each CPE has its own noise figure. Noise power at

each CPE is assumed to be wide-sense stationary (WSS). The

CRN is assumed to use a wide band (e.g., over 5MHz) so that

the effect of multipath fading becomes negligible for frequency

diversity [28], [29].
When CPE i reports its sensing results, it sends a test

statistic Ri, not raw RSS samples. The test statistic is the
average of M RSS samples. Assuming that M is large enough,
we can apply the Central Limit Theorem (CLT) as in [30] so
that Ri may follow a Gaussian distribution:

Ri ∼

⎧⎪⎪⎨
⎪⎪⎩
N

(
Ni,

N2
i

M

)
H0

N
(
RPU,i +Ni,

R2
PU,i+N2

i

M

)
H1.

(4)

When the channel bandwidth is greater than 5MHz and the

length of a QP is 1ms, M becomes greater than 5× 103 with

the Nyquist sample rate, which is large enough to make the

CLT applicable [16].

C. Attack Model

A sensing data falsification attack makes cooperative spec-

trum sensing ineffective by reporting distorted sensing results

to the BS [15], [16]. The objective of an attack is to mislead

the BS to making wrong access-decisions, i.e., making the BS

believe that there is no PU signal when there is a PU signal

or making the BS believe that there is a PU signal although

there is no PU signal. Therefore, the success of an attack refers

to reaching a state in which the BS makes a wrong access-

decision as a result of the attack.

Before describing attacks to be considered, we first clarify

terms “faulty report” and “faulty CPE.” A faulty report from a

CPE contains a sensing test statistic distorted from the actual

sensing results. Even when the distortion is unintended (e.g.,

because the CPE is malfunctioning), we regard the report

as faulty since the reported result may degrade the sensing

performance. We use the term “faulty CPE” to indicate a CPE

which may generate one or more faulty reports. Malicious,

compromised, or malfunctioning CPEs are all faulty CPEs. A

faulty CPE sometimes reports correct sensing results and at

other times reports distorted/fabricated sensing results.

Based on the above definition, an attacker is defined as a

faulty CPE that generates a distorted/fabricated report. We also

consider malfunctioning CPEs that make erroneous sensing

reports. Obviously, malfunctioning CPEs are not affected

by “utilities” defined in game-theoretic attack prevention

schemes [18], [19]. We assume that attackers have the same



Fig. 3. The impact of the sensing data falsification attack on BSs with and
without an attack detector.

capability as honest CPEs except they determine the pres-

ence/absence of a PU signal before the BS’s announcement,

and they can falsify their sensing results.
An attack is defined as an act of making a faulty report.

Attacks disrupt the BS’s decision in two different ways. When
a faulty CPE balloons the test statistic in its report, the BS will
incorrectly conclude that there is a PU signal in the channel
even though there is not, thus increasing the false-positive rate.
When a faulty CPE intentionally lowers the test statistic in its
report, the BS will incorrectly conclude that there is no PU
signal in the channel even though there is, thus increasing the
false-negative rate. Thus, the sensing report of CPE i in the
presence of attacks can be expressed as

R̄i ∼
⎧⎨
⎩N (Ni +Di,

Ni
2

M
) H0

N (RPU,i +Ni +Di,
R2

PU,i+N2
i

M
) H1,

(5)

where Di is the amount of deviation from the actual test

statistic of the energy detector. We call Di the attack strength.

Attackers can change Di in each QP. We can also regard a

report with Di = 0 (accordingly, R̄i = Ri) as a special case

when there is no sensing data falsification attack.

When distorted sensing results are reported to the BS, the

probability of the BS making a wrong decision increases.

The impact of the sensing data falsification attack on the

access-decision (with and without an attack detection module)

is depicted in Fig. 3. In this paper, our defense mechanism

verifies the integrity of reports, rather than verifying that of

reporting CPEs. That is, it detects faulty reports, not faulty

CPEs. As long as a CPE’s report is an honest one, the sensing

function of the CPE is considered normally operating even if

the CPE was faulty. Therefore, the BS utilizes the report (as

genuine) for its access-decision.

