Differentially Private Spectrum Auction With Approximate Revenue Maximization

Ruihao Zhu§ Zhijing Li‡ Fan Wu‡ Kang G. Shin§ Guihai Chen‡
§Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
‡Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University, Shanghai, China
Email: {rhzhu,kgshin}@umich.edu; {lizhijing,fwu,gchen}@cs.sjtu.edu.cn

ABSTRACT
Dynamic spectrum redistribution—under which spectrum owners lease out under-utilized spectrum to users for financial gain—is an effective way to improve spectrum utilization. Auction is a natural way to incentivize spectrum owners to share their idle resources. In recent years, a number of strategy-proof auction mechanisms have been proposed to stimulate bidders to truthfully reveal their valuations. However, it has been shown that truthfulness is not a necessary condition for revenue maximization. Furthermore, in most existing spectrum auction mechanisms, bidders may infer the valuations—which are private information—of the other bidders from the auction outcome. In this paper, we propose a Differentially private spectrum auction mechanism with Approximate Revenue maximization (DEAR). We theoretically prove that DEAR achieves approximate truthfulness, privacy preservation, and approximate revenue maximization. Our extensive evaluations show that DEAR achieves good performance in terms of both revenue and privacy preservation.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Wireless Communication

General Terms
Algorithm, Differential Privacy, Economics

Keywords
Spectrum Auction, Mechanism Design, Privacy

1. INTRODUCTION
Radio spectrum is a critical yet scarce resource in this age of fast growing wireless technology. However, the traditional static, expensive, and inefficient spectrum allocation has hampered the growth of the wireless networks and its applications. Under this type of allocation, the utilization of radio spectrum is low in spatial and temporal dimensions [1]. Thus, a new trend is to make spectrum access dynamic [2]. With dynamic spectrum access (DSA), new wireless applications may take advantage of (instantaneous) spectrum usage opportunities left over by primary spectrum users. Open markets, such as Spectrum Bridge [3], have already emerged to improve spectrum utilization by providing services of selling, buying, and leasing idle spectrum chunks.

Auctions are the best-known market-based allocation mechanisms due to their perceived fairness and efficiency in resource allocation. One important objective of an auction mechanism is to generate a maximum revenue (i.e., total payments collected from the bidders) [8]. Revenue maximization is not only the sellers’ goal in the auctions, but also the basic motivation for spectrum owners to sell or lease out under-utilized spectrum.

In recent years, a number of strategy-proof spectrum auction mechanisms (e.g., [10, 11, 12]) with approximate revenue maximization have been proposed, but under a strong assumption that the auctioneer knows the probability distribution of bidders’ valuations. However, none of these mechanisms consider privacy preservation. In existing studies, a strategy-proof spectrum auction mechanism motivates each bidder to report her true valuation, which is commonly termed as type in the literature. However, once the true valuations of the bidders are reported as bids, one (other than the auctioneer) may infer the private valuation of a bidder based on the outcomes of the auction. In most of the dynamic spectrum auctions, the permissions of using the wireless channels are granted to the bidders for a certain period of time, and the bidders would soon compete again for the usage of the channels. This makes the inference of the bidders’ types even easier. For example, n bidders participate in an auction for a set of channels and winners are granted the permissions to use the spectrum within a certain period of time. After the period of time expires, the auctioneer holds another round of the auction for the same set of channels, and the same group of bidders except for one, who leaves the auction, participate in the second round. In both rounds, the participants bid truthfully in order to maximize their utilities, given the strategy-proofness of the auction mechanism. However, the difference between the two auction outcomes may probably expose the type of the bidder who only participates in the first round of the auction to the others. The true types of bidders are critical commercial secrets of the bidders, because they can reflect the potential revenues of the wireless service providers gained through use...
of the spectrum. Therefore, it is important to achieve bid-
privacy preservation in spectrum auctions.

Besides, truthfulness, which means revealing truthful in-
formation is the dominant strategy for every bidder, is a too
strong assumption, since it prevents the mechanism from
having very desirable properties [25, 34]. A number of stud-
ies (e.g., [20, 25]) emphasized that proper relaxations on
truthfulness can help achieve a good approximation to the
revenue and the social welfare in auction mechanisms.

To tackle the problem of privacy preservation, we consider
the concept of differential privacy [21], which is a paradigm
for private data analysis developed in recent years. Differen-
tial privacy aims to reveal information about the population
as a whole, while protecting the privacy of each individual.
A differentially private mechanism was first investigated by
McSherry and Talwar [22]. However, spectrum is different
from traditional goods, due to its spatial reusability. Two
spectrum users cannot share the same channel simultane-
ously if their services interfere with each other. Therefore,
existing differentially private mechanisms cannot be directly
applied to spectrum auctions, in which a slight change of a
bidder’s bid may change the outcome dramatically.

In this paper, we aim at designing a differentially pri-
ivate spectrum auction mechanism with approximate revenue
without prior information on the distribution of the bidders’
valuations. We present a Differentially private spectrum auction mechanism with Approximate Revenue (DEAR). In
DEAR, the auctioneer will first partition all bidders into
groups and subgroups, and then randomly select the pay-
ment and allocation which generates approximate revenue
with high probability while protecting the privacy.

Our contributions in this paper are summarized as follows.

- Existing differentially private auction mechanisms can-
 not be directly applied to spectrum allocations, and
 hence DEAR is the first to bridge differentially pri-
 vate mechanism design and dynamic spectrum redis-
 tribution. It protects bidders’ privacy without heavy-
 weighted cryptographic tools.

