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CHAPTER 1 

INTRODUCTION

1.1. Overview

Real-time control systems, such as aircraft and nuclear power plants, consist of two 

synergistic components: the controlled process and the controlling computer. As the use of 

digital computers for real-time control increases, real-time computing has emerged as an 

important discipline in computer science and engineering.

Real-time computing is typified by the speedy execution of computational tasks and high 

reliability of the system. The former implies that tasks in the system must be allocated 

(assigned and scheduled) in such a way that they can be completed before their deadlines; 

otherwise, a dynamic failure will occur [SKL85]. The latter implies that the computing system 

must be reliable; loss of a large number of system components will lead to a static failure. In 

real-time systems, both dynamic and static failures could lead to catastrophic consequences.

Since both task flowtime (response or turnaround time) and system reliability can be 

improved by using multiple CPUs and memories, distributed systems are an attractive 

candidate for implementing real-time applications [Sta84]. However, there are many difficult 

problems to be solved before the distributed system is realized, such as determining a physical 

topology of the system, allocating tasks, selecting communication structures, and incorporating 

reliability considerations. For non-real-time applications, ad hoc or intuitive solutions are 

usually acceptable. For applications that have strict timing constraints, any design should be

1



the result of rigorous analysis and validation. The research results on such a system, as 

reported in the literature, are far from being satisfactory. This is probably because most 

problems involved in the design and analysis of distributed real-time systems are NP-hard. 

Therefore, ad hoc or pseudo-optimal approaches are usually adopted to obtain fast, suboptimal 

solutions. Among the various problems involved with distributed real-time systems, this thesis 

will consider only those research issues dealing with the efficient execution of tasks.

Unlike other applications, computational tasks in real-time systems are usually either 

periodic or aperiodic. Periodic tasks are invoked at fixed time intervals and constitute the 

normal computation for the processes under control. An aperiodic task can be invoked at any 

time in response to environmental stimuli, such as abnormal or critical situations. While an 

aperiodic task is independent of other tasks, most periodic tasks communicate with one another 

to accomplish a common system goal. These communications impose precedence constraints 

during the course of their concurrent execution.

In order to take advantage of a distributed implementation of the system, a good system 

design should allocate both periodic and aperiodic tasks among the processing nodes (PNs) of 

the distributed system so that the desired performance can be achieved. Ideally, a system must 

be designed to have the capability of dynamically allocating both types of tasks to take full 

advantage of the parallelism in the system. However, the increased overhead accompanying 

this capability on intertask communication and the increased complexity involved in system 

analysis might outweigh the benefit of such a design. Therefore, the following compromised 

scheme is used in the thesis:

CPI. Periodic tasks are pre-assigned among PNs and their assignment remains unchanged 

throughout the mission lifetime provided no PNs fail.

CP2. Aperiodic tasks may be dynamically transported to other PNs for execution to 

accomplish load sharing and a load sharing algorithm is assumed to be available.



12. Problem Statements and Contributions

In this thesis, five research problems are addressed on how to manage system resources, 

processors in particular, such that the underlying system can perform as desired. As shown in 

Fig. 1.1, these five research problems form a hierarchical structure. That is, each problem is 

formulated assuming that the preceding problems have been solved. The solutions to the five 

individual problems thus constitute a major part of the complete solution to an integrated 

problem that covers the entire system.

The performance criterion used here is the system hazard, or the maximum normalized 

task flowtime, where the maximum runs over all tasks of the system. The normalized 

flowtime of a task is the ratio of the task flowtime to its normalization factor, which is 

typically the allowable deadline of the task following its arrival. This criterion is chosen 

because it subsumes many other criteria related to meeting task deadlines. Besides, if the task 

execution times are random, then the system hazard is a good measure for the system's 

inability to meet task deadlines.

In what follows, the five research problems and their associated contributions are 

described. Task allocation is the central step in the design of any distributed real-time system 

(see Figure 1.1). By allocation, we mean assignment with the subsequent scheduling 

considered. To derive an optimal task allocation, an optimal schedule of tasks for any given 

assignment has to be determined with respect to (w.r.t.) the system hazard.

First, optimal scheduling algorithms for independent tasks on a PN with a single 

processor are studied in detail. Specifically, optimal algorithms for various scheduling 

schemes are derived and their associated best processor utilization bounds computed. These 

results are useful for the scheduling, assignment and sharing of independent tasks in a 

distributed real-time system.



4

OPTIMAL CONTROL OF 
TASK EXECUTION 

(random execution times)

MODELING OF CONCURRENT 
TASK EXECUTION

(random execution times)

STATIC ALLOCATION OF 
PERIODIC TASKS

(fixed execution times)

DEPENDENT PERIODIC TASKS

OPTIMAL SCHEDULING OF

(fixed execution times)

OPTIMAL SCHEDULING OF

(fixed execution times)

INDEPENDENT TASKS

Figure 1.1 Structure of Problems Addressed



Deriving an optimal schedule for a set of communicating (and thus, dependent) periodic 

tasks is the second problem, which is heated in the context of a multi-project scheduling 

problem (MPSP). The MPSP is a generalization of the conventional job-shop scheduling 

problem. In addition to its use for scheduling communicating tasks, an optimal solution to the 

MPSP is also useful, for example, in a project-based organization where precedence 

constraints exist among the activities of different projects as well as within a project An 

optimal scheduling algorithm is needed for die project leaders so as to cooperate well to 

complete all the projects in a desired fashion.

Based on the solutions to the first two problems, an optimal allocation of periodic tasks 

is derived in the third problem. As mentioned earlier, the performance of our task allocation 

is that of task assignment determined by the subsequent optimal scheduling of the assigned 

tasks. This is in shaip contrast to conventional approaches, which deal with either assignment 

or scheduling of tasks, but not both.

Since the actual execution time of each task may not be fixed as was assumed when the 

tasks were first allocated, a Continuous-Time Maikov Chain (CTMC) model is developed in 

the fourth problem for the concurrent execution of the tasks assigned. In addition to 

considering precedence constraints, the CTMC modeling has a finer granularity in describing 

the execution stages of tasks than most other modeling work. The CTMC model has high 

potential use for resolving various design and analysis issues of distributed real-time systems, 

such as task execution time estimation, message handling, time-out, etc.

Finally, one particular use of the CTMC model — deriving an optimal solution to the 

problem of combined periodic task and message scheduling for each PN — constitutes the last 

problem dealt with in the thesis. Without the CTMC model, this problem would be intractable 

because of its complicated problem structure.



Notice that, the proposed solutions to all but the first problem may be limited to small or 

medium sized problems only. For problems of large size, the computation involved may 

become prohibitively demanding because of the combinatorial nature of the problems 

addressed. Notice also that each of the research problems has been studied extensively by 

others for non-real-time applications. However, as we shall see in the following survey, the 

assumptions and criterion functions used were quite different from the ones proposed in this 

thesis, making these results inapplicable to our needs.

1~3. Related Work

Task scheduling has been a popular research problem in the fields of Operations 

Research and Computer Sciences. For scheduling tasks with deadlines, various algorithms 

have been proposed for different scheduling objectives, and different assumptions on the set of 

tasks to be scheduled and the set of processors to execute them. Task scheduling in real-time 

systems can be either off-line or on-line. An off-line algorithm needs a complete prior 

knowledge of the tasks’ characteristics so that the schedules can be derived beforehand. An 

on-line algorithm, on the other hand, determines schedules for tasks on die fly at their random 

arrivals [CMM67]. Thus, off-line algorithms are usually used for scheduling periodic tasks, 

while on-line algorithms are needed for scheduling aperiodic ones.

As was reviewed in [CSR87], scheduling algorithms in real-time applications are 

concerned with one and only one objective: meeting task deadlines. An off-line algorithm is 

optimal if it generates a schedule in which each task can be completed before its deadline 

provided at least one such schedules exists. An on-line algorithm is optimal if it performs as 

good as its off-line counteipart. For example, in the case of independent tasks to be executed 

by a single processor, the eaiiiest-due-date (EDD) scheduling algorithm — which always 

chooses the ready task with the earliest deadline to run — is both an optimal off-line [Bak74,



Hoi74] and on-line [Dei74, Mok83] algorithm when preemption is allowed.

For systems with multiple processors, Horn [Hor74] derived an optimal off-line 

algorithm to schedule independent tasks with arbitrary release times and deadlines. This result 

was generalized by Martel [Mar82] for systems with processors of different processing speeds. 

Unfortunately, on-line algorithms for such systems do not exist except for some special cases 

[MoD78].

Scheduling tasks with precedence constraints is generally NP-hard [GaJ79] except on a 

single processor. Baker et. al [BLL83] derived an optimal off-line scheduling algorithm for a 

single processor so as to minimize the maximum task completion cost, where the cost 

associated with each task can be any monotone non-decreasing function of its completion time. 

In what follows, a brief survey of the work related to the five research problems are described 

in the order shown in Figure 1.1.

In the off-line scheduling of independent periodic tasks on a single processor, Liu and 

Layland [LiL73] derived and analyzed two optimal algorithms: static and dynamic algorithms. 

A static algorithm always schedules the ready invocation of one task before that of another if 

the first task is given priority over the second task. A dynamic algorithm, however, may 

assign different priorities to different invocations of a task. They showed that the rate 

monotonic scheduling (RMS) algorithm — which assigns a higher priority to a task with 

shorter invocation period — is an optimal static algorithm, whereas the EDD algorithm is 

optimal in the dynamic case.

The single-processor on-line scheduling of aperiodic tasks in the presence of periodic 

ones belongs to the case of the general single-processor on-line scheduling. Thus, the EDD 

algorithm is also applicable here. Recently, because of the simplicity of the static scheduling 

of periodic tasks, another approach to scheduling aperiodic tasks has been proposed. By 

assuming a minimal interarrival time for all aperiodic tasks, this approach treats and schedules



Hie aperiodic tasks just like a new periodic task with a period of the minimal interarrival time 

[SLR86, LSS87, SSL89].

It is much mote difficult to schedule dependent periodic tasks which have been assigned 

among the PNs of a distributed system than to schedule them on a single processor [BEN82, 

LLR81]. For example, the general job-shop scheduling problem, a special case of the stated 

problem, is already NP-hard for the problems even as simple as J 2 \ ntj £ 3 1 Cmax (a two- 

machine job-shop in which the number of operations in any job is greater than or equal to 3 

and the scheduling objective is to minimize the maximum job completion time among all 

jobs), or / 3 1 ntj £ 2 1 Cmax [GoS78, LRB77]. Giffer and Thompson [GiT60] are the first to 

propose a systematic approach to generating the set of all active schedules based on which 

(and variations thereof) most implicit enumerative algorithms have been developed. A set A 

of active schedules is said to dominate another set S a  A of all schedules in the sense that 

inclusion of an optimal schedule (w.r.t. any regular measure [Bak74]) in S implies that in A . 

In other words, to find optimal schedules w.r.t. any regular measure, it suffices to consider 

only the set of active schedules, thus reducing the size of the state space to be searched. An 

extensive survey of job-shop scheduling with branch-and-bound (B&B) methods can be found 

in [LLR77], where job-shop scheduling was modeled by settling pairs of disjunctive arcs and a 

tighter bound of cost was also developed by including many other bounds as special cases. 

Possible extensions of the problems and variations of the solution techniques are described in 

[BEN82].

As mentioned earlier, the performance of task allocation for real-time tasks must be 

determined by the subsequent scheduling of the assigned tasks. For a set of independent 

periodic tasks, Dhall and Liu [DhL78] and their colleagues developed various assignment 

algorithms based on the RMS algorithm. If precedence constraints exist among the tasks to be 

allocated, then a general approach to the problem of assigning non-periodic tasks must be



taken. However, most prominent methods for task assignment in distributed systems are 

concerned with minimizing the sum of task processing costs on all assigned processors and 

inteiprocessor communications (IPC) costs. As was reviewed in [CHL80], these methods are 

based on graph theoretic [Sto77, StB78], integer programming [MLT82], or heuristic [ShT85, 

Vir84] solutions.

Few results have been reported on the task assignment with precedence constraints, 

because most of such problems are NP-hard [Cof76, GaJ79, LLR81, LeK78]. This fact calls 

for the development of enumerative optimization methods or approximate algorithms using 

heuristics [KoS76]. For example, Chu and Lan [ChL87] chose to minimize the maximum 

processor workload for the assignment of tasks in a distributed real-time system. Workload 

was defined as the sum of IPC and accumulated execution time on each processor. A wait- 

time-ratio between two assignments was defined in terms of task queueing delays. Precedence 

relations were used, in conjunction with the wait-time-ratios, to arrive at two heuristic rules for 

task assignment.

Modeling concurrent tasks and their execution for real-time applications can be divided 

into two parts: the basic objects to be considered and the structure among them. The basic 

object belongs either to the module level or to the task level; the structure can be classified as 

either the block diagram or the Markov Chain. Most work related to the modeling of 

concurrent tasks has basic objects belonging to the task level and structures to the block 

diagram. However, as a more accurate estimate of program execution time or a better control 

of program execution becomes necessary for real-time applications, the modeling with module 

level objects and Markov Chain structure evolves.

The task level/block diagram modeling is exemplified by a scheme developed at MIT 

[Wat78] where the task system is modeled by a directed acyclic graph in which each node 

represents a task and each directed arc represents the precedence relationship between the two
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nodes adjacent to the arc. The task level/Maikov Chain model captures the execution states of 

the task system when the task execution time is assumed to be independently exponentially 

distributed [ThB83].

There exists a relatively limited literature on the low level, such as module level, 

modeling of real-time concurrent tasks. This is probably because distributed real-time 

computing is a new discipline and the importance of the lower level analysis has not been 

obvious until recently. Chu and Leung [ChL84] and Leung [Leu85] developed a real-time 

task model to estimate the task response time based on a module level/block diagram modeling 

in which four types of subgraph: And-Foik to And-Join, Or-Fork to Or-Join, loop and 

sequential thread are used to construct the block diagram. Huang [Hua85] addressed the issue 

of software partitions on better resource utilization through a similar model. Woodbury 

[W0086] developed a model that incorporates a more complete set of elements including 

exception handling of real-time tasks to compute the probability distribution function of the 

execution time of real-time tasks.

While scheduling tasks with fixed execution times has long been studied, its stochastic 

counterpart (scheduling tasks with random execution times) is relatively new [Web82]. 

Stochastic scheduling algorithms are normally used to optimize the expected value of certain 

performance quantity. There are very few research results reported on scheduling tasks with 

random execution times and precedence constraints in a distributed system.

1.4. Outline of the Dissertation

In Chapter 2, we present the system hazard w.r.t. which optimal static and dynamic 

scheduling algorithms for independent periodic tasks on a single processor are then derived. 

Using the optimal algorithms, two best bounds of processor utilization are derived. If, in 

addition to the periodic tasks, aperiodic tasks arrive randomly at the processor, no optimal on­
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line scheduling algorithms are shown to exist. Thus, simple mechanisms are described, which 

can be used to determine whether or not an arriving aperiodic task can be completed with less 

than the pie-specified system hazard.

Chapter 3 deals with the problem of scheduling communicating periodic tasks in a 

distributed system. This problem is formulated and solved in the context of Operations 

Research, thus calling it a multi-project scheduling problem. A multi-project is first expressed 

in a PERT/CPM form called the multi-project graph (MPG). Using the MPG, the dominance 

relationship between simultaneously schedulable operations are identified to reduce the set of 

active schedules to be searched with a B&B algorithm. Lower-bound cost estimates are 

derived to guide the search for an optimal schedule. Finally, a demonstrative example and 

some computational experiences are presented.

Using the results of optimal scheduling algorithms obtained above, an optimal task 

allocation can be determined. Since allocation of independent periodic tasks has been studied 

in considerable detail, only dependent periodic tasks are considered in Chapter 4 for their 

optimal allocation. While deriving the optimal allocation of periodic tasks, the problem of 

scheduling aperiodic tasks is also considered through determining the power for processing 

both types of tasks. To reduce the computation required for an optimal assignment, a 

polynomial-time algorithm is used to estimate the lower-bound cost for a non-terminal node in 

the B&B search tree.

After periodic tasks have been optimally assigned to PNs, the modeling of the concurrent 

execution of the tasks assigned is studied in Chapter 5. First, tasks in each PN are decomposed 

into activities. The activities and the precedence constraints among them are then modeled by 

a Generalized Stochastic Petri Net (GSPN). Finally, a sequence of homogeneous Continuous- 

Time Maikov Chains (CIMCs) is built from the GSPN to model the concurrent task execution 

in the distributed real-time system.



In Chapter 6, an important application of the CTMC model is explored. Specifically, we 

want to solve the problem of optimally scheduling tasks and messages in distributed real-time 

systems. The scheduling problem is first transformed into a Semi-Maikov Decision Processes 

(SMDP) and the Dynamic Programming (DP) technique is then used to solve the SMDP. We 

derived an optimal schedule for the centralized case and a sub-optimal schedule for the 

decentralized case. Moreover, we consider the scheduling problem where each PN 

periodically broadcasts its local information to other PNs so that a better scheduling decision 

can be made by each PN.

Finally, the thesis is concluded in Chapter 7 with important results and a suggestion for 

future research.



CHAPTER 2 

A NEW PERFORMANCE MEASURE AND 
THE SCHEDULING OF INDEPENDENT TASKS

2.1. Introduction

The woikload in a real-time system is composed of periodic and aperiodic tasks. 

Periodic tasks are the “ base load” and invoked at fixed time intervals while aperiodic tasks 

are the “ transient load” , arriving randomly in response to environmental stimuli. In hard 

real-time systems such as missile navigation or robot control, execution of both periodic and 

aperiodic tasks must be not only logically correct but also completed in time. Specifically, 

there exists an associated deadline for each task before which the task must be completed.

Using different assumptions on the set of tasks to be scheduled and the set of processors 

to execute them, various scheduling algorithms have been proposed. (See [CSR87] for an 

extensive survey.) It is important to note that all of these scheduling algorithms are concerned 

with one and only one objective: meeting task deadlines. A scheduling algorithm is said to be 

optimal if it generates a schedule in which every task can be completed before its deadline, 

provided such a schedule exists. However, scheduling tasks with this objective alone has the 

following drawbacks:

•  Prior knowledge of the task system based on which conventional scheduling algorithms 

were derived is not always available or accurate. For instance, the exact execution time 

of a task is difficult to obtain because of the uncertain behavior of loops and conditional 

branches in the task.

13
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•  It is impossible to evaluate the goodness of a schedule in terms of how early a task can 

be completed before its deadline. This information is important, especially in scheduling 

periodic tasks in the presence of randomly arriving aperiodic tasks which must also be 

completed before their deadlines.

To remedy the above drawbacks, we propose a new performance measure, called the 

system hazard, as the objective function for scheduling real-time tasks. Specifically, the 

system hazard, denoted by 9 , is the maximum normalized task flowtime, where the flowtime 

(response time or turn-around time) of a task Tj is defined as the time period between the 

release (arrival) (ry) and the completion (cj) of Tj.  That is, 9  ■ max (cj -  ry) / (dj -  rj),

where dj is the deadline by which Tj must be completed. A schedule is said to be optimal 

with respect to (w.r.t.) 9  if it achieves the smallest possible value of 9 , denoted by 9*. 

