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DETAILS OF SECTION 2.2
The technique in [4] uses the notion of interference [27].
The interference to τk in an interval of [a, b) (denoted by
Ik(a, b)) represents the cumulative length of all intervals
in [a, b) such that a job of τk is ready to execute but
cannot be executed due to the execution of other ready
jobs. Also, the interference of a task τi to another task τk

in an interval of [a, b) (denoted by Ik←i(a, b)) represents
the cumulative length of all intervals in [a, b) such that
a job of τi executes but a job of τk cannot, although it is
ready for execution. Since a job of τk does not execute
in a given time slot only when m other jobs execute,
the following equation holds under any global work-
conserving algorithm [27]:

Ik(a, b) =

P
τi∈Φ−{τk}

Ik←i(a, b)

m
. (9)

Then, a property regarding Ik(a, b) and Ik←i(a, b) is
derived, which is useful for reducing the pessimism in
a schedulability analysis.

Lemma 8 (Lemma 4 in [27]): The following inequality
holds for any global work-conserving algorithm:

Ik(a, b) ≥ x ⇐⇒
X

τi∈Φ−{τk}

min
“
Ik←i(a, b), x

”
≥ m · x. (10)

Proof: The proof can be found from [27], but is
outlined here for completeness. A ready, unfinished job
of τk does not execute in a given time slot when jobs of m
other tasks execute (i.e., interfere with the job of τk) in the
slot. Therefore, if we focus on the cumulative length of x
over all intervals in [a, b) such that any job of τk is ready
to execute but it cannot, each task’s interference with τk

is upper-bounded by x, and the sum of all other tasks’
interferences with τk should be no less than m · x. The
opposite direction can be proved by using the definition
of Ik(a, b) and Ik←i(a, b).

Using the concept of interference and Lemma 8, the
technique in [4] calculates the maximum duration be-
tween the release and the completion of any job of task
τk, i.e., called the response time of τk. We do this by
computing the maximum amount of τi’s interference
with τk in an interval of length l starting from the

release of any job of τk, which is denoted by I∗k←i(l),
and formally expressed as:

I
∗
k←i(l) � max

t| the release time of any job of τk

Ik←i(t, t + l). (11)

We define I∗k←i(l) only for 0 ≤ l ≤ Dk, since we are
interested in meeting the timing requirements.
If the sum of the execution time of τk and the maxi-

mum interference to τk in an interval of length l starting
from the release of any job of τk is no greater than l,
any job of τk finishes its execution within l time units
after its release. I∗k←i(l) is used to express this, leading
to the following schedulability test for fully-preemptive
scheduling algorithms.
Lemma 9 (Theorem 6 in [4]): When a task set Φ is

scheduled by a fully-preemptive algorithm, an upper-
bound of the response time of τk ∈ Φ is Rk = Rx

k

such that Rx+1

k ≤ Rx
k holds in the following expression,

starting from R0
k = Ck :

R
x+1
k ← Ck +

—
1

m

X
τi∈Φ−{τk}

min
“
I
∗
k←i(R

x

k), Rx

k −Ck + 1
”�

.

(12)

Then, if Rk ≤ Dk holds for all τk ∈ Φ, Φ is schedulable
by the fully-preemptive algorithm.
Note that the iteration of Eq. (12) for τk halts if Rx

k >
Dk, meaning that τk is deemed unschedulable.

Proof: The proof is given in [4], and the proof
structure is the same as that of Eq. (4) in our new
schedulability test of MPN scheduling algorithms to be
presented in Theorem 1 in Section 4.
Note that Eq. (12) is a response time analysis framework
for a preemptive task since all tasks are preemptive
under any fully-preemptive scheduling algorithm.
While the schedulability analysis in Lemma 9 can

be applied to any preemptive (global work-conserving)
scheduling algorithm, the main difficulty is to calculate
I∗k←i(l) for a given scheduling algorithm. Calculating
the exact I∗k←i(l) is generally intractable, and hence, the
upper-bounds of I∗k←i(l) are computed. Note that when
the upper-bounds are calculated, we assume that there
is no deadline miss. This is because the schedulability
test in [4] aims to find necessary conditions for the
“first” deadline miss, as most tests do. Therefore, we
will assume this for derivation of all upper-bounds of
I∗k←i(l) in the rest of the paper.
The schedulability test in [4] calculates two upper-