- We proposed a polynomial-time spectrum auction mech-
 anism with approximate truthfulness achieving 2ϵ
 differential privacy and yielding an expected revenue of
 at least $OPT/7 - 3\epsilon \cdot ln(e + OPT)/\epsilon$, in a prior-free
 setting, where OPT is the optimal revenue, P is the
 set of possible bids and $\epsilon > 0$ is a small constant.

- DEAR is further extended for the case of multi-channel
 bids with budget constraints, still guaranteeing 2ϵ
 differential privacy and providing an expected revenue of
 at least $OPT/7 - 3\epsilon \cdot ln(e + OPT)/\epsilon$, where e is the
 number of channels.

- We implement DEAR and extensively evaluated its
 performance. Our evaluation results show that DEAR
 generates more revenue than the other mechanisms,
 while protecting bid-privacy.

The rest of this paper is organized as follows. Section 2
brieﬂy reviews related work, while Section 3 covers tech-
nical preliminaries. Section 4 presents the detailed design
of DEAR for the single channel request case. Section 5 ex-
tends DEAR to support multi-request bidders with budget
constraints. Section 6 presents our evaluation results of the
proposed mechanism. Finally, we conclude the paper in Sec-

2. RELATED WORK

In recent years, dynamic spectrum allocation has been
suggested as a viable solution to efﬁciently utilize and share
the available spectrum [1, 4, 7]. In this architecture, the
spectrum is allocated dynamically in spatial and temporal
domains. Periodically, the spectrum owners allocate chan-
nels to the bidders under interference constraints with the
financial goal.

In traditional economic theory, revenue-maximizing auc-
tions are designed under the assumption that the auctioneer
knows the probability distribution of the bidders’ valuations;
by applying Vickrey-Clarke-Groves (VCG) mechanism using
virtual valuation of bidders [13], the resulting auctions can
be both strategy-proof and revenue-maximizing (e.g., [10,
11]).

Without prior information of the distribution of bidders’
valuations, Gandhi et al. [8] used a linear programming ap-
proach to model interference constraints. This work does
not consider strategic user behavior, and assumes truth-
ful bids for free. Strategic behavior is considered by Sen-
gupta and Chatterjee, who proposed a knapsack-based auc-
tion for dynamic spectrum allocation to optimize the rev-

4

2

0

3. PRELIMINARIES

In this section, we first present the auction model, and then briefly review important solution concepts drawn from differential privacy and mechanism design.

3.1 Auction Model

We consider a collusion-free spectrum auction with an auctioneer (seller) and a group of bidders (buyers). The auctioneer has a set $\mathcal{C} = \{1, 2, \ldots, c\}$ of orthogonal channels. Unlike the allocation of traditional goods, wireless channels can be spatially reused, meaning that multiple well-separated bidders can work on the same channel simultaneously, if they do not interfere with each other. Also, a set of channels can be sold as a package to a single bidder, which is known as a multi-channel request. For the case of multi-channel requests, we assume that the bidders do not have preference over different channels.

Each bidder has valuation v_i for a channel. The valuation, which is known as the bidding profile, is private to the bidder for since can reflect the potential revenue the bidder could get. Let $\vec{v} = (v_1, v_2, \ldots, v_n)$ denote the profile of the bidders’ private valuations. Without loss of generality, we can normalize the bidders’ valuations to the interval of $[0, 1]$.

The bidders’ bids for the channels are based on their valuations in the auction, and each bidder has a bid b_i per channel. Let $\vec{b} = (b_1, b_2, \ldots, b_n)$ denote the profile of the bidders’ bids, which are also in the range of $[0, 1]$. Each bidder may lie about their valuations, and thus for each bidder i, b_i may not be equal to v_i. The auctioneer also initializes a charging profile, which is based on some criteria over the bidding profile \vec{b}.

When integrating differential privacy with an auction mechanism, we aim at maximizing the revenue without any prior information, while enforcing approximate truthfulness and protecting bidders’ privacy.

3.2 Related Solution Concept

We now review some of the important and closely related solution concepts from mechanism design and differential privacy.

1. γ-truthful

We first introduce Dominant Strategy [30], a strong solution concept from mechanism design.

Definition 1. (Dominant Strategy [30]) Strategy s_i is a player i’s dominant strategy in a game, if for any strategy $s_i' \neq s_i$ and any other players’ strategy profile s_{-i},

$$u_i(s_i, s_{-i}) \geq u_i(s_i', s_{-i}).$$

The concept of dominant strategy is based on truthfulness. Truthfulness in an auction means that revealing truthful information is a dominant strategy for every bidder. However, exact truthfulness sometimes turns out to be too strict as a solution, so we consider approximate truthfulness, or γ-truthfulness [23].

Definition 2. (γ-truthful [23]) Let s_i denote the strategy when player i behaves truthfully. A mechanism is said to be γ-truthful if for every player i, for any strategy $s_i' \neq s_i$ and any other players’ strategy profile s_{-i},

$$E[u_i(s_i, s_{-i})] \geq E[u_i(s_i', s_{-i})] - \gamma,$$

where $\gamma > 0$ is a small constant.

2. Differential Privacy

Differential privacy has been studied extensively in the community of theoretical computer science. It guarantees that the probability distributions of possible outcomes are nearly identical, when the (input) data profiles are nearly identical. Formally,

Definition 3. (Differential Privacy[21]) A mechanism M gives ϵ differential privacy if for any two data profiles D_1 and D_2 differing in a single element, and all $S \subseteq \text{Range}(M)$,

$$\Pr[M(D_1) \in S] \leq \exp(\epsilon) \times \Pr[M(D_2) \in S],$$

where $\epsilon > 0$ is a small constant.

