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INTRODUCTION



CHAPTER 1

INTRODUCTION

There are indications that progress toward higher chip density, lower cost, and
greater reliability of microprocessors and memories will continue into the mnext
decade. This trend naturally leads to the design of faster and more reliable mul-
tiprocessors than their uniprocessor counterpart. However, use of multiplq
microprocessors to speed up general-purpose computations requires the solution of
such important problems as task partitioning, interconnection/intercommunication,
synchronization, reliability, 1/O interface and handling, software structure and pro-
grammability, etc. The efficacy of the multiprocessor depends crucially on the appli-
cation tasks that it executes, and no single multiprocessor can at present embody
the optimal solution to the above issues for general-purpose computations. Conse-
quently, it has been the tendency to developiﬁpecial-purpose multiprocessors. One
such example is real-time multiprocessors whose primary function is control of criti-
cal real-time systems, e.g. aircraft, spacecraft, nuclear reactér, power distribution
and monitoring, etc. Use of multiple processors/memories for real-time control is
motivated by its potenti.al for high operating speed and improved reliability through

component multiplicity (1], [2].

A real-time control system comprises two components: a controlled process and

a control computer. Despite their synergistic relationship, these two components



have been designed and analyzed separately in isolation: the former by control scien-
tists and the latter by computer designers. Moreover, control computer (called for
brevity the controller)’ design has ﬁsually relied on ad hoc/empirical methods
whereas there has been a significant progress in the theory and design of controlled
processes. In order to narrow this gap and provide a bridge between these two com-
ponents, this dissertation considers the controller with the controlled processes

taken into account.

A computer controller has three communicating functions: data acquisition,
data processing and output functions. The data acquisition is responsible for gather-
ing input (feedback) data from semsors, input panels and other associated -equip-
ment; the processing function done by the computer (in our case the multiprocessor)
generates output control/display signals from input data and the output function
sends the processed results to mechanical actuators, displays and other output dev-

ices. The system may thus logically be regarded as a three-stage pipe.

The controller software in the process‘ing section consists of a set of tasks, each
of which corresponds to some job to be performed repetitively in response to partic-
ular sets of environmental stimuli (triggers). These include both regular task
triggers according to a predetermined schedule, as well as unexpected, situation-
dependent, task triggers. ’The set of tasks to be executed by the controller is
predetermined and the stochastic nature and behavior of the software known in
advance -- at least in outline -- to the designer. This fact makes it both easier and

more necessary to obtain a reasonably good performance analysis of the system.

The determining characteristic of a real-time multiprocessor's performance is a

combination of reliability and high throughput. The throughput requirements arise



from the need for quick system response to environmental stimuli. Speed is of the
essence in a real-time controller since failure can occur not only through massive
hardware failures in the system, but also on account of the system’s not responding

quickly enough to events in the environment.

As a result of these special performance requirements, performance measures
used to characterize gene\ral—purposé uniprocessor systems are no longer appropriate
for real-time multiprocessors. Conventional throughput, reliability, and availability
by themselves alone have little meaning in the context of control; a suitable combi-
nation of these is necessary. New performance measures are required: measures that
are congruent to the application, permit the expression of specifications that reflect
without contortion true system characteristics and application requirements, in
addition to allowing an objective comparison of rival systems for particular applica-

tions.

We cannot stress too heavily that it is meaningless to speak of the performance
of a computer out of the context of its application. The form the performance
measures take must reflect the needs of the application, and the computer system
must be modelled within this context. The multiprocessor controller and the con-
trolled process form a synergistic pair, and any effort to study the one must take

account of the needs of the other.

It is important that performance measures should depend on variables that can
be definitively estimated or objectively measured. It is our policy in this disserta-
tion, therefore, to always base performance indices on experimentally-measurable

quantities: controller response times for the various system tasks.



It must also be realized that there is a distinction to be drawn between the
measurement of performance parameters and their interpretation. In parameter
measurement, we are concerned, for example, with the ease and accuracy with which
the parameter can be measured. On tﬁe other hand, interpretation consists of a pro-
cedure to integrate the results of the measurement into a complete picture of the
computer's performance. Different parameter values (reliability, throughput, etc.)
can depend on one another in a quite complex way: we do not have the luxury of
assuming that they are independent of each other. We have either to present com-
puter performance as a vector (which makes comparison between different systems
difficult) or to derive an objective metric for the performance vector. It is the pur-
pose of our research to develop one sdch metric and then use it for the design and

analysis of real-time computers.

Performance measures that partially meet real-time requirements have been
suggested by the following authors. Beaudry [3] considers measures emanating from
the volume of computation from a computer system over a given period of opera-
tion. Mine and Hatayama [4] consider job-related reliability, by which they mean the
probability that the system will successfully complete a certain job. Huslende [5]
attempts to be as general as possible, and presents what amounts to a re-statement
of Markov modeling with traditional measures. Chou and Abraham [8] present
performance-availability models, Castillo and Siewiorek [7] performance-reliability
models. Osaki and Nishio [8] consider the ‘.‘reliability of information”, by which they

mean the expected percentage of wrong outputs per unit time in steady state.

All these measures consider the computer system in isolation, i.e. without

explicit regard to the requirements of the operating environment. For this reason,



they are quite unsuitable for use in real-time control situations.

Among all existing performance measures,rMeyer’s performability [9] seems to
meet, though in an abstract form, the real-time requirements discussed above. ‘His
measure explicitly links the application with the computer by list;ng ‘“accomplish-
ment levels”, which are expressions of how well the computer has perforined within
the context of the application. His work focuses on the development of a framework
for modeling and performance eval.uation, rather than on methodology for deriving
the performance measures themselves. No guidelines are given for appropriately
specifying the accomplishment levels: what is provided is a set of mathematical tools
for their computation, once they have been defined. Meyer’s more recent work con-

tinues this trend, developing the theory of stochastic Petri nets.

By contrast we focus, in part of this dissertation, on presenting a methodology
for objectively characterizing and determining controller performance. If one wished
to translate our work into the terms of Meyer's performability, we show how to
derive a set of uncountably many accomplishment levels that are completely objec-
tive and capable of definitive estimation and/or measurement. It is this that makes

our measures complementary to that of Meyer.

The next step is to apply the performance measures to design and analysis of
real-time computers. We consider problems of of trading off the number of proces-
sors in a system against their processing speed, of reliable synchronization and

fault-location, and of generating fault-tolerant schedules for real-time tasks.

This dissertation is organized as follows. In Chapter 2, controlled systems are
discussed, and Chapter 3 introduces our performance measures. Chapter 4 contains

two examples to show how to determine the performance measures: one is an ideal-



ized motion control problem and the other is a more realistic example, the aircraft
landing problem. Chapter 5 to 7 are allied problems in real-time computer design,
in which the use of our measures is demonstrated. In Chapter 5, we introduce and
consider the number-power tradeoff. In Chapter 6, synchronization and fault-
masking in real-time systems are considered. In Chapter 7, we provide an algorithm
for the generation of fault-tolerant schedules. The dissertation concludes with

Chapter 8.



CHAPTER 2

REAL-TIME SYSTEMS

Figure 1 shows the block diagram of a typical real-time control system.

The inputs to the control computer are from sensors that provide data about
the controlled process, and from the environment. This is typically fed to f.he con-
trol computer at regular intervals. Data rates are usually low: generally fewer than
20 words a second for each sensor. The job list represents the fact that all the con-

trol software is pre-determined and partitioned into individual jobs.

Central to the operation of the system is the trigger generator that initiates
execution of one or more of the control programs. In most systems, this is physi-
cally part of the controller itself, but we separate them here for purposes of clarity.

Triggers can be classed into three categories.

(1) Time-generated trigger: These are generated at regular intervals, and lead to
the corresponding controller job(s) being initiated at regular intervals. In

control-theoretic terms, these are open-loop triggers.

(2) State-generated trigger: These are closed-loop triggers, generated whenever the
system is in a particular set of states. A simple example is a thermostat that
switches on or off according to the ambient temperature. For practicality, it

might be necessary to space these triggers by more than a specified minimum
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duration. If time is to be regarded as an implicit state variable, the time-
generated trigger is a special case of the state-generated trigger. One can also

have combinations of the two.

(3) Operator-generated trigger: The operator can generally over-ride the automatic

systems, generating and cancelling triggers at will.

The output of the controller is fed to the actuators and/or the display panel(s).
Since the actuators are mechanical devices and the displays are meant as a human
interface, the data rates here are usually very low. Indeed, a control-computer sys-
tem generally exhibits a fundamental dichotomy from many points of view. Firstly,
the I/O is carried out at rather low rates (the only exceptions to this that we know
of are control systems that depend on real-time imagé-processing: such applications
have extremely high input data rates), and the computations have to be carried out
at very high rates owing to real-time constraints on control. Secondly, the complex-
ity of the data processing carried out at the sensors and the actuators is much less
than that carried out in the main data-processing area. Thirdly, the sensors, actua-
tors, and the associated equipmentk are entirely dedicated to the performance of a
particular set of tasks, while the hardware in the region where the complex data

processing takes place is usually not dedicated.

It is therefore possible to logically partition real-time computer systems into
central and peripheral areas. The peripheral area consists of the sensors, aétuators,‘~~
displays, and the associated processing elements used for the pre-processing and for-
matting of data that is to be put into the central area, and the “unpacking” of data
that are put out by the central area to the actuators and/or displays. The central

area consists of the processors and associated hardware where all the higher-level
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computation takes place. Designing the peripheral area is relatively straightforward;
the most difficult design problems that arise in these systems usually concern the

central area. Figure 2 and Table 1 emphasize these points.

A control system executes “‘missions.” These are periods of operation between
successive periods of maintenance. In the case of aircraft, a mission is usually a sin-
gle flight. The operating interval can sometimes be divided down intt; consecutive
sections that can be distinguished from each other. These sections are called phases.
For example, Meyer et al. [11] define the following four distinct phases in the mis-

sion lifetime of a civilian aircraft:

(a) Takeoff/cruise until VHF Omnirange (VOR)/Distance Measuring Equipment

(DME) out of range.
(b) Cruise until VOR/DME in range again.
(c) Cruise until landing is to be initiated.
(d) Landing.
The current phase of the controller partially determines its job load, job mix,
job priorities, and so on.

A real-time system typically has to function under more constraints than does
its general-purpose counterpart. Firstly, there are hard deadlines, which if missed,
can lead to catastrophic failure. Timing is therefore crucial to job execution.
Secondly, there are physical constraints that are not quite so restricting for the

general-purpose computer. Examples are weight and power consumption.

The applications software has the following properties.
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Peripheral Area Central Area
Low baud rates | High baud rates
Complete dedication Complete geperality of function
Low-capability processors High-capability processors
Simple interconnection structure Complex interconnection structure

Almost totally decoupled processors [Processors highly coupled in many cases

Trivial executive software Complex executive software

Table 1.  Difference between Central and Peripheral Areas.
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(1) The interaction between individual processes is minimal.

(2) The effects of (computing) processes upon one another is well understood.
(3) Clear lines of authority are recognized.

(4) Clear lines of information flow are recognized.

(5) The products of the (computing) processes are well defined.

These are precisely the five conditions for efficiency in a distributed system as listed
by Fox [12]. Because of this and also due to their potentially high reliability, distri-
buted systems are particularly suited to real-time use. Also, the problems that arise
when one attempts to partition progl;ams in general-purpose applications for imple-
mentation on a distributed computef do not usually arise in the real-time context.
The software for a control computer is not so much a single partitionable package,
as a set of cleanly interacting subroutines. Macro-instruction languages show much

promise in this context [13].

The constraints on real-time systems, as well as the properties of the applica-
tions software, have a very great influence on the system architecture and the exe-

cutive software.

The overall computer system has to be much more reliable than any of its
components, so that fault-tolerance is essential. Massive replicétion of hardware is
commonplace, as also are high interconnection-link bandwidths. The system must

be as symmetric as possible so that reconfiguration is easy.

The nature of the executive software must reflect constraints on time and
resources. The executive is responsible for the control of queues at shared resources,

for the scheduling of events, for the handling of interrupts, and the allocation of
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memory. While all these tasks are common to general-purpose systems, the
existence of hard deadlines makes the efficient execution of such activities impera-
tive. The designer of the real-time system does not have the luxury of assuming

that occasional serious degradation of performance is acceptable, if unfortunate.

An additional important task of the executive is fault-handlihg and recovery.
This includes reconfiguration where that is possible, and the rescheduling of tasks
upon processor failure. Here again, the constraints on time make this a difficult

problem.
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CHAPTER 3

THE PERFORMANCE MEASURES

A. Terminology and Notation

A real-time computer executes pre-defined control jobs repeatedly, upon
environmental or other stimuli. A job is a well-defined stretch of software, e.g., a
subroutine. Each job maps into one or more tasks. The mapping is determined by
the current state of the controlled process. This is further clarified later in this
Chapter.  System response time is defined as the time between the
initiation/triggering of a control job and the actuator and/or display output that
results. This quantity is the sum of controller response time and actuation time.
Environmental or other occurrences trigger the tasks, a unique version being created
as a result. This is said to be an eztant version as long as it continues to execute in
the system. Versions of task + are denoted by V;;, which represents the sth execu-
tion of task i Denote the response time of a no-longer-extant version Vi by
RESP(V,). The response time of an extant version is undefined. The eztant time of
a version V; triggered at time r; when the system is in state m, is given by
E(VipTijmijt) = min(t-r;, RESPAV;)). Note, however, that this does not imply that

no state changes occur during the course of a task execution. RESH V,) is an

17



18

implicit function of n,;.

A controller task is said to be critical if it has an associated finite hard deadline
[14], which if exceeded by any of its versions, results in catastrophic or dynamic
failure. Hard deadlines do not exist for non-crstical tasks; although in some cases, it

might be convenient to pretend they exist and set them at infinity.

Ordinarily, repair to the real-time computer is not allowed while the computer
is in operation. In this connection, we define the mission lifetime as the duration of
operation between successive stages of service. We let the mission lifetime be a ran-
dom variable with probability distribution function I(t). At the beginning of a mis-

sion (i.e. immediately after service), a system is assumed to be free of faults.

B. Definition of the Performance Measures

Our performance measures are all based on the extant and response times. For

critical tasks ¢, with hard deadlines ¢, the cost function is defined by:

g{E) f 0<E<

C{E) E{oo ifE >ty (1)

where g; is called the finste cost function of task 1, and is only defined in the interval
[0, t,), and we omit for notational convenience the arguments of Z, the extant time

of the task.

For non-critical tasks, the same definition for the cost function can be used,

with the associated hard deadline set at infinity.
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Let g¢{t) denote the number of times task ¢ is initiated in the interval [0,¢).

Then, the cumulative cost function for the task ¢ is defined as

o)
T{t) = Y C{E(Vmijnt) (2)

=1
and the system cost function is defined as
)= LT 3)
=1

where r is the number of tasks in the system. Both I'; and S are cleafly defective

random variables. Our performance measures are then given by:

Cost Indez, K(x) = ZPN’J{SU)SX}JL(‘) (4)

Probability of dynamic faslure, payn = ZProb{.S(t)=oo} dIft) (5)

Mean Cost, M= }OE (S(4) | no hard deadlines are missed)dL(1) ()
0 |

Variance Cost, V= <Z;,Var {Xt) | no hard deadlines are missed}dL(t) (M

where E{e|e} and Var{e|e} represent conditional expectation and variance, respec-
tively. The probability of dynamic failure subsumes the traditional probability of
failure (called here for distinction the probability of static failure ) since the latter
can be viewed as the probability that the expected system response time is infinity.
Clearly, in the case of non-critical tasks, the probabilities of static and of dynamic

failure are equal.

The following auxiliary measures are useful when one focuses on the contribu-

tion to the cost of individual tasks.
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(o o]
Cost Indez for task i, K{x) = fProb{I‘,(t)Sx)dL(t) (4a)
0
oo
Mean Cost for task i, M;= [E {T (1) | no hard deadlines are missed}di(t) (5a)
0

Variance Cost for task s, V;= f Var {T () | no hard deadlines are missed}dL(t) (7a)
0

The computation of these measures can sometimes be complicated by the fact that
the mission might end while one or more versions are still extant. In most instances,
however, the mission lifeﬁmes are very much longer than individual task execution
times -- for example, several hours for aircraft and several days or even months for
spacecraft -- and the number of times tasks are executed to completion before the
mission ends is also very large. For this reason, it is usually an acceptable approxi-
mation to compute the costs assuming that all jobs that enter the system during the

mission complete executing before the mission ends (as long as they do not miss any

hard deadlines).

In what follows, we consider how to determine these performance measures,

beginning with the determination of the hard deadline.

C. Obtaining the Hard Deadline

The dynamics and the nature of the operating environment of the critical pro-
cess are both known a priors. This follows from the critical nature of the process --
for example, the dynamics and operating environment of aircraft have both been

studied carefully -- and advances in the theory and design of controlled processes.
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The process can most conveniently be expressed by a state-space model. Let
xER" denote the process state, uER™ the input vector, and ¢ the time. The input
vector is made up of two sub-vectors, u,€R™ and u,ER™. u, denotes the input
delivered at the command of the computer, and u, the input generated anﬂ then
applied by the operating environment. We characterize state tramsitions by the

mapping ¢:TX TXX X U—X where TCR represents time, XCR" the state-space

and UCR™ the input space.

x(t) = ¢ (t,to,x(t),u) (9a)
Measurement of the system is described by a vector yER' and a mapping
X XUXT.

y(t) = n (x(t),u(t),f) (9b)

Catastrophic failure can follow if the process leaves the ‘‘safe’” region of the
state space. For example, a boiler may explode if its temperature becomes too high.
This is formally expressed by defining an allowed state space, X [(t), which defines

the ‘‘safe’ region of operation.