IV. THE PROPOSED APPROACH

A. Nature of CPEs

Before developing a response to the sensing data falsifi-

cation attack, let’s look closely at the nature of cooperative

spectrum sensing with CPEs. Recall that each CPE performs

spectrum sensing with energy detection during a QP and

reports the sensing result to the BS immediately after the

QP. Since CPEs communicate via the BS and the deadline

of sensing reports is relatively tight, we can assume CPEs

are independent during a time span of spectrum sensing and

Fig. 4. Spectrum sensing from a CPE’s perspective: test statistic measured
at the CPE is the sum of signals from the PU and the BS. Note that the CPE
does not know each signal separately.

reporting. That is, from the beginning of a QP to the end

of the following report, no information is exchanged among

CPEs. Therefore, malicious CPEs cannot cooperate during

this time span unless they have a side channel. Since a CPE

cannot decode the PU signal, it can only get the energy

information, not the source of the signal when sensing the

channel. Therefore, without cooperation from the BS or other

CPEs, a CPE alone cannot verify that the sensed signal was

indeed from the PU.

Considering these characteristics of CPEs, we propose

PUET that detects faulty reports by evaluating the sensing

reports. The design rationale behind PUET is that the BS can

acquire as much information of Ri as possible by contributing

to the value of Ri. Specifically, the BS transmits PUET signals
during every QP. PUET signals are noise-like and with certain

strengths. Since the BS knows the transmission power of its

previous PUET signals, it will expect that the sensing reports

from CPEs should have a certain level of correlation with

PUET signals.

In the presence of the PUET signal, the received signal

during a QP at a CPE is the sum of signals from the PU and

the BS. Thus, the RSS measured at the CPE is the sum of

signal strengths received from the PU and the BS. However,

since the CPE cannot distinguish signals from the PU and

those from the BS, it cannot infer the portion of the RSS

contributed by the PU or the BS. Fig. 4 illustrates the nature

of spectrum sensing from a CPE’s perspective when there is

a PUET signal in the channel.

A test signal may sometimes interfere with PUs’ com-

munications. However, since the sensing result should be

reported over the wireless channel, interference to the PU is

unavoidable. That is, a certain degree of PU interference is

inevitable when applying cooperative spectrum sensing. We

can reduce the amount of interference by limiting the PUET

signal power.

B. Problem Statement

The main objective of PUET is to detect sensing data

falsification attacks with a high probability, thus reducing



Fig. 5. PUET’s building blocks residing in the BS.

both false-positive and false-negative rates. As shown in the

previous section, our scheme detects faulty reports, not faulty

CPEs. This is reasonable since the direct cause of a wrong

access-decision is a faulty report itself.
The BS is the one who is responsible for detecting attacks.

In order to detect attacks, the BS controls the power of PUET

signal in each QP. The transmission power should be carefully

selected so that CPEs cannot determine the received primary

signal strengths. Our problem is stated as follows.

Objective:
Maximize the attack detection probability.

Condition/constraints:
CPEs cannot determine the received primary signal

strengths.

The attack false-alarm probability is under a limit.

Control parameter:
PUET signal power in each QP.

C. PUET Framework
PUET consists of the following three building blocks:

• Interference signature generator: determines the trans-

mission power of the PUET signal in each QP.

• Parameter estimator: estimates parameters of RSS in-

cluding the average channel gains between the BS and

CPEs gBS,i and received PU signal strength Ri
PU,ON for

all i.
• Attack detector: detects and filters out abnormal sensing

reports based on the correlation between the reported data

and the interference signature.

These three components closely interact with one another

and form our secure sensing system. Fig. 5 shows the PUET

building blocks at the BS interacting with each other. Note

that PUET tests the validity of sensing reports from each CPE

separately. That is, the sensing reports from other CPEs do

not affect checking of the validity of a CPE’s sensing report.

Therefore, PUET works robustly even when the number of

faulty CPEs is much larger than the number of honest CPEs.