When integrating differential privacy with an auction mechanism, two neighboring profiles are the bid profiles $\vec{b} = (b_1, b_2, \ldots, b_n)$ and \vec{b}' which differs from \vec{b} in one bid (added, removed or changed).

A differentially private mechanism M can address the concern of personal input leakage. In an auction, any change in a bidder’s bid won’t bring significant changes to the outcome, and thus, the others cannot infer information of this particular bidder just from the outcomes.

3. Exponential Mechanism

A powerful tool in the literature of differential privacy is the exponential mechanism proposed by McSherry and Talwar [22].

The exponential mechanism is a general technique for constructing differentially private algorithms over an arbitrary range P of outcomes and any objective function $F(\vec{b}, p)$ that...
maps a pair consisting of a data profile \vec{b} and a feasible outcome $p \in P$ to a real-valued score.

In our setting, \vec{b} is the declared valuation (bid) profile, p is every winning bidder’s payment per channel. In basic DEAR, the objective function $F(\vec{b}, p)$ is the revenue function; and in extended DEAR, the objective function is the revenue function divided by the number of channels. In a spectrum auction, once the graph of bidders’ location is given, the allocation scheme \mathcal{E} is only depends on parameter \vec{b} and p. Thus, we can denote the revenue function as $Q(\vec{b}, p)$, and $Q(\vec{b}, p) = p \sum_{i} x_{i}(\vec{b}, p)$.

Given a range P, a data profile \vec{b}, an objective function F, and a small constant ϵ, the exponential mechanism $\text{Exp}(P, \vec{b}, F, \epsilon)$ chooses an outcome p from the range P with probability

$$\Pr[\text{Exp}(P, \vec{b}, F, \epsilon) = p] \propto \exp \left(\epsilon F \left(\vec{b}, p \right) \right),$$

Theorem 1. The exponential mechanism gives $2\epsilon\Delta$ differential privacy [22].

Here, Δ is the Lipschitz constant of the objective function F, i.e., for any two data profiles \vec{b} and \vec{b}' differing in a single element, and for any outcome p, the score $F(\vec{b}, p)$ and $F(\vec{b}', p)$ differs by at most Δ.

Theorem 1 highlights that the exponential mechanism will be the most useful when Δ is small. In DEAR, a small Δ ensures that a single change in the bid of a bidder has a small effect on the outcome.

4. DEAR

We now present DEAR, a differentially private spectrum auction mechanism with approximate revenue maximization.

4.1 Design Rationale

DEAR integrates the exponential mechanism with spectrum auction to achieve both approximate revenue maximization and differential privacy. Basically, DEAR is a single price auction, in which all the winning bidders will be charged with a uniform price. The main idea of DEAR is to randomly select a price from a set of prices with a carefully designed probability distribution. For each price, there is a corresponding allocation and a generated revenue. The probability of a price to be chosen is set to be proportional to its corresponding revenue. Thus, approximate revenue maximization and differential privacy can be achieved. We briefly illustrate the design challenges and our ideas in meeting them.

(1) Payment Selection

In a non-informative-prior setting, the auctioneer has no information on the distribution of bidders’ valuations. The obstacle in such a setting is to design a mechanism that can select the optimal/sub-optimal price to charge bidders. Setting p either too high or too low may reduce the revenue. Moreover, we want the payment selection to guarantee approximate truthfulness, which should force bidders in the auction to have limited incentive to lie. To achieve these objectives, we integrate the exponential mechanism with spectrum auction to determine the price. DEAR sets the probability of each price to be chosen to be proportional to its corresponding generated revenue. Therefore, DEAR could choose the price that generates a high revenue with high probability, while protecting privacy.

(2) Spectrum Allocation

For each price p in the set of prices, the auctioneer wants to allocate channels to as many bidders as possible in order to maximize her revenue. Unlike traditional goods, spectrum is reusable among bidders subject to the spatial interference constraints. It has been shown that it’s NP-complete [35] to find the optimal spectrum allocation. DEAR partitions the bidders into groups according to their geographic locations. For each price p, DEAR allocates channels to groups that can generate the highest revenue.

4.2 Design Details

Following the guidelines in Section 4.1, we now describe the detailed design of DEAR. It performs the auction in three steps. It first partitions the bidders into groups and subgroups. Then, it initializes the set of prices, and calculates the probability distribution over the set. Finally, it randomly selects a price from the set of prices as the payment with the carefully designed probability distribution and allocates the channels to the winners.

Step 1: Grouping of Bidders

Before running the spectrum auction, DEAR first divides the set of bidders N into groups and subgroups.

Since the bidders are located in a geographic region, DEAR basically divides the entire region into small hexagons with unit side-length [11], and then uniformly colors the hexagons with seven colors, as illustrated in Fig. 1.

![hexagons uniformly-colored using 7 colors](image)

Figure 1: Hexagons uniformly-colored using 7 colors. No adjacent hexagons are in the same color.