The task of the controller or real-time computer is to derive the optimal con-
trol, ut), as a function of the perceived process state. Since the response time,
denoted by w, is positive, we have u(#) = h(x(t-w),u(t-w),t) where h expresses the
control algorithm for the task in question. Then, the hard deadline associated with
this task is given by the maximum value of w that may be permitted if the process
is to remain in X, with probability one. More precisely, the hard deadline associated

with controller task a triggered at ¢, when the system is in state x(¢,) is given by:

ta(x(t)) = uei(?c!: v sup{r | $(to+7,6,x(4),u)EX,} | (10)



where (1 is the admissible input space. One can also define conditional hard dead-
lines if it is only required to perform the computation over a certain subset of the
admissible input or state space. The conditional hard deadline of task a, denoted

by t4au,0 is defined as

tdalw,o(x(to)) = inf sup{r| ¢t +7,t,x(t),u)E0CX,} (11)
wewCq

The hard deadline, defined in this general way, is a function both of the pro-

cess state at the moment of task initiation, and of time. It is a random variable if

the environment is stochastic. Consider the following example to see how the hard

deadline can be determined.

Example 1: A body of mass m is constrained to move in one dimension. Its state-
vector consists of three components: position (z,), velocity (z,), and acceleration (z;).
The allowed state-space is defined by X,={x | |2,|<b, 2, <00, z2;< 00} where b>0
is a constant. The body is subject to impact from either direction with equal proba-
bility. Each impact changes the velocity of the body by k>0 units, in the appropri-
ate direction. The change of velocity takes place in a negligible duration. The body
has devices that can exert thrust of magnitude H in either direction. This thrust is
imposed only after the controller has recognized an impact and bas determined how
to react to it. It takes a negligible amount of time to switch the thrust on or off in
either direction. The controller’s j\ob is to bring the body to x=0. The controller
operates in vopen-loop: when it recognizes an impact, it computes the thrusts as a
function of time, following which the control response is assumed to be instantane-

ous. The problem now is to compute the hard deadline associated with this task.

The hard deadline is only a function of the state and X,. In computing it, we

do not need to take into account the possibility of a second impact before the
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controller has finished responding to the first, since the state of the process contains

all necessary information.

The allowed state space is static and simply connected, so that if when the
body is brought to rest for the first time following the impact it is in X, it must
have been within X, throughout the period following the impact, assuming only
that it was within X, at the moment of impact. Therefore, we have only to com-
pute the position of the body when it first comes to rest (after the impact) as a
function of the response time, §, and set the hard deadline equal to the greatest ¢
for which the body comes to i'est. within X,. Let the initial state of the body be
xT=[z,;, %;, 7;]. Since the impact duration and the switch-off or on time for the

thrust are assumed to be zero, we can always take z;,=0. Define

t=| '1'3[22:'""] Iy t,=| %[%r"] |

By an elementary derivation, we arrive at the following.

Case 1: 2,,<-k:

HE

He
b+ 2); + (2+k)4 + o, dtait (2ik)t + — (12)

(2 + k) ’ k- z,;

ty (x;)=min

For future convenience, denote the right hand side of the above by £,

Case 2: || <k

HE HE
b- 2y, - (k)Y + om b+ 2, + (k) + Im

’

t{x )=mi (13)

B+ k k- 2,
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Denote the right hand side of the above equation by #2).

Case 3: ,,>k:

- HE H
b 2); - (k)Y + 'E'—; b 2 - (k)L + ’

tx;)=mi om | (14)
B+ k \

’

n-k

Denote the right hand side of the above equation by #%).

If the velocity imparted to the body upon an impact is not constant at k, but
is a random variable (which would be more realistic) the magnitude of which has
probability distribution function Fjppe.r then the hard dea&line will be a random
variable, whose distribution is a function of the state at the moment of impact. The
followit;g can be written down by insp‘éction:

Case 1, 2; < 0:

{2) with probability Fip 4.t (12,]) 15

tq (x,) ={ () with probability 1 - Fppeet (17,4]) .
Case 2, 2,,>0:

£2) with probability 1 = Figpac (|2;4) (18

ty(x;) ={ (3 with probability Fimpact (|%24]) )

We could similarly treat the case when the allowed state-space is stochastic.

The above example is meant only to illustrate the hard deadlines and should
not lull the reader into a false sense of security. Obtaining closed-form expressions
for the deadlines of any but the most trivial systems and static allowed space is
usually extremely difficult, if not impossible. For example, if we relax the assump-

tion that the controller acts in open-loop, the equations of motion become too diffi-



25

cult to solve exactly in closed form.

It is generally necessary to resort to numerical methods to obtain deadlines for
real-life systems. Sincé most of the state-spaces one uses in practice have uncount-
ably many points, we must define hard deadlines as functions of sets of states, not
of the states Vther'nselves, if the entire allowed state-space is to be covered. Subdivid-
ing the state-space into these subsets while keeping errors low is not always easy.
For an example of subdivision where the application is the control of aircraft eleva-

tor deflections, see the case study that follows in Chapter 4.

A further remark is in order here. The hard deadlines are not dependent upon
the performance functional (time, energy, etc.) that the controller is attempting to
optimize, since the paramount duty of the controller is to keep the system within
the allowed state-space, and only secondarily to optimize the performance func-

tional.

D. Obtaining the Finite Cost Functions

Performance functionals have been known for a long time in control theory as
optimization criteria and measures of controlled process performance. We exploit
this fact to derive the control-computer cost functions, by linking directly the per-

formance of the controller to the valué of the controlled process performance func-

tional that results.

Performance functionals in control theory are functionals of system state and

input and express the cost of running the process over some interval [t t;]. The



performance functionals can be stated as:

¢ .
Olxo, ty 1) = f, B (x(t), (8 %o, 0 | ¥(r), & < 7 < t]ds (1)

where x(#;) = x,, and f; is the instantaneous performance functional. Since the con-
troller response time affects the state trajectory of the controlled process, it affects
the performance functional as well. If we use the expected contribution to the per-
formance functional, ©(x,, ¢, t), of the control delivered as a result of executing

task ¢ with response time £, we can derive the finite cost function as:

0(x,€) - Q(x,0) for0 < ¢ <ty

g(x,€) = { 0 (18)

otherwise

where ()(x,{) denotes the contribution to ©(x,, &, ¢) of a task with response time ¢,
and initiated when the process state was x. By doing so, we can directly couple the

response time of the controller to the fuel, energy, or other commodity by the con-

trolled process. See Figure 3.

Notice that while we use response time to compute the cost function, the finite
costs were originally defined as functions of the extant time. The latter is the case
since we wish costs to accrue as the execution proceeds, so that the system cost
function is continuous. This ensures if two systems are compared under an identical
load with the first faster than the second with regard to a particular task, that the
faster system will never exhibit a mean cost greater than the slower system as long

as both have approximately the same probability of dynamic failure.

The possibility of correlation of successive tasks can complicate calculations
considerably. To see this, take the system in the example above. If a second impact

comes in before the system has finished reacting to the first, then, the energy or
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time to be expended will not, in general, be the sum of the energies or the times
that would have to be expended if the second impact had arrived after the system
had finished reacting to the first (i.e. had arrived at x=0). Assuming that succes-
sive tasks are decoupled leads to a certain measure of ‘‘double-counting” of the
energy or time spent. The same remark would apply to fuel, force, or any other per-

formance functional used for the controlled process.

Due to this double-counting, assuming that successive tasks are decoupled
leads to an upper bound to the energy, time, or other quantity expended. If we find
an upper bound acceptable, we can simplify our computations greatly. If exact fig-
ures are called for, a detailed and complicated model has to be worked out in which
each instance of inter-task coupling is itemized and its probability of occurrence

computed. Whether or not this is worth the effort depends entirely on the require-

ments of the analysis.

There is also an irritating anomaly. Since the mean costs are defined by an
expectati;)n that is conditioned on not failing in the mission lifetime, it is possible to
construct pathological examples where a system with a probability of dynamic
failure of, say, 0.5 over a given lifetime, will exhibit a lower mean cost over that life-
time than another that has a py,, of 107'%: we shall see examples of them in Chapter

5. Such cases are, however, generally no more than an academic curiosity.

Example 2: Consider again the controlled process described in Example 1. This

time, we set out to compute the finite cost function associated with the task under

review.

As before, assume that the state of the body at the moment of impact is given

by xT={[z,,,2,,2;]. We make the assumption that a function that provides an upper



bound of the cost expended is sufficient, so that it is not necessary to consider the
correlative effect of successive jobs. We provide cost functions relating to two dif-
ferent control policies.

Case A: Assume that the duty of the controller is to bring the body back to x=0
within as short a time period as possible. (Note that x=0 means that all three
components -- position, velocity, and acceleration -- are zero). The cost function is
the time taken. This is the well-known minimum-time problem in optimal control
theory [15]. If, after the impact, the body is moving away from z,=0, it must be
stopped, and brought back using bang-bang control. If it is moving toward z,=0,
depending on the velocity after impact and the response time of the controller, the
body is either first accelerated toward z;=0 and then decelerated, or first brought
to a stop on the other side of z;==0 and then brought back to the origin using
bang-bang control. The derivation of the time taken is elementary, if tedious, and
is excluded. See the Appendix for expressions of the finite cost function under such
a control policy. The case when the velocity imparted upbn impact is not constant,
but a random variable, can be handled as in Example 1.

Case B: Suppose the controller is to minimize the energy expended while, after
every impact, keeping the body within the allowed state-space. Then, the control
policy is simply to bring the system to rest anywhere inside X,, and the cost func-
tion is in terms of energy. If the controller computer responds to an impact within
the hard deadline, it can by definition, keep the system from failing. As may easily
be verified, the energy expended in doing this is the energy required to bring the
body to rest, which is equal to the energy of the body immediately after impact.
Therefore, as long as the allowed state-space is ’not violated, the energy expended

will remain the same no matter what the response time (assuming that the response
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time is within the hard deadlines derived in the preceding section). So, the finite
cost function over the entire allowed state-space is here the zero function, which sig-
nifies that, as long as the hard deadlines are honored, it makes no difference to the

overhead under this control policy, as to what the response time may be.

This example has served to emphasize the intimate relation between control
policy and controller (finite) cost function. The same system, with the same con-
straints on the allowed state-space, haS different cost functions based on what the
duty of the controller is. It reflects our goal of having the cost functions express the
control overhead in the contezt of the application. This, in fact, distinguishes our
measures from those extant in the literature. See Table 2 for a comparison between

our measures and those of others.

Once again, it should be noted that the simplicity of the above expository
examples does not usually exist in re#l-lift; systems. Real-life analyses are much more
difficult, and the same comﬁents as applied to py,, above apply to the mean cost,
also. There is also one additional complication. The controller is to optimize the
performance functional subject to the condition that the system must not leave the
allowed state-space, if this is at all possible. Such a difficulty did not arise in this
simple example, but it can sometimes prove difficult to obtain optimal control poli-
cies under this requirement. This, however, is a problem for the designer of the con-

trolled process, not of the controlling computer.

See Chapter 4 for a computation of the cost function in a realistic case.
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Other Measures Our Measures

Wide applicability to almost all Limited  Applicability. = Aims

applications of fault-tolerant, specifically at real-time, especially

gracefully-degrading systems. at control, application.

Measures express performance in Measures express performance in

rather gross terms. rather exaet terms.

Performance linked to charac- Performance measures specifically

teristics of the computer alone. designed to reflect the overhead
of the computer on the real-time
system.

Table 2. Comparison of Traditional and New Methods of Chéracterizing Per-
formance
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E. Remark on Finite Cost Functions

It is not necessary that the prdcess performance functional that is used to
derive the cost function (e.g. energy, fuel, time, etc.) be the same as the process per-
formance functional that the system is trying to optimize. For example, the system
may be given the task of optimizing fuel, and the cost function may be measuring
the extra energy consumed as a result of controller delay. However care should be
taken to ensure that the two functionals (the one used to optimize the process, and
the one used to express the cost with) do not conflict. For the functionals not to
conflict, the optimal control actions (i.e. the controller decisions) taken on the basis
of one functional should be identical to the optimal control actions that would have
been taken on the basis of the other. For example, if the fuel consumed were linearly
related to the energy expended, the cost function could be expressed in terms of

energy, while the controller was trying to minimize the fuel used.

To see why conflicts must not be allowed, assume in the system of the above
example, that the job of the controller is to minimize the time taken in bringing the
body back to the origin, while the cost function is in terms of energy. Take the
instance in which the speed of the body after the impact is a slow motion toward
2,=0. The controller should in such a case apply full thrust throughout the motion,
first speeding the body up toward z,==0, and then slowing it down to reach x=0 in
minimum time. However, since the cost function is in terms of energy, not time, it is
easy to see that the shorter the time period over which the controller exerts thrust,
the smaller is the value of the cost measured. Thus, over a certain range of states,

the cost function would actually decrease with an increase in response time. This is
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ﬁot 6nly counter-intuitive, but also results in inefficient operation. Task priorities,
scheduling policies, etc., for the control computer are meant to be derived to optim-
ize the mean cost as expressed by the cost functions. If inconsistencies such as the
above arose, the operating system of the controller would tend to oppose the goals

inherent in its own applications software, resulting in an unsatisfactory overall

computer-controlled system.

F. Allowed State-Space and Its Decomposition

As we said above, it is difficult to determine the hard deadline and the finite
cost function as a function of the state over the entire state space. The solution of
the controlled process state equations cannot usually be obtained in closed form
when controller delay is considered. To obtain the functional dependence of the hard
deadlines or the finite cost function of each controller job on the current state vec-
tor is therefore impossible to do analytically, and prohibitively expensive to do

numerically for a large number of sample states.

To get around this problem, we divide the allowed state-space down into sub-
spaces. Subspaces are aggregates of states in which the system exhibits roughly the
same behavior. Even if there do not exist clear boundaries for these subspaces, one
can always force the allowed state space to be divided into subspaces so that a suffi-
cient safety margin can be provided. This is a designer’s choice for approximation.
In each subspace, each critical controller job has a unique hard deadline.

Remark: In some subspaces, a job described in general as “critical” might not be

critical in the sense that even if the execution delay associated with it is infinity,
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catastrophic failure does not occur. That is, the associated hard deadline may be
infinity for a particular subspace. What does usually happen in these circumstances
is that the system moves into a new subspace -- or at the least toward the subspace
boundary -- in which the dangers of catastrophic failure are greater. In this sub-
space, the requirements on controller delay are mofe stringent, and there might well
be a hard deadline, representing a critical task. Thus a “critical” job need not be
truly critical in every subspace, it only has to map into a critical task -- defined in
the sequel -- in at least one subspace. Also, subspaces are job-related, i.e. the same

allowed state space can divide into a different set of subspaces for each control job.

For convenience, a controller *‘task” is defined as follows.
Definition: A controller task, often abbreviated to ‘‘task", is defined as a controller

job operating within a designated subspace of the allowed state space.

s
Let S; for #=0,1,...,s be disjoint subspaces of X, with X4, = [ J S, and let J denote
=1

a  controller  job. Then, we define the projection: (J,X,)—
((Ty, Sp), (T4, Sy), .- Ty, S,)) where T;is the controller task generated by executing
Jin S, With each controller ﬁask, we x;)ay 4now define a hard deadline without the
coupling problem mentioned above. We denote it by t; for critical task T; (for con-
venience, however, the superscript J will be omitted in the sequel). We will see that
a critical job can possibly map into a mon-critical task for one or more allowed sub-
space; it only needs to map into a critical task in at least one such subspace to be

considered critical.
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Allowed State-Space

The allowed state-space is the set of states that the system must not leave if
catastrophic failure is not to occur. Consider the two sets of states X} and X%

defined as follows.

(i) X is the set of states that the system must reside in if catastrophic failure is
not to occur smmediately. For example,' we may define in the case of an air-
craft, a situation in which the aircraft flies upside down as unacceptable to the
passengers and as constituting failure. Notice that terminal constraints are not
taken into consideration here unless the task in question is executed just prior

to mission termination.

(i) X2 is the set of acceptable states given the terminal constraints, i.e., it is the
set of states from which, given the constraints on the control, it becomes possi-

ble to satisfy the terminal constraints.

Note that leaving X, means that no matter how good our subsequent control,
failure has occurred. (Strictly speaking, of course, there can be no subsequent con-
trol since by leaving X, the system has failed catastrophically before the next con-
trol could be implemented.) On the other hand, altering the allowed input space, i.e.
changing the control available can affect the set X4. The allowed state space is

then defined as X, = X4 N X%

Obtaining state-space X% can be difficult in practice. The curse of dimen-
sionality ensures that even systems with four or five state variables make unaccept-
able demands on computatioﬁ resources for the accurate determination of the
allowed state-space. However, while it can be very difficult to obtain the entire

allowed state-space, it is somewhat easier to obtain a reasonably large subset,



36

X3CX,. By defining this subset as the actual allowed state-space, (i.e., by artifi-
cially restricting the range of allowed states), we make a conservative estimate for
the allowed state-space. Note that by making a conservative approximation, we err
on the side of safety. Also, the information we need about X, may be determined to

as much precision as we are willing to invest in computing resources.

In what follows, to avoid needless pedantry, we shall refer to the artificially

restricted allowed state-space, X3, simply as the “‘allowed state-space”, X ,.

On Obtaining the Subspaces

The job of dividing X, into 8 = (S,, S,, ..., S,) is sometimes made easy by
the existence of natural cleavages in the state-space, when the latter is viewed as an
influence on system behavior. In most cases, however, such conveniences do not
exist, and artificial means must be found. The problem then becomes one of finding

discrete subdivisions of a continuum.

The method we employ is to quantize the state continuum in much the same
way as analog signals are quantized into digital ones. Intervals of hard deadlines
and expected operating cost (i.e. the mean of the cost function conditioned on the
controller delay time, and using the distribution of the latter) are defined. Then,
points are allocated to subspaces corresponding to these intervals. To take a con-
crete example, consider a state-space XCR" that is to be subdivided on the basis of
the hard deadlines. The first step is to define a quantization for the hard deadlines.
Let this be A. Then, define subspace S; as containing all states in which the hard
deadline lies in the interval |(+~1)A, sA). Alternatively, one might define a sequence
of numbers A,, A,, ..., such that the subspaces were defined by intervals with the

A' s as their end-points. This would correspond to quantizing with variable step
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sizes. The subspace in whick the job under consideration maps into a non-critical

task is a special case and is denoted by S,.

Subspaces ¢an also be defined based on a quantization of the expected operat-
ing cost or on both the operating cost and the hard deadlines. We provide an exam-

ple of subdivision by hard deadlines in Chapter 4.