Several insights can be drawn from 9  and 9* as follows. First, under the assumption that all 

task execution times are fixed (as with most existing scheduling algorithms), 9* £  1 if and 

only if there exists at least one schedule under which all tasks can be completed before their 

deadlines. Thus, if 9* £  1, an optimal schedule w.r.t 9  is also optimal in terms of the ability 

to meet deadlines. Second, if task execution times are random rather than fixed, then 9* is a 

good measure for the system’s inability of meeting task deadlines. Third, 9* can also be used 

to evaluate the goodness of task assignments in distributed real-time systems [PeS89]. An 

assignment with lower 9* is superior to the one with higher 9* because the former results in 

a lower probability of each assigned task missing its deadline.

In this paper, we shall study the optimal preemptive resume scheduling algorithms and 

their associated processor utilizations for both periodic and aperiodic tasks by minimizing 9 . 

As was done in [LiL73], this derivation is based on the assumption that A l) tasks are to be 

scheduled on a single processor, and A2) periodic and aperiodic tasks are independent of each 

other. A2 means that no precedence constraints exist between any two tasks except for those
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among periodic tasks implied by their invocation times.

For periodic tasks, both static and dynamic scheduling algorithms are considered. 

According to the definitions used in [LiL73], a scheduling algorithm is said to be static 

(dynamic) if all invocations of a task are assigned the same priority (different priorities). Thus 

in a static scheduling algorithm, if task Tt is given priority over task 7), then an invocation of 

T{ has priority over all invocations of Tj. In a dynamic scheduling algorithm, on the other 

hand, two invocations of the same task may be assigned different priorities. We shall prove 

that the rate-monotonic scheduling (RMS) algorithm — which was proven to be optimal in 

meeting deadlines [LiL73] —  is also an optimal static algorithm w.r.t. 6  for periodic tasks. 

For the dynamic case however, the earliest due date (EDD) scheduling algorithm — which is 

optimal w.r.t many other performance measures — is shown to be not optimal w.r.t 9 . That 

is, an optimal schedule derived by minimizing 0  not only meets all the deadlines that can be 

met by the EDD algorithm, but also offers additional benefits. For aperiodic tasks, we shall 

show that optimal on-line scheduling algorithms are non-existent except for some special 

cases.

The rest of the chapter is organized as follows. In Section 2.2, we consider the optimal 

static scheduling algorithms for periodic tasks as well as achievable processor utilization 

bounds. The dynamic version of the subject in Section 2.2 is dealt with in Section 2.3. On­

line scheduling algorithms for aperiodic tasks are treated in Section 2.4, where, rather than 

deriving processor utilization bounds, simple mechanisms are proposed to check whether or 

not a randomly arriving aperiodic task can be completed with not greater than the pre-specified 

system hazard.
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22. Optimal Static Scheduling of Periodic Tasks

Let T ss {Tt | i = 1, 2, • • • ,  m } be the set of m periodic tasks to be scheduled on a 

processor, where each task T,- repeats itself with period pt during the entire missioa Let 

/  = [0, L) be a planning cycle, where L  is the least common multiple (LCM) of all pi s. For 

simplicity, all tasks are assumed to be invoked simultaneously at the beginning of a planning 

cycle. The v-th invocation of Th  denoted by Tiv, is triggered at time (v-l)p,- and has to be 

completed before its next invocation time vp,-. We want to derive a scheduling algorithm that 

minimizes 0 =  max (civ -  riv)/pit where civ and rlv are the completion time and
1 S v £ L/pf 

T , e T

invocation time of Tiv, respectively.

22.1. Optimal Static Scheduling Algorithm

Liu and Layland [LiL73] showed that the rate-monotonic scheduling (RMS) algorithm — 

which simply assigns priorities based on task invocation periods — is optimal in the sense that 

it generates a feasible schedule provided such a schedule exists.1 One may suggest that the 

RMS algorithm may also be optimal w.r.t. 6  provided at least a feasible schedule exists. In 

what follows, we shall prove this conjecture by first considering the case of m =  2 and then 

generalizing it

It is necessary to state a useful result that follows directly from [LiL73].

Lemma 2.1: The maximum flowtime of a task occurs when the task is invoked simultaneously 

with all other higher-priority tasks.

Lemma 2.1 is obvious because the completion of a task will be delayed most if all other 

higher-priority tasks are invoked at the same time the task is invoked.

Lemma 22: For any two periodic tasks T x and T2 such that P \ ^ p 2, an algorithm which

‘A schedule is said to be feasible if all invocations of every task in the schedule can be completed in time.
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gives Ti  priority over T2 yields a smaller 0  than that gives T 2 priority over T x,

Proof: The lemma can be proved by simply comparing the respective resulting values of 

0  as follows. If Tj is given priority over T2, then the normalized flowtime of T x is e xlp { for 

all invocations of T r within the planning cycle / ,  where et is the execution time of 7/, i=l,2. 

Since T j may preempt T2, the completion of T2 gets delayed whenever there exists an 

unfinished invocation of T\. However, because of Lemma 2.1, only the first invocation of T2 

needs to be considered when determining the maximum normalized flowtime of T2 (and, thus, 

the value of 0 )  with the above priority assignment.

Note that T2 can be executed only within the time interval between the completion of the 

current invocation of T\ and its next invocation. Suppose T2 is completed during T {  s 

(n+l)-th invocation interval (Fig. 2.1(a)) — that is, « ( P i - e 1) S e 2 < (n+\)(px -  e x) —

where n £ L — J -2 Then 0  = max [efpi ,  ((«+ l ) e j + e£/p2).
Pi

On the other hand, if T2 is given priority over then the normalized flowtime of T2 is 

e2lp2% and that of T\ becomes (e\ + ef)lpi, because T 2 preempts T x and p 2 (Fig. 

2 .1(b)).

Since (ex + efilp i £  e2lp2 and (e t + erf/pi t  eilpi, we want to show that

6 \ + <?2 (w+l)c i + e2
2   -----   (2.X)Pi P 2

Eq. (2.1) is obviously true if n = 0. Now, consider the case of /t > 1. Since e2 > n ( p \ -  e\)t 

(fii + ef)lpi £ «(«i + (pi -  e{))/pi £ (ci + (pi -  ei))/pi = 1. However, by assumption, a 

feasible schedule exists and the RMS algorithm always produces a feasible schedule. The RHS 

of Eq. (2.1) is the system hazard resulting from the application of the RMS algorithm, and

\xj represents the largest integer which is smaller than or equal to x, whereas [x] the smallest integer greater 
than or equal to x.  Thus, fx] = |xj if x is an integer. Otherwise, fx] = |xj + 1.



2.1(a). T! has a higher p rio rity  over T2

Pi 2 Pi np (n+l)p,
j ------------------- 1— ,H ----------------- •

eiJL2 Pi

I I

l

2.1(b). T 2 has a higher p rio rity  over T j

Figure 2.1. Different Priority Assignments and © 's for T={Tx , T2}
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thus, never exceeds one, making die inequality (2.1) hold. Q.E.D.

The above result is generalized in the following theorem.

Theorem 2.1: If a feasible schedule exists for m k  2 tasks, then the RMS algorithm is optimal 

w.r.t. 0 .

Proof: Suppose that Tt and Tj are any two tasks of adjacent priorities in a given 

schedule with p t < pjt  and Tj is given priority over Tt . Then, we want to show that 

exchanging the priorities of these two tasks will always result in a feasible schedule with a 

lower 0 .

Let Qj (0.) be the maximum normalized flowtime of Tj (7,) when 7f (7y) is given 

priority over Tj (7, ). We want to show 0/ > 0y as follows. Note that there may exist tasks 

with higher priorities than both 7,- and 7y, which will delay the completion of Tt and Tj. Let 

Y denote the total delay caused by these higher priority tasks on the completion of the first3 

invocations of 7/ and Tj. Following the same steps in the case of m = 2, we need to consider 

two cases: (i) Y + et + £ pj and (ii) Y + e-t + ey- > py. For (i), 0y- = (Y + e{ + ey)/py,

0; = (Y + ej + e,)/p;, and thus, 0; > 0y- because Pj > p ,. For (ii), 

0; = (7 + ej + efilpi £ (Y + ej + e, )/py > 1. However, by assumption, a feasible schedule 

exists and the RMS algorithm always generates a feasible schedule, thus implying that 

0y- £ 1 < 0,-. Therefore, a new schedule in which 7,- is given priority over 7y will result in a 

lower 6 . The theorem follows since a feasible schedule based on the RMS algorithm can 

always be obtained from any given schedule by a sequence of pairwise exchanges as described 

above. Q.E.D.

3Since all task periods are assumed to begin with the start of each planning cycle, by Lemma 2.1 it is 
sufficient to consider die total delay on the completion of the first invocations of 7/ and Tj.
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2.2.2. Achievable Processor Utilization Bounds

As was done in [LiL73], the utilization U of a single processor system with m periodic

m
tasks Ti’s is defined as U = £  Obviously, a higher U means a better processor

«=t

utilization and U £ 1 must hold provided every invocation of a task can be completed before 

its deadline. It was shown in [LiL73] that for 8 = 1  there exist two bounds of U : 

Ut = m (21/m -  1) and Uh = 1. Specifically, given any m tasks with U ^  Uh  there always 

exists a feasible schedule for these tasks. On the other hand, if U > Uh, then no feasible 

schedule exists for these tasks. If Ut < U £ U h, then a feasible schedule may, or may not, 

exist depending on p ,’s and e f  s. In what follows, we shall generalize these results under the 

condition of 8  S 1. That is, for any given value of 0 < 8  <, 1, we want to derive the 

corresponding values of Ut and Uh. (The results of [LiL73] are a special case of ours since 

theirs were derived for the case of 8  = 1.) For any m tasks with U <> Ut , there always exists 

a feasible schedule with the maximum normalized flowtime (of all invocations of all tasks) not 

exceeding 8 . On the other hand, if U > Uh, then no such feasible schedule exists for these 

tasks. If Ut < U £ U/,, then such a feasible schedule may, or may not, exist depending on the 

values of ’s and ex *s.

Notice that for any 8  e  (0, 1], Ut and I/* should be derived under the RMS algorithm 

— which is optimal w.r.t. 8  by Theorem 2.1 — because the RMS algorithm yields the 

maximal values of Ui and Uh among all static scheduling algorithms. Also, the values of Ut 

and Uh corresponding to any 0 < 8  < 1 will be shown to be smaller than those in [LiL73], 

which were derived for the case of 8  = 1. Throughout the rest of the chapter, a schedule is 

said to be feasible for a given 8  e  (0, 1] if it results in a system hazard not exceeding 8 .
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22.2.1. Deriving £//

Ut is first derived for two tasks T\ and T2 with P i ^ p 2. This result will then be 

extended for an arbitrary number of tasks. To derive 17;, two cases need to be considered:

(Cl) L— Jp l ^  ©P2 < L— JPl + ©P i. where [— J £ 1 (Fig. 2.2(a)), and (C2) 
P i P i P i

L - ^ J p  l + 0p  i £  ©p2 < r— Ip 1. where |_— S 0 (Fig. 2.2(b)).
P i P i P i

As was done in [LiL73], Ut and Uh are derived with the processor fully utilized. A 

processor is said to be fully utilized by a set T of tasks for a given 0  under a feasible 

schedule if increasing the execution time of any one task in T  makes die schedule infeasible.

C l. In order for T f s  normalized flowtime not to exceed the given value of 0 , e\ <> 0/>lt but

e i may or may not exceed % b  0 p 2 -  L— ~\p i- When e j £ %, the largest e2 that allows
P i

for at least one feasible schedule is 0 p 2 -  T— ^ k i.  ^  the corresponding utilization is
P i

U = l i  + i i  = £ L  + e  _  = e  + « ri
P i P i  P i P 2 P i

J ____ 1 |-QP2-i
P i P i  P i

(2.2)

ftn
On the other hand, when ei>%, e2 must be no larger than (pi -  — -J, and the

P i

corresponding utilization becomes

rr «i . P i - c i ,  0 p 2, P i, ©P2, .
U = —  +  L— J = — L J +  «r

P i P i  P i P i  P i
J ____ 1 | QP2 |
P i P i  P i

(2.3)

1 1 i ®P2iThe U in Eq. (2.3) is a non-decreasing function of e\ because —  > — [_ J- Thus,
P i P i  P i

the behavior of U in Eq. (2.2) as a function of e\ determines Ut . Specifically, if the U 

in Eq. (2.2) is also a non-decreasing function of e\, then Ut occurs at e\ = 0. If U is a

0 ^ 2
non-increasing function of e lt then U{ occurs at e i = £ = Qp2 -  L-----Jp i-

P i



T  p , f p ' Qw+, e > '

I  ? I  ?■ f j L f -1" \  (Q i1)p'

0P,

2.2(a). Q p A< © p2 < Q p j + ©pl

©Pj in  +0 p i Q p, + © p,

i p, 1  2P, Q p I  (Q + l)p .
____________l!____________ T  i j j  i t  i 1

0P,

j j ------------------------------ i — j

2.2(b). Qp̂  + @pf < ©p2< (Q+l) Pj

Figure 2.2. Different Relations Between ©p̂  and ©p̂
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C2. Similarly to the case of e\ £  % in Cl, the largest allowable 62 is ©P2 ~  e i* and
P i

the corresponding utilization is U = 0  + J ____ 1 |-QP2-j
Pi P 2 Pi

■, which is a non-decreasing

fin
function of ej for the following reason. Since, by assumption, [——]pi  + Bpi  £ Qp2,

Pi

L -^-J ^  ©(—  -  1) £  —  -  1) implying that —------------------ ^ 0. Thus, 17/ = 0
Pi P i  Pi P i  P2 Pi

occurs at = 0.

More formally, we have the following theorem.

Theorem 2.2 : For a given 0  £  1 and two tasks T { and T2,

U, =
© if  0  £ 0.5
2(V20 -  1) + 1 -  0  otherwise.

Proof: We prove this theorem by deriving 17/ under both Cl and C2, and choosing the 

smaller of the two. To find U[ under Cl, it is necessary to examine the behavior of 17 in Eq.

(2.2). First, consider the case of 0  £ 0.5. Since — £ L"“ l * ~  ^  — L ~ ~ l ^  2[-^^J £
P i P i P i © P i P i

1 + L— J ̂  r - ^ t -  Thus, —  £ — indicating that the U of Eq. (2.2) is a non-
P i P i P i P 2 P i

decreasing function of e\ e [0, Gjp /]. Thus under Cl, Ut = 0  occurs at e j = 0. The theorem

follows for 6  £  0.5 because 17/ = 0  also holds under C2.

Next, consider the case of 0  > 0.5. It can be easily shown that there always exists at

1 1 r ©P2-1least a ( p j , p<j) pair such that —  < (£) — [------|. In other words, the U of Eq. (2.2) could
P i P i Pi

be non-increasing (non-decreasing) in e 1, depending on the values of p  1 and p 2. To derive 17/ 

under Cl for 0  > 0.5, one has to find 17/’s for these two possibilities and then choose the 

smaller of them as Ut under Cl as follows. Since 17/ = 0  if U in Eq. (2.2) is non-decreasing
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m e  i, we now consider the possibility of Eq. (2.2) being non-increasing in ej. If Eq. (2.2) is 

non-increasing, then U{ = U\ei = ̂  or, from Eq. (2.2) or (2.3),

V, = +
P 1 Pi

El
Pi

Q p i - p l ^ - l
Pi

_1____ 1 ^QP2j

i
+-k  — .1

. p i  . PiV J

P i P i Pi

■ QP2. [ Qp 2
P i P i

(2.4)

For a given 8 , Eq. (2.4) is an expression for Ut under Cl for a given (p i,P 2> pair. To find 

U[ under C l, one must find the minimum of the above Ut among all possible (pup?)  pairs. 

To find a special (p\, pair which minimizes Uh  let 0 p 2 / P i = Q + R ,  where Q is a 

positive integer representing the quotient and 0<,R  <1  representing the remainder of 

©p2 I p i- Then, Ut in Eq. (2.4) becomes

U,= 8  ;Q2 + (- 8 - 0 - 1  )Q + (Q  + R )

(2.5)

Q + R  Q + R  
= QQ2 + Q Q + (R  - 9 Q ) « 2  + R ) 

Q + R
__ CR + 8 - P 8 ) Q + R 2 

Q +R

= (fi+0-R0)- .
Q + R

Given 8  and R , Ut in Eq. (2.5) is non-decreasing in Q because 8  -  R Q  £ 0. Therefore, the 

minimum of Ut must occur at ( 2 = 1 .  Substituting Q = 1 into Eq. (2.5), Ut becomes

^  + *  8 « To further minimize Ut w.r.t R , we take the derivative of Ut w.r.t. R

and find R = R *  such that ~ ^ - \ B d* = 0. It turns out that R* -  ^20 -  1 and the
dR R =R

corresponding minimum of Ut is 2(V20 -  1) + 1 -  8. To prove that 2(V2© -  1) + 1 -  8  is 

acceptable, we have to show that (Q ,R )  = (1, R*) is in the domain where Eq. (2.2) is indeed 

non-increasing. In other words, for any given 8  > 0.5, we want to show that

J  L p ?£ * | £  o at 02, R)  = (1, R * l  Notice that
P i P i Pi



Substituting (1, V20 -  1) for (Q , R), the above becomes

j J  JL(1 + V20 -  1) -  (1 + 1)1 =  J -  
J P2

- ^ /2 © - 2

_1_
P2 V £ 0

provided 0  > 0.5. Thus, the Ut for © > 0.5 under Cl is min {2(V20 -  1) + 1 -  ©, 0 )  

= 20/20 -  1) + 1 -  0 . Choosing the smaller of this Ut and that under C2, the Ui in case of 

0  > 0.5 becomes min {2(V20 -  1) + 1 -  0 , 0} = 2(V20 -  1) + 1 -  0 . Q.E.D.

Notice that die results presented in [LiL73] can be obtained from Theorem 2.2 by letting 

0 = 1 .  The results of Theorem 2.2 are extended below for m £ 2 tasks.

Theorem 23: For m £  2 periodic tasks {7}} and a given 0  £  0.5, Ut -  0 .

Proof: This theorem can also be proved by pairwise exchanges. Let

p x £ p 2 £ • • • £ pm. To derive Ut , we again assume that the RMS algorithm is used and 

the processor is fully utilized.

