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CHAPTER 1
INTRODUCTION

1.1. Overview
In recent years, the advances of VLSI and computer networking technologies have made

it ive to use icomp systems for many applications. Specifically, by multicom-

puter systems, we mean loosely coupied MIMD (Multiple Instrunction Stream - Multiple Data
Stream) machines [30]. Such multicomputer systems not only provide the capability of utiliz-
ing remote computer resources or data which are not available at a local computer node but

also, as compared with a conventional SISD (Single Instrunction Stream - Single Data Stream)

p the of the whole system by executing several tasks in parallel

ghp

[18,23,92). Owing to their efficiency, flexibility and reliability, multicomputer systems have

drawn a significant amount of research effort [55, 68,77, 83,93]. Routing and task allocation,

among others, are key factors to the perfc of a icomputer system. Instead of using

shared memory, all ication and ization between two computer nodes is

achieved via message passing, which, in tum, relies heavily on an efficient routing scheme.

On the other hand, to utilize the in a multicomputer system effectively, it is

to have a task allocation strategy which can reduce inter-processor communication as well as

exploit the the inherent p lism during task ion. For the reasons above, development
of efficient strategies for routing and task allocation in multicomputer systems is taken as the

main objective of this dissertation,
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In Chapter 2, we shall investigate the routing in wide-area computer networks. Various
control strategies for routing have been proposed [6,9,59,64,88]. Non-adaptive routing stra-

tegies, such as random routing and fixed routing, make no attempt to adjust themselves to

changes in network conditions and are found to be too i ient and i Ce

adaptive routing strategies, which use a routing control center to keep information on the
entire network and make the routing decisions for individual nodes, suffer from vulnerability
to single point failures and the need for a routing control center [9]. On the other hand, distri-

buted adaptive routing gi istril network il ion among all p nodes

and, thus, avoid the disad ges of the other ies [58]. Among all distributed adaptive
routing strategies reported in the literature, ARPANET’s previous routing strategy (APRS),
which uses a network delay table for making routing decisions, appears to be acceptable for
most packet switching networks [60]. However, this routing strategy has been replaced by
ARPANET’s current routing strategy (ACRS) [61], due to its poor adaptability to network
changes and unnecessary looping in case of metwork failures, i.e., packets are returned (o a

node from which they were previously transmitted [61, 66].

The reduction of looping effects is the subject of Chapter 2. We shall show that the

network’s adaptability is improved by incorporating more inf ion in routing It
will be shown that a routing strategy can eliminate multi-node loops by keeping in network
delay tables not only the delay of a minimal path to every other node but also a set of first
few nodes in the path. The number of nodes included in the routing message is referred to as
the order of the routing strategy. We shall show that as the order of a routing strategy

increases, longer loops will be elimi , depending on the network structure, we

can determine the order of a routing strategy required for each node in order to eliminate
looping completely. Unlike the other distributed routing strategies where the same strategy is

applied indiscriminately to every node in a network, the order of a node’s routing strategy
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depends on the network topology and raay vary from one node to another.

It can be seen that the results in Chapter 2 are applicable to p ks of arbi-

trary topology. Notice, , that icomp i jon networks usually have

regular topological structures so as to exploit the benefits from the inexpensive replication of

hardware components as well as the applicability of identi and p Is to each
computer node. Clearly, the regularity of the network topology will enable each node to
determine its path to every other node for message routing without using network delay tables.
In view of this fact, in Chapter 3 we shall focus our attention on the routing in multicomputer
interconnection networks.

Various research and development results on how to interconnect multicomputer com-
ponents have been reported in the literature [2,25,28,76,82]. Some of them have been com-

pared with each other [26,93]. However, most of them are not satisfactory due mainly to

their inability of providing the ing the simplicity of i i the
efficiency of routing and dcasting, a fine scalability, and a high degree of fault-
tolerance.

Hexagonal meshes (or H-meshes) are p as a i multicomp hit

ture in Chapter 3. A large number of data manipulation applications require the processing
nodes on the hexagonal periphery to be wrapped around to achieve regularity and homo-
geneity. From a topological point of view, the way of wrapping determines the type of H-
mesh. To the best of our knowledge, there is no general efficient method for wrapping, rout-
ing and broadcasting in H-meshes known to date. Consequently, in Chapter 3, we shall first

present a ic method for wrapping H: hes, and then propose a new, simple address-

ing scheme for the wrapped H-meshes. Efficient routing and broadcasting algorithms under

the new addressing scheme will also be developed. As we shall see, the proposed addressing
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scheme will achieve the homogeneity of the network and facilitate routing and broadcasting in
the H-meshes significantly.

Recently, the increasing use of multiprocessor/multicomputer systems for reliability-
critical applications has made it important to design fault-tolerant routing strategies for such
systems. Therefore, in Chapter 4 we shall concern ourselves with fault-tolerant routing in
multicomputer systems. Two fault-tolerant routing schemes, based on depth-first search and
network delay tables respectively, will be developed for the routing in hypercube multicom-
puters.

A connected hypercube with faulty components (nodes or links) is called an injured
hypercube, whereas a hypercube without faulty components is called a regular hypercube. It
is well-known that routing in a regular hypercube can be handled by a systematic procedure
[72]. However, this scheme becomes invalid in an injured hypercube, since the message may
be routed to a faulty component. In order to enable non-faulty nodes in an injured hypercube
to communicate with one another, some network information must be kept in either the mes-

sage itself or each node so that the route chosen can bypass the faulty components.

Therefore, in Chapter 4 we shall first develop a routing scheme based on depth-first
search, in which each node is required to know only the condition (healthy or faulty) of its
own links. The network information is added to the message as the message travels toward
the destination. However, due to the absence of network information at each hypercube node,
the paths chosen by the above scheme may not be the shortest. Clearly, this routing scheme,
though avoids the necessity of keeping network information at each node, is not preferred
when two nodes communicate with each other frequently, since in such a case extra hops have
to be traversed during each transmission. In light of the idea developed in Chapter 2, a rout-

ing algorithm using network delay tables to keep network information will be developed to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



remedy the foregoing drawback. Observe that the d jons in a hypercube usu-
ally make routing decisions in a node unaffected by the failure of a component located far
away from the node. This implies that the network delay table of each node does not have to
keep information on those nodes located far away, and can still lead to the shortest path rout-
ing.

We begin our study of the task allocation in multicomputer systems in Chapter 5. In a
multicomputer system, a task is usually decomposed into a set of cooperating task modules

which are assigned to u set of p in order to exploit the inherent parallelism during

task execution [18,19,77]. Each task can be described by an undirected graph called the

task graph, Gy = (V, Ep), where Vy is the set of nodes, each representing a task module, and

Er © Vr X Vp is the set of edges, each rep ing the need of icati task

modules. When there is an edge between two task modules in Gr, the two modules are said
to be related to each other. Similarly, a multicomputer system can be represented by an

undirected graph called the processor graph, Gp = (Vp, Ep), where Vj is the set of processors

in the system and Ep < Vp X Vp is the set of edges rep ing ication links b
processors.

The maximal number of hops between two processors to which two related task modules

are usu-

are assigned is called the dilation of that assi [39]. Cooperating task

ally required to be assigned to a set of p in such a way that the communication delay

between any two related task modules is kept low. One way to accomplish this is to limit the

dilation to a small number so that two related task are assigned to p located

physically close to each other. An assignment is said to be acceptable if its dilation is less

than or equal to a prespecified integer value.
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The problem of deriving an ‘‘optimal’” (in the sense of, for example, load balancing or

of job ion time) task assi is known to be very difficult [69,31]. In

[77] the task assi problem is as a state-space search problem which is then
solved by the A* algorithm [65]. However, without the knowledge of the number of accept-
able assignments for given Gr and Gp, one cannot tell the size of the state-space to be
searched in the A* algorithm. Note that such an algorithm often requires a large number of

of a plex heuristic i As will be di: later, the k ge of the

number of acceptable assignments can be used not only for providing a simplified state-space

search but also for reducing the size of the state-space to be 1 Tt in Chapter
5, we shall address how to obtain the number of acceptable task assignments for given Gr and

Gp. It will be seen that the combinatorial approach we shall use in Section 2.2.2 to analyze

the iplexity of the optimization p dure is a special case of the results in Chapter 5.

In Chapter 6, we study the task ion problem in hyp icomp A task
arriving at a hypercub Iticomp must be d to a subcube of the size required for
execution of the task. Upon pletion of ion, the subcube used for the task must be

released for later use. As it will become clear later, there is a close resemblance of the task

in i to the col i memory ion prob-

p MY P

iem. In both p we want to imize the utilization of available resources and also
minimize the inherent system fragmentation,

The strategy currently used in the NCUBE machine, called the buddy strategy, will be
investigated first. We shall show that due to the special structure of a hypercube, the availa-
bility of some subcubes cannot be detected by the buddy strategy, and the processor utilization

d A location strategy using the binary reflected Gray code, called

P

is thus

the GC strategy, is then described and shown to be able to recognize more subcubes than the
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buddy strategy can. The performances of both the buddy and GC strategies will be compara-

tively analyzed. Both strategies will be proven to be statically optimal in the sense that only

minimal subcubes are used by both ies to each seq of il ing

tasks when p linquish is not i It will also be_proven that subcube

recognition ability is enbanced significantly by the GC strategy; the number of recognizable

subcubes in the GC strategy is twice that in the buddy strategy. Furthermore, we shall show

that the GC strategy is optimal in terms of ihe subcuby ition ability of a

search. As will be seen, there are many different GC's, each of which is associated with a set

of izabl The subcub ition ability can be improved by using more
than one GC. The relationship between the GC’s used and their subcube recognition ability

will also be derived and used for determining an allocation strategy with multiple GC’s.

Like the ionai memory a seq of allocation and deallocation of
subcubes may result in a fragmented hypercube, where a sufficient number of unoccupied
nodes exist but do not form a subcube large enough to accommodate an incoming task. Such
fragmentation leads to poor utilization of hypercube nodes. As the fragmentation problem in

the i memory allocation can be handled by memory compaction, the fragmentation

problem in a hypercube can be solved by task migration, ie., relocating and compacting

active tasks within the hypercube. C quently, the procedure for the task migration under
the GC strategy is developed in Chapter 6. We shall derive the goal configuration, the node-
mapping between the source and destination subcubes, and a routing scheme which leads to

the shortest deadlock-free paths for task migration.
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1.2. Outline of the dissertation

This dissertation is organized as follows. Distri daptive routing ies for
wide-area computer networks are treated in Chapter 2. In Chapter 3, we propose the routing

1 mesh icomp Fault-tolerant routing schemes

and broadcasti 1 for

d in Chapter 4. In Chapter 5, by using the

for hyp p are P

knowledge on the number of acceptable task assignments, we propose a new approach to

reduce the difficulty of the task ion p! in icomp systems.

We develop task ies for hypercut icomp in Chapter 6. An associ-

ated task migration strategy is also presented. Concluding remarks are given in Chapter 7. A

list of symbols used is given in the Appendix.
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CHAPTER 2
DISTRIBUTED ADAPTIVE ROUTING IN COMPUTER NETWORKS

For computer networks, routing is very important to their performance and reliability
[59,75). Among the various routing algorithms proposed [10, 45,60, 61,62,64,78,86], distri-
buted adaptive routing algorithms have drawn considerable attention because of their high
potential for reliability and adaptability. The ARPANET’s previous routing strategy (APRS)
[60] is a typical example of these. Under APRS, the path from one node to every other node
is not determined in advance. Instead, every node maintains a network delay table to record
the shortest delay via each link emanating from the node. A minimal delay table in a node,
which contains the delays of the optimal paths (i.., the path requiring the minimal delay)
from that node to all the other nodes is passed to all of its adjacent nodes as a routing mes-
sage at every fixed time interval (e.g., 128 ms in APRS). Note, however, that under APRS
each node sends the same routing message to all its neighbors without making any distinction
between receiving nodes. This forces some nodes to receive useless routing messages,
thereby resulting in undesirable looping in case of link/node failures. The process for each
node to obtain new correct information for its network delay table after certain failures, which
is termed as the network recovery process, will thus be delayed [66).

The routing algorithms proposed in [45,62,86] have the same major features as the one
in APRS, except they employ more provisions to cope with network failures. However, they
still cannot avoid some inherent drawbacks such as poor adaptability and inefficiency [45,46].

The ARPANET’s current routing strategy (ACRS) [61] uses a different approach for handling
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10

routing messages. In ACRS, every node in the network is required to keep and maintain infor-
mation of the entire network. ACRS will always reach a correct routing decision as long as
the global information at each node is accurate and consistent. However, this strategy requires
every node to contain a large storage area for the global information and may make the entire

network with for updating the global information.

'P

The routing strategy in [78] as well as the one adopted in the TIDAS network [10] is
similar to APRS except for the following modification. If the routing message is sent from
node Nj to node N; which is the second node in the optimal path from N; to some other desti-
nation node Ny, the delay of the optimal path from N; to Ny was replaced with the delay of its
second optimal path in the routing message passed to N;. Although this modification leads to
a significant improvement over APRS in reducing the looping effects, it does not climinate
them completely. In (78], we have rigorously analyzed the performance of a routing strategy
using the above modification. We proved that, although ping-pong type loops (i.e., loops with
two nodes) can be removed from the network delay table of each node by the above
modification, multi-node loops (i.e., loops with more than two nodes) may still exist. In this
chapter, we shall extend our analytical results to routing strategies which are free of multi-
node loops and show that a routing strategy can remove multi-node loops from the network
delay table of each node by keeping in network delay tables not only the delay of each
minimal path but also a set of first few nodes in the path. The number of nodes included in
the routing message is referred to as the order of the corresponding routing strategy. The
number of nodes in a loop that will be eliminated by a routing strategy increases with the

order of the routing strategy [78].

Consider the followi i ward h to remove looping completely from the

g PP

network delay table of each node: All nodes in each path are included in routing messages
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1

and sent to neighboring nodes. However, this naive approach is very inefficient due to its

d. Consequently, it is very important to determine the minimal order of
routing strategy required for each node to make all the paths implied in its network delay table
loop-free. As we shall prove later, depending on the network structure, the portion of a path
that each node should keep and send to its neighboring nodes in order to eliminate looping
completely can be determined. Unlike the other distributed routing strategies where the same
strategy is applied indiscriminately to every node in a network, the order of the routing stra-
tegy required for each node depends on the network topology and may vary from one node to
another. Notice that we remove looping effects by augmented minimal delay vectors, whereas
the method described in [64] is based on the use of extensive protocols.

This chapter is organized as follows. In Section 2.2, we present necessary definitions and
notation, and then introduce the high order routing strategies. Performance of the high order
routing strategies will also be analyzed. In Section 2.3, we develop formulas to determine the

minimal order of the routing strategy required for each node to remove looping from its net-

work delay table completely. We shall take into ideration the operational in

bandling routing messages and optimize the tradeoff between the network adaptability and the

j 1 Complexity of the optimizati ithm is also analyzed. The resuits
developed in this chapter have also been reported in [78,79].
2.1. High Order Routing Strategies
In Section 2.1.1, we shall introduce notation and d, which is d

by the description of the high order routing strategies in Section 2.1.2. Performance analysis

of the high order routing strategies will be given in Section 2.1.3.
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2.1.1. Preliminaries

For a computer network N, let V(V) and E(N') denote respectively the set of p
nodes and the set of computer links with [V(V) = p and [EQV) = g, where IS| represents the

cardinality of the set S. To illustrate the network recovery process after link/node failures, we

assume that the network N is d after link/node failures gl our
Let DL;; be the delay of a direct link L;; from N; to N;j. The set of nodes adjacent to N; is
denoted by A;. There are usually many paths from N; to N;, which are represented by the set

SPj, and let SP= y SPy. Let Py denote a path with the shortest delay' (i.e., an
N, NeV(V)

optimal path) in SP,;, and P;;_,, be the shortest delay path from N; to N; without traveling on
L,y Clearly, Py, is the new optimal path from N; to N if the link L, , becomes faulty.
Note that P;;_, , = P;; only when L, , is not a part of Py;.

A path in N is expressed by an ordered sequence representation of nodes. For example,

a path P;e SP can be represented by (Ni;,N;, ... N ). Let Hy(P; be the set of the first k
nodes of a path PieSP. For a path P; = (Ni,Nj, - - [N ), Hy(P) = (N, Ny, - -+, Ny} if
m+1 2k, and H(P) = (N, N;, -+ -, N;.) otherwise. In addition, a function h : SP — I'* is

the hop function of a path, where h(P;) denotes the number of links (hops) in a path P;eSP
and T* the set of positive integers, and a function d : SP —R* is the delay function of a path,
where d(P;) is the summation of all link delays in a path P;e SP and R* the set of positive real
numbers. Then, the average link delay in path P; can be denoted by a function ave : SP —-R*

such that ave(P;) = d(P;)/h(P;).

Definition 2.1: If a path P; = (N, Ny, - * +, N; ) is faulty and the pair (N, N ), i-e. Ly,

represents the first faulty link in the ordered sequence representation of P;, then k is called the

"Thiere may be many paths with the same shortest delay, in which case, an arbitrary one is chosen to break the tie.
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screen of P, and denoted by scn(P;). If the path P; is not faulty, then sca(P;)=co,

Pefinition 2.2: A loop is a path which starts and ends at the same node, and does not contain
any other loop, i.e., a path (N, Ny, - -, Ny ) is a loop iff Nj) = N; , and N,‘ #* N,‘1 for 0 < j,
q < n except N,j = N,‘ =N, Also, a loop L; is called a k-th order loop if the number of hops
in Ly is k+1, i.e., h(L)) = k+1.

The set of loops starting and ending at N; is denoted by SL;;. A path P; is said to be k-
th order loop-free iff there is no occurrence of any j-th order loop in P;, for 1 < j < k. Let
SPX, k e I, be the set of paths which are k-th order loop-free and SP,‘j = SP  SP, 4 be the
set of k-th order loop-free paths from N; to N;. Obviously, SP¥! < SP, ¥ k e I'. In addi-
tion, a routing strategy is said to be free of the k-th order loop if all the paths implied in the
network delay table of each node are k-th order loop-free.

For example, (N3, N3, Ny, N3, Ny) is not a loop and (Nj, Ng, N3, Ny) is a 2-nd order
loop. For the path P; = (Ny, Nz, Ny, Ny, Ny, Nj) in the example network of Figure 2.1, d(P)) =
12, h(P;) = 5, ave(P;) = 2.4, and P; contains a 1-st order loop occurring between Ny and Ny.

Hence, P; € SP;; but P; & SP,'.a. When the link L, 5 is faulty, P; is faulty and scn(P;) = 4.

2.1.2. Description of high order routing strategy

As we mentioned before, under APRS the path from one node to every other node is not
determined in advance. Instead, every node maintains a metwork delay table to record the
shortest delay via each link emanating from the node. When a node has to route a packet, it
determines from its network delay table the next hop for the packet which will lead to the
shortest delay path. A minimal delay table in a node, which contains the delays of the shor-

test paths from that node to all other nodes, is passed to all of its adjacent nodes as a routing
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Figure 2.1. A computer network with link
delay specified.
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message cvery fixed time interval.

Let NT.dlyyy(m) denote the delay from N; via Nj to Ny in the network delay table of N;
under the APRS during the time interval [m, m+1) and DL;;(m) be the delay of the link L;; at
time m. Also, let DOP;4(m) devote the shortest delay from N; to Ny in the network delay
table of N; during the interval [m, m+1), and denote the corresponding path as OP;4(m).
DOP; 4(m) is then sent to all adjacent nodes of N; as routing information. Then, the opera-

tions of the APRS can be formally described as follows.
NT.dlyy (m) = DLiy(m) + DOP;4(m—1) ¥ Nje A @.1)

DOP;y(m) = min {NT,dly,\j’d(m)}. 22)
/]

An example of the network recovery process under APRS for the network in Figure 2.2
is given in Table 2.1. Notice that after the failure of Ly s at time t=0, Ny, according to the
routing message it received from N, thought there is a path with delay 4 via N, to N5, which,
however, is (N4, N3, Ny, Ns) and not available. When time t=2, Ny, according to information
it collected thus far, knew the path with delay 4 is faulty, but still thought there is a path with
delay 6, which is (N, Np, Ny, Ny, Ny, Ns) and not available either. Eventually, it took 20
time intervals for Ny to obtain a correct shortest delay to Ns. It can be verified that while
misled by the routing message sent from Ny, nodes Ny, N, and N; needs 20, 19 and 17 time
intervals respectively to obtain their new shortest delays to N, and the network recovery pro-
cess is thus delayed. As it can be observed from Table 2.1, the slowdown of the network
recovery process is mainly caused by a 1-st order loop, (Nj, N, Ny).

To remedy this, under the strategy we developed in [78] and the one in the TIDAS net-
work, every node keeps a network delay table and exchanges minimal delay tables with all its

adjacent nodes as in APRS except for the following modification. If the routing message is
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Figure 2.2. A network where L 4sis broken.
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passed from N; to N; which is the second node in the optimal path from N; to some destina-
tion node Ny, we replace the delay of the optimal path from Nj to Ny with the delay of its
second optimal path (i.e., the path requiring the second shortest delay to Ng among all paths in
the network delay table of N)) in the routing message passed to N;. As it will be pointed out
Iater, this routing strategy is a special case of the high order routing strategies and can be
viewed as the 1-st order routing strategy. Let N'I‘.dly,\'J_d(m) denote the delay from N; via Nj
to Ny in the network delay table of N; under the 1-st order routing strategy during the time
interval {m, m+1). Then, the operation of the 1-st order routing strategy can be expressed as

follows.
1 = 3 1
NT.dlyg 4(m) = DLjy(m) + N,,é",x',','q.«: {NT.dlyNd(mq )} 23)

An example of the network recovery process for the network in Figure 2.2 under the
above modification to APRS is given in Table 2.2. It can be seen that the time intervals
required for Ny, N, N3 and Ny to determine their new optimal paths to N5 become 11, 10, 8
and 9, respectively.

From Table 2.2, it can be seen that the 1-st order loops will be removed from the net-
work delay table of each node by the 1-st order routing strategy, whereas loops with more
than two nodes (i.e., multi-node loops) may still exist. Notice that the 1-st order routing stra-
tegy removes the 1-st order loops by disallowing each node to send its neighbors the routing
messages which have been found to be useless to receivers. However, under the 1-st order
routing strategy every node can determine only the delay and the second node of each path
from its network delay table. Naturally, as the amount of local information is increased, every

node is expected to form more useful routing messages leading to a greater reduction of loop-

ing effects. In fact, a routing strategy can be ped to remove multi-node loops from the
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network delay table of each node by keeping in network delay tables not only the delay of
each path but also the set of nodes which follow the first node in the ordered sequence
representation of the path. Thus, the format of routing messages is modified to include the
corresponding set of nodes in each path. The augmented information in the network delay
table of each node will be very useful in forming suitable routing messages for its neighbors.
The number of nodes included in the routing message will henceforth be referred to as the
order of the routing strategy. As the order of the routing strategy gets higher, it will become
free of longer loops.

The main schemes used in all k-th order routing strategies are basically the same, except
that different values of k indicate different amounts of information to be recorded in the net-
work delay table. Let N'l‘,{‘,d(m) denote the information kept in the network delay table of N;
about the shortest delay path from N; via NjeA; to Ny under the k-th order routing strategy
during the time interval [m, m+1). Also, let Py 4(m) be the path specified by NT,{‘,-d(m).
Then, NT,{‘jd(m) i$ a record containing two fields: NT.dly&jld(m) and NT.set,{‘,_d(m), where
N'l‘.dly,{j‘d(m) denotes the delay of Py 4(m) and N'l“.set,{‘jvd(m) is an ordered set of the first k+1
nodes in Py q(m). That is, NT.dly 4(m) = d(Pyyg)(m) and NT.setfjg(n) = Hyy (Prya(m)).

Let RM,‘.‘_j_d(m) denote the routing message sent from NjeA; to N; about the optimal
path from Nj to Ny under the k-th order routing strategy during the time interval [m, m+1).
RM,‘ﬁ_j_d(m) is again composed of two fields, RM.dlyi':_jld(m) and RM.seti'ﬁ_j_d(m), which can

be determined from the network delay table of N; as follows.

RM.dlyk_ 4(m) = min  NT.dlyk, 4m),
Yiej,df Ny Ayend Ng.d! 24

N, ¢ NT.setf, o(m)

RMsetf_jq(m) = H(Py)  where P, is the path with the delay RM.dlyk  4(m).
2.5)
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‘When the routing RM.':_M(m) is ived by N;, N; uses this message to update

its network delay table as follows, where © means prefixing a node to an ordered set.

NT.dly§ 4(m) = RM.dlyft_j4(m—1) + DL;(m), (2.6)

NT.setf 4(m) = (N;] © RM.set}ej o(m-1). @7

In addition, DOP,’fd(m) represents the shortest delay from N; to Ny in the network delay
table of N; under the k-th order routing strategy during the interval [m, m+1), ie.,

DOP,"‘d(m) = gixm‘dly,{j‘d(m), and denote the corresponding path as OP,'fd(m). Notice that
A

APRS and the routing strategy described Eq. (2.3) are actually special cases of the above stra-
tegy when k=0 and k=1, respectively. For the network in Figure 2.2, the network operations
under the second order routing strategy are described in Table 2.3, where the subscript of each
entry in the network delay tables represents the set of the second and third nodes of the

corresponding path. If enough routing i ion is a node can ine that the

use of some of its neighbors will not lead to loop-free paths; such neighbors will be rem
from the construction of loop-free paths. The eniries in Table 2.3 marked by ~ represent such
cases. Also, in Table 2.3 the appearance of the first node in NT.sel,\z,-,d that is N; is omitted for
simplicity. It is interesting to see that the second order routing strategy eliminates the first
order loop (N, Ny, N,) and the second order loop (Np, Ny, N3, Np), which had caused the
slowdown of the recovery processes in Tables 2.1 and 2.2, respectively. As a result, the
required time intervals for Ny, Ny, N3 and Ny to get their new optimal paths to Ns are reduced
respectively to 6, 5, 5 and 4. It can be seen that increasing the order of routing strategy

speeds up each node’s ion to failures of link des in the network.

P
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2.1.3. Analysis of high order routing strategies

Under the k-th order routing strategy, each node gathers routing information and then

updates its local delay table by ing routing with all its neig| every fixed
time interval. From Egs. (2.4) and (2.5), one can see that under the k-th order routing strategy,
each node, say N;, by sending appropriate routing messages to neighboring nodes N, € A;,
will avoid forming any path containing a j-th order loop, 1 < j <k, in the network delay table
of Ng. More formally, we describe this fact by the lemma below.

Lemma 2.1: All paths implied by the network delay table of each node under the k-th
order routing strategy are k-th order loop-free.

From the above lemma, it can be seen that in case of a link failure, a node under a
higher order routing strategy, while being free of longer loops, can determine a new nonfaulty
optimal path faster than under a lower order routing strategy, and the network’s adaptability is

thus Since the i ion that the link L(‘ =L of a path has become faulty is

broadcast only one hop per unit time under the high order routing strategies, it will take the
same number of time units as the screen value of that path for the source node to be informed
about the link failure. Suppose the link failure occurred at (=0, then the screen value of every
path implied by the network delay table of each node under the k-th order routing strategy
during the time interval [m, m+1) must be greater than m. This can be formally stated by the
lemma below.

Lemma 2.2: Suppose the link failure occurred at time t=0, and let Py 4(m) be the path
implied by NT{‘,d(m) in the network delay table of N;. Then, scn(Py;4(m)) > m.

Generally speaking, the screen value of a path means the number of time intervals
required to remove this path from the network delay table of N, after the occurrence of a

failure in the path. Thus, under the k-th order routing strategy, the path with the shortest
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delay to a destination node Ny chosen by a source node N, is the shortest among all possible
paths which have not been found faulty by N, up to time m. More formally, we have the fol-
lowing theorem.

Theorem 2.1:

DOP,'fd(m) = min{d(l’j): Pje SP,'fd and sen(Py) > m} ¥me I'.

Proof: To facilitate our presentation, consider the APRS. Let my be the time intervals
required to find a new nonfaulty optimal path under the APRS in case of a link failure. Con-
sider two cases: m2mg and m<m,. When m2mg, OP,4(m) is the newly found optimal path

and fault-free. That is, scn(OP, 4(m)) = oo, resulting in
DOP, 4(m)= min{d(P.): P, € SP,q and scn(P) = u}.

When m<mg, OP,4(m) still contains the faulty link L;.. We want to show that OP, 4(m)
chosen at time m from the local delay table of N, is indeed the real minimum delay path
found by N,. Let P be an arbitrary path containing the faulty link L, . at time m, P € SP,4
and sco(P.) > m. Then, P, can be expressed as (va.. Ni‘-, ey, NI'., Ni,',,’ LN NL.')' where

NG=N_. N|'»=N,, Ni:”= Ngs Ni‘:=Nd, and scn(Pp) =1 >m. From Egs. (2.1) and (2.2), we get

DOP,. . (m) < DLy ;o (m) + DOP;e .- (m~1)

DOP,, .. (m~1) < DL+ (m-1) + DOP;. .- (m-2)

DOP,. ;: (m-r+1) S DLy . (m-r+1) + DOP,. . (m-1)
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1
= DOP,. (m) S kE:ODLi;v‘;"(m—k) +DOP . (m-1).
Since r>m, m-r is a time before L‘r-',:" became faulty and we get
u-1
DOP,'-.U(m—r) = kEDL‘:'l:"(m_k)

u-1
3 DOP,ym)= DOP, (m)SYDL, . (u-k) = d®p).
v k0

From Lemma 2.2, scn(OP, 4(m)) > m and OP,4(m) € SP, 4, thereby proving this theorem for
the APRS (the 0-th order routing strategy).

For the higher order routing strategies, it can be proved similarly by recursively applying
Egs. (2.4) and (2.6) and retrospectively tracing the network delay tables of nodes in an arbi-
trary path. QED.

It can be verified by Theorem 2.1 that the delays of nonfaulty optimal paths from N, to
N, obtained under all strategies are indeed the same, since the new optimal path must be free
of any loop, i.e., DOP,i_d(mi) = DOPjvd(m)) =1, Vi, j e I', where m, is the number of time
intervals for N, to determine a new nonfaulty optimal path to Ny under the k-th order routing
strategy after the occurrence of a link failure. Also, it can be seen that DOP,'fd(m) <

DOP,‘fd(m+l) ¥ m € 1, meaning that after a link failure the delay of the shortest path chosen

by the k-th order routing strategy is a d ing ion of time. N , we have the

lowing th to ine m V¥ k e I', where r < oo denotes the new nonfaulty optimal

path.

Theorem 2.2: my = nmx{ scn(Pj); Pje SPYy and d(P)<r }

Proof: Suppose my= max{ scn(P,):P,e SP,'fd and d(Pi)<r} and mg#m, We shall
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prove that both the assumptions of mk>m,: and my<my lead to contradictions.