Computational Complexity

When closed-form solutions are available for the state equations, they can be
solved backwards from the terminal constraints to obtain analytical results for X3.
When closed-form solutions are not available, numerical techniques must be used,
and solving differential equations backwards can give rise to numerical instability.
In the most general case, the amount of computations required increases rapidly
with the number of state variables and the complexity of the state equations; there-
fore, the exact amount of required computations depends on the solution approach

employed and the actual system under consideration.

One begins by deriving the optimal trajectory, which requires the problem- and
solution- specific amount of lcomputations. Then, obtainiqg X% consists of searching
the n-dimensional state-space surrounding this trajectory. In general, this becomes
an exhaustive search for the boundary of X%. If the search is confined to an (n+1)
dimensional parallelopiped (the n+1-th dimension represents time) with edge lengths

ky,ky,...,kn1, and the digital resolution is A, then defining m=[k;/A], i=1,..,n+1,
1
the state equations must be solved O[] m,) times. The values for k; must be set by

=1

the user.
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In the event that X% is known to be convex, a binary search can be instituted
along one of the dimensions, reducing the search complexity to
O(my - - - miym,y - -« myyy logom,) where m=max{m, - - - ,m,}.

As for the cost functions and the hard deadlines, these must also be derived, in

general, by an exhaustive analysis. The allowed state-space is quantized, and dead-

lines and cost functions must be found for each of the resulting *‘cells”.

It is therefore clear that for a process with large n, these methods become
prohibitively expensive. Two comments are now in order. The first is that this
approach is not uniquely susceptible to the curse of dimensionality: all optimal con-
trol theory techniques suffer this problem when complex processes are considered.
The second comment is that, in certain cases, additional knowledge about the pro-
cess dynamics can be used to improve the efficiency of the search for the X% boun-

dary, and for the hard deadlines and cost functions.

G. A Final Remark on this Chapter

The relevance of the finite cost functions and of the performance measures --
mean and variance cost -- that are derived from them should be obvious. What is
not immediately apparent is the practical difference between the traditional proba-

bility of failure and the probability of dynamic failure introduced here.

The standard, devil's advocate, objection runs as follows. Just as fault-
tolerant systems are designed with considerable physical redundancy, so they can be
designed also to allow considerable time redundancy. This would entail, for exam-

ple, a task having a worst-case run time (given no environmental interference) of,
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say, a fifth or a tenth of the interval between its release and its deadline. Moreover,
the tasks are usually executed many -- five or even ten -- times for every output
that is required at the actuator. In such a case, the argument runs, the probability

of dynamic failure is as close to the traditional probability of failure as makes no

matter.

The fallacy in this argument arises from the lack of a fixed worst-case run-time
for tasks. Environmental influences can on rare occasions, prolong the execution
time of tasks almost indefinitely. A good example of this is lightning strikes on air-
craft which cause electro-magnetic interference. This appears only recently to have
been seriously studied as a source of disruption to avionic electronics. Unfor-
tunately, since preliminary measurements are protected from unlimited disclosure,

we have to fall back on a hypothetical example, with hypothetical results.

Assume that the prolongation of the execution time caused by lightning follows
an exponential law, with a mean of 0.1 second. This is a good figure to choose: if
lightning were, on the average, to have a much smaller duration, it would only
rarely be noticed. Let the probability of a lightning strike on an aircraft during a
flight of 10 hours’ duration be 1073, Imagine a computer using 7-modular redun-
dancy, with processor MTBF's being 10,000 hours, and consider a task that takes
0.01 second to execute under normal circumstances. and which is run continuously
in a loop that ends only with the mission. The task is run ten times in a second.
Failure will occur if not even one out of ten consecutive runs produces a result
within 0.1 second of task release. Denoting the probability that a given processor
fails over the ten hour flight by p, the traditiona.l probability of failure -- which is

the probability that more than 3 of the 7 processors fail during the 10 hours of
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7 . .
flight -- is given by Zl:] p(1-p)’"". With the numerical values as assumed above,
=4

this is equal to about 3.5X107'!. The probability of dynamic failure, however, is
dominated by the probability of a lightning strike delaying response beyond the
hard deadline, and is lower bounded by the probability of a lightning strike lasting
more than one second. Under the parameter values assumed above, this quantity is
4.5X1078, i.e. more than a thousand times the traditional probability of failure, and
45 times the NASA benchmark of 10™°. Furthermore, the fact that the slack‘ time
was so large a multiple of the run time, made little difference to the probability of

failure.

The data used above are purely hypothetical (glthough credible from a
common-sense perspective), so that no absolute inferences may be drawn from these
calculations, but the point that we wish to make should be clear: when ultra-reliable
systems are being considered, all conceivable sources of failure must be considered,
not just the traditional ones of massive hardware failure. Traditional reliability
computations do not indicate any need to consider the effects of lightning in this
example. Designers aftempt to coinpe-nsate for this oversight by making the task
execute many times for each output tﬁat is absolutely required. Unfortunately, as
we saw in this example, such attempts are not always viable when ultra-reliable sys-

tems are being considered.



CHAPTER 4

CASE STUDY

A control system executes “‘missions.” These are periods of operation between
successive periods of maintenance. In the case of aircraft, a mission is usually a sin-
gle flight. The operating interval can sometimes be divided down into consecutive
sections that can be distinguished from each other. These sections are called phases.
As pointed out in Section 2, Meyer et al. [11] define four distinct phases in the mis-
sion lifetime of a civilian aircraft. The phase to be considered here is landing, it
takes about 20 seconds. The controller job that we shall treat is the control of the

aircraft elevator deflection during landing.

The specific system employed is assumed to be organized as shown in Figure 4.
Sensors report on the four key parameters: altitude, descent rate, pitch angle, and
pitch angle rate every 60 milli-seconds. We have a time-generated trigger, with a
time period of 80 milli-seconds. Every 60 milli-seconds, the controller computes the
optimal setting for the elevator, which is the only actuator used in the landing
phase. (There are other actuators used aboard the aircraft for purposes of stability,

horizontal speed control, etc. We do not however consider them here, concentrating

exclusively on the control of the elevator.)

The execution time for the computation is nominally 20 milli-seconds, although

this can vary in practice due to failures. Since the aircraft is a dynamical system,

41
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the effects of controller delay are considerable -- as we shall see in this Section.

Since the process being controlled is critical (i.e. in which some failures can lead
to catastrophic consequences), variations of controller delay and other abnormal
behavior by the controller must be explicitly considered. For simplicity, we do not
allow job pipelining in the controller; in other words a controller job must be com-
pleted or abandoned before its successor can be initiated. The following controller

abnormalities can occur:
(i)  The controller orders an incorrect output to the actuator.

(i)  The controller takes substantially more than 20 milli-seconds (the nominal
execution time) but less than the inter-trigger interval of 60 milli-seconds to

complete executing.

(i)  The controller takes more than 60 milli-seconds to complete executing. In
such a case, the abnormal job is abandoned and the new one initiated. We

say that a control trigger is ‘‘missed” when this happens.

An analysis of controller performance during the landing phase must take each of

the above abnormalities into account.

A. The Controlled Process

The model and the optimal control solution used are due to Ellert and Mer-

riam [16].

The aircraft dynamics are characterized by the equations:
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z(t) = buyzi( )+ bioz )+ biaza( )+ e1ymy(1,€) (19a)
z(t) = z(1) (19b)
74(8) = bigz(D+bggag(t) (19¢)
z(t) = z,(f) (19d)

where z, is the pitch angle, z; the pitch angle rate, z; the altitude rate, and z, the
altitude. m, denotes the elevator deflection, which is the sole control employed. The
constants b; and ¢, are given in Table 3. Recall that £ denotes controller response

time.

The phase of landing takes about 20 seconds. Initially, the aircraft is at an alti-
tude of 100 feet, travelling at a horizontal speed of 256 feet/sec. This latter velocity
is assumed to be held constant over the entire landing interval. The rate of ascent
at the beginning of this phase is -20 feet/sec. The pitch angle is ideally to be held
constant at 2 °. Also, the motion of the elevator is restricted by mechanical stops.
It is constrained to be between -35 ° and 15 °. For linear operation, the elevator may
not operate against the elevator stops for nonzero periods of time during this phase.
Saturation effects are not considered. Also not considered are wind gusts and other

random environmental effects.

The constraints are as follows: The pitch angle must lie between 0 ° and 10 °
to avoid landing on the nose-wheel or on the tail, and the angle of attack (see Fig-
ure 5) must be held to less than 18 ° to avoid stalling. The vertical speed with which
the aircraft touches down must be less than around 2 feet/sec so that the undercar-

riage can withstand the force of landing.

The desired altitude trajectory is given by
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Feedback Term

biz -0.760
bis 0.003
bys 102.4
bas -0.4

i -2.374

Table 3. Feedback Equation Constant
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100¢¥5 0<t<15
- == 0
hdt) { 20t 15<1<20 (20)
while the desired rate of ascent is
: -20¢% 0<1t<15
"0(‘)={ 1 15<<20 (21)

The desired pitch angle is 2 ° and the desired pitch angle rate is 0 ° per sec.

The performance index (for the aircraft) chosen by Ellert and Merriam and

suitably adapted here to take account of the nonzero controller response time § is

given by

Y

6(§) = [eq(t,€)dt (22)
i

where ¢ represents time, and [¢,, t] is the interval under consideration, and where
en(6) = OIS 2 O +6i()IhLO-2 DI+ 8 Dz -2
+(8) [z dh-2(O) +[my(£,€))* (23)

where the d-subscripts denote the desired (i.e. ideal) trajectory. To ensure that the

touch-down conditions are met, the weights ¢ must be impulse weighted. Thus we

define:
o1 = 9i(8) + 64,5(20-1) (23a)
84(1) = 91) + 65,5(20-1) (23b)
841) = 6y 4(1)6(20-1) (23¢)
6i1) = #u(0) (23)

where the functions ¢ must be given suitable values, and é§ denotes the Dirac-delta

function. The values of the ¢ are given based on a study of the trajectory that
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results. The chosen values are listed in Table 4.

The control law for the elevator deflection is given by:

my(4,€) = w2 K, T [kyy(t-€)~kyy(t-€)z) (=€) -y t-€) 2 t-€)

kol -E) 24tk (1-€)2,(1-6)] @4

where the aircraft. parameters are given by: K, = -0.95sec”!, T, = 2.5 sec,
w, =1 radiansec™’ and the constants k are the feedback parameters derived (as
shown in [16]) by solving the Riccatian differential equations that result upon

minimizing the process performance index. For these differential equations we refer

the reader to [16].

B Derivation of Performance Measures

We consider here only one controller task: that of computing the elevator
deflection so as to follow the desired landing trajectory. The inputs for the con-

troller here are the sensed values of the four states.

We seek the following information. As the controller delay increases, how much
extra overhead is. added to the performance index? Also, it is intuitively obvious
that too great a delay will lead to a violation of the terminal (landing) conditions,
thus resulting in a plane crash. This corresponds to dynamic failure, and we are

naturally interested in determining the range of controller delays that permit a safe

landing.

Consider first a formal treatment of the problem. The control problem is of the

linear feedback form. The state equations can be expressed as:
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Weighting Factor Value
$ilt) 99.0
$2,.(1) | 20.0
¢t} (0<t<15) 0.0
¢3(t) (15<6<20) 0.0001
- Py 1.000
ds 0.00005
P4y, 0.001

Table 4. Weights for the Performance Index
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x(f) = Ax(t) + Bu(1) (25)

where the symbols have their traditional meanings. Define the feedback matrix by
£(t). Then, clearly,

u(t) = E(t-£)x(t-€) (26)
For a small controller delay (i.e., a small §), the above can be expanded in a Taylor
series and the terms of second order and higher discarded for a linear approxima-

tion. By carrying out the obvious mathematical steps, we arrive at the equation:

x(t) = E(t,Ex(t) + B(6) (27)

as representing the behavior of the controlled process, assuming that the initial con-

ditions are given. For further details, see Figure 6.

Given a closed-form expression for the k(t) that appear in E(t,§), we could
then proceed to study the characteristics of the system as a function of the matrix
E. However, in the absence of such closed formulations for the k;, we must take

recourse to the less elegant medium of numerical solution.

The procedures we follow for obtaining the numerical solution are as follows.
First, the feedback values are compﬁtéd by solving the feedback differential equa-
tions that define the k;. These are not affected by the magnitude of the controller
delay. Then, the state equations are solved as simultaneous differential equations.
These are used to check that the terminal constraints have been satisfied, and in the
event that they are the performance functional is evaluated. This procedure must be
repeated for each new subspa;:e. Since the environment is deterministic in this case
(no wind gusts or other random disturbances are permitted in the model), the hard

deadline associated with each process subspace is a constant and not a random vari-

able.
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81y G2 Gy3 6y

01 0 O
E(t,§) = 0 by by O
0 0

0 1

where

8y = [1-c} by (1)¢]™ [bu""u(')Cfrcfxf{%(‘)"'zbu"u(')"‘klz(‘)‘cfll‘%x(‘)}]
a2 = [1-c} by (0)€]! [bxe-cfx"xe(‘}'Cfxf{bu"m(‘)‘*'bxz"u(')+"22(‘)’Cf1k%1(‘)}]
a3 = [1-cd by, (€] [813- 651Ky )+ byskyy () kag( £)-2 Ky (D5 )]

a4 = [1-c} kyy(8)E] [kua( - b1k )€-Kay( )6+ 51 Ry (k1 4(£)€]
b3, = Horizontal Velocity/ T,

byy =-1/T,

When the execution delay is ¢, the approximate state equations are

cilki(O+E{SL )04 O+ ky()+ko( -3 i ki (Okn(9)]
0

0
0

x(f) = E(,6)x(1) +

Figure 6. The Approximate State Equations.
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The trajectory followed by the aircraft when the delay is less than about 60
milli-seconds follows the optimal trajectory closely, although the elevator deflections
required would be intuitively assumed to increasp as the delay increases. Also, the
susceptibility of the process to failure in the presence of incorrect or no input is

expected to rise with the introduction of random environmental effects.

The control that is required for various values of controller delay is shown in
Figure 7. Due to the absence of any random effects, elevator deflections for all the
delays considered tend to the same value as the end of the landing phase (20
seconds) is approached, although much larger controls are needed initially. In the
presence of random éffects, the divergence between controls needed in the low and
the high delay values of controller delay is even more marked. We present an exam-
ple of this in Figure 8. The random effect considered here is the elevator being
stuck at -35 ° for 60 milli-seconds 8 seconds into the landing phase due to a faulty
controller order. The controlled process is assumed in Figure 8 to be in the subspace
in which the landing job maps into a non-critical process (defined in the sequel as
So)- The diagrams speak for themselves. We shall show later that this demand on
control is fully represented by the nature of the derived cost function. Also, above
a certain threshold value for controller delay, we would expect the system to become
unstable. This is indeed the case in the present problem, although this point occurs
beyond a delay of 60 milli-seconds for all points in the allowed state space (obtained

in the next section), which cannot by definition occur here.
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C Allowed State Space

In this subsection, we derive the allowed state space of the aircraft system. To
do so, note that in Ellert and Merriam’s model, X% does not exist. The reason is
that the state equations do not take into account the angle of attack. In the ideal-
ized model we are considering, it is implicitly assumed that the constraint on the
angle of attack is always honored, so that the only constraints to be considered are

the terminal constraints.

The terminal constraints have been given earlier but are repeated here for con-
venience. The touchdown speed must be less than 2 feet/sec in the vertical direc-
tion, and the pitch angle at touchdown must lie between 0 ° and 10 °. To avoid
overshooting the runway, touchdown must occur at between 4864 and 5120 feet in
the horizontal direction from the moment the landing phase begins. The horizontal
velocity is assumed to be kept constant throughout the landing phase at 256
feet /[sec. Thus, touchdown should occur between 19 and 20 seconds after the des-

cent phase begins. The only control is the elevator deflection which must be kept

between -35 ° and 15 °.

The restriction that we place on the allowed state-space, X4, i§ for ease of
representation. We define allowed ‘‘component state-spaces” for the individual
components of the state-vector such that any point in the 4-dimensional state-space
whose individual com;;onents each lie in the corresponding component state-spaces
is in the overall allowed state-space. The component state-spaces are determined by

perturbing the state values around the desired trajectory and determining the max-

imum pertubation possible under the requiement that no terminal constraint be
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violated. They were obtained by a search process and are plotted in Figure 9. It

should again be stressed that what we plot in Figure 9 is a subset of X§.

D Designation of Subspaces

We subdivide the allowed state-space found above using the method described
in Section 3. The criterion used is the hard deadline, since the finite cost function
(derived in the next subsection) is found not to vary greatly within the whole of the
allowed state-space. The value of A chosen is 60 milli-seconds. In other words, we

wish to consider only the case where a trigger is ‘‘missed.”

The allowed state-space in Figure 9 is subdivided into two subspaces, S; and .
S;. These correspond to the deadline intervals [120, cc) and [60, 120) respectively. |
S, is the non-critical region corresponding to the {120, oo) interval. Here, even if the
controller exhibits any of the abnormalities considered earlier, the airplane will not
crash. In other words, if the controller orders an‘ incorrect output, exhibits an abnor-
mal execution delay or simply i)rﬁvides no output at all before the following trigger,
the process will still survive at the end of the current inter-trigger interval if, at the

beginning of that interval, it was in S,.

On the other hand, if the process is in S, at the beginning of an inter-trigger
interval, it may safely endure a delay in controller response. However, if the con-
troller behaves abnormally in either providing no output at all for the current
trigger cycle or in ordering an incorrect output, tﬁere is a positive probability of an

air crash.
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Notice that we explicitly consider only missing a single trigger, not the case
when two or more triggers might be missed in sequence. This is because dynamic
failure is treated here as a function of the state at the moment of triggering. If two
successive triggers are missed, for example, we have to consider two distinct states,
namely the states the process is in at the moment of those respective triggers. To
speak of deadline intervals beyond 120 milli-seconds is therefore meaningless in this
case since the triggers occur once every 60 milli-seconds. This is why the second

deadline interval considered is [120, oo), not [120,180).

The hard deadline may conservatively be assumed to be 60 milli-seconds in S,.

By definition it is infinity in S,.