V. DETECTION OF FALSIFIED SENSING REPORTS VIA

PUET

A. Sequential Testing of Sensing Reports
We first study the basic structure of sequential testing which

detects the presence of non-zero attack strength Di. Let’s

Fig. 6. A representation of QPs and testing window in the time domain.

consider a temporally-ordered sequence of QPs. Then, the
actual test statistic Ri[n] of CPE i at QP n and its reported
value, R̄i[n], can be expressed as

Ri[n] ∼ N (RBS,i[n] +RPU,i[n] +Ni,

R2
BS,i[n] +R2

PU,i[n] +N2
i

M
)

∼ N (gBS,iPBS [n] +RPU,i[n] +Ni,

(gBS,iPBS [n])
2 +R2

PU,i[n] +N2
i

M
)

∼ N (
gBS,iPBS [n] +RPU,i[n] +Ni, σ

2
i [n]

)
(6)

R̄i[n] ∼ N (gBS,iPBS [n] +RPU,i[n] +Ni +Di[n],

(gBS,iPBS [n])
2 +R2

PU,i[n] +N2
i

M
)

∼ N (
gBS,iPBS [n] +RPU,i[n] +Ni +Di[n], σ

2
i [n]

)
(7)

RPU,i[n] =

{
0 H0 at n

Ri
PU,ON H1 at n,

(8)

assuming that CPE i adds the attack strength Di[n] at QP

n. RBS,i[n] is the received PUET signal strength at CPE i,
PBS [n] the transmission power of PUET signal, and gBS,i the

average channel gain between the BS and CPE i. Again, we

assume that the multipath fading effect becomes negligible in

a wide-band energy detector.
The BS transmits test signals over three consecutive QPs,

QPn−2, QPn−1, and QPn, as illustrated in Fig. 6. We call this
span of time a testing window. The length of a testing window
does not need to be 3, but we use 3 QPs for testing since it
represents the simplest case, i.e., at least 3 QPs are required for
the test. Upon receiving a sensing report from the CPE at QPn,
the BS sets the testing window to [QPn−2, QPn]. At QPn+1,
the moving testing window is likewise set to [QPn−1, QPn+1].
The BS transmits the PUET signal with a random amount of
power at every QP. Let the BS transmit the PUET signal with
power PBS [n−2], PBS [n−1], and PBS [n] at QPn−2, QPn−1,
and QPn, respectively. Then, the actual test statistic values and
CPE i’s reported values at QPn−2, QPn−1, and QPn will be:

Ri[n− 2] ∼ N (
gBS,iPBS [n− 2] +RPU,i[n− 2] +Ni,

σ2
i [n− 2]

)
Ri[n− 1] ∼ N (

gBS,iPBS [n− 1] +RPU,i[n− 1] +Ni,

σ2
i [n− 1]

)
Ri[n] ∼ N (

gBS,iPBS [n] +RPU,i[n] +Ni,

σ2
i [n]

)
(9)



R̄i[n− 2] ∼ N (
gBS,iPBS [n− 2] +RPU,i[n− 2] +Ni

+Di[n− 2], σ2
i [n− 2]

)
R̄i[n− 1] ∼ N (

gBS,iPBS [n− 1] +RPU,i[n− 1] +Ni

+Di[n− 1], σ2
i [n− 1]

)
R̄i[n] ∼ N (

gBS,iPBS [n] +RPU,i[n] +Ni

+Di[n], σ
2
i [n]

)
. (10)

B. Estimation of Parameters

In order for the BS to detect attacks, it first needs to estimate

the test statistic parameters including gBS,i and Ri
PU,ON .

Then, by using the thus-estimated parameters, the BS decides

on the presence of non-zero Di.
Let’s look at the actual test statistic values derived in (9).

Note that the average channel gain gBS,i is used in all three
distributions. Since test statistic values in a testing window are
assumed independent of each other, we can derive:

ġBS,i[n− 1] ≡ Ri[n− 1]−Ri[n− 2]

PBS [n− 1]− PBS [n− 2]

∼ N
(
gBS,i +

RPU,i[n− 1]−RPU,i[n− 2]

PBS [n− 1]− PBS [n− 2]
,

σ2
i [n− 1] + σ2

i [n− 2]

(PBS [n− 1]− PBS [n− 2])2

)
(11)

ġBS,i[n] ≡ Ri[n]−Ri[n− 1]

PBS [n]− PBS [n− 1]

∼ N
(
gBS,i +

RPU,i[n]−RPU,i[n− 1]