Since there are seven colors, we denote the set of colors as:

$$G = \{g_{1}, g_{2}, \ldots, g_{7}\},$$

and denote the set of subgroups in group g_{k}, $k \in \{1, 2, \ldots, 7\}$ as:

$$g_{k} = \left\{ g_{1}, g_{2}, \ldots, g_{7}^{[g_{k}]} \right\}.$$

In such a grouping, we have the following two properties. **Property 1** Any pair of bidders from the same subgroup cannot be allocated on the same channel due to the interference constraint.
Property 2 Any pair of bidders from different subgroups in the same group can share the same channel.

Any pair of bidders from the same subgroup are in the same hexagon with unit side-length (i.e., half of the interference range), so the distance between them is no more than 2. Since every bidder’s interference area is a unit-radius disk, then any two bidders’ interference areas intersect with each other, so no two bidders from the same subgroup could share a common channel. Thus, Property 1 holds.

Property 2 can be obtained from the observation that since each bidder’s interference area is a unit-radius disk, the distance between any pair of bidders from two different subgroups but in the same group is at least \(\sqrt{\pi} > 2 \), which means that the distance between the two bidders is far enough for these bidders to be out of interfere with each other. Thus, they can share the same channel.

These two properties tell us that: (A) For each subgroup \(g_k^j \), the number of winning bidders in it is at most \(\min(|g_k^j|, c) \); (B) Winning bidders from different subgroups in the same group can be combined to obtain the whole set of winners.

Step 2: Calculation of Probability Distribution

For each price \(\rho_j \in \mathbb{P} \), DEAR removes the bidders with bids less than \(\rho_j \) in every subgroup. This changes \(g_k^j \) to \(g_k^j' \), and changes \(g_k \in G \) to \(g_k' \), and we denote this step as

\[
G' = Remove(N, G, \rho_j),
\]

where \(Remove() \) is the removing function that returns the set of groups containing bidders with bids at least \(\rho_j \).

For the remaining bidders in subgroup \(g_k^j' \in g_k' \), DEAR randomly selects \(\min(|g_k^j'|, c) \) bidders as candidates. Obviously, this method of candidate selection is not related to bidders’ bids. We denote this step as

\[
W_k^j(\rho_j) = Select(g_k^j', \min(|g_k^j'|, c)),
\]

where \(Select() \) is the candidate selection function.

For each group \(g_k' \in G' \), DEAR combines the candidates from all its subgroups to form the set of candidates \(W_k(\rho_j) \) in group \(g_k' \) at price \(\rho_j \):

\[
W_k(\rho_j) = \bigcup_{i=1}^{\min(|g_k'|, c)} W_k^i(\rho_j).
\]

DEAR picks up the group with most candidates from the seven groups, let \(W(\rho_j) \) be the group with the most candidates when the price is \(\rho_j \):

\[
k_0 = \arg\max_k |W_k(\rho_j)|; \tag{1}
\]

\[
W(\rho_j) = W_{k_0}(\rho_j). \tag{2}
\]

The tentative price for the candidates in \(W(\rho_j) \) is set to \(\rho_j \). Thus, the revenue when setting the price to \(\rho_j \) is:

\[
Q(\tilde{b}, \rho_j) = \rho_j |W(\rho_j)|. \tag{3}
\]

DEAR calculates the corresponding revenue when setting the price to all possible values in \(\mathbb{P} \). Then, DEAR sets the probability of price \(\rho_j \in \mathbb{P} \) to be chosen proportional to its corresponding revenue, i.e.,

\[
Pr(\rho_j) = \frac{\exp(Q(\tilde{b}, \rho_j))}{\sum_{\rho_i \in \mathbb{P}} \exp(Q(\tilde{b}, \rho_i))}.
\]

Algorithm 1 shows the pseudo-code of the probability calculation over the prices in set \(\mathbb{P} \).

Step 3: Price Selection and Channel Allocation

After calculating the probabilities of all the prices in set \(\mathbb{P} \) to be chosen as payment, we get the probability vector \(\hat{P}r = (Pr(\rho_1), Pr(\rho_2), \ldots, Pr(\rho_p)) \). DEAR randomly selects a price \(p \in \mathbb{P} \) as the auction payment per channel according to the probability vector. Then, the corresponding candidates \(W(p) \) are the winners and will be allocated channels.

4.3 Analysis

We now analyze the privacy, approximate truthfulness, and revenue of DEAR.

First, we show that the carefully designed grouping can limit the Lipschitz constant \(\Lambda \) of the objective function \(Q \). This way, DEAR can guarantee good differential privacy.

THEOREM 2. DEAR achieves \(2e \) differential privacy.

Proof. We consider two bid profiles \(\tilde{b} \) and \(\tilde{b}' \) differing in only one bid. Let \(M \) denote the outcome function, which corresponds to the per-channel charge determined by the auctioneer in DEAR. We denote the probability of price \(p \in \mathbb{P} \) to be chosen when the bid profile is \(\tilde{b} \) and \(\tilde{b}' \) as \(Pr(M(\tilde{b}) = \rho \) and \(Pr(M(\tilde{b}') = \rho \) respectively. We define \(\Delta Q \geq 0 \), which is the Lipschitz constant of the objective function \(Q \), to be the largest possible difference in \(Q \). When applied to two bid profiles that differ only in one bid, for all \(p \), then,

\[
Pr(M(\tilde{b}) = \rho) \leq \frac{\exp(Q(\tilde{b}, \rho))}{\sum_{\rho_i \in \mathbb{P}} \exp(Q(\tilde{b}, \rho_i))} = \frac{\exp(Q(\tilde{b}', \rho))}{\sum_{\rho_i \in \mathbb{P}} \exp(Q(\tilde{b}', \rho_i))} \times \frac{\exp(Q(\tilde{b}, \rho))}{\exp(Q(\tilde{b}', \rho))} \leq 2e.
\]

Algorithm 1 Calculation of Probability over Prices

Input: A set of bidders \(N \), a set of channels \(C \), a bid profile \(\tilde{b} \), a set of prices \(\mathbb{P} \) and a set of groups \(G \).