E Finite Cost Functions

The finite cost does not vary greatly within the entire allowed state-space. It is

therefore sufficient to find a single cost function for S, or S;.

The determination of the cost function is carried out as a direct application of
its definition. That is, the process differential equations are solved with varying
values of §. The value of £ cannot be greater than the inter-trigger interval of 60
milli-seconds since, by assumption, no job pipelining is allowed and the controller
terminates any execution in progress upon receiving a trigger. The finite cost func-
tion is found by computation to be approximately the same over the entire allowed

state-space as defined in Figure 9.



In Figure 10, the finite cost function is plotted. The cost function is in the
units of the performance index. Bear in mind that these measures are the result of
an idealized model. We have, for example, ignored the effects of wind gusts and
other random effects of the environment. When these are taken into account, the

demands on controller speed get even greater, i.e. the costs increase.

The reader should compare the nature of the cost function with the plots
showing elevator deflection in Figure 7, and notice the correlation between the mar-
ginal increase in cost with increased execution delay and the marginal increase in

control needed, also as a function of the execution delay.
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CHAPTER 5§

THE NUMBER-POWER TRADEOFF

The number-power tradeoff problem can be stated as follows [17]. It appears
intuitively obvious if there are no device failures, that a system with a single proces-
sor with exponentially distributed service time with mean 1/p is more efficient than
an N-processor (N>1) system with each processor providing exponential service at
rate u/N. When failure is allowed for in the model, the above assertion is no longer
obvious, and may not even be true in specific instances. So, we ask the question,
"Given that the total processing power (number of processors X service rate per
processor, called here the number-power product ) is fixed at p, what is the optimal
number, N, of processors, that the system should start out with for a specific mis-
sion lifetime?” We extend an adaptation of this problem to demonstrate the use of

our performance measures to real-time computers.

Two observations are in order here. Firstly, we tacitly assume that processors
with any prescribed power are available. This is not true, although a wide variety of
processors is available. Secondly, such a tradeoff depends for its resolution upon the
cost functions and hard deadlines introduced above. It is this second point we pur-
sue here. Specifically, we set out to determine for an example control computer, the
configurations that meet specifications of reliability, and the sensitivity of reliability

and the mean cost to changes in the number-power product under different
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operating conditions of hard deadline and mission lifetime. Implicit in all this will

be the tradeoff between device redundancy and device speed.

A. System Description and Analysis

We use the multiprocessor system in Figure 11 to demonstrate the idea.
Assume that there is a single job class that enters the system as a Poisson process
with rate \, and which requires an exponentially distributed amount of service with
mean 1/p. Then the system at any given time is an M/M/c queue (if the small
dispatch time is ig’nored), where ¢ is the number of processors functioning at that
time. The distribution function for the response time for an M/M/c queue is well

known [18]. It is given by:

-c ey - _ g les))
Py () = {\—cp + pW(0)}(1 ;i‘::_ul{)‘l‘ W,(0)}{1 - elest) (28)

where 1,(0) is the probability that, when there are ¢ processors functional, at least

one functional processor is free. This is given by:

Wl =1- %){g Ti'[a]* 'cl'[%:l[ c;fx]]_l (29)

This distribution function is not defined unless cug > .

Assume that the hard deadline has a probability distribution function Fj;, and
that the finite cost function for the task is denoted by g (as in Eq. (18)). Let the
processors fail according to an exponential law with rate p,. Also, let n be the smal-

lest integer for which nu >\ -- clearly, if there are fewer than n processors function-
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ing, the utilization exceeds unity, and failure takes place with certainty.

The system fails if a hard deadline is violated, or if there are fewer than n pro-
cessors functioning. (We do not consider here the failure of the interconnection net,
or of the dispatcher. Taking account of these is easy, but would obscure the analysis
somewhat.) When the system is in a state 1> n, the rate at which failure can happen
is equal to the product of the task input rate and the probability that the response
time of the system exceeds the hard deadline. If we.. assume that steady state is
achieved between each state transition (i.e. between processor failures), thex/x the
probability distribution function of the response time at state ¢ is always given by
Frp - Such an assumption is valid, since the Mean Time Between Failures for com-
ponents used in such systems typically ranges from 1,000 to 10,000 hours. The pro-
bability of dynamic failure can therefore be computed using the Markov model in
Figure 12. Denoting the probability of being in state ¢ by =, the quantity
M1 - Fape (8] by a(j,t), the failure state by fail, and the number of processors at

start-up by N, the following balance equations can be written

i) = -INu, + [ o(NE) dFO Im(d,  mn(O)=1 . (30a)
70 = Liiyt [ (i) dFAE) () + (H1ymen(t), 7(0)=0, for n< i< 430b)
T (¢ E{f §) dF{&)}n(t) + np,x(t), 77 (0)=0. (30c)

Clearly, pyyn (1) = 75 (t) so that a solution of the above equations yields the proba-
bility of dynamic failure. Implicit in these calculations is the assumption that the
hard deadline is very much smaller than the mission lifetime or the sojourn time in

the various states. This is invariably the case in practice.
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Figure 12. Markov Model for Number-Power Tradeoff
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To compute the mean finite cost over the mission lifetime, we first have to
evaluate the distribution function of the response time, conditioned on the event
that no hard deadline is violated. This distribution function for a c-processor sys-

tem, denoted by Fﬁ}}\"}‘c, is given by:

. oo F
i) = J; petd

where the function is only defined for arguments less than the associated hard devz'xd-

dFy(7) (31)

line. Then, the mean cost is defined by:
N oo oo ¢ . .
M= 5 [N ) o) dFi () dFde) duke) (32)

The above expressions are used in the following section to obtain values for the pro-

bability of dynamic failure, and the mean cost as a function of the mission lifetime.

B Numerical Results and Discussion

In what follows, it is assumed that the job arrival rate is A=100, and that the

processor failure rate is pp=10". All time units are in hours.

Figure 13 is the probability of dynamic failure when the task is non-critical, i.e.
the deadline is at infinity. In such caseﬁ, the probability of dynamic failure reduces
to being the probability of static failure, namely the probability of failure of
hardware components to the point when the system utilization exceeds 100 %. This
is because catastrophic failure does not occur in this case until the system utilization

is greater than unity. This explains the monotonic nature of the plot.
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Figure 14 shows the probability of dynamic failure when the task is critical
with the deadlines for the respective curves noted in the figure. The pumber-power
product is 2200. The curves that result for the failure plot form an inverted bell.
The portions of the failure curve where the slope is positive can be explained as fol-
lows. When the number of processors increases, the response time distribution is
skewed to the right. This in turn increases the probability of failing to meet the
hard deadline to a greater extent than the static failure probability is reduced by
the addition of further redundancy. Thé positive slope is the result of this tendency.
When the hard deadline is smaller, the premium on spe?d is increased, and as a

result, the trough of the curves moves to the left.

In the region corresponding to the fewest processors, there tends to be a trade-
off between dynamic failure probability and the number of processors, leading to a
negative slope for the failure curves. When there are few processors, the fault-
tolerance is less and the probability of static failure is therefore greater. Since the
total processing power of the processor bank is fixed, the few processors each have
greater power, and the mean wai.tix‘llg tfme is low. This accounts for the very small
nature of the non-static component of the failure probability. As the speeds of the
individual processors are decreased, but their numbers increased commensurately,
the static failure probability drops, but the probability of missing the hard deadline
increases. In the area of the curve where the slope of the probability of failure is
negative, the benefits accrued from adding redundancy outweigh the negative
impact of the lowered individual speeds that result; elsewhere the reverse is the case.
Notice that the curve corresponding to 5 deadline of 0.01 has no region of negative
slope. This means. that 2200 is a number-power product that is too small with

respect to that hard deadline.
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In Figure 15, the dependence of the probability of dynamic failure on the
number-power product for a mission lifetime of‘ 10 hours is considered. Each poi‘nt.
on the curves represents the configuration yielding the lowest possible failure proba-
bility for the number-power product represented. The label of each point on this
plot is the number of processors in the configuration for which this lowest failure
probability is achieved. As the product increases, the optimal configuration tends to
contain more processors: this also is due to the lowering of the non-static component

of the dynamic failure probability when the product is increased.

Naturally, the curves are monotonically non-increasing. They serve to show
the marginal gain in maximum achievable reliability that is to be had on increasing
the number-power product at each point for the class of systems under considera-
tion. Notice the “elbows” in the plot. Theée occur when the minimum failure pro-
bability configuration changes, and are the result of a tradeoff between the static
and non-static components of the failure probability. The py,, drops exponeﬁtially
with an increase in the product as long as the static component is a small fraction of
Pig- When the non-static component drops to sufficiently below the static com-
ponent value, the optimal configuration changes, and the static component once
again becomes negligible compared to the non-static component. This race continues
indefinitely and is portrayed in Figure 16. The discrete nature of the processors
causes the elbows: if the number of processors were a continuous quantity, they

would not appear.

The probability of dynamic failure is used as a pass-fail test for control com-
puters. Plots such as Figure 15 can be used in this connection. As an example, let

the mission lifetime be 10 hours, and the specified probability of dynamic failure
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equal to 1077 over that period. Let the system parameters be those of the model in
this section. Then, corresponding to each of the four deadlines considered, we can
obtain graphically from Figure 15, the minimum number-power product that is
required to satisfy the py, specifications. These products are listed in Table 5. Any
system that has a smaller number-power product must be rejected, no matter what

its other credentials may be.

When this stage of the evaluation is complete, one has a set of acceptable con-
figurations. Only after this point does the mean cost come into consideration. The
mean costs associated with each of the points in Figure 15 is graphed in Figure 17,
where the finite cost function, g, has been taken as equal to the response time for
demonstrative purpose. The curves take the form of a sawtooth wave, with each
upward tramsition occurring when the optimal configuration increases by one.

Clearly, the greater the power of each processor, the smaller is the mean cost.

In Figure 18 (A, B, and C), we show the effects on pyy, of changing mission
lifetime for various values of the hard deadline, ¢; In the light of the preceding dis-
cussion, these plots should be largely self-explanatory. It is worth pointing out, how-
ever, that as the lifetime increases, the optimal configuration contains a larger
number of processors. The trough (around the optimal point) becomes shallower as
one increases the mission lifetime, until finally, it disappears to be replaced by a
shallow trough one unit to the right. As the lifetime increases still further, the new
trough deepens, then begins to become shallow. Whether or not this cycle continues
depends upon the hard deadline: it will continue so long as the number-power pro-
duct is sufficiently large to cope with the hard deadline at the lifetimes used; the

plot will rise monotonically to a failure probability of one if this is not the case (cf.
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Hard Deadline _ Number-Power Product
— — = —
0.010 7165
0.025 2126
0.050 | 1496
0.075 1180

Required pyy, =107
Mission Lifetime = 10 hours

Table 5. Minimum Number-Power Product for Various Hard Deadlines.
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Figure 14).

In Figure 19 (A, B, and C), we show the associated Mean Costs per unit time
of operation using the same cost function as was used in Figure 17. In all three
curves, we may note the anomaly mentioned in Section 2: as the lifetime increases,
and as the number of processors increases, there is a region over which the mean
costs per hour actually drop. It is most pronounced in Figure 19A, where the pro-
bability of dynamic failure is. close to unity under almost all configurations. This
anomaly, of course, is due to the fact that the mean costs are computed on a
response-time distribution that is conditioned on the system’s not failing. Thus, on
comparing Figures 19A, 19B, and 19C, we see that the system operating in the
longest hard deadline, and therefore having greater reliability exhibits a higher mean
cost per hour in some configurations than its identical counterparts that operate
under more difficult conditions. If this causes undue irritation, the anomaly can be

f ! . .
made to vanish by redefinitig the finite cost function for a task f to be:

i) ={ : (33)
! 9;(td) lf t> t‘
introducing the following functions:
9(1)
Cl',(t) = E g,(E( Vij’rljx”lj)t)) (34)
=1 .
Aty = Y T(Y (35)
=1 .

and defining the mean and variance costs to be:

Mean Approzimate Cost (MAC) = fE{ﬂ(t)} dL(t) (36)
‘ 0
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Variance Approzimate Cost (VAC) = fVar{ﬂ(t)} dIf¢) (37)
0

It is easy to see that MAC> Mean Cost always, and that the approximate costs
approach the accurate costs when the probability of dynamic failure is small.
Indeed, the anomaly does not appear until the probability of dynamic failure is sig-
nificant. Since the applications under consideration are all critical processes, py,, is
always small for the accepted configurations, and the configurations that exhibit
this anomaly will be rejected by the py,, pass-fail test, and their mean costs need

never be computed.

C. Extension

The number-power tradeoff can easily be extended to make it very useful in
the process of design. The reader will have noticed that in the cost functions with
which we measure the goodness of controller performance, no account is taken of
controller hardware cost. All that the cost functions express is the control overhead
incurred in actually running the process. Indeed, we may regard the mean costs as
average operating overheads. It is not easy directly to incorporate the hardware cost
into the cost functions themselves. Instead, one may consider the set of hardware
configurations available for a particular hardware cost outlay. Then, constant-cost
plots can be drawn, showing the range of performance (in terms of probability of
dynamic failure and average operating costs) that is available for any particular
hardware cost outlay. From similar curves, one may arrive at the minimum finite

average operating cost associated with a particular hardware cost given that
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specifications for the probability of dynamic failure are met.

This approach can easily be illustrated with the number-power tradeoff con-
sidered here. When the hardware cost of a processor is proportional to its processing
speed, the curves in Figure 13 become dynamic failure curves for a particular
hardware cost. Curves such as Figure 18 can be used to identify the configurations
that meet requirements for the probability of dynamic failure for given mission life-

times, and the sensitivity of p;,, to changes in mission lifetime.

Also, one can study any other tradeoffs that may exist between the hardware
cost or the number-power product and the minimum mean cost per lifetime associ-

ated with such a cost or product.

The computer studied here is simple; however, it can be extended in some use-
ful directions relatively easily. It is easy to take care of the case when the hardware
cost or the finite cost function is a more complicated function of the processing
speed. More complicated multiprocess;)rs require a more involved analysis, bﬁt the:

basic ideas should now be clear.



CHAPTER 6

SYNCHRONIZATION AND FAULT-MASKING

A. Synchronization

Figure 20 is a schematic showing the handling of data as it enters the system
through the sensors, and leaves it (in a figurative sense) at the actuators. Synchron-

ization and fault-masking are integral parts of any fault-tolerant distributed system.

When a multiplicity of processors executes code in parallel, care must be taken
to keep them reasonably in step. Therefore, the issue of synchronization is focal to
all methods of fqrward error recovery. There are two basic methods of synchroniza-
tion:

(1).  Each processor has an ultra-precise clock. When the computer is switched on,
the clocks are synchronized. If the clocks are sufficiently precise, the proces-
sors will continue to run in lock-step for an appreciable period. Unfor-
tunately, such highly precise clocks are extremely expensive to build, and
unsuited to incorporation in computer circuits. (For a description of highly
precise clocks, see [19]). Clocks that are generally used in computer circuits

drift too rapidly for this method to be employed in practice. We shall not
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consider this method any further.

(2). The synchronization is carried out mutually. There is no single component
whose functioning is critical to the security of the whole system. One may
choose to synchronize the processor clocks, or the processors themselves at
pre-defined boundaries of software execution. In the first case, one has a sys-
tem operating more or less in lock-step, such as the FTMP system [1]. Both
methods of synchronization are based on the same basic concepts; the only
difference is the frequency with which synchronization is carried out.! The
notion of virtual time sources now arises naturally. These are not necessarily
clocks in the traditional sense; they mark the points at which an individual
processor performs synchronization. It is convenient tb view them as virtual
clocks, whose transitions represent either clock "ticks” or execution of a
stretch of code up to a pre-specified boundary. In the sequel, unless it is oth-

erwise stated, the term "clock” is used to mean "virtual clock”.

When synchronization is mutual, no "absolute” underlying time-source exists,
only a set of time-sources whose relative behavior must be kept in step. The syn-
chronizer (which may or may not be a physical part of the processor and which may
be implemented eithe; in hardware or in software) must therefore in each case have
a perception of thé state of the other time-sources. This perception may or may not
be identical to that of the other synchronizers: if faulty modules necessarily behave

consistently with respect to all synchronizers, it is identical; otherwise it need not be

50.

, ! An important corollary of this is that the maximum clock drift rates that can be tolerated de-
crease with a decrease in the frequency of synchronization.



The synchronization process contributes to the system overhead in two ways.
Firstly, there is the overhead imposed by the synchronization task itself. Secondly,
the task-to-task communication overhead is proportional to the degree of synchroni-

zation achieved.

If hardware synchronization with phase-locked clocks is employed, the syn-
chronization overhead can be reduced to vanishing point. If software synchroniza-
tion is used, the overhead is significant. Both approaches to synchronization will be
considered in succeeding sections. First, however, we will consider the second com-

ponent.

Because of severe timing constraints, real-time systems do not generally use
sophisticated mechanisms for task-to-task communication. Typically, data are
transmitted from one task to another via timing rules agreed in advance. As a
result, the receiving task has to wait for a time equal to the sum of the maximum
transmission time and the maximum possible clock skew before it can read the data.
Where synchronization is carried out in software and depends on the transmission of
timing data on regular data channels, this transmission delay feeds back to increase

the synchronization delay itself. We will consider this matter in detail in the sequel.

In what follows, we present a detailed discussion on each of hardware and

software implementations of synchronization.

Hardware Synchronization

In this section, we consider synchronization by phase locking. Phase-locked
clocks were first used to ensure that the processors of FTMP [1] operated in lock

step. We consider a total of N clocks to be synchronized in the face of up to m
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faulty clocks. The clocks are at the nodes of a completely connected graph. The
basic theory behind their operation is simple. In Figure 21, we provide a schematic
diagram of an individual clock. Each clock consists of a receiver which monitors the
clock pulses of the N-1 other clocks in the arrangement, and these are used to gen-
erate a reference signal. By comparing this reference with its own pulse, the receiv-
ing clock computes an estimate of its own phase error. This estimated phase error
is then put into an appropriate filter, and the output of the filter controls the clock
oscillator’s frequency. By thus controlling the frequency of the individual clocks,
they can be kept in phase-lock and therefore synchronized for as long as the initial
phase error is below a prescribed bound, i.e. for as long as the clocks started reason-

ably in step and their drifts are sufficiently low. A discussion of clock stability is
provided in [21].