PBS [n]− PBS [n− 1]
,

σ2
i [n] + σ2

i [n− 1]

(PBS [n]− PBS [n− 1])2

)
. (12)

Again, the average term of each distribution is in the form

of gBS,i +
RPU,i[k]−RPU,i[k−1]
PBS [k]−PBS [k−1] , k ∈ {n, n − 1}. Since gBS,i

is fixed, the average of the distribution varies as PBS [k]
and RPU,i[k] change. When RPU,i[k] = RPU,i[k − 1], the
average term becomes gBS,i. However, the BS does not have
any information of RPU,i[k] at this step, although it has the
information of PBS [k]. So there is no guarantee that the
average term will become gBS,i. Instead, we derive

g̈BS,i[n] ≡ ġBS,i[n]− ġBS,i[n− 1]

∼ N
(
RPU,i[n]−RPU,i[n− 1]

PBS [n]− PBS [n− 1]
− RPU,i[n− 1]−RPU,i[n− 2]

PBS [n− 1]− PBS [n− 2]
,

σ2
i [n]

(
1

PBS [n]− PBS [n− 1]

)2

+ σ2
i [n− 1]

(
1

PBS [n]− PBS [n− 1]
+

1

PBS [n− 1]− PBS [n− 2]

)2

+σ2
i [n− 2]

(
1

PBS [n− 1]− PBS [n− 2]

)2
)

∼ N (
μ̈i[n], σ̈

2
i [n]

)
. (13)

Note that σ2
i [n] decreases as the number of signal samples M

increases from (6). Thus, σ̈2
i [n] can be reduced significantly

by increasing M . For example, when the channel bandwidth

is greater than 5MHz, M becomes over 5×103 if CPEs sense

the channel at the Nyquist rate for 1ms.
At each QPk, RPU,i[k] can have one of two values as

expressed in (8). Thus, there are eight cases of received
primary signal strengths at three QPs in the testing window,
{RPU,i[n− 2], RPU,i[n− 1], RPU,i[n]}, as shown in Table I.
The table also shows μ̈2

i [n] in each case. Note that
∣∣μ̈2

i [n]
∣∣ can

TABLE I
8 POSSIBLE CASES OF THE PU ACTIVITY AND THE CORRESPONDING μ̈i[n]

VALUE IN THE TESTING WINDOW.

Case RPU,i[n− 2] RPU,i[n− 1] RPU,i[n]

0 0 0 0
1 0 0 Ri

PU,ON

2 0 Ri
PU,ON 0

3 0 Ri
PU,ON Ri

PU,ON

4 Ri
PU,ON 0 0

5 Ri
PU,ON 0 Ri

PU,ON

6 Ri
PU,ON Ri

PU,ON 0

7 Ri
PU,ON Ri

PU,ON Ri
PU,ON

Case μ̈i[n]

0 0

1 Ri
PU,ON

(
1

PBS [n]−PBS[n−1]

)
2 −Ri

PU,ON

(
1

PBS [n]−PBS[n−1]
+ 1

PBS [n−1]−PBS[n−2]

)
3 −Ri

PU,ON

(
1

PBS [n−1]−PBS[n−2]

)
4 Ri

PU,ON

(
1

PBS [n−1]−PBS[n−2]

)
5 Ri

PU,ON

(
1

PBS [n]−PBS[n−1]
+ 1

PBS [n−1]−PBS[n−2]

)
6 −Ri

PU,ON

(
1

PBS [n]−PBS[n−1]

)
7 0

have one of the following four values:

∣∣μ̈2
i [n]

∣∣ =
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0∣∣∣Ri
PU,ON

(
1

PBS [n]−PBS [n−1]

)∣∣∣∣∣∣Ri
PU,ON

(
1

PBS [n]−PBS [n−1]
+ 1

PBS [n−1]−PBS [n−2]

)∣∣∣∣∣∣Ri
PU,ON

(
1

PBS [n−1]−PBS [n−2]

)∣∣∣ .
(14)

Based on this, one of the following cases will hold:

• When
∣∣μ̈2

i [n]
∣∣ = 0, RPU,i[k] value should be identical

during three QPs in the testing window. We cannot

estimate Ri
PU,ON at this point.