Case I: m>my.

Since m, is the minimal number of time intervals required for N, to obtain the new nonfaulty
optimal path to N, DOPXm-1) <DOPX(m)=r. By Theorem 2.1,
scn(OP,'fd(m,(—l N =mg > me-1 > my*2m,. Because SP,'fd is the set of all k-th order

loop-free paths from N, to Ny, and OPX(my—1) € SP¥; from Lemma 2.1,
my= mnx{ scn(P,): P;e SPXand d(P)<r }2 mg* > m,,
leading to a contradiction to my<my.

Case 2: my<my.
Since my= mﬂx{scn(P,):P;e SPX; and d(P)<r }, there exists a path P; such that

sen(P)=my, PieSPYy and d(P)<r. From Theorem 2.1, DOPX,(my-1) < d(P) <r. For
my, mpel*, m<mg> m, Smg-1. Thus, we get DOPXy(m,) < DOP¥y(mg—1) < d(P) <r.

However, 1 = DOP}fd(mk). leading to a contradiction. QED.

From this theorem, we get the following corollary, which implies that the network’s

adaptability is improved monotonically by adding more i in routing
Corollary 2.2.1: my,, Sm, V ke I*

By definition, we can describe the screen and delay functions of a path P, =

NN, N NG e Ny € SP,'fd where N;=N;, N;=N;, N; =N, and N; =Ny as
below.
k
sen(P) = h(®y) + Tmh(Ly), @8)
j=l
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k
dp) = d(P)) + JEﬂ;,d(Li,) +d(Py), 29)
=1 .

where PO P; € SPf'fd, P/ e SP!}, L;’ is a loop starting and ending at N,, and n; is the number
of times the loop L; appears in the path P,

Since we can include all redundant parts of P; in the second term of (2.8) and the second
and third terms of (2.9), P can be regarded as a path without loops. For the example net-
work of Figure 2.3, consider a path P; = (N, Na, N3, Ng, Na, N3, N5, N3, N5, N3, N5, N, N7)
in which the link Lsg is faulty. Then P = (Nj, N, N3, Ns), P; = (N5, Ng, Ny), L;, = (N,
N3, Ng, Np), mj, =1 and L;, = (N3, Ns, N3), o, = 2. Then, in light of Egs. (2.8), (2.9) and

Theorem 2.2, my can be expressed as follows.

k
my: max  h(P))+ Toyhdy)
P e 5P, =

k
subject to d(Py) + Zni‘d(L,,) +d(P;)) <r whereL; e SP,'J‘J, and L'l cP;, (2.10)
=

where P/, P, m, and Li, are defined as in Egs. (2.8) and (2.9).

Define L. to be a loop such that avc(H.):min{nve(L,) ILe SP;"‘,, lsiSn}.

‘When the delay of the new nonfaulty optimal path, r, is large enough, ave(L,.) will become

the inating factor in ining m, and we have the following theorem.

m;, ave(Ls)
Theorem 2.3: lim — = !

— ), ¥ijeI"
100 M ave(L!..)

Proof: Let L;_ be the loop with the minimal average delay among all loops in the path
P;. From Eq. (2.10), it can be seen that L; will be traveled as many rounds as possible in

order to maximize my. Thus, we have
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r - d@) - d(,)
m, = m

- ——“L—J—Jha.,m)m.w(p{) where R; <h(L;). @11)

Clearly, the second and third terms in Eq. (2.11) become negligible as r — oo and this

theorem follows. Q.E.D.

The following example is presented to illustrate our analytic results obtained thus far.
Example 2.1: In a computer network shown in Figure 2.1, assume that the link Ly 4 became
faulty at time 0 and delays of the other links remain constant. From Eq. (2.11), the number of
time intervals required for each node in this network to obtain its new nonfaulty optimal path
is a function of r* = Lys. Thus, network performance has been examined while this parameter

is being varied.

(1) Case 1: 1" = 16.
Given below are the operations taken under the APRS (the 0-th order routing strategy) and the

1-st order routing strategy for the source node N; to obtain a new nonfaulty optimal path to

the destination node Ns by ing routing ges with neigl ing nodes every time
interval.
Under the APRS, network delay tables become as shown in Table 2.4. From Table 2.4,
one can obtain:
OP, s5(to) = (Ny,N3,N4,Ns), where tg € (—oo, 0)
OP; 5(0) = (N{,N3,Ny,N5)
OP,5(1) = OP;5(2) = (N{,N3,N;,N3,Ng,Ns)
OP;5(3) = OPy5(4) = (N,N3,N;,N3, Ny, N3Ny, Ns)

OP5(5) = OP5(6) = (N;,N3,N;,N3,N;,N3,Ny N3Ny, Ns)
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OP5(7) = OPy5(8) = (N;,N3,Ny,N3,Ny,N3,Ny,N3, Ny, N3, Ng,Ns)
OP/5(9) = (N1,Nz,N5).
Thus, mp = 9, while scn(OPy5(8)) = 9. This agrees with the result of Theorem 2.2. In addi-
tion, one can observe from the above tables that the numbers of time intervals for N; and N;
to obtain the new nonfaulty optimal paths are 6 and 10, respectively (marked by *).
On the other hand, we obtain the network delay tables under the 1-st order routing stra-
tegy as shown in Table 2.5. From this table we get:
OP| 5(to) = (N},N3,N4,Ns), where t € (—o, 0)
OP/5(0) = (N1,N3,Ny,Ns)
OPY5(1) = (N;.Nz:N3,Ny.Ns)
OP[5(2) = OP{5(3) = (N},Ny.NzN\.N3 Ny, Ns)
OP{5(4) = (N1.N2Ns)
Again, m; =4 = scn(OP{‘.s(?,)). The numbers of time intervals required for N, and N; to

obtain the new optimal paths are also reduced from 6 and 10 to 2 and 3, respectively.

(If) Case 2: * = 160.
Applying the same procedure as above, we can obtain the results for = 160 with a
simple calculation. The numbers of time intervals required for N;, N, and Nj to obtain their

new optimal paths to Ns are reduced from 105, 102 and 106 (under the APRS) to 50, 49 and

51 (under the 1-st order routing strategy), respectively.

(III) Case 3: r* = 1000.
In this case, the numbers of time intervals for Nj, N, and N3 to obtain their optimal

paths to Ny are 665, 662 and 666 under the APRS and 332, 331 and 333 under the 1-st order

routing strategy.
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In Figure 2.1, the possible loop with the minimal average delay under the APRS is Ly =
(Ny, N3, Ny), and that under the 1-st order routing strategy is Lp = (Ny, Nz, N3, Ny). Since
d(La) = 3, h(Ly) = 2, d(Lp) = 9 and h(Lp) = 3, ave(L,) = 1.5 and ave(Lp) = 3. The results of
Cases 2 and 3 agree with Theorem 2.3.

The above results indicate that the network’s adaptability is actually enhanced with the
increased amount of local information. However, multi-node loops may occur very infre-
quently and the operational overheads required in higher-order routing strategies cannot be
ignored. Thus, the feasibility of implementing higher-order routing strategies may need
further justification. Notice that although a higher order routing strategy is necessary for some
nodes to avoid potential looping, it may contribute nothing but higher operational overheads to
other nodes. Consequently, it is very important for us to determine the minimal order routing

strategy required for each node to remove looping from its network delay table.

2.2. Minimal Order Loop-Free Routing Strategy
In Section 2.2.1, we shall formulate the method to determine the minimal order routing
strategy required for each node to avoid all potential looping. The tradeoff between the opera-

tional overhead and looping delay will be investigated and determined in Section 2.2.2. The

will also be

plexity of the optimi: p

2.2.1. Determination of minimal order strategy for loop-free

Consider the case when L;j becomes faulty. Let R, ; denote the required order of rout-
ing message sent from Ny A; to N; such that the routing message will not result in any path

containing loops in the network delay table of N;. To facilitate our presentation, we define a

set of loops Sj.y,; as follows.
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Sicky = {L.- ILy € SLyy, 20d(L)=Ny and d(Ly) < dBigeip) = DLU}. @12)
where Nie V(V), NyNje A, and 2nd(L;) is the second node in the loop L. Then, the quan-
tity Rycy g can be determined by the following theorem.

Theorem 2.4:

h(Ly) po  if Sicyy # D,
Ry = H‘?gﬁ_u{(i)} ik

0, if Sieqj=2.

Proof: If the required order of the routing message the destination node N; from Nye A,
to N;, denoted by rj.yj, is less than R;cy, there is a loop L+ € SL;; such that 2nd(L;:) = Ny
and d(L;) + DL;; < d(P;y_;;). Thus, the path from Ny via L;. to N; and then via L;; to N; con-
tains the delay d(L;) — DL;y + DL;;. The delay of the new optimal path from Ny to N; must
be greater than d(L;:) — DL;y, + DL;, since d(P; ;i) wiil otherwise be less than d(L;) + DLjj,
leading to a contradiction. Thus, if rjy; < h(L;) before Ny finds its new optimal path, the
delay d(L;) - DL;; + DL;; will be sent to N;, thereby resulting in a path with a loop in the
network delay table of N;. Therefore, Rj.y; S Tk

Next, we want to prove that a routing message of the order Ri.y; sent from Ny to N;
will not result in a path with loops for N;. Suppose there is a resulting loop L. Then, d(L.)
+ DL;; < d(P,;;;) and 2nd(L,.)=N. By Egs. (2.5) and (2.7), we get h(L;s) > Ricyj, leading to

a contradiction. This means Ricyj 2 ficyj and Ricyj = Fic thus follows.  QE.D.

Note that the minimal order routing strategy for N; must be determined by routing mes-
sages from all of its neighboring nodes. Let R;,y represent the order of routing message sent

from Nie A; to N; to avoid all looping in the network delay table of N;, i.e.,
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Riek = Ricky -
k= T { h—kJ} (2.13)
ek

The minimal order of routing strategy required for N;, denoted by 0/, can be determined by
the following corollary.
Corollary 2.4.1: All paths implied by the network delay table of each node are free of

looping if and only if

o= L3 {RJ'_,}, ¥ Nie V().

Proof. 1fO'= Nmm;‘ {Rj‘_i}, then it immediately follows from Theorem 2.4 that the
€

routing message sent from N; will not result in any path with loops in the network delay table
of a receiving node when N; adopts the O;'-th order routing strategy. Next, we want to prove

that O;" is the minimal order of routing strategy for N; to avoid resulting any path with loops

in the network delay tables of those nodes iving routing from N;. Suppose that
the order of routing strategy adopted by N;, denoted by O, is less than O;’. Then there exists
an Ry ; such that Rj.; > O;. From the equations in Theorem 2.4, there is a node Ny such that
Rjeix > O;. Thus, when the link L;) becomes faulty, the routing message sent from N; to N;
will result in a path with an R_-th order loop in the network delay table of N;j, where O; <

Rj; S O", leading to a contradiction. Q.E.D.

Although the above las can ine the minimal order routing strategy for each
node, one can find from the operation of routing strategy that the difference between the ord-
ers of routing strategies of two adjacent nodes cannot be greater than one. (We term this fact

the *‘strategy compatibility’’.) Otherwise, a node with the lower order routing strategy would

not be able to the routing quired for all of its neighboring nodes. Thus,
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we may have to increase the orders of routing strategies of some nodes to hold the strategy

compatibility. We present a simple ple to the ideas p thus far,

Example 2.2: Consider the example network in Figure 2.4. For this network we will deter-
mine the minimal order of loop-free routing strategy for each node.

(a). The required order of loop-free routing strategy, O,' , 15i<8, can be determined by the fol-

lowing two steps.
Step 1. Using Theorem 2.4 and Eq. (2.13), determine Ry, Nj € A;, 1 <i< 8. For N, we
get

Rics2=0
SRy 4=0

Ric43=0

Rie32=0
F Ry 3=0

Ri34=0
Ric23=0
Rie24=1 FRip=1.

For Ny, we have Ry y3 =Ry g =1and Ry 31 =Ry 3 =1

In case of N3, we obtain

Riyc12=0
Ry 14=0 SRy =0
Rie18=0
R3e2,1 =0
Ric24=1 Ry =2
R3e28 =2

and then, Ry 4; =0, Ryy2=1, Ryqg=1 > Ry4=2, and R34, =0, Rycp2=0,
R34 =0 3* Ry_g = 0. Following the same procedure, we get Ry = 3, Ryey = 3 and

Ryges = 0 for Ny, Rs.g = 1 and Rs.4 = 1 for N5, Rges = 1 and Rg7 = 1 for Ng, Ry s =1
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and Ryg = 1 for Ny, and Rg7 = 0 and Rg3 = 0 for Ng.

Step 2. Using Corollary 2.4.1, determine O], 1 Si< 8.

Ryey =1

Ry =0 307 =3
Rye1=3

Riz=1 .
Rie2 =2 > 02=2
Rye3 =1

Ri3=0 .
Rges =3 >05=3
Rge3 =0

Rieq =0

Rys=1305=1

Rse 4 =1
and then, Ryes=0, Res=1 2 05=1 Rseg=1, Reg=1 2 05=1; Rer=1,
Rge7=03>0;=1and Ry_g=0, Ryg=13» Oy =1. For this example network we get
the minimum order vector, O = [3, 2, 3,1, 1, 1, 1, 1], and then [3, 2, 3, 2, 1, 1, 1, 2] after

ing the strategy patibility.

2.2.2. Operational overhead and looping delay tradeoff

As ioned earlier, the multi-order routing strategy in a node usually causes its neigh-
boring nodes to increase their orders of routing strategies to satisfy the strategy compatibility.
If we consider the operational overhead in handling routing messages, it may not be worth
introducing a considerable amount of overhead for infrequent failures or for some failures
whose recovery costs are not high. This implies the need of striking a compromise between

looping effects and the i , and ining the optimal order of routing
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strategy for each node.

2.2.2.1. optimization of tradeoff

Although various p 1 are i to ine the operati overhead in

Egs. (2.4) and (2.5), the main idea can be described as follows. The cardinality of RM.set{}_j‘d
increases linearly with the order of routing strategy, meaning that the memory requirement for
the routing strategy is linearly dependent on the value of k. The computational overhead for
Egs. (2.6) and (2.7) is straightforward and has little dependence on k. However, from Eq.

(2.4) the number of comparisons required is linearly proportional to k. The computational

d

cost is therefore linearly proportional to k. ing the above ing, the cost requi
for a node adopting the k-th order strategy to generate and process a routing message, denoted
by R(k), can be approximately expressed as a*k + offset, where offset is the sum of contribu-
tions from the factors unrelated to k.

Define a strategy vector as a p-tuple whose i-th element is the order of the routing stra-
tegy adopted by N;, where p is the number of nodes in the network. A network together with
its adopted strategy vector.is termed a configuration. Let Oi" denote the order of the routing
strategy adopted by N; when the configuration is C;. The operational overhead per second

induced with the configuration C; can then be determined by the formula:

RC(C) = ER.O. @.14)
i=1

Assume that the traffic density between every pair of nodes in the network is uniform.
The expected number of time intervals required for an arbitrary node to find a new nonfaulty

optimal path to any other node when L;; becomes faulty can be expressed as:
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1
R(L;j; C) = ——— Y, my,(Cy)
. +) p(p-1) NeV(N) NeVv) i ¥ @15

and usv

where m,,_;§(C;) denotes the number of time inte-vals for N, to obtain a new nonfaulty

optimal path to N, when the ion is C; and L;; b faulty. The expected number
of time intervals to recover from an arbitrary link failure (i.e., switch from a broken path to a

new nonfaulty path) in the configuration Cy can then be determined by:

1
RT(C,) = - Ry(Liji C).
K= h,;eEE(N) (Ligi Ce (2.16)

Note that RT(C;) can be viewed as a measure of adaptability of Cy. The smaller
RT(Cy), the better adaptability C; possesses. To compute Eq. (2.15), we must show how to
determine m,,,_;j(Cy) ¥ u, v, i, j, and k. Consider the case when in a configuration Cy, N;
does not adopt a routing strategy of an order sufficient enough to remove looping completely.
In such a case, by Corollary 2.4.1, certain link failures will induce looping. From Egq. (2.13)
and Theorem 2.4, we can represent the set of loops (SPL) induced by the insufficient order of

routing strategy as follows.

SPLN; C= U U {L’.. 11 € Sjiqand hLp) > o.*}. @i
NeA, NeA g
and gei
The set of all potential loops in the network with the ion C; can be exp d
by:
SPL(C¢) = U SPL(N;; Cy).
NieV(V) @18)

Let L(P;) denote the set of loops in the path Py, P is said to be a possible path in the

configuration Cy if L(P,) < SPL(Cy), ie., every loop contained in P,. belongs to SPL(C;).
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Let Sb denote a subset of SPL(C;) and V(Sb) be the set of the starting nodes of all the loops
in Sb. Also, let SP,\y(s),; be the set of paths from N, to N; which go through each node in

V(Sb) at least once. Then, m,,_;;(Ci) can be formulated as follows.

y0-4i(Ci) = B(P,:) | d(P,2) < ARy = ACPL) } 219

max max
SbESPL(C,) L(P,)sSb and
P o& SPuwist, i

Once the network is given, using the above algorithm we can obtain m,,_;;(Cy) for all
Ny, N, € V) and L;; € E(V), and then RT(C;) from Egs. (2.15) and (2.16). RC(Cy) is

determined by Eq. (2.14). Since the required order of routing strategy for each node can be

obtained by Corollary 2.4.1, the number of possibl fi ions under the int of stra-
tegy compatibility can thus be determined. Once a design objective function F(Cy) =
f(RC(C), RT(Cy)) is decided, the optimal configuration can be determined by evaluating each

possible configuration.

Note that instead of ively ing all possible strategy vectors, we can skip the

of the i in either of the following two cases: (i) there is a node

assigned a routing strategy of an order higher than it requires, i.e., OV[i] > O/ and OV[i] 2
OV[j] ¥ Nje A; where OV[i] denotes the order of routing strategy for N; ¥ N; e V(V), and

(ii) the difference in the order of strategy between any two adjacent nodes is greater than one.

Clearly, the k dge of the minimal order for loop-free routing and the strategy compatibil-

ity reduces the number of configurations to be evaluated significantly. Configurations of the

example network in Figure 2.4 are d in the ing seq

3,2, 3,21, 1, 1, 2] (evaluated)
13,2,3,2,1, 1,1, 1] (OV[3] -~ OV[8] > 1 > skipped)

[3,2,3,2,1,1,0, 2] (OV[8] — OV[7] > 1 => skipped)
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[3,2,3,2,1,1,0, 1] (OV[3] - OV[8] > 1 > skipped)

3,2,3,21,0, 1, 2] (evaluated)

3,2,2,21,1,1,2] (OV[8] > 0; and (OV[8] 2 OV[3], OV[7] 3> skipped)

3,2,2,2 1,1, 1, 1] (evaluated)

[0, 0, 0, 0, 0, 0, 0, 0] (evaluated)

2.2.2.2. the number of -ations to be

For each configuration Cy, the number of m,,_;;(Cy)'s needed to obtain F(Cy) is
p(p-1)q, where p={V(V) and g<E(V). That is, the operation in Eq. (2.19) has to be executed
p(p-1)q times for each configuration. Therefore, the number of configurations to be evaluated
is a dominating factor to the execution time of the whole procedure.

To estimate the number of i to be , the ing

interesting combinatorial problem first. Given a labeled graph, if we want to assign each node
with an integer chosen from I, = {0,1,2, - - - m} in such a way that the difference between

the igned to any two adj nodes must be less than or equal to one, how many

assignments are there? Notice that if the labeled graph is G=(V(N), E(V)), then the answer to
the above problem is exactly the number of possible configurations in the case of 0,' = m
V¥ Nie V(V).

Define a distribution vector (D-vector) D; for each node N;, the k-th component of

which, denoted by Dj(k), represents the number of times N; is assigned the value keI, Fig-

ure 2.5 is an illustration of this idea with m = 3. Consider the case when one more node Ny
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Figure 2.5. Illustration of D-vectors.
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is to be attached to a node Ny in a given graph. The D-vectors of Ng and Ny in the resulting

graph are denoted by Dy and Dy, respectively, while the D-vector of Ny in the original graph

is represented by Dy'. Then, the ionship these quantities can be ined by
the following lemma.

Lemma 2.3:

Dy(0) = D4(0) + Dy(1).
j= i
@) { D)= 3 DJG) 1<ism-1
j=i-1
Dy(m) = Dy/(m~1) + Dg'(m).

Dy4(0) = Dg'(1)*2.
) { Dy(i) =DJ@*3, 1sism-1
Dy(m) = Dy/(m)*2.
Proof: (a) Suppose the node N, is assigned 0. Then, it can be attached to Ny only
when Ny was originally assigned 0 or 1. Thus, Dy(0) = D4(0) + Dy'(1). Similarly, we can get
the other two equations.

(b) When Ny is assig 0, possibl b i to N are 0 and 1, each of which

corresponds to a different assignment in the resulting graph. Thus, Dy(0) = Dy'(0)*2. The

other two equations in (b) can be obtained similarly. QED.

To demonstrate how Lemma 2.3 can be used, consider the three cases shown in Figure

2.6, where m = 3. The D- tors of hing and hed nodes can be easily obtained as

follows.
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N ) 9 8
(i) D4 = 3 from Figure 2.5, = Dy= o and Dy = 8
N 4 5
5
" 10 13
(i) Dy = |g| fromDyof ) = Dy= 24| ana D, = [2]
s 10 13
4
N 8 12
(i) Dy = [g| from Dyof () = Dg= |77 | and D = 2|
" 8 12

Note that for any node in the graph the sum of entries in its D-vector represents the

m m
number of assignments. It is also easy to see that 3,D4(i) = 3. Dg(i). Using D-vectors, we
i= =0

i=
can determine the bounds of the number of assignments by the theorem below.

Theorem 2.5: The number of assignments from the integer set I, to any connected
graph with p nodes, subject to the constraint that the difference between the numbers assigned
to two adjacent nodes must be less than or equal to one, lies within the interval [m(2P-1)+1,
2P+37!(m-1)], where m 2 1.

Proof: Obviously, the number of ptabl i for any graph is

always less than or equal to that of its spanning tree. That is, the upper bound is attained by
a tree structure. Now, we want to prove that the maximum is attained when the tree is a star

structure, and then the upper bound follows from Lemma 2.3.

m m
Since Y, Dy(k) is the same for every N; in a tree T, let N(T,m) = Y. Dy(k). For conveni-
k=0 k=0

ence, a tree T with p nodes is said to satisfy the C-property, if N(T, m) < 2437~ (m-1).

Clearly, the C-property is satisfied by every tree with p nodes when p < 3. Consider the case
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when one more node Ny is attached to a tree T with the C-property. Let Dy and Dy’ denote

respectively the D-vectors of Ny in the resulting and the original trees. Note that from

m-1
Lemma 2.3 we have Dy(i) S 37! ¥ N; € V(V), and thus 3, Dy(i) < 3*'(m - 1). Since T
i=1
m-1
satisfies the C-property, we get 3, Dy(i) + D4(0) + Dy(m) < 37~(m — 1) + 2P, which, by (b)
i=1

m m-1
of Lemma 2.3, leads to Y, D4()) = ( X D4)*3 + (D4(0) + Dg(m)*2 < 3P(m — 1) + 2P,
=0 =1

This means that the resulting tree also satisfies the C-property, and the upper bound thus fol-
lows by induction.

Consider the lower bound. Since the complete graph K, with p nodes possesses the max-
imal number of edges among all the graphs with p nodes, K, attains the minimal number of
assignments. Note that there are at most two distinct numbers which may occur in each
assignment to Kp, and their difference must be less than or equal to one. There are 2P ways to
assign the numbers in the pair {j, j-1) to p nodes, where 1Sj<m. Assignment of the same
number to every node, say j, occurs both in the case of {j+1, j} and {j, j-1}, where 1 <j <
m—1. Thus, the total number of assignments is obtained by adding up the number of assign-
ments from each pair {j, j~1), where 1 < j < m, to p nodes and subtracting double counts.

Then, we get 2Pm — (m—1) = (2P~1)m + 1 for the lower bound. QED.

By Theorem 2.5, for a given network with p nodes the number of configurations to be

evaluated must be within the interval [n(2P-1)+1, 2P+37"!(m—1)], where n = ‘min {0:} and
sisp

m= ll;lla)si {0.’ } . Note that due to the special nature of our problem, for a given topology a
3

network with a higher average order of loop-free strategy does mot always possess more

configurations to be evaluated than the one with a lower average order of loop-free strategy.
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An example is shown in Figure 2.7, where the network A has a higher average order of loop-

free strategy than the network B, but B has more configurations to be evaluated, This is the

very reason why max {0,‘ } and min {0,‘} have to be used for upper and lower bounds,
1sisp 15isp

respectively.

Example 2.3: Consider the example network in Figure 2.8. Following the same procedure
shown in the part (a) of Example 2.2, we can obtain [1, 1, 1, 1] as the minimal order vector
of loop-free routing strategies. Clearly, there are 24 =16 possible configurations in this net-
work.

As discussed in Section 2.2.2.1, the operational overhead required per second for the n-
th order routing strategy, R.(n), can be assumed to have the form of an + b. For the sake of a
numerical demonstration, let @ = 2.1, b = 1.2 and C,, Cp, Cy be the configurations with stra-

tegy vectors [1, 0, 0, 0], [1, 1, 0, 0] and [1, 1, 0, 1], respectively.

(2). RC(Cy), RC(Cp) and RC(C,) are obtained from Eq. (2.14) as follows.

RC(Cy) = R(1) + 3R (0) = 69
RC(Cp) = 2R (1) + 2R(0) = 9
RC(Cy) = 3R(1) + R(0) = 11.1

(b). RT(C,), RT(Cp) and RT(C,) can be determined as follows.
(i). With configuration C,, whose strategy vector is [1,0, 0, 0], we find
SPL(C,) = {(sz N3, Np), (N3, Ny, N3), (N3, Na, N3), (Ny, N, Nl)}'

Using Eq. (2.19), we can obtain m,,_;;(Cy) as follows: my4-1,4(Ce)=2, My12,1(Ca)=2,

My5,1(Co)=1, My325(Ce)=1, My 35(Ce)=2, My2.32(Ce)=1, My 34(Ca)=1, M3434(Ce)=2,
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Figure 2.8. A network for Example 2.3.
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and m,,_j(Cq)=0 elsewhere.

Thei, from Eq. (7) we get

Rt(L14; Co) = %

Rt(Lu;Cu)=% 1,1,1 1.1
RilLas; Ca)=T12-$' RT(Cy) = (2—2 :g 44 )—1_10.
Ri(Lz; Co) = ',1;

Rt(L34; Co) =%

(ii). With the configuration Cy whose strategy vector is [1, 1, 0, 0], we get

SPL(Cp) = {(sz N3, N3), (N3, Ny, N;)} .
From Eq. (2.19), we can obtain m,,.;;(Cp) as follows: my;_21(Cp)=2, my,12,(Cp)=1,
my 3.53(Cp)=1, M32.35(Cp)=2, My 2.32(Cp)=1, M 4.3,4(Cp)=1, and m,,_;§(Cp)=0 elsewhere.

Then, by Eq(7), we get Rifloi Cp) = 5, Rillysi Cp) = 5 Rl Cp) = +,

1 1
Ri(Ly; Cp) = < and RT(Cp) = .

(iii). With configuration C,, whose strategy vector is [1, 1, 0, 1], following the same pro-

cedure, we obtain SPL(C)) = {(Nz, Na, Nz)}_ and then RT(C)) = _2!6'

(c). Supp our design objective is to minimize the ion g(Cy) = RC(Cy) + ART(Cy),

where A is the weighting factor between the network adaptability and operational overhead in

handling routing messages. Note that F(C) = in this case. If we choose A to be 120,

1
8(Cy)
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then we get

8(C =69 + 220 = 189,
gCp =9+ ’—1259 =17,
g(Cy =111+ % =171
When the above objecti ion is used, the ion with a strategy vector [1, 1,

0, 0] is better than those with strategy vectors [1, 0, 0, 0] and [1, 1, 0, 1]. Therefore, from

this p we can ine the optimal guration of this network,

2.2.3. Remarks

Using the procedure discussed thus far, one can determine the optimal configuration
from a given network topology and its link delays. The minimal order routing strategy for
each node can be used to indicate how to construct a routing routing message for the node in
order to avoid looping. Although the analytical results we developed are for the case of single
link failure, it can be verified that our approach of using the high order routing strategies is
applicable to the case of multiple link/node failures to speed up the network recovery process.
It is worth mentioning that the order of loop-free routing strategy for each node is determined
from the number of links on a certain loop around that node, and may vary if link delays in
the vicinity of the node change drastically within a short time period. A sudden, drastic
change in link delays may force some nodes to alter their optimal paths. In such a case, new
minimal order routing strategies for these nodes must be derived. This usually introduces

significant overheads, thus making it practically unacceptable.

*This choice is arbitrary and does not affect our method but yields intereating solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

However, in light of the derivation of Theorem 2.4, it can be verified that a higher-order
loop is less likely to occur, since the delay of the higher-order loop is unlikely to be less than
that of a second optimal path, Moreover, as we formulated in [78] and illustrated in Tables
2.1, 2.2 and 2.3, recovery from a link/node failure is sped up significantly when the order of
routing strategy is increased; this is true even if the order of routing strategy is increased not
50 high as that derived from Corollary 2.4.1. Considering the above observations, one can
determine the minimal order of routing strategy off-line, incorporate it into each node’s rout-

ing strategy, and ignore small on-line changes in link delays. This will remove the necessity

of on-line recalculation of minimal order routing ies while ing for ptably fast

recovery from node/link failures.
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CHAPTER 3
ROUTING IN HEXAGONAL MESH MULTICOMPUTERS

Multicomputer interconnection networks are often required to connect thousands of

h i y pairs [41,44], each of which is called a process-

) P P

ing node (PN). Instead of using a shared memory, all ization and
between PNs for program execution is often done via message passing. Design and use of

multicomputer interconnection networks have recently drawn considerable attention due to the

availability of inexpensive, p ful mi and memory chips [1,26,84,92,94].

P

The homogeneity of PNs and the interconnection network is very important because it allows

for cost/performance benefits from the inexpensi plication of icomp p

[63,82). Each PN in the multicomputer is preferred to have fixed connectivity so that stan-
dard VLSI chips can be used. Also, the interconnection network needs to contain a reasonably
high degree of redundancy so that alternative routes can be made available to detour faulty
nodes/links. More importantly, the interconnection network must facilitate efficient routing

and broadcasting so as to achieve high performance in job executions.