The arrangement for N=4, m=1 is, to our knowledge, the only phase-locked
clock constructed and fully analyzed [20]. Unfortunately, when one attempts to
increase m without care, synchronization can be lost due to the presence of mali-
cious faults. In this section, we show how to design phase-locked clocks to tolerate

a given arbitrary number of malicious failures. Our work is a generalization of the

original design [20] which can tolerate at most one failed clock.

The following notation and definitions are used in this section.

Definition 1: If the overall system of clocks is properly synchronized, all individual
non-faulty clocks must agree closely witl; each other. A well-synchronized system
thus has global clock cycles. Global clock cycle s is the interval between the +th
tick of the fastest non-faulty clock (i.e. the non-faulty clock that has its +th tick

before that of all the other non-faulty clocks) and the (s+1)-th tick of the fastest
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non-faulty clock. For brevity, we shall denote global clock cycle § by gecs.

Definition 2: Each of the clocks “seeg” through its receiving circuitry, the ticks of
the other clocks. These ticks, together with the receiving clock’s own tick, can be
totally ordered in any gces by the relation “prior or equal to”. Such an ordered set,
called a scenarso, for clock a in geces is denoted by S’:, We shall frequently drop the

superscript for convenience: where this is done, it will be understood that we are

talking about some gecs.

If a non-faulty clock ¢ does not receive a tick from clock d within a given
timeout period in any global clock cycle, the tick for dis arbitrarily assumed by c to
be at the end of that timeout period. The scenario of every non-faulty clock there-

fore has exactly N elements.

Definition 3: If clock a has clock b as its reference in some gecs, it is said to trigger

on b in that gecs.

Definition 4: Given the various triggers, we can draw a directed graph with the
clocks as the vertices, and the directed arcs reflecting the relationship “‘triggers’ in
some gcci. Such a graph is called the trigger graph. For example, in Figure 22, a
triggers b and ¢, and is itself triggered by d, while d is triggered by b. A clique of

clocks is a component of the trigger graph. In Figure 22, there are two cliques:

{a,b,c,d} and {e,f,g}.

Notation: G and NG are the set of clocks and non-faulty clocks, respectively, in

the system. There are N clocks in all, and up to m failures must be sustained.

Definition 8: A partition of G is defined as a set P={G,,G,}, where G, and G, are



Figure 22. Trigger Graph: An Example
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subsets of G with the following properties:
) G=GUG
i) G NG NANG = 4,
(i) G;ONG # ¢,i=1.2.
From (i), each clock must belong to at least one of G, and G,. From (ii), only

faulty clocks may belong to both G, and G,. From (iii), there must be at least one

non-faulty clock in each of G, and G,.

Definition 7: A clock a is said to be faster than a clock b in scenario S if a precedes
bin S. In a partition P={G,,G,}, G, is said to be faster than G, if every non-

faulty clock in G is faster than every non-faulty clock in G,.

Notation: Given a partition P={G,,G,}, NG, and NG, are the non-faulty clocks
in G, and G,, respectively. By definition 8, neither NG, nor NG, can be empty and

NG\NG; = ¢.

Definition 8: Cliques A and B (of clocks) are said to be non-overlapping if the

non-faulty clocks of A are either all faster than those of B, or vice versa.

Notation: Denote the position of a clock ¢ in its own scenario S' in gees by pl.
Again, we shall frequently drop the superscript for convenience. The reference sig-

nal (i.e. the trigger) is a function'of N and of p. It is denoted by f,(N). By this,

we mean that clock c triggers on the f, (N)-th signal in S, not counting itself.

For the system to operate satisfactorily, all the non-faulty clocks must have

their ticks close together. Also, they should tell good time, i.e. the length of every



global clock cycle should be about the length of an ideal (or absolute time) clock’s
inter-tick interval. These conditions dictate the following two conditions of correct-

ness C1 and C2.

Definition 9: Each of the following conditions of correctness must be satisfied in

geed if the system is to be correctly operating in every gcet.

Cl. For all partitions P={Gj,Gy} of the set of clocks G, in which the non-faulty
clocks in G, are all faster than those in G,, each of the following (K1 and K2) -

must apply:

K1. If, in geci, all clocks in NG, trigger on clocks in G|, then there is at least
one clock in NG, that triggers on a clock in G,. Furthermore, if no clocl;:
in NG, triggers on a clock in NG, at least one clock kENG, must trigger
on a faulty clock A€ G, such that in the scenario S, there is at least one

clock r€ NG, that is slower than the clock A.

K2. If, in gecs, all clocks in NG, trigger on clocks in Gj, then there is at least
one clock in NG, that triggers on a clock in G,. Furthermore, if no
clock in NG, triggers on a clock in NG,, at least one clock k€ NG| must
trigger on a faulty clock A€ G, such that in Sj, there is at least one clock

rENG, that is faster than h.

C2. If a non-faulty clock z triggers on a faulty clock y, then there must exist non-
faulty clocks z, and z, such that z; is faster than or equal to y, and y is faster

than or equal to z,. Either z; or z may be z itself.

Intuitively, we may regard C1 as preventing the formation of non-overlapping

cliques -- which would obviously destroy synchrony -- and C2 as ensuring that the



system keeps good time, i.e. that each global clock cycle is close to being the clock

cycle of an ideal clock.

Finally, we assume that the transmission of clock signals through the system
takes negligible time. This ensures that all non-faulty clocks are seen by all clocks

in the same mutual order.

The phase-locked clock system for N=4, m=1 is simple enough to be proved
correct by an exhaustive enumeration of all eventualities. It is, to our knowledge,

the only phase-locked clock actually constructed [20].

Here, the reference used is the second incoming pulse (in temporal order), i.e.
the median pulse. Such a clock is proof against the malice of a single faulty clock.
To give the reader a feeling for why this is so, and to enhance his intuition about

malicious failure, we provide below a simple explanation.

Call the four clocks @, b, ¢, and d. Let d be the maliciously faulty clock.
Because d is malicious, it may provide different timing signals (i.e. lie) to different
receivers. Since the non-faulty clocks by definition send their ticks at the same
moment (or do not lie) to all the other receiving clocks, the mutual ordering of the
non-faulty élocks within every scenario is the same for all non-faulty clocks. That is
to say, if clock b sees clock a faster than clock ¢ in some gees (i.e. clock a sends its
i-th tick to b before clock ¢ does so), then a will appear faster than ¢ to both the
other non-faulty clocks in the system, i.e. to a and ¢ in that gcei. d, however, may
appear in different positions in the scenarios of the non-faulty clocks since it is mali-
cious. One way of proving that a four-clock arrangement works despite d's being
malicious, is to enumerate all possible actions of d and show that the system still

continues to satisfy the conditions of correctness.
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Assume without loss of generality that a is prior or equal to b which in turn is
prior or equal to ¢ in some gcei. Consider a sample set of scenarios for our four-

clock example. The triggering clock is denoted in bold-face type.

S, = a<b<e<d

a<d<b<ec

n
I

S, = a<b<d<ec
The scenario S, is irrelevant, since dis faulty.

Notice first that the position of the faulty clock d changes relative to the oth-

ers, while the mutual ordering of the non-faulty clocks remains unchanged, as

indeed it should.

It is easy to see that both conditions of correctness will be satisfied, and that
the clock will operate correctly if the above scenario holds. It is not difficult to
write down all the 43=64 possible scenarios (with the ordering of the non-faulty
clocks fixed as above) that are made possible by the arbitrary positioning of d, and

to convince oneself that, for all possible scenarios, C1 and C2 are satisfied.

Unfortunately, if we try to allow for m=2,3,..., by expanding the system arbi-
trarily without sufficient care, the conditions of correctness can be violated. In fact,
it is even possible for a system to contain an arbitrarily large number of clocks, and

still to be vulnerable to just two malicious failures.

To see this, consider the following example. Let us choose, for each clock y in

the system, fpy(N) as the median clock signal in the scenario, not counting clock y.

If Nis odd (and there is thus an even number of “‘other” clocks), choose the slower

of the two middle clocks. Then, f,(N) is only a function of N. We therefore drop
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the subscript for this example. Choosing the median signal is certainly good intui-

tion.

Let there be only two faulty clocks, z; and z,, and n=N-2 non-faulty clocks

a8y, ...y Gy

Case 1: N>7. Consider some gccs. Assume that a; is faster than a;in gees if k<[
Now, let z; and 2z, present themselves as the fastest two clocks to ey, ..., a,, and as
the slowest two clocks to the other non-faulty clocks, ie. a,,y,...a,, where

p=[n/2]=/N)-1. Then, the set of scenarios can be represented as in Figure 23.

Recalling that a clock triggers on the {N)-th tick in its scenario not counting
itself, we can draw the trigger graph as in Figure 24. It follows that {a,,..., a,} and
{ap1, -y 84} Will be two non-overlapping cliques, no matter how large n may be. It

is easy to work out the case for N=7 to convince oneself of this fact.

Case 2: N<7. This is trivial, and showing that the system is incapable of sustain-

ing even two maliciously faulty clocks is left to the reader.

This has been a cautionary tale of the unbridled use of intuition in designing
phase-locked clocks. Assured now that a more careful approach is needed, we turn

in the following section to showing how to expand phase-locked clocks.

Our job is to (i) find the lower bound, N, on the size of a system of clocks that
must sustain up to m maliciously faulty clocks, and (ii) find the functions f{N) for

z=1,...,N.

We begin with the following two lemmas that smooth our way to the main

result.
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‘Lemma 1: Condition C2 is satisfied for all partitions P={G);,G,} if and only if

there exist functions f(N) for 2=1,...,N, such that
min{m, z-1} < f(N) < max{N-m, z} (38)

Proof: Let k be a non-faulty clock such that p, = z. We must show that Eq. (38)

holds for all z for which p; is defined iff condition C2 holds.

Suppose that there exist functions f,(N) for z=1,...,N satisfying Eq. (38). This
implies min{m, z-1}+1 < max{N-m, z} for all z€{1,2,...,N}, leading to N>2m+1.
Hence, it is sufficient to consider the following three cases:

(i) 2<m:
Clearly, max{N-m, z} = N-m, min{m, z-1} = 2-1 and therefore
-1 < f{N) < N-m. If the reference clock is non-faulty, we have
nothing to prove. If it is faulty, then since there are at most m
faulty clocks, there must be at least ox;e non-faulty clock slower
than the reference clock. Also, from the left half of the inequality,
f.>1-1, and since clock k is non-faulty, there is a non-faulty clock
(i.e. k itself) faster than the reference clock. So, C2 is satisfied.

(i) N-m>z>m:
min{m,z-1}=m, ‘max{N-m,z}=N-m and therefore
m+1 < f(N) < N-m-1. Since at most m faulty clocks exist, if the
reference clock in S} were faulty, it must appear in S; as s!ower than
at least one non-faulty clock (the right half of the inequality), and
faster than at least one non-faulty clock (the left half of the inequal-

ity), and C2 is satisfied.
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(i1) N>2>N-m :
min{m,z-1}=m, max{N-m,z}=z and m+l < f(N) < z-1. As
with the previous cases, there must appear in S; at least one non-
faulty clock that is faster than the reference clock, if the reference
clock is faulty. Also, since k is non-faulty, and appears in the z-th
(i.e. pi-th) position, there is at least one non-faulty clock, in partic-
ular clock k, that is slower than the reference clock in S, thus

satisfying C2.

Conversely, suppose f(N)<min{m,z-1}. Then, C2 is violated when faulty
clocks appear in positions 1,...,f{N) of S;. Similarly, if f{N)>max{N-m,z}, C2 is

violated when faulty clocks appear in positions f{N)+1,...,N of 5.2 Q.E.D.

Lemma 2: If all clocks in NG, trigger only on clocks in G, (where the notation is

the same as in definition 9), then the following are equivalent:

1 q2 kaSJICli fp(NN) where ¢, is the number of non-faulty clocks in G;.
NG,

(i) K1 is satisfied.
Proof:

(i) implies (i5): 1f (i) holds, then it is easy to see that no matter how the up to

m faulty clocks in G arrange themselves, K1 is satisfied.

(+) smplies (i): Suppose, to the contrary, that ¢ < g&% fp{N). Consider the
2
nonempty set L = {y: yeNG, and fp,(N) = blenlsl/!cl.' 5,(N)}. Assume that there are
2

i<m faulty clocks in G,. Since the faulty clocks may present themselves in any

2 Once again, the addition of 1 occurs because a clock does not count itself when counting to

f{N)
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position in any scenario, consider the case where they present themselves in the
scenario of every yEL in the ¢ +1,...,¢,+¢ positions. Then, there is no non-faulty

clock in G, that is slower than the reference clock of any clock in NG,, a contradic-

tion. Q.E.D.

The two theorems below yield the main result of this section.

Theorem 1: To ensure that, despite up to m malicious failures, the conditions of

correctness are satisfied, the system must have N>3m+1 clocks.

Proof: We will only consider here the case of partitions P = {G,,G,} in which all
clocks in NG, trigger on clocks in G,. The other case (i.e. K2) can similarly be dealt

with.

Let there be ¢ and ¢, clocks respectively in NG, and NG,. Let

M={y: ye NG, and f, (N)= [Dax f,(N)}. Let i be the number of faulty clocks that
€NG,

belong to G,. Then, the assumption that all non-faulty clocks in G trigger on
clocks in G is equivalent to saying that one of the following Eqs. (39) and (40) must

apply:

gt 2 klg}gg}!,,(l\/) +1=/[(N+1 (39)

which applies if there exists at least one p, y€M, such that p, < f,’(N). The addi-

tion of 1 follows from the fact that clock y does not count itself when counting to

L (N). 1 py > fpy(N) for all y€M, the following Eq. (40) applies:
qti 2 max [(N) (40)

First consider the case where Eq. (39) applies. The condition that C1 (more
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specifically, K1) holds implies, from Lemma 2, that

Q2 g,gz Jn{N) | (41)

Since this must be true for all partitions of G, we have for all ¢;€{1,...,,N-i-1}:

> i+ 1
@ 2 pax fo(N) - i

if ¢ > min . Hence, K1 can be written as:
)l EENGQIPE(N) e ’

For all QIE{I""iN""—l}r {‘112,‘12%1 fm(M -+l D qlzkgll\lfgz !Pk(lv)}

In particular, this is true for ¢;== bxg% fo{N) —i+1. Thus,
S }

max fo{N) —+1 2> bgl}j,gz L (N)

or

fé’ﬁé,f"*(m - kreng(ngp,(l‘f) 2 +1 (42)
Recall that this is true if Eq. (39) applies. Similarly, if Eq. (40) applies, we

have from an identical argument,

max f,(N) - min f,(N) > i

KNG, kENG, (43)

Egs. (39)-(43) must hold for all possible 1. Since there are at most m faulty

clocks, we must have:

2ax fp(N) - min Jo(N) 2 m-1 (42')

if Eq. (39) applies, and
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max [,(N) - min [,(N) > m

KNG, P KENG, (43°)
if Eq. (40) applies.

We first consider the case where Eq. (39) applies. We claim that it implies

that N>3m.

To see why, let y be the slowest clock in M and z the slowest clock in L (with L

defined as in Lemma 2). Then, due to Lemma 1 and Eq. (42') the following inequal-

ity must hold:

max{N-m, p,} > bxg}eél L(N) 2 ""l+k'é‘13;'ézf’*(m > m-1 + min{m, p-1} (44)

Then up to m faulty clocks in the system can arrange themselves in any order. In
particular, they can so order themselves in S, that p,< N-m, and so order them-
selves in S, that p,>m. Since Eq. (44) must hold always, no matter what the faulty

clocks do, we must have:

N-m > max I(N) 2 m-1+bgllfllég fp{N) 2 (m-1) + (m+1) (45)

from which we arrive at the equation

N>3m (46)
Recall that this applies whenever Eq. (39) holds. If, instead, Eq. (40) applies,

we can similarly show that
N>3m+1 (47)

Since we seek the smallest N to satisfy the conditions of correctness, we have done if
we can show that there exist functions f{(N) such that Eq. (39) always applies (and
therefore Eq. (40) never applies), and for which Eq. (45) is satisfied. But, we can

always construct f{N) to (i) be monotonically non-increasing functions of z and (ii)
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satisly Eq. (45): an example of such a construction is provided in the statement of

Theorem 2 below. Hence Eq. (39) always applies, and N>3m+1, is the necessary

condition.

The case when all clocks in NG, trigger on clocks in G, can be similarly

treated. Q.E.D.

2m if z<N-m
Theorem 2: If N>3m+1 and f{N)= m+1 if z2>Nem then the conditions of

correctness are satisfied.

Proof: [(N) as defined here satisfies Lemmas 1 and 2 and is monotonically non-
increasing in z. Clearly, C2 holds. Also, it is easy to see that if N>3m and Eq. (39)
implies Eq. (41), then case K1 in Definition 8 will hold. We therefore only have to
show that the definition of f,(N) as given above satisfies Eq. (41) if Eq. (39) is satis-

fied. This can easily be verified by a direct substitution.

Case K2 can be similarly seen to hold. Q.E.D.

It should be noted that the set of functions f,(N) is not always unique. From

the proofs of Theorems 1 and 2, the following inequalities are sufficient:
(i) m+l < f(N) < N-m-1 forall z=1,..,N.

(i) fAN) 2> m-14fp p(N) for all z<m+1,

(i) SienlN) < LAN) < Sy N) for N-m>z>me1,

(iv) f(N) 2 [(N)iff i<y

The intervals z> N-m and z<m+1 arise from the up to m faulty clocks in the

system. All that we can tell about the fastest non-faulty clock g in the system (this
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clock must have the maximum value of f(N)) in clock g's scenario is that it is in the
first m+1 clocks in that scenario. Similarly, all that we can tell about the position
of the slowest non-faulty clock s in the system \(which must have the minimum

value of f(N)) is that it occupies a place in the last m+1 clocks. This leads at once

to the intervals 22> N-m and z<m+1.

It is interesting to note that if conditions C1 and C2 are both satisfied, and the
functions f,(V) are monotonically non-increasing in z, then a stronger condition than

C?2 automatically holds.