• When
∣∣μ̈2

i [n]
∣∣ �= 0, RPU,i[k] value changes during three

QPs in the testing window. Ri
PU,ON should be one of the

following three values:

– |(g̈BS,i[n]) (PBS [n]− PBS [n− 1])|
–

∣∣∣(g̈BS,i[n])
(

(PBS [n]−PBS [n−1])(PBS [n−1]−PBS [n−2])
PBS [n]−PBS [n−2]

)∣∣∣
– |(g̈BS,i[n]) (PBS [n− 1]− PBS [n− 2])|.

Recall that the testing window is set to [QPn−2, QPn] at

QPn. The testing window moves forward with time, and hence,

in every testing window, three candidates for Ri
PU,ON are

inferred by the above process. By keeping track of these values

calculated at each testing window, the BS can estimate the

common value as Ri
PU,ON .

C. Filtering out Falsified Sensing Reports

We now analyze the reported (not true) test statistic.
Since the sensing report has the attack strength component



Di[k], k ∈ {n− 2, n− 1, n}, the BS gets:

¯̇gBS,i[n− 1] ≡ R̄i[n− 1]− R̄i[n− 2]

PBS [n− 1]− PBS [n− 2]

∼ N
(
gBS,i +

RPU,i[n− 1]−RPU,i[n− 2]

PBS [n− 1]− PBS [n− 2]

+
Di[n− 1]−Di[n− 2]

PBS [n− 1]− PBS [n− 2]
,

σ2
i [n− 1] + σ2

i [n− 2]

(PBS [n− 1]− PBS [n− 2])2

)
(15)

¯̇gBS,i[n] ≡ R̄i[n]− R̄i[n− 1]

PBS [n]− PBS [n− 1]

∼ N
(
gBS,i +

RPU,i[n]−RPU,i[n− 1]

PBS [n]− PBS [n− 1]

+
Di[n]−Di[n− 1]

PBS [n]− PBS [n− 1]
,

σ2
i [n] + σ2

i [n− 1]

(PBS [n]− PBS [n− 1])2

)
(16)

¯̈gBS,i[n] ≡ ¯̇gBS,i[n]− ¯̇gBS,i[n− 1]

∼ N
(
RPU,i[n]−RPU,i[n− 1]

PBS [n]− PBS [n− 1]
− RPU,i[n− 1]−RPU,i[n− 2]

PBS [n− 1]− PBS [n− 2]

+
Di[n]−Di[n− 1]

PBS [n]− PBS [n− 1]
− Di[n− 1]−Di[n− 2]

PBS [n− 1]− PBS [n− 2]
,

σ2
i [n]

(
1

PBS [n]− PBS [n− 1]

)2

+ σ2
i [n− 1]

(
1

PBS [n]− PBS [n− 1]
+

1

PBS [n− 1]− PBS [n− 2]

)2

+σ2
i [n− 2]

(
1

PBS [n− 1]− PBS [n− 2]

)2
)

∼ N (
¯̈μi[n], σ̈

2
i [n]

)
(17)

which are different from ġBS,i[n− 1], ġBS,i[n], and g̈BS,i[n].
Equation (17) indicates that the distribution of ¯̈gBS,i[n] also
follows a Gaussian distribution. We thus set the lower and
upper thresholds on the acceptable ¯̈gBS,i[n] value to determine
if reports in the testing window are faulty. Then, with a 100×
(1− ε)% confidence, ¯̈gBS,i[n] should satisfy

Φ

(∣∣ ¯̈μi[n]− μ̈i[n]
∣∣

σ̈i[n]

)
> 1− ε, (18)

where Φ(x) = 1√
2π

∫ x

−∞ e−t2/2 dx is the cumulative distri-

bution function (CDF) of a standard normal distribution. It is
straightforward to derive the following equation from (18):∣∣∣∣ Di[n]−Di[n− 1]

PBS [n]− PBS [n− 1]
− Di[n− 1]−Di[n− 2]

PBS [n− 1]− PBS [n− 2]