In this chapter, h 1 meshes (or H: are p asa

puter i that p all the ing salient features. As mentioned before, a

large number of data manipulation applications requires the PNs on the hexagonal periphery to

be wrapped around to achieve regularity and homogeneity such that identical and
protocols can be applied uniformly over the network. Clearly, the way of wrapping deter-

mines the topological structure of an H-mesh. For example, Martin proposed a general

54
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method for forming a *‘boundary-less” topology for a large, dense, and regular arrangement
of processor and memory modules on a two-dimensional surface, called a processing surface
[57). He showed specifically how to form such a topology on a square mesh and implied,
without any elaboration, that a similar approach could be applied to different processing sur-

faces. Stevens illustrated an i ing way of wrapping the H-: hes of size less than or

equal to three, where the size of an H-mesh is defined as the number of nodes on each peri-
pheral edge of the H-mesh [82]. However, while the homogeneity of the H-mesh is not
explored, his method for addressing, message routing and broadcasting in H-meshes is very
complex and inefficient.

Consequently, in this chapter we propose a systematic method for wrapping H-meshes of
arbitrary size as well as a new addressing scheme for the H-meshes. Efficient routing and
broadcasting algorithms under the new addressing scheme will also be developed. As we

shall see, the proposed addressing scheme not only achieves the homogeneity of PNs but also

facilitates routing and dcasting in the H hes signi ly.

This chapter is organized as follows. In Section 3.1.1, a systematic way to wrap the H-

mesh, called the continuous type (C-type) pping, is p d. Topological properties of
H-meshes are explored in Section 3.1.2. In light of these properties, an addressing scheme for
a C-type wrapped H-mesh is proposed in Section 3.2. With that addressing scheme, efficient
routing and broadcasting algorithms are then developed. In Section 3.3, we compare the C-
type wrapped H-meshes with some other existing multicomputer structures, such as hyper-
cubes, trees, and square meshes. The results developed in the chapter have also been reported

in [14].
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3.1. Topology of C-Wrapped Hexagonal Meshes
In this section, a systematic method to wrap the H-mesh, is presented in Section 3.1.1 as
a means of achieving the regularity and the homogeneity of PNs and several topological pro-

perties of H-meshes are derived in Section 3.1.2.

3.1.1. Systematic wrapping of hexagonal meshes

A graph is said to be regular if all the nodes in the graph have the same degree, and

homogeneous if all the nodes in that graph are topologically identi Clearly, h

implies regularity, but the converse does not always hold. For example, the graph in Figure
3.1 is regular, but not homogeneous since node x and node y are not topologically identical.
The degree of all nodes in an H-mesh without wrapping, except those on its periphery, is 6.
Thus, such an H-mesh is neither homogeneous nor regular. Figure 3.2 illustrates an
unwrapped H-mesh of size 3.

Consider the central node of the H-mesh in Figure 3.3. The node has six oriented direc-
tions, each of which leads to one of its six nearest neighbors. Without loss of generality, any
of the six directions can be defined as the x direction, the direction 60 degrees clockwise to
the x direction as the y direction, and then the direction 60 degrees clockwise to the y direc-
tion as the z direction. Once the x, y and z directions are defined, an H-mesh of size n can be
partitioned into 2n—1 rows with respect to any of these three directions; there are three
different ways of partitioning the rows of an H-mesh. Figure 3.3 shows the rows in an H-
mesh of size 3 which are partitioned with respect to the x, y, and z directions, respectively.
To facilitate our presentation, when an H-mesh of size n is partitioned into 2n—1 rows with
respect to any of the three directions and the H-mesh is rotated in such a way that the

corresponding direction from the central node points to the right, the top row is referred to as
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Figure 3.1. A regular non-homogeneous graph.
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Figure 3.2. An H-mesh of size 3 without
wrapping.
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Row 2

Yy
Row 3y

Figure 3.3. Partitioned rows of an Hgin
x, y and z directions.
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row 0 in that direction, the second to the top row is referred to as row 1, and so on. Also,
row n—1 is called the central row and rows 0 to n—2 and rows n to 2n-2 will sometimes be
referred to as the upper and lower parts of an H-mesh of size n, respectively. (Subscripts for
the row numbers in Figure 3.3 are used to indicate their directions.)

For notational simplicity, let [b], = b mod a, for all a € I' and b € I, where I is the set
of integers and I' the set of positive integers. To make the H-mesh homogeneous and regu-

lar, the ing method for ing an H-mesh i ly, called the C-type wrapping,

is proposed.

C-type wrapping: Wrap an H-mesh of size n in such a way that for each of the three
ways of partitioning the PNs into rows, the last PN in the row i is
connected to the first PN of row [i+n—1]5,_;.

As will be stated later in Corollary 3.1.1, the PNs in an H-mesh with the C-type wrap-

ping are 1 Furth the C-type pping allows for an easy addressing

scheme and, thus, simplifies the routing and broadcasting in an H-mesh significantly. In what
follows, an H-mesh of size n with the C-type wrapping is denoted by H,, while that without
wrapping is denoted by H,'.

The edges in the rows partitioned with respect to the x (y or z) direction and the associ-
ated wrapping are called the edges in the x (y or z) direction. An illustrative example of par-
titioning edges in an Hj into three different directions is given in Figure 3.4 where the edges
in each direction are drawn separately for clarity. From Figures 3.3 and 3.4, it can be
observed that there is a unique path from one node to another in an H,, along each of the three

directions.
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Edges In the z-direction

(b) Edges In the y-direclion
Figure 3.4. An H,with the C-type wrapping.
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3.1.2. Topological properties of hexagonal meshes
The following two lemmas are direct results of the structure of an H-mesh.
Lemma 3.1: The number of nodes in an H, is p = 3n’-3n+1.

Proof: Since there are always n+i nodes in row i as well as in row 2n—i~2 for 0 Si <

n-2
n—2, and 2n—1 nodes in row n~1, the desired result follows from Y, 2(n+i) + 2n-1 = 2n(n-1)

i=0
+ (-1)(n-2) + 20-1 = 3n>-3n+1. QED.

Lemma 3.2: The sum of the number of nodes in row i and that of row i+n is 3n—2 for 0
<isn-2.

The proof of Lemma 3.2 is trivial and, thus, omitted.

To exploit the topological properties of an H,, each node is labeled with a 3-tuple as fol-
lows. Start from the central node of the H, and label that node with (0, 0, 0), where the first
coordinate of a node is referred to as its x labeling and the second and third coordinates are
referred to as its y and z labelings, respectively. Then, move to the next node along the x
direction, assign that node the x labeling one more than that of its preceding node, and so on.
The y and z labelings for each node are determined by moving along the y and z directions
respectively instead of the x direction. An example for the 3-tuple labeling of an Hj is given
in Figure 3.5, where the edges are not drawn for clarity.

Theorem 3.1: Let (x,, ¥y, z;) and (X, Y2, Z7) be respectively the labelings of nodes n,

and n, in an H, and p = 3n% - 3n + 1. Then,
(). [xzxq], = [Bo*~60+3)(y2-y ],

(i), [xg=x], = [(B0P~6n+2)(z2))]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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_Figure 8.5. An Hgwith 3-tuple labeling.
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Proof: For any pair of adjacent nodes n, and n, in the y-direction respectively with the
labelings (x,, ¥, z,) and (x,, [y+1], z,), we want to claim [xy%u)p = 3n%-6n+3. We shall
prove this claim first and then (i) follows immediately from the claim.

Consider a path P* from n, to n, following the +x direction only. (As can be seen in
Figure 3.4, such a path is unique.) Suppose n, is in row r, according to the row partition
with respect to the x direction. Recall that the C-type wrapping requires the end of a row to
be connected to the beginning of a row that is n-1 rows away from it. Since
[(n-1)(20-3)]24-1=1, P* must run through nodes in 2n~2 different rows to get from n, to n,

-- which are adj in the y direction -- including the rows that contain n, and n,. In other

words, the path P* must visit all but:

(1). those nodes ahead of n, in row r,,

(2). those nodes behind n, in row [r,+1]z,-;, and

(3). those nodes in row [r,+n]y,-; (the only row that P" does not travel).
Note that if n, is in the upper part or central row of an H,, the total number of nodes in (1)
and (2) will be one less than the number of nodes in row r,. On the other hand, if n, is in the
lower part of the H,, the total number of nodes in (1) and (2) will be one less than the
number of nodes in row [r;+1]3, ;. By Lemma 3.2, we conclude that for both cases, the total
number of nodes in (1), (2) and (3) is 3n-3, i.e., one less than 3n-2. Thus, the number of
nodes on P* is (3n*-3n+1) — (3n-3) = 3n-6n+4. Since both n, and n, are contained in P*,
the claim is thus proved and (i) follows.

For (ii), we claim that for any pair of adjacent nodes n, and n, in the z-direction labeled
respectively with (x,, Yu 2) and (x,, Yy, [2+1]), [x%p = 3n’-6n+2. This claim can be
proved by following the same logic as the above and, thus, (i) can be proved similarly.

Q.ED.
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Note that (3n’~3n+1) — (30%-6n42) = 3n—1, (3n>-3n+1) — (3n’-6n+3) = 3n-2. In light
of Theorem 3.1, an H, can be redrawn as a power cycle with p=3n2—3n+1 nodes, in which
node i is not only adjacent to nodes [i~1], and [i+1],, but also adjacent to nodes [i+3n-1};,
[i+3n-2],, [i+3n2—6n+2]P and [i+3n1—6n+3]p. For example, an H; can be redrawn as the one
in Figure 3.6. This fact leads to the following corollary.

Corollary 3.1.1: All the processing nodes in an H, are homogeneous.

Note that, although extensive results have been obtained for many classes of networks
[90,87,36,7], the connection pattern in an H-mesh does not belong to any of previously
found patterns.

Lemma 3.3:

(i). The number of links in an H,’ is 9n’~15n+6.

(ii). The number of links in an H,, is 9n°~9n+3.

Proof: We prove (ii) first. From the fact that the summation of all node degrees in a
graph is twice the number of edges in that graph, we have 6(3n°-3n+1)/2 = 9n*-9n+3.

Since there are 6(n-1) nodes in the periphery of an H,', six of which have degree 3 and
6n-12 of which have degree 4, we have the summation of all node degrees in an H,":
6(3n%-3n+1-6n+6) + 6*3 + (60-12)4 = 18n>-30n+12, making the number of links in an H,’

equal to 9n’~15n+6. QED.

Lemma 3.4:
(i). The diameter in an H,, is n—-1.

(ii). The average distance in an H,, is (2n—1)/3.
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Proof: (i) follows from the fact that, without loss of generality, every node in a wrapped
H-mesh can view itself as the central node of the mesh. To prove (ii), let td(H,) denote the

total summation of distances from any node to all the other nodes in an H;,. Then,

-l
d(H,) = 36d° = 63“1%@ = n(@-1)20-1).
d=1
The average distance is thus td(H,)/(p-1) = (2n-1)/3. QED.

Moreover, Lemma 3.1 and (i) of Lemma 3.4 lead to the following lemma.
Lemma 3.5: The diameter of an H-mesh with p nodes grows as O(pm).

In addition, it is worth mentioning that H-meshes possess a high degree of fault-
tolerance measured in terms of connectivity. Recall that a graph is said to be m-connected
(m-edge connected) if m is the minimal number of nodes (edges) whose removal will discon-
nect the graph [92]. It can be easily verified that an H-mesh of any size is 6-connected and

also 6-edge connected. This means that an H-mesh can tolerate up to five node/link failures at

a time, which is better than most of the other existing networks [93,37].

3.2. Routing and Br ing in H 1 Meshes

In this section, a simple addressing scheme for H-meshes is developed on the basis of

the C-type ppi Under this ing scheme, shortest paths from one node to any
other node can be computed by the source node with an extremely simple algorithm of O(1).
A point-to-point broadcasting algorithm is also developed, which is proved to be optimal in

the number of required communication steps.
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3.2.1. Addressing scheme

Using Theorem 3.1, the y and z labelings of any node can be obtained from its x label-
ing, meaning that ouly one (instead of three) labeling will suffice to uniquely identify any
node in an H-mesh. An example of this addressing for an H, is given in Figure 3.7a where
all edges are omitted for clarity. This addressing scheme is much simpler than the one in
[82], since only one number, instead of two, is needed to identify each node in an H,. Furth-
ermore, the routing strategy under this addressing scheme will be shown to be far more

efficient than the one in [82], especially when messages must be routed via wrapped links.

3.2.2. Routing

Under the above n;idressmg scheme, a shortest path between any two nodes can be
easily determined by the difference of their addresses.

Let m,, m,, and m, be respectively the numbers of moves or hops from the source node
to the destination node along the x, y and‘ z directions on a shortest path. Negative values
mean the moves are in opposite directions. Note that there could be several equally short paths
from a node to another, and these shortest paths are completely specified by the values of m,,
my and m,. More precisely, it can be verified that for i = X, y, z, the number of paths with m;

(m] +[m,] +|m,!

moves in th is . Let d d b tively the
e p i Tl T gl et s an e respectively the

addresses of the source and destination nodes, and k = [d~s], where p = 3n?-3n+1. Then, the
m,, my, and m, for shortest paths from s to d can be determined by the algorithm given
below.

Algorithm A,

begin
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Theorem 3.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



70

m, i=0; my:=0; m,:=0;
if (k < n) then begin m, :=k; stop end;
if (k > 3n%4n+1) then begin m, := 3n>-3n+1-k; stop end;
r := (k-n) div (3n-2);
t := (k-n) mod (3n-2);
if (t < n4r-1)
then /* d is in the lower part of the H-mesh centered at 5. */
ifttsrn
then m, := t-r; m, :=n-r-1;
else if (t 2 n~1) then m, := t-n+1; my := n-r-1;
else my = -1, my = n—-t-1;

endif;
endif;
else /* d is in the upper part of the H-mesh centered at 5. */
if (t < 2n-2)
then m, := t+2-2n; my = —r-
else if (t 2 2n+r—1) then m,
else m, :

endif;
endif;
endif;

stop
end;

The correctness of A is proved by the theorem below.

Theorem 3.2: The values of m,, my and m, determined by A completely specify all the
shortest paths from s to d in an H,,.

Proof: By Theorem 3.1, without loss of generality the source node can view itself as the
central node of the H,. Let H,, be the H-mesh centered at s. For the case when d is in the
central row (i.e., row n—1) of Hy,, m, is determined by the statements in lines 2 and 3 of A,,
and my=m,=0.

Consider the case when d is in a row other than row n-1 of H,,. Form a group of

nodes with the nodes of rows n—-i—2 and 2n—i—2: Call this group i. Then, in Figure 3.3 rows 1
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and 4 form group 0, and rows 0 and 3 form group 1. A group consists of two rows, onc
from the upper part and the other from the lower part of H,,). We know from Lemma 3.2
that each group contains 3n—2 nodes. Then, by the statements in lines 4 and 5 of A, r is
determined as the identity of the group which contains d in H,,, and t is the position of d in
group r. We can determine from t which row of Hy, contains d. Denote the first node of that
row by ng. A shortest path from s to n¢ and that from ng to d can thus be determined. Using
the idea of the composition of vectors, we get the desired equations for m,, m,, and m,.

QE.D.

An illustrative example for routing in an Hy is given in Figure 3.7 where edges are omit-
ted for clarity. Suppose node 11 sends a message to node 5, ie., n=4, s=11, d=5 and k =
[5-11]3 = 31. The original H, is given in Figure 3.7a and Hy,, is in Figure 3.7b, where
node 11 is placed at the center of the Hy. (As mentioned before, this can be done without
loss of generality.) From A,, we get r=2, t=7 and then m,=0, my=-2 and m,=-1. Note that the
route from node 11 to node 5 is isomorphic to that from node O to node 31. This is not a

but rather, a of the t ity of Hy. All paths from one node to

q

another in an H,, are completely determined by the difference in their addresses.
Moreover, the complexity of A, is O(1), which is independent of the size of H-mesh,
and the source node needs to execute the algorithm. Once m,, m, and m, are determined, they

form a routing record to be sent along with a regular message. The routing in an H, is then

1 by the ing six routing f
Ry 1) = [i + 1],
Ry () = [i= 1],

Ry () = [i + 3n” - 6n + 3],
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Rp 1)) = [i + 3n - 2],
Ry, () = [i + 30 - 6n + 2],
Ry i@ = [i + 30 — 1],

where, as before, p=3n? — 3n+1 is the total number of nodes in an H,.

The routing record is updated by the above six functions at each intermediate node on
the way to the destination node so that the current routing record may contain the correct
information for the remaining part of the path. The above functions are applied repeatedly

until m,=my=m,=0, meaning that the message has reached the destination node.

3.2.3. Point-to-point broadcasting

Applications in various iis requiie an efficient method for broadcasting messages to

PP

every node in an H-mesh. Due to interconnection costs, it is very common to use point-to-

dcasti In this sut ion, we present a broadcasting algo-

point ications for
rithm using point-to-point communications®, Further, we shall prove that this algorithm is
optimal in the number of required communication steps. We then apply this algorithm in

dure for ing the sum of numbers distributed across the

r' -] a ' 1 4
nodes of an H-mesh.

Without loss of generality, we can assume the center node to be the source node of the
broadcast. The set of nodes which have the same distance from the source node is called a
ring. The main idea of our algorithm is to broadcast a message, ring by ring, toward the peri-
phery of an H-mesh. The algorithm consists of two phases. In the first phase which takes 3

steps, the message is transmitted to the 6 nearest neighbors of the origin. As shown in Figure

Tiis broadcasting algoritm was proposed by D, D. Kandlur, in the University of Michigan, Ann Arbor.
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3.8, node a sends the message along the +x direction to node b in step 1, nodes a and b send

messages along the z direction to nodes c and d respectively in step 2, and then, nodes a, b

and ¢ send along the —y direction to nodes e, f and g respectively in step 3. At the

end of this phase, nodes b, c, d, e, f and g are assigned the directions x, z, y, -y, -z, and =x

ly as the prop
Note that there are six comner nodes in each ring. In the second phase which takes n-1
steps, the six corner nodes of each ring send the message to two neighboring nodes respec-

tively while all the other nodes propagate the message to the next node along the direction in

which the was previously sent. An il i iple for the broadcasting in in Fig-

ure 3.9. A formal description of this procedure is given in algorithm A, below, where the five

arguments in the send and receive ds denote respectively the to be b

the direction from which the is ived, the direction to propagate the a
flag indicating whether it is a corner node or not, and the count of communication steps.
Also, the function rotate is used for each corner node to determine the direction of the second
transmission, in which the direction is rotated clockwise. For example, y= rotate(x, +60°), z=
rotate(y, +60°) and —x= rotate(z, +60°).

Algorithm A,
Procedure for the source node.
begin

send(message, x, x, TRUE, 1);

send(message, z, z, TRUE, 2);
send(message, -y, -y, TRUE, 3);

end
Procedure for all nodes except the source pode
begin
from-dimn, propagate-dirn, corner, count);

case count of
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Figure 3.8. First phase of the broadcasting
algorithm.
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Figure 3.9. Broadcasting inan H, .
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1: begin
send(message, z, y, TRUE, 2);
send(message, -y, ~z, TRUE, 3);

count:=3;
end
2:  begin
if (fi dis ) then send( -y, —=x, TRUE, 3);
count:=3;
end
n+2: stop /* test for termination*/
else: /* do nothing*/
endcase

/* steps of the second phase */
if (corner) and (count < n+1) then

begin
direction-2 := rotate (propagate-dim, +60°);
d propagate-dim, prop dirn, TRUE, count+1);
end( irection-2, direction-2, FALSE, count+2);
end
else send( prop dirn, prop dirn, FALSE, count+1);
end

Note that the second phase is required only when n>2. Thus, the total number of com-
munication steps is n+2 when 023, and 3 when n=2. Furthermore, we prove by the following
theorem that A, is an optimal broadcasting algorithm in the number of required communica-
tion steps.

Theorem 3.3: Any d ithm for the h I mesh H,, n23, which uses

point-to-point communication requires at least n+2 communication steps.

Proof: We first prove the result for H-meshes of size 3 and 4. An Hj has 19 nodes and
so, even if recursive doubling were used for each step of broadcasting, at least 5 steps are
required to cover all the nodes. A similar argument applies for an Hy which has 37 nodes, ie.,

at least 6 steps are needed for the Hy. For larger values of n, we show that it is not possible
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to cover all nodes in an H,, in n+1 steps.

To show this, we examine all possible patterns of nodes which can be reached using two
communication steps. In two steps, only four nodes can be reached and when the duplicate
patterns arising due to various symmetries are removed, we get only the six unique patterns
shown in Figure 3.10. These patterns can each be mapped onto the nodes on the periphery of
an H,, and in each case we can find at least five nodes which are n-1 links away from each
of the four mapped nodes. Note that, at most four nodes of these five can be reached in n-1
steps from the original four nodes since only point-to-point communication is permitted.
Hence, there is at least one node which cannot be reached in n+1 steps. Therefore, at least
n+2 steps are required. Figure 3.11 shows the mappings of the six possible patterns into an

Hs, but it is clear from the figure that a similar mapping would apply for all larger meshes,

and the theorem thus follows. Q.E.D.

To see an application of the broadcasting algorithm, consider the problem of computing
the sum of numbers distributed across the nodes in the H-meshes. Note that this problem is
important, since it occurs frequently in many applications such as the computation of an inner
product of two vectors. The global sum can be obtained by first computing the inner product
within each node for the segments of the vectors in the node and then summing these partial
sums up. Typically, for vector operations, the inner product is required by all nodes. In light
of the broadcasting algorithm, the procedure of obtaining the global sum can be accomplished

lly by 2n+1 ication steps as described below.

The procedure can be divided into two phases. In the first phase, the partial sums are
transmitted toward a center node, while each node along the path computes the sum of all
incoming partial sums and its own number, and then transmits the resulting partial sum

inwards. An illustrative example of the first phase in an H, is shown in Figure 3.12. It is
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. b c a b c
(1) (2)
[ d

(3) 4)

Figure 3.10. Six possible patterns after two
communication steps.
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Figure 3.11. Embedding in an Hzof the six
patterns in Figure 3.10.
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easy to see that the first phase requires n—1 communication steps in an H,. In the second
phase, the center node, after adding the six incoming partial sums with its own number, uses
the point-to-point broadcasting to distribute the sum to all nodes. Since we need n+2 steps in

q

the second phase, the total number of requi ication steps for ining the global

sum is 2n+1.

3.3. Comparative Remarks on H-Meshes

It is ial that ges in a large multicomp network be routed by each inter-
mediate PN without using information about the entire network, since large storage and time

overheads are required for maintaining such global information. As mentioned earlier, the C-

type wrapping of an H-mesh not only provides regularity and ity to the il

tion network but also allows for a very simple addressing scheme in the H-mesh, completely
specifying all shortest paths from one node to any other node only with the addresses of the
source-destination ‘pair. Shortest paths can then be computed by the source node with an
elegant algorithm of the complexity O(1). This algorithm is better than the one commonly

used for hypercut icomp of plexity O(log, p) that relies on an address com-

parison procedure [42], and those using routing tables of complexity O(p), where p is the

number of nodes in the system. In light of ity, a sy i ing algorithm,

which is proved to be optimal in the number of ication steps, is also

Several important features of various architectures are compared with those of H-meshes
and tabulated in Table 3.1, where connectivity is defined as the minimal number of nodes
whose removal will disconnect the network and the O-notation is used to denote the complex-
ity as a function of the network size. Although complete graphs and stars have constant

diameters [38], they are not attractive because of the excessive number of connections
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structures y t
oumber number degree density
Complete graphes [ pp-b2| 1 p-1 [ O(1/p)
Hypercubes, Qu || p=2" | w™' |OGump)| logp log:p o
root: 2
klevel CBTs " || pe2'-1 | p-1 |OGog; p leaves: ; 1 O(log; p)
s v Je-r] oz R v e
Cycles P P o) 2 2 O(p)
Cordal rings P p2 | 0" 3 3 op'?
Square - v 4 4 17
| ot ¥xv |l p=v » o0 O(PI )
H-mesbes, H, [lp=30’-30+1| 3p | 00" 6 6 op'®
t ge density is n ges per Link per time interval under the assumption

(hat each node sends & message to every other node within coe time interval.

1t CBT stands for a compiete binary tree.

Table 3.1. Comparisons among various multicomputer architectures.
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required for complete graphs and the poor reliability of stars. On the other hand, the diameter
of a hypercube is allowed to grow as O(log, p) at the cost of increasing the node degree,
which could cause a serious wiring problem with the expansion of the network (ie., fan-in

and fan-out problems) and may make it difficult to implement with standard VLSI chips. This

is viewed as a major of the hypercub [44].

Consider the cases when both the hyp and g mesh have

approximately the same number of nodes. A 7-dimensional hypercube, denoted by Q;, has
128 nodes, one more than that of an H;. However, the node degree of a Q; is 7 and that of an
H, is 6, while the diameter of an Hy is 6, one less than that of a Q;; that is, an Hy can be
favorably compared with a Q;. It is interesting, however, to see that the diameter of a Qo (a
10-dimensional hypercube) with 1024 nodes is 10, whereas that of an H,o with 1027 nodes is
18. This results from the fact that the node degree of hypercubes grows as O(log, p) while
that of H-meshes remains constant (6), implying the existence of a tradeoff between the node

degree and the icati i M , H-meshes have a finer scalability than

hypercubes, i.e., 0> for H-meshes and O(2") for hypercubes.

The complete binary tree offers the ad ges of a node degree and
an O(log;p) diameter. However, a tree is vulnerable to single link/node failures and suffers
from the serious congestion of messages around its root [43]. These problems can be allevi-

ated hat by adding additional links b leaf nodes. But the addition of links makes

the optimal (shortest path) routing of messages very difficult and complicated [33). Note that,
although some other architectures such as chordal rings and square meshes [25,2] also have a
diameter of O(p"z) while their node degrees are less than that of an H,, their lower connec-

tivities will naturally lower the degree of fault This is pecially when

require the multi system to have a reasonably high degree of fault-

P
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tolerance.

In general, an architecture strong in one aspect may be weak in the others; that is, no
single architecture provides every desired feature. There are several types of architectures
known to be suitable for interconnecting a large number of PNs, and H-meshes are one of

them with many desirable features. Therefore, in view of their homogeneity, routing and

dcasting, fault and i bility, the H. hes with the C-type wrapping are

an i id: for i ing a large number of PNs.
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CHAPTER 4
ADAPTIVE FAULT-TOLERANT ROUTING
IN HYPERCUBE MULTICOMPUTERS

In recent years, hypercube multicomputers have been drawing considerable attention due
mainly to their structural regularity for easy construction and high potential for the parallel
execution of various algorithms [21,91]. Numerous research efforts related to hypercube

systems, p ing 1 etc., have been undertaken

[4,5,11,12,27), and several research (e.g., by Caltech [76] ) and commercial (by Intel,
NCUBE, Floating Point Systems, Ametek and Thinking Machine, to name a few) hypercube

multicomputers have been built,

Efficient routing of messages is a key to the performance of any multiprocessor or multi-

p system. Especially, the i ing use of ip icomp systems for
reliability-critical applications has made it ial to design fault-tolerant routing
for such systems. By fault-tolerant routing, we mean the ful routing of
between any pair of non-faulty nodes in the p of faulty p (links and/or

nodes). When hypercube multicomputers are to be used for reliable applications, they must be

made capable of routing even in the p of faulty p [17,34,53).

Recall that a d hyp with faulty p is called an injured hyper-
cube, whereas a hypercube without faulty components is called a regular hypercube. Some

results on improving the routing efficiency in regular hypercubes are reported in [42,85).

85
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Routing in an incomplete hypercube is also shown to be straightforward [47]. In a regular

hypercube, each intermediate node can determine the next hop of a message by examining the

’s ination address and choosing, from all its neighboring nodes, the one which is
closest to the destination. Clearly, this can be accomplished by aligning the address of the
source node with that of the destination node from right to left bit-by-bit [74]. However, this
scheme becomes invalid in an injured hypercube, since the message may be routed to a faulty

component. In order to enable non-faulty nodes in an injured hypercube to communicate with

one another, each node has to be equipped with enough i ion 50 as to route messages
around the faulty components.

Using additional hardware called a hyperswitch, a best-first search algorithm for routing

in a hypercube is ped in [17]. Several adaptive packet routing algorithms are
also presented in [48,89], which, however, are not meant to take full advantage of the special
structure of a hypercube. In addition, various algorithms are proposed in [3,52] to broadcast

the information about faulty components to all the other nodes in a hypercube so that the

faulty can be by d during routing. Clearly, if each node is equipped
p P quipp!

with the information on all faulty components, then it can always determine a shortest fault-

free path to route the message as long as the source and ination nodes are
However, it is usually too costly (in space and time) to equip every node with the entire net-
work information especially when the size of the hypercube is large. Hence, it is important to
develop routing schemes which require each node to keep only the information essential for
making correct routing decisions.

For the reasons above, we shall first develop a routing scheme based on depth-first
search, in which each node is required to know only the condition (healthy or faulty) of its

own links. The network information is added to the message as the message travels toward
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the destination. This scheme is shown to be capable of routing messages between any pair of
non-faulty nodes. More importantly, this scheme will be proved to be very powerful in that
the probability of routing messages via shortest paths is very high.

Due to the absence of network information at each hypercube node, the paths chosen by

the above scheme may not be the shortest. This, , is very undesi p

when a certain pair of nodes communicate with each other frequently. Clearly, the efficiency
of routing (measured in terms of the length of a path chosen) can be improved if every non-
faulty node is equipped with more network information than that on its own links only, such

can be fi and the faulty com-

that the shortest paii of each to its

ponents can be bypassed. In view of this fact, we shall present a routing algorithm based on

the propagation of the p failure i ion. However, as will be seen, this algorithm
is applicable only when the number of faulty components is less than n, thus limiting its appli-
cability. In light of the idea presented in Chapter 2, a routing algorithm using the network

delay table will be developed for an injured hypercube of an arbitrary number of faulty com-

ponents. Observe that the abund: i in a hypercube usually make routing deci-
sions in a node unaffected by the failure of a component located far away from the node.
This implies that the network delay table of each node does not have to keep information on
those nodes located far away, and can still lead to the shortest path routing.

This chapter is organized as follows. An adaptive routing scheme using depth-first search

will be presented in Section 4.1. Performance of this routing scheme will be analyzed and the

of this h will be explored. In Section 4.2, routing algorithms using global

PP

information to achieve the shortest path routing will be developed. We shall develop two

routing schemes, based on the prop ion of P failure infc ion and the network

delay tables respectively. Part of the results in Section 4.1 have also been reported in [15].
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4.1. Routing with Information on Local Link Failures

The necessary notation and definitions are introduced first in Section 4.1.1. An adaptive
routing scheme based on depth-first search is then presented in Section 4.1.2. Performance
analysis and the extension of this routing scheme will be given in Sections 4.1.3 and 4.1.4,

respectively.

4.1.1. Preliminaries

An n-dimensional hypercube (or n-cube or Q,,) is formally defined as follows.