Construct new task execution times, e[ = 0 , e't = eit i = 2, 3, • • • , m -1, and e'm ^  em, 

such that the processor is fully utilized. We want to show that U = £  ef / Pi ^
;=t

m
U = J) «,• / Pi- Specifically, we need to prove that em / pm £ e x I p l + em I pm. Since 

«=l

, _ Qpm_
em <. em + f | e x must hold,

Pi



1 1 r 0»mn
because, as shown in Theorem 2.2, —  S — f— —] provided 0  <, 0.5. In other words, Ut

Pi Pm Pi

must occur at e i = 0. The above arguments can be applied repeatedly between e2 and em, 

between e3 and em, and so on. Finally, we conclude that Ut must occur when 

e x = e2 = • • = em_i = 0, em = Gpm, and thus, U, = Gpm / p m =Q. Q.E.D.

Before extending Theorem 2.3 to the case of 0  > 0.5, it is necessary to prove the 

following lemma.

Lemma 23: For a set T  of m £  2 tasks and a given 0  > 0.5, if pm-\ £  0 p m and pm £ 2plf 

then the minimum processor utilization occurs when (see Fig. 2.3),

= e* =
Pi+i-Pi i - U  • • ' .  m -2
QPm-Pm-i i = m - 1

<2-6)

4 ml

Proof: Assume P \< P i<  • • • < p m. (As will be clear in the following steps of proof, 

the lemma is also true when p t -  pi+i, 1 £ i < m .) Let {«,•} be an arbitrary set of execution 

times for which die processor is fully utilized (with utilization JJ). We want to show that U 

must be greater than that corresponding to the set of e* values in Eq. (2.6). This is done by 

considering each task sequentially as follows.

First, consider Tj. If ej <P 2 ~ P u  then construct new task execution times {e[} such 

that e [ = p 2 - P i ,  e- = i = 2, 3, • • • , m-1. In order to let {e-} fully utilize the 

processor, e 'm = em -  2[(p2 ~ P i )  ~ e i] > 0 (Fig. 2.3). We need to show that the processor 

utilization U' corresponding to [e/] is smaller than U , i.e.,

e[ / Pi + ein / pm < «i IP i  + em / pm. This inequality holds because

—— — — < 2—— — —  since, by assumption, p l >pm / 2. On the other hand,
Pi Pm



P +0 P.0  P

Pm-2
0Pm-l

Pm-1

Pm Pm

Figure 2.3. e. *s which minimize U
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if £ i > P i ~ P u  then the new execution times {e/} must be constructed such that 

e i - P i - P  u e2 = e2 + ie i “  (P2 ~Pi)]> and e/ = eit i = 3 ,4 , • • • , m to again fully utilize 

the processor (Fig. 2.3). Likewise, to show that the new utilization U is less than U, we 

have to show that [c 1 -  (p2 - P i ) ]  / p i  > [ei -  (P2 -  Pi)] / Pit which is true since p \ < p 2. 

For the case where e\ = p 2 -  Pi or after constructing {e-} as above, we move on to consider 

T2 based on the newly constructed {e,}. While considering T 2, we likewise increase 

(decrease) e2 to e2 = p 3 - P 2 and decrease e 'm (increase e3) twice the (the same) amount that 

e2 has been increased (decreased) if e2 <(>) p$ -  p 2. For the same reason as the case of T\, 

U <U  must hold, where U represents this newly generated utilization with T2 considered. 

This process can be repeatedly applied to T3, T4, • • • and up to Tm_2 such that the utilization 

is reduced each time. Finally, we consider r m-1 and conclude that given 

ei = Pi+1 "P it  i = 1, 2, • • • , m —2, em_i = &pm - pm_x must hold to minimize U . Since the 

utilization for any set of task execution times can be reduced with the above procedure until 

Eq. (2.6) is satisfied, the lemma follows. QJ2J).

Using Lemma 2.3, we have the following theorem.

Theorem 2.4: For m £ 2 tasks and a given 6  > 0.5, if pm_i £ 6 pm and pm £ 2p 1, then

U, = m [(20) m -  1] + 1 -  0.

Proof: From Lemma 2.3, if pm-\ ^  8 pm, pm ^  2plt and e,-’s satisfy Eq. (2.6), then the 

resulting utilization will be minimized. We now derive Ut by searching for the minimal 

utilization among all possible p i ’s in the domain where pm-\ ^  6 pm and pm £ 2 p \  hold. That

m
is, we want to find the minimum of U = £e,- / p,- while varying p, ’s and satisfying Eq. (2.6).

/-1

To derive Ut , we use the idea in [LIL73] and define variables 

Si = (©Pm “ Pi) / Pit i = 1. 2, • • • , m -1, and thus, p, = 0pm -  g.p,- = 0pM / (1 + &).
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Expressing in terms of 8i s and P i's as

ei ~  Pi+1 Pi ~  8iPi 8i+lPi+l> I — 1# 2, * , ttl 2, — 6 pm — Pm- \  — 8m-lPm-U

m-1
em =  ©Pm “  2 Z  «i =  ©Pm -  2(0pm - P i )  = -0 p m + 2(0pm -  g iP i)  = 0/?m -  2 ^ 1 ,  we 

i=l

get

m p.

f / = s 2 ^ L 1=1 Pi

m-2 Pi+1 Pi
=  Z  C?1 “  f t+ l“ ) +  £m -l +  ©  “  2 g i

i=l Pi Pm
m-2 1 +  a. a.

= l i ( 8 i  -  S i + l J - T - )  + 8m-1 +  ©  -  2 © - r ~ - — 
«-l 1 +  &+1 1 +  S i

(2.7)

Notice that if g x = g 2 -  • • • = gm-i = 0 (i.e., 0/?m = p it i = 1, 2, •••  , m-1), then U = G.

To derive £//, Eq. (2.7) is minimized w.r.t all f t ’s. This is done by setting = 0 , V i  and
oft-

solving the resulting simultaneous difference equations:

1 -

1 -

2 0 8 2

d + S l ) 2
1 + 8i- 1

1 +S2 

ft+1
(1 + 8i)2 1 + ft+i ’

i = 2, 3, • • •,  m -2, (2.8)

It can be shown that

ft = (20) m -  1, i = 1, 2, • • • , m -1, (2.9)

solve Eq. (2.8) and minimize U  of Eq. (2.7). Replacing f t ’s of Eq. (2.7) with those of Eq. 

(2.9), one can get

U, = m [ (2 0 )M -  1] +  1 -  0 . (2.10)
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Similarly to the proof of Theorem 2.2, we still need to check if p t ’s (or ’s) in Eq. (2.9) 

are in the domain where p„ < 2pt holds. This can be easily done as follows. Since

gi = (,Bpm -  p ^  / pi by definition, 8pm / pf = (29) m from Eq. (2.9). It follows that

Notice that for a given 9  > 0.5, the above Ut is a decreasing function of m, and for 

m = 2, Eq. (2.10) gives the same Ut as in Theorem 2.2. Also, Eq. (2.10) becomes the same 

result in [LiL73] when 9 = 1 .  It is interesting to see that Ut - » log (29) + 1 - 8  as 

m -+ «>.

Theorem 2.4 was proved under the restriction that pm_i £ 0pm and pm £  2p  j. In Lemma 

2.4 and Theorem 2.5 below, we relax this restriction step-by-step and then present the general 

results on Ut .

Lemma 2.4: For a set T  of m £  2 tasks and a given 9  > 0.5, if £ Qpm Z p i  + ©pj,

-i
Pm 1 --  -- = —  (29) (29) m = 2(28) m £ 2, since, by assumption, 8  > 0.5. Q J5 J).

then4 U ,= m [(29)m -  1] + 1 -  8 .

Proof: Suppose pm > 2pit i -  1, 2, • • • , n , and pm ^  2/7,, i = n+1, n+2, • • • , m. 

Construct {e/} such that

0
Pi+1 ”  Pi 

©Pm ~Pm - 1

i = 1, 2, • • *, n 
i = n+1, n+2, • • , m -2
i = m -1

m -1
©Pm “  2 i = m.

• - 1

Then, from previous discussions and Lemma 2.3, the new utilization associated with (e,-) will

4Notice that the conditions pm £ Qpm and pm S 2p\ of Theorem 2.4 together imply £ Gpm £ p i + 9 p  j. 
But the converse is not true. Thus, the domain described by conditions pm £ 6pm and pm £ 2pi is a subset of that



not be greater than the original utilization. Further, by Theorem 2.4, the minimum utilization 

resulting from the m -  n remaining tasks becomes

t j_
(m -  n)[(20)'"-" -  1] + 1 -  0  2> rn[(20)m -  1] + 1 -  0

because the Ut of Eq. (2.10) is non-increasing in m . Q.EJ>.

_ i_

Theorem 25: For a set T  of m £ 2 tasks and a given 0  > 0.5, U{ = m [(20) m -  1] + 1 -  0 .

Proof: The theorem is proved by showing that the U{ obtained in Lemma 2.4 under the 

restriction pm_i £ Qpm <,pl + Qp1 is the same as that obtained for the general case. Note 

that pm-i £  0pm <,p i  + 0 p j if and only if p ; <* Qpm <p t + Qpit i = 1, 2, • • • , m -1 (see 

Fig. 2.3). Thus, for any {p,} we want to show the existence of {pj} such that

Pi £  0pm £ p i  + Qpj, V i  * m , and the resulting utilization is not greater than the original

utilization. This is done by the following three sequential steps. Steps 1 and 2 construct new 

periods and execution times such that p ; £ &pm <,pt + 0 p ; , V i  * m  while reducing the 

processor utilization. Because of the way these new periods are constructed, the scheduling 

algorithm used to derive the utilization with the new periods may not be the RMS algorithm. 

Step 3 remedies this subtlety and completes the proof.

For any pj that does not satisfy pj  £ Qpm £  pj + €jpj, let Qpm / Pj = Q  + R,  where 

Q = [Qpjpjl is the quotient and 0 £ R < 1 the remainder. Step 1 constructs p j  (if any) such 

that p j  £ 0pm £ 2pj. Using the p j ’s, Step 2 constructs p j \  if any, such that

p j  £  0pm £ p j '  + 0pj". Note that Q = 1 if pj £ Bpm < 2pj.

SI: The cases of Q = 0 and Q £ 2 are dealt with in this step. For Q = 0 or 0pm < pj,

construct [pj] such that p j  = pj/2 and p j  = p it V i *  j .  Also construct (ej) such that

e j -  0 and ej -  eit V i * j , i  * m  and em = em + ej to fully utilize the processor. We

described by pn  ^ 0 pm £ p i  + 0pi.
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show that (2 = 1  and the utilization is reduced by using {/?/} and {ej} as follows. By 

the assumption that Qpj £ 0/>m < pj or 2 0  pj/2 £ Qpm < 2 pj/2, the relation 

p j  £  2Qpj <, Qpm < 2pj, and thus, Q = l  must hold because 8  £0.5. Moreover, 

because ejtpj £ ej/pm, the new utilization is not greater than the original utilization. 

Next for the case of Q £ 2, construct the new periods [pi) such that p j  = Qpj and 

Pi = Pit V i  ^  j • Also, construct the new execution times {ej} such that 

ej -  ei t Y  i * m and ej„ = em + (Q-l)ej  to fully utilize the processor. For these new 

periods and execution times, Q = 1. Again, the original utilization is reduced by these

s since

t C; £-
U — U = (—  + — ) 

Pj Pm
gj [ en + ( Q -  1 )ej

Qpj

= €j (1 _  -La _  ^  ^ eJ
Pj Q Pm

= 02 - D c /T T  L ) £ 0
1 QPj Pm

because Qpj iS Qpm -Zpm.

In this step, pj's  are constructed such that Q = I or p j  £ Qpm < 2p j  for each pj. 

However, there may still exist some pj's  such that p j  + Qpj < Qpm < 2pj, which is 

undesirable for Theorem 2.4. Therefore in Step 2, new periods and execution times are 

constructed from these pj's  such that the utilization is reduced further.

S2: Suppose p j  + Qpj < Bpm, 1 m -1,  where pj's  are the new periods constructed in

SI. Construct [pj ] such that p j = p j , V i  *  j  and pj' <> Qpm £ p j + B p j ' .  Also, 

construct {ej)  such that ej' = 0, ej' = ej, V i  * j , i  * m ,  and ejj -  e'm + 2ej  to fully 

utilize the processor. Then



because by assumption, 0pm = Qp'm £ 0 p j  + pj, and thus,pj, S 2pj.

u'' is obtained under the RMS algorithm based on the original set of periods {p,}. In 

other words, the scheduling algorithm which we used to obtain u'' in Step 2 may not be the 

RMS algorithm based on {pj } except that pf S pj implies pj' <> pj'. In Step 3 below, the 

utilization V resulting from the RMS algorithm based on {pj } is shown to be less than or 

equal to the utilization U resulting from the RMS algorithm based on {p,-}.

S3: Let W be the utilization associated with {p,} and {e,} under the RMS algorithm based

on {pj }, i.e., the same priority assignment as V. Then, from the discussions of Steps 1 

and 2, V £ W. On the other hand, U S f  because from Theorem 2.1, the RMS

algorithm is optimal. Thus, U £  W £ V.

Based on the above discussions, we conclude that for any {p,}, there always exists a 

new set {p,- } such that p,- £ 0pm £ pjj + Qpj', V i  * m ,  and the original utilization is

reduced. Since pm_i <, Qpm ^  p  t + ©p j if and only if p,- <, Qpm ^  p t- + 0 p ; , V i  * m ,  the

theorem directly follows from Lemma 2.4. QJS.D.

222.2. Deriving Uh

Given 0  £  1 ,U h is the limit of maximum processor utilization achievable among all task 

periods and their associated execution times. As was done for Ut , Uh is first derived for the 

case of only two tasks, and then extended for an arbitrary number of tasks.
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We need to consider the same two cases Cl and C2 used for deriving Ut . Further, the 

properties of the utilization in Eqs. (2.2) and (2.3) need to be used in the following theorem. 

Theorem 2.6: For any two tasks and a given 8  £ 1, Uh = 1 -  (1 -  ©)2 occurs when 0 p 2 is a 

multiple of />!•

Proof: The theorem is proved by considering both Cl and C2. For C l, U is expressed 

as either Eq. (2.2) or (2.3), depending on whether e x £  ^ or e x > %. Moreover, Eq. (2.3) is 

monotonically non-decreasing in e x while Eq. (2.2) could be monotonically non-decreasing or 

non-increasing in e x. Therefore, given p x and p 2, the maximum of U must occur at either 

e x =  0 or e x = Bp j, the two extreme points of e x. It can be easily derived from Eq. (2.2) that 

if Ci = 0 then U = 0 , and from Eq. (2.3) that if e x = Qpx then

That is, given p x and p 2, the maximum U occurs at e x = Qpx. To derive Uh under Cl, the 

largest value of U in Eq. (2.11) over all possible p x s and p 2 s is determined as follows. The

equivalently, 0p2 is a multiple of p  j. Under Cl,

Uh = 0  + (1 -  0 )— —^  = l  -  (l -  0 )2.
P i Pi

For C2, the achievable utilization U is again expressed as Eq. (2.2), which, unlike that 

of Cl, is a monotonically non-decreasing function of e x. Therefore, for given p x and p 2, the 

maximum of U occurs at e x = Qp lt and

e i ( e2
Pi P i

(2.11)

U in Eq. (2.11) will be maximized when —  l - ^ l  is maximized, i.e., I— , or
Pi Pi Pi Pi



U = 6  + ©/?!■
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1 1 r®P 2n
“ P i - — I——1 
P P i Pi

= 2 9 - 9 — r— i. 
Pi Pi

(2.12)

To derive Uh under C2, we likewise identify the largest value of U in Eq. (2.12) over all

P 1 _ &P 9,
possible p j ’s and p 2’s as follows. The 17 in Eq. (2.12) will be maximized when — | — -1 is

P i Pi

r 0p^- ©p2
minimized, i.e., f ] = ------ , or equivalently, 0 p 2 is a multiple of p %. Under C2,

Pi Pi

Uh = 2 0  -  0 —
P i Pi

= 1 -  (1 -  0 )2,

which is the same as that tmder Cl. Q.E.D.

Before deriving Uh for an aibitrary number of tasks, consider a set {p;} of periods such 

that both 0p j  and pj, j  = 2 ,3 ,  • • • , m -1,  are multiples of p it i = 1, 2, • • • , j - 1, and ©pm 

is a multiple of p t , V i  # m  (see Fig. 2.4). Thus, let 0p7 = a7-,lp i and ©pm = a m ip,-, where 

a 7il-’s and a OTii’s are positive integers. Then, we have the following lemma.

Lemma 2.5: For m £ 2 tasks with periods given above and given 0  £ 1, the maximum U 

occurs at

e x = Bpi,
J-} (2.13)

ej — Qpj — J ~
i=l

Proof: Consider tasks in the order of Tj, T2, ,T m. Suppose there exists Tj such

that ej does not satisfy (13) while all eit 1 £  i < j ,  satisfy (13). In particular, ej < Qpj if

h  i
j  = 1, and ej < Qpj -  Y*ajSei if j  ^  2. Then, construct {e, } such that (i) Eq. (2.13) is now

i=l



Figure 2.4. Both ©p. and p. are multiples of p.
J J ^
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satisfied for el, V i < j ,  and (ii) the completion times of all invocations of other T/’s, 

Y i  > j ,  remain unchanged within the interval [0, Qpm). Specifically,

— e,, i = 1,2, , y - i ,

ej  = ej  + 4 /. 

ey+i =  cy+i — Ay+i =  ey+i — cty + iJ A / ’
0

Cj- — Cj A;
[ i-y-i

— c; — j ®iyAy ~ £  ®«j+*4/+jt 
I *=i

i = j+2, j+3, • • '  , m,

where A; > 0 is the increase in ey- to satisfy Eq. (2.13), and At 2: 0, / S y+1, is the 

corresponding net decrease5 in e,- to keep the completion times of all 7*,- ’s unchanged within

P *
[0, 0pOT). A simple algebraic manipulation leads to A/ = — A,0(1 -  0 ) ,_^_1, Y  i ^  y'+l. It

Pj

follows that

a - - U m i L -  £  A
Pj i-j+1 Pi 
A:

= -^-(1 -  Q)m~J £  0,
Pj

where U and U are the processor utilizations associated with {e, } and {el}, respectively. If 

the above arguments are applied repeatly over all e fs  until Eq. (2.13) is satisfied, then one can 

increase the processor utilization monotonically until the maximum U is reached. Q.E.D.

With the above lemma, the following theorem can be easily proved.

Theorem 2.7: Let T  be a set of m £ 2 tasks with periods P \< P z <  • • • <pm. l i  both Qpj 

and pj, j  = 2 ,3 ,  • •  , m - 1, are multiples of plt V i < j ,  and &pm is a multiple of 

P i , Y  i < m,  then Uh = 1 -  (1 -  0 )m.

Proof: From the results of Lemma 2.5 and Eq. (2.13), the maximum achievable 

utilization U can be derived as

3A temporary negative e/ will not affect the proof of the theorem.
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j~ 1 e:
1 ~  z ~ ~

i=1 Pij=lPj 7=2

= e [i + (i - ©) + (i - e)2 + • • • + (i -  ey"-1] (2.i4)

= 1 - ( 1  - © ) m. Q.E.D.