Corollary: If the conditions of correctness are satisfied, with the f(N) being

defined as monotonically non-increasing functions of z, then the following condition

C3 holds.

C3. Every non-faulty clock necessarily triggers on either a non-faulty clock, or a

faulty clock that is sandwiched between the other non-faulty clocks.

Proof: Now, C3 follows immediately from C2 for all but the fastest and slowest

non-faulty clocks.
Consider the fastest non-faulty clock. In the course of proving Theorem 1, it

was established that N-m > f(NM) > m for all z=I1,.,N, and that

- mi > m-1, leading to 2m as the smallest value for max
max 5H(N) min fo{N) 2 m-1, g max 5 (N)
where NGC G is the set of non-faulty clocks. From the monotonic nature of the
fp(N), the trigger for the fastest non-faulty clock must lie in the interval 2m+1, ...,

N-m. But, since N>3m+1, any faulty clock in this interval must be sandwiched

between non-faulty clocks.
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The proof for the slowest non-faulty clock is similar. Q.E.D.

Remark 1: Synchronization Overhead

In the case of a phase-locked clock, there is some time overhead due to the
oscillations that are possible as a result of malicious behavior. However, these are
minimal whe.n good crystal clocks are used, and so it is reasonable to treat the over-
head of hardware synchronizatioﬁ as negligible. Also, the clock skew is very

small/negligible in a well-designed phase-locked clock.

Remark 2: An Alternative Design' »

The only other hardware arrangement that we are aware of for keeping syn-
chronization in the face of malicious behavior is the multi-stage synchronizer
arrangement proposed by Davies and Wakerly [22]. The idea is shown in Figure 25.
It consists of m stages of N synchronizers each. The system works on the principle
that, with this redundancy, there must be at least one level of synchronizers that
assures proper synchronization in the presence of malicious faults. An informal
proof is provided in [22].

This arrangement results in a proliferation of hardware. As may readily be verified,
the total number of devices (processors and synchronizers) in the cluster is
2m*+3m+1. The total number of 1/O ports required is given by 8m+16m*+10m+2.
The potential enormity of the above numbers should be driven home by the con-
sideration that in order to maximize returns from redundancy, the individual
modules must be isolated from one another as much as possible. This dictates that
power supplies must also be replicated in large numbers, and that the benefits of

large-scale integration cannot be brought to bear on the issue: individual synchroniz-
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ers must be on separate devices -- even, perhaps, on separate cards. Otherwise,
correlated and common-cause failures could wipe out reliability gains made by dev-

ice redundancy.

Compared with the gargantuan nature of the redundancy required by the
Davies and Wakerly approach, the N=3m+1 requirement of phase-locked clocks

represents an extremely elegant hardware solution to the problem of synchronization

in the presence of malicious faults.

Software Synchronization

The use of decentralized algorithms for synchronization offers an alternative to
the hardware methods described above. Such algorithms enable a system consisting
of many processors with their own clocks to operate in close synchrony. The degree
of synchronization obtained by these algorithms depends primarily on the perfor-
mance of the communications system, the precision of the clocks, and the frequency
of resynchronization. The task-to-task communications system'’s one-way message
time is at least B+6 where B is the maximum transmission time and § is the max-
imum clock skew. The most time-efficient of the software algorithms that we know

of is the interactive convergence algorithm [23)].

In the interactive convergence algorithm, each processor in the system deter-
mines its skew relative to every other processor in the system. If any relative skew is
greater than a predetermined threshold, it is set to zero. An average of all the rela-

tive skews is calculated and used to correct its clock.
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The following theorem (a trivial adaptation of one proved in {23]) characterizes

the maximum clock skew of the system in terms of the following system parameters.
¢ - maximum error in reading inother processor’s clock
p - maximum drift rate between any two clocks in the system
N - number of clocks in the system.
m - maximum number of faulty clocks accommodated.
R - resynchronization period.
S(N) - execution time of the resynchronization task.
6o - maximum clock skew at start-up.

Theorem 3 (adapted from [23]). If the folloﬁing conditions hold:
3m<N
62 {1- -20(1-1 2e{1+p(1-3)} + p{R + g 2r ~ M}
§> 6 +pR

max(é, S(N)) < R

pd <<,

then, the non-faulty clocks remain in synchrony, i.e. the maximum skew is é.

The synchronization algorithm is run periodically, the major component of the
execution time usually being the time required to read every other processor's clock
in the system. In the SIFT system, each process;r's clock value is broadcast during
a window of time allocated to it. There are N such windows, one for each processor
in the system. All other processors wait during this window to receive the broad-

cast data value.
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In order to accommodate the worst-case situation, each window must be at
least B+6 long. The interactive convergence algorithm takes an execution time equal
to SN)=MB+6)+K, where K is the time needed to compute and carry out the

clock correction.

It should be noted that this execution time of the synchronization task affects
the synchronization process itself. Indeed, since this is a function of N, there is a
maximum cluster size that can be synchronized in this way. To see this, substitute

the above expression for S(N) in the formula for §, and obtain:
82 NMN-3m-26(No+N-mN-m)[" [2c+p{R+2(N-m) B+ £ )] (40)

From this, one can (a) compute the minimum execution time of the synchronization
task as a function of the cluster size, (b) obtain the quality of synchronization (the
smaller the §, the better the synchronization), and (c) determine the largest possible

cluster that can be thus synchronized: this is the largest N for which {N) < R.

The values for the SIFT system are given by B=18.2 micro-seconds, and exe-
cution time for the synchronization task is 1.760 milli-seconds. Numerical results on
the synchronization overhead using these values are plotted in Figure 26. The max-

imum cluster size permissible for synchronization is tabulated in Table 6.

Although the expression S(N) = M6+ B)+K was presented as emanating from
the SIFT system, it is easy to see that in any system where communication is by
broadcast, and clock transmission slots are pre-determined, this expression will hold.
It should also be reiterated that such communication protocols are the most com-
monly used protocols in real-time systems. In any case, it is obvious that whatever

the protocol used, S N) is very unlikely to be less than a first order function of N.
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Drift Rate Maximum Clustér Size
1x10°® 43
5% 1078 40
1X107° 40
2.2X 107 #+ 40
5%X107 37
1x107 34
5x107* 22
1x1073 16

#* SIFT Value

Table 6.  Maximum Cluster Size Permissible for Software Synchronization
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Even if, in a hypothetical case, S{N) were negligible (which, of course can never
happen but nevertheless represents an extreme case), § will continue to be a function

of N, and there will be a point for which §> R, at which synchrony will break down.

B. Voting and Byzantine Generals Algorithm

Voting

Once the delay involved in synchronization is taken account of, there is very
little additional delay if the voting'i's carried out in hardware. With software voting,

however, the additional overhead can be significant.

Voting in software is carried out' by individual processors placing data to be
voted on in pre-speciﬁed "mailboxes™. or " pigeonholes”. The voter searches the mail-
boxes for valid data, fetches them, and then votes on them. The execution time in
the retrieval step is directly proportioﬁal to the number of processors in the cluster,

N. The execution time required to vote N values and diagnose up to m faults is at

least (N-1)C; + C, but less than {{N-1) + 2m - 2] C, + C, = [5—(%:!-) -2 C, +C,

where C, C, are some constants [24].
Experimental data exist for 3-MR and 5-MR in SIFT. These data can easily be
introduced into the linear model obtained above. If s is the number of data values

voted, and Vp(s) the time taken for an N-way vote on s data values, the following

expression was found to hold for SIFT:

Vis) = 58.5 s N + 91.5s+38 micro-seconds. (41)

This is a large overhead: in SIFT, for example, voting is performed at the beginning
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of a 3.2 milli-second subframe. If s=6, N=>5, then 73% of the subframe is consumed

by the voting algorithm [25].

Byzantine Generals Algorithms

The Byzantine Generals, or interactive consistency, algorithm must be used
when it is necessary to isolate the sources of errors as well as to mask the errors
themselves. It finds use when reconfiguration upon failure is to be attempted and
the executive is distributed. The algorithm takes into account the fact that faulty
processors may be malicious, in other words, that they need not fail only in "safe”
directions. To be absolutely certain that faulty processors can be properly identified
for isolation, it is necessary to allow for every possible misbehavior: thus the case
when a faulty processor is malicious, i.e. that it actively and intelligently attempts
- to hide its malfunction, must also be handled. Such algorithms are typically used to
reach agreement between processors in a cluster on incoming sensor data, and in

certain clock synchronization algorithms. For further details, see [26-28].

The input of data is accomplished by every processor reading the external
sources independently or by one processor reading the external sources and then dis-
tributing the obtained value to the rest of the processors. In the first case, each pro-
cessor would very probably get a different value -- even if ‘they were in perfect syn-
chrony -- due to the inherent instability in reading analog data. Hence, a subsequent
exchange of values read along with a mid-value selection is required to get a con-
sistent value. However, this process suffers from sensitivity to malicious faulty pro-
cessors and interactive consistency (or Byzantine Generals) algorithms are essential

where fault isolation and reconfiguration are required.
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The interactive consistency algorithm consists of the following steps:
(1) The source value is distributed to the N processors.

(2) The received values are exchanged m times to handle up to m faulty proces-

SOrs.

(3) A consistent value is obtained by use of a recursive algorithm. When m=1,

this reduces to a majority calculation.

The overhead for these interactive consistency algorithms can be considerable.
N must be at least 3m+1. The number of messages required to obtain interactive
consistency is of the order of N™1. To give an idea of the actual numbers incurred

in practice, some experimental results from the SIFT computer [25] are used.

In SIFT, with five-way voting, only one fault can be located. The simple
flight-control applications currently running in SIFT use 63 external sensor values,
each of which goes through the interactive consistency algorithm. From the data
collected, execution times for steps (1) and (2) of the algorithm can be estimated,
and a lower bound determined for step (3). The following data were measured: step
(1) :3.05 ms, step (2) : 2.22 ms, and step (3) : 6.57 ms (total 11.84 ms). For
larger m, the step (1) execution time should not change significantly, while the step
(3) calculation would require at least 6.57 ms (very likely much more). The step (2)
process consists of only message exchanges and thus varies directly with the number
of messages which are sent. The following formula represents an approximate execu-
tion time for step (2) as a function of m: 2.22 N™! ms). We may add the timing
values for steps (1) and steps (3) above to this this expression to obtain a lower
bound for the overhead of the Byzantine Generals algorithm in SIFT. Since the

interactive consistency tasks must be executed at the data sample rate, a large
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portion of the available CPU time is consumed: see Table 7.

These results indicate the extremely high overhead imposed in an attempt to
achieve interactive consistency. It should be pointed out that there have lately been
some more efficient implementations of the Byzantine Generals algorithm [29] than
have been implemented on SIFT. However, even such implementations exhibit high

overheads as the number of faulty modules to be accommodated increases.

C. Reconfigurable and Non-reconfigurable Systems

To locate faults after they have been detected by voting, diagnostic tests must
be run. To ensure agreement amongst all non-faulty processors about the results of

the tests, the interactive consistency algorithm must be executed.

Unfortunately, as we have seen, this algorithm is extremely time-consuming to
run. Reconfigurable systems must therefore contend with a large overhead as com-

pared to non-reconfigurable systems.

However, reconfigurable systems have the advantage of dynamic redundancy
management. When widespread failures occur, it is possible to retire some clusters in
order to keep others at full strength. Also, by periodically purging itself of faulty
components, a reconfigurable system can survive in the face of more failures than
can a non-reconfigurable system. For example, if one started operation with a 7-
cluster, the reconfigurable system would not fail unless either (a) all but twe proces-
sors fail, or (b) more fhan m (m=2 for a 7-cluster, and 1 for a 4-cluster) processors
fail between successive tests, while the corresponding non-reconfigurable system

would fail if more than 3 processors failed. This does not automatically mean that a
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Data Sample Period =1 m= m==3
100 ms 11.8% 25.1 % >380 %
50 ms 93.7 % 50.2 % >T760%
33 ms 359 % 76.2 % >1140%
25 ms 47.4 % >100 % >1520%

m = number of faulty processors accommodated

Table 7. Overhead of Byzantine Generals Algorithm: Lower Bound for SIFT
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reconfigurable system is necessarily better than a non-reconfigurable one, since as

we shall see, timing requirements impose severe constraints on the size of reconfigur-

able clusters.

We shall contrast the reliability of reconfigurable and noﬁ;reconfigurable sys-
tems with the following example. Assume that there is a single critical task in the
system that requires 1.6 milli-seconds to run, and that this task is dispatched every
50 milli-seconds, and that the system must be ready to begin executing the task the
moment it is released. There is a total of N processors available. Processors fail
according to an exponential law with specified MTBF. The mission lifetime (dura-

tion between successive service stages) is also specified.

In the following sections, we consider non-reconfigurable and reconfigurable
systems separately. In both cases, we assume that synchronization is by means of
phase-locked clocks. Since these can be made arbitrarily reliable and are common to
both reconfigurable and non-reconfigurable systems, we do not consider the proba-
bility of clock failure in what follows. Numerical results in the section on reconfigur-
able systems are based on the lower bounds obtained from SIFT. Processor failures
are assumed to occur independently, forming a Poisson process with mean interar-

rival time 5% 10° seconds.

Non-Reconfigurable System

Under the above assumptions, the probability of dynamic failure is simply
equal to the probability of static failure, i.e. the probability that fewer than [N/2]

processors fail over the mission lifetime. This probability is graphed in Figure 27.
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Reconfigurable System

We assume here that the interactive consisteﬁcy algorithm will only be invoked
when a vote detects processor failure. The problem of replicating simplex data to
amongst multiple processors is not treated here: it is assumed that the slight varia-
tions in analogue sensor data obtained without the Byzantine algorithm are accept-
able. The purpose of the interactive consistency algorithm here is to obtain agree-
ment on diagnostic tests. The assumptions are that the tests have 100% coverage,
and for convenience, that the diagnostics take 3 ms. Clearly, the diagnostic period
is insensitive to the value of m. It is not difficult to alter the analysis to allow for a
relaxation of these assumptions. Doing so may alter the numerical valueg presented,

but will not change the qualitative nature of these results.

The execution time is bounded below by 2.22N™'49.6 milli-seconds. Since the
task execution tim;a is 1.8 milli-seconds, an unreplenishable reserve of 50-1.6=48.4
milli-seconds of time is available. If the overhead is smaller than this, the probabil-
ity of dynamic failure is equal to the probability of hardware failure: if not, it is

equal to unity.

As may be seen from a simple calculation, for clusters with m>2, the overhead
exceeds the reserve of time, so that the maximum allowed size of the cluster is N=7,
m=2. For this reason, if we start with more than 7 processors, the additional pro-
cessors will have to be on stand-by for inclusion upon a failure within the cluster.
Failure occurs if either during a single execution more than m failures occur in the
cluster, or the processor pool is exhausted, i.e. if there is an insufficient number of

processors left to make up a cluster.
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The reconfiguration policy is simple. The system begins operation with either a
7-MR or a 4-MR cluster (depending on the value of N). As processors fail, they are
replaced if spares are available. If the stock of spares is exhausted, further failures
are handled by the 7-cluster reconfiguring into a 4-MR cluster. If N<7, only a sin-

gle failure can be tolerated. It is thus a combination of hybrid and adaptive voting.

Numerical results for the probability of failure of reconfigurable systems are
plotted in Figure 27 for a ready comparison with their non-reconfigurable counter-

parts.

It 1s appa.rentr from Figure 27 that while increasing the number of available
processors in a non-reconfigurable syStém reduces its probability of failure, there is. a
lower bound to the probability of failure for reconfigurable systems. This bound is
caused by the fact that the cluster size is limited to 7, since the overhead exceeds
100% for larger clusters. There is therefore a point after which the probability of
more than m processor failures over a single execution (aggregated over the mission
lifetime) becomes the dominant component in the probability of failure. As one
might expect, the reconfigurable system performs better than the non-reconfigurable
system when the mission lifetime is larger. This has been at the horrible price, in

this case, of a 50.3% overhead.

Clearly, the results in Figure 27 are problem-specific, indeed, they are critically
dependent on the length of the inter-dispatch interval, the unreplenishable reserve
of time that is available, and the time taken to execute the Byzantine algorithm.
Also, while the reconfigurable system may appear to be the better performer in Fig-
ure 27, this is largely due to the large reserve of time available. Suppose that the

task, instead of taking a maximum of 1.6 milli-seconds to perform, took 35 milli-
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seconds. Then, the reserve of time is 50-35=15 milli-seconds, and the largest recon-
figurable cluster that could fit in this reserve is N=4, m=1. In Figure 28, we

display results for such a task. Naturally, the reconfigurable system comes out much

more poorly here.
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CHAPTER 7

SCHEDULING TASKS WITH A QUICK RECOVERY FROM FAILURE

Part of the procedure for recovery from a processor failure must consist of
ensuring that hard deadlines of critical tasks continue to be met to a very high pro-
bability. This is usually done by replicating tasks. One may choose (i) to have all
replicates, or clones, of tasks always running in parallel, or (ii) to have some of them
(called *‘ghosts’ in the sequel) initially inactive, and then to activate them in case a
processor carrying an active (or “‘primary”) colleague fails. When the mission life-
time is long, or the failure probability requirements are stringent, the first approach
causes a considerable incremental érocessor loading (due to the large number of
replicates that are then required), and a worsening of response times. Even if such a
worsening does not increase the probability of missing a hard deadline, it will tend
to degrade the quality of control provided to the real-time system: It might there-
fore be profitable to consider the second approach, which has the advantage of

requiring fewer replicates to run in parallel.

Implementing this second af)proach involves optimally (more realistically,
quasi-optimally) inserting the ghosts into the schedule. The ghosts cannot be
regarded as primary clones, or the schedule reduces to that in the first approach. In
many cases, it is unwise to plan to schedule them on-line when a processor failure is

detected: that might not be possible under the imposed timing constraints. In such

131
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instances, one must embed a set of contingency schedules into the original or pri-
mary schedule and invoke it whenever a processor failure is detected. In this
chapter, we first show how to find the contingency schedules. Then, a dynamic pro-
gramming approach is used to construct out of these contingency schedules, the pri-
mary schedule, which is defined as the schedule followed if there is no processor
failure. The contingency and the primary schedules consists only of primary clones.
A ghost schedule is also derived, and it is then a simple matter to amalgamate the
ghost and contingency schedules on-line when one or more ghosts have to be

activated due to processor failure.