Definition 4.1: An n-cube, Q,, is defined recursively as follows.

(i) Qo is a trivial graph with one node, and

(i) Qn = K2 X Qn-1s
where K is the complete graph with two nodes, Qo is a trivial graph with one node and X is
the product operation of two graphs [38].

Examples for Q;, Q, and Q; can be found in Figure 4.1. It follows from Definition 4.1
that a Q, contains 2" nodes and n2™! links since the degree of each node in a Q, is n. Let ¥,
be the ternary symbol set {0, 1, *}, where * is a don’t care symbol. Every subcube in a Q,
can then be uniquely represented by a string of symbols in Y, . Such a string of ternary sym-

bols is called the address of the corresponding subcube. For ple, the address of the sub-

cube Q, formed by nodes 0010, 0011, 0110 and 0111 in a Qq is 0*1*. Figure 4.2 shows a Q,

with address 0*1* in a Q4. Note that the number of *’s in the address of a subcube is the

same as the di ion of that subcube. The ri di of the address of a subcube
will be referred to as dimension 1, and the second righ di as di ion 2, and so
on. For each hyp node, the ication link in di jon i is called the i-th link of

the node. For notational simplicity, each link is represented by a binary string with a
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Figure 4.1. Illustrative examples of hypercubes.
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symbol in the di i For le, the link b nodes 0000 and 0010

P ] P

is represented by 00-0. Let r* and 1~ denote the two end nodes of link r, where r* (")
represents the node whose address is obtained by changing the ‘-’ symbol in the link’s address

to 0 (1).

two hypercube nodes with addresses

Definition 4.2: The Hamming di

u=uu, g upand w = wuw,_y * * Wy in a Q, is defined as
n 1 ifu;# w,
Hu, w) = Eh(“i' w;), where h(u,w;) = 0 ifu=w,
For the nature of distributed routing ies to be p d, it is y to intro-

duce the definition of the exclusive operation between two binary strings, and the concept of
relative address between two hypercube nodes.

Definition 4.3: The exclusive operation of two binary strings q = qyg,-1 ‘" q and
m =m,m,_, - - - my, denoted by q® m.= .8,y 1y, is defined as ;=0 if g;=m; and

r=1ifg=mfor1<sisn

Obviously, that the ive operation is ive, i.e.,, g® m =m® q. We use

k
@, to denote a seqy of k i i The relative address of a node u with

P

respect to another node w, denoted by u,,, can then be determined by u,, = u ® w. The rela-
tive address of a subcube with respect to a node u can be determined by the relative addresses
of all the nodes it contains. Let e* = €8,y '+ ¢ where e, =1 and ¢;=0 V¥ j# k. For
example, 1001 ® €% = 1011, 0011,399; = 1010, and 0%1%;,09; = 1*1*, Also, the spanning sub-
cube of two hypercube nodes is defined as follows.

Definition 4.4: The spanning subcube of two nodes w=uuu,;---u and

W=W,W, Wy in a Q, denoted by SQM,W)=S5,5, 1 -5y, is defined as s;=u; if
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y=w,and s;=*ify=wfor1<i<n
For example, when u = 0010 and w = 0111, we get H(u,w) = 2 and SQ(u,w) = O*1*, Tt
ig easy to see that SQ(u,w) is the smallest subcube that contains both u and w, and H(u,w) is

the dimension of SQ(u,w).

A path in a hyp is rep! by a seq of nodes in which every two con-

tive nodes are physically adj to each other in the hypercube. The number of links on
a path is called the length of the path. An optimal path is a path whose length is equal to the
Hamming distance between the source and destination nodes. A shortest path is a path of the
minimal length among all fault-free paths from the source to the destination. Clearly, an
optimal path is a shortest path, but a shortest path is not always an optimal path in an injured
hypercube. Also, a link of node u is said to be fowards another node w if the link is in one
of the optimal paths between u and w.

Note that due to the special structure of a hypercube, once the source node of a path is
given, the path can be described by a coordinate sequence that represents the order of the
dimensions in which every two consecutive nodes in a path differ [32]. As shown in Figure

4.3, [0001, 0011, 0010, 1010] is an optimal path from the source node 0001 to the destination

node 1010, and can also be rep dbya di q [2, 1, 4]. To facilitate our
presentation, we use a superindex R to denote the reverse of a coordinate sequence, and the
notation © to mean an append operation. For example, suppose C = [2,1,4] is the coordinate
sequence of a path. Then, CR = [4,1,2) and C® 3 = [2,1,4,3]. We shall assume that the

source and destination nodes are non-faulty.
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1110 1111

0111

0011

1000 1001

1011

Figure 4.3. An optimal path from 0001 to 1010.
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4.1.2. Routing using depth-first search

‘We shall develop and analyze an adaptive routing algorithm based on depth-first search,
which requires every node to know only the condition of its own links. This algorithm will be
shown to successfully route messages between any pair of non-faulty nodes. When the

insufficient ge on faulty causes a to be sent to an intermediate

P

node from which there is no optimal path to the destination node, an alternative path will be

chosen in such a way that the ivity of a hypercube is fully exploited. However, due to
the insufficient amount of information on faulty components, the paths chosen by this algo-
rithm may not always be the shortest.

Before describing the routing algorithm, it is necessary to introduce the following propo-

sition which determines relative addresses of those nodes traversed by a given path.

Proposition 4.1: Let [c), ¢, - - -, ¢,] be the coordinate sequence of a path in a Q,

starting from node u, and wy, = W,W,_; - * * Wy denote the relative address of node w with
k

respect to u. Then, the path specified by [cy, C3, - -, ¢] ends at w if and only if Dl =

W
Proof: Traversal of a message along the i-th dimension is the same as inverting the bit

™

g along a

in the i-th coordinate of the relative address of its destinati Tt
certain dimension an even number of times has the same effect as not traveling along that

dimension at all, and this proposition thus follows. Q.E.D.

Let S(C) denote the set of the relative addresses of those nodes reachable by the coordinate
sequence C = [cy, ¢z, * * *, ¢ from a given node. From Proposition 4.1, we obtain $(C) =
(@,':,ec' 11 <1< k). For example, a path with the coordinate sequence [2,1,4] from 0000

will traverse nodes S(C) = {0010, 0011, 1011). We can now describe algorithm A, as fol-
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i of a the di of the ining path

qt

lows. To indicate the
is sent along with the message. In addition, to execute a depth-first search, we shall try to
avoid traveling a same node more than once, unless a backtracking is forced. In order to do

that those dimensions traveled before will be kept in an order set TD in the sequence they are

traveled, and delivered together with the for the i ion of i diate nodes.
Note that each i iate node can ine the of those nodes traveled before
from TDR, Each message is accompanied with an n-bit vector tag = dyd,y * -+ d; which

keeps track of ‘‘spare dimensions’’ that are used to choose the dimensions to travel so as to

bypass faulty components. All bits in the tag are reset to zero and TD is set to @ when the

source node begins routing of a Theref such a can be rep as (k,
[cy, €3, * * + » ©l, message, TD, tag), where k is the length of the remaining portion of the path
and updated as the message travels towards the inati A reaches its

when k becomes zero.
‘When a node receives a message, it will check the value of k to see if the node is the

destination of the message. If not, the node will try to send the message along one of those

di i ified in the inil i Each node will, of course, attempt

P q

to route messages via shortest paths first. However, if all the links along those dimensions in
the coordinate sequence are either faulty or leading to those nodes traveled before, the node
will use the information kept in the tag to choose a spare dimension to route the message via
an alternative path. More formally, this routing scheme can be described in an algorithmic

form as follows.
Algorithm A,: Depth-first search routing algorithm.

/* For each node receiving (k, [c), ¢y, * * * , ¢;], message, TD, tag). */
if k=0 then /* the destination is reached */
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else begin
for j := 1,k do
if (the cp-th link is not faulty) and (¢ ¢ S(TD®)) then - *
begin
send (k—1,[Cy...,Cj-1:Cj410e--» Ckl» MeSSAZE, TD @c;, tag) along the c,-th link;
stop; /*terminate Algorithm A,*/
end_begin
end_do
/* If the i is not i yet, all di ions in the di q are
blocked because of faulty components.*/
for j:=1,kdo dC‘ := 1 end_do; /* record all blocked dimensions in tag.*/

/* choose a spare dimension */ .
if (i:d=0, ¢'¢ S(TDR), 1<i<n)# @ then h:= min{i : d:=0, ¢l ¢ S(TDR))
else if (i:e' ¢ S(TDR), 1 <i<n) # O then
begin
h:=min{i: e' ¢ S(TD®))
1sisn
tag = 0%
end
else

begin
hi=max (m 1D 7e™ W =0); /% backtracking */
tag = 0%

end

dy=1
send (k+1, [c},C;..., Ck, h], message, TD ©h, tag) along the h-th link;
stop; /*terminate Algorithm A */

end_begin

Note that an intermediate node can determine whether its i-th link is connected to a node
traveled before or not by checking if e belongs to S(TDR). When a backtracking is enforced,
the message must be returned to the node from which this message was originally received.
That is the reason why we have the equality commented by /* backtracking */ above. It is
worth mentioning that instead of keeping the whole path traveled in TD, the search can also

be implemented by using a stack. In that case, the operati quired for is
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simplified whereas additional provisions will be needed to ensure a same node not to be trav-
eled more than once.

Consider the Q, in Figure 4.4, where links 0-01, 1-01 and 100- are faulty. Suppose a
message, fm, is routed from u = 0110 to w = 1001. The original message in u = 0110 is (4,
[1,2,3,4], fm, @, 0000). Following the execution of A, node 0110 sends (3, [2,3,4], fm, [1],
0000) to node 0111 which then sends (2, [3,4], fm, [1,2], 0000) to node 0101. Since the 3-rd
dimensional link of 0101 is faulty, node 0101 will route (1, (3], fm, [1,2,4], 0000) to 1101.
However, since the 3-rd dimensional link of 1101 is faulty, node 1101 will use the 1-st
dimension (tag = 0100 then), and send (2, [3,1], fm, [1,2,4,1], Gi01) to 1100, which will, in
turn, send (1, [1], fm, [1,2,4,1,3], 0101) to 1000. Again, the first link of node 1000 is faulty.
The 2-nd dimension (tag= 0101 then) will be used and (2, [1,2], fm, [1,2,4,1,3,2], 0111) is
routed to 1010. After this, the message will reach the destination 1001 via 1011. The length

of the resulting path is 8.

4.1.3. Performance analysis of routing algorithm A,

From the fact that depth-first search is a search algorithm for general graphs and can
start from any node in the graph, we obtain the following lemma.

Lemma 4.1: Under A, a message will reach its destination node as long as the source

and ination nodes are

Note that the usage of tag, while not affecting the nature of depth-first search, can guide
the choice of a spare dimension in order to bypass faulty components. More specifically, we
have the theorem below, showing that when the number of faulty components is less than n,

the usage of tag can route messages between any two nodes successfully without using TD.
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Theorem 4.1: Algorithm A, can always route messages from node u to node w within
no more than H(u,w) + 2k hops in an injured Q, without using TD if the number of faulty
components, k, is less than n, i.e., k = f+g < n, where f and g are the numbers of faulty links
and faulty nodes, respectively.

Proof: Note that each node will try to use a spare dimension only when faulty com-

ified by the di Those

q

ponents are d in all the di i p

faulty components which block the optimal paths from an i diate node to the

node and force the first usage of a spare dimension are called o-type blocking components.
On the other hand, a faulty component is said to be B-type if it is encountered first after using
a new spare dimension. For the example routing in Figure 4.4, 1-01 is an o-type blocking
component and 100- is a B-type blocking component, whereas the faulty link 0-01 is neither
o-type nor B-type. For the example in Figure 4.5 where u = 0000 and w = 1111, 0-11 and
-011 are a-type blocking components while 111- is a B-type blocking component. Notice that
both the types of blocking components can be either faulty nodes or faulty links. Thus, it is
easy to see that the number of both o-type and B-type blocking components in the route deter-

mined by A, usually increases as the message travels towards its destination.

Let by, be a B-type blocking p which is d first after using a new

spare dimension h. We claim that the blocking component by, does not belong to the set of
those blocking components that had already been encountered before. This claim is proved by
considering two possible cases of by: (i) by is a link of the destination node, and (ii) by is not
a link of the destination node. In the case of (i), by, is the h-th link of the destination node.
Since d, of tag was O before the spare dimension h is used, this faulty link had definitely not

been encountered before. In the case of (ii), since b, is the t ing h

first after using the spare dimension h, by, and the set of previous blocking components must
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be located in the two different Q,_,’s separated by the dimension h. The claim is thus

proved. Since a certain faulty p will not be more than once as long as

the number of component failures is less than n, this theorem thus follows. Q.E.D.

From the proof of Theorem 4.1, it can be secn that the usage of tag will spread out the
spare dimensions chosen and enable the message to avoid running into the faulty components
encountered before. In addition, we have the following theorem.

Theorem 4.2: The nodes and links traveled by A, form a tree.

Proof: Notice that according to A, nodes in TD will not be traveled more than once
unless a backtracking is forced, which will travel a link traveled before. This means that those
links traveled will not form a cycle and this theorem follows. Q.E.D.

Theorem 4.2 leads to the following corollary.

Corollary 4.2.1: The worst case of A, needs H(u,w) + 2(2"-H(u,w)~1) hops to send a
message from u to w.

Proof: When H(u,w)=k, there are at most 2" — k nodes where backtracking may occur
under A,. These nodes will form a search tree with 2" — k nodes and 2" — k ~1 links. Since
every link in the search tree is traveled twice, the message will travel 2(2" — k — 1) hops in
the search tree and k hops in its shortest path. QED.

Recall that o-type blocking components are those faulty components forcing the first
usage of a spare dimension. To facilitate our presentation, the first node which is forced to use
a spare dimension is called an obstructed node. For example, the obstructed nodes in the
examples of Figures 4.4 and 4.5 are 1101 and 0011, respectively. To illustrate the perfor-
mance of depth-first search, the model we consider is an injured hypercube with a certain

number of faulty components. We assume that all possible distributions of faulty components
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are equally likely. Then, we have the following lemma.

Lemma 4.2: Suppose there are f faulty links in a Q,, and a message is routed by A;
from node u to node w, where H(u,w) = k. Let hy be the Hamming distance between the
obstructed node and the destination node. Then, P(h=j) < C('_‘J"/C," if 15j<k, and
P(hy=j) = 0 if j > k, where P(hy=j) is the probability of the case hy =j and L = n2™"' is the
number of links in a Q,,.

Proof: P(hy, > k) = 0, since the inequality hy > k rep an imp case in which

a message is not directed towards its destination before ing the ot d node.

Consider the case of 1 < j < k and assume there are f faulty links in an injured Q,.
Since these faults may occur at any f links in the Q,, there are c} different configurations (of
faulty links) where L = n2"". Without loss of generality, we can let u = 0" and w = 01k,
The problem of obtaining P(h.=j) is then reduced to that of counting the number of
configurations which lead to the case of by =j. We claim that the number of such
configurations is less than or equal to C,E,‘j,

When hy, = j, the obstructed node must be within the subcube 0"+, and all its j links
towards w must be faulty (i.e., j o-type blocking components). Although there are many pos-

4

sible locations of the ot d node, ding to the sy ic p of Ay, the loca-

tion of the obstructed node is determined by those non-o-type faulty links which are not
within 0°**%, Suppose x = 0"**i1%J js the obstructed node, then the j links of node x within
SQ(x,w) are faulty and there are C,‘:}’ different distributions of these non-c-type faulty links.
When these non-o-type faulty links cause node y, instead of x, to be the obstructed node, we
exchange the links (including faulty links) in SQ(y,w) with those in SQ(x,w), and obtain a
configuration which leads to the case when the obstructed node is y and hy = j. Notice that

some of the C,l_’j‘l different distributions of non-o-type faulty links may lead to h; > j, meaning
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that the number of configurations leading to hy, = j is less than or equal to C}:j’. This lemma

thus follows. Q.E.D.

Notice that as pointed out in [34], the number of faulty nodes required for a coordinate
sequence C to be a resulting path by depth-first search is equal to the number of inversions in
C [50]. Furthermore, it is shown in [34] that the probability for a message to be routed in an
optimal path to a destination node n hops away in the presence of g faulty nodes in a Q, is

-1
Pl g
where I,(k) denotes the number of permutations on n numbers with exactly k inversions. The

n(n-1y2 .
value of I(k) can be obtained from its generation function Gu(z2) = Y LG)Z =
j=0

d“G,(0
(+2) (142423 + -+ (L4242 - 427Y) by LK) = —l:—! d": ). Following the same con-
Z

cept, the probability for a message to be routed in an optimal path to a destination node n

hops away in the presence of f faulty links in a Q, can be expressed as
-1
0= | n(n=1)2 e
[“Zf ] kz b0 [“2 f- ;“ ]
=0

It is worth mentioning that in light of Lemma 4.2, a lower bound of the probability for a
message to be routed in an optimal path in the presence of f faulty links in a Q, can be
derived in a closed form expression as shown in the following theorem, which shows that
Algorithm A, can route a message to the destination via an optimal path with a very high pro-
bability.

Theorem 4.3: Suppose there are f faulty links in a Q,. Algorithm A, will route a mes-

sage from a node u to to another node w via an optimal path between u and w with a proba-
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bility greater than 1 — Z—L where L= n2""!, and H(u,w) = k.
=1 cf

Proof: From Lemma 4.2, the probability that A, has to use spare dimensions is

ZP(h,_ =j)< z Thus, the probability that A; will not use any spare dimension at all is
k k Cld

1- 3Pl =j)21- T—F. QED.
= 1 Cr

When there are n—1 faulty links in a Q,, the lower bound of the probability that A, will
result in the optimal path routing can be derived as follows.
Corollary 4.3.1: Suppose there are n—1 faulty links in a Q,. Algorithm A will route a

message from a node u to another node w via an optimal path between u and w with a proba-

K
bility greater than 1 — M, where Hu,w) =k and r; = -ﬂ.
Q-1 n2*!

Proof: From Theorem 4.3, we have

-1 @-D@-2) (ﬂ—l)(ﬂ-z) *@K)  here L = n2t!,
(L-1) L(L—l) (L—k 1)’
nk , we get
Lkl
k cL (1 = rfs k cH, (1 = 1f
X L; <ty hrfe e wrf= ——'214:), implying 1 —jz:,—lCL{ >1- ———'il_rl)').
=1 Cnot

=1 Gt

This corollary thus follows. Q.E.D.

It can be seen from Theorem 4.3 that A; will route a message to its destination via an
optimal path with a rather high probability in the presence of faulty links. Similarly to the

case of faulty links, the performance of A, can be analyzed in terms of node failures as
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described by Lemma 4.3 below whose proof is similar to that of Lemma 4.2 and thus omitted.

Lemma 4.3: Suppose there are g faulty nodes in a Q,, and messages are to be routed

from an arbitrary node u to another node w, where H(u,w) = k. Let hy be the Hamming dis-
N-3-

- S G
tance between the obstructed node and the destination node w. Then, P(hy=j) < Nz if
1

2<j<k, and P(hy =j)=0if j=1or j >k, where N = 2" is the total number of nodes in a

Qe

As mentioned before, the probability for a message to be routed in an optimal path to a
destination node n hops away in the presence of g faulty nodes in a Q,, is
Mo ! w12 " _2-m-1)-k
o e
Also, from Lemma 4.3 and the reasoning in the proof of Theorem 4.3, we can obtain a lower
bound for the corresponding probability in Theorem 4.4 and its corollary, which shows that
A, can also route a message between any pair of non-faulty nodes in an injured hypercube via
an optimal path with a high probability.
Theorem 4.4: Suppose there are g faulty nodes in a Q,. Algorithm A, will route a mes-

sage from a node u to another node w via an optimal path between u and w with a probability

N-2

CON-3-
CB

k
greater than 1 — ¥—8J— where H(u,w) = k.
=2
Corollary 4.4.1: Suppose there are n—1 faulty nodes in a Q,. Algorithm A, will route a
message from a node u to another node w via an optimal path between u and w with a proba-

n - Dry(1 - 15! _
bility greater than 1 — (——M, where H(u,w) = k, and 1, = n-2 .
@"=2)(1 - 1) -3
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Proof: Notice that

CnN-IZ_!J _ (o=1)(@-2) - - - (=j+1)@=j)(N-n~1
[shid (N-2)(N-3) - - - (N=j-2)

-1)(n—=2) - - * (D —j . .
< l—l(—L—(—-'—l(—-'l“(;_z‘; (3_3) @ (ltj_“l) (Since N-ni-1 < N—j-2.)

_n-1
=Nzt
&, e
By letting g =n-1 in Theorem 4.4 we get I—Z-——L > 1-3—r! =
o aN-2
Zd— _E‘;M_ﬂ where N = 2", Q.E.D.
22 N=-2)1-r) ' T

Furthermore, as it will be shown below, the expected length of a path resulting from the
use of A, is very close to that of an optimal path, i.e., the Hamming distance between the

source and destination nodes. Before analyzing the quality of the paths selected by A,, it is

necessary to i the ing prop

Proposition 4.2: Let {p;); and (q;)i%, be, ively, two ing seq with
P!

-1 n-1
Pn=q, =0. Suppose p; < q; for 1 < i< n-1, then Fi(p; — Pir1) S Xi(G — Qirr)-
i=1 i=
Proof: Let d; = q; — p; for 1 <i < n. Then, we get
-1 w1 -l
i — giv) — X~ pir) = i}%x(da = diy)
i=l i=1 =
-1
=3d 20 (Sinced;20 for1 <isn-1) QED.
i=

We can now derive the following important theorem.

Theorem 4.5: Let u and w be a pair of nodes with H(u,w) = n in an injured Q, which

contains n—1 faulty links. Let H, be the length of a path between u and w that is chosen by
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A,. Then, E(AH,) s , where E(x) denotes the expected value of a random variable x,
and AH, = H, - n.

i
Proof: Notice that P(AH, 2 2i) < Y P(hy, = j). Then,
=

-1
E(AH;) = 3)2i P(AH, = 2i)
i=l
-1
=2 [P(AH, 2 2i) - P(AH, 2 2(i+1)) ]
i=t
net [ i -1
< X2 [ Py, =j)~ ¥, Phy=j) ] (By Proposition 4.2.)
= | =t =1
-1
= 32i P(hy=n-i)
i=l

< zzm—n) "“ ! (By Lemma 4.1 and L = n2™')

1 ) .
<o @=2
i=1
nl nel
=2¥ri - 2Xirf
i=1 i=1

=200, + 200y(ry + 1f 4 o 1) = 20 + 2 4+ (@=Drfh)

n-1 "
<2nr, = =y (Since nr; <1.) QE.D.

Corollary 4.5.1: Suppose messages are to be routed from an arbitrary node u to another
node w in an injured Q, which contains n—1 faulty nodes. Let H, be the length of a path

between u and w that is chosen by A,, and let AH, = H, — n, where H(u,w) =n. Then,

E(AH,) < _ni"‘;!_l
(2™-2)(2"-3)
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i
Proof: Since P(AH, 2 2i) S YP(hy = j), using the same reasoning as in the proof of
2
Theorem 4.5, we get

E(AH,) = "fzi P(AH, = 2i) = "fzi [P(AHz 2 2i) - P(AH, 2 2(i+1)) ]
i=1 i=1

< ZZI[EP(hN - E P(hy = j)] (by Proposition 4.2.)

= =2
2

= ¥.2i P(ly = n-i)
i=1

-1 —
@bri! (where N=2"andr; = ;—2)

< _22(11—1) N-2 3

= Mn_l(“_i)ri-l
N-2 ,=Zz z
= lg‘_;;l [nrz(l ek - Q3+ + @D ]

o) [m'z tang i Y - @43 ek (D) ]

2(n-1 ~1)(n—;
< 20-Dry _ 2n(n-1)(n-2) (Since nr; < 1) QED.

N-2 2"2)(2"-3)

As shown above, Algorithm A; routes messages via optimal paths with a high probabil-
ity, and the expected length of a resulting path is very close to the Hamming distance between
the source and destination nodes. However, due to the absence of information at each node
on components other than its own links, the presence of a certain faulty component is not
known until a message gets to the faulty component, This may force an intermediate node to

use a spare di ion for routing around the faulty component, thus increasing the

length of the actual path taken,
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4.1.4. Extension: Propagating network information to neighboring nodes

In order to route messages more efficiently, each node needs to be equipped with more
information than that on its own communication links. Consider a routing scheme which is a

modified version of Algorithm A,. In addition to keeping track of the condition of its own

links only, every node also makes this i to all its neighboring nodes.
Thus, every node will become aware of not only the condition of its own links but also that of
those links which are one hop away from it. To use this information, the conditional state-

ment in A, marked with * is modified in such a way that every intermediate node checks one

more hop in the di q of each and uses a spare dimension to bypass

faulty components if necessary. Clearly, due to the nature of depth-first search, this modified
routing scheme can also successfully route a message to any other node. More specifically,
we have the following lemma for the performance of this routing scheme.

Lemma 4.4: Suppose there are f faulty links in an injured Q,, and a message is to be
routed from node u to node w where H(u,w) = k. Let h¢ be the Hamming distance between

the obstructed node and the destination when each node is informed about the condition of its

B
neighboring nodes. Then, P(he=j) s XCICHUHS/ CF if 2<j< min(1+ [Ef], k-1},
i=l

k .
P(he=k) < FCHCE44% / CF and P(hcsj) = O otherwise, where L = n2"",
i=0

Proof: Let x denote the d node. First, ider the case when the obstructed
node is the source node, i.e., hc = k. Clearly, x has k links within SQ(x,w). There will be no
optimal path from x to w if and only if each of these k links is either faulty or connected to a
node with k—1 faulty links towards w. Suppose x has exactly i non-faulty links towards w.
Then, there are C,“ ways to determine which of x’s links are non-faulty. For each case, there

are (k—i) + i(k—1) specific faulty links, thus resulting in Cf':i'ki’i;ﬁ%i different configurations of
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faulty links. The expression for the case of P(h¢ = k) thus follows.

Since every node is informed about the condition of the links one hop away, a message
will not be routed to any node whose every link towards w is faulty. Thus, every link of the
obstructed node towards w can be faulty only when the obstructed node is the source node.
This is the reason why two different expressions are needed for the two cases: 2 < he < k-1
and he = k. Notice, however, that when he = j # k and the obstructed node x has i non-faulty
links towards w, these i links are connected to those nodes with j—~1 faulty links towards w.

Therefore, from the fact that the total number of faulty links i(j-1) + j— 1 is less than f, we

getjs1+ f—;-'l, and thus, this lemma follows. Q.E.D.

To illustrate the improvement of routing efficiency with the above additional information
i "
at each node, let p; (j) = C}:’J‘J/Cfl‘ and pc() = ZCEC;':[,“_}&,Z‘/C,". As shown in Lemma 4.2 and
i=l

Lemma 4.4, P(h,=j) < py(j) and P(hc=j) < pc(j). It can be verified that pc(j) < p() for j > 2,
meaning that P(bc=j) has a smaller upper bound than P(h =j). Note, however, that hc(2) >
ha(2). This is based on the fact that, under our modified routing scheme, an intermediate
node located two hops away from the destination may foresee the unreachability-from itself to
the destination and use spare dimensions to bypass those faulty components which could not
be seen by the same intermediate node under A;. The upper bound of P(hc =2) is thus
greater than that of P(hy = 2). (Note, however, that hc(2) < ha(2) + ha(1).) Therefore, in
light of the reasoning in Theorem 4.5, routing efficiency is improved with the additional infor-

mation at each node.

Clearly, routing efficiency can be imp: further by prop ing the i on
faulty components more than one hop. Notice, however, that the above modified scheme still

cannot guarantee the shortest path routing. When two certain nodes communicate with each
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other frequently, the practicality of using depth-first search approach needs further
justification, since extra hops will be traveled during each transmission. Although each node
can always find a shortest fault-free path from itself to any other node if it contains the infor-

mation on every faulty p it is impractical to maintain and update such information,

especially when the size of the network is very large. Consequently, it is important to deter-

mine the information required for the shortest path routing.

4.2. Routing with Global Information

To route the message via the shortest path, we develop routing schemes using global

By global i ion, we mean the knowledge on the network condition, in

addition to those on its own links. A routing scheme by propagating faulty components will
be introduced in Section 4.2.1, which, however, is applicable only for an injured Q,, with less
than n faulty components. Then, a routing scheme by exchanging minimal delay vectors will
be presented in Section 4.2.2, which is able to route messages via the shortest paths in an
injured hypercube of an arbitrary number of faulty components, The amount of information

essential for the shortest path routing will also be investigated.

4.2.1. Routing by propagating information on faulty components

To reduce the amount of i ion at each node required for the shortest path routing,

the Y p ion of i ion on faulty p should be avoided. Notice

that a faulty node can be viewed as a node with its all links faulty. Therefore, the network
information kept at each node can be represented by a set of addresses of faulty links. As
will be proved later, when the number of faulty components is less than n in a Q,, each node

does not have to propagate the information on faulty links to its neighboring nodes unless
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these faulty links block all the optimal paths from itself to another node. In other words, only

when node u finds that all its optimal paths to another node, say x, have been blocked by a set

of faulty links F, node u will propagate the i ion on F to its neighboring nodes so as to
prevent them from choosing node u as a next hop toward node x.

Note that the coordinate sequence of an optimal path from u to w consists of H(u,w)

different t ing those di i in which u and w differ, meaning that there

P

are H(u,w)! different optimal paths from u to w. Then, we have the following proposition,
describing the effect of a link failure on the optimal paths between the two nodes.
Proposition 4.3: Let N(u\ w, r) be the number of optimal paths from u to w which
traverse a link r. Then,
(i). For any link r € SQ(u,w), N(u\ w, r) = [H(u,w)-H(u,x)-1]{H(u,x)!, where x is the one
of the link r's two end nodes that is closer to u.

(ii). For any link r ¢ SQ(u,w), N\ w, ) = 0.

For example, if u = 0100, w = 1001 and r = 0-01, then x = 0101 and N(W\ w, 1) = 2111
= 2. On the other hand, if r = 0-11, then N(u\ w, r) = 0, since 0-11 & SQ(u,w) = **0*. In
light of Proposition 4.3, we can derive the condition for a set of faulty links to block all the
optimal paths between any given pair of nodes as follows. Let r, and r, be the relative
addresses of any two links with respect to node u. Then, the link r, is called a downstream
link of r,, written as r, < t,, if r, appears before r, in an optimal path from u to ry. Note that
Iy = XKooy * 0" X) < Ty = Yo¥ny c 0 Yy iff (1) X S y; for 1 i < n, where the symbol *-’ is
ordered such that 0 < - < 1, and (2) r, and 1y are the links placed in different dimensions.
This fact results in a straightforward procedure for determining if a link is a downstream link

of another. Each node can thus store the relative addresses of faulty links as a partially
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ordered set [71). A set of relative addresses of faulty links is called a linear set if for any
two links r, and ry in the set, either ry <y or ry <y It can be verified that an optimal path
from u to w will traverse all links in a set of links B only if B is a linear set. Let M(u\ w, F)
be the number of optimal paths from u to w which traverse every link in F. Then, following
the concept of exclusion and inclusion [54], we obtain the following lemma which can deter-
mine the number of optimal paths blocked by a set of faulty links.