Let f/ be the utilization for a given 6  £  1. Then, it is not difficult to see that a new 

period p j  of Tj can always be constructed such that both Qpj and p j  are multiples of p,-, 

V i < j ,  provided each of such p t ’s and 6  are rational numbers. Using this observation, we 

have die following lemma — which is necessary to show in Theorem 2.8 that the XJh obtained 

in Theorem 2.7 is indeed the Uh for arbitrary m tasks.

Lemma 2.6: If pm is modified to pj, such that 0pj, is a multiple of p {, V i  < m,  then the 

utilization corresponding to the new periods is greater than that to die original periods.

Proof: Consider Tm and a particular Th i* m , while ignoring all the other tasks. From 

Theorem 2.6, for any e, <, 6 pit the maximum utilization occurs when 6 p m is a multiple of p t . 

Thus, the function

M B p „ ) »  - P"' a  9(1 -  (2.15)
Pm Pi

where E-t (Qpm) represents the total execution time of within [0, 6 p m) and the RHS of the 

above inequality is the part of utilization contributed by Tm as @pm is a multiple of p,-. 

Considering each (7), Tm) pair will lead to:
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m-1 m-1 ©Pm
2 / , (©Pm) =  2

i=l Pmi=l
m-1

©Pm -  2 £ i(©Pm)
=  (m -  2)0  +

Pm

£ (m -  2)0 + 0(1 -  ^  — ).
,=i P«

It follows that

m-1
©Pm -  2£«(© Pm )

(2.16)i-1
Pm

Notice that the LHS of inequality (16) represents the part of U contributed by Tm with the 

original period pm, whereas the RHS denotes that contributed by Tm as Q pj  is a multiple of 

Pi ,  V i  < m .  Since the part of utilization contributed by other tasks arc the same, the lemma 

follows. Q.E.D.

Now, for a general {/?,-}, we want to show the existence of a new set of periods which 

satisfies the property in Theorem 2.7 and increases processor utilization.

Theorem 2.8: For a set T  of m  £ 2 tasks and a given 0  £  1, Uh = 1 -  (1 -  0 )m.

Proof: Consider tasks in order of Tm, r m_i, ••• , and T\. Without loss of generality, 

Qpm can be assumed to be a multiple of p t, V  i < m .  (If not, from Lemma 2.6 a new p^  

can always be constructed such that &pm is a multiple of all other p, ’s while increasing the 

processor utilization.)

Let Tj e  T  be the first task where both Qpj and p j, 2<> j  <> m -1, are not multiples of 

P/> V i  < j .  Then, construct a new p j  such that both Qpj and p j  are multiples of p it V i < j .  

Assume that p j  = <spj, where a  is a positive real number and pj  the original period of 7). 

For all the other tasks,
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Pi, i = 1,2, * • , 7-1,

Pi '•='
op/. i =7+1. • • ' . m.

It is worth pointing out that after the above modification, Qpm, Qpj and pi, 

i = 7+ 1, • • • , m - 1, arc still multiples o fpj, k = 1, 2 , • • • , j - 1.

On the other hand, each e j  is constructed as follows. First, ej := eit V i < ] ,  to keep 

the part of utilization contributed by such 7) ’s unchanged. Second, ej  is constructed such that 

ej and ej, i = 1,2, • • •,  j - 1, fully utilize the processor. From Lemma 2.6,

Uj = 9  -  9  ^  Uj, where Uj is the new utilization contributed by Tj and Uj the old
1=1

utilization by Tj. Finally, construct e[, i = 7+1, 7+2, • • • , m,  such that e- and

. / i-1 , 
pk, k = 1, 2, • • • , r-1 , fully utilize the processor. Likewise, Ui = 0  -  © £ [/* . Let

Jk=l

/ /
A = Uj — Uj £ 0, then a simple algebraic manipulation leads to U — U = A(1 -  &)m~J ;> 0,

where U a  and U =
i=l i=l

The above procedure can be repeatedly applied to pj-\, pj-2  and so on, until each Qpj 

and pj, 2<,j<, m -1, are multiples of P i , V i < j ,  so as to increase the utilization 

monotonically. Thus, this theorem follows from Theorem 2.7. Q.E.D.

In Theorem 2.8, each of {p, } and 0  must be rational numbers such that both Qpj and p j  

can be multiples of pi, i = 1,2, • • , 7- 1. Otherwise, p j  must be constructed to make Qpj

and p j  as close to multiples of s as possible. This is the reason why Uh is termed “ the 

limit of the maximum” of U. U[ and Uk are shown in Fig. 2.5(a).
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Uh = 1 - (1- 0 )

U = ©

1
m

U, = m[ (20 )-l] +

Uj= 0

0.5 1 0

2.5(a). Static Case

m
1 ^ =  1 - (1- © )

U
U = 01

U [= 0

0
00 10.5

2.5(b). Dynamic Case

(1- © )

Figure 2.5. U j and Uh as Functions of ©
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23. Optimal Dynamic Scheduling of Periodic Tasks

For the static scheduling algorithms discussed in the last section, priorities assigned to all 

invocations of a task are the same. For the dynamic algorithms to be addressed in this section 

however, different priorities are assigned to different invocations of the same task. An optimal 

dynamic algorithm can naturally outperform its static counterpart because it requires less 

stringent constraints in scheduling tasks.

23.1. Optimal Dynamic Scheduling Algorithm

To develop an optimal dynamic scheduling algorithm w.r.t. 0 , it is necessary to 

introduce an optimal single-machine scheduling algorithm developed in [BLL83]. Since this 

algorithm will be used in the following chapters, we shall call it Algorithm A in the rest of this 

thesis. A set of jobs with arbitrary release times and precedence constraints is to be scheduled 

on a single machine so as to minimize the maximum job completion cost, where the cost 

associated with each job can be any monotone non-decreasing function of its completion time. 

As can be seen horn the following steps, the computational complexity of the algorithm is 

O (N2), where N  is the number of jobs to be scheduled.

SA1. Modify job release times, where possible, to meet the precedence constraints among the 

jobs, and then arrange the jobs in non-decreasing order of their modified release times to 

create a set of disjoint blocks of jobs. For example, suppose jobs X, Y and Z are 

released at t = 0, 2, 15, respectively, X precedes Y which precedes Z, and 5 units of 

time are required to complete each of X and Y. Then, the job Y’s release time is 

modified to t = 5, Z’s release time remains unchanged at t = 15, and two blocks of jobs 

{X,Y} and {Z} will be created.

SA2. Consider a block B with block completion time t(B). Let b ' be the set of jobs in B 

which do not precede any other jobs in B . Select a job / from b ' such that f t (t(B)) is
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the minimum, where / / ( f )  is the nondecreasing cost function of job I if it is completed 

at t. This implies that / be the last job to be completed in B .

SA3. Create subblocks of jobs in the set B -  [I} by arranging the jobs in nondecreasing order 

of modified release times as in SA1. The time intervals) allotted to / is (are) then the 

difference between the interval of B and the interval(s) allotted to these subblocks.

SA4. For each subblock, repeat SA2 and SA3 until time slot(s) is (are) allotted to every job.

By setting the cost function / iy(f) of Tiv, the v-th invocation of Th  as 

/,-v(0 := (t -  r[v)/pit the above algorithm can be simplified to schedule independent periodic 

tasks while minimizing the system hazard as follows. In step SA1, the modification of job 

release times is unnecessary since the periodic tasks are assumed to be independent. Because 

Tiv must be completed before Ti(y+1y only one invocation from each of the m tasks needs to 

be considered in Step SA2 in order to determine the last invocation to be completed in each 

block. Therefore, the computational complexity can be reduced to 0(mn), where n is the 

total number of invocations for the m tasks in T  within a planning cycle.

For example, consider two tasks, T x and T 2, with p x = 10, e x = 3, p 2 = 30 and e2 = 8. 

That is, a total of four invocations, T n , T n , T13 and T2l, need to be scheduled within the 

planning cycle I  = [0, 30). As the above algorithm is applied to this example, two blocks 

= (r j i ,  T2j, T l2) in the interval [0, 14], and B2 -  {T13} in [20, 23] are created from Step 

SA1. From SA2, B 2 is trivially allotted to T13. For B x however, since T  u  must be completed 

before T X2, only T x2 and 7*21 need to be considered as to which of them should be completed 

last in B x. From SA2, it turns out that /i2(14) = (14 -  10) /1 0  = 0.4 < 14/30 = / 2i(14). 

Therefore, T n  must be completed last in B x. Deleting T l2 from B x and arranging T n  and 

T2i as described in SA3, a subblock B n  = {Tn, r 2i) in [0, 11] is created, meaning that the 

slot [11,14] is allotted to T12. Repeating the above steps on B n , it follows that T n  must be
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completed before r 2i, and the resulting system hazard 9  = 0.4, which is the normalized 

flowtime of T 12. Notice that if the EDD algorithm [Bak74] —  which simply schedules the 

“ ready” invocations in the non-decreasing order of their deadlines — is used in the example, 

then the resulting 8  becomes 14/30 (the normalized flowtime of T2i). Therefore, the EDD 

scheduling algorithm is not an optimal algorithm in the sense of minimizing 6 .

2 3 2 .  Achievable Processor Utilization Bounds

As in the static case, we are also interested in deriving the two utilization bounds, U{ 

and Uh. Recall that both Ut and Uh must be derived with the processor fully utilized under 

the above optimal dynamic scheduling algorithm. However, it is not always easy to derive Ui 

and Uh based on this optimal dynamic scheduling algorithm. The following theorem remedies 

this difficulty by showing that Ut and Uh can also be derived under the EDD scheduling 

algorithm after properly modifying the deadlines of the task invocations to be scheduled.

Theorem 2.9: Given 8  £  1, Ut and Uh derived under the optimal dynamic scheduling 

algorithm are the same as those derived under the EDD scheduling algorithm with 

(y-\)P i + 8pi as Tiv’s deadline, V  i and v.

Proof: Given 8 , let u[ and Uh denote the two bounds obtainable under the above EDD 

algorithm. Then, we want to show that Ut = u[ and Uh = Uh. Let [pi} and {«,•} be the sets 

of periods and execution times where U =Ut is obtained under the optimal dynamic 

scheduling algorithm. That is, given 9  £ 1, each Tiv can be completed by the time 

(v—l)p,‘ + 0 p ^  V i  and v. However, by using (v -l)p f + Qpt as the deadline of r ,v, the 

EDD algorithm must also be able to generate a schedule under which Tiv can be completed 

before (y-\)P i + 0p, , meaning that U[ £ £//. By switching the roles of Ui and Ut in the 

above argument, we can show that u [  £ Ut . Thus, U{ = U[. Similarly, Uh = Uh. Q.EJ).
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By using Theorem 2.9, 17/ and Uh arc derived in the next two subsections.

232.1. Deriving Ut

The following lemma follows directly from [LiL73].

Lemma 2.7: Let T be a set of m tasks with periods {p,} and execution times {e, }. Then, 

using vpi as Tiv’s deadline, the EDD scheduling algorithm is feasible w.r.t. the deadline if and

m g.
only if the processor utilization U s  V  —  <, 1.

i-1 Pi

Lemma 23: Given 8  £ 1, the EDD scheduling algorithm with (v-l)p,- + 0p ; as Tiv’s

deadline is feasible w.r.t. © i f f /  = y  —  < 8 .
«=i Pi

m
Proof: For any set T of m tasks with £/ = £  ejpi <, 8 , we want to prove that there

i=l

always exists at least a schedule in which each Tiv can be completed by its deadline, 

(v-l)p; + ©p,-. Consider a modified task set T of T  where T  is the same as T except that 

the execution time e[ in T  is e ,/8  instead of the original et in T. Since u '  = U/Q ^  1, 

where u' is the processor utilization for T ,  there always exists a schedule S' in which each 

7/v of T  can be completed before vp,-. However, since e,- = 0 e /, there must exist a schedule 

in which each Tiv of T can be completed by its deadline (v~l)p,- + ©p;. Since the EDD 

scheduling algorithm is optimal in meeting deadlines, the theorem follows. Q.E.D.

Ut can now be derived as in the following theorem.

Theorem 2.10: For a set T of m £  1 tasks and a given 8  £  1, Ut = 8 .

Proof: The theorem can be proved from the following three facts. First, from Lemma 

2.8, a feasible schedule for the given 8  can always be derived from the EDD algorithm as 

long as the processor utilization does not exceed 8 . Second, consider a particular set of 

execution times such that e{ = 0, V i *  m; for this particular instance of {i;}, no feasible
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schedule with a system hazard not exceeding 0  may exist if em > Bpm. That is, given 0 ^ 1 ,  

there exists an instance of T  where no feasible schedule with a system hazard not exceeding 0  

may exist should the processor utilization exceed 0 . Based on the above two facts, 0  = u(, 

where u [  is the £7/ under the EDD scheduling algorithm with (v -l)p f + 0p, as Tiv’s 

deadline. Finally, from Theorem 2.9, Ut — which must be obtained under the optimal 

dynamic scheduling algorithm — is the same as u[. Q.E.D.

Notice that for 0  £ 0.5, the same Ut is obtained under either the optimal dynamic or 

optimal static scheduling algorithm. If 0.5 < 0  £ 1 however, the £7/ associated with the 

optimal dynamic algorithm is greater than that associated with the optimal static algorithm.

23.2.2. Deriving Uh

Consider a task Tt e  T. Since Tiv arrives at time (v-l)p ; and must be completed by its

Llpt
deadline (v-l)pf + Bpit Tt can only be executed during the set of intervals 2?f = Eiv,

V = 1

m
where Eiv s  [(v-l)p,-, (v-l)p,- + 0p,). E  s  Et is the executable time zone (ETZ) of T,

«-i

which represents the set of time intervals within [0, L)  dining which tasks of T  can be 

executed. Let \E\ represent the total length of E. Then the executable time ratio (ETR) of T 

is defined as \E\!L. Several insights can be drawn from the notion of ETR as follows. First, 

ETR £ 1. Second, if £7 > ETR, then no feasible schedule exists for the given 0 . Finally, it 

was also shown in Theorem 2.8 that for any 0  £ 1, the maximum ETR occurs when both Qpj 

and pj, j  = 2,3, • • • , m -1, are multiples of p„ V i  < j ,  and Bpm is a multiple of p t , 

V i < m . Or, the supremum of ETR among all instances of T with m tasks is 1 -  (1 -  0 )m.

Uh can now be obtained as in the following theorem.

Theorem 2.11: For a set T of m £  1 tasks and a given 0  £  1, Uh = 1 -  (1 -  0 )m.
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Proof: From the definition of Uh, we need to show that (i) if U > 1 -  (1 -  0 )m, then T 

is never schedulable w.r.t 6 , and (ii) there exists at least a feasible instance of T  if 

U < 1 -  (1 -  ©)m. The claim in (i) is obvious because 1 -  (1 -  0 )m is the supremum of 

ETR among all instances of T. Thus, no feasible instance of T may exist if 

U > 1 — (1 -  0 )m. On the other hand, the claim in (ii) has already been shown to be true in 

Theorem 2.8. In particular, given U < 1 -  (1 -  0 )m, the feasible instance of T  is the same as 

that for the static scheduling algorithm as derived in Theorem 2.8. QJEJD.

Notice that Uh for the optimal dynamic scheduling algorithm happens to be the same as 

that for its static counterpart Ut and Uh are shown in Fig. 2.5(b).

2.4. On-Line Scheduling Algorithms

So far, we have derived optimal scheduling algorithms under the assumptions that the 

arrival times, execution times and deadlines of all tasks (invocations) are known in advance. 

Both the optimal static algorithm derived in Section 2.2 and the optimal dynamic algorithm in 

Section 2.3 are thus off-line algorithms. When the above information on each task is not 

known until it actually arrives, an on-line algorithm must be found.

An on-line scheduling algorithm, if any, is said to be optimal if it always generates a 

schedule which is as good as that generated by its off-line dynamic counterpart. Notice that 

the existence of an optimal on-line algorithm depends not only on the scheduling objective but 

also on the characteristics of the randomly arriving tasks. For example, in case of a single 

processor, it has been shown in [Dei74, Mok83] that the on-line EDD scheduling algorithm is 

always optimal in meeting task deadlines.

In this section, we consider a system in which, in addition to periodic tasks, aperiodic 

tasks arrive randomly. While the information of all periodic tasks is assumed known a priori 

to the scheduler, the information of each aperiodic task is unknown until its actual arrival. We
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shall prove that, except for some extremely simple cases, no optimal on-line scheduling 

algorithms w.r.t. 6  in such a system exist Thus, instead of deriving the two processor 

utilization bounds £// and Uh, we shall describe simple on-line mechanisms which are useful 

to determine whether or not an arriving aperiodic task can be completed with a system hazard 

not exceeding 9  without disturbing the execution of periodic tasks. These mechanisms can be 

used to implement load-sharing strategies [WaM85, ShC88] where tasks are transferred from 

over-loaded processing nodes (PNs) to under-loaded PNs. A PN may use the mechanisms 

proposed here to decide on whether to execute an arriving task locally or transfer it to another 

PN for execution.

2.4.1. Optimal On-Line Scheduling Algorithms

The following theorem shows that an optimal on-line scheduling algorithm w.r.t the 

system hazard does not always exist.

Theorem 2.12: No optimal on-line scheduling algorithms w.r.t. 9  exist in a system where 

aperiodic tasks arrive randomly with general execution times and deadlines.

Proof : First, considering a system in which there exists no periodic tasks, we shall prove 

the theorem by contradiction. Suppose there is an optimal on-line scheduler and consider the 

following scenario. At time r, there exist two active tasks T x and T2. T j arrived at the time 

f-20 with deadline r+20 and remaining execution time 3, while T2 arrived at t with deadline 

f+10 and execution time 3. Starting from t, the optimal scheduler will schedule these two 

tasks on a single processor. Assume no tasks arrive in [t, t+3) and consider the following 

two cases depending on which of T x and T2 is executed in [r, r+3).

Case 1. 7*! is executed in [r, r+3). In this case, T 1 is completed at r+3 and the remaining 

execution time of T2 is 3. Now, consider the scenario where r 3 arrives at r+3 with 

execution time 4 and deadline r+8, and r 3 is the only task that will ever arrive at, or
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after, r+3. Then, 9  = max {0.575,1.0, 0.8} = 1.0, which is achieved by executing 

T3 in [r+3, r+7) and T2 in [r+7, r+10). However, if we have had at t the 

knowledge of task arrivals at, or after, r+3, the minimum system hazard' would 

become 6  = max {0.75, 0.3, 0.8} = 0.8, which is achieved by executing these three 

tasks in order of r 2, T3 and T t.

Case 2. T2 is executed in [r, r+3). In this case, T2 is completed at r+3 and the remaining 

execution time of T\ is 3. Now, consider the scenario where no task will ever arrive 

at, or after, r+3. Then, the minimum system hazard is 8  = max {0.65, 0.3} = 0.65. 