bounds of I∗k←i(l): (i) the one for any scheduling
algorithm (regardless of preemptive/non-preemptive
scheduling) and (ii) the other for specific preemptive
scheduling algorithms (e.g., fp-EDF and fp-FP). To de-
velop (i), the test identifies a situation in which the
amount of execution of jobs of given τi in a given interval
is maximized (in Theorem 4 in [4]). Here, we use the
notion of task τi’s slack (denoted by Si) that represents
the minimum interval length between the finishing time
and the deadline of any job of τi; in other words, any job
of τi finishes its execution at least Si time units ahead of
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Fig. 2. An execution pattern of jobs of τi that maximizes
the amount of execution of τi’s jobs in an interval starting
at t

its deadline. We will describe how to calculate Si later
in this section.
Fig. 2 shows an execution pattern of τi’s jobs that max-

imizes the amount of execution in an interval starting
at t. The first job of τi is a carry-in job, and starts its
execution at t and ends at t + Ci. Here t + Ci −Di + Si

is the job’s release time, i.e., the first job starts and
finishes its execution as late as possible. Jobs of τi are
then released and scheduled as soon as possible. In this
case, the number of jobs fully executed in [t, t + l) is
calculated as:

Ni(l) =

—
l + Di − Si − Ci

Ti

�
. (13)

Then, the maximum amount of execution of jobs of τi

in [t, t + l) is calculated as (Eq. (8) in [4]):

Wi(l) = Ni(l) · Ci + min
“
Ci, l + Di − Si − Ci −Ni(l) · Ti

”
.

(14)

While it is guaranteed under any scheduling algo-
rithm (regardless of preemptive/non-preemptive) that
I∗k←i(l) ≤ Wi(l) for any τk, τi and l, we can obtain an-
other upper-bound of I∗k←i(l) if we consider the property
of a given scheduling algorithm.
Under fp-EDF, earlier-deadline jobs have higher pri-

orities (under EDF), and a job can be interfered only by
higher-priority jobs (under the fully-preemptive policy).
The amount of execution of a preemptive task τi’s jobs
with higher priorities than a task τk’s job is maximized
when the deadlines of a job of τi and the τk’s job are
aligned as shown in Fig. 3. The number of body jobs
of τi in an interval between the release time and the
deadline of the τk’s job is then calculated as

Bk←i =

—
Dk + Ti −Di

Ti

�
. (15)

Then, the maximum amount of execution of jobs of a
task τi with higher priorities than a job of a task τk in
an interval between the release and the deadline of the
τk’s job is calculated as (Eq. (9) in [4]):

Ek←i = Bk←i · Ci + min
“
Ci, max

`
0, Dk −Bk←i · Ti − Si

´”
.

(16)

Finally, I∗k←i(l) under fp-EDF is upper-bounded by
min

(
Wi(l), Ek←i

)
for any (τi, τk) pair and 0 ≤ l ≤ Dk,

Fig. 3. An execution pattern of τi’s jobs that maximizes
the amount of execution of higher-priority jobs of τi than
a job of τk in an interval between the release and the
deadline of the τk ’s job under fp-EDF

so the following inequality holds under fp-EDF, for all
τk ∈ Φ and 0 ≤ l ≤ Dk:

X
τi∈Φ−{τk}

min
“
I
∗
k←i(l), l − Ck + 1

”
in Eq. (12)

≤
X

τi∈Φ−{τk}

min
`
Wi(l), Ek←i, l −Ck + 1

´
. (17)

Now, we calculate an upper-bound of I∗k←i(l) under
fp-FP. Different from fp-EDF, fp-FP maintains task-level
priorities; if the priority of τi is higher (lower) than that
of τk, a job of τi can (cannot) interfere with a job of τk,
regardless of their job parameters. Therefore, Ik←i(l) is
upper-bounded by Wi(l) and zero, respectively when τi’s
priority is higher and lower than τk. Using the upper-
bounds, the following inequality holds under fp-FP, for
all τk ∈ Φ and 0 ≤ l ≤ Dk:

X
τi∈Φ−{τk}

min
“
I
∗
k←i(l), l − Ck + 1

”
in Eq. (12)

≤
X

τi∈HP(τk)

min
`
Wi(l), l − Ck + 1

´
. (18)