Lemma 4.5: Given a set of faulty links F, the number of the optimal paths from u to w

.
blocked by the links in F is NG\ w, F) = 3(-D)"*'m;, wherem;= ¥ M@\ w,B;) and
i=l B,eFnSQ(u,w)

B; denotes a linear set of i links.

Clearly, the condition for a set of faulty links to block all the optimal paths between two
nodes u and w is N(u\ w, F) = H(u,w)!. The operations of Algorithm A, can be outlined as
follows. Each node keeps the information about two types of faulty links in the form of rela-
tive addresses. The first type, denoted by Fy, is the set of those faulty links whose status has
not yet been propagated to neighboring nodes, whereas the second type, denoted by Fy, is the
set of those faulty links whose status has already been propagated to neighboring nodes.

Since relative addresses of faulty links of a node are kept in that node, the information

on Fy must be modified in d: with the of receiving nodes when it is pro-

pagated to neighboring nodes. A formal description of the algorithm for the determination
and modification of link failure information is given below.

Algorithm A;: Collection of failure information for the shortest path routing.
Tegting

/* Each node tests all its communication links.*/

if (the k-th link of the node is faulty) then
begin
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Fi=F U le);
for i := 1 to ndo

if i # k then send X ® ¢ along the i-th dimension;
Propagation;

end

Receiving
/* For each node receiving the information on the failure of the link r.*/
ifr ¢ F then ME=Fo U F %
begin
Fo:=Fy (1);
Propagation;
end
Propagation
if N(O™\ 1™, F) = H(0"r")! then
begin
Fo i=Fo — (r};
Fy=F U (1)
/* Propagate the information on the failure of r to neighboring nodes.*/
fori:=1tondosendr® ¢ along the i-th dimension;
/* Check if propagation of information on other faulty links is necessary.*/
for all r, € Fyand r € SQ(0", ry) do
if N(O"\ 1y, F) = H(0", r)! then
begin
/* Propagate the information on the failure of r to neighboring nodes.*/
for i := 1 to n do send r,®¢' along the i-th dimension;
Fo 1= Fo - (r):
Fy:=F U (5);
end

end

When a node receives the information on the failure of link r, it will update its Fy and F,

accordingly, and check if any further propagation of information on other link failures in Fy is

quired. For pl ider the Qg in Figure 4.4, By executing A,, each node can deter-

mine F = Fy_F, as well as the information to be propagated to neighboring nodes, F. Table

4.1 shows the information to be kept in each node. Notice that the faulty links are
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nodes Fy Fy
0000 {0-01,1-01,100-) 2
0001 {100-) {0-00,1-00}
0010 2 2
0011 {0-10,1-10) 2
0100 {0-01,1-01,110-) ]
0101 %] {0-00,1-00}
o110 %) 7]
0111 {0-10,1-10} [Z]
1000 {0-01) (000-)
1001 2 {1-00,0-00,000-}
1010 {001-) 2
1011 {1-10,0-10,001-) %]
1100 (1-01) {0-01,010-}
1101 (010-} {1-00,0-00}
1110 {0-11,011-) 7]
1111 {1-10,0-10) [Z]

Table 4.1. Information in each node generated by Algorithm A,

for the injured hypercube in Figure 4.4.
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represented in each node by their relative addresses with respect to the node. To see the fact
that A, can achieve the shortest path routing when the number of faulty components is less
than n, we need the following theorem, which was introduced in [73].

Theorem of connectivity [73]: Let u and w be two arbitrary nodes in a Q, such that
H(u,w) = k. Then, there are exactly n disjoint paths of length less than or equal to k+2 from u
to w. These paths are composed of k disjoint paths of length k, and (n - k) disjoint paths of
length k+2.

Then, we have the theorem below.

Theorem 4.6: Under Algorithm A,, every node can obtain the failure information essen-
tial for the shortest path routing as long as the number of faulty components is less than n.

Proof: Notice that the necessary and sufficient condition for all the optimal paths from
node u to node w to be blocked is that ‘‘for ail z € SQ(u,w) reachable from u via an optimal
path, then there is no optimal path from z to w.” Since every node propagates the correspond-
ing failure information to its neighboring nodes if all its optimal paths to a certain node are
blocked, the fact that every node will know if all its optimal paths to a certain node are
blocked can be proved by induction.

When node u finds all its optimal paths to w are blocked, there are at least H(u,w) = k
faulty components in SQ(u,w). Note that there are still n — k disjoint paths of length k+2 via
the neighboring nodes of u which are not within SQ(u,w), and at least one of them is fault-
free because there are at most n — 1 faulty components in the Q,. Since those neighboring

nodes not having any optimal path to w will propagate the p failure i

to u to prevent u from choosing one of them as a next hop, this theorem follows. Q.E.D.
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Theorem of connectivity and Theorem 4.6 lead to the following corollary.
Corollary 4.7.1: Algorithm A, can route a message from node u to node w in H(u,w)+2
hops as long as the number of faulty components is less than n.

When a node needs to send a message to another node, it will use its information on

faulty to ine the di of a shortest fault-free path to the

P q

destination node as if it had the information on every faulty component in the entire network.
Then, according to the first entry of the coordinate sequence, the source node will determine

the next hop of the and its i di q On the other hand, when

a node ives a and the di q of the ining part of the path, it
will check whether the remaining path contains faulty links and permute the order of entries in
the coordinate sequence to bypass the faulty components, if necessary.

For example, consider the injured Q, in Figure 4.4 where node 0110 is trying to send a
message to node 1001. The source node is not aware of any faulty link, and thus, routes a
message (3, [2,3,4], fm) to 0111. However, as indicated in Table 4.1, the node 0111 will find
the path [2,34] is faulty, since the path will encounter the faulty link 0-01 whose relative
address with respect to 0111 is 0-01,9;1y =0-10. Thus, a new non-faulty path [3,2,4] is deter-
mined by 0111. The message will be routed to 0011, and then to the destination 1001 via
1011. The length of the resulting path is 4. This is much less than the length of the path
determined by Ay, 8.

Notice, however, when the number of faulty components is more than n in a Q,, each

node may not be able to gather enough information required for the shortest path routing,

since too many component failures may block the propagation of failure inf i For
example, consider the injured hypercube in Figure 4.6, The link failures known to node 1000

are 000-, 001-, -100 and 100-, which will provide node 1000 the knowledge that there is no
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1110 1111

0111

0011

1000 1001

Figure 4.6. An injured hypercube where node
1000 does not have enough information
for the shortest path routing.
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optimal path to 0001. However, without the knowledge on the failure of link 0-01, node 1000
may choose {1000, 0000, 0100, 0101, 0001] as its shortest path to node 0001, instead of

choosing a fault-free path [1000, 1011, 1001, 0001].

4.2.2. ing by i ini delay vectors

As shown above, A, is not sufficient to guarantee the shortest path routing when the
number of faulty components is more than n in a Q,. To remedy this, we shall use the idea
developed in Chapter 2 to achieve the shortest path routing. Recall that under APRS the path
from one node to every other node is not determined in advance. Instesd, every node main-
tains a network delay table to record the shortest delay via each link emanating from the node.
When a node is to send a message to another node, it will check its network delay table and
determine the next hop of the message for the shortest path routing. A minimal delay vector
in a node, which contains the delays of the shortest paths from that node to all other nodes, is
passed to all of its adjacent nodes as routing information. After receiving minimal delay vec-
tors from adjacent nodes, every node will update its network delay table accordingly.

More formally, the ions for maintaining and updating the network delay vector for

each hypercube node can be described as follows. Let the entry at row i and column w of the
network delay table of node u be denoted by d ;. which represents the delay of the shortest
path from node u via dimension i to node w. Also, denote the minimal delay from u to w as

dyw i, dyy = ll;l:l; ‘( dy\iwl. Then, after receiving d, ,, from node v = u® ¢, node u will

calculate dy;y = dy,, + 1 and update d,,, if nécessary. The new d,,, will, in tum, be sent to
adjacent nodes u® €', 1 < i <n as routing information. For example, the network delay tables
for nodes 000, 100 and 101 in Figure 4.7 are given in Table 4.2a, 4.2b and 4.2c, respectively.

The routing information generated by node 1001 is also shown in Figure 4.2d.
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Figure 4.7. An example Q ;for the routing scheme
' based on the minimal delay tables.
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destination
dimension 001 * 010 o11 100 101 110* m
1_(001) oo oo oo o0 o0 o0 oy
2 (010) 3 1 2 3 4 2 3
3 (100) 5 3 4 1 2 4 3
(a). Network delay table of node 000.
destination
dimension 000 001 * 010 o1 101 110* m
1 _(101) 3 4 4 3 1 3 2
2 (110) oo oo o oo o o o
3_(000) 1 4 2 3 3 3 4
(b). Network delay table of node 100.
destination
dimension 000 001 * 010 011 100 110* 111
1_(100) 2 5 3 4 1 4 3
2 (111 4 3 3 2 3 2 1
3 (110) o 0 o o oo oo

(c). Network delay table of node 101.

|ooo|oonlow|on|101InoImJ
1 | s | 2 | 3 | 1 | 3 [ 2 ]}

(d). Routing information generated by node 100.

Table 4.2. Network delay tables for some hypercube nodes in Figure 4.7.
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It can be observed that in Table 4.2 several entries contain the information which can be
directly determined by the regularity of the hypercube topology. More specifically, if the entry

since the i ion it con-

dy 1 contains the value H(u @ e',w) + 1, this entry is
tains is implied by the hypercube topology. In light of the above fact, the operations for gen-
erating the network delay table are modified as follows. In the network delay table of node u,

a column iated with a ination node w is g d only when either of the following

two cases occurs.
1. Node u receives routing information d,,, from its neighboring node v.
2. Node w is within the minimal subcube which contains node u and its faulty links.

Then, each node, instead of ing routing with neigl ing nodes

routing to its neighboring nodes only when its network

P » Prop

delay table is updated and a new minimal delay to some other node results. For example,
according to the above modification, only those columns whose destination nodes are marked
by *'s are required to be kept in Table 4.2. It can be verified that the remaining network
information will still be sufficient for the shortest path routing. It is worth mentioning that,
for the network in Figure 4.6, we can obtain the network delay tables as shown in Table 4.3
from which the shortest path from 1000 to 0001 is determined. In addition, we have the fol-
lowing lemma for this routing scheme.

Lemma 4.6: In the network delay table of node u under the 1-st order routing strategy,
[doviw = dujud S 2, for 1 S, j<m.

It can be seen that looping may occur in the presence of component failures under this
routing scheme, which is equivalent to the 0-th order routing strategy in Chapter 2. Clearly,
the approach of using high order routing strategies can be applied to eliminate the looping.

For example, the network delay table under the 1-st order routing strategy for the injured
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destination - :
| __imension 0001 0011 1001 t 1100
1_(0001) 00 oo o0 0o
2 (0010) s 4 4 4
3 (0100) s 4 4 4
4_(1000) 3 4 2 2
(a). Network delay table of node 0000.
destination
dimension 0001 0100 0011 1001 1 °
1_(1001) 2 4 3 1
2 (1010) 4 4 3 3
3 (1100 4 4 -] 3
4_(0000) 4 2 s 3
(b). Network delay table of node 1000.
destination
dimension 0001 t 0100 1001
1 (1101) 3 3 2
2 (1110) s 3 4
3 (1000) 3 3 2
4 (0100) 0 oo 00

(c). Network delay table of node 1100,

Table 4.3. Network delay tables for some hypercube nodes in Figure 4.6.
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hypercube in Figure 4.7 is shown in Table 4.4.
From the hypercube topology, we have the following theorem.
Theorem 4.7; Every loop in an injured Q, contains even number of hops.

Proof: From Proposition 4.1, we know every cycle, starting and ending at the same node
will traverse every dimension even number of times. This theorem thus follows. Q.E.D.

Then, we have the following corollary.

Corollary 4.7.1: The required order of routing strategy for an injured hypercube is odd.

It can be seen that the information about an isolated faulty link needs to be propagated
only to its neighboring nodes, whereas the information about clustered faulty links has to be
propagated a little farther to ensure each message to be routed via a shortest path. For exam-
ple, the network delay table of node 100 in Figure 4.7 is affected by the failure of links -01
and 00- (two hops away), while the failure of link 1-0 only affects the network delay table of
those nodes one hop away. This agrees well with our intuition, since clustered faulty com-
ponents are likely to block more optimal paths between a pair of nodes, and thus, have to be
kept by those nodes far away from them to achieve the shortest path routing. Clearly, when
the size of the hypercube increases, the zone of nodes whose network delay tables are

i by a faulty will become rather small relative to the size of the entire

P

network.,
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destination
dimension 001 * 010 * 011 100 * 101 110+ 111
1_(001) o0 00 0o o0 0o oo oo
2 (010) 3 1 2 s 4 2 3
‘ 3 (100) s s 4 1 2 4 3
(a). Network delay table of node 000.
destination
dimension 000 * 001 * 010 011 101 * 110 * 111
1_(101) 5 4 4 3 1 3 2
2 (110) o ™ - S o o -
3 (000) 1 4 2 3 s 3 4
(b). Network delay table of node 100.
destination
dimension 000 001 * 010 o011 100 * 110 * 111*
1_(100) 2 5 3 4 1 4 5
2 (111 4 3 3 2 S 2 1
3 (110 ™ oo oo oo o
(c). Network delay table of node 101.
[ o1 | o0+ | on | 101 | 10 | 11|
[__4 | 4 | 3 | 1 | 3| 2

(d). Routing information generated by node 100 for node 000.

[To00 [ oot* [ o10* | o1 | 1o | m
1 [ a4 | 2 | 3 [ 3 | 4

| ||

(¢). Routing information generated by node 100 for node 101.

Table 4.4. Network delay tables for some hypercube nodes in Figl-n'e 47.
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CHAPTER 5
TASK ALLOCATION IN HETEROGENEOUS
MULTICOMPUTER SYSTEMS

In a multicomputer system, a task is usually posed into a set of cooperating task
modules which are then assigned to a set of processors in order to exploit the inherent paral-
lelism in the task execution [18,19,76,77]. Each task can thus be described by an undirected

graph called the task graph, Gy = (Vr, Ey), where Vi is the set of nodes, each representing a

task module, and Eyr < Vi X Vy is the set of edges, each rep ing the

required between the two task modules connected by the edge. When there is an edge
between two task modules in Gy, the two modules are said to be related to each other. Simi-
larly, a multicomputer system can be represented by an undirected graph called the

processor graph, Gp = (Vp, Ep), where Vp is the set of processors in the system and Ep < Vp

X Vp is the set of edges rep i ication links t p
To reduce the inter-processor communication, a set of task modules are usually required
to be assigned to a set of processors in such a way that the communication delay between any

two related task modules must be kept low. One way to accomplish this is to limit the dila-

tion to a small number so that two related task may be assigned to those p

located physically close to each other. Recall that the dilation means the maximal number of

hops between two processors to which two related task modules are assigned. An
is said to be acceptable if its dilation is less than or equal to a prespecified integer value.

The problem of deriving an **optimal” (in the sense of, for example, load balancing or

of job ion time) task assi is very hard and usually requires heuristic

126
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solutions [69,31]. The task assi problem is lated in [77] as a state-space search
problem and solved by the A" algorithm [65]. However, without the knowledge of the
number of acceptable assignments for given Gy and Gp, one cannot tell the size of the state-

space to be searched in the A" algorithm. Note that such an algorithm often requires a large

number of ions of a plex heuristic

As will be pointed out later, the knowledge of the number of acceptable assignments can
be used not only for providing a simplified state-space search but also for reducing the size of
the state-space to be searched. Although a search method using this knowledge may reach a
suboptimal goal node instead of the optimal one, it requires much less computation cost and,
thus, provides a useful insight into the state-space search. In addition, the knowledge of the
number of acceptable assignments and its relation with the processor and task graphs can play
an important role in the design of a distributed computing system. In other words, one can
derive the system’s structure from this knowledge by maximizing the number of acceptable
assignments for a given set of cooperating task modules. For the reasons mentioned above,
we shall concentrate in this chapter on obtaining the number of acceptable task assignments
for given Gy and Gp.

Notice that the ity of fast ication between two related task modules has

usually made it important to assign them to either a single processor or two adjacent proces-

sors, i.e., the dilation of an assignment is kept less than or equal to one. Let N(Gr, Gp)

denote the number of ptabl i under this int. As it will be pointed out
later, our results on N(G, Gp) can be extended and applied to the completely general case,
i.e., those assignments with the dilation greater than one. Thus, without loss of generality, we
shall henceforth address only the formulation and application of N(Gy, Gp). Unless men-

tioned otherwise, in what follows, an acceptable assignment is referred to as an assignment
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with the dilation less than or equal to one.

To facilitate our di ion, the task assi p can be d and stated

formally as follows. Given the task graph Gy and processor graph Gp, we want to label nodes
in Gp with the nodes in Gp in such a way that each node in G is labeled with exactly one
node from Gp and every pair of adjacent nodes in Gy is labeled with either a single node or
two adjacent nodes in Gp. This constraint will be termed adjacency requirement and every
labeling satisfying the adjacency requirement is called an acceptable labeling. Actual task
assignment is to choose from the set of acceptable labelings an optimal one that

the iated criterion function. Note that we are addressing the prob-

lem of determining the number of acceptable assignments, rather than the determination of
task assignments themselves. This fact distinguishes our work from other related works
[19,77,8,23,68].

This chapter is organized as follows. Section 5.1 deals with the derivation of
N(Gr, Gp). First, we derive the bounds of N(Gr, Gp), when Gp and Gr are arbitrary. Then,
some important special cases are treated: (i) when Gy is a tree and Gp is arbitrary, and (ii)
when Gr is a tree and Gp is an n-regular graph. For case (i), we shall develop a recursive
formula to obtain the exact number of N(Gr, Gp). (ii) is a special case of (i) for which the
exact number of acceptable assignments can be determined in a closed-form. Also, we shall
determine expressions for the case when Gp or Gy is restricted to a certain family of graphs.

Three icati are p in Section 5.2 to illustrate how the knowledge of the

'PP

number of acceptable assignments can be used. In light of these examples, some remarks on
the task assignment problem are also made. More importantly, it is shown that our results are
extensible to the completely general case, i.., those assignments with dilations greater than

one. The results presented in this chapter have also been reported in [80].
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5.1. The of Accep Assi

The necessary notation and definitions are introduced in Section 5.1.1. The bounds of
N(Gr, Gp), when Gp and Gr are arbitrary are derived in Section 5.1.2. Section 5.1.3 deals
with the case when Gy is a tree and Gp is arbitrary, Some restricted cases are given in Sec-

tion 5.1.4.

5.1.1. Preliminary

A graph G, is said to be a spanning subgraph of another graph Gy if Vo = Vp and E,
< Ep [38]. A complete subgraph of a graph G is a subgraph which is a complete graph, and
a clique is a maximal complete subgraph which is not a proper subgraph of any other com-
plete subgraph of G. Thus, any graph can be viewed as the union of all of its cliques. Let H;,

1<i<r, denote the cliques in a graph G, where r is the number of cliques in G. The redun-
i1

dance sets of G are defined as B, = H;  {\_UH;) for 1 <i <r. Notice that the determination
=t

of redundance sets depends on the ordering of cliques. For example, the graph in Figure 5.1a
is the union of its cliques in Figure 5.1b, where Hy=(1, 2, 3}, Hy=(2, 3, 4! and Hy=(4, 5}.
The redundance sets of this graph are: B=(J, B,=(2, 3} and B3=(4}.

The symbol U, is used to denote an m-dimensional vector of which all entries are one,
and P, C,, S, and K, to denote respectively a path, cycle, star and complete graph with n
nodes [38]. Examples for P4, Cy, Sq, K4 and Q; are given in Figure 5.2. Recall that Q, is
used to denote an n-dimensional cube. R, denotes an n-regular graph in which every node
has the same degree n. Unless explicitly specified otherwise, every vector referred to in this
chapter is treated as a column vector of positive integers, and all graphs are assumed to be

connected. In addition, the following definitions are necessary to proceed with our discussion.
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1
3
2
4 s
(a)
1 3
S
2 3 2 4 40/O
H, H, Hj
(b)

Figure 5.1. Decomposition of a graph into
its components.
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(@ P, ®) C, .

) Q4

Figure 5.2. Various example graphs.
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Definition 5.1:  The adjacency matrix, M = [My], of a labeled graph G with m nodes is an
m X m matrix in which My = 1 if node i is adjacent to node jin G or i = j,
and My; = 0 otherwise.

For convenience, in the rest of the chapter we shall use an m X m non-negative symmetric

matrix A = [Ay] to denote the adj y matrix of a p graph Gp, where m =| Vp|.

Definition 5.2 Among all acceptable labelings of Gy with the nodes of Gp, let Dyk)
represent the number of acceptable labelings in which the node n; € Vrp is
labeled with the value k, i.e., assigned to processor k in Vp. Then, for each
node n; € Vi, the vector D; = [Dy(1), Dy(2), - -+, D,(m)]T is called the

distribution vector of n;, where T denotes ’transpose.”

Definition 5.3:  The hing function iated with the adj matrix A, fa: I™ >

I™ is defined as fa(V)=AV, ¥ Ve I" where I" is the set of all m-

dimensional vectors of positive integers.

It can be verified that if D; is the distribution vector of a task node n; in Gr and if Gy is
the resulting graph by attaching a new node y to n;, then fo(D;) is the distribution vector of y
in Gy. For the example processor graph in Figure 5.3a we get Dy = [4, 3, 3, 2T, which
means there are 4 ways to label n; with processor 1, 3 ways to label n; with processor 2, and
50 on. After n, is attached to n,, we have Dy = fa( [4, 3, 3, 2)") = [12, 10, 10, 6)" in Figure

5.3c. Notice that, to satisfy the adjacency requirement, n; in Gy can be labeled with processor

2 only when n; in Gy was labeled with any of p 1, p 2 and p 3.

Then, we have D3(2) = 4 + 3 + 3 = 10. The other entries in D; can be obtained similarly.

Also, i duced are the following four definiti which will be very useful in deter-

mining N(Gr, Gp) when Gy is a tree.
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Figure 5.3. An illustrative example for the
attaching function.
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Definition 54: The product of two vectors, denoted by ©, is defined as
V3= Vi© V,iff Va(k) = Vy(K)Vo(k) for 1Sksm, VV,VVze I,

where Vi(k) denotes the k-th element of the vector V; fori =1, 2, 3.

q
Clearly, the product of vectors is associative and commutative. We shall use [TV; to denote

i=1
the product of q vectors. Note that this operation is not the same as the conventional inner
product of vectors, since it results in a vector, rather than a scalar.

Definition 5.5: The iplication of two vectors associated with the adjacency matrix A,

denoted by *,, is defined as:
Vi*a Va= VO (V) ¥V,VeI™
Definition 5.6:  The sorted vector of a vector V & I™, denoted by V*eI™, is a vector whose

components, V'), 1Sism, are a descending permutation of the com-

ponents of V.

Definition 5.7:  The weight of a vector, W: I — 1, is defined as:

W) = Ev(i), ¥Vel™
i=l

5.1.2. The case of arbitrary processor and task graphs

The following lemma immediately follows from the adjacency requirement in task
assignment,
Lemma 5.1: (i) N(Gr, Gp) < N(Gr, Gp) if Gp is a spanning subgraph of Gp'.

(i) N(Gy» Gp) 2 N(Gy', Gp) if Gy is a spanning subgraph of Gr'.

By (ii) of this lemma, the inequality N(Gy, Gp) < N(S(Gr), Gp) always holds, where

S(Gr) is an arbitrary spanning tree of Gr. Moreover, we have the following theorem.
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Theorem 5.1: For any arbitrary Gp and Gr, there exist the following bounds of

N(Gr, Gp), which are independent of | Ex |:

@ NGr, Gp) 2 N(Kjv,Gp) = Edﬂ.f"”— A

| Vel
(i) NGr, Gp) < NSGDGp) S NSjv; G = T+ 10V,
i=1

where, as before, H; and B;, 1<i<r, are respectively the clique and redundance sets of Gp, d, is

the degree of node i in Gp and S|y, | is a star with | V| nodes.

Proof: (i) Since the complete graph Kjy, | possesses the maximal number of edges
among all the graphs with | Vo | nodes, the inequality N(Gr, Gp) 2 N(K| v, ,Gp) follows from
(ii) of Lemma 5.1. Every node in Kjv, is adjacent to all the other nodes; to satisfy the adja-
cency requirement, all the nodes in K;v, | must be labeled with nodes within one clique in Gp.
There are |H; rv,| ways to label Gy with nodes in the clique set H; of Gp, and, thus, the total
number of such labelings can be obtained by adding up all [H; ||VT I, 1sisr, where r is the
number of cliques in Gp. However, the number of labelings with a clique set H; contains
double counts for those labelings in which all the nodes in Ky, | are labeled with nodes in the
redundant set B;. The redundant counts must be removed by subtracting [B; f Vol from |H; f Val
and, thus, (i) follows.

Because the proof of (ii) requires more bases to cover, we shall complete the proof of

(ii) after Theorem 5.2. Q.E.D.

Notice that when Gp is a complete graph, the number of acceptable assignments is
|fov'| regardless of the type of Gy. This fact implies that the tightness of the bounds

depends strongly on the structure of Gp. From Theorem 5.1, we have the following corollary
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for the lower bound of N(Gr, Gp) when Gp is restricted to a hypercube or a cycle. Recall that

Q, denotes an n-dimensional cube and C,, is a cycle with m nodes.
Corollary 5.1.1:

@). NEpQ)=2"*""'n-2"n-1),
(ii). Ny, Cp) = 2"m — m.

Proof: Since there is no K, subgraph in Qj, all the nodes in Ky, must be labeled with
either a single node or two adjacent nodes in Q. There are 2" ways to label K, with each pair
of adjacent nodes in Q,, and the number of edges in Q, is 2"1p, Therefore, when each edge
in Q, is considered separately, the total number of acceptable labelings is 2™1n2", However,
the labeling in which all the nodes in Ky, are labeled with the same node from Q, occurs n
times. Thus, we have to remove the redundant counts by subtracting 2"(n-1) from 27 Ingh,
leading to N(Kj, Q) = 2"*"~ 'n - 2"n - 1).

1t can be easily seen that (ii) is valid when m=3. Note that there is no K; subgraph in

C,,, ¥ m>3. Thus, (ii) can be proved similarly. Q.E.D.

As shown above, one can derive only bounds* of N(Gr, Gp) when Gy and Gp are both

arbitrary graphs. However, when Gy is restricted to a tree, N(Gr, Gp) can be expressed in a

recursive-form as will be shown in the following ion. M , it will be shown in
Section 5.1.4 that N(Gr, Gp) can be expressed in a closed-form when Gr is a tree and Gp is

an n-regular graph, R,

“Theso bounds are nceessarily loose because of the wide range of structural variations in the processor and task graphs.
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5.1.3. The case when Gy is a tree

To derive the recursive formula for N(Gy, Gp) when Gr is a trez and Gp is arbitrary, we
must convert Gy to a rooted tree by choosing an arbitrary node of Gy as the root. Let us
define the carrying vector of a node of Gy as follows.
Definition 5.8: The carrying vector of a node n; € Vr, denoted by Y, is defined in a

recursive-form,

U, if n; is a leaf,
Yi={ [I fu(Y)  otherwise, 61
e Cln)

where C(n;) represents the set of children of the node n;.

As we shall prove later in Theorem 5.2, the carrying vector is so defined that we can
determine the distribution vector of any node, say ny, just by rearranging the tree to make ny

the root and then computing the carrying vector of the node ny by Eg. (5.1).

Let n; and n, be two nodes with distribution vectors D, and D, in task graphs G, and

Gy, i S G’ is the ing graph by adding a new edge between n; and n,

Y . 1234

to connect G, and G,. Then, the distribution vectors of the two nodes n; and n in G’ can be

determined by the following lemma.

Lemma 5.2: Let D;’ and D, denote respectively the Iting distribution vectors of

task nodes n, and n, after connecting n, and n, with a new edge. Then,

@ D/ =Dy ¥, D,

(ii) Dy’ =Dy ¥4 Dy

where A is the adjacency matrix of Gp.
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Proof Consider part (i). When n; in G, and n, in G, are labeled respectively with
nodes i and j in Gp, Ay = Aj; =1 is the necessary and sufficient condition that this labeling is

still acceptable for the resulting graph G’. The number of labelings of G, which are still

m
acceptable after connecting ny and n; is Y,A;D;(). Since the number of different acceptable
=

m
Iabelings of G, in which n, is labeled with i is D,(i), we get Dy'(i) = Dy(i) 2A;D,(j) and part
=

(i) follows. Part (ii) can be proved similarly. ~ Q.E.D.

Thus, we have the following important result.

Theorem 5.2: The carrying vector of the root node of a tree is the same as its distribu-
tion vector, i.e., D, = Y, if n, is the root of a tree.

Proof: We prove this theorem by induction. Obviously, the theorem holds for a trivial
tree (i.e., a tree with only one node). In that case, both the distribution and carrying vectors
are U,,, where m =| V, | as before.

Assume that the theorem holds for all the children of a node, say n,. Let n,, 1<isc,

denote the node n,’s children, ie., C(n,) = {n,. : 1<is c}, where ¢ =|C(,)| Then, from

Lemma 5.2 the distribution vector of n, with only one child n,, is Uy, *4 Y. Thus, by attach-
ing one more child at a time, the distribution vector of n, with all its children attached
becomes:

D, =Up *aA Y ¥ Y a0 *A Yy

= [U,© (AY,)]® (AY,)® - © (AY,)

c
=TIAY,
i=1
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= H fA(Yj)
e Cn)

=Y. QED.

Given an arbitrary Gp, one can compute the carrying vector of all nodes in a rooted tree
Gr by applyi;lg Eq. (5.1) recursively, and determine the number of acceptable labelings from
the corollary below.

Corollary 52.1: ¥ n; € Vi, W(Y;) = N(T(n)), Gp), where T(n)) is the tree formed by
the node n; and its descendants.

Proof: Suppose T(n,) is the task tree, then we have D; = Y; from Theorem 5.2. This

corollary follows from the fact that W(D;) = N(T(n;), Gp). Q.E.D.