Output: A probability vector of possible prices \(\hat{P}r \).

1. for all \(\rho_j \in \mathbb{P} \) do
2. \(G' \leftarrow Remove(N, G, \rho_j) \).
3. for all \(g_k^j \in G' \) do
4. \(W_k(\rho_j) \leftarrow \emptyset \).
5. for all \(g_k^j \in G' \) do
6. \(W_k(\rho_j) \leftarrow Select(g_k^j, \min(|g_k^j|, c)) \).
7. \(W_k(\rho_j) \leftarrow W(\rho_j) \cup W_k(\rho_j) \).
8. end for
9. end for
10. \(k_0 \leftarrow \arg\max |W_k(\rho_j)| \).
11. \(W(\rho_j) \leftarrow W_{k_0}(\rho_j) \).
12. \(Pr(\rho_j) \leftarrow \frac{\exp(Q(\tilde{b}, \rho_j))}{\sum_{\rho_j \in \mathbb{P}} \exp(Q(\tilde{b}, \rho_j))} \).
13. end for
14. for all \(\rho_j \in \mathbb{P} \) do
15. \(Pr(\rho_j) \leftarrow \frac{\exp(Q(\tilde{b}, \rho_j))}{\sum_{\rho_j \in \mathbb{P}} \exp(Q(\tilde{b}, \rho_j))} \).
16. end for
17. Return \(\hat{P}r \).
change the revenue function

\[\text{Next, we show the approximate truthfulness of DEAR.} \]

Theorem

\[\text{Let} \]

Proof.

\[\text{Suppose bidder } i \text{ bids } b_i \neq v_i. \text{ We distinguish the following two cases:} \]

- **Case 1:** We consider the scenario where \(i \) bids lower than her true value, \(b_i \leq v_i. \)

 For all \(\rho \in \mathbb{P}, \) if \(b_i < \rho, \) the bidder will be removed and then \(x_i(b_i, b_{-i})v_i - \rho = 0; \) if \(b_i \geq \rho, \) the bidder is still in the subgroup, and \(x_i(b_i, b_{-i}) = x_i(v_i, b_{-i}), \) for the candidate selection function \(\text{Select}() \) is not related to the bid. In Theorem 2, we proved that DEAR achieves 2e differential privacy. Obviously, the utility of each bidder with a single demand is less than 1, so we have:

\[
E[u_i(b_i, b_{-i}, v_{-i}, P)] = \sum_{\rho \in \mathbb{P}} \Pr(M(b_i, b_{-i}) = \rho) \times (x_i(b_i, b_{-i}, p)v_i - \rho) \\
\leq \sum_{\rho \in \mathbb{P}} \exp(2e)\Pr(M(v_i, b_{-i}) = \rho) \\
\times (x_i(v_i, b_{-i}, p)v_i - \rho) \\
\leq \exp(2e)E[u_i(v_i, b_{-i}, v_{-i}, P)] \\
\leq (1 + 4e)E[u_i(v_i, b_{-i}, v_{-i}, P)] \\
\leq E[u_i(v_i, b_{-i}, v_{-i}, P)] + 4e
\]

(7)

- **Case 2:** We consider the scenario where \(b_i > v_i. \)

 For all \(\rho \in \mathbb{P}, \) if \(v_i \geq \rho, \) then \(b_i > \rho \) and bidder \(i \) will still be in the subgroup. Since the selection function \(\text{Select}() \) is not related to the bid, \(x_i(b_i, b_{-i}, \rho) = x_i(v_i, b_{-i}, \rho). \) For all \(\rho \in \mathbb{P} \) satisfying \(v_i < \rho, \) if \(b_i < \rho, \) then bidder \(i \) will be removed and the utility is 0; else if \(b_i \geq \rho, \) bidder \(i \) will still be in the subgroup. If she loses, her utility is 0; if she wins, her utility

\[u_i(b_i, b_{-i}, v_i, \rho) = v_i - \rho < 0. \]

Thus, for all \(\rho \in \mathbb{P} \) satisfying \(v_i < \rho, \) misreporting leads the utility to non-positive. Then,

\[
E[u_i(b_i, b_{-i}, v_{-i}, P)] = \sum_{\rho \in \mathbb{P}} \Pr(M(b_i, b_{-i}) = \rho) \times (x_i(b_i, b_{-i}, p)v_i - \rho)
\]

\[\leq \sum_{(\rho \in \mathbb{P}) \land (\rho \leq v_i)} \Pr[M(b_i, b_{-i}) = \rho] \\
\times (x_i(b_i, b_{-i}, p)v_i - \rho) \\
\leq \sum_{(\rho \in \mathbb{P}) \land (\rho \leq v_i)} \Pr[M(v_i, b_{-i}) = \rho] \\
\times (x_i(v_i, b_{-i}, p)v_i - \rho) \\
\leq E[u_i(v_i, b_{-i}, v_{-i}, P)]
\]

(8)

Thus, the theorem follows. \(\square \)

THEOREM 4. DEAR has an expected revenue of at least \(OPT/7 - 3\ln(e + cOPT/|\mathbb{P}|)/\epsilon, \) where \(|\mathbb{P}| \) is the number of different bids from \(\mathbb{P}, \) which is the set of price.