However, if at t we have known that no task will ever arrive at, or after, r+3, the 

minimum system hazard would become 6  = max {0.575,0.6} =0.6, which is 

achieved by executing these two tasks in the order of T x and T2.

From the above discussion, we conclude that the assumed optimal on-line scheduler 

cannot always generate a schedule as good as that generated by an optimal off-line scheduler. 

The theorem follows since a system with only aperiodic tasks is a special case of the general 

system in which both periodic and aperiodic tasks exist QJEJ).

Even though an optimal on-line scheduling algorithm does not always exist there are 

special cases where such an algorithm exists. For example, in a system where each (periodic 

or aperiodic) task has the same deadline since its arrival, the on-line EDD scheduler described 

above is optimal.

2.4.2. On-Line Determination of the Schedulability for an Arriving Aperiodic Task

Scheduling aperiodic tasks in the presence of periodic ones is important in real-time 

applications because of the unpredictable and time-critical nature of aperiodic tasks. A solution 

approach which is most commonly seen in the open literature [SLR86, LSS87, SSL89] 

suggests the following. First, some minimal interarrival time is assumed to exist for all
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aperiodic tasks. Second, treat the aperiodic task stream as a periodic task with a period of the 

minimal interarrival time. Third, use the RMS algorithm or variations thereof to determine 

whether or not the resulting schedule is feasible with 6 = 1 .  Despite its simplicity, this 

approach has the following drawbacks:

Dl. Since there may exist different types of aperiodic tasks, it may not be realistic to 

assume a minimal interarrival tipie between an aperiodic task of one type and that of 

another.

D2. As pointed out and analyzed in [GDB89], a system with very low processor utilization 

might result from the conservative nature of this approach.

In what follows, simple on-line mechanisms which are more realistic and could result in 

better processor utilization are described. They are presented only under the following three 

different scheduling algorithms for the tasks involved: Al) static scheduling of periodic tasks 

with the lowest priority given to aperiodic tasks, A2) static scheduling of periodic tasks with 

the highest priority given to aperiodic tasks, and A3) dynamic scheduling of all tasks. For all 

three algorithms, consider the current time instant t when an aperiodic task with execution 

time e and deadline t+d arrives. Also, assume that all tasks residing in the processor (the

periodic tasks and the aperiodic ones already accepted) before t are guaranteed to be

completed in time with a system hazard not exceeding 6 .

For Al, the RMS algorithm is used for periodic tasks, and aperiodic tasks are assigned 

the lowest priority (the FCFS rule is used among aperiodic tasks). Let R (t)  £ t denote the 

cumulated processor idle time in [0, f] if there are only periodic tasks in the processor. Also, 

let CET(t) be the total cumulated remaining execution time of all aperiodic tasks accepted by 

time t. Then, the processor may accept the arriving aperiodic task only if

R (t + Qd) -  R (t) e + CET(t).
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A2 is similar to A l except that the highest priority is assigned to the aperiodic tasks. 

The arriving aperiodic task would be accepted only if (i) it can be completed by / + Qd and 

(ii) the resulting normalized flowtime is not greater than 6  for each unfinished periodic task 

invocation within the planning cycle. Specifically, the planning cycle involved is the current 

planning cycle if at time t there exists at least an unfinished invocation within the cycle. 

Then, the processor may accept the arriving task only if Qd ^  CET(t) + e and 

max(ciV — riv) / pi £ 6 , where c,v, riv and p x are the completion time, arrival times and

period, respectively, of Tiv for all unfinished Tiv’s within the planning cycle.

A3 uses the on-line EDD algorithm for both periodic and aperiodic tasks. Upon arrival 

of an aperiodic task at time t,  A3 uses the on-line EDD algorithm to check if all tasks can be 

completed with a system hazard not exceeding the pre-specified 0 . If they can, the arriving 

task is accepted. In addition to the unfinished aperiodic tasks already accepted, the tasks 

involved in this check includes the arriving aperiodic task and all unfinished periodic tasks.

Notice that whether to accept an arriving task w.r.t. 6  is equivalent to treating t + Qd as 

the deadline of the arriving task. Depending on the specific need of the system, a different 

deadline such as t + d  may also be used in the above algorithms for an arriving task.



CHAPTER 3 

MULTI-PROJECT SCHEDULING USING AN 
ENUMERATIVE METHOD

3.1. Introduction

In this chapter, the optimal scheduling of communicating periodic tasks which have been 

assigned among the PNs in a distributed system is studied in the context of Operations 

Research. Therefore, instead of scheduling communicating tasks on processors, cooperative 

projects (or jobs) are scheduled on machines.

Consider a set, /  = {/,• | i = 1, 2, • • • , | / | ;  | / |  £ 2), of cooperative projects to be 

executed by a set, M  -  [Mk | k — 1, 2, • • • , | M  |; | Af | £ 2), of machines, where |A| is 

the cardinality of the set A . A set of cooperative projects will henceforth be called a multi­

project. Each project 7, with release time rt is composed of an arbitrary number of 

operations. Similarly to a job-shop [Bak74], each operation in the multi-project is to be 

executed by a pre-specified machine. Precedence constraints in a multi-project system may 

exist between the operations within a single project and between those of different projects. A 

time delay may also exist between the completion of an operation and its enabling of another 

operation on a different machine. The execution time of an operation by its corresponding 

machine and the period of a time delay are assumed to be given.

A PERT/CPM graph with Activity On Arc (AOA) ([Tah76]), called the multi-project 

graph (MPG), is used to describe the precedence constraints between operations and time 

delays, and the release and completion of each project. Unlike a general PERT/CPM graph —
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which usually has only a single pair of staiting and ending nodes — the MPG has multiple 

pairs of starting and ending nodes, each representing the release and the completion events of 

a project The time a starting (ending) node is therefore “ realized”  is the time when the 

corresponding project is released (completed). Note that the completion of a project Jt means 

the completion of all operations (which may belong to other projects) and time delays which 

precede ’s ending node in the MPG. Thus, depending on how the MPG is constructed to 

reflect the completion of each the set of these preceding operations may not contain all Jt ’s 

constituent operations. This means that, as in any job-shop, even the last operations) 

necessary to complete J% may not be executed by the same machine that executes most of s 

operations. Therefore, when solving the multi-project scheduling problem, what is more 

important is which machine executes an operation and which ending node the operation 

precedes in the MPG, rather than which project the operation belongs to. Following the 

convention in any PERT/CPM graph with AOA, each operation or time delay of the MPG will 

henceforth be called an activity.

Fig. 3.1 shows an example MPG consisting of four projects Jy, J 2, J 3 and Ja< which are 

to be executed by two machines, My and M 2. Each arc in the MPG represents an activity and 

the weight assigned to an arc is the execution time of the corresponding operation or the 

delay. All operations on the LHS of the shaded area in Fig. 3.1 are to be executed by My 

while those on the RHS by M 2. In this MPG, there are four starting nodes rty, n2, ft3 and ftM 

(labeled as Sy, S 2, S 3, and 5 4, respectively), and four ending nodes ft 17, ny%, rtg and ft 19, 

which represent the release and completion events of Jy, J 2, J  3 and J  4, respectively. Notice 

that for the multi-project scheduling we make no distinction on which project an activity 

belongs to. A project is considered completed only after all activities preceding its ending 

node are completed. Except for / 4, which is released at time t = 20, Jy, J 2 and / 3 are all 

released at t = 0, meaning that tiy, n2, n 3 and n xx are “ realized”  at t = 0 , 0, 0, and 20,
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mm

Figure 3.1. An Example MPG



ss

respectively. For convenience, we write np = Jt if np is the ending node representing s 

completion. Also, the completions of J \, J2, J$ and / 4 represent the completions of all 

activities preceding n n , nig, n9 and n ^ ,  respectively.

Given a multi-project, let cf* be the time when / ,  is completed under a scheduling 

algorithm £. Then, the system hazard of the multi-project is computed as

0^ = max c k  
J , e J

where = (c,C — r, ) /  is the normalized flowtime, the release time, and w,- > 0 the 

normalization factor of We want to find an optimal multi-project preemptive (resume) 

scheduling (Time delays are not schedulable objects.) algorithm £* such that 6^* = mui ©C.

That is, £* minimizes the maximum normalized project flowtime over all projects. Notice that 

0< is a regular1 performance measure. Also, the general job-shop scheduling problem is a 

special case ([BEN82]) of the multi-project scheduling problem (MPSP) described above.

For example, the two schedules generated by and £2 for the multi-project in Fig. 3.1 

are given in Fig. 3.2, where W\ = 30, w2 = 40, and w3 = w 4 = 20. £i schedules operations on 

each machine simply according to ascending order of their indices, whereas £2 considers the 

normalization factor for each project as well as the precedence constraints affecting operations 

on other machines. As shown in Fig. 3.2, we get

_  34 
30*

tikj 37
4 0 ’

ii
VO 

jOII 3 3 - 2 0
20

= — , and 
20

_ 29 -Ci 37 -Ci 7 -Ci 3 0 - 2 0
3 0 ’

C2 =
4 0 ’ C 3 ='  2 0 ’ C 4 = 20

_
2 0 ’

Thus,

*A performance measure Z  is said to be regular if (a) the scheduling objective is to minimize Z , and (b) Z 
increases only if one or more project completion times in die schedule increases ([Bak74]).
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Figure 3.2. Two Schedules of the MPG in Figure 3.1.



showing the C2’s superiority over £j.

The MPSP described above is a direct representation of the scheduling problem for 

periodic tasks assigned among the PNs of the distributed system. For example, a project of 

the former corresponds to a task invocation of the latter. Also, a time delay of the MPSP is 

used to represent the communication delay between two tasks assigned to different PNs. (A 

complete account of the correspondence of terms between the two contexts is detailed in 

Chapter 4.)

Even without considering the time delays, the MPSP is hard, irrespective of whether or 

not preemptions are allowed. For example, the general job-shop scheduling problem, a special 

case of the MPSP, is already NP-hard for the problems even as simple as J 2 \ mj £ 3 | Cmtx2 

or / 3 1 m-j £  2 1 Cm„  ([GoS78, LRB77]). Consequently, except in the case of a single 

machine ([BLL83]), no polynomial time algorithms are likely to exist for the MPSP; some 

form of heuristic and/or enumeration is the only recourse to the problem.

The MPSP considered here falls in the realm of resource-constrained project scheduling 

problems ([BLR83]), and thus, its solution approaches must be related to that of the latter as 

well as to job-shop scheduling problems. Like any other NP-hard problem, approaches to 

these problems are concerned with how to improve the efficiency of the search for an optimal 

or suboptimal solution by: 1) using dominance properties (DPs) to reduce the size of the state 

space to be searched, and 2) deriving a lower-bound cost as tight as possible at each stage to 

guide the search more efficiently. Giffler and Thompson ([GiT60]) are the first to propose a 

systematic approach to generating the set of all active schedules based on which (and

za two-machine job-shop in which the number of operations in any job is greater than or equal to 3 and the 
scheduling objective is to minimize the maximum job completion time among all jobs ([LLR81]).



variations thereof) most implicit enumerative algorithms have been developed. A set A of 

active schedules is said to dominate another set S a  A of all schedules in the sense that 

inclusion of an optimal schedule (w.r.t any regular measure) in S implies that in A. In other 

words, to find optimal schedules w.r.t. any regular measure, it suffices to consider only the set 

of active schedules, thus reducing the size of the state space to be searched. For example, to 

solve a job-shop scheduling problem, Brooks and White ([BrW65]) used two bounds, called 

the job bound and the machine bound, to guide the search for an optimal schedule among the 

set of all active schedules. Schrage ([Sch70, Sch72]) developed a similar approach to 

generating the set of all active schedules for preemptive and non-preemptive cases, and 

proposed DPs and lower-bound costs to find optimal schedules for a network scheduling 

problem. An extensive survey of job-shop scheduling with branch-and-bound (B&B) methods 

can be found in [LLR77], where job-shop scheduling was modeled by settling pairs of 

disjunctive arcs and a tighter bound of cost was also developed by including many other 

bounds as special cases. Possible extensions of the problems and variations of the solution 

techniques are described in [BEN82]. Unfortunately, none of these approaches are directly 

applicable to the MPSP due mainly to their structural differences. Further, while most known 

scheduling objectives are to minimize the makespan, the MPSP deals with a unique objective 

function.

We shall develop in this chapter a B&B algorithm to find an optimal schedule for the 

MPSP. We will do this by deriving and then using the dominance relationship between 

simultaneously schedulable operations in the MPSP. Also, lower-bound costs are derived to 

effectively guide the search for an optimal schedule.

A set of DPs w.r.t all regular measures is identified in Section 3.2. Section 3.3 discusses 

more DPs w.r.t. the system hazard. Using all the DPs derived in Sections 3.2 and 3.3, we 

show in Section 3.4 how the B&B algorithm is guided to find an optimal schedule for the
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MPSP. A demonstrative example and some computational experiences are presented in 

Section 3.5.

3.2. Dominance Properties for All Regular Measures

The main idea behind the DPs w.r.t. all regular measures is to eliminate unnecessary 

preemptions and reduce the machine idle times caused by precedence constraints between 

dependent operations.

An unfinished operation Ob in the MPG is said to be schedulable if (1) the project 

containing Ob has been released, and (2) all preceding operations and time delays, if any, of 

Ob have already been completed. The DPs to be identified are based on the following 

observations:

OBI. Preemptions which do not improve performance must be disallowed to reduce the 

number of possible branches in the B&B algorithm.

OB2. A machine should not be left idle if there are operations schedulable on the machine.

OB3. A schedule must always be replaced by another schedule if the latter can reduce the 

completion time of a project without increasing the completion time of any other 

project

These observations are obvious since preemptions are allowed and regular measures used.

Let Ob and Oc be two operations schedulable on Mk, £, and £2 be two preemptive 

scheduling algorithms, and Z^1 and Z^2 be the performances of ^  and £2> respectively. OBI 

leads to the following theorem.

Theorem 3.1: Given any regular measure, the decision for Mk on which of Ob and Oc should 

be executed first does not change with time.
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Proof: Let Ob and Oc be simultaneously schedulable on Mk at ti = 0, and suppose Ob 

is executed first at t x = 0. Consider the partial schedule in Fig. 3.3(a) generated by a 

scheduling algorithm £lt where the shaded areas represent preemptions by operations other 

than Ob and Oc. Algorithm now chooses Oc over Ob to execute at t2 > fi. We want to 

show that there is always another scheduling algorithm which is superior to ^  w.r.t. any 

regular measure. Construct a new schedule with another algorithm £2 which simply changes 

the execution order of Ob and Oc as shown in Fig. 3.3(b). It is shown that using £2 will never 

result in a larger project completion time than using £i. because there are always more 

schedulable operations available to £2 than £i- Since by OB3, and the partial

schedule in Fig. 3.3(a) covers all possible cases, the theorem follows. Q.E.D.

For the purpose of disallowing any unnecessary preemption, Theorem 3.1 simply states 

that should Mk decide to execute Ob before Oc or let Ob preempt Oc at t0, then it is 

unnecessary to let Oc preempt Ob at any t  > f o- In what follows, the DPs are identified based 

on OB2 and OB3.

While the term “precede” holds its usual meaning between two nodes or two arcs in the 

MPG, we also want to use it between a node and an arc as follows.

Definition 3.1: An activity (operation or time delay) Ax is said to immediately precede a node 

rtp if np is at the “ head” of Ax in the MPG, written as head(Ax) = np , and Ax is said to 

precede np if either Ax immediately precedes np , or head(Ax) precedes np in the MPG.

Therefore, np is said to be realized if a project whose starting event is represented by np 

has been released, and all activities that immediately precede np have been completed.

Since the precedence relation in the MPG is transitive ([TrM75]). there are usually 

many nodes preceded by an operation, say Ox, although only one of them may be immediately
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preceded by Ox . Besides, some of the nodes preceded by Ox may not even be “ located” in 

the same machine, say Mk, that executes Ox . Let CIq(Ox) be the set of nodes which are 

preceded by an operation Ox, are located in Mk, and represent some project completions. 

Also, let £}i(0jt) be the set of machine “ boundary” nodes which are preceded by Ox , are 

located in AT*, and are placed at the “ tails”  of some time delays. For the example MPG in 

Fig. 3.1, flo(02) = i n Yi> "is) = ^ 2} ^  G|(02) = {>*14} since n 14 is a boundary node of

Af j, preceded by 0 2 and located at the tail of time delay m ^ .  Likewise, Go(Ot) = {»17} = 

[J\ } and GjCO 0 = 0 .  Moreover, flo(04) = {J \,J 2), = {/i6, « 14}, and 0 ^ 0 s) =

{•̂ 3, *f4}, £̂ 1( ^ 5) — {/15}, flo(Gg) = 3}, = 0 , Go((?ig) = ( / 4) and fli(0  u) — {/t 3̂}.

Notice that 2) does not contain / 4 since tt\g is not located in Af j. Likewise, none of J \  

and J 2 are contained in Q4Ps)- Intuitively, Go(Ox) and Gi(Ox) indicate which and how 

projects will benefit from the completion of Oz . Specifically, £2q(Ox) represents the set of 

projects on a machine, say Mk, whose completions must be preceded by that of Ox . On the 

other hand, projects on machines other than Mk can only benefit from the completion of Ox 

through the realization of nodes in &i(0x).

Based on the above observation and given any two operations Ob and Oc simultaneously 

schedulable on Mk, we write Oc =>z (=?) Ob if Q ,(0C) a(=) Clj(Ob), j  -  1, 2. Notice that 

if Ob precedes Oe then Ob =>z Oc, but the converse is not necessarily true. The relation 

=>z is transitive and is an equivalence relation. Besides, Ob =? Oc iff Ob =>z Oc and

o c =>* 0„.

Definition 3.2: Let Ci be an algorithm which schedules Ob before Oe on a machine Mk at 

time Tq. It is said to be advantageous w.r.t Z for Mk to execute Oc before Ob at t0 if, for 

any such £lt there always exists another algorithm £2 which contains the £i’s partial schedule
r r

prior to to, schedules Oc before Ob at to, and satisfies Z ^  Z .
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Based on OB2 and OB3, die following theorem associates the relation =>z between Ob 

and Oc with the Mk’s decision on which of them should be executed first.

Theorem 3.2: Given any tegular measure Z, Oc =>z Ob implies that it is always 

advantageous for Mk to execute Oc before Ob, where Ob and Oc ate operations 

simultaneously schedulable on Mk.

Proof: Suppose is any scheduling algorithm under which Mk executes Ob before Oc 

at time t0. Consider the partial schedule m within the time interval [/0, tf] generated by £lt 

where t0 is the time both Ob and Oc are schedulable, and tf the time Oc is completed (Fig. 

3.4(a)). In addition to Ob and Oc, there are only two other types of operations that could 

possibly be executed by Mk within [r^ tf]: (1) those operations which have no precedence 

relation with Ob and Oc, and (2) those operations which are preceded by Ob but has no 

precedence relation with Oc . Operations of type (1) can preempt Ob and/or Oc at any time 

within [fo, tf], whereas those of type (2) can only be executed after Ob ’s completion, but may 

preempt Oc at any time within [fo, tf]. Let Ox and Oy denote, respectively, the representative 

operations of these two types.