The putati iplexity in obtaining N(Gy, Gp), when Gr is a tree, can be deter-
mined as follows. By Lemma 5.2 and Theorem 5.2, N(Gr, Gp) can be obtained by calculating
the carrying vector of each node in the tree with Eq. (5.1). The complexity in obtaining
fA(Y)) from given A and Y] is O(m?), where m = | Vp|, Yje I™ and A is an m X m matrix.
Note that the complexity of the operation © is O(m). Thus, the complexity in calculating
N(Gp, Gp), when Gy is a tree, is O( Vr )O(m? + m) = O(| Vg |m?).

To illustrate the ideas presented thus far, consider the example processor and task graphs

shown in Figures 5.4a and 5.4b. We have the following adjacency matrix for Gp in Figure

5.4a.

1100
1111
A=lo111
0111
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3
4
2 1
(a) Processor graph, G

P

6

(b) Task graph, G T

"s 6
(¢) A rooted tree derived from GT

Figure 5.4. Example processor and task graphs.
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Suppose nj in Gy is chosen as the root of the tree. Then, we get the rooted tree in Fig-
ure 5.4c where n), ns and ng are leaf nodes (ie., ¥; = ¥s =Yg =[111 l]T), and C(ny) =

{ny, 04}, C(ny) = (ny) and C(ny) = {ns, ng}. Thus, we get

1100] |1 2

11111 4
Yy =fA(Y() = AY, = o111{[1|7 |3

0111](1 3

2 2 4

4 4 16
Y4 = (AY5)© (AY,) = 3 (0] 3|=

3 3

9

9
6 |20 120
12 38| |456
Y3 = (AY)® (AY9) = |101© |34|= |340
10 (34| |[340

W(Y3) = 120 + 456 + 340 + 340 = 1256.

From Figure 5.4a, we get Hy=(2, 3, 4}, H,=(1, 2), and then B,;=0 and B,={2}. It can

be verified that 36 + 26 — 16 = 792 < 1256 < 2° + 4° + 3% + 3% = 1542, which agrees with the

bounds in Theorem 5.1.
In what follows, we shall prove part (ii) of Theorem 5.1. To facilitate the proof, we need

the following definition [56]. Also, recall that V* denotes the sorted vector of V.

Definition 5.9: Let V; and V; be two m-dimensional vectors. V is said to be weakly subma-
ko, k o,

Jjorized by Vs, denoted by V; <, Vy, if T,Vi() < V(i) for 1 Sksm.
i=1 i=1

Then, we have the following three propositions.

Proposition 5.1: If V| <, Vy, then V; @ V3 <, V;© V5 ¥ V,Vp,Vse I™
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Proof: Let Vi=(ay, a, * * , 8", Va=[by, by, - - -, blT, Va=ley, ¢+ -+, €l and §
k
=ViG) - V(i) = a, - b;. Since V; <, V5, '8, < 0 for 1 < k < m. We obtain
=
X K X
Yem — Xob = Xci@a - b)
= = =

k
=¢8; + 8, + Yoid;
i=3
k
S ¢y(8; + 8y + Y¢i6; (Since §; < 0 and (c;} is decreasing.)
i=3

u X
Se,Xo+ X od

i=t i=utl

k
<6 X9 <0,
i=1
and this proposition follows.  Q.E.D.

Proposition 5.2: Given a vector VeI™ and a decreasing sequence of node degrees,
(d;)®,, in a graph with an adjacency matrix A, if V <, [(d;+1)"(dz+D)", * + * (dpitl y", then
£a(V) <y [(@HD)™ (gt )™, -+ -, (@)™

Proof: Let Z = f5(V). Note that W(Z) = W(Z") is the summation of all the elements in

the set L= {V(1),---, V(1), V(2), -, V(2),- -+, V(m),* -+, V(m)} in which V(i)

k k
appears d;+1 times. Since ZZ'(i) is the summation of no more than Y'(d;+1) elements from L,
i=t i=l

k k k
we obtain ZZ°(i) < ZV'(i)(d,»c—l) < Z(dﬁ-l)“‘” (by Proposition 5.1). Thus, the proposi-
i=1 i=1 i=1

tion follows. Q.E.D.

Proposition 5.3: Let {p;) be a decreasing sequence of positive integers, and Vy, V;

and V; be m-dimensional vectors such that for some positive integers r and s, V; <, Ipf
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i, ptITand Vo<, [pf p3 -+, pAI%. Then, Vi = V;® V, <, [pf*, p5™, -+ -, parT"
L - k * *
Proof. For 1<sk<m, YV;() s XV ()V,()

i=1 i=

3 *

< YVi@pf (by Proposition 5.1)
i=1

K
< Ypf** (by Proposition 5.1). QED.
=1 -

Without loss of generality, let {d;};T; be a decreasing sequence of node degrees in Gp.
Then, part (ii) of Theorem 5.1 can be proved as follows.

Proof for part (ii) of Theorem 5.1: The first inequality of (ii) in Theorem 5.1 follows
IVel |Val-1
directly from Lemma 5.1. To obiain the equality, N(S|v,, Gp) = X (d; + 1) ™', consider
i=1

the case where one more node is to be attached to the central node of a star at a time. Then,
this equality follows immediately. Next, we want to prove the second inequality.
We claim that the carrying vector of the root node of a tree with n nodes is weakly sub-

majorized by [(d|+1)“", (dzrl-l)"", ey, (dm+1)'“‘]T and, then, the required result follows

k
from Theorem 5.2. We prove this claim by induction. Clearly, for a trivial tree, YU, (@) <

i=1
k
Y1, 1<k <m. Next, lets; be the number of nodes in the tree T(n;) which is formed by n;
=

and its descendants. Assume that Y; <, [(d+1)"" ' (dpt1)™ L (At )T YT, Then, by
Proposition 5.2 we have fo(Y) <, [@#D)% (@)% -, (@)Y Since

Y= TI fa(Yp, by Proposiion 53 we obiin ¥; <, [+, @)™, -,

nye Cln

(d+1 )"'l]T. where C(n;) is the set of children of the node n; and 5;= 3, s;+ 1. The claim
nje Clny)

| Vrl-1

1 Vel
is thus proved by induction and the inequality N(Gr, Gp) < X (d;+1) follows.
i=l
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QED.

5.1.4. Some restricted cases

In a more restricted case when Gy is a tree and Gp is an n-regular graph, N(Gr, Gp) can
be expressed in a closed-form as given in the following corollary.

Corollary 5.2.2: If Gp is an n-regular graph and Gy is an arbitrary tree, then

N(Gr, R =| Vol + 1)¥* ™",

Proof: If A is the adjacency matrix of an n-regular graph, we have W( fo(V)) =
@+1)W(V), ¥ VeI™ If n, is an isolated node, then W(D,) = W(U,,) =| Vp|. We can con-
struct any tree by starting with a single node and attaching one node at a time, thereby prov-

ing this corollary. Q.E.D.

Due to the diversity of network structures, the problem of determining N(Gr, Gp) how-
ever becomes very complicated when Gy is neither a tree nor a complete graph. Although one
can derive recursive or closed form expressions for N(Gy, Gp) when Gy and Gp are restricted

to some family of giaps, it is still extremely difficult to determine the general formula of

N(Gr, Gp). The p of ining N(Cy,, Q,) is p below to dt the
associated difiiculty.

To determine the expression of N(Cj,, Qy), consider an alternative approach to the deter-
mination of N(Py, Q,) without applying Corollary 5.2.2. Suppose the two end nodes of a
(task) path Py, are assigned to processors p; and p; in Qy, the distance between which is k.
Consider the case where one more task node is to be attached to the end node labeled with p,.

Clearly, the attaching task node can be assigned to n+1 possible processor nodes in Q,. From
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the i and the of Q,, we know that k of these processors have a

J q

distance k-1 from py, n—k of them have a distance k+1 from p, and only one of them has a
distance k from p;. That is, the relationship of the two end nodes of Py can be determined
from the relationship of the two end nodes of Py, More formally, let us define the sequence of
- vectors (80, 8y, * * *, &) Such that
aj0=2" ag; =0, 1si<n,
By = OB + Begy + (DB, K22, 1SjSnT,
B0 =Mt F Bl Ben = Betaet F g K22

Note that this sequence of vectors is so defined that a;; is the number of acceptable labelings

of P; with Q,, in which the distance b the two p igned to the two end nodes

in P; is j. Using this sequence, we have the following lemma which determines N(C, Q).

Lemma 5.3: (a) N(Py, Q) = i‘,nm =27 + )",
=0

(b) N(Cy, Qn) = ay0 + ap,y-

Proof: The acceptable labelings of Py, with Q,, in which the distance between the two
processors assigned to the two end nodes in Py, is j, come from the following three cases.
Case I: Adding one more node to P,y in which the distance between the two processors
assigned to the two end nodes is j-1.

Case 2: Adding one more node to Py,_; in which the distance between the two processors
assigned to two end nodes is j.

Case 3:  Adding one more node to Py_, in which the distance between the two processors

assigned to two end nodes is j+1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



146

For these three cases there are n—j+1, 1 and j+1 possible Py,_,’s, respectively. Thus, part
(a) follows from the definition of the sequence of vectors, (8,0, 8,3, ***, 8jp).
Clearly, C}, can be obtained by adding one more edge between the two end nodes of a

Py. Thus, part (b) follows. Q.E.D.

Figure 5.5 shows how to determine N(P;, Q,) and, thus, N(C;, Q,) with the above
method when n=2 and n=3, respectively. The entry in row P; and column A;, denoted by a;;,
means the number of acceptable labelings of P; with Q, in which the distance between the
processors assigned to two end nodes of P is j. It can be easily verified that the numbers
N(P;, Q,), i1, agree with the result of Corollary 5.2.2. It is interesting to analyze the com-
plexity of calculating N(Cj,, Q,). From Figure 5.5 and the recursive definition of {a;9, a;4,

©t v, 84,), it requires 2 iplications and 2 additions to ine each entry in row P; of

Figure 5.5 from entries in row P;_;, and there are n+1 entries in each row, meaning that the

complexity of calculating all entries in a row is O(n). Therefore, the ity of ining
N(Cp, Q) is O(nh).
Notice that even in the restricted case of Gp is a Q, and Gy is a C,,, we have to appeal

to some ivil ive formula, y, the difficulty in determining N(Gr, Gp)

increases with the irregularity of the graphs involved. The main results in this section are

summarized in Table 5.1.

5.2. Application, Remarks and Extension

In this section, three i les are p d to the utility of the

knowledge of N(Gr, Gp). In light of these examples, some remarks are also made to indicate

the complexity of the task assi p More imp ly, our results on N(G, Gp)
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When n = 2

AO Al Az N(Plv Qz’
4
Pl 4
rz 4 8 12
I’3 12 16 8 36
P4 28 56 24 108
P5 84 160 80 324
When n = 3 A A A A3 NpLQ)
8
Pl
PZ 24 32
P3 32 48 48 128
P4 80 240 144 48 512
Ps 320 768 768 192 2048
Figure 5.5.  Examples of NP, Q,) for n=2 and n=3.
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are extended to the completely general case, (i.e., those assignments with dilations greater than

one) in which two related task modules in Gr can be assigned to any two p in Gp

(which are not required to be adjacent to each other).

5.2.1. Application Examples

Example 5.1: Consider the processor graph Gp and task graph Gr shown in Figures 5.6a
and 5.6b, respectively. Let Gp\(i,j) denote the graph resulting from the removal of the edge
(ij) from Gp. Then, using the results in Section 5.1.3, we can calculate N(Gr, Gp) = 7217,

NG, Gp\(1,3)) = 477, N(Gr, Gp\4,5)) = 563, N(Gr, Gp\2,3)) = 405, and N(Gr, Gp\3,5)) =

489. Therefore, as far as the number of ptabl i is d, the edge (2,3) is
the most critical since its removal will cause the largest decrease in the number of acceptable
labelings.

Consider the case when a new edge or communication link is to be added in Gp. Let
GpH(i,j) denote the graph resulting from the addition of au edge between nodes i and j in Gp.
Then, we obtain N(Gr, GpH(1,4)) = 1091 and N(Gr, Gp+(3,4)) = 1203. This implies a higher
increase in the number of acceptable labelings by adding edge (3,4) than by adding edge (1,4).
Thus, using N(Gr, Gp) one can determine the edge to be added for a maximal increase in the

number of acceptable labelings.

Example 5.2: Consider the example processor graph Gp and task graph Gy shown in Figures

5.7a and 5.7b, respectively. Again applying the p dure in Section 5.1.3, we can construct
an enumeration tree as shown in Figure 5.8, where the number in the square associated with
each node represents the number of all acceptable labelings subject to the partial labeliilg

made already for the node and its predecessors.
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(a) Processor graph, GP

(b) Task graph, G

T

Figure 5.6. Example processor and task graphs.
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GP
3 2
(a) Processor graph
i)
™ "2 "s
)
O O
G'l‘
"4
(b) Task graph
L ’
"1 "2
n’ n’ [ 34

3 4 s
(c) Decomposed task graph

Figure 5.7. An example network.
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Notice that the numbers in the squares in the first level (i.e., 192, 90, 81, 90 and 24) are

Dy(i), 1 <i <5, and those in the second or lower levels can be obtained by properly decom-

posing the task tree and multiplying together the bers of ptable labelings in each sub-
tree subject to the partial labeling made already for the corresponding node and its predeces-
sors. For example, to determine the number in the square of the node (ny, 2) whose immediate

d is (my, 1), we d pose the task tree into two subtrees as shown in Figure 5.7¢

p
and then obtain the number associated with the node (n, 2) from Dy(1)* Dy(2) = 16*3 = 48,
The enumeration tree can also be used to determine the number of conditional acceptable
labelings, N(Gy, Gp | P), where Pg((t, p)| te Vg, peVp). For example, if P = ((n,,5),
(n3, 1)}, then N(Gy, Gp | P) = 8 + 4 =12, This means that there are 12 acceptable labelings

in which task n; and n are assigned to p 5 and 1, respectively. Moreover,

in the state-space search of the task assi problem, the ion tree provides a good
indication for the search status of the current node and can be applied to establish a guided
search. When the computation cost for the heuristic function is highs, we can skip some
evaluation steps and choose a search route toward an ampler state-space without computing
the heuristic function of every offspring. For example, in Figure 5.8 the node (n,1) will be
chosen since it has the highest potential (i.e., 192 > 90, 81, 24) for containing the optimal
solution. This approach is actually based on the fact that a larger number of acceptable label-
ings implies that unassigned task modules have a better chance to be spread out in the net-
work.

Clearly, when the goal of achieving load balancing is more important than that of reduc-
ing the interprocessor communication cost, the likelihood of making a successful guess with

the knowledge of N(Gy, Gp) will be increased. This guided search holds practical importance,

SFar example, the algoritim A* used in [77] requires a large number of evaluations of a complex hcuristic function.
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since it requires much less search cost and is attractive, especially when we want to reduce the

expected search cost and there are many acceptable goal nodes in the state-space.

Example 5.3: In the state-space search, we naturally want to reduce the number of expanded
and generated nodes in the worst case [65]. Consider the enumeration tree in Figure 5.8. It is
easy to see that the number of nodes in the i-th level is equal to N(TR;, Gp) where TR, is the

induced subgraph of Gy with the set of nodes {n;Inj € Vrand j < i}. Note that the total

1Vl
number of nodes in the enumeration tree, 1+ ¥, N(TR;, Gp), and the number of internal
i=t

1Vyl-1
nodes, 1 + Y, N(TR;, Gp), are respectively the number of generated nodes and the number
i=1

of expanded nodes in the worst case of the state-space search. For the example task and pro-

cessor graphs in Figure 5.7, we get N(TR,, Gp) =5, N(TRy, Gp) = 15, N(TR3, Gp) =47,
Vyl-1
N(TR, Gp) = 153 and N(TRs, Gp) = 477. That is, there are 1+ ¥, N(TR;, Gp) =221
i=t

1 Vel
expanded nodes and 1 + ¥, N(TR;, Gp) = 698 generated nodes in the worst case of the state-
i=1
space search.
Clearly, while N(TRjv, |, Gp) is just the number of acceptable labelings, the number
1Vgl-1

N(TR,, Gp) closely depends on how we encode the task nodes in Gr with n;,
i P

i=1
1< i<| Vy|. In other words, different encodings of the task tree lead to different enumeration
trees which usually have different numbers of internal nodes but the same number of leaves.
For example, in the case when the task graph in Figure 5.7b is encoded as the one in Figure

59, we have N(TR,, Gp) =5, N(TRy, Gp) = 15, N(TR;, Gp) = 47, N(TR,, Gp) = 147 and

N(TRs, Gp) = 477. The imal of d and exp nodes are then reduced

to 692 and 215, respectively.
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Figure 5.9. A different encoding of the task
graph in Figure 5.7b.
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1t can be verified by enumeration that among all the possible encodings for the task tree
in Figure 5.7b, the encoding in Figure 5.9 is the enumeration tree with the minimal number of
internal nodes; it minimizes the number of expanded nodes in the worst case of the state-space
search when the processor graph is the one in Figure 5.7a. (Such an encoding is termed the
best encoding.) Improvement in the worst case of the state-space search is not the only advan-
tage of the encoding with a smaller enumeration tree. Since the goal node in the state-space
search must be a leaf, searches in the enumeration tree with less internal nodes are naturally
expected to have less average number of expanded and generated nodes.

Using the procedure proposed here, one can construct the enumeration tree for each
encoding of the task tree and then determine the best encoding off-line to reduce the computa-

tion cost of the state-space search.

5.2.2. Remarks
The following remarks are in order to clarify some conjectures which may result from

the above examples.

R1. In the first example, the increase of the number of acceptable labelings by adding an
edge between two processor nodes with larger degrees may always seem to be greater
than that by adding an edge between nodes with smaller degrees. This is not always true.
A counter example is shown in Figure 5.10, where Gg and G, are obtained by adding
edges (1,13) and (7,10) respectively in G,. Applying the results in Section 5.1.3, we get
N(Ps, Gp) = 10134 < N(Pg, G,) = 10454. Note that the degrees of nodes 1 and 13 in

G, are 4, whereas those of nodes 7 and 10 in G, are 3.

R2. We get N(P3;, Gp) = 196 > N(P;, G) = 192 in Figure 5.10. This means that the edge

(1,13) in Gg is more important than the edge (7,10) when the task graph is P3, but less
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Figure 5.10. A counter example showing that adding
an edge between two nodes with larger
degrees does not always result in a
higher increase in the number of
acceptable labelings.
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important than the edge (7,10) when the task graph is Ps. This fact not only indicates

the importance of each edge in the p graph depends on the of the asso-

ciated task graph but also shows that N(Gr, Gp) > N(Gr, Gp,) does not imply

N(Gr,, Gp,) > NGr,, Gp)) for Gr, # Gr,.

R3. One may also conj in ple 5.2 that the p node which leads to the
amplest state-space is always the node with the maximal degree. Again, a counter exam-
ple is given in Figure 5.11 in which the degree of node 1 in the processor graph is

greater than that of node 5 (i.e., d(1) = 4 > d(5) = 3), while Dy(1) = 225 <Dy(5) = 289.

R4. Consider the two encodings of a task tree in Figures 5.12a and 5.12b. Gr, and Gr, in

Figure 5.13a and 5.13b are respectively the TR¢'s ponding to the gs in Fig-

ure 5.12a and 5.12b. We then have N(Gr, Sq) =640 > N(Gr, Sy = 616 and
N(Gr,, Pg) = 482 < N(Gr,, Py) = 484 where S, and P, are respectively the star and path
with 4 nodes. It can be verified that the encoding of the task tree in Figure 5.12a is the
best encoding when Gp = Py, and on the other hand the encoding in Figure 5.12b is the

best encoding when Gp = S,. This fact indicates that the best encoding of a task tree

depends on the of the iated p graph, ie., N(Gr, Gp) >

N(Gr,, Gp,) does not always imply N(Gr,, Gp,) > N(Gr,, Gp,) for Gp, # Gp,.

As can be seen from the above remarks, the task assignment problem is more compli-
cated than it may appear to be. This is the very reason that a rigorous procedure like the one

treated in this chapter must be called for.
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(a) Processor graph

(b) Task graph

Figure 5.11. An example network for Remark 3 where
D;(1) <D(5) and d(1)=4 > d(5)=3.
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0, o, o, n, LR
O ) D)
6 %y
(a) An encoding of a task tree
" "2 3 4 s

) 6

(b) Another encoding of a task tree

Figure 5.12. Example of different encodings which are
associated with different enumeration trees.
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(a) C-rl , TR¢ according to Figure 12(a)

"s

n, 0,
Oo——(0O0——0

"

O—

O+

n
6

(b) C-.-z , TR¢ according to Figure 12(b)

Figure 5.13. TRg4 according to the encoding
in Figure 5.12.
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5.2.3. Extension

Thus far, we dealt with only those task assignments with dilations not greater than one.
However, our results developed for the case of the dilation not greater than one can be
extended to to the completely general case, in which the dilation can be greater than one.
Suppose the allowable dilation (AD) is a positive integer k > 1. Then, a communication graph
G can be obtained from the processor graph Gp in such a way that V¢ = Vp and every pair
of processor nodes in G is connected iff the number of hops between the pair of processor
nodes in Gp is less than or equal to k. For example, given the processor graph in Figure 5.14a
and AD = 2, we have the communication graph in Figure 5.14b where a solid line means a
one-hop communication, and a dashed line denotes a two-hop communication. Clearly, when
AD = 1, the communication graph is the same as the processor graph.

Notice that the constraint ‘‘every two related task modules in Gy must be assigned to

either a single p: or two p the di: between which is less than or equal to
k in Gp” is equivalent to the constraint ‘‘every two related task modules in Gy must be
assigned to either a single processor or two adjacent processors in G¢''. Then, we can treat

the task assi blem with p graph Gp and AD > 1 as the task assignment

P

problem with processor graph Gc and AD = 1, By substituting the communication graph G¢

for the processor graph Gp in our previous results, we can formulate N(Gr, Gc), instead of

N(Gr, Gp). Following exactly the same p in previ p we can apply this

knowledge to provide a simplified state-space search (as in Example 5.2) and reduce the size

of the state-space to be hed (as in ple 5.3).
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1. 2 3 4
O N N
\
6 5

(a) Processor graph G,

(b) Communication graph G,

Figure 5.14. Determination of a communication
graph. ’
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CHAPTER 6
TASK ALLOCATION AND MIGRATION
IN HYPERCUBE MULTICOMPUTERS

Ina i an i ing task must be assigned to a subcube of the

yp P

Upon pletion of ion, the subcube used for the task will

q size for

be released (relinquished or deallocated) for later use. Efficient allocation and/or deatlocation

of node ina i is a key to its performance and utilization.
P yp P Y P

The llocation in a hypercub: Iticomputer consists of two steps: (i) determination

of the size of a subcube to accommodate an incoming task, and (ii) location of a subcube of
the size determined by (i) within the hypercube multicomputer. The first step is usually done
manually by the users. When the incoming task is specified in a graph form, the first step can
be resolved in light of various results developed for the graph embedding (40,29, 35,39, 12].
Developing efficient strategies for the second step is the subject of this chapter. Some task

11 i ies have been ped in [24,22], and some results on the existence of sub-

cubes of certain dimensions in an injured hypercube have been reported [4]. However, we

shall address on the problem of i ilable subcubes by a sequential search on the

addresses of hypercube nodes, thereby distinguishing this work from those described in

[4,12,22,24). Notice that there is a close 1 of the p jon problem in
the n-cube icomp to the conventi memory allocation problem. In both p
we want to maximize the utilization of avai and also minimize the inherent sys-

tem fragmentation.
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Some properties of the buddy strategy will be explored first. Then, the buddy strategy

will be proven to be statically optimal in the sense that only minimal subcubes are used by

the strategy to date each seq of i ing requests when processor relinquish-

idered, i.e., static allocati However, in the case when processor relinquish-

ment is not
ment is taken into account, the buddy strategy will be shown to be poor in recognizing or
detecting the availability of subcubes in the n-cube multicomputer. Due to the special structure
of the n-cube multicomputer, the availability of some subcubes cannot be detected by the
buddy strategy, and the processor utilization is thus degraded. The ability of detecting the

availability of subcubes will henceforth be termed as subcube recognition ability.

A processor allocation strategy using the binary reflected Gray code, the GC strategy, is
then described. The performances of both the buddy and GC strategies will be comparatively
analyzed. We shall show that the GC strategy, as well as the buddy strategy, is optimal for the
static allocation. Furthermore, it will be proven that subcube recognition ability is enhanced
significantly by the GC strategy; the number of recognizable subcubes in the GC strategy is
twice that in the buddy strategy. We also prove that the subcube recognition ability of the GC
strategy is optimal among those achievable sequential searchs. As will be seen, there are

many different GC’s for an n-cube multicomputer, each of which is associated with a set of

ble subcubes. An all ion strategy using more than one GC can usually recognize
a greater number of available subcubes (and thus improve processor utilization) than can a
strategy using only one GC. The relationship between the GC’s employed and their subcube
recognition ability will also be derived and used for determining an allocation strategy with

multiple GC’s.

However, like the ct i memory ion and ion of sub-

cubes usually result in a fragmented hypercube, i.., even if a sufficient number of nodes are
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available, they do not form a subcube large enough to accommodate an incoming task. Figure

6.1 shows an ple of a ypercube where 4 avail nodes cannot form a 2-

cube or Q,. Thus, if a task requiring a Q, arrives, it has to be either queued or rejected. As
it will be seen later, such fragmentation leads to poor utilization of hypercube nodes, and the
improvement achieved by the GC strategy is thus limited. As the fragmentation problem in

the i memory ion can be handled by memory compaction, the fragmentation

problem in a hypercube can be solved by task migration, ie., relocating and compacting
active tasks within the hypercube to one end so as to make large subcubes available in the

other end. Notice that due to the special feature of hypercube structures, there is a strong

depend of task migration on the subcub ion strategy used, since active tasks must
be relocated in such a way that the availability of can be d d by that all
strategy.

Consequently, we also develop in this chapter a procedure for task migration under the

GC strategy. A collection of ied bes is called a configuration. The goal

P

configuration to which a given fragmented configuration must change by relocating active
tasks is determined first. A task is allocated to a subcube, at each node of which a portion of
the task called a rask module is located. The action for a hypercube node to move its task
module to one of its neighboring nodes is called a moving step. The cost of each task migra-
tion is then measured in terms of the number of required moving steps while task migrations
between different pairs of source and destination subcubes are allowed to be performed in

parallel. Note that to move tasks in parallel, it is very important to avoid deadlocks during

the task migration. We not only late the nod pping b each pair of source and
destination subcubes so that the number of required moving steps is minimized, but also

develop a routing procedure to follow shortest deadlock-free paths for task migration.
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occupied
110 111
7
100 101
010 o11
000 001
occupied

Figure 6.1. A fragmented hypercube.
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The chapter is organized as follows. A detailed description of the buddy and GC stra-

tegies is given in Section 6.1. Section 6.2 deals with the relationship between the number of

GC’s employed in an allocation strategy and the pondi beub gnition ability.
Also given are il i ples and sil ion results. In Section 6.3, we develop a pro-
cedure for task migration under the GC strategy. The goal ion, the nod \ppil

between the source and destination subcubes, and a routing scheme which leads to the shortest

deadlock-free paths for task migration will be ped in three i pectively.

The results presented in this chapter have also been reported in [13,16).

6.1. Subcube Allocation Strategy Using the Binary Reflected Gray Code

The ion and iti quired will be given in Section 6.1.1. The buddy and GC

strategies are introduced in Section 6.1.2 and the subcube recognition ability of the GC stra-

tegy is explored in Section 6.1.3.

6.1.1. Preliminaries

The notation and definitions given in Section 4.1.1 will be followed in this chapter. Let
(81> 82 * * * » &) be a permutation of {1,2, - - -, n). For 1 Si < n the partial rank r; of g; is
defined as the rank of g; in the set {g;, g, ' * * , &) When the set is rearranged in ascending
order. For example, when {gy, 82, 83) = (3, 1,2}, 1y =1, p=1andr; =2. Let Abea
sequence of binary strings of length n—1, n>1. Then, a sequence of binary strings of length n,
denoted by A%, b e (0, 1), can be obtained by either inserting a bit b into the position
immediately right of the bit in the k-th position of every string in A if 1 < k < n-1, or
prefixing a bit b to every string in A if k = n. Also, let A" denote the sequence of binary

strings obtained from A by reversing the order of the strings in A. For example, if A = {00,
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01, 11, 10}, we have A™ =(010, 011, 111, 110}, A™ = (100, 101, 111, 110}, and A’ = {10,
11, 01, 00}. Using the above notation, Gray codes are defined formally as follows.

Definition 6.1: Let G, be the GC with parameters g;, 1<isn, where (g, 82, - * -, 8} is
a permutation of Z,, = (1, 2, * - -, n). Then, G, is defined recursively as follows.

Gy =10, 1),

)
,

Gy = (Git, Gip) 25ksn,

where 1, as before, is the partial rank of gi.

For example, for a given GC with parameters (g, 82, g3} = (2, 3, 1}, we get {1, 3, 13}
= (1, 2, 1}, G=(0, 1}, G,=(00, 01, 11, 10} and Gy={000, 010, 110, 100, 001, 011, 111,

101), where the newly inserted bits are underlined. It is worth mentioning that the above

definition is a generalization of the Gray codes I in the li [,
and that the binary reflected Gray code (BRGC), the most frequently used GC, can be
obtained readily from this definition by letting g;=i, 1Si<n. Figure 6.2a and 6.2b show respec-
tively the BRGC and a GC with (g;.g2,g3) = (2,3,1}. Note that a GC with parameters g;, i =
1,..,n, can be obtained by permuting the bits in the BRGC in such a way that the direction i
of the BRGC becomes the direction g; of this GC. For simplicity, unless specified otherwise,
G,, will denote the BRGC.

A set of contiguous integers is called a region and let #[a, b] = (k | asksb, keI'),
where I' denotes the set of positive integers. A coding scheme with n bits, denoted by C,, is
defined as a one-to-one mapping from a number within #[0, 2"~1] to a binary representation
with n bits, and let C,(m) denote the representation of a number m under the coding scheme
C,. A coding scheme with 4 bits which is neither the BRGC nor the standard binary encod-

ing scheme is given in Figure 6.3. Let B (m) denote the binary representation of an integer m
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000 000
001 010
011 110
010 100
110 101
111 111
101 011
100 001

(a) A BRGC (b) a GC with {gl,gz,g, }={2,3,1}

Figure 6.2, Illustration of Gray codes.
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1. 0001
2. 0011
3. 0010
4. 0110
5. 0111
6. 1111
7. 1110
8. 1100
9. 1000
10. 1010
11. 1011
12. 1001
13. 1101
14. 0101
15. 0100

Figure 6.3. A coding scheme with 4 bits.
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with n bits and G,(m) be the BRGC representation of m. Also, the notation [b] is used to
denote the largest integer which is less than or equal to b, and [b] the smallest integer which

is greater than or equal to b. Let S| denote the cardinality of the set S.