To prove this theorem, we first give the following lemmas. Let \(OPT^* = \max_{\rho, p}Q(b_i, p) = \max_{\rho, v_i}W_i(\rho), \) let \(OPT \) denote the optimal single price revenue for the spectrum auction.

LEMMA 1. \(OPT^* \) is within a factor of 7 of \(OPT, \) i.e., \(OPT/7 \leq OPT^* \leq OPT. \)

Proof. Suppose the revenue of the spectrum auction reaches \(OPT \) when the charged price to each winner is \(\rho. \) Then, for price \(\rho, \) DEAR chooses the group with the most candidates (also with the highest revenue) from the seven groups. Since \(OPT \) is upper-bounded by the sum of the optimal revenue of each of the seven groups. Thus, \(OPT/7 \leq OPT^* \leq OPT. \)

LEMMA 2. Let \(S_t = \{|\rho: Q(b_i, \rho) \leq OPT^* - t\}|. \) For those \(\rho \) satisfying \(t \geq \ln((|\mathbb{P}|OPT^*/(t|S_t|)))/\epsilon, \) the expected revenue generated by our mechanism \(E[REV(M)] \geq OPT^* - 3t. \)

Proof. Let \(\overline{S}_t = \{|\rho: Q(b_i, \rho) \leq OPT^* - 2t\} \) is at most \(\frac{|\mathbb{P}|e^{\epsilon(t-\epsilon)}}{|S_t|}. \) The probability \(\Pr(\rho \in \overline{S}_t) \) is no more than \(\Pr(\rho \in S_t) / \Pr(\rho \in S_t), \) as the new denominator is at most one. Then, we can write:

\[\Pr(\rho \in \overline{S}_t) / \Pr(\rho \in S_t) \]

\[= \frac{\sum_{\rho \in \overline{S}_t} \exp(eQ(b_i, \rho))/\sum_{\rho \in \mathbb{P}} \exp(eQ(b_i, \rho))}{\sum_{\rho \in S_t} \exp(eQ(b_i, \rho))/\sum_{\rho \in \mathbb{P}} \exp(eQ(b_i, \rho))} \]

\[= \frac{\sum_{\rho \in \overline{S}_t} \exp(eQ(b_i, \rho))}{\sum_{\rho \in S_t} \exp(eQ(b_i, \rho))} \]

\[< \frac{\exp(e(OPT^* - 2t))/|\overline{S}_t|}{\exp(e(OPT^* - t))/|S_t|} \]

\[= \exp(-\epsilon t)\frac{|\overline{S}_t|}{|S_t|}. \]

(9)

Then, DEAR selects price \(\rho \in \mathbb{P} \) that achieves revenue at least \(OPT^* - 2t \) with probability of at least \(1 - \frac{|\mathbb{P}|e^{\epsilon(t-\epsilon)}}{|S_t|}. \) By using the assumption on \(t, \) we make this probability at least \(1 - \frac{t}{OPT^*}. \) Multiplying them, we get:

\[E[REV(M)] \geq (1 - \frac{t}{OPT^*})(OPT^* - 2t) > OPT^* - 3t. \]

(10)
Next, we use the above lemmas to prove Theorem 4.

Proof. Let \(t = \ln(e + eOPT^*[\mathcal{P}]) / \epsilon \), notice that \(t \geq 1 / \epsilon \), then we have,

\[
\ln(OPT^*[\mathcal{P}]/(t|S|))/\epsilon < \ln(OPT^*[\mathcal{P}]/t) / \epsilon \\
< \ln(e + OPT^*[\mathcal{P}]/t) / \epsilon \\
< \ln(e + OPT^*[\mathcal{P}]) / \epsilon
\]

We apply Lemma 2 using \(t = \ln(e + eOPT^*[\mathcal{P}]) / \epsilon \) and by Lemma 1, we have:

\[
E[REV(M)] \geq OPT^* - 3t \\
\geq \frac{1}{7} OPT - \frac{3}{\epsilon} \ln(e + eOPT^*[\mathcal{P}]) \tag{12}
\]

This completes the proof. \(\square \)

5. EXTENSION TO MULTI-DEMAND BIDDERS WITH BUDGET CONSTRAINTS

In the previous section, we proposed a differentially private spectrum auction mechanism with approximate revenue maximization, in which each bidder bids for a single channel. Here we extend it to adapt to a more practical scenario in which a bidder can bid for multiple channels with a budget constraint. This extension also achieves privacy preservation, approximate truthfulness and approximate revenue maximization. Different from the existing spectrum auction with bidders having multiple requests, we consider the budget of each bidder instead of the demand number. The budget of a bidder is the maximum upper bound on her ability to pay; this is a very common constraint. Also, budget constraints are studied extensively in the theoretical computer science community and are a central feature of many real auctions.

In the extended mechanism, we allow bidders to bid for multiple channels by submitting their budgets. Let \(\mathcal{B} = (B_1, B_2, \ldots, B_n) \) denote the budget profile of the bidders. We assume that each bidder has an identical valuation on different channels. In the auction, each bidder \(i \in \mathbb{N} \) submits not only her per-channel bid \(b_i \in (0, 1] \), but also the budget \(B_i \in [0, c] \) to the auctioneer. Here, \(c \) is the number of channels.