Construct a new partial schedule p.2 for Mk within [r0, tf] as follows. While keeping the 

schedule for all Ox ’s unchanged, rearrange all the other operations to be executed in order of 

Oc, Ob and Oy’s (Fig. 3.4(b)). H2 is feasible since all precedence constraints are still met 

within [to. tf]. Given Qo(0 c) a  flo(Pb) and Oi(Oc) 2  n x(Ob), we want to show that there 

exists another scheduling algorithm £2 which contains as well as 2̂ ’s partial schedule prior 

to t0, and satisfies the inequality Z(z ^  Z*’1.

Let Aq = &o(Oc) -  Qo(Ob), 6j = (Oc) -  fli(Ofc), and Aj be the set of projects, the 

completion event of each of which is preceded by at least a node in 5|. Also, let A = Aq u  

and S = J  -  A, where J  is the set of all projects. That is, A represents the set of projects
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preceded by both, or neither, of Ob and 0 C, while A contains, among others, the set of 

projects preceded by Oc only. We now separately compare the possible completion times of 

projects in A and those in A when either p.t or H2 is the partial schedule for Af* within [f0, tf]. 

Because of the way p j is constructed, Oc has a smaller completion time under but Ob and 

Oy ’s will have larger completion times as compared to the case of using 114. Since Ob 

precedes Oy, Ob =>z Oy and, thus, Oc =>z Oy. That is, any project whose completion 

event preceded by Oy and/or Ob is also preceded by Oc, meaning that the preceded project 

cannot be completed without completing Oy 's, Ob, and Oc. This implies that there exist a 

schedule £2 containing both £i’s prior partial schedule and 1X3, under which the completion 

times of projects in A could be reduced further, without increasing those in 5. Since these 

arguments are valid for any time to, the theorem follows by OB3. Q.E.D.

For the example MPG in Fig. 3.1, since fto(04) = fl0(0'2) 2  fto(0i) and 

f ti(0 4) 2  fti(02> 2  f t i ( 0 1). 0 4  =>z 0 2  - >z 0 1- Therefore, it is advantageous for Af 1 to 

execute these three operations in order of 0 4, 0 2 and 0 t. It is worth pointing out several 

insights of Theorem 3.2. First, the partial schedules m  and P2 in Theorem 3.2 have been 

constructed while implicitly honoring Theorem 3.1. Second, ft2(0 c) 2  Qi(Ob) does not 

necessarily imply that it is advantageous for Mk to execute Oe before Ob, where ft2(0a) is 

the set of all projects preceded by Ox . Third, if it is advantageous at to for Mk to execute Ob 

before 0 C and vice versa, then it makes no difference as to which of Ob and 0 C is executed 

first at to. In other words, to search for an optimal schedule, it suffices at t0 to consider only 

the case where either of Ob and Oc is executed first.

The DP in Theorem 3.2 is based only on the property expressed in the form of =>z , 

which does not always exist between simultaneously schedulable operations. It is very 

difficult to derive any finer-grain DPs other than the above for all regular measures. However,
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if the problem is restricted to a specific regular measure, some finer DPs w.r.t. that measure 

can be derived. In the next section, we shall derive such DPs w.r.t. 6 , which will then be 

used to simplify the search further in our B&B algorithm.

3.3. Dominance Properties wjr.t. System Hazard

The approach to determining which of Ob and Oc to execute first w.r.t. 6  is equivalent 

to determining the relative “urgency” of each project in n ^ O b) \ j  Qq(Oc). The Algorithm 

A described in Chapter 2, which schedules dependent jobs on a single machine, is not directly 

applicable here, since two operations could be assigned to different machines and must meet 

the precedence constraints between them. However, the following useful lemma can be 

obtained from Step SA2 of Algorithm A (see Section 2.3.1).

Lemma 3.1: Let Ob and Oc are two operations simultaneously schedulable on Mk at time t0 

such that QCOc) s  GiCOi,), fio(Ob) = {Jm}, and 0 ^ 0 c) = {/„}, for some projects 

/ m, /„  e  J . Then, it is advantageous w.r.t. 0  to execute Oc before Ob at tQ if the following 

inequality (see Fig. 3.5) holds:

t — rn t — rm— — -,  v t z t 0+R, (3.i)

where R is the sum of the remaining execution times of all operations on Mk which precede at 

least one of Jm and Jn.

Proof: Since fli(0 c) a  12i(0*), the lemma follows if we can show that executing Oc 

before Ob is advantageous for Jm and Jn. Consider again the partial schedule in Fig. 3.4(a) 

generated by £i. and the modified partial schedule \l2 in Fig. 3.4(b) generated by C2. where £2. 

in this case, differs from only in and ^2- 1°  both and recall that Ox *s represent 

those operations which can preempt Ob and Oc at any time within [to. tf], whereas Oy ’s are 

those operafions which can be executed only after the Ob’s completion, but can preempt Oc at
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any time within [to, tf]. To prove that 0 2̂ <• 0^*, four cases must be considered depending 

on whether or not the completions of Oy and Oc represent those of Jm and Jn, respectively.

Case 1. Neither Oy nor Oc is a completing operation, i.e., whose completion represents the

completion of Jm or Jn. In this case, all project completion times are the same

under ^  and £2- Thus, 0 2̂ = 0^'.

Case 2. The completion of Jm is represented by that of Oy , but Oc is not a completing 

operation. The normalized flowtime of Jm under £2 is larger than that under £i while 

that of Jn remains unchanged. However, by Eq. (3.1), the normalized flowtime of 

/„  is larger than that of Jm under £2 which, in turn, is larger than that of Jm under 

Ci- This implies that the maximum of these remain unchanged regardless whether £2 

(in place of £1) is used or not. Thus, 0 2̂ = 0 ^ .

Case 3. Oc is a completing operation, but Oy is not. The normalized flowtime of Jn is thus

reduced while that of Jm remains unchanged under £2 when compared to £lf thereby

making 0 ^  < 0 ?1.

Case 4. Both Oy and Oc are completing operations. From Eq. (3.1) and SA2 of Algorithm 

A, it is advantageous to execute Oc before Ob (and Oy), thus 0 2̂ < 0 ^ . Q.E.D.

Notice that in the above proof, Oy , rather than Ob, is checked; if such an Oy is nonexistent 

(Ob itself is a completing operation of Jm), then we only need to replace Oy with Ob in the 

proof. Also, as is shown in Fig. 3.S, to is not restricted to the time after both Jm and Jn are 

released; t0 can be any time before either Jm or /„  is completed.

Eq. (3.1) holds iff the following inequality holds (Fig. 3.5):
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t 0 + R2> (wmrn -  wHrm) / (wm -  w„), if wm > w„, or
(3.2)

rw £ r „ ,  i f w m =w„,

where the RHS of the first inequality represents a particular time t such that 

(t -  rm)lwm = (r -  rn)/wn. It may he noted that Eq. (3.2) conforms to the various optimal 

policies known in scheduling theory. This fact leads to the following definition of the 

“ relative superiority” (or urgency) w.r.t. 8  between two unfinished projects Jm and

Definition 33: Given tha t/m and Jn are two unfinished projects on Mk, Jn is said to be

(1) superior to Jm w.r.t. 8 , written as /„  spe  Jm, at t0 if Eq. (3.2) holds, and

(2) equal to Jm w.r.t. 8 , written as Jn eq® Jm, if wm = wn and rm = rn.

Notice that Jn sp® Jm is defined only when wn ^  wm and that Jn eq® Jm iff Jn sp® Jm 

and Jm sp® Jn Y  tQ. Notice also that while eq® is an equivalence relation, sp® is not 

transitive, meaning that /„  sp®/m and Jm sp® do not necessarily imply Jn sp® Jp. 

Further, if Jn sp® Jm at to, then Jn sp® Jm at all ^  t0. Based on the superiority relation 

between two projects, we have the following definitions on their preceding operations Ob and

Oc.

Definition 3.4: Oe is said to

(1) dominate Ob w.r.t. 8 , written as Oc =>® Ob, at t0 if (a) for every JmeQo(Ob) there

exists a Jne£lo(Oc) such that Jn sp® Jm at tQ and (b) S^i(Oc) 2  and

(2) be similar to Ob w.r.t 8 , written as Oc S® Ob, at t0 if Oc =>e  Ob and Ob =>® Oc at 

to-

Definition 3.4 specifies the relative urgency of a schedulable operation Ox in terms of 

those of the projects in CIq(Ox) and the projects preceded by Qi(Px). It is worth examining
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several facts on =>e. First, Oc =>z  Ob implies Oc =>® Ob at any time f0 £ 0, but the 

converse is not always true. In particular, it is even possible that both Oc =>® Ob and 

SIq(Oc) c  (Pb) hold. Second, =>e  is not transitive, and thus, neither is Se. Finally, if 

Oc =>e  Ob at t 0, then Oc =>® Ob at any time t x £ tQ.

Based on the discussions thus far, the DPs between Ob and Oc are summarized in the 

following theorem.

Theorem 33: Let Ob and Oc be two operations schedulable on Mk. Then, w.r.t. 9 ,

(1) it is advantageous to execute Oc before Ob at t0 if Oc =>® Ob at to, and

(2) it makes no difference as to which of Ob and Oc is executed first at t0 if Oc S® Ob at 

*o-

Proof o f (1): Since Oc =>® Ob at to, for every project Jm e &o(Ob) there exists a 

corresponding Jn e  £Iq(Oc) such that Eqs. (3.1) and (3.2) hold. From Lemma 3.1, executing 

Oc before Ob at to can reduce the maximum normalized flowtime among such Jm ’s and / „ ’s. 

The completion time of every project other than such Jm’s and Jn ’s does not increase because

Proof o f (2): From the definition of S® and the result of Part (1), the proof directly 

follows. Q.E.D.

From the discussion of Definition 3.4, there are cases where both Oc =>® Ob and 

Ob =>z Oc hold. This simply indicates that executing Oc before Ob (Theorem 3.3) is just as 

good as executing Ob before Oc (Theorem 3.2). Although Theorem 3.3 is useful, its 

implementation is not as straightforward as Theorem 3.2, because neither =>® nor S® is 

transitive. Corollaries 3.1 and 3.2 below indicate that, even though neither =>® nor S® is 

transitive, the orders of executing operations implied by these two relations are transitive.
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Corollary 3.1: Let Sk(tQ) = { O j : l £ j £ s , s ‘£ 2 ) b e a  subset of operations schedulable on 

Mk at time t0.

(a) If Os =>® Os_i, Os_i =>® Os_2, • • • , and 0 2 =>e  0 \  at t0, then it is advantageous 

for Af* to execute Os before 0 \  at to.

(b) If O i =>e  Os in addition to the condition in (a), then it makes no difference as to which 

operation in Sk(t^) is executed first

(The proof follows directly from Theorem 3.3 and Definition 3.2 and, thus, is omitted.)

Corollary 32: Let Sk(t0) be the same as in Corollary 3.1. If Os S® Os. it 0 s_i Se  0 ,_2, 

• • • , and 0 2 Se  Oi at to, then it makes no difference as to which operation in Sk(t0) is 

executed first.

(The proof follows directly from Part (2) of Theorem 3.3. and is omitted.)

It is worth pointing out that O, =>® lt 0 ,_ x =>e  Os_2, • • • , 0 2 =>e  O it and 

0 \  =>® 0 3 do not imply that Os S® |, S® 0,_2, • • • , and 0 2 S® Oj at t0; the 

converse does not hold either. For convenience, the set of schedulable operations for which 

execution order is immaterial is called an immaterial set (IM). As we shall see in the next 

section, knowledge of an IM of size as large as possible greatly simplifies the search for an

optimal schedule. An important property associated with two IMs is given in the following

corollary.

Corollary 3.3: Let U fo d  = { ••• , Os\ ) and IlfOo) = { 0 \ , 0 \ ,  • • • ,  Os\  )

be two distinct IMs of sizes s i and s 2, respectively, on Mk at r0- If tbere exist Ob e n*(ro) 

and Oc e Uk(t0) such that executing Oc before Ob at tQ is advantageous, then it is

advantageous to execute O f  before 0 ,1 at f0, V i, j .
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Proof. By assumption, it is advantageous at time t0 to execute O f  before Oe, Oc before 

Ob, and Ob before O f. Since O f  is arbitrarily chosen from n*(fo) and O f from n*(fo)» the 

corollary follows. Q.E.D.

Because Oc =>e  (S®) Ob at to implies the same relation at any t j £ to, Corollary 3.3 

simply says that it is advantageous to execute all operations in n*(*o) before any operation in 

n*(fo). Corollary 3.3 — which deals with the “ unintemrptability” of an immaterial set — 

can be thought of as another version of Theorem 3.1, which deals with the unintemrptability 

of a single operation.

It can be seen that the DPs in Theorem 3.3 are identified only under the condition 

Q i(0c) 2  fii(Ob). Without this condition, it is very difficult to find any DP useful for our 

scheduling problem because of the inter-dependencies between scheduling decisions on 

different machines. In the next section, we shall show how the DPs presented so far are used 

in the B&B algorithm to find an optimal schedule.

3.4. Search for an Optimal Schedule with a B&B Algorithm

The proposed B&B algorithm is described in terms of its two phases: branching and 

bounding. Branching process expands an active parent vertex3 to generate child vertices while 

the bounding process derives lower-bound cost of each child vertex to guide the search 

([KoS76]).

3.4.1. Generation of a  Small Set of Schedules Using DPs

As mentioned earlier, the set of active nonpreemptive schedules contains all optimal 

schedules w.r.t. any regular measure. Thus, to minimize any regular measure, it is sufficient 

to consider only this set of active schedules. For our MPSP which is preemptive, we want to

3The tenn “vertex” instead of the more commonly used term "node” is used to avoid possible confusion 
with the nodes of the MPG and the nodes of a history tree to be introduced.
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generate an even smaller set of active schedules containing at least one (rather than all) 

optimal schedule w.r.t. 6 . An optimal schedule can then be obtained by applying the B&B 

algorithm only on this set In what follows, we first summarize the implications of the DPs 

and then show how this set of active schedules is generated. (As before, Sk(to) represents the 

set of all operations schedulable on Mk at time t0.)

IP1. Mk must not be left idle at r0 if Sk(tQ) *  0 .

IP2. Mk must execute OceS k(to) before ObeS k(t^) at time t 0 if (Tl): Oc =>z Ob and

Oc Oh, and/or (T2): Oc =>e  Ob and, Ob and Oc do not belong to the same IM.

IP3. Once Oc has been chosen by Mk at to, no other operation in S*(fo) is allowed to 

preempt Oc before its completion. A new operation that becomes schedulable at time 

t i  > t0 (and thus belongs to Sk(t{), not to Sk(t(j)) could preempt Oc; ti is the only time 

at which Oc can be preempted by this new operation.

IP1 and IP3 are based on OB2 and Theorem 3.1, respectively, while IP2 comes from 

Theorems 3.2 and 3.3 and needs further elaboration on its implementation because of the 

aforementioned properties of =>z , =z , =>e  and Se :

PI. =>z and =? are transitive. Besides, if Oc =>z (=z ) Ob, then Oc =>e (Se) Ob at any 

t0 ^  0; but the converse is not true.

P2. Neither =>e  nor Se  are transitive.

P3. If Oc =>e(S®) Ob at to, then Oc =>e(S®) Ob at any t x 1 10.

PI suggests that T l of IP2 be tested before T2, and that Ob be immediately excluded

from consideration for scheduling if T l holds. P2 and part (a) of Corollary 3.1 suggest that 

the test for T2 on the set of operations survived (called the survival set) the test for T l be 

different from the test for Tl. Specifically, all Ob-O c pairs in the survival set are tested first 

for T2 and then any Ob asserted by T2 is excluded from consideration for scheduling. P3



implies that T2 (and T l, of course) need not be tested again until a new operation becomes 

schedulable on Mk. Let Rk( t^  denote the set of operations which survive tests for both Tl 

and T2. Then, by Corollary 3.2 and part (b) of Corollary 3.1, RkOo) May be further 

partitioned into qk (yet to be determined) IMs, n^(f0), /  = 1, 2, • • • ,  qk% in each of which 

changing the execution order does not affect the optimality. Thus, it is sufficient to pick one 

arbitrary operation from each IT^(f0) and consider whether or not to execute it next. Because 

of P2, each n^(r0) can be constructed as follows. First, using Corollary 3.2 and starting with 

an arbitrary operation, a n^(r0) is formed by adding a new operation Ob to it whenever there 

exists an Oc already in n /( f0) such that Oc Se Ob. Second, use part (b) of Corollary 3.1 to 

merge a cyclic set of IMs into n /( r0). A set of IMs is said to be cyclic if elements from IMs 

of the set form a cycle of the dominance relation as described in Part (2) of Corollary 3.1. 

This merger is to further reduce the number of branches generated at the vertex since the 

single operation to be arbitrarily picked from the IM is now picked from a larger sized IM 

after the merger.

To meet the unintemrptability requirement, a tree, called the history tree (HTk), for Mk 

is used to keep track of the execution order of operation on Mk. As shown in Fig. 3.6, each 

HTk has only one vertical thread of branches, in which each node represents an operation that 

is partially completed and preempted by the one immediately above it, and the root is the 

operation being executed by Mk. For each operation on the vertical thread, a horizontal thread 

of branches is also constructed to record the set of operations which were not selected by Mk 

even after surviving both tests of T l and T2. As we shall see later, each HTk is constructed 

and updated such that an operation schedulable on Mk may appear at most at one node of 

HTk. HTk s are used as: (FI) a tool for checking whether or not Theorem 3.3 and the 

unintemrptability requirement of IMs have been violated in any machine's prior partial 

schedule, and (F2) a guide for selecting an operation for each machine without violating the
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two conditions of FI at least up to the time of the next scheduling decision. The violations 

stated in FI are possible because more dominance relations will be established as time goes 

by.

In what follows, we briefly describe how HTk ’s are constructed and updated, and explain 

how FI and F2 are done to further simplify the search in the B&B algorithm. Let r t be the 

time when an operation or time delay is completed, or a new project is released and, thus, a 

new scheduling decision has to be made. Also, let Rk(t{) c  Sk(t{) be the set of all schedulable

operations, each of which survived both Tl and T2 at t\, and n*(fi), n ^ ) ,  • • • , n**(ti) 

be the qk IMs resulting from partitioning Rk(t\). If the original HTk is a null tree, then 

checking FI is unnecessary and selecting an operation from any of I I w i l l  violate neither 

of the two conditions of FI. Let yk denote the operation selected by Mk. Thus, an HTk is 

created by using yk as its root and including each operation in Rk(t j) -  {yk } in the horizontal 

branch rooted by yk. If the original HTk is not null, then both FI and F2 need to be 

performed. For FI, there are at least two cases, VI and V2, to be checked:

VI. There is at least a pair of operations, say, Ob and Oe with Oc =>e  Ob at t u such that 

the node representing Ob is on the vertical thread of HTk and has the node representing 

Oc on one of its branches (Fig. 3.6).

