Preempt a Job or Not in EDF Scheduling of Uniprocessor Systems

Jinkyu Lee and Kang G. Shin

APPENDIX

In this section, we prove Lemma 2: the time-complexity of Theorem 1 for a given task set with given \(\{X_i\} \) is pseudo-polynomial in the task parameters, if \(\sum_{\tau \in T} C_i/T_i + \sum_{\tau \in T} (C_i + \alpha)/T_i \) is upper-bounded by a constant that is strictly smaller than 1.

We first prove that we need not test Eq. (9) for some \(l \) larger than a certain value. To do this, we present a relevant property of the fp-EDF analysis without any preemption delay [4] as follows:

Lemma 6: (Theorem 6 in [28]) Suppose \(U < 1 \) holds and the condition for the fp-EDF analysis without any preemption delay [4] (i.e., Eq. (2) in this paper) is violated for some \(l > 0 \). Then, the condition should be also violated for some \(0 < l \leq l_{\max} \triangleq \max \{ \max_{\tau \in T} (D_i - T_i) \cdot U_i/(1 - U), \sum_{\tau \in T} (C_i - T_i) \cdot U_i/(1 - U) \} \), where \(U_i \triangleq C_i/T_i \) and \(U \triangleq \sum_{\tau \in T} U_i \).

The lemma implies that we need to test Eq. (2) only for \(0 < l \leq l_{\max} \). Then, using Lemma 6, we can upper-bound \(l \) for Theorem 1 as follows.

Lemma 7: Suppose \(U' < 1 \) holds and Eq. (9) is violated for some \(l > 0 \). Then, the condition is also violated for some \(0 < l \leq l'_{\max} \triangleq \max \{ D_{\max} \cdot \max_{\tau \in T} (D_i - T_i) \cdot U_i/(1 - U'), \sum_{\tau \in T} (C_i - T_i) \cdot U_i/(1 - U') \} \), where \(U'_i \triangleq C_i/T_i \) for \(X_i = 0 \) and \(U'_i \triangleq (C_i + \alpha)/T_i \) for \(X_i = 1 \), and \(U' \triangleq \sum_{\tau \in T} U'_i \).

Proof: Consider a new task set \(T' \) in which all task parameters are the same as \(T \), but the execution time of each \(\tau_i \) with \(X_i = 1 \) is \(C_i + \alpha \). We consider two cases: (i) Eq. (2) for \(T' \), and (ii) Eq. (9) for \(T \). Since \(B \) in Eq. (7) is always equal to zero when \(l \geq D_{\max} \), testing (i) is exactly the same as testing (ii) for \(l \geq D_{\max} \). For \(l < D_{\max} \), testing (i) is special case of testing (ii), i.e., testing (i) is the same as testing (ii) with \(b = 0 \).

By Lemma 6, we guarantee that if (i) is violated for \(l \geq D_{\max} \), (i) is also violated for \(l < D_{\max} \). Since (ii) with \(b = 0 \) is checked, the lemma holds.

So far, we derived an upper-bound of \(l \) to be checked; by Lemma 7, we need to test Eq. (9) only for \(l \leq l'_{\max} \). To further reduce the number of candidates of \(l \) to be checked, we paraphrase Theorem 1 as follows. A task set \(T \) is schedulable by cp-EDF on a uniprocessor platform in the presence of the preemption delay \(\alpha \) if the following condition holds:

\[
\max_{l > 0} \left\{ \frac{\text{LHS of Eq. (9)}}{l} \right\} \leq 1. \tag{10}
\]

In order to utilize the alternative form of Theorem 1 for less number of candidates of \(l \) to be checked, we derive the following lemma.

Lemma 8: The LHS of Eq. (10) is maximized when \(l \) or \(l - b \) belongs to \(\Omega \triangleq \{ D_i + n \cdot T_i | \tau_i \in T, n = 0, 1, 2, \cdots \} \).

Proof: Suppose that the LHS of Eq. (10) is maximized even though neither \(l \) nor \(l - b \) belongs to \(\Omega \). Let \(l_0 \) and \(b_0 \) denote \(l \) and \(b \) when the LHS of Eq. (10) is maximized.

We show a contradiction.

We consider \(l = l_0 - \epsilon \), where \(\epsilon \) is a sufficiently small value. Since both \(l_0 \) and \(l_0 - b_0 \) do not belong to \(\Omega \), the following inequalities hold for every \(\tau_i \in T : DBF(\tau_i, l_0 - b_0) = DBF(\tau_i, l_0 - b_1), DBF_{\epsilon}(\tau_i, l_0 - b_1) = DBF_{\epsilon}(\tau_i, l_0 - \epsilon - b_0), \) and \(DBF(\tau_i, l_0 - \epsilon) = DBF(\tau_i, l_0 - \epsilon) \). Therefore, the LHS of Eq. (9) for \(l = l_0 - \epsilon \) is the same as that for \(l = l_0 \), but \(l_0 - \epsilon \) itself is smaller than \(l_0 \). This means that (LHS of Eq. (9))/\(l \) for \(l = l_0 - \epsilon \) is larger than that for \(l = l_0 \), which a contradiction.

Then, Lemma 8 indicates that we need to test Eq. (9) only for \(l \) such that \(l \) or \(l - b \) belongs to \(\Omega \). Combining Lemmas 8 and 7 together, we know that the number of candidates of \(l \) (and \(l - b \)) to be checked is \(O(\sum_{\tau \in T} l'_{\max}/T_i) \).

The remaining step is to upper-bound the number of \(b \) to be checked for given \(l \) or \(l - b \). Since we assume a quantum-based time as mentioned in Section 2.1, an upper-bound of the number is \(O(\max_{\tau \in T} C_i) \), which is an upper-bound of \(\beta \) in any case.

Since calculating LHS of Eq. (9) for a given task set with given \(\{X_i\} \) and a given \(l \) and \(b \) requires \(O(n) \), the total time-complexity of testing Theorem 1 for a given task set with given \(\{X_i\} \) is \(O(P) \), where

\[
P = n \cdot \max_{\tau \in T} C_i \cdot \sum_{\tau \in T} l'_{\max}/T_i. \tag{11}
\]

Similar to the fp-EDF analysis without any preemption delay [4] (i.e., Eq. (2) in this paper), the total time-complexity is pseudo-polynomial in the task parameters, if \(U' \) is upper-bounded by a constant that is strictly smaller than 1. Note that the total time-complexity derived here is a rough but safe upper-bound, and we can further reduce the time-complexity by applying a technique to investigate \(l \) more efficiently in [28].