5.1 Virtual Bidder

In the extended DEAR, bidders with adequate budgets may get more than one channel. Here, we introduce the concept of virtual bidder to turn the extended problem into the basic problem.

For price \(\rho \in \mathbb{P} \), bidder \(i \) with a bid greater than \(\rho \) could get at most \(|B_i / \rho| \) different channels. Thus, DEAR creates \(|B_i / \rho| \) replicas called virtual bidders for bidder \(i \). Each virtual bidder can be allocated at most one channel. DEAR places these virtual bidders in the same subgroup with bidder \(i \). Therefore, any two virtual bidders of a subgroup should be allocated different channels. Then, DEAR sets the bids of all the virtual bidders to \(\rho \).

Let’s consider an illustrative example of virtual bidder.

Suppose there are 20 channels in the auction, bidder \(i \in g_k^j \) is willing to buy spectrum at the price of 0.4 per channel, and she has a budget of 0.9. Assume a price from the price set is \(\rho = 0.3 \). Given \(p \), bidder \(i \) could buy at most \([0.9/0.3]=3\) different channels and will be charged at 0.3 per channel.

So, DEAR creates 3 virtual bidders \(i^1, i^2 \) and \(i^3 \) instead of the original bidder \(i \) in subgroup \(g_k^j \), and then set the bids of these virtual bidders to 0.3, as shows in Fig. 2.

5.2 Extended DEAR

The procedures of bidder grouping and random selection and allocation are nearly the same as those in DEAR. Due to space limitation, we will focus on the differences in the step of probability calculation.

Step 1: Bidder Grouping

Please refer to subsection 4.2 for details.

Step 2: Calculation of Probability Distribution

For each price \(\rho_j \in \mathbb{P} \), DEAR first removes the bidders with bids less than \(\rho_j \) in every subgroup. This changes each subgroup \(g^j_k \in \mathcal{G} \) to \(g^j_k' \), changes each group \(g_k \in \mathcal{G} \) to \(g_k' \), and changes \(\mathcal{G} \) to \(\mathcal{G}' \). Then, for the remaining bidders in each subgroup \(g^j_k' \in \mathcal{G} \), DEAR creates virtual bidders for each bidder \(l \in g^j_k' \) according to her budget and the price \(\rho_j \). Let \(g^j_k' \) denote the set of virtual bidders in subgroup \(g^j_k \).

DEAR randomly selects \(\min(|g^j_k'|, c) \) virtual bidders as virtual candidates, represented by \(W_k^j(\rho_j) \). This method of virtual candidate selection is not related to bidders’ bids.

For each group \(g_k \in \mathcal{G}' \), DEAR combines the virtual candidates from all its subgroups to form the set of virtual candidates \(W_k(\rho_j) \) in group \(g_k' \) at price \(\rho_j \):

\[
W_k(\rho_j) = \bigcup_{j=1}^{\max(|g^j_k'|, c)} W_k^j(\rho_j).
\]

DEAR picks up the group with most virtual candidates from the seven groups, let \(W(\rho_j) \) be the group with the most virtual candidates when the setting price is \(\rho_j \). The tentative price for the virtual candidates in \(W(\rho_j) \) is set to \(\rho_j \). Thus, the revenue when setting the price to \(\rho_j \) is:

\[
Q(\bar{b}, \rho_j) = \rho_j |W(\rho_j)|.
\]

DEAR calculates the corresponding revenue when setting the price to all possible values in \(\mathbb{P} \). Then, DEAR sets the probability of price \(\rho_j \in \mathbb{P} \) to be chosen proportional to its corresponding revenue divided by the number of channels, i.e.,

\[
Pr(\rho_j) = \frac{\exp(\epsilon Q(\bar{b}, \rho_j)/c)}{\sum_{\rho_j \in \mathbb{P}} \exp(\epsilon Q(\bar{b}, \rho_j)/c)}.
\]

Step 3: Price Selection and Channel Allocation

DEAR selects the price and virtual winners according to subsection 4.2. Winners will be the bidders of the winning

![Figure 2: An illustrative example.](image-url)
virtual bidders, and the number of channels each winner gets is equal to the number of her virtual winners.

For the extended DEAR, we get the following theorem.

Theorem 5. The extended DEAR is individually rational, and every bidder pays within her budget.

Proof. Suppose DEAR selects \(p \in \mathbb{P} \) as the payment and allocates channels to the corresponding winning bidders. If the bid of bidder \(i \in \mathbb{N} \) is less than \(p \), then she will be charged nothing. Otherwise, bidder \(i \in \mathbb{N} \) will get at most \(\lfloor B_i/p \rfloor \) channels and will pay at most \(p\lfloor B_i/p \rfloor \leq B_i \). Thus, every bidder pays within her budget. The mechanism achieves individual rationality.

Theorem 6. The extended DEAR gives \(2\epsilon \) differential privacy, an expected revenue at least \(\text{OPT}/7 - 3c \cdot \ln(e + c\text{OPT}/|\mathbb{P}|)/\epsilon \), where \(|\mathbb{P}| \) is the number of different bids of \(\mathbb{P} \), and the extended DEAR is \(4c(\max_{i \in [\mathbb{N}]} E[b_i]) \)-truthful.

Proof. Here, the objective function is \(Q(\vec{b}, \rho)/c \). As for any \(p \in \mathbb{P} \), any bidder \(i \in \mathbb{N} \) can change the revenue function \(Q(\vec{b}, \rho) \) by at most

\[
P(\lfloor B_i/p \rfloor) \leq B_i / c.
\]

Thus, \(\Delta(Q/c) \) could be at most 1. Similar to the proof of Theorem 2, the extended mechanism gives \(2\epsilon \) differential privacy.