V2. There is at least a set of three operations, say, Ox, Oy and Oz, such that (1) both Ox 

and Oy are on the vertical thread of HTk and Oy is rooted by Ox (i.e., Oy has ever been 

directly or indirectly preempted by Ox), and (2) Ot is rooted by Oy and belongs to the 

same IM as Ox (i.e., the IM containing Ox and Oz has ever been interrupted by that 

containing Oy).

If one of VI and V2 for any machine is true, then the parent vertex y 0 being expanded is 

discarded because y 0 will never lead to an optimal schedule, or there exists at least another



optimal schedule which does not include y0 as its partial schedule. If the parent vertex y Q is 

not discarded then F2 needs to be performed on each Mk such that the selected operation for 

Mk will not violate either of the two conditions in FI at t\. F2 is done by building a set of 

“ prohibited” IMs on Mk. Specifically, a prohibited IM is the one that has ever been 

preempted on Mk. Thus, if an operation is chosen from a prohibited IM by Mk at t lt then the 

uninterruptability requirement of this IM is violated at fj. Further, to satisfy Theorem 3.1, if 

an operation is to be selected by Mk from an IM of which one operation is being executed, 

then Mk can only continue the operation which Mk has been executing. After applying FI 

and F2, let % denote the operation selected for Mk (if such a yk does not exist, then Mk is 

kept idle until the time of next scheduling decision) and let Ok represent the operation that 

was being executed at the time of selecting yk. Then, HTk is updated according to the 

following rules:

Case 1. yk * Ok and (5k is not completed at A new node representing yk is created on top 

of Uk indicating the preemption of (Jk by yk. For this new node, a horizontal thread 

is constructed to include each operation in Rk(t{) -  {y*} if it is not already in HTk. 

This is to indicate that, among all operations in Rk(tj), only yk is selected and the 

thread contains the other operations which are not selected by Mk at fj.

Case 2. yk * Ok and Ok is completed at If yk is not the operation previously preempted 

by Ok, then the node representing Ok is replaced by that representing yk, and each 

operation in Rk(t{) -  {y*) must be appended to the original horizontal thread of Ok 

in case it is not already in HTk. Otherwise, Ok is simply deleted from HTk% and each 

operation of i) -  {y*} or in the horizontal thread of Ok is appended to the 

horizontal thread of yk if it is not already in HTk.
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Case 3. 7* = Ok and Ok is not completed at fj: No new node is created to preempt 0*. 

However, operations in Rk(tj) -  {7*} must be appended to the horizontal thread of 

Ok.

Case 4. No 7* is selected: Delete Ok, if any, from HTk to let HTk become null and Mk be 

idle. This is because 0* must be completed at f j and no more schedulable operations 

are available to Mk.

Also, to ensure that yk appears only once in HTk, the yk already included in one of the 

horizontal threads must be deleted in the above rules. Except as Uk or as the operation being 

preempted by 0* in Case 2, yk can never be any node in the vertical thread.

Based on the above discussions of IP1-3, we can now derive the algorithm which 

generates a small set of active schedules using DPs. It is helpful to summarize and/or 

introduce the notation to be used in the algorithm.

A : Set of operations without preceding activities on the MPG. An operation in A becomes
schedulable whenever the project containing it is released.

B : Set of operations with preceding activities on the MPG. An operation in B becomes
schedulable upon completion of all its preceding activities as well as the release of the 
project containing it.

Y : Set of time delays. Each time delay must have at least one preceding operation.

to'. The current time or the time a scheduling decision has been made.

ti. The earliest time since t0 at least an operation or time delay is completed or a project is 
released. That is, ft is the time when a new scheduling decision has to be made.

Sk: Set of schedulable operations at fj on Mk including those partially completed.

Ld : The set of ready time delays, m-Ss, at t v  The remaining delay period of «,• is denoted
by v,-. Since time delays are not schedulable objects, each v,- is reduced to the passage 
of time.
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Rk: Subset of schedulable operations on Mk, each of which survives tests for both T l and 
T2 of TP2 at t\. Thus, Rk c  Sk.

III: The j-fh  IM on Mk at t x. Each 11/ and the total number of IMs on Mk, denoted by qk, 
may change with time.

y 0: The 4 ‘parent”  vertex in the state space to be searched.

yi: The “ child” vertex ofyo-

a b: Release time of Obe A .

P*: Completion time of an operation which is executed by Mk.

p<*: The earliest completion time among all time delays in Ld.

Since preemptions are allowed, a vertex y is represented by the following information:

PSk : The partial schedule of Mk containing all scheduled (completed and uncompleted) 
operations.

HTk : The history tree of Mk.

Using the DPs and notation introduced thus far, we present the following algorithm for 

generating a small set of active schedules which contains at least one optimal schedule. 

PROCEDURE createjoot_of_search-tree

For k = 1,2, • • • ,  | M  \ do
1. Initialize Sk := 0 ,  Rk := 0 .
2. Set PSk = HTk := 0 .  

enddo .

Set t j := 0, f0 := 0, and Ld := 0  to create the root vertex y 0 = y  i. 

end_create_root_of_se arch-tree.

MAIN PROGRAM generate_active_schedules

51. Initialize A , B and Y.
52. create_root_of_search-tree.
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S3. While the generated vertex y j does not represent a complete schedule and each HTk 
survives VI and V2 of FI do:

3a. Create Sk 's (Ld) by moving all operations (time delays) that become schedulable 
(ready) at fj from A and B (7) to the corresponding Sk 's (Ld).

3b. Perform the dominance tests Tl and T2 on each Sk to generate Rk, and partition each 
Rk to derive n / ,  j  = 1, 2, • • • , qk.

3c. Perform F2 to choose IT*, i = 1, 2, that *n Step 3b, where i is the new
index and 4 k ^  <lk• Let I*  = [Ok , Ok , • • • , Okk) be the set of operations chosen by 
Mk.

3d. Set yo'.= y \,  and create a child vertex y t of y0 for each element in 
Tj x r 2 x • • • x T| M |. Let yk denote the operation chosen by Mk m y (If 4k -  0 
then yk := null, meaning that Mk is left idle in y t.)

3e. For each created y  t do:
3.e.l Update HTk, k = 1 ,2, • • • , | M  | , according to the rules described above.
3.e.2 Set tQ := and prepare to obtain a new r t as below.
3.e.3 Determine a* = min {a6}, {}* = min {pd, min {p*} }, and set

Ob e A k = 1, • • •, I M |
t\ := min { a* , p* }, the earliest time a new scheduling decision has to be made.

3.e.4 Modify PSk by scheduling yk during the interval [fo, (let Mk be idle if 
yk = null), k = 1,2, • • • ,  | M  |.

3.e.5 Go to Step S3.

While satisfying the DPs derived earlier, the above algorithm recursively generates a set 

of preemptive active schedules in a depth-first fashion for the machines. This set of active 

schedules contains at least an optimal schedule. Also, because of the uninterruptability in 

Theorem 3.1, the depth of the search tree generated is at most twice the total number of 

operations to be scheduled.

3.4.2. Estimation of Lower-Bound Cost

Once the rule for expanding a vertex is determined, the efficiency of search for an 

optimal schedule with a B&B algorithm depends solely on &(y), the lower-bound cost of 

vertex y , and the computation needed to obtain 6 (y). Based on Algorithm A, various 6 (y)’s



can be derived depending on how the precedence constraints are relaxed and how the release 

time and cost function of each operation (time delay) are determined. For one extreme, we 

may ignore all precedence constraints between any two machines, assume that all projects have 

been released, apply Algorithm A to obtain the minimal maximum cost for each machine, and 

use the maximal mini-max cost among all machines as our lower-bound cost &i(y). For the 

other extreme, we may consider all precedence constraints and project release times, and use 

the same method to derive the lower-bound cost 6 2(y). Obviously, &2OO is tighter than 

&j(y) but requires more computations to derive. Since all other bounds in between these two 

extremes can be derived similarly, we shall consider these two extreme bounds only.

Consider a vertex y  at t  = fj, let gf(y) be the actual path cost of from the root to y . 

g{(y) can be easily computed from the partial schedule represented by y  as follows. Since 

some projects may have been completed before t\, g,(y) is thus determined as the normalized 

partial flowtime of Jt at tf.

where c,-, rf and w,- are the normalized flowtime, release time and normalization factor of , 

respectively. Note that g,(y) < 0 if /,• is not yet released before t\.

To derive &i(y), precedence constraints between two machines are ignored, and all 

unfinished projects are assumed to have been released. These assumptions make it possible to 

schedule projects, rather than individual operations, with Algorithm A. Specifically, in Step 

SA2 of Algorithm A, set the cost function of unfinished / ,  as

and let t x + Rk(B) be the block completion time t(B), where Rk(fi) is the sum of all 

remaining execution times of the set of unfinished operations each of which precedes at least a

A 2} if J{ is completed before t u
gi(y) -  / w. otherwise, (3.3)

/« (0  := (* -  n )  / wi = gi(y) + (t -  r,) / w,- , (3.4)
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project in B . Suppose 61* (y) is the maximum between (a) the mini-max cost of Mk obtained 

from Algorithm A, and (b) the maximum g,(y) obtained from Eq. (3.3) among all projects

completed before t x o n Mk. Then, 6 i(y) = max 0lk(y) is a lower-bound cost of y , and the
Mk e U

computational complexity is 0 (  \ M  | |7]2), where | M  | is the total munber of machines, | J] 

die average number of projects on each machine.

&2(y) is derived while considering all precedence constraints and project release times. 

This also implies that operations, rather than projects, are the objects to be scheduled by 

Algorithm A. In a simpler case, the release time sb and cost function f b (t) of an unfinished 

operation Ob can be determined as follows. Since Ob is not schedulable until each project 

that contains at least an operation preceding Ob has been released, sb is set to the maximum 

release time among all such projects. Because it is the completion of a project, rather than 

that of an operation, that accounts for the cost, f b(t) may be set as:

(t -  r,) / wf if head{Ob) -  Jit 
0 otherwise,

where t is the completion time of and head(Ob) = Ji means that head(Ob) is the node 

representing the completion event of Jh After applying Algorithm A, define 62*00 similarly

to 6 i*(y), k = 1, 2, • • • ,  | M  |. Then, d 2(y) = max 62*00 is a tighter lower-bound cost
Mt eM

than djCy) of y , and the computational complexity is 0 (  \ M  | |A |̂2), where |N| is the average 

number of operations on each machine. Note that more accurate but more computational 

intensive release time and cost function for each unfinished operation are possible. For 

example, the minimum time from a project’s release to an operation’s release may also be 

considered to determine the release time of the operation. Further, the effect of an operation’s 

completion to the completions of projects on the other machines may be included in deriving a 

more accurate cost function of that operation. These issues are partially addressed in [PeS89].
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As mentioned earlier, 6 2(y) £ &i(y), V y ,  because &i(y) is a lower-bound of 0 2(y). 

From § i(y) to 6 2(y), there is always a tradeoff as to which lower-bound to use between its 

accuracy and computational complexity.

3.5. An Example and Computational Experiences

In this section, a demonstrative example and some computational experiences of the 

proposed B&B method are presented.

3.5.1. An Example

Consider the MPSP for the MPG in Fig. 3.7, where six projects J \, J 2, • • • , 76 are to 

be executed by M x and Af2. All operations on the LHS of the shaded area of Fig. 3.7 are to 

be executed by M x and those on the RHS by Af2. Each project is released by realizing its 

starting node and completed by realizing its ending node. The release times and normalization 

factors are r x = 0, r 2 = 5, r 3 = 0 , r 4 = 3, r 5 = r 6 = 10, w j = 30, w2 = 20, w3 = 30, w4 = 25, 

vv5 = 15 and w6 = 20. Notice that, while all the other projects are released and completed on 

the same machine, / 3 ( /4) is released on M x (Mj) but completed on M 2 (M j). Fig. 3.8 shows 

Qo(#) and of each operation and Fig. 3.9 gives the cost function for each project. Using 

we show in Fig. 3.10 all the vertices that have been generated in ascending order of 

their indices, and in Fig. 3.11 the corresponding optimal schedule.

Before reaching an optimal schedule, which is represented by 17 vertices from the root 

to vertex V25, a total of only 25 vertices are generated. The first five vertices Vi — V5 are 

generated because no DPs exist between O x and 0 3 as well as between O x$ and 0 3. Since 

0 3 is denied and O i6 is chosen at V5 , vertices where 0 3 preempts 0 16 will never be generated 

by expanding V5  except at, or after, O ^ ’s completion (Theorem 3.1). When expanding v6, 

where Oj and 0 2 are both schedulable, only v7, where 0 3 is chosen by M x, is generated 

because 0 3 =>z 0 2. This branch of the tree is expanded until v9, whose lower-bound cost



Figure 3.7. The Example MPG
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becomes 0.73. Even with the same lower-bound cost 0.70, v4, rather than v3, is chosen for 

expansion because the depth-first policy is used to break a tie on lower-bound costs.

As v10 is expanded, both vn  and vj2 have to be generated because no DPs between 0 8 

and 0 16 exist (since neither J 2 sp9 J 1 nor J 4 spe  J{). From v12, only v j3, where 0 8 is 

selected, is generated because Os =>z 0 2 and O s -> z O lQ although 0 2, O s and O l0 arc all 

schedulable at t  = 7 (i.e., fi of v j2 and fo of vi3). While expanding v 13, four (4) operations 

(0 2, O io, O n  and O i2) onM j and two (2) operations (0 13 and O i9) o n M 2 are schedulable, 

making a total of 8 combinations. Since 0 2, O l0  and O n  belong to the same IM and 

dominate (=>®) 0 12, an arbitrary operation, say 0 2, is chosen for M \. On the other hand, 

0 13 =>e  0 19, so only 0 13 is chosen by Af2, although both are schedulable. Therefore, out of 

these 8 combinations, only one vertex Vj4 needs to be generated without sacrificing optimality, 

and thus, significantly simplifies the search.

Another situation to be noted is when both O5 and 0 6 become schedulable on M 2 at 

t = 10 as Vj5 is expanded. Since 0 6 =>z 0 5 ( 0 13) and 0 5 ( 0 13) =>e  O t9 at t = 10, the 

only vertex to be generated is for 0 6 to preempt 0 13 on M 2 although a total of 4 operations 

(0 5, 0 6, 0 13 and O l9) are schedulable on Af2. Alter completing 0 6, 0 13 resumes its 

execution. We can easily see how the DPs are followed similarly by the rest of the optimal 

schedule.

For completeness, we show how di(y) and ^ ( y )  can be derived for the above example. 

Consider Vj4 (see Figs. 3.10 and 3.11) for instance, where t = 9 when J \ is completed while 

neither J$ nor J 6 is released. The normalized partial flowtimes at t  = *i = 9 of projects are: 

gi(vM) = CM = (7 -  0) / 30 = 7/30, g2(v14) =  (9 -  5) / 20 = 4/20, g 3(v14) =

(9 -  0) / 30 = 9/30, g 4(vj4) = (9 -  3) / 25 = 6/25, g5(vt4) = (9 -  10) / 15 = -1/15, g6(v14) = 

(9 -  10) / 20 = -1/20. To derive 6 i(v14), precedence constraints between M x and Af2 are
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relaxed and all projects are assumed to have been released. The block completion time t(B) 

for unfinished projects J x and J 2 on M x is determined to be t x + R X(B) = 9 + 8 = 17, where 

R X(B) is the sum of all remaining execution limes of the set of all unfinished operations on 

Mi, (i.e., O Xq, O u , O X2, O n  and <9 is), each of which precedes J 2 or J 4. Since 

f  2(17) > f  4(17) (Fig. 3.9), by Algorithm A, J 4 should be completed last. Delete those 

operations which precede only / 4 and compute the block completion time for those which 

precede only J 2 to obtain t x + 5 = 14. This implies that the mini-max lower-bound cost for J 2 

and / 4 on M] be max {/"2(14) ,/4(17)} = max {g2(v i4) + 5/20 , g 4(vi4) + 8/25} = max 

{9/20 , 14/25} = 14/25. Thus, 0n(vi4) = max {14/25 , 7/30} = 14/25.

Similarly, we proceed with projects J 3, J 5 and J 6 on M 2. They should be completed in 

the order of J  3, J 3 and J 6, and with completion times 19, 21 and 22, respectively. Thus, 

0i2(vi4) = max { /3(21), / 5(19) , / 6(22)} = max {21/30 , 9/15 , 12/20} = 21/30. It follows 

that d i(v i4) = max {6n (v14) , 612^ 14)} = 21/30 as shown in Fig. 3.10.

6 2(v 14) is derived while honoring all precedence constraints and all project release times. 

The release times of unfinished operations on M x at v t4 are s 10 = J n  = s x2 = 0, s 17 = 5 and 

s 18 = 3, and by Eq. (3.5), the cost functions for these operations are 0 except O xl and 0 Xi, 

whose cost functions are those of J 2 and J A, respectively. By applying Algorithm A and 

comparing the result with gi(v14), we obtain 62i(v 14) = max{7/30,14/25} = 14/25, which is 

the same as §n(vj4). For the unfinished operations on M2 at v 14, 

s 5 = s 6 = s x4 — $20 = s 2l = 10, and sr13 = s 19 = 0. Similarly, the cost functions for 0$, O& 

O i3 and O u  are 0 while those for 0 X9, 0 -^  and 0 2l are those for / 3, J s and J 6, respectively. 

By applying Algorithm A, {^(v 14) = 21/30 is obtained, which is again equal to 0ia(v 14). 

Thus, 6 2 (v !4)  = ^ i(v i4) = 21/30. These results are expected because the unfinished operations 

always create the same single block in Step SA2 of Algorithm A regardless whether &i(y) or
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&2(y) is derived.

3.5.2. Computational Experiences

The proposed B&B algorithm, which embodies Theorems 3.1-3.3 and Corollaries 3.1- 

3.3, was coded in Pascal and run on a VAX-8600 computer, where 4.3 BSD UNIX is used as 

the operating system. In order to test a wider class of sample problems, a total of 90 multi­

projects were randomly generated according to the classification: (a) the average number of 

operations per project is either 4, 6 or 8 and (b) the number of machines in the system is 

either 2, 5 or 8.

Consider the class where the operations per project is X\ and the number of machines x 2. 