While a more detailed problem statement is provided in the next section, it
might be useful to preview here what we have done in this chapter. In general, the
job of scheduling tasks on processors consists of optimizing some objective function,
while ensuring that given constraints are met. In this case, the constraints are on
the hard deadlines being satisfied, and the objective function is the expected sum of
the cost functions of the finishiﬁg times of the executed tasks. We assume that an
algorithm exists that accepts as inpi;t. a list of task; with their release times, run
times, deadlines, and cost functions, ;ixd produces as output a schedule that minim-
izes (more realistically, quasi-minimizes) the above objective function. Such a
schedule will not be fault-tolerant. We show how to use such an algorithm to create
a fault-tolerant schedule, consisting of a quasi-optimal primary schedule which is
executed as long as no processg'rs'fail, and a set of contingency schedules that are
invoked when one or more p.rocéssors fail, making it necessary to activate the ghosts
of the primary tasks that were originally supposed to have run on the now-failed
processors. The object is to keep the number of replicates that must run in parallel

at the desired level. The primary and contingency schedules between them ensure
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that reliability specifications are met, i.e. that even in the face of a given number of

processor failures, the probability of missing a hard deadline is kept acceptably low.

Papers in the literature [38,39] that have addressed the problem of fault-
_ tolerant scheduling for real-time controllers have taken a different approach to han-
dling the effects of processor failure. The scheduling algorithm used in [38] is a
best-fit procedure that is claimed to be quick enough to compute a new post-failure
schedule in real time. There is, however, no guarantee that a certain given number
of processor failures can be sustained: indeed, the method assumes that as failures
occur, tasks that cannot be scheduled under this appréach are simply shed. The

algorithm in [39] has the same features, being an improved version of the one in [38].

Section A contains a list of assumptions, and a more detailed statement of the
problem. Section B contains the main result of the chapter, Section C a numerical

example, and Section D a brief indication of this algorithm’s practical usefulness.

A. Assumptions and Problem Statement

The computer is stumed to be a multiprocessor following the deﬁnition. of
Enslow [40], that is to say, the processors of this computer each have their own
private ﬁaemories. The schedule to be derived is locally-preemptive, i.e., tasks
resident on the same processor are allowed to preempt each other, but tasks resident
on separate processors are not. The locally-preemptive regime has been assuméd in
order to avoid the possibility of causing excessive congestion on the interconnection
structure. It also removes the nee\;i to allow for queueing delays as part of the

schedule.
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By a feassble schedule, we mean a schedule in which all hard deadlines are met.

As in [38] and [39], the tasks are treated as having no precedence constraints.
This does not rule out tasks forming a pipe, as in Figure 29, if the tasks can effec-
tively be decoupled by bounding above the deadline of a parent task in the task-
precedence tree by the minimum of the release time of all its child tasks. This is
not always possible, since for example, the release time of a child task may solely
depend on the moment that the parent task finishes executing. In such cases, the
approach presented here (as also those in [38] and [39]) breaks down, and a more

powerful algorithm must be sought.

Each version has a given release time, a deadline, and represents a certain

volume of computation demand. Other assumptions are as follows.

Al. The mission lifetime, L, is much smaller than the mean time between succes-

sive processor failures.

A2. The release time, deadline, and computational demand of each version are

deterministic. So is L.

A3. The number of processors available is sufficient to satisfy all deadlines and reli-

ability requirements.

Al is reasonable, considering that mean times between processor failure are
nowadays in the 1,000- to l0,00@ hour range. Given a ten-processor system, with
processor MTBF’s of 10,000 hours, the mean time between successive processor
failures varies from about 1,000 to 10,000 hours, depending on hpw many processors
are left functional, and assuming Poisson fault occurrences. We shall later consider

the consequences of relaxing Al. A2 is unrealistic: the real-time environment is
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Figure 29. A Typlcal Plpe
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stochastic, and this inﬂuenpes the task characteristics. However, in practice, worst-
case numbers may be used to ensure that performance bounds can be met, thereby
making A2 acceptable. Without A2, the problem would turn into one of stochastic
scheduling which is known to be extremely difficult, if not impossible. Without suf-
ficient processors, we clearly cannot proceed with a scheduling operation, which jus-
tifies A3. It is worth pointing out here that determining the minimum number of

processors required is an NP-complete problem.

As we saw in Chapter 3, a completion time of C; of a particular version j can
be linked to a cost, or overhead, of f(C)), where f; is the cost function. Each
schedule defines the task completion times, and therefore has a cost associated with
it, computed by adding together all the contributions from individual tasks. This is
the objective function that must be minimized for determining an optimal schedule,

subject to meeting the specified probability of dynamic failure.

We now consider rescheduling upon processor failure. Rescheduling must not
be expected to rescue a given version of a task: that must be done, if at all, by other
means. It is at the end of a version execution that the system responds to a failure

by rescheduling the affected tasks.

To understand why, we must consider the fault-detection mechanism. The
traditional approach to fault tolerance using massive redundancy is to partition the
multiprocessor logically into clusters qf processors with respect to the individual
tasks, and have the tasks run in parallel on each processor in the cluster. At the
end of their execution, voting is carried out on the results. If unanimity is achieved,
then it is assumed that no failure has occurred, the event that all members of the

cluster arrive at the same wrong result being considered practically impossible. If
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the majority of processors agrees on a result, that is considered the ‘‘true” result,
and all processors in the cluster that do not agree with the majority result (or put
out no result at all up to a given timeout moment) are regarded as suspect. Of
course, if there is no majority result, the cluster as such fails, hard deadlines are

missed, and catastrophic or otherwise unacceptable failure is the result.

When unanimity is not achieved, fault-location algorithms must be invoked to
locate the faulty processors. One way to do this is to run diagnostic tests on all the
processors and then to agree on the results by using, say, the interactive consistency
algorithm In any case, the detection and location of a faulty processor occurs shortly
after a’given‘v execution on that processor is complete. There is nothing that the
rescheduling algorithm can do if the cluster as a whole fails, i.e., if the voter can
find no majority result. The probability of that happening must be kept acceptably
‘low by using sufficient active redundancy. Also, since everything (except failures) in
the system is deterministic by assumption A2, the voting times are fixed, and so

faults can only be located at certain given moments.

,When a processor failure Ris located, the primary clones allocated to the failed
processor and not already started, cannot be executed. One ghost of each of these
clones must therefore be activated. Clearly, the system will know of the need to
activate a certain ghost only when it knows of the processor failure that gave rise to
this need. We define the moment by which the system knows of the meed to
activate a ghost as that’ ghost's notification time. The notification time for ghost ;
is denoted by v;, with the ghosts being numbered 1,2, ... . For convenience, we
define ¥y=0. We assume that v; is less than or equal to ghost s's release time.

Notification interval j on processor i is defined as the interval between the 5-th and
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(s+1)-th notification times of ghosts on that processor.
Failure can occur due to one of two reasons:

F1. Failure of one or more redundant clusters during one execution cycle so that at
least one task misses a hard deadline sometime during the mission. As we said
above, there is nothing that the rescheduling algorithm can be expected to do

about this.

F2. F1 does not happen, but so many failures occur over the entire mission lifetime
that the system is unable to ensure that each version begins executing on a
full-strength cluster, i.e. one might have to make do with fewer than the
prescribed number of clones running in parallel (so that the probability of F1

occurring is raised above that considered tolerable).

F2 is a simplification born of pessimism: not every weakened cluster is
guaranteed to fail. From assumption A2, F1 and F2 can be used to determine the
maximum number, N,,,, of processor failures that should be sustained. It is easy to

see
Pign < Prob{F1} + Prob{F2} (55)

where the < relationship arises from the fact that F2 is pessimistic. N,,, can then
easily computed from (1), and the given reliability specification, py’. This is illus-

trated in the following example.

Example: Let there be two clusters of three processors each, together with some
standbys. Assume that processor failures occur independently as a Poisson process
with rate p. Let the period between fault-detection tests be constant at a, and the

mission lifetime be L. Define f=[L/a]. Clearly,
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Prob{F1} ~ 28p°(a) (3-2p(c)) (56)

where p(r)=1-¢*. The approximation in (1) holds so long as the probability of F1

is much less than one. In such a case, the probability of F2 is given by:

Prob{F2} =1 - ﬁolnp‘(L)[l—}:(L)]N" (57)

when M is the number of failures that can be sustained. Then, N,,,, is the greatest

M in (3) for which
Prob{F2} > pfly - Prob{F1} (58)

When‘p?y;‘=10’°, MTBF=10,000 hours, the mission lifetime, L=10 hours, and
fault-location checks are carried out every 0.1 second, Prob{Fl} is about

1.67X107", (totally negligible when compared to p%=10"), and N,,,=2.

As noted before, in order to sustain the allowed-for number of processor
failures, ghost clones of the various critical tasks are scheduled. Now, ghost clones
are not activated if there is no processor failure, and we have assumed (Al) that
failures are not common. So, the only constraint upon the scheduling of the ghosts
is that their hard deadlines must be met: we are not unduly concerned with the effi-
ciency of a schedule that has one or more ghosts activated. Although the ghosts are
initially passive, and do not in that state require any processor time, they represent
a latent demand for processor time that must be allowed for. For this reason, they
affect the scheduling of the primary clones (since they share processors with them),
and tend to lower the efficiency of the primary schedules. This can best be illus-
trated through the following cxaﬁple. Consider a processor to which is allocated
primary clones 1 and 2, and ghost clone 3. Let their release times be rel,=0,

reb=1, and rel;=3, their deadlines be t4,=10, t,=12, and t4z=7, and their cost
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functions be fi(t)=t-1, f(t)=(t-2)%, and f;(t)=0 for arguments t less than the
corresponding hard deadlines, and infinity above them. Let their run times be
r,=0, r,=0.5, and r;=4. Without the ghost, the optimal primary schedule is
clearly as shown in Figure 30a. However, although the ghost is not initially
activated, does not even form a part of the primary schedule, and if not activated
needs no processor time, we must always allow for the possibility of its being
activated, and then occupying the processor from t=3 to ¢t="7. To do this, the only
acceptable primary schedule is that simwn in Figure 30b, which is much more

expensive than the one in Figure 30a.

Since, in the overwhelming majority of cases, the primary schedules are the
only ones that will be executed, their efficiency is of prime concern. Any fault-
tolerant scheduling Yvith ghosts must therefore strive to minimize the increased cost
of the primary schedule that can be attributed to the existence of the ghosts, while
ensuring, if the ghosts ever have to be activated, that their hard deadlines are met.
For this reason, we define the ghost cost functions as identically zero for values of
the response time less than their associated hard deadlines. Since the penalty to be
paid. for an activated ghost’s missing its deadline is as great as that for a primary
clone, the ghost cost function for response times greater than the deadline will con-
tinue to be infinity. When this cost function is used as input to an algorithm that
performs optimal scheduling, the result will be to degrade the efficiency of the pri-
mary schedules as little as is consistent with the need to allow the ghost clones to
meet their deadlines. We also assume that the cost functions of the primary clones
for response times less than their hard deadlines are monotonically increasing, not
just monotonically nondecreasing as defined in Chapter 3. Given that the set of

real numbers is everywhere dense, this inflicts no practical inaccuracy on our
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(a) Optimal Primary Schedule Without Influence of Ghost 3
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(b) Optimal Primary Schedule Showing Influence of Ghost 3

fFlguve 30. - Effect of Ghosis on Primary Schedules: An Example
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calculations.

The number of ghosts per critical task, and the scheduling rules that they fol-

low are developed in the next section.

We can now state our problem. Assume we are given an algorithm P that
finds either an optimum or quasi-optimum feasible schedule by minimizing lthe costs
associated with individual schedules when all clones are assumed to be primary.!
Owing to the NP-completeness of the scheduling problem, P is most likely to be a
heuristic procedure. A good example is a best-fit procedure, along the lines of the
algorithm in [38] (although some changes might be needed to accommodate the dif-
ferent optimization criterion here). As in [38], we make the assumption that we can
split P into two sub-algorithms: P; which finds t:he optimal allocation of tasks to
processors and also the optimal schedule, by calling P,, which is an optimum
scheduler for uniprocessor systems. Our task is to develop an algorithm Q that can
be used in conjunction with P; and P, to obtain an optimum schedule when enough
ghosts are incorporated into the task set to sustain up to N, processor failures,

and also to obtain contingency schedules that can be invoked when the system is

notified that a given ghost is to be activated.

B. Main Result

We begin by stating certain conditions that the ghosts should satisfy.

! To avoid tedium in the sequel, by “optimal” we shall mean either optimal or quasi-optimal.
When we wish to exclude quasi-optimality, we shall use the term “‘truly optimal”.
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There are N,,,, ghost clones for each version.

Ghosts are conditionally transparent. That is to say, (a) two ghost clones may
overlap in the schedule if and only if none of their corresponding primary
clones are scheduled on the same processor, and (b) primary clones may over-
lap ghosts on the same processor, and may indeed be scheduled without regard
for the ghosts, so long as the following condition is met: for every instant t in
the schedule, if all ghosts whose notification time is greater than t are
activated, the schedule for beyond t can be reordered to ensure that all ghosts
and all primaries allocated to tﬁat processor meet their hard deadlines, pro-
vided only that when some ghosts mutually overlap, at most one of them is

activated.

Two clones of the same version, whether primary or ghostly, cannot be

scheduled on the same processor.

An illustration of C2 is provided in Figure 31. In this example, the notification

time of a ghost is its release time. (Note that the notification time should be less

than or equal to its corresponding release time.) In Figure 31a, we see an overlap of

primary and ghostly clones that show condition C2: when the system is notified that

the ghost is to be activated, the schedule for beyond that time can be reordered to

ensure that all hard deadlines are met. Figure 31b shows an overlap that does not

meet condition C2: in the event that the ghost is activated, then either ghost ¢ or

primary 5 will miss its deadline.

It is easy to see that C1, C2, and C3 are necessary and sufficient conditions to

ensure that reliability specifications are achieved.
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Figure 31. Illustrating Condition C2
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We can now turn te obtaining algorithm Q. We begin by stating some addi-
tional definitions and notation pertinent to algorithm Q. A hole arising out of an
allocation of tasks to a particular processor is defined as an interval in which it is
impossible to schedule any of the allocated primary clones due to their release times
and deadlines. A point in the schedule representing time ¢ is in a hole if and only if
(i) the deadlines of all clones released prior to t are less than ¢ and (ii) no clone is
released at t. Clearly, a hole depends only on the allocation of clones and not on
their specific positioning in a schedule. In other words, all feasible schedules for a
given allocation have the same holes. In order to avoid confusion, we emphasize
that not all blank spaces in a schedule need be holes: under our definition, only
zones in which it is impossible to schedule anything allocated are holes. By primary
holes, we mean the holes that would exist in a processor’s schedule if the ghosts allo-

cated to that processor did not exist.

Algorithm P, haﬁ, as input, the deadlines of the clones, and the remaining run
times. Running Py(A) means thut P, is invoked with the set of clones A allocated to
the processor. By initializing P, at some time r we mean that P, generates a
schedule starting at r, using the inputs mentioned above. We denote the set of
ghosts that have been allocated by P, to processor i by 8, By ghost(s) we mean

the s~th ghost (in order of notification time) allocated to processor i.

Algorithm Q adjusts or transforms the hard deadlines at step 3b. A deadline
transformation is said to be feasible if, when it is possible to generate a feasible
schedule of clones with pre-transformed deadlines, it is also possible to do so after
- the ciones’ deadlines have been transformed. Finally, we define P; to be a modifica-

tion of P, that fills the holes to the extent possible with ghosts. In the event of
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more than one ghost competing for the same hole space, P; will try to overlap them.
If it is not possible to do this and still satisfy condition C2 (recall that if ghosts
overlap in the schedule, only one of the overlapping ghosts can be activated), prior-
ity will be given to the ghost with the earliest deadline. The remaining ghosts will
be scheduled as primary clones, with the cost functions indicated earlier, with the
additional condition that the time-sliées given to the ghosts under the schedule are
moved as far »right as possible, consistent with the need to meet all hard deadlines.
This last condition is easily met. For, with all primaries having monotonically
increasing cost functions, the only case in which this is not automatically done by
P, is when it wouldb not alter the finishing time of a primary clone. See Figure 32.
In that event, all that is required to do is to “nest” the ghost within the primary.
This means that, for any given time ¢, the non-primary-hole space occupied by the

ghosts prior to t is the minimum.

Algorithm Q is as follows. Let the set of primaries and ghosts allocated to ¢ be
m; and 0, respectively. For every allocation of primaries and ghosts to processors by

P, do steps 1 to 6 for every processor
Step 1. Record the holes for processor 4, defined by the allocation.

Step 2. Run Py(r{ J0). Return control to P, if the schedule is found to be infeasi-

ble. Otherwise, record the positions of the ghosts in G.
Step 3. Set ;=0, and, while §, is nonempty, do (a) - (f)

(a)  Initialize Py at vyo0;).
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(b)  Transform the hard deadlines of the primary clones kEm; to be
€-util§(0,£3), where £ is the original hard deadline of clone k and
ut:’lg(a,b) is the non-primary-hole space occupied by the ghosts in 0,

according to the ghost schedule G in the interval [a,b].

(c)  Run Pym,) with these new deadlines, and let S; be the schedule

obtained.

(d)  Calculate the remaining run time of the clones scheduled in (c) by
subtracting from the current remaining run time the duration for

which they were scheduled in the interval [¥gae,()V ghont(sis1))-
(e) Set 0:=40; - ghost ;)
(f)  Set si=j+1

Step 4. If all primary clones kEx; have not been completed by vy, () set tg:= o)

initialize P, at Vgp,0¢(;), and run Py(m), recording the output in Sj;.

Step 5. Form schedule S; by piecing together the schedules represented by S; in the
interval (Voo Vghontgjr)l- Letting {Cy}, KEm; be the completion times of

the primary clones k according to schedule S, compute Y f(C}), and return
%l’,‘

this value as the cost associated with S;.