The proof of approximate truthfulness and revenue analysis is similar to the proof of Theorem 3 and Theorem 4 respectively.

6. EVALUATION

We have implemented DEAR and extensively evaluated its performance. On one hand, our evaluation results show that DEAR can generate a relatively high revenue despite randomness. On the other hand, the evaluation results show that DEAR achieves good differential privacy.

6.1 Methodology

When evaluating the revenue of DEAR, we compare DEAR with a greedy and truthful spectrum auction mechanism (denoted by ‘GREEDY’) proposed in [10] and another truthful spectrum auction mechanism (denoted by ‘TSAWAP’) in [11]. For the extended DEAR, since there exists no other privacy-preserving spectrum auction mechanism for bidders with budget constraints, we evaluate its performance under various settings without comparison with others.

We vary the number of bidders from 100 to 1500 with a step of 100, and set the number of channels to be 15, 20, and 30. The bidders are randomly deployed in a square area of 5000m \(\times \) 5000m. Each bidder has an interference range of 425m [37]. Any pair of bidders who lie within each other’s interference range are in conflict, and thus cannot be allocated on the same channel simultaneously. We assume that each bidder’s bid is uniformly distributed over \((0,1]\) with a precision of 2 decimal places. In the case of extended DEAR, we further assume that each bidder has a budget \(B_i \) randomly chosen from \([b_i,c]\), \(c \) is the number of channels. We set the privacy constant \(\epsilon \) to 0.1 and 0.5.\(^1\) All the results are averaged over 1000 runs.

We use two performance metrics to evaluate DEAR, including revenue and privacy. The revenue is referred to as the sum of charges to the bidders. A mechanism guarantees good privacy if the outcome of probability distribution over prices has as small as possible change when any bidder unilaterally reports a different bid. We define the notion of **Privacy Leakage** according to the definition of differential privacy to quantitatively measure the privacy guarantee of DEAR.

Definition 4 (Privacy Leakage). Given a mechanism \(\mathcal{M} \), suppose \(a \) and \(a' \) are probability distributions over a price set \(\mathbb{P} \) for bidding profiles \(\vec{b} \) and \(\vec{b}' \), which only differ in a single bid, respectively. The privacy leakage between the two bidding profiles is the maximum of absolute differences between the logarithmic probabilities of the two distributions, i.e.,

\[
\max_{i \in \{1,2,\ldots,|\mathbb{P}|\}} \ln a_i - \ln a'_i.
\] (13)

Figure 3: Revenue comparison among GREEDY, TSAWAP and DEAR.

\(^1\)The range of each bidder’s valuation/bid, budget, and the value of \(\epsilon \) can be chosen differently from those used here. However, the results of using different setups are similar to the results shown in this paper. Therefore, we only show the results for the above setup.
6.2 Revenue

We first evaluate DEAR and extended DEAR’s performances in terms of revenue.

Fig. 3(a) shows the comparison results of DEAR with GREEDY and TSWAP, when the number of channels is 15. From these results, we can see that DEAR outperforms GREEDY and TSWAP in nearly all the cases in terms of revenue. The only exceptions are when the number of bidders is greater than 1200 (for $\epsilon = 0.1$), GREEDY and TSWAP can generate slightly more revenues than DEAR. This is because both GREEDY and TSWAP rely on the existence of critical neighbors to generate revenue, and when the number of bidders grows, GREEDY and TSWAP can find critical neighbors with higher and higher bids.

Figs. 3(b) and 3(c) show the comparison results of DEAR with GREEDY and TSWAP, when the number of channels are 20 and 30, respectively. From these results, we can see that DEAR outperforms GREEDY and TSWAP significantly in all the cases in terms of revenue. This is because DEAR does not rely on the existence of critical neighbor to generate revenue, and when the number of channels grows, some winning bidders may not have any critical neighbor.

These results imply that DEAR is suitable for secondary spectrum markets with relatively sparse bidders.

![Figure 4: Revenue generated by extended DEAR](image)

Figure 4: Revenue generated by extended DEAR

Fig. 4 shows the revenue generated by extended DEAR, when bidders bid for multiple channels with budget limits. We observe that, the larger the number of channels is, the higher the revenue is. When the number of channels is fixed, the growth rate of revenue becomes slower as the number of bidders increases. This is because the number of winning bidder in each subgroup is bounded by the number of channels, and thus, the generated revenue converges.

6.3 Privacy

We finally evaluate DEAR and extended DEAR in terms of privacy. We set the number of channels to 20, and vary the number of bidders from 100 to 1500. Fig. 5 shows the privacy leakage of DEAR and extended DEAR.

![Figure 5: Privacy performance](image)

Figure 5: Privacy performance.

7. CONCLUSION

In this paper, we have presented the first differentially private spectrum auction mechanism, called DEAR, with approximate revenue maximization. DEAR performs well with both single- and multi-channel requests when bidders have budget constraints. For both cases, we have theoretically proven the properties in revenue and privacy. We have also implemented DEAR and extensively evaluated its performance. Our mechanisms are shown to be able to generate relatively high and stable revenue, while protecting the bid-privacy.

8. ACKNOWLEDGEMENT

The UM authors were supported in part by the US NSF under Grant No. CNS-1114837. The SJTU authors of this paper were supported in part by the State Key Develop-
9. REFERENCES