∣∣∣∣ < σ̈i[n]Q
−1 (ε) ,

(19)

where Q (x) = 1 − Φ(x) is the Q-function. From (19), we

notice that
∣∣∣ Di[n]−Di[n−1]
PBS [n]−PBS [n−1] − Di[n−1]−Di[n−2]

PBS [n−1]−PBS [n−2]

∣∣∣ should

approach 0 as σ̈2
i [n] decreases. Otherwise, the attack should

be detected. Therefore, faulty CPEs have an incentive to

decrease
∣∣∣ Di[n]−Di[n−1]
PBS [n]−PBS [n−1] − Di[n−1]−Di[n−2]

PBS [n−1]−PBS [n−2]

∣∣∣ in order to

evade detection. However, from the perspective of CPEs,

PBS [k], k ∈ {n − 2, n − 1, n} are not known although they

have the information of Di[k], k ∈ {n − 2, n − 1, n}. If we

assume that the attack strength Di[k] cannot be correlated with

PBS [k], faulty reports can satisfy (19) only when Di[k] is

Fig. 7. A sequence of test statistical values at CPE i after subtracting the
power of PUET signals.

Fig. 8. The topology of our testbed: USRP2 nodes are placed at different
locations on the fourth floor of our department building.

fixed. When Di[k] is fixed, the BS can easily estimate gBS,i

values from (15) and (16) since Di[k]−Di[k − 1] should be

0. Thus, RBS,i[k] = gBS,iPBS [k] can also be estimated.

By observing the sequence of R̄i[n] − gBS,iPBS [n], the

BS may obtain the plot in Fig. 7 with Di[k] = Di fixed.

Since each CPE has its own noise figure, one can regard the

attack strength Di as a component of noise sources. Thus,

the BS decides on the presence/absense of PU signals by only

checking RPU,i[n] term in the sequence of test statistic values.

VI. PERFORMANCE EVALUATION

A. Testbed Setup

To evaluate the performance of PUET, we constructed

a testbed with Universal Software Radio Peripheral 2

(USRP2) [31] in our Department building. We deployed 5

USRP2 nodes as in the topology shown in Fig. 8. The testbed

consists of a PU (denoted as circled P in the figure), a BS

(denoted as circled B in the figure), and 3 CPEs (denoted as

circled C in the figure).

The USRP2 nodes are equipped with a set of WBX daugh-

terboards and VERT900 omni-directional antennas. WBS

daughterboards and the VERT900 antennas support 50MHz–

2.2GHz and 824–960MHz bands, respectively [31]. Each

USRP2 node is controlled by GNU Radio (version 3.6.2) [32]

an open-source software development toolkit that provides

signal processing blocks for SDR implementation.

We use the benchmark OFDM encoding/decoding module

in GNU Radio to generate a PUET signal. The testbed

operates on a 6MHz-wide band centered at 907MHz. From our

experiments, we found that the power spectral density (PSD)

of the transmitted signal is not constant over the considered

band (i.e., 904–910MHz). Instead, the PSD increases as the

frequency approaches the band’s center frequency, creating

subchannel dependency. Therefore, we set the bandwidth of

the transmitter twice wider and use only one half of the



TABLE II
SYSTEM PARAMETERS USED IN EXPERIMENTS

Parameter Value Comments

B 6MHz Channel bandwidth
fc 907MHz Center frequency of the channel
TP 1s Sensing period
TI 1ms Sensing duration
M 6× 103 # of signal samples per sensing

PPU 15.56dBm Transmission power of the PU
PBSmax 13.98dBm Max transmission power of the BS
PBSmin

9.54dBm Min transmission power of the BS
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Fig. 9. Attack detection performance under random attacks: detection
performance increases significantly as Ntest increases.

subchannel to generate a PUET signal. This makes the PSD of

the PUET signal flatter over the channel and also makes the

transition more instantaneous in frequency. The measurements

were taken for 1800 seconds in each scenario. Table II lists

the system parameters used in our experiments.

B. Attack Detection Performance

As a first line of defense, the attack detector in PUET must

be able to correctly identify faulty reports and filter them out

before making a final decision on the presence of the PU.