6.1.2. Subcube allocation strategies

Node p in an n-cube multi must be all d to i ing tasks so as

P

to maximize processor utilization and minimize system i Due to the special
structure of an n-cube, it is very difficult to detect the availability of a subcube of required
size, and merge released subcubes of small sizes into a larger subcube. Although the pro-
cedures used in determining the primary implicants in a Boolean function can be used in
detecting the availability of a subcube, they are too complicated to be useful [51]. Thus, we
shall not follow these procedures; instead, we shall focus on ways of exploiting the ideas used

in ional memory i )i An allocation strategy using the buddy sys-

PP

tem, the buddy strategy, will be described first. Next, a strategy using the BRGC, the GC
strategy, will be described. The GC strategy will be shown to outperform the buddy strategy.

As will be seen later, our app to the p Iocation problem is mainly based on a

sequential search of a list of allocation bits, and can thus be accomplished by the various

used for the i memory such as the first-fit and the best-fit

PP

searches [81]. For clarity of p ion, the first-fit approach is employed in both the buddy

and GC strategies.

6.1.2.1. The buddy strategy

One form of the buddy strategy was investigated in [67] and also implemented in the

NCUBE multicomputer [20]. Since there are 2" processor nodes in a Q,, 2" allocation bits are
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used to keep track of the availability of all the nodes. An allocation bit with value 0 (1) indi-

cates the availability ( ilability) of the corresponding node. The buddy strategy consists
of two parts, p llocation and p relinquish which are outlined below.
Processor Allocation
Step 1. Set k := I}, where [I] is the di ion of a subcube required to date the
request Ij.

Step 2.  Determine the least integer m such that all the allocation bits in the region #[m2%,
(m+1)2"—1] are 0’s, and set all the allocation bits in the region #[m2k, (m+1)2"—-1]
to 1's.

Step 3. Allocate nodes with addresses By(i) to the request I, Vi e #{m2%, (m+1)2k-1]4

P Relinquish

Reset every p-th allocation bit to 0, where B,(p) € q and q is the address of a released sub-
cube.

This strategy can be explained by the binary tree in Figure 6.4. The level where the root
node resides is numbered 0, and the nodes in level i are associated with subcubes of dimen-
sion n-i. A node in this binary tree is available only if all of its offsprings are available.
‘When an incoming request needs a Qy, the buddy strategy searches the level n—k of the tree

from left to right and the first avai beube to the request. The processors asso-

ciated with allocation bits in #[m2¥, (m+1)2"—1] always constitute a Q, whose address is

ar

B, (m)**. Similarly to the ional memory
or relinquishment takes place, the subcube to be allocated or released must be associated with
a region of contiguous allocation bits.

Static allocation is concerrzd oniy with how to accommodate incoming requests without

ing inquish Figure 6.5 shows a simple example of static allocation.

P ]t
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Level 3

Level 1

Level 2

Level 3

Level 4
(External Node)

Figure 6.4. A complete binary tree for the buddy strategy.
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Pl a FUa N o
nmnunn
Rl
PY-Y-Y<

LLLP

0000 —» I,
0041 — 1,
0010 — 1’
0011 —> L
0100 —
0101 |, 1
0110

0111 —
1000 —]
. 1001 "5
10. 1010 —
11. 1011 _|—»
12. 1100 =
13. 1101
14. 1110 [ L
15. 1111 _|

PRNANELNNS

Figure 6.5. The operations of the buddy strategy.
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It is easy to observe that a Q4 can date the i ing request seq Xy, -+ -, Ig)
even if the order of the requests in the sequence were arbitrarily shuffled. As we shall prove
later, this is not a coincidence, but rather, a result of the static optimality. An allocation stra-

tegy is said to be statically optimal if a Q, using the strategy can accommodate any input

3 k
request sequence {I;);- iff 22"" < 2", where I];| is the dimension of a subcube required to
i=1

accommodate the request I, Following the concept of the buddy system described in [49, 67],
we have the proposition below for the buddy strategy.

Proposition 6.1: The buddy strategy is statically optimal.

Note that when a Q, is needed, the buddy strategy searches for a region of allocation
bits with 0’s whose addresses start with an integral multiple of 2%, This in turn implies that
there are only bl Qy's within the n-cube multicomputer recognizable by the buddy strategy.
Consequently, the buddy strategy under-utilizes processors in the n-cube multicomputer. To
remedy the processor under-utilization problem of the buddy strategy, we shall describe a allo-

cation strategy using the BRGC. Under the GC strategy, processor utilization will be

d signi ly by novel ings bei the allocation bits and node p

6.1.2.2. The GC strategy
Similarly to the buddy strategy, the GC strategy can be described by the following two

parts.

Processor Allocation

Step 1:  Set k :=f}, where |I] is the dimension of a subcube required to date the
request Ij.

Step2:  Determine the least integer m such that all (i mod 2")-th allocation bits are 0's,
where i € #{m2%~!, (m+2)2*"'~1]. Set all these 2* allocation bits to 1’s.
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Step3:  Allocate modes with addresses Gy(i mod 2" to I, where ie #[m2"",
(m+2)21-1].

P Relinquish
Reset every p-th allocation bit to 0, where G,(p) € g, and q is the address of a subcube
released.

Since the nodes corresponding to the first and last allocation bits are adjacent to each
other, a circular search is allowed in the GC strategy. To show that the nodes associated with

for

those allocaion bits in #[m2~!, (m+2)2¢'-1] itute a Q, ider another p
generating the BRGC [11]. (As mentioned before, one can assume, without loss of generality,
that the GC strategy uses the BRGC only.) It is proved in [70] that this procedure indeed gen-
erates the BRGC. Given a k-bit BRGC Gy = {dp, dy, = * -, dyx_y), @ (k+1)-bit BRGC can be
generated by:

Gt = {dg0, dol, dy1, 40, 430, dp1, - - - 1Ay 1, dye,0).

This procedure can be described by a complete binary tree as in Figure 6.6. The address of
every external node is determined by the coded bits in the path from the root to the external
node, and the BRGC is then obtained by the addresses of external nodes from left to right.
Similarly to the binary tree in Figure 6.4, the nodes in level n-k are associated with
Qy’s. It is easy to see from the scheme of coding edges of the tree that two adjacent nodes in
the (n—k+1)-th level form a Qy, even when they do not have the same immediate predecessor.
Therefore, when a Qy is requested, the GC strategy searches from left to right for two adja-
cent available nodes in level n—k+1, rather than searching for an available node in level n-k.
A Q will thus be searched for in the regions whose addresses start with an integral multiple

of 2%! instead of 2. (Recall that the latter was used for the buddy strategy.) This means that
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the number of subcubes recognizable by a GC is twice that by the buddy strategy. The

number of subcubes recognizable by each of the two strategies is presented in Table 6.1.

Because of its enhanced subcube recognition ability, the GC strategy can allocate sub-
cubes more densely at one end, and, thus, make larger subcubes available at the other end for
future use. Moreover, the GC strategy too is statically optimal.

Theorem 6.1: The GC strategy is statically optimal.

Proof: In Step 2 of the processor allocation part of the GC strategy, a request is said to
be fype A (type B) if the request is allocated to those nodes with addresses Gy(i mod 2",
i e #{m2*, (m+2)2¥"'-1], where m is an even (odd) number. Note that whether an incoming
request is type A or type B depends on the allocation bits set by previous requests. If a
request is type A, both the buddy and GC strategies can allocate a subcube to the request
while setting the same region of allocation bits to 1's. (For type A requests there is no distinc-
tion between the buddy and GC strategies.) However, if I, is a type B request and #[mZI"’H,
(m+2)2”"|'l—l] is its corresponding region, then we claim that there is no region forming a

-ty

Q.11 before the region #[mZ”"H, (m+2)2°° ]. This claim implies that every type B
1-1

request I, can be d posed into two ig requests, each asking for a subcube of

dimension 1)1, and these two requests can be allocated within the n-cube under the buddy
strategy while still setting the same region of allocation bits, #[m2”"|_', (m+2)2”""1—1], to
1s.

To prove the claim, suppose I, is a type B request and #[m2”""', (m+2)2”"'_l—l] is the

ing region to be Then, the region #[(m—l)Z”"_', m2""'"'-1] must have

P

become i as a of ing those requests asking for (1) subcubes of

dimension less than or equal to 1Ll -1, or (2) subcubes of dimension |L,I. However,

without loss of generality, I, can be assumed to be the first type B request asking for a Q"‘,,y
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and case (2) can thus be ignored. Then, there is no no region forming a Q"y,_l before

#[m2"“|_’, (m+2)2""'_l—1]. The claim is thus proved.

For any incoming request sequence (Ij, I, -, ), every type B request in (I;,
Iy -y Iy) is d p into two ig requests as mentioned above and the buddy
strategy is applied to allocate to the Iting request seq The availability of a

region large enough to accommodate ; is guaranteed by the static optimality of the buddy

strategy, as stated in Proposition 6.1.  Q.E.D.

An example of the GC strategy is given in Figure 6.7, where the input request sequence
is the same as that in Figure 6.5. It can be observed that the GC strategy outperforms the
buddy strategy in the first-fit search and will ‘‘pack’ incoming requests more densely, thus

making larger contiguous regions available than the buddy strategy can.

6.1.3. Subcube recognition ability of a single GC

Let {g1, 82, * ", 8a) be a per ion of Z,. As ioned earlier, by p ing the i-
th direction of the BRGC to the g;-th direction, one can obtain a GC with parameters g;, i =
1,...n. Since there are n! permutations of n distinct numbers, there are n! distinct GC’s for

the n-cube multicomp » , the subcubi ition ability of each GC can be

g

determined by the following theorem.

Theorem 6.2: A subcube Q with the address b,b,_; - * * by can be recognized by a GC

with parameters g;, 1 < i < n, iff any of the ing three conditions is
@) by =* Isisk.

(i) by =% 1<igk~1, and there exists an r such that b, =1, by=* and b, =0, kss<r-1.
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L=Q  k=Q
h=Q k=Q
L=Q I =Q
L=Q k=g
0. 0000— L
1. 0001— &
2. 001177
3. 0010 |, o
4. 0110
5. 0111
6. 0101—> I,
7. 0100
8. 1100_|~ E
9. 1101—> b
10.11117
11.1110
12.1010 | K
13.10111
14.1001
15.1000]"?8

Figure 6.7. The operations of the GC strategy.
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(i) by =* 1sisk—1, by =0, kssso-1, and by =*.

Proof: Without loss of generality, one can consider the BRGC only, since all the other
cases can be obtained by permuting the subcube address bits. Consider the complete binary
tree in Figure 6.6. Condition (i) is associated with all the nodes in level n-k, i.e., Q's. There
are 2" such Q’s. Condition (ji) corresponds to the availability of the two adjacent nodes in

level n—k+1 whose youngest common ancestor is in level n—t, k+1<r<n. The number of such

nk-l
Qs is Y, 2 Condition (iii) is associated with the Q that results from the two nodes at

i=0

nek-1
both the ends of level n—k+1. Thus, the total number of recognizable Q,’s is vk 4 Y 2+
i=0

1 = 2"k which agrees with Table 6.1. QED.

An illustrative example of the subcube recognition ability of a 4-bit BRGC is shown in

1 b

Figure 6.8. It is interesting to observe that the node of a gnizable by a

GC are contiguous in that GC. This is the very reason that a GC can be used to detect the

availability of subcubes with the ial search designed for the ional memory allo-

cation. Moreover, as it will be proved below, the GC strategy is optimal insofar as the sub-
cube recognition ability of a sequential search is concerned.

Theorem 6.3: The BRGC is an optimal coding scheme as far as the subcube recognition
ability of a sequential search is concerned.

Proof: Note that there are 2nk+l Qs recognizable by a BRGC [13]. Suppose there
exists a coding scheme that can recognize more than gnktl Q's. Then, there must exist two
distinct integers i and j such that (a) |i~j < 2k1. (b) nodes with addresses Cy(p), p € #[i,
#+2%-1], form a Q,, and (c) nodes with addresses C,(q), q € #[j, j+2k—1]. form another Qy.

Thus, the cardinality of #[i, i+2-1] ( #[j, j+2"~1] must be greater than 2! since |i~j <
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Figure 6.8. Illustration of Theorem 6.3 when
{882, 3084} whered isOorl.
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21 and less than 2* since i # j. However, this means that the intersection of two subcubes

does not form a subcube, leading to a contradiction. Q.E.D.

6.2. Allocation Strategies Using Multiple GC’s

Although the GC strategy has better subcube recognition ability than the buddy strategy,

it still cannot recognize all the subcubes in an n-cube multicomputer. Note that different GC’s

are iated with di sets of izabl bes. Thus far, we have considered the
case of using a single GC only. Clearly, subcube gnition ability will imp; if more
than one GC is used. It is imp to i igate the i i the
number of GC’s employed and the ponding subcube ition ability.

Note that Theorem 6.2 provides a necessary and sufficient condition for the availability
of a subcube to be recognized by a GC. Since different GC's are associated with different

sets of izable subcubes, p utilization in an n-cube multicomputer improves as

the number of GC’s used in an allocation strategy increases. Consider an allocation strategy
which uses three GC’s with the following parameters: (gj' )j5=1 =1{1,2,3,4,5), lgjzlf:. =12,
5,1,3,4) and |g,-3]j.5=1 ={3, 1,4, 5, 2). Then, the set of subcubes recognizable by this allo-
cation strategy can be determined by Theorem 6.2 and shown in Figure 6.9 with the trivial
cases for Qo and Qs omitted. Also, it is shown from Theorem 6.2 that every subcube must be

recognizable by at least one GC and that the plete subcube gnition can be d if

all the n! GC’s are used. However, we naturally want to reduce, if possible, the number of

GC’s ired for subcube ition in order to minimize the search overhead

It 'P

associated with multiple GC’s. More on this will be di d in the ing
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GC GC GC
={l92139405} ={2,5,1,3,4} ={3,1,4,5,2}

dddd* ddd*d dd*dd
ddd*1 *dd1d dd1ld*
dd*10 1ddo* d*0d1
d*100 0d*01 *10d0
*d000 0*d00 d0o*0
ddd** *dd*d dd*d*
dd*1* 1dd** d**d1
d*10* 0d**1 *1*do0
* * 0#d*0 do**o
dd*** *dd** d**d*
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*do** **d*ﬂ do***
A T Adck g #
b bkl Hooke ke P kbt

Figure 6.9. Recognizable subcubes by the given
Gray codes, {g, ,g,,8,:8 .8 s}={1,2,3,4,5},
{2,5,1,3,4}, {3,1,4,5,2} where de{0,1}.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



187

6.2.1. The number of GC’s for complete subcube recognition

Let S be a set of strings which are permutations of Z,,. S is said to have the C-property
if for any k distinct numbers from Z, there is at least one string s € S such that these k
numbers are the first k numbers of s.

Lemma 6.1: Let M; be the set of all combinations of k distinct integers out of Z,,
0sks<n, and let x < y denote that all the integers in a combination x are contained in another
combination y. Then,

(i)  There is a one-to-one function f: M; = My, 0<i < [lzl-J — 1, such that

V x e M, x £ f(x), and

(ii)  There is a one-to-one function g: My, — M, [_%J < i < n-1, such that
g(x) <x

1t is necessary to introduce the Theorem of Matching in [54] to prove Lemma 6.1.

Theorem of Matching [54]: In a bipartite graph G=(V,E), a complete matching from
XSV to YCV exists iff |A| < [R(A)] for every subset A of X, where R(A) denotes the set of
vertices in Y that are adjacent to vertices in A.

A matching in a bipartite graph is a selection of edges such that no two edges are
incident with the same vertex, and a complete matching from X to Y in a bipartite graph is a
matching in which there is an edge incident with every vertex in X. For example, there is a
complete matching from X to Y in Figure 6.10a, but not in Figure 6.10b, since |{xg x3)| =2 >

[R({x2, x3}) =|{y4)| = 1 in Figure 6.10b. Lemma 6.1 can now be proved as follows.
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Y1

y
X ! Y2

X
Y2
X2 Xs Y3
ys
X3 X4 y 4
(a) (b)

Figure 6.10. Example for illustrating
Theorem of Matching.
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Proof of Lemma 6.1: Consider (i) first. Draw an edge between x € M, and y € M,,, if x

< y. An example is given in Figure 6.11a for n=5 and i=1. Note that every element in M, is
connected to n—i elements in M;,, and every element in My, is connected to i+1 elements in
M;. Treat M; and M;;; as X and Y, respectively in the Theorem of Matching. Then, for each
subset D of M, there are [Di(n—i) edges incident with the elements in D. Since n—i > i+1,
these edges must be incident with [D| or more elements in M;,,. The condition corresponding
to JA] < [R(A) in the Theorem of Matching is satisfied, and, thus, (i) follows. By treating M,
as X and M; as Y, (ii) can be proved similarly. Q.E.D.

Figure 6.11b illustrates Lemma 6.1 when n=5 and i=1.

Theorem 6.4: Let SC be the set of all sets with the C-property. Then, smgé {Ish) = C[‘,,J,
e L
2
where *‘C”’ stands for ‘‘combination.’

Proof: Since for every S with the C-propesty, |5 2 Cf, ¥ ke Z,U{0). Clearly,

in {|s]) 2 cr=cn, .
min (js}) 2 max CY n

D 2 The equality snelgtl: (sl = C:—;'J is proved below by showing

the existence of a set with the C-property whose cardinality is C]’_‘"J'
2

Construct a set of strings with the C-property as follows. Determine the one to one
function f from M; to M,,, for every pair of sets M; and M;;;, 0 < i< I_%j-—l, and draw an
arc from f(x) to x. Also, determine the one to one function g from M;, to M; for every pair
of sets My, and M;, L%J <i < n-1, and draw an arc from x to g(x). (The existence of such

functions was proved in Lemma 6.1.) Then, treat every entry in M; as a string with the i
numbers in that entry. For example, (1, 3} of M, in Figure 6.11b is treated 25 13 or 31.
Next, the strings in M; are determined in such a way that if there is an arc from a string s €

M, to a string t € M;_y, then t is a permutation of the first i-1 integers of s. Note that this
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@45

(b)

Figure 6.11. A complete matching from M,
to M,. :
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procedure can be performed from M, to M; step by step and a later permutation of leading

integers does not affect what the string was used for in previous steps. From Lemma 6.1,

there are C", strings without incoming arcs in M, [121_] <i<n Then, treat every string in
2"

M, as a permutation of Z, starting with the i numbers. For example, 452 in a M, can be

45213 or 45231, From (i) of Theorem 6.2, those C;_‘LJ strings after the above modification are
2

the parameters of the GC's required for pl beub ition, and, thus, this theorem
follows.  Q.E.D.

An le of ining the GC’s required for pl bcub gnition in a Qs

is given in Figure 6.12. The method introduced in the proof of Theorem 6.4 has placed arcs

from M; to M,_;, 2 S i < n, in Figure 6.12a, and the p of ining the requi

GC'’s is shown in Figure 6.12b.

Let o(n) be the minimal number of GC’s required for pl beubt gnition in a
Q.. Then, the following corollary follows from Theorem 6.4.

Corollary 6.4.1: o(n) < Ci’_;_J.

Notice that as pointed out in [16}, the approach of permuting the bits in the BRGC to
obtain other coding schemes with different set of recognizable subcubes can also be applied to
the stanard binary encoding scheme. More specifically, we can obtain extended binary coding
(EBC) schemes by permuting the bits in the standard binary encoding scheme, and apply (i)

of Theorem 6.2 to determine the recognizable suhcubes of each EBC. Let B(n) be the

minimal number of EBC’s required for plete subcube ition in a Q,. From Theorem
6.4 and the fact that there are 2"*C{ Qs in a Q, and each EBC can only recognize onk

Q’s, we have the following corollary.
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s oS
¢ G c3 ci cs
1 ¢e——&12 ¢— 123¢——1234<¢— 12345

2 13 124>< 1235
14 125 1245

3
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(a) Determine the GC's for complete
subcube recegnition.
12345
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1345—— 3145
2345—> 3425
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+235 245— 452  345— 354

(b) Modification of GC's in (a)

Figure 6.12. The GC's required for complete
subcube recognitionina Q.
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Corollary 6.4.2: B(n) = Cfﬂj'
2

To ine the complexity of the ing prop
2

Proposition 6.2: (]"'[(zk—l))/(z"m) <@o+1y"? ¥ne I
k=1

Proof: This inequality is proved by induction. Clearly, the inequality holds for n=1.

n 1
Assume ([J(2k-1))/2"n!) < (2n+1)™ for an n e I'. Then, (ﬁ(Zk—l))/IZ”'(n+1)l) =
k=1 k=1

2““ (H(Zk ~1))/2"l) < Sz"—:iZL < (2(n+1)+1)™2, which completes the proof.

QED.

2 — lJ
From C", = JI Zk 1 and the above proposition, it can be verified that

[ =
limC", /2" =0 and limC", /a" = o V¥ a € [0, 2), meaning that the complexity of C",, is
1] e |5 (]

still exponential. However, the above result bears practical importance, since the number of

the GC’s required for p subcube gnition is signi ly reduced g to
Corollary 6.4.1; especially, this is true when n is large because limC[‘,, 1/2“ =0.
o |3,
6.2.2. Subcube recognition ability for an arbitrary set of GC’s
Although plete subcube gnition can be lished by using no more than

Ci‘nj GC'’s, we may want to reduce further the number of GC’s employed so as to lessen the
2

search overhead induced by those GC’s while maintaining the required (perhaps not complete)

bcub ition ability. Therefore, the ionship between the subcub ition abil-

ity and the GC’s used has to be explored further.
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Clearly, since there is a finite number of subcubes in an n-cube multicomputer, the sub-
cube recognition ability for an arbitrary set of GC’s can be determined by enumeration in light
of Theorem 6.2. This is, however, undesirable due to the high degree of complexity. Instead
of a brute-force enumeration, we shall develop below a systematic procedure which uses the

of GC’s and ines the number of subcubes recognizable by those GC’s.

Let SG = {G!, G2 - -+, G"} be a set of h GC’s in a Q, and g/, 1 < k < n, denote the
parameters of G'. Consider the case of determining the number of Q,’s recognizable by SG
first. Define nj', bj‘ and cj‘ to facilitate our presentation as follows. For each j € Z,, when gh
= j, let b = gl if m>1 and bj=e if m=1. That is, b/ is the number that is in front of the

number j in the parameters of G, and b)‘=e represents the case when j is the first parameter of
Gl ie., j=gl. Let a}:{g”lgum—l}and o= {g‘: :m<u5n}. In other words, a; is the set of
parameters of G' before the number bj‘. and c,i the set of parameters of G' after the number j.
Note that bji and cJi could be empty in some cases.

Define an n-tuple resemblance vector or R-vector, Ry, Ry, * * *, Ry), for the set SG in
such a way that Ry = 0 if there exists an integer p # i such that bj # € and b,' € af, and R =
ho
|('\cj1 otherwise. The notation Rj=0 is used to mean that there does not exist any Q; with a *
i=1
in the j-th direction of its address that can be recognized by every GC € SG. It can be

verified that the condition for Ri=0 is a result of (ii) in Theorem 6.2. In addition, for 1 Sk <

n, let 8(k)=1 if R, # n-1 and ¥ gi=k, w= 1 or n, and §(k)=0 otherwise. The necessity of the

n
function & results from (iii) of Theorem 6.2. Thus, we get M()(SG) = ¥ Pl Y.8G), the
i =t

number of Q,’s that can be recognized by every GC € SG. Following the same procedure,

one can determine M(""(B) for any B < SG. Then, using the concept of exclusion and inclu-
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sion [54], we can get N(')(SG), the number of Q,’s recognizable by SG as follows.
h
Let 5, = YMP((G'}) = 2"h
=1
s = MG, G}
b

5= 3 MO(G, &, G4
ik
ive']uk

s, = M{(SG).

h .
Then, the number of Q,’s recognizable by SG is NYsG)= Esi(—l)‘”.
i=l

For the gnition of subcubes of di ion higher than 1, the above procedure can be
generalized as follows. Consider the determination of N®)(SG), the number of Q’s recogniz-

able by SG = (G', G2, - - -, G"). Again, we derive M¥(SG), the number of Qs recogniz-

bkl
able by every GC e SG first. Let W =1 (Ulg/). By Theorem 6.2, MM(SG)=0 if [W| > k
=1

and, thus, only the cases [W] = k-1 and [W] = k have to be considered. In the case of [Wl=k-1,
i.e., the first k~1 parameters of all GC’s in SG are the same, it can be seen from Theorem 6.2
that the procedure of determining N®(SG) can degenerate into the case of determining the
number of recognizable Q,’s while ignoring the parameters in W.

Without loss of generality, one can consider [W|=k only. Let g;,| be the parameter in W

but not in (gf)7'. Note that such a parameter must be unique. Then, let b = g if ¥k

. h N
and b'=e otherwise, aE{g,: :k5u<yi—1 } d= {g,{ :y‘<\15n}, and R,, = |~cl. In addition, let
i=1
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dW)=1ifR, #n-kandy,=korn Vie {1,.,h), and (W) = 0 otherwise. Thus, we

have M*)(SG)=0 if there exists an integer p # i such that b € and bl e a?, and M¥(SG) =

g (W) otherwise. F ing the same procedure of exclusion and inclusion as above,
N®(SG) can be determined.

Using the parameters of GC’s, the number of izabl bes of given di
can be p y ically by the above procedure. To illustrate this procedure,
consider the subcube ition ability of an ion strategy using the three GC’s in Fig-

ure 6.9 for a Qs. That is, SG={G', G% G}, (g/)&i = (1,2,3,4,5), (g})21 = (2,5, 1,3, 4)
and {g}3, = (3, 1, 4, 5, 2). To determine M({G', G?}), we have a)=@, bl=¢, ¢/=(2, 3,
4, 5) and af=(2), bf=5, cf=(3, 4) 3> R;=2. Then, R;=3, R;=0, R,=0, Rs=0, and 8(k)=0 for
15ks5, leading to M(({G!, G?}) = 22 + 2%42° = 13, Similarly, we get M)({G', G*)) = 2%+
22 42° = 13 (R;=3, Ry=0, Rs=2, R;=0, Rs=0, and &(k)=0 for 1<ks5), MP((G?, G*}) = 2'+
2% 2! 420 4 1 = 7 R,=1, Ry=0, Ry=1, R4=0, Rs=0, 8(2)=1 and 5(k)=0 k =1, 3, 4, 5), and
M(SG)=2 (R;=1, R;= Ry= Ry= Rs= 0, and §(k)=0 for 1<k<5). Then, s;=3%2"= 96, 5,= 13+
13+ 7=33 and sy= 2, thereby resulting in N("(SG)=65.

To determine N(SG), we first determine M®P(B) ¥ B < SG. To get M@({G', G?)),
we have W = {1, 2), g)=2, g2=1, c'=(3, 4, 5) and c’=(3, 4, leading to M®((G', G*))=2*.
We also get MP((G', G*))=22 (W=(1, 3}), MP({G%, G*))=0 (W=(2, 3)), and MP(SG)=0

(W=(1, 2, 3) and [W] > 2). NP(SG) is thus obtained from N®(SG) = 3%2* — (4+4) = 40.

llowing the same p we get M((G', G*))=2, MP((G!, G*}))=2 and MP((G?,
G?))=0, resulting in N®(SG) = 3*#2° — (242) = 20, and M¥({G', G?))=2, M¥((G', G*))=2

and M@((G?, G?))=0, leading to N(SG) = 3+22 — (2+2) = 8.

Using the above proced: one can d ine the p ge of izabl

of each dimension by a set of GC's, i.e., N®(SG) out of C2"X. It can be verified by Figure
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6.9 that 65 (out of 80) Q,'s, 40 (out of 80) Q's, 20 (out of 40) Qs’s, and 8 (out of 10) Q4’s
can be recognized by this strategy, which agrees with the results computed from their parame-

ter sets. Note that one set of GC’s may be better than another set of GC’s in recognizing sub-

cubes of one dimension while being worse in izi beubes of another di i For
example, let SG, be the set of three GC’s given in Figure 6.9, and SGp= (G, G% G%) with
parameters (g')3 = (1,2, 3,4, 5}, (g7)21 = (2,3, 5,1, 4) and (g})E1 = (3,4, 2,5, 1).
Then, we have NU(SGA)=65 < N(SGp)=66 and NP(SGp)=40 < N®(SGp)=42, but
N(SG,)=8 > N®(SGp)=6. This fact implies that not only the number of GC’s used but
also their identity affects the subcube recognition ability of an allocation strategy. Further-

more, it is important to see that when the number of GC’s to be used is given, the determina-

tion of an optimal (in the sense that the probability of a ion is imized)
set of GC’s depends on the distribution of di ions of the quired by il
requests.

6.2.3. Simulation results
Various processor allocation strategies in a Qs have been investigated via simulation.

Specifically, the performance of the GC strategy is compared with that of the buddy strategy

via sil ion. Also, the perf imp! of an ion strategy with multiple

GC's over the one with a single GC is discussed.

6.2.3.1. Performance comparison of GC and buddy strategies

Both the buddy and GC strategies in a Qs are programmed using Fortran 77 on the

NCUBE/six 1| An i ing request is d to arrive every time unit. The

P

or sizes of quired by i ing requests are d to follow a given
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distribution. The subcube residence time -- the length of time each allocated subcube is occu-

pied -- is determined by a uniform distribution. Req are g d and then by

using both gies. When no of the required size are to an i

request, the request is queued until processor relinquishment makes room for it. Generation,
allocation and queueing of requests will continue as described above until a predetermined
time limit, T, is reached.

Performances of both strategies are measured in terms of d, the average delay in honor-
'

ing a request. An alternative measure is efficiency E = EZ"‘I t/(M*T), where |I} and t; are
i=

ly the di jon and resi time of a subcub quired by I;, M is the total

P Y

number of processor nodes in the system (2% in a Qs), and r the number of requests honored

within T. To avoid unbounded request queues, the inputs to our simulation are subject to the
4

constraint: E(2”‘I)E(N) < 2%, where E(Z“‘l) = Zpklk. py is the probability of a request asking
k=0

for a Q, and E(N) is the expected number of incoming requests during every subcube
residence time. As shown in Table 6.2, the GC strategy outperforms the buddy strategy.
Notice that the subcube residence time for each simulation is determined in such a way that
the values of E(2”‘|)E(N) for the three simulations are approximately the same. Observe that
E and R can be improved by using the GC strategy, especially when incoming requests tend
to ask for small subcubes. Intuitively, the system will be more fragmented as the allocation
and deallocation of small subcubes are more frequent than those of large subcubes, generating
an environment in which the GC strategy outperforms the buddy strategy with its better sub-

cube recognition ability. This agrees well with Table 6.2.
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6.2.3.2. Performance of strategies with multiple GC’s
Using the procedure in Section 6.2.1, the GC’s required for complete subcube recogni-
tion, as shown in Figure 6.12, are determined to be 12345, 25134, 24153, 31452, 34251,

51324, 41523, 23514, 45213 and 35412. Note that these GC’s can be determined off-line and

d in the p 1l i ith The entire prog; consists of the host

P

and node subprograms. A flowchart of the entire program is given in Figure 6.13. Whenever

a subcube needs to be allocated, the host program loads nodes with a search program and

passes node prog the required each of which is associated with a different GC
and, thus, different from others. Each node program will then search for a required subcube
independently of others and return the result of search to the host program once it completes
the search. The request will be honored with the subcube found first by any of the participat-
ing nodes. For processor relinquishment, only the list of allocation bits kept in the host pro-
gram is updated and no hypercube node is used. Note that since the number of GC’s used is
the same as the number of hypercube nodes performing the search, the operational overhead
of an allocation strategy with multiple GC’s is linearly proportional to the number of GC’s
used within a subcube of a fixed dimension. (This is also true for an alternative approach that

all the GC’s used are searched sequentially by the host.)