Step 6. Restore all hard deadlines of the primary clones k€, to their original values

Q.
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Notice that only in step 2 are the ghosts scheduled: this ghost sghedule deter-
mines the position of the ghosts for the given allocation. Q puts out a matrix of
contingency schedules S, with the optimal primary schedules (optimality is proved
in Theorem 2) being given by S;, where i is the processor index and j the notifica-
tion sequence index. Contingency schedule S?-,- is invoked at time g, () if (a)

ghost(s) is to be activated, and (b) all ghosts ! with 1;<v; and allocated to processor

i will not be activated.

Q is a dynamic programming aigorithm. For every processor s in the system, it
begins by obtaining the ghost positions. Then, it obtains the optimal schedule that
also satisfies conditions C1-C3 for the ghosts in #,. This is schedule S;. The por-
tion of Sy in thg interval Vo,V gpe(y)] is also the corresponding portion of S;. Run
times of each primary clone are reduced by the amount of time they have been
scheduled for under Sj in the interval [vo,Vgpou(r)). Then, at v hu (1), ghost(1) is dis-
carded from 8, and the above procedure is repeated to obtain S;. The portion of
S,; in the interval [ug,,,,,'(l),u,,,o,,,(z)] is the corresponding portion of S;. Proceeding ih
this manner, Q pieces together the optimum primary schedule, which is the one that
will be run if there is no ghost invocation. If ghost{n) is activated and no ghost
allocated to that process;n' with -notiﬁcation time prior to that of n is activated, the
contingency schedule to be followed is S;,. This schedule will ensure that even if
any or all of succeeding ghosts (i.e. ghosts in #; with notification times greater than
Vghout(n)) aT€ activated, all hard deadlines of tasks assigned by P, to processor ¢ will
continue to be met. The actual schedule to be used in the case 6f failure is then

trivially obtained by amalgamating the ghost schedule onto the contingency

schedule. When a ghost is activated, it retains its position as defined in the ghost
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schedule, interrupting any primary clone that may be occupying the same time-
stretch in the contingency schedule. This effect can propagate, and all primary

clones that are affected by this are moved right by an appropriate amount.

Figure 33 provides an illustration of this. In this example, there is no hole in
the schedule prior to ¢t=40. If only ghost i is activated, then it retains in the actual
schedule the position it had in the ghost schedule and interrupts primary 8. If
ghosts 1, 5, and k are all activated, each ghost retains its position as prescribed by

the ghost schedule, appropriately interrupting and translating the primary clones.

Theorem 1: If step 2 of Q yields a feasible schedule for a processor 1, then all

deadline transformations in Q pertinent to processor s for that allocation are feasi-

ble.

Proof: This follows immediately from the fact that ghosts are only scheduled by P;
either in the holes left by step 2 of Q, or at the last possible moment (consistent
with the need to satisfy all hard deadlines). Indeed, owing to the way we have
defined P; the schedule of ghosts G obtained from P; is the one for which u!ilg (0,¢)
is a minimum for any ghost-schedule G' and time ¢ if all deadlines are to be satis-
fied. All this méans that if one or more primaries cannot be scheduled feasibly
under the deadline transformation in step 2, neither can a feasible schedule be found

in step 2, leading to a contradiction. Q.E.D.
Theorem 2: If Pis truly optimal, S; is truly optimal.

Proof: Let schedule S; found by @ not be truly optimal for some ¢. Then there
exists a schedule & , with an objective function value less than that of S;, and in

which at least one primary clone is scheduled to finish after the transformed hard
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Figure 33. Amalgamating Ghost and Contingency Schedules
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deadline as defined in step (3b). Consider one such clone j, assigned to processor i.
Let clone j finish at time § in schedule S; and ¢ in schedule $' . By assumption,
€>6. Let 6 be in the notification interval h, i.e. 8€[Vspop(apVyhon(s+1). Denote by
util{a,b) the amount of non-hole space occupied on processor i by ghosts
B={c: v,>Vyounand ¢ is allocated to i} in the interval [a,bl. Clearly,
ce(t‘,g)—util,(o,t(};)), t‘j;)), where l‘dg) denotes the original (i.e. pretransformed) deadline
of clone j. If util,(0,6)=util,(0,t(£)), then, by the minimality of util, we have a con-
tradiction: clone j will miss its deadline if all the ghosts in B are activated.

So, util{0,¢)< util,(O,t“‘;)), ie util,(c,!(};))>0. If all ghosts in B scheduled prior to
¢ are activated, then clone j's finishing time will be increased by at least
util(0,¢) + util{e,util(0,e)+¢). Now, util{e,util{0,e)+¢)=0,>0 since otherwise
util,(uta'l,(o,c)-i-c,t(j;)) > t(,g)—c—util,(o,t), a contradiction. So, the finishing time for
clone j will be incremented again, this time by ¢,. Similarly, we can show that
utsl{ util(0,€)+¢,util{0,e)+e+0,)=0,>0, and so on. An infinite sequence {o,} will be

generated.

o0
Now, if we can show that ¥, o,=util(0, ,3))—util,(0,c), we have proved that &
=1

o0
is infeasible. Suppose, to the contrary, that Y, op=m< util,(O,t(,g))—util,(O,c). Then,
=1
util,(c+m+uta'l,(0,c),1‘3))=util,(0,t(,g))-util,(o,c)—m. Then, clearly, we have

util(e+m+utilf0,e), ) < €P-e-m-util{0,e), ie. ¢ < £-util(0,)), a contradiction.

So S does not exist. Q.E.D.

If Pis optimal, then @ will also be optimal, since util{0,t;) depends only on

P;, not on P,. .
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It is important to realize that it is only S that is optimal, i.e. that a con-
tingency schedule S, is, taken as a whole, not guaranteed to be optimal, in that one
or more of the schedules that arose from superimposing the ghost schedule on the
contingency schedule need not be optimal. For S, to be optimal, we would have to
piece it together as we did S;. This would give rise to schedules S;, n11, Sin at2s €tC.
One would then have a contingency schedule for each possible combination of ghost
invocation. (This is further explored in the example in the next section.) The set of
such schedules would be very large. However, under assumption Al, failures are
rare, and so the probability of any of the contingency schedules being invoked is
very small. This means that the expected cost (in terms of the sum of cost func-
tions of the clone finishing times) of the above set of schedules (i.e. S; and the con-
tingency schedules) is only slightly greater than the expected cost of the schedule
that consisted of S; as primary schedule, and the whole set of contingency
schedules, pieced together as explained above. Indeed, it is because of assumption
Al that we have been able to use the cost of S; as the optimal cost associated with

the given allocation of clones to processor +.

This brings one to the question of relaxing assumption Al. If Al is relaxed
because the mean time between successive processor failures is small, our method
breaks down since S; can no longer be regarded as the optimal cost associated with
a given task allocation. Fortunately, as remarked earlier, the mean time between

failures is usually not small.

It is more likely, however, that A1 must be relaxed because the mission lifetime
is very long. This is true, for example, of spacecraft. In such a case, it is useful to

use the contingency schedules, not for the entire duration of the mission, but to
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cover the interval during which a new optimum schedule (complete with a new pri-
mary and corresponding contingency schedules) is computed. This is profitable as
long as the mean time between successive processor failures is much greater than the

time taken to compute a new optimum schedule.

Finally, we look at the burden this algorithm places on the computer during
operation. This consists solely of amalgamating the ghost schedule with the con-
tingency schedule, which amounts only to preempting the contingency schedule with
the ghosts wherever necessary. The maximum number of preemptions is equal to
the number of ghosts, and so the overhead for any given processor is directly pro-
portional to the number of ghosts carried on that processor. Specifically, it is the
product of the number of ghosts and the time consumed in handling preemptions.

Since the latter time is usually very small, this is indeed an on-Iine algorithm.

By contrast, nothing can be said a priorsi about the complexity of the algorithm

Q, since it depends on the given algorithm P.

C. Examgle

We illustrate here the formation of an optimal schedule for a given allocation
(specified by algorithm P;). We provide schedules for one of the processors only:

the others are similarly derived.

Assume that P, has allocated pﬁmary clones of tasks 1,2,3, and 4, and ghost
clones of tasks 5,6,7, and 8 to this processor. The cost function for primary clones

of task s is given by:



156

-0 if t<ty;
yﬁ(t)___{c‘)o otherwise
The hard deadlines for the tasks are t4=130, t5=110, #5==00, t4,==60, tx=22,
t5=39, t=>55, and t5=105. The run time, rt, of all these tasks is 15 time units.
The release times are: rel=1 for i=1,2,3,4, rel;=0, rel=24, rel;=40, and rek=90.
Ghost notification times are: v;==0, vg==20, v;=40, and‘ vg==90. These values were

chosen 5rbitrarily, and have no physical significance by themselves.

The algorithm P, employed by us is a heuristic that takes scheduling decisions
at the release and at the finishing of clones. At each of these moments ¢, it com-
putes, given the set of available clones R (i.e. clones released, but not yet finished),

an array of values Wi), where V()= Y, [(t+rri+rrt), and rrt; is the remaining
J#IJER

(at time ¢) run time of clone k. The clone scheduled is ¢: V{¢)=min{ V{)} for all jER.
The holes are the intervals [0,1) and (130,00). The contingency schedules are
shown in Figure 34. The optimal schedule S’ for that processor is pieced together

frora these as shown. This schedule, together with the cost it represents, is returned

to algorithm P,.

In Figure 35, we show the actual schedules followed upon ghost activation.
The case treated is one in which contingency schedule Sy has had to be invoked,
i.e., the system has been notified that ghost 5 is to be activated. If only ghost 5 is
activated, then it occupies the schedule during the intervals allocated to it by the
ghost schedule, G. Primary clone 4 is thus preempted, and only resumes execution
after ghost 5 has stopped running at time 22. Th_e rest of the schedule gets shifted
right by 14 time units to absorb the non-hole space occupied by ghost 5. If ghosts 5

and 6 are activated, then primary 4 is interrupted twice: once by 5 and then by 6.
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Ghost Schedule, G
1 4 1 3 2
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1 5 4 1 7 {1 3 2
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| | | |
1 6 7 4 I 3 2
0148 22 24 39 40 55 60 75 90 105

Figure 35.

Schedule if Ghosts 5, 8, and 7 are Activated

Schedules when Ghosts are Activated
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In each case, it must wait for the ghosts to complete before resuming execution.
The rest of the schedule now gets shifted right by 29 time units. If ghosts 5 and 7
are activated, primary 4 is interrupted only by ghost 5, but primary 1 is also inter-
rupted, by ghost 7. If ghosts 5, 6, and 7 are activated, then primary 4 is inter
rupted thrice, once by each of the ghosts, as shown. Notice that primary 4 just
manages to meet its deadline: if it, in its turn, had not interrupted primary 1 upon

release, this would have been impossible.

If the system is notified that ghost § is not to be activated, then schedule S,
is discarded. Since vz==0, this can be done at time 0, which is why S; does not con-

tain any portion of Sy.

We can now easily see that S, is not in itself optimal, in that it does not
always lead to an optimal (optimal here is defined as “‘at least as good as the best
schedule possible by using algorithm P,") schedule if the ghosts are activated. In
Si, primary 3 is set for execution before primary 2, although, if they exchanged
positions, the resulting schedule would have lower cost. This is because we want to
ensure that primary 3 meets its deadline in the event of all the contingencies that
are notified aﬁer after v;=0, specifically the contingency that ghosts 5, 8, and 7 are
all activated. If we were willing to afford the extra memory space required to store
more contingency schedules, we could piece together S; as we did S;, and store, in
addition to it, the second-order contingency schedules Syo, Sg;1, and Sg,. These
second-order contingencies are shown in Figure 36, together with the “‘new” S,.
(Clearly, S, is just the same as the old S,.) Of course, these changes do not affect
S; as found by piecing together the original contingency schedules, since the new

contingency schedules S;, for m==1,2,... , differ from their old counterparts, if at all,
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only for values of t>Vgpop(ms1) (defining vgyopmy==co if there are fewer than n

ghosts allocated to processor i), and this piece of S;, is not included in S;.

D. Discussion

This chapter has introduced a dynamic programming algorithm to generate
fault-tolerant schedules. This algorithm is expected to be used in embedded com-
puters where extremely high reliabilities are required. Examples are aircraft- and

spacecraft-controllers, life-support systems, etc.

The algorithm is useful because it minimizes the number of primary clones.
This makes the schedule S; efficient for each processor s, while still providing fall-
back schedules to be invoked in the (rare) instances of processor failure. The useful-
ness of this approach increases as increased demands are made on reliability: in the
“obvious” approach which has all clones primary, an extremely stringent reliability
requirement would swamp the system with a large number of primary clones, with
all the implications that this would have for the computer response times and the
consequent quality of (control) service provided by the computer. An example of this
is provided in Figure 37, where the obvious approach is used, all the clones in the
earlier example being declared primary. The degradation in response times is clear

on comparison with Figure 35.
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Figure 37, All Clones Treated as Primary



PART IV

DISCUSSION

162



CHAPTER 8

DISCUSSION

In this dissertation, we have introduced new performance measures for assess-
ing more appropriately the performance of multiprocessors in the control of critical

real-time processes. In addition, we have, among other things:
(i) Provided detailed examples of the derivation of these measures.

(i) Studied problems of synchronizing real-time systems in the presence of mali-
cious failure, showing the impracticality of software methods, and presenting

means for the indefinite expansion of phase-locked clocks.

(iii) Presented a dynamic programming algorithm to generate fault-tolerant

schedules.

The work presented here was impelled by the need for a more orderly approach
to the design and evaluation of multiprocessors used in real-time applications. The
proliferation in the literature of (often-times ill-considered) multiprocessor architec-
tures is partially a consequence of the lack of an effective framework in which

designers can function.

Coupled with this design activity is a growing awareness of the limitations of
the theory associated with distributed processing. Queueing theory and scheduling

theory are in their infancy. Even moderately complex queueuing and scheduling

163
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problems are proving to be — for the present at least — intractable. The need is
therefore growing for carefully considered approximate models that combine the
result of experieﬁce and intuition with the accuracy and power of the analytical
method. Before such models can be confidently used, however, a great deal of

groundwork has to be c;nnpleted.

Central to this groundwork is the definition of appropriate characterizations of
computer performance. As we have pointed out elsewhere [42], "by the simple act
of choosing a particular criterion, the researcher imposes a bias on the results that
follow. Performance measures by definition specify the commodity that is of impor-
tance ... They have a subtle influence on the way systems are viewed. They are
languages through which we seek to convey system performance. We know from
experience with natural languages that these affect not only the way in which ideas
are expressed, but also the very ideas themselves. Performance measures are no
exception to this. They manipulate our view of system behavior, contorting it to fit
a pre-conceived mould. For this reason, the choice of a performance measure deter-

mines the practical usefulness of the results that are then derived.”

We have therefore concentrated the first part of this effort on the derivation of
appropriate performance measures. The rest of the dissertation may be considered a
natural follow-up on these measures, and the problems treated there are among the

most troublesome in fault-tolerant real-time system design.

Extensions of this work are not difficult to think of. These include the follow-
ing.
(i) Determining ways to find the cost functions in real-life systems more efficiently

than is currently possible. One way might be to derive approximate closed-



(ii)

(iii)

(iv)
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form expressions for the functions.

Extending our performance measures to general-purpose systems. The chief
difference between these measures and the traditional ones is that the former
are task-oriented (i.e. user-oriented), and the latter are system-oriented. Part
of this work would include further investigations of user-perceived computer
performance. In particular, much work remains to be done on user-perceived
response delay: it is not clear that mean response time is an accurate measure
of this. Perhaps some measure based on the second moment will be more
appropriate. Some preliminary work in this area has been done by Geist and
Trivedi [41].

Studying‘ the optimal pl#ement of checkpoints. We have argued elsewhere
[42] that the currently-used measures of mean response time and availability
are inappropriate, and proposed new measures that are more sensitive to the
benefits that accrue from checkpointing. This is interesting and relevant since
it is likely -- as we pointed out above -- that mean response time is not a

correct measure of perceived response delay.

Measuring the cost of status information in computer systems with distributed
control. There is beginning to be increasing interest in such systems. When
one employs distributed control, the perception of the state of the system can
vary from controller to controller. Naturally, the closer each perception is to
actuality, the better the control provided. However, distributing status infor-
mation amongst the controllers is expensive since it takes time. If we used
time-based performance measures such as these (they would obviously have to

be modified if we were dealing with general-purpose computers), the cost of
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distributing such status information could then be determined. One can then
transform the problem into one of taking decisions in the face of costly infor-

mation: a problem widely studied in statistical decision theory.

The work that we have presented here was motivated by the need to study
control computers as a distinct - and important - branch of computer engineering.
Control computers have for too long been treated as an unimportant appendage of
general-purpose computers. The problems specific to control computers are too dif;

ficult and important tc be subjected to benign neglect.



APPENDIX

EXPRESSIONS FOR FINITE COST FUNCTION

Finite cost functions for Example 2 in Chapter 2 can be expressed by an if-then-
else construct as follows:
if x;;x5;>0 then

if | x| >k then
g(xizf) = é [tl(xi)kyf) + t’l(xi)"k’f)}
else

g(xi’f) = [tl(xiy sgn(x2i)kr f) + t“Z(xi! —sgn(x2i)kv f)]

vol—

else
if | x| >k then
gl ) = 3 [taxik €) + tabx k)]
else

g(x;.€) = — [t,(x;, ~sgn(xy)k, £) + ty(x;, sgn(xy)k, £)]

1
2
end if;

where a = H/m, y(x;,k)=xq+k, x;=(x;,x2)7,

o 280 x| -y (xaik)-2a | y(xik) | €
o P

187
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2a | xy; | -y%(x5,k)-2a | y(x;k) | €
4ay (x2irk)

| y(xaikX1+v2) |
a

1(x;k,§) =

t’l(xiykyf) = f +

x5 | - | 7lxok) | (472K, 8) Pk, €) o oo 28| Xii | -3 (500K)
E+1(x;k, E}H+ — 2 - -— if §< 22 Ty (k)|

£+ ¥ (xq,k) +2 \/Y‘(xgi»k) | X | - | ¥lxoik) | otherwise
a

1 2a a

t2(xi!k1£) =
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