Fig. 9 shows the performance of PUET while varying the

number of testing windows, Ntest, for the identification of

faulty reports. That is, PUET determines the existence of a

non-zero attack strength by using Ntest consecutive testing

windows. Only when reports in Ntest consecutive testing

windows show a consistent Ri
PU,ON value, PUET regards the

reports as not faulty. On the other hand, when PUET detects

an inconsistency in the estimated Ri
PU,ON at least once in

Ntest tests, it concludes that there is an attack with non-zero

attack strength, and marks the report as faulty.

The CPE generates a faulty report with randomly-generated

attack strengths in each QP. The attack strength follows a

Gaussian distribution with mean 0 and standard deviation σAtt.

The figure shows that the detection performance increases as

σAtt increases in all cases. Especially when Ntest = 60, the

detection probability approaches 1 as σAtt gets higher than

0.5dB. Note that the probability of false alarm, i.e., PUET

mistakenly marks an honest report as faulty, is as low as 0.05
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Fig. 10. Detection performance under attacks with the ON/OFF strength
model.

even when Ntest = 60. Therefore, it is desirable to use 60

consecutive testing windows for detection of faulty reports.

The detection performance also depends on the pattern of

attack strength. In order to mislead the BS about the PU’s

presence/absence, a CPE may also model the attack strength

as an ON/OFF alternating renewal process. Fig. 10 shows the

detection performance under attacks with the ON/OFF strength

model. We vary the ON/OFF sojourn time, TON/OFF , from

1 to 10s. The figure shows that the detection performance in-

creases as TON/OFF decreases, because the larger the sojourn

time, the more zero μ̈i[n] occur in Ntest testing windows. As

mentioned earlier, PUET cannot detect faulty reports when

Di[n] is fixed. Thus, when TON/OFF is larger than Ntest,

PUET cannot detect faulty reports. Therefore, we again need

to set Ntest high enough.

C. PU Detection Performance

By using PUET, attacks can be detected with a high

confidence (e.g., QD approaches 1 when Ntest = 60 and σAtt

is greater than 0.5dB). We now evaluate the performance of

detecting PU signals. The BS determines the presence/absense

of PU signals by collecting sensing reports that are not filtered

out by PUET. As a baseline data-fusion scheme, we use the

majority rule for this experiment.

Fig. 11 shows the performance of detecting PU signals

with and without PUET: “MAJ” represents the majority-rule-

based data-fusion, and “PUET” represents application of the

majority rule after PUET filtered out attacks separately. In

this scenario, each CPE independently generates faulty reports

with 0.5dB ON/OFF attack strengths. From the figure, we can

easily confirm that the detection probability decreases as the

number of attackers (i.e., CPEs with faulty reports) increases

since the number of faulty reports also affects the majority

decision. Especially when the number of attackers is greater

than a half number of the total CPEs, QPU
D of MAJ becomes

lower than 0.2. However, QPU
D of PUET is over 0.8 even when

there are two attackers. This is because PUET fusions sensing

data after filtering out attacks separately. Similarly, QPU
FA or

PUET is kept under 0.11 whereas that of MAJ is not.
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Fig. 11. PU detection performance under ON/OFF attacks: PUET correctly
determines the presence/absence of PU signals even when two CPEs provide
faulty reports.

VII. CONCLUSION

The design of reliable distributed sensing for opportunistic

spectrum use is a major research challenge in DSA networks.

To meet this challenge, we proposed PUET that detects the

falsification of sensing results. The key idea behind PUET

is that CPEs can acquire only RSSs, not the information

of the signal source. To realize this idea, the BS transmits

a test signal when CPEs sense the channel. Since CPEs

cannot distinguish a test signal from a PU signal, the BS

can detect sensing data falsification attacks by checking if the

reported sensing data reflects the test signals it transmitted.

In order to check the validity of sensing reports, the BS

tests three consecutive sensing reports in a testing window.

By checking the consistency of estimation of the received

primary signal strength, the BS determines if there exist non-

zero attack strengths in the sensing reports. We have evaluated

the performance of attack detection with an indoor USRP2-

based testbed. By conducting experiments on the testbed, we

have confirmed that PUET detects attacks with both random

and ON/OFF attack strengths. We have also found that PUET

correctly detects PU signals even when more than a half of

reports are faulty.
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