Insofar as the operational overhead is d, the number of GC's used must be
reduced even if it degrades subcube recognition ability. Thus, our allocation strategy is imple-
mented to facilitate the flexibility in adjusting subcube recognition ability, and so designed that

if k GC’s are to be used, then the first k GC’s will be employed. Suppose po=.45, pi=.25,
pz=.15, p;=.10, p;=.05 and ps=.00, and the order of the ten GC’s for a Qs is: { (1,2,34,5},
(452,13), (354,12}, (25134}, (34251), (513.24), (41523), (24,153},

3,14,5,2}, {2,3,514) } The subcube recognition abilities of SGy,, 1 < h < 10, are shown
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of each di ion is plotted in Figure

in Table 6.3. The p of izabl
6.14. By comparing the subcube recognition ability of the three GC’s given in Figure 6.9 and

that of SG; in Table 6.3, one can see the importance of choosing an optimal set of GC’s.

It is also worth ioning that the ing proposition is very useful in formulating

the mapping of a binary string to a GC with given parameters.
n
Proposition 6.3: The binary string b,b,.; * - * by is the number 3bg2! in a GC with
i=1

parameters gj, i=1,..,n, where b;‘s are determined from b,b,_; * - * by by the following pro-
cedure:

for i=nto 1 step = -1 do
begin
. .
bg, = by,
if (bg =1) and (i 1) then by =

end

For example, 10111 is the number 10 in the GC with parameters g,=2, g,=5, g3=1, £24=3
and gs=4, since bsbsbybsb, = 01111 and bsb; bybsb; = 01010.

Let pp=45, p;=25, p,=.15, p3=.10, ps=.05 ps=.00, T=100, and the ten GC'’s be sorted in

the order as stated before. Suppose the subcube residence time is determined by a uniform

distribution from 4 to 12 time units. The d per! of an ion strategy with

multiple GC’s is plotted in Figure 6.15, where R is the percentage of incoming requests that

are to required at the time of their arrival and n is the number
of GC's used. A failure in ing an available subcube to an i ing request is called a
fault. Due to their i p beub guition ability, some of allocation strategies may
generate a fault even if of the size required by an il ing request are available.

Faults of this kind are termed pseudo faults. As shown in Figure 6.16, one can see that the

number of occurrence of pseudo faults, denoted by f, decreases as the number of GC’s
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Figure 6.16. The number of pseudo faults in an
allocation strategy using multiple GC's.
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increases.

The performance of an allocation strategy with multiple GC’s does not improve linearly
with the associated search overhead. Note that a contiguous region in one GC could be
several separate small regions in another GC. This fact in turn implies that the existence of a
region resulting from a strategy with a single GC is more likely to be detected by the search
guided by this GC than by any other GC. Thus, the improvement achieved by using multiple

an jon strategy with iple GC’s,

GC’s is limited. M as a design p
although its necessity requires further justification in the case when the search overhead is a

major concern, possesses its importance when the system utilization is important.

6.3. Task Migration under the GC Strategy

In the following three subsections we shall determine, respectively, the goal

the nod ing between the source and destination subcubes, and shortest

deadlock-free paths for task migration.

6.3.1. Determination of goal ation

There are many ways conceivable to relocate active tasks and compact occupied sub-
cubes. However, since it is desirable to perform the task migration between each pair of sub-
cubes in parallel, it is very important to avoid any deadlock during the migration. Clearly, a
deadlock might occur if there is a circular wait among nodes. To prevent this, a linear order-
ing of hypercube nodes is established in such a way that each node can only move its task
module to a node with a lower address, i.e., a node with address G,(p) sends its task module

to another node with address G,(q), only if p > q. Thus, given a configuration of occupied

beubes, the goal ion without ion can be ined by the algorithm
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below.

Algori A;: D ination of the goal g

Step 1. Label each task in the availability list with a distinct number in such a way that each

task allocated to a subcube with a lower address is labeled with a smaller number.

Step 2. Rel all tasks ing to an il ing order of their labels.

For example, the goal configuration in Figure 6.17b can be derived from the initial frag-
mented configuration in Figure 6.17a. It can be easily verified that using algorithm A, each
task will always be moved from a subcube with a higher address to a subcube with a lower
address, while a task with a smaller label is not necessarily ahead of a task with a larger label
in the goal configuration. As it was proved in Theorem 6.1, the GC strategy is statically

optimal. Recall that an allocation strategy is said to be statically optimal if using the strategy
k Ly
a Q, can accommodate any input request sequence (I} iff 32" < 2", where | ;| is the
i=l

subcube dimension required by request I;. This fact implies that fragmentation will definitely

be removed by Ay, ie., the i ion can a Qy if the number of

available nodes in a Q,, is greater than or equal to 2%,

" PPTSR A

6.3.2. Nodi pping b source and d

Once the goal configuration is determined, each active task will be moved from its
current or source subcube to the destination subcube. As mentioned earlier, the action for a
node to move its task module to one of its neighboring nodes is called a moving step. To
determine the number of moving steps for a task migration, we first define the moving dis-

tance of a task between two subcube locations as follows.
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0. 0000 — task1

‘1): 3‘;‘(’,‘1’ 1. 0001 — task 4
2. 0011 — task 1 2. oot
3. 0010 3.0010 | o
4. 0110 4. 0110
5. 0111 5. 0111
6. 0101 6. 0101 "y g
7. 0100 | task2 7. 0100
8. 1100 8. 1100
9. 1101 9. 1101
10. 1111 :‘1’ 11111‘;
R ra I
18, 1011 18. 1011
14. 1001— task4 14. 1001
15, 1000 15. 1000
(a). Before (b). After

Figure 6.17. Task migration under the GC strategy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



210

Definition 6.2: The moving distance of a tusk between two subcube locations with
addresses 0. = a,a,_; + * + aj and B =byb,y - - - byina Qy M: FXI' = I, is defined as
1,ifa=bj 2%

Mo, p) = im(ﬂh b)), where m(a,b) = J 0, if a; = by,
=l

1 .
—, otherwise.
) ise.

Then, we have the following theorem for the minimal number of moving steps required
to move a task from one subcube location to another.

Theorem 6.5 : Let T(ct, B) be the minimal number of moving steps from a subcube
location o to another location B. Then, T(c, B) = Mo, B)2'*!, where |o] = |B] is the dimen-

sion of the subcube.

To facilitate the proof of Theorem 6.5, it is necessary to introduce the ing prop
tion whose proof is omitted.

Proposition 6.4 : Given a node ue Q,, Y, Hu,w) = n2™!,
weQ,

Proof of Theorem 6.5: We shall prove T(o, p) = Mo, P)2'*' first. Suppose
o=aa, ;- -a; and p=byb,,--b. We define the frontier subcube of o towards B,
denoted by 0y,p(0) = f,fy-y * * * £y, in such a way that, Vi, i =b; if a; =* and b € {0, 1),
and f; = a; otherwise. For example, if o =00** and B = 1*1*, then G;_p(ct) = 001* and
Opsa(B) = 101*.  Clearly, Gy p(cx) contains all the nodes in o which are closest to . In

addition, we define the ing dist: by two bes as the shortest distance

between any two nodes which respectively belong to the two -subcubes, i.e., H'(o, P) =

min pH(u, w). Since we align some bits of o with their corresponding bits of B to obtain
UEQ, WE|

Ousp(@), it is easy to see that V¥ u € o and w € B, Hu, w) 2 H'(u, Ooap(@)) +
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H' (G0, Tpsa(B)) + H'(Gposo), W).

Letu’ € B denote the node to which the task module originally located at u € o is to be
moved. Notice that the number of moving steps required to move a task module from u to v’
is greater than or equal to the Hamming distance between them, H(u, u’). Then, T(o, B) 2

Y, H(u, u’). Moreover, from the above reasoning, we get:
uea

T(o, B) = X H(u, u')

2 3 (H'(4, Ooryp(@) + H'(Oeyp(@), Gpos(B) + E'(Gpa(B), 1))
van

= T H'M, Oouyp(@)) + 2" H' (Gonyp(@), Opra(B)) + 3 H'(Gpl(00), 0.
uen

vea

Let 1y be the number of dimensions in which (a;b;} = {0,1}, r, the number of dimen-
sions in which a; = b; = *, r; the number of dimensions in which a; = * and b; € (0,1}, and r4
the number of dimensions in which b=* and a e (01} Cleardly,
n= H”(o“_,p(u). Oposo(B)s 1z + 13 = lod, 1y + r3 = M(., B), and r3 = 1y, because the addresses

of o and P have the same number of *'s.
Therefore,
T(o, B) 2 E& H'(4, Ggp(0)) + 2'*'H'(Orp(©), Opre(B)) + E., H'(0q-p(0), W)
= 2''H' (@), GpraB)) + 23 H'(1, Gouyp(@))
=2'%'r, 4222 ;) (From Proposition 6.4 and r; = |Ga_p(e})
=2'%(r, + 1;) = M(ey, B)2'®.

Next we prove the inequality T(c, p) < M(c, B) 2'% by showing the existence of a

one-to-one mapping between nodes in o and B, and the Hamming distance between each pair
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of mapping and mapped nodes is M(c., B). Suppose py, P2, * * * , Py, are those dimensions in
which a, € {0,1) and b, = *, and qy, Q, * * * , Gy, are those dimensions in which a, = * and
by, € {0,1}). Note that r3 = 14 Each node u=ugu, ;- - u, € o can then be mapped to a
node W = w,W,,_ - - * Wy € B in such a way that wheni# p;jfor 1<j<rs;,
b, if bje (0,1},
W= up if 3= b= %, and
gy 1 Wy = Uy for1<i
w, = N for jsSn.
= |y, if wg # g, ?
This is a one-to-one mapping, since the possibility of a y-to-on ing is eliminated by

different assignments of bits in the p-th dimension, 1<j<r;. Moreover, we have

H(u,w) = r; + r; = M(0,, B). By the above nod pping, we can ine, for each source
node in o, the corresponding mapped node in B, and the total number of moving steps is

Mo, B) 2'*', thus satisfying to T(c,, B) < M(e,, §)2'*'. QED.

The above theorem proves that the minimal number of moving steps required to move a
task from another location o to a subcube location B is M(o, B)2'*!. There may be many
ways to move a task from one subcube to another, each having the same total number of
moving steps. For example, we can move an active task from 10*1 to 000* by either (a).
1011 — 0000 (3 hops) and 1001 — 0001 (1 hop), or (b). 1011 — 0001 (2 hops) and 1001 —
0000 (2 hops). The total number of moving steps in either case is 4. However, in order to
exploit the inherent parallelism, we naturally want the total M(o., [5)2'“' moving steps to be
equally distributed among all pairs of source and destination nodes such that every node u in

o requires exactly M(c, B) moving steps to transfer its task module to the corresponding node

in B. Clearly, this can be pli by the nod pping scheme introduced in the proof
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of Theorem 6.5. Notice that the source and destinati beubes for the task migration under
a strategy must belong to those subcubes recognizable by that strategy. In light of this fact, a

simplified node-mapping scheme will be introduced in Corollary 6.5.1. However, it is neces-

sary to i the ing proposition first, which follows directly from Theorem 6.2.
Proposition 6.5: Suppose o.=a,, ‘'8 and B=bb, - b are two k-
di ional subcub izable by the GC strategy. Then, there is at most one dimension,

say p, in which a, € {0, 1) and bl, =",

The nod ing b two gni by the GC strategy can be deter-

mined as follows. Suppose o = a,a,_; * * * &y is the source subcube and P = byb, - - * by the
destination subcube. Let p and q be the dimensions in which a, € (0,1} and b, = *, and
ag=*and by e {0,1}.

Corollary 6.5.1: Each source node u = uu,_; * * * 4y € o can be one-to-one mapped to

a destination node w = w,w,,_; * + - W, € P in such a way that when i # p,

by ifbje (0, 1), T, if Wy =g,
W= lwira=t=% Ve ifwg ey,

and H(u,w) = M(o,, B).

For example, when o =1*1* B =00** and u=1110, we have p=3 and then
w = 0010, It can be verified that every node in 1*1* will need exactly 2 moving steps to relo-
cate its task module to the corresponding node in 00**, i.e., 1010 (12) — 0000 (0), 1011 (13)
— 0001 (1), 1110 (11) — 0010 (3) and 1111 (10) — 0011 (2). It is worth mentioning that
the order of source nodes in a BRGC is not necessarily the same as that of their correspond-

ing destination nodes after the node-mapping.
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6.3.3. D ion of shortest dlock-free routing
After the ion of nod ing, we now want to develop the routing method to
move esch task module from its source node to the destination node. As i earlier, in

order to avoid d a linear ing among hypercube nodes is d such that each
node can only move its task module to a node with a lower address. More formally, we need
the following definition.

Definition 6.3: A path is said to be shortest deadlock-free (SDF) with respect to a cod-
ing scheme if it is a shortest path from the source node to the destination node and the reverse
order of nodes in that coding scheme is preserved in the node sequence of that path.

In other words, if C,(i) and C,(j) are two nodes in a SDF path, then C,(i) is ahead of
C,(j) in the path iff i > j. For example, the path [111, 011, 001] is a SDF path in Gj of Fig-
ure 6.2a, whereas [111, 101, 001] is not. A coding scheme, C,, is said to be
SDF path preserving if ¥ p < q there exists a SDF path from C,(q) to C(p), i.e., there exists
[Cal(@, Calry), Culr)s + =+ 5 Coltay), Cu(P)), such that g > 1y > =+ > 1gy > e

Once the node-mapping between each pair of source and destination subcubes is deter-
mined, each source node appends to its task module the address of destination node. Each

node can then determine the next hop to route a task module by the algorithm below.

Algorithm A,: D ination of a SDF path
Step 1. Each node compares the destination address d=d,d,_, * - * d; with its own address
$=S,5a_1 * * * 5y from left to right. Let the j-th and k-th dimensions be respectively

the first and second dimensions in which they differ, i.e., s; = d; for j+1 < i< n and

k+1 <i<j-1, and 55 # d;, 5 # dy.
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i1
Step2. If Ys; is even then send the task module to a neighboring node along the k-th

dimension, else send the task module to a neighboring node along the j-th dimen-
sion.

For example, suppose the source node is G4(12)=1010 and the destination node d is

3
G,4(1)=0001, then j=4 and k=2. The next node determined by Ag is G4(3)=0010 since X8 is
i=2

odd, and thus, the 4-th dimension of 1010 is changed. Then, the next hop determined by the
intermediate node G,(3)=0010 is G4(2)=0011, since we get j=2 and k=1 for s=0010 and
d=0001. It can be verified that [1010 (12), 0010 (3), 0011 (2), 0001 (1)] is a SDF path.
Actually, this is not a coincidence. As it will be proved later, the paths determined by A, must
be SDF. To facilitate the proof, it is necessary to introduce the following lemma which com-
pares the order of two BRGC numbers.

Lemma 6.2: Let Gu(p) = a8,y - - a; and Gu(q) = byb,y * - - by be two BRGC

t S the i-th di ion is the first dimension in which G,(p) and G,(q) differ,

'PP!

when they are compared from left to right, i.e., aj=b; forn 2 j > i and a; # b;. Without loss of

generality, we can assume a;=1 and b=0. Then, p > q iff i a; is even.
jeitl
Proof: Consider the procedure of generating a BRGC described by the complete binary
tree in Figure 6.6. As the number of bits in a BRGC increases, the corresponding tree grows.
The address of every external node (leaf) is determined by the coded bits in the path from the
root to the external node, and a BRGC is then obtained by the addresses of external nodes
from left to right. It can be verified that every node which is reached from the root via even

number of links labeled with 1 has a O left-child and a 1 right-child. Note that an external

node further to the right is associated with a larger number in a BRGC. Thus, it is proved that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



216

n n
p>qif 3 ais even, and the fact that p < q if 3 a is odd follows similarly. QED.
Jeitl juil

For example, in the 3-bit BRGC of Figure 6.2a, G3(3) = 010 appears after G;(1) = 001,
since the number of 1's in the left of their first different bit position in G(3) is zero which is
even, whereas G(4)=110 appears before G5(6)=101 since the number of 1’s in the left of
their first different bit position in G;(4) is one. In light of Lemma 6.2, the following impor-
tant theorem can be derived.

Theorem 6.6: The path determined by A, is SDF.

Proof: Let f(m) denote the number mapped into the binary string m in a BRGC, i.e.,

n
p = f(m) iff m = G,(p). Since £(s) > f(d), from Lemma 6.2 we know that J’s; is odd. Let
i=j

u=u, - - - u, denote the address of the next hop determined by A,. Consider the case when

=1
3s; is even, Clearly, from Step 2 of A,, H(u,s)=1 and H(u,d) = H(s,d) — 1, since u;=s; if i #
i=
n n
k, and uy = 5, = dy. Also, we have f(u) > f(d) since Ju; = 3's; is odd, and f(s) > f(u) since
= =]

n i1
Ysi+ X8 is odd.
i ik

=1
On the other hand, in the case when Ys; is odd, H(u,s)=1 and H(u,d) = H(s,d) - 1,
i=k

since w;=s; if i # j, and y; =5

n
; = dj. Also, f(s) > f(u) since 3s; is odd, and f(u) > f(d) since
i

n =1 n =l _  n
PATED IR Y R 8 + Y. s; is odd. Therefore, in both cases, H(u,d) = H(s,d) - 1,
ik i=k i ik i+

f(s) > f(u) and f(u) > f(d). Since the above results hold for every intermediate node, this

theorem follows. Q.E.D.
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The above theorem shows that the task migration under the GC strategy can be accom-
plished via SDF paths. Also, the following corollary results from Theorem 6.6.

Corollary 6.6.1: The BRGC is SDF path preserving.

Note that the standard binary encoding scheme is not SDF path preserving, neither is the
coding scheme given in Figure 6.3. For example, no SDF path exists from 010 to 001 in the
standard binary encoding scheme, and nor does from C4(9) = 1000 to C4(1) = 0001 in Figure

6.3. This fact demonstrates another advantage of the GC strategy.

To illustrate the entire process of task migrati ider the d fi

in Figure 6.17a. From A, we obtain the goal configuration in Figure 6.17b. By the node-
mapping scheme developed in Section 6.3.2, we have 0011 — 0000 for task 1, 0101 — 0011,
0100 — 0010, 1100 — 0110 and 1101 — 0111 for task 2 (*10* — 0*1*), 1110 — 0101 and
1010 — 0100 for task 3 (1*10 — 010%), and 1001 — 0001 for task 4. The SDF routing can
then be determined by A, as follows:

Task 1: 0011 — 0001 — 0000;

Task 2: 0101 — 0111 — 0011, 0100 — 0110 — 0010, 1100 — 0100 — 0110 and 1101 —

0101 — 0111;

Task 3: 1110 — 1100 — 0100 — 0101 and 1010 — 1110 — 1100 — 0100, and

Task 4: 1001 — 0001.
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CHAPTER 7
CONCLUSIONS

7.1. Summary

In this di ion, we have d several imp issues on routing and task allo-

cation in multicomputer systems. In Chapter 2 and Chapter 5, we have developed some

important results applicable to general multicomputer systems. On the other hand, we have

also focused on some specific icomp hi such as h I meshes in
Chapter 3 and hypercubes in Chapter 4 and Chapter 6, and obtained concrete results in light
of their network topology.

We investigated the routing in wide-area computer networks and addressed the reduction
and elimination of looping effects in Chapter 2. The amount of information required to be
kept at each node in order to eliminate multi-node loops has been determined. Unlike most
conventional methods in which the same routing strategy is applied indiscriminately to all

nodes in the network, each node under the proposed strategy adopts its optimal routing stra-

tegy. We have not only developed the las to ine the minimal order of the routing
strategy required for each node to elimi looping pletely, but also proposed a sys-
tematic procedure to strike a promise b the operati overhead and network adap-
tability. The number of i to be d is with a i ial
approach.

Note that the order of the optimal routing strategy for each node can be determined off-

line from a given network and incorporated into each node before the network executes certain

218
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missions if the propagation delay is the main factor of link delay. The network is thus made

to attain the maximal adaptability in case of link/node failures during such missions. How-

ever, when reduci perati is ial and infreq; looping is the

use of a high order routing strategy has to be justified. This can be accomplished by the selec-

tion of an appropriate design objective function as addressed in Section 2.2.2.

We examined the routing in a icomp of regular top ical structure in Chapter

pping H-meshes, called the C-type wrapping, is

3. A ic method for

presented. The C-type wrapping is then used to develop a simple addressing scheme, and
efficient algorithms for routing and broadcasting for H-meshes. An Hj, called the HARTS
(Hexagonal Architecture for Real-Time Systems), is currently being built at the Real-Time
Computing Laboratory, The University of Michigan, for the purpose of investigating various
low-level architectural and fault-tolerant issues for critical real-time applications.

We tumned our attention to the subject of fault-tolerant routing in Chapter 4 and

developed two adaptive fault-tolerant routing for injured hypercube multicomputers.

The first scheme is based on a depth-first search in which each node does not have to keep
any network information except for the condition of its own links. The network information is
added to the message as the message travels toward the destination. Performance of this
scheme has been rigorously analyzed. We showed that this scheme is not only capable of
routing messages successfully in an injured Q,, but also able to choose a shortest path with a
very high probability. However, due to the insufficient amount of information on faulty com-
ponents, this scheme does not always guarantee the shortest path routing.

To ensure the shortest path routing, we proposed another routing scheme using the idea
developed in Chapter 2, i.e., each node keeps some network information in a network delay

table. We showed that, owing to the regularity of hypercube structure, the amount of infor-
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mation to be kept in the network delay table of each node can be greatly reduced, and still
leads to the shortest path routing.

In Chapter 5, we have derived the bounds for the number of acceptable task assignments
for arbitrary Gy and Gp, a recursive formula for the case when Gr is a tree, and closed form
expressions for more restricted cases. The knowledge of N(Gr, Gp) can be applied not only
for improving the state-space search of the task assignment problem but also for evaluating
the importance of each system component. By comparing the number of acceptable assign-
ments before and after removing a certain node/link in Gp, the importance of the node/link can

be t we have ded the results on N(Gr, Gp) to the completely gen-

eral case (i.e., those assignments with dilations greater than one) in which two related tasks in
Gr can be assigned to any two processors in Gp.

In Chapter 6, we have first investigated the properties of the buddy strategy, and then
described an allocation strategy using the BRGC. While both straiegies are proved to be stati-
cally optimal, the GC strategy is shown to outperform the buddy strategy by providing better

beub ition ability. we have proved that the GC strategy is optimal in

8

terms of the subcub ition ability of a ial search. We have also considered allo-

cation strategies using multiple GC’s and formulated the relationship between the GC’s used

and the pondi beub ition ability. The minimal number of GC’s required for

complete subcube recognition in a Q, is proved to be less than or equal to C7, , which is

(5]
significantly less than n!, a brute-force enumeration.

, we have d a dure for task migration under the GC strategy to

P P

remove the system i A goal ion without ion is

in light of the static optimality of the GC strategy. The node-mapping between the source and

destination subcubes is formulated and a routing p dure for ining shortest d
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free paths for task migration is derived. Our results confirm the inherent superiority of the

GC strategy over others.

7.2. Future Works

Some research topics related to this dissertation work warrant further investigation. First,
the approach of using network delay tables is applicable to the fault-tolerant routing in various
multicomputer systems. In light of network topology under consideration, the contents of the
network delay tables can be characterized and minimized.

We developed in Chapter 3 a wrapping scheme for an H-mesh to obtain a homogeneous
network where each node has degree six. Developing a general wrapping scheme for different
topological structures with nodes of different degrees is a topic of much interest and

In addition, since the topology of the C-wrapped H-meshes is newly proposed,

there are many interesting problems to be pursued further on the H-mesh architecture, such as
fault-tolerant routing in an H, which can exploit the topology of H-meshes, embedding of
interacting task modules into an H, and the application of the H-mesh to solve or reduce the

complexity of some difficult problems. These topics are all closely related to the C-type wrap-

ping and its jated routing and broadcasting algorithms.

In Chapter 5, the general formula of N(Gy, Gp) for an arbitrary Gy could not be derived.
As shown in Section 5.1.4, even in the restricted case when Gr is a cycle and Gp is a hyper-
cube, we have to appeal to a nontrivial recursive formula, Clearly, the difficulty associated
with the problem increases with the irregularity of the graphs involved. To derive a recursive
expression or a tight bound for N(Gr, Gp) for the case when Gr is arbitrary will be a chal-
lenging topic. In addition, we did not discuss in Chapter 6 when to execute task migration

and the ional head jated with task migrati How to optimize the tradeoff
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between the system admissibility and the operational head for task migration is also an

important issue.
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APPENDIX
List of Symbols
APRS ‘The routing strategy previously used in ARPAnet, i.e., the one described in [60]
@ 2).
ACRS The routing strategy currently used in ARPAnet, i.e., the one described in [61]
®.2).
SP Set of all paths in the network (p. 12).
SP; Set of all paths from N; to N; (p. 12).
A Set of all nodes adjacent to N; (p. 12).
dey) Summation of all link delays in a path P; (p. 12).
h(p) The number of links in a path P; (p. 12).
ave(P;) The average link delay for links in a path P; (p. 12).
Py A path with the shortest delay (i.e., an optimal path) in SP;; (p. 12).
Pijuy The shortest delay path in the set SP;; — {L,,} (p. 12).
Hy(P) The set of the first k nodes in the ordered sequence representation of a path
PSP (p. 12).
SP;'.‘, Set of all paths from N; to N;j, which are k-th order loop-free (p. 13).
SL; Set of loops starting and ending at N; (p. 13).

DL;(m) The delay associated with L;; at time m (p. 15).

NT.dlyy4m) The delay from N; via N; to Ny in the network delay'lable of N; under APRS
during the time interval {m, m+1) (p. 15).
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OP, 4(m) Path with the shortest delay from N, to Ny in the network delay table of N,
under APRS during the time interval [m, m+1) (p. 15).

DOP,4(m)  The delay of OP,4(m) (p. 15).

NT.dly,'\‘!‘d(m) The delay from N, via Nj to Ny in the network delay table of Nj under the k-th
order routing strategy during the time interval [m, m+1) (p. 20).

RM,'}_M The routing message sent from Nj to N; about the routing from Nj to Ny under
the k-th order routing strategy (p. 20).

OPde(m) Path with the shortest delay from N, to Ny in the network delay table of N,
under the k-th order routing strategy during the time interval [m, m+1) (p. 20).

DOP)y(m)  The delay of OPXy(m) (p. 20).

my The number of time units required for N, to obtain its new nonfaulty optimal
path to Ny in case of a link failure under the k-th order routing strategy (p. 25).

Ricky The required order of routing message sent from NieA; to N; to avoid all
potential looping when L;; became faulty (p. 34).

Riex The required order of routing message sent from Nye A; to N; to avoid all
potential looping (p. 34).

o' The minimal order of routing strategy required for N; to avoid all potential
looping (p. 35).

of The order of the routing strategy adopted by N; when the configuration is Cy
(. 39).

R (k) The cost required per second for a node adopting the k-th order strategy to gen-
erate and process a routing message (p. 39).

RC(Cyp) The operational overhead per second induced under configuration Cy (p. 39).

R(L;j Cx)  The expected number of time intervals required for an arbitrary node to obtain
a new nonfaulty optimal path to any other node when L;; became faulty (p. 40).

RT(Cy) The expected number of time intervals for a path to recover from an arbitrary
link failure under the configuration Cy (p. 40).

SPL(N; C,) Set of loops induced by the insufficient order of routing strategy of N; in the
configuration Cy (p. 40).
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SPL(Cy) Set of all potential loops under the configuration Cy (p. 40).

L®;) Set of loops in the path P, (p. 40).

m,,j(C)  The number of time intervals required under the ion Cy for N, to
obtain a new nonfaulty optimal path to N, when L;; became faulty (p. 41).

D; The distribution vector (D-vector) of node N; (p. 42).
) Set of integers (0, 1,2, - - -, m] (p. 42).
H, A hexagonal mesh of size n with the C-type wrapping (p. 60).

m, (my or m;)The number of moving steps from the source node to the destination node
along the x (y or z) direction on a shortest path in a H,, (p. 68).

Qn A hypercube of dimension n (p. 83).

H(u,w) The F ing dist: two hypercube nodes u and w (p. 91).
(] The exclusive operation between two binary strings (p. 91).

Gp A processor graph (p. 126).

Gp A task graph (p. 126).

Vy The set of nodes in the graph G, (p. 126).

E, The set of edges in the graph G, (p. 126).

N(Gr, Gp)  The total number of desirable assignments which satisfy the adjacency condi-
tion (p. 127).

H, (B) Cliques d sets) of a p graph (p. 129).

U An m-dimensional vector all entries of which are one (p. 129).

fa(V) The attaching function of the vector V associated with the adjacency matrix A
(p. 132).

o] The product of vectors (p. 134).
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N The multiplication of vectors iated with adj y matrix A (p. 134).

v The sorted vector of the vector V (p. 134).

W(V) The weight function of the vector V (p. 134).

C(m) The set of children of a node n in a rooted tree (p. 138).

Y; The carrying vector of a node n; € Vr (p. 138).

T(my) The tree formed by the node n; and its descendants (p. 139).

Gc A communication graph (p. 162).

G, An n-bit Gray code which usually represents the binary reflected Gray code
(BRGC) (p. 169).

B,(m) The binary representation of an integer m with n bits (p. 169).

G, (m) The BRGC representation of an integer m (p. 172).

X The i-th incoming request (p. 173).

1] The dimension of a subcube required by the request I; (p. 173).

gi, 1sksn,  The parameters of a Gray code G' (p. 193).

bj' The number in front of the number j in the parameters of G (p. 193).

a The set, (g} | 1 <u<m-1} (p. 193).

cj' The set, (g,: | m<usn) (p. 193).

M(o.B) The moving dist t two subcub ions o and B (p. 208).
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