Then, to check the schedulability of a given task set
Φ under fp-EDF or fp-FP, we use Lemma 9 with the
LHS of Eq. (17) or (18) replaced with the RHS. However,
one may wonder how to apply the slack Si when we
compute Wi(l) and Ek←i. Depending on whether the
slacks are utilized or not, we have two schedulability
tests for both fp-EDF and fp-FP. The first one is to apply
Lemma 9 with the upper-bounds in Eq. (17) or (18) only
once with Si = 0, ∀τi ∈ Φ. For a tighter but higher time-
complexity analysis, we briefly summarize Section 4.3 of
[4]. The basic idea is to repeat the application of Lemma 9
with the upper-bounds in Eq. (17) or (18); initially, Si is
set to 0 for all τi ∈ Φ, and at each iteration Si is updated
by Di − Ri for all τi|Ri ≤ Di ∈ Φ. The iteration halts
when there is no more update for any Si of τi ∈ Φ. We
call the two schedulability tests simple and improved tests,
and they correspond to Theorem 6 with Eqs. (4) and (5),
and Theorem 6 with Eqs. (8) and (9) in [4], respectively.
The total time-complexity of the simple and improved

tests is then O(n2 ·maxτi∈Φ Di) and O(n3 ·maxτi∈Φ D2
i ),

respectively [4].
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(a) m = 16, constrained deadline task sets
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(b) m = 16, implicit deadline task sets

Fig. 4. Generated task sets

DETAILS OF SECTION 6.1
There are three input parameters: (a) the task type
(constrained or implicit deadlines), (b) the number of
cores (m = 2, 4, 8 and 16), and (c) individual task uti-
lization (Ci/Ti) distributions (bimodal with parameter:6

0.1, 0.3, 0.5, 0.7, or 0.9, or exponential with parameter:7

0.1, 0.3, 0.5, 0.7, or 0.9). For each task, Ti is uniformly
distributed in [1, Tmax = 1000], Ci is chosen based on
the given bimodal or exponential parameter, and Di is
uniformly distributed in [Ci, Ti] for constrained deadline
task systems or Di is equal to Ti for implicit deadline
task systems.
For each combination of (a), (b) and (c), we repeat the

following procedure and generate 10,000 task sets, thus
resulting in 100,000 task sets for any given m and the
type of task sets.
1. Initially, we generate a set of m + 1 tasks.
2. In order to exclude unschedulable sets, we check

whether the generated task set can pass a necessary
feasibility condition [28].

3. If it fails to pass the feasibility test, we discard the
generated task set and return to Step 1. Otherwise,
we include this set for evaluation. Then, this task
set serves as a basis for the next new set; we create
a new set by adding a new task into an already
created and tested set, and return to Step 2.

Then, Fig. 4 shows the total number of generated
task sets with different task set utilization (i.e., Usys �∑

τi∈Φ
Ci/Ti) in [Usys − 0.01 ·m, Usys + 0.01 ·m). Among

the generated task sets, Figs. 5 and 6 to be presented
plot the number of task sets proven schedulable by
each schedulability analysis, with task set utilization in
[Usys − 0.01 ·m, Usys + 0.01 ·m). In all figures including

6. For a given bimodal parameter p, a value for Ci/Ti is uniformly
chosen in [0, 0.5) with probability p, and in [0.5, 1] with probability
1− p.
7. For a given exponential parameter 1/λ, a value for Ci/Ti is chosen

according to an exponential distribution whose probability density
function is λ · exp(−λ · x).

TABLE 4
Statistics according to the number of tasks for

constrained task sets with m = 4 and 1.5 ≤ Usys ≤ 2.0.

# of tasks 5,6 7,8 9,10 11,12 13,14 15,16
mpn-EDF−fp-EDF

fp-EDF (%) 15.5 34.5 48.5 33.3 21.1 18.2
# of average 1.10 1.13 1.11 1.05 1.0 1.0

non-preemptive tasks

Figs. 4, 5 and 6, we selectively choose m values since the
task set generation or simulation results with different
values of m have similar behaviors.

DETAILS OF SECTION 6.2
Fig. 5 illustrates the average schedulability results under
EDF with different preemption policies, which were
discussed in Section 6.2.
To show the effect of the number of tasks on the

schedulability improvement by mpn-EDF, we focus on
constrained deadline task sets with m = 4 and 1.5 ≤
Usys �

∑
τi∈Φ

Ci/Ti ≤ 2.0, and investigate two statistics
over different numbers of tasks as shown in Table 4:
(i) the ratio of the difference between the number of
schedulable task sets under mpn-EDF and fp-EDF, to the
number of schedulable task sets under fp-EDF (denoted
by mpn-EDF−fp-EDF

fp-EDF ) and (ii) the average number of non-
preemptive tasks of each task set under mpn-EDF when
the task set is schedulable withmpn-EDF but not with fp-
EDF (denoted by # of non-preemptive tasks). The former
represents the schedulability improvement by mpn-EDF,
while the latter shows how many tasks should be non-
preemptive in order to make the task set schedulable.
As shown in the table, mpn-EDF enables each task

set to be schedulable by making the small number of
tasks non-preemptive (i.e., no larger than 1.13 in any
case in the table). This is because disallowing preemption
of each task makes a negative impact on other tasks’
schedulability; if the preemptions of more tasks are
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(a) m = 4, constrained deadline task sets
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(b) m = 16, constrained deadline task sets
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(c) m = 4, implicit deadline task sets
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(d) m = 16, implicit deadline task sets

Fig. 5. Schedulability results under EDF with different preemption policies

disallowed, the other tasks that were originally schedu-
lable with fp-EDF are more likely to be unschedulable.
Therefore, mpn-EDF is less effective on task sets each
of whose number of unschedulable tasks with fp-EDF is
larger.
On the other hand, the interference-based schedulabil-

ity framework in Section 2.2 is known to have greater
pessimism with more tasks due to over-estimation of
each task’s interference from carry-in jobs [26]. Therefore,
the more tasks in each task set, the more room for
improvement.
Due to these two conflicting effects, the improvement

by mpn-EDF increases with the number of tasks, and
peaks with 9 and 10 tasks (in which the second factor
dominates). After that, the improvement decreases (in
which the first factor dominates).

DETAILS OF SECTION 6.3
Similar to the EDF case, we also show the number of task
sets schedulable by the following schedulability tests of
FP with different preemption policies:
• The only existing np-FP tests [6, 8] (denoted by np-
FP[GG]), i.e., schedulable by at least one of the two
tests;

• Our schedulability test for np-FP, i.e., Theorem 1
with the upper-bounds in Lemma 4 when Yi = 0
for all τi ∈ Φ (denoted by np-FP);

• The existing fp-FP test [4], which is equivalent to
our schedulability test for fp-FP, i.e., Theorem 1 with
the upper-bounds in Lemma 4 when Yi = 1 for all
τi ∈ Φ (denoted by fp-FP);

• np-FP and fp-FP (denoted by np-FP+fp-FP), i.e.,
schedulable by at least one of np-FP and fp-FP; and

• Our schedulability test of mpn-FP with disal-
lowance preemption by Algorithm 2 when the initial
preemption requirement is Yi = 1 for all τi ∈ Φ
(denoted by mpn-FP).

As in Section 6.2, we present our schedulability tests
with the best performance, i.e., applying slack reclama-
tion. For fixed-priority of tasks, we deploy DM (Deadline
Monotonic) [29], in which the priority of a task τk is
higher than that of another task τi if Dk < Di.
Fig. 6 plots the number of schedulable task sets by

each schedulable test with different m and the type of
task sets. If we focus on the schedulability under np-FP,
np-FP finds 11.3%, 17.3%, 27.2% and 54.5% additional
schedulable constrained deadline task sets (likewise
26.7%, 34.6%, 39.5% and 46.3% additional schedulable
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(a) m = 4, constrained deadline task sets
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(b) m = 16, constrained deadline task sets
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(c) m = 4, implicit deadline task sets
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(d) m = 16, implicit deadline task sets

Fig. 6. Schedulability results under FP with different preemption policies

implicit deadline task sets), which are not schedulable
by np-FP[GG].
The schedulability trend between mpn-FP and np-

FP+fp-FP is similar to that between mpn-EDF and np-
EDF+fp-EDF. That is, the number of additional schedu-
lable task sets covered by mpn-FP is significant, and
the number is increasing as the number of cores be-
comes larger. The numeric values of task sets which
are schedulable by mpn-FP but not by np-FP+fp-FP are
5.3%, 16.0%, 30.9% and 47.6% with implicit task sets
(8.7%, 20.5%, 32.6% and 44.3% with constrained task
sets) for m = 2, 4, 8 and 16, respectively.