A total of 30, 20 and 10 locally numbered nodes are initially set up on each machine for 

X\ = 4, 6 and 8, respectively. The operation between nodes /»,• and rij, i < j ,  on the same 

machine is generated if the outcome from a random experiment using a uniform distribution is 

greater than the threshold p  pr , where p  £ 1 is the initial probability, p = 0.5 the discount 

factor, and r = j  -  i -  1 the discount period. That is, given p , the larger the difference 

j  — i, the less likely is an operation generated between n-t and nj. Therefore, by tuningp  and 

considering the total number of projects to be created, we can generate a set of multi-projects 

with the desired value. After removing each “ dangling”  node, projects are created by 

randomly assigning their starting and ending nodes to the remaining nodes. The number of 

projects created for each class is pie-determined such that the average numbers of projects on 

each machine are 2, 1.5 and 1 for x \ = 4, 6 and 8, respectively. For example, two projects on 

the average are created for the class where Xj = 8 and x2 = 2. Ten projects are created for the 

class where X\ = 4 and x 2 -  5, and so on. Also, time delays are generated for each project 

and randomly inserted between the project and other projects on different machines to supply 

the required precedence constraints.



For each of these 9 classes, 10 multi-projects were tested. Table 3.1(a) summarizes the 

(rounded) average numbers of activities, and projects created for each class. The test results, 

which include the (rounded) average number of vertices generated and the CPU time (the sum 

of user and system times) consumed, are recorded in Table 3.1(b) and plotted in Fig. 3.12. 

According to our experiences, the variance of each entry in Table 3.1(b) grows rapidly as the 

number of machines increases. For example, for X\ = 8, the variance of the number of 

vertices generated (CPU time used) for the entry x 2 = 2 is about 27 (1389) times higher than 

that for the entry x 2 = 8. Therefore, the test results are very sensitive to the way in which the 

random samples are generated as well as to the set of multi-projects actually tested as the 

number of machines increases.
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Table 3.1. Test Results

3.1(a). The Nine Classes of MPGs Tested

X 1 M| = 2 1 M | = 5 |M | = 8

4 20.* 4 * * 55, 10 92, 16

6 20, 3 55, 7 90, 12

8 18, 2 47, 5 78, 8

* ;  num ber o f activities 
He* • num ber of projects

3.1(b). The Test Results of the Nine Classes

X |M | = 2 1 M| = 5 1 M | = 8

4
*

19,
* *

0.23 48, 2.51 130, 18.23

6 20, 0.20 47, 2.24 126, 16.25

8 18, 0.11 37, 0.86 49, 3.02

* ;  num ber o f vertices generated 
* *  : CPU time used (seconds)



CHAPTER 4 

STATIC ALLOCATION OF COMMUNICATING PERIODIC TASKS

4.1. Introduction

Using the results of an optimal task scheduling derived in the last two chapters, the 

optimal allocation of periodic tasks can be deteimined. Since the allocation of independent 

tasks is a special case of that of dependent tasks, we deal in this chapter exclusively with the 

static allocation of communicating periodic tasks to the PNs in a distributed real-time system. 

The allocation is static because it remains unchanged during the entire mission lifetime as long 

as PNs are fault-free. By ‘allocation’ we mean assignment with the subsequent scheduling 

considered. Specifically, the performance of our task allocation is that of task assignment 

determined by the subsequent optimal scheduling of assigned tasks. This is in sharp contrast 

to conventional methods which deal with either assignment or scheduling of tasks, but not 

both. Note that the performance or cost of any assignment strongly depends on how the 

assigned tasks are assigned. For the generality of our allocation model, PNs in the system are 

assumed to be heterogeneous in the sense that different PNs have different processing power 

for different tasks. The allocation of aperiodic tasks is usually treated as a dynamic load 

sharing problem and is beyond the scope of this chapter.

Three features that distinguish our task allocation problem from others are:

FI. Tasks communicate with one another to accomplish a common system goal. Thus,

precedence constraints among tasks must be considered in deriving an optimal task

95
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allocation.

F2. The tasks to be allocated are invoked periodically at fixed time intervals during the 

mission lifetime.

F3. Tasks are usually time-critical, meaning that each task execution is associated with a 

hard deadline. If the execution of a task i s . not completed before its deadline, 

catastrophic outcomes might ensue, e.g., a robot may collide with another robot or even 

with an operator.

FI and F2 describe the structure of the task system, while F3 specifies the criterion 

function for the task allocation problem. Because of F2, only those task invocations in a 

planning cycle /  need to be considered for the allocation of tasks since the behavior of task 

invocations within I  repeats itself for the entire mission lifetime. The criterion function to be 

minimized for our allocation problem is the system hazard 6 , or the maximum normalized 

task flowtime. Besides, as we shall see in the next section, our task allocation model has a 

finer granularity in describing the precedence constraints between tasks. This captures the fact 

that in many cases tasks are communicating with each other during the course of their 

execution.

Task assignment and scheduling problems are studied extensively in both fields of 

Operations Research and Computer Science [Bak74, CHL80, ChL87, Fre82, WoS74]. For a 

set of independent periodic tasks, Dhall and Liu [DhL78] and their colleagues developed 

various assignment algorithms based on the rate monotonic scheduling (RMS) algorithm 

[LiL73], or intelligent fixed priority algorithm [Sei72]. However, if precedence constraints 

exist among tasks, a general approach to nonperiodic task assignment problems must be taken, 

and the set of tasks to be assigned includes all task invocations within a planning cycle. (Of 

course, all invocations of the same task must be assigned to the same PN.) Depending on the 

assumptions and criterion functions used, nonperiodic task assignment problems are formulated
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in different ways. However, most prominent methods for task assignment in distributed 

systems are concerned with minimizing the sum of task processing costs on all assigned 

processors and interprocessor communications (IPC) costs. As was reviewed in [CHL80], 

these methods are based on graph theoretic [Sto77, StB78], integer programming [MLT82], or 

heuristic [ShT85, Vir84] solutions. Real-time constraints are difficult to impose when the 

graph theoretic approach is used. Integer programming methods, on the other hand, allow for 

constraints that all of the tasks assigned to a processor must be completed within a given time. 

However, these constraints do not account for task queueing and precedence constraints 

between tasks.

Few results have been reported on the task assignment with precedence constraints, 

because most of such problems are NP-hard [Cof76, GaJ79, LeK78, LLR81]. This fact calls 

for the development of enumerative optimization methods or approximate algorithms using 

heuristics [KoS76]. For example, in [KaN84] an enumeration tree of task scheduling is 

generated and searched using a heuristic algorithm called the CP/MISF (Critical Path/Most 

Immediate Successors First) and an optimal/approximate algorithm called the DF/1HS (Depth- 

First/Implicit Heuristic Search) to obtain an approximate minimum schedule length (i.e., 

makespan) for a set of tasks. Chu and Lan [ChL87] chose to minimize the maximum 

processor woikload for the assignment of tasks in a distributed real-time system. Woikload 

was defined as the sum of IPC and accumulated execution time on each processor. A wait- 

time-ratio between two assignments was defined in terms of task queueing delays. Precedence 

relations were used, in conjunction with the wait-time-ratios, to arrive at two heuristic rules for 

task assignment

To the best of our knowledge, there are no results reported in the literature on the task 

allocation problem dealing with all of the foregoing three features of distributed real-time 

systems. This is probably because the problems associated with designing and analyzing such
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real-time systems are very hand. For example, even for a given assignment, it is shown in 

[GoS78, LRB77] that most job-shop scheduling problems, which are special cases of our 

scheduling problem after task assignment, are already NP-hard. Thus, heuristic or enumeration 

algorithms must be sought

A branch-and-bound (B&B) algorithm is proposed to solve our task allocation problem. 

To derive an optimal allocation, the exact cost (i.e., the system hazard) of a terminal vertex1 

(i.e., a complete assignment) must be obtained against which the lower-bound (exact) costs of 

other partial (complete) assignments can be compared and pruned if so asserted by the 

algorithm [KoS76]. The results of Chapter 2 provides such an exact cost if the tasks to be 

allocated are independent For dependent tasks to be dealt with in this chapter, the results of 

Chapter 3 can readily be used after conversion of terms as shown in the next section. For 

non-terminal vertices (i.e., partial assignments) however, lower-bound (rather than exact) costs 

are estimated by a polynomial-time algorithm to ease the ensuing computational difficulty.

The rest of this chapter is organized as follows. Since inter-task communications are an 

essential part of our task allocation model, Section 4.2 is devoted to the description of the 

precedence constraints imposed by such communications. Also, the problem is formulated and 

the correspondence of terms is shown such that the solution to the MPSP of Chapter 3 can be 

used for the exact system hazard of a complete assignment Section 4.3 presents a 

polynomial-time algorithm to evaluate a “ good” lower-bound cost for a non-terminal vertex 

of the B&B algorithm. This lower-bound cost is used, together with the exact cost obtained, 

to derive an optimal allocation of periodic tasks. An example is presented in Section 4.4 to 

demonstrate the power and utility of our task allocation method.

*We use the term “vertex" again, instead of the more frequently used “node”, to avoid confusion with PNs 
and the nodes of a task graph (to be described).
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42 .  Task System Description and Problem Formulation

It is desirable to model critical real-time systems in great detail such that the true nature 

of the system under study is accurately described. As will be elaborated on below, the 

description of the task systems under study covers the inter-task communications and the 

heterogeneity of PNs. For example, a graph is needed to describe the precedence constraints 

imposed by inter-task communications. Further, the computation time needed by pure 

computations as well as by inter-task communications can only be accurately specified after 

the communicating tasks have been assigned. Therefore, the notion of nominal computation 

and nominal delay needs to be introduced for a general description of the task system.

4.2.1. Task System Description

Let T  -  {Ti | / =1,2, • • • , |T |} be the set of | r |  £ 2 periodic tasks to be allocated 

among the set of \N\ £ 2 processing nodes, N = [Nk | k  = 1, 2, • • • , |N |}, of the system, 

where |A| is the cardinality of the set A . It is assumed that any two tasks residing in different 

PNs can communicate with each other by using the usual primitives SEND-RECEIVE-REPLY 

and QUERY-RESPONSE [ShE87]. If T-t e T  issues a SEND to Tj e T,  T{ remains blocked 

until a REPLY from Tj is received, thus establishing a precedence relation. If Tj executes a 

RECEIVE before the requested message arrives, it also remains blocked. A task may QUERY 

another task for information, which replies by executing a RESPONSE. Unlike SEND- 

RECEIVE-REPLY, the task being queried does not get blocked regardless whether the 

QUERY has arrived or not

Each T{ £ T  with period pt consists of one or more computation modules M for pure 

computation, and a single communication module associated with each communication 

from Ti to Tj using either of the two primitives described above. For example, Xiy- includes 

message packetization on Tt *s side and packets assembly on Ty’s side. It is worth pointing
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out that Mm ’s and all communication modules on T, ’s side do not all have to be completed in 

order to complete T;. For example, the completion of 7* does not always require the 

completion of the communication module representing r f ’s RESPONSE to Tj's  QUERY.

Fig. 4.1 shows an example task system in a PERT/CPM form, which consists of three 

tasks T x, T 2 and r 3 with periods 40, 40 and 20, respectively. Within the planning cycle 

I  = [0,40), except for T3 which is invoked twice, both T\ and T2 are invoked only once. As 

shown in the figure, an arc represents either a computation module , a communication 

module, or a message delivery delay. The various communication modules involved can be 

explained as follows. T\ packetizes (a) a QUERY message X \ 2 to T 2 for information, T 2 

assembles (b) the message upon its arrival, and then T2 packetizes (c) the RESPONSE 

message X2i which contains the queried information and sends it back to T\. After the 

RESPONSE message arrives, assembles (d) the message to get the queried information. 

On the other hand, T3 and T2 exchange messages using SEND-RECEIVE-REPLY for both 

information and synchronization. T3 packetizes (e) a SEND message X32 to T2, and T2 

executes a RECEIVE and packetizes (g) the corresponding REPLY message *23- The 

REPLY message, which may also contain information for T3, is used by T2 to unblock T3, 

and thus, can only be sent out after the original SEND message from T3 has been received. 

As T2 may proceed to assemble ( f )  the SEND message only after receiving it, T3 may also 

assemble (h ) the REPLY message only after arrival of the message at r 3. Notice that the arcs 

between nodes 4 and 8, 14 and 17, 5 and 6 (13 and 15), and 6 and 7 (15 and 16) represent 

communication delays for X12, X2l, X32, and respectively. Also, the completion of module 

c — a RESPONSE from T2 to T\ —  is required for the completion of T j, rather than T2, 

meaning that T2 may choose to finish its own computation first before responding to T  ̂ s 

query.
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p =40 p =40 p =201 2 3
L=40

Figure 4.1. An Example Task System
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Let e-M > 0 be the nominal computation (measured in number of basic steps) of 

Then, the execution time (measured in seconds) of on Nk is obtained as the ratio of to 

the processing power (measured in number of basic steps per second) of N k for Tt .

Unlike ’s, the nominal computations of the two communication modules associated 

with X tj  (one on each of r,-’s and T j 's  sides) depend on the assignment of T, and T j .  If 

and Tj are assigned to the same PN, then the nominal computations of the two communication 

modules are small since such communications can be achieved via accessing shared memory. 

Otherwise, larger nominal computations will be needed for packetizing the message and 

assembling the packets. Similarly to Affa’s, one may obtain the execution time of a 

communication module on T{’s side as the ratio of its nominal computation to the processing 

power of N k for Tit  when Tt is assigned to N k . As we shall see, the division of Tt into 

computation and communication modules is essential to the B&B algorithm presented in 

Section 4.3.

Let ytj  > 0 be the delay per unit distance (measured in seconds) from J) to Tj and 

dfjc ^ 0 be the communication distance (measured in distance units) from Nh to Nk. Then, the 

actual communication delay (measured in number of seconds) horn T{ to Tj,  which are 

assigned to Nh and Nk, respectively, is determined as y , - N o t e  that yy  is usually a 

function of the “ size”  of message to be transferred, and a function of the actual distance 

between Nh and Nk. Therefore, if h = k ,  we may set d^. := 0 to ignore the actual 

communication delay. On the other hand, we may set := ~  if there is no path between Nh 

and Nk. Following the usual practice, d** = d** *s assumed in our problem formulation. 

Besides, we assume that, for any communication between 7; and Tj,  it is always possible to 

identify which invocations of Tt and Tj this communication is associated with.
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Consider all invocations of periodic tasks in a planning cycle I  = [0, L), where L  is the 

least common multiple (LCM) of [pt | T.eT}. Tiv, the v-th invocation of Tit has to be 

completed by the (v+l)-th, 1 < v < Llpit invocation time of T,-. To describe the nominal 

computation of each module and the delay of each communication within I and the precedence 

constraints among them, an acyclic directed task graph (TG) with Activity On Arc (AOA) 

[Tah76] is used, where an arc represents a module and a node is an event representing the 

completion of some module(s). Following common practice, the nodes in TG are numbered in 

such a way that the number assigned to the event at the tail of an arc is always smaller than 

that assigned to die event at its head. The weight of an arc represents the nominal 

computation or delay of the corresponding module in the TG. As a node np in TG can also 

represent the completion of a certain invocation Tiv, we write np = Tiv should this happen.

For example, the TG shown in Fig. 4.2 for the task system in Fig. 4.1 is obtained by 

simply adding the various nominal quantities to each arc. Notice that, unlike Af^’s or 

communication delays, a nominal computation of the form “ u /v” is assigned to each 

communication module, where u and v represent the nominal computations when the 

associated communicating tasks are and are not assigned to the same PN, respectively.

4.2.2. Problem Formulation

Let Bk be the subset of tasks assigned to Nk under an algorithm S such that each task is 

assigned to one and only one PN. Also, let c and r be the time instants of completion and 

invocation of a task invocation, respectively. Define the normalized task flowtime c of the 

task invocation as

b “  9
P

where p  is the invocation period of the task. Notice that c (and, thus, c) depends on the
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Figure 4.2. An Example TG
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assignment algorithm 5. Let civ indicate the normalized flowtime of Tiv. Then, the node 

hazard of Nk, 0*, and the system hazard, 0 s, are defined as:

0| =  max
T,eBk

max civ
1 S v S L/Pi

, and

(4.2)

0 5 = max 0 ®.
NkeN

In other words, 6 s is the maximum <Tiv over all invocations of all tasks in T  which are

distributed over the PNs of the system. We want to find an optimal task assignment algorithm

5* such that 6 s* = min 6 s. Since 8* minimizes the maximum 5-v, it allows for better system &

load sharing (rather than balancing) and a smaller probability of each task missing its deadline. 

Notice that Fiv (thus 9* and 0 s) depends not only on 8, but also on how the tasks assigned 

under 5 are actually scheduled on each PN. An optimal preemptive (resume) scheduling 

algorithm £* needs to be used such that the 9 s obtained is the smallest value of c;v for each 

5.

For example, suppose the TG in Fig. 4.2 is to be assigned to two identical PNs, and 

N 2, each with unity processing power for each task, and d l2 = d 2l = 1. Then, only four 

different assignment algorithms need to be considered: Sq, Slt 82 and S3, where Sq assigns all 

three tasks to a single PN, while 8,* assigns Tt to a PN and the other two tasks to the other 

PN. By using an optimal scheduling algorithm £? under each of these assignments, we obtain

0 8' = max { 0 f', 6 2‘ } as follows.

0 50 = max

0 ^  = max

31
40

,0 = 0 81 = max
40

39 2 9 1 39
40 ’ 40 I 40 ’

34 42 
4 0 ’ 40

42
4 0 ’

0 s3 = max JO 32 
2 0 ’ 40

32
40

Iherefore, 8* = 8q, for 0 s® is the smallest among these four system hazards. This counter-
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intuitive result comes from the fact that communication modules and delays are the 

predominant part of this example. Thus, the algorithm which assigns all tasks to a single PN 

is superior to the others. The TG with execution times and actual communication delays 

under 83 is given in Fig. 4.3, and the associated optimal schedule in Fig. 4.4.

Our task allocation problem is general enough to capture the three aforementioned 

features of distributed real-time systems. For example, X(j  may be defined for any (Tt , Tj) 

pair and the precedence constraints imposed by X-,j can always be embedded into the TG. 

Moreover, the criterion function, 0 6, is directly related to F3.

In Table 4.1, we show the correspondence of terms such that the optimal solution to the 

MPSP derived in Chapter 3 can readily be used as the optimal scheduling algorithm £* for a 

complete assignment.

In the next section, the lower-bound cost for a partial assignment is derived with a 

polynomial-time algorithm such that the computation complexity is reduced.

4 J .  Lower-Bound Cost of a  Non-Terminal Vertex

The optimal scheduling algorithm for a terminal vertex is necessary for the B&B 

allocation algorithm to find an optimal assignment. But, the optimal scheduling algorithm is 

too costly to use for all the non-terminal vertices (i.e., partial assignments) in the B&B 

allocation algorithm. This is because the B&B algorithm is guaranteed to find an optimal 

assignment as long as the cost estimate for each non-terminal (terminal) vertex is a lower- 

bound (true value) of the optimal cost for this vertex [KoS76], A looser, but inexpensive, 

lower-bound cost may be more attractive than a tighter, expensive one. In this section, we 

present such a lower-bound cost which is obtainable in polynomial time.

The lower-bound cost &(x) of a non-terminal vertex x  on the B&B search tree is a 

lower-bound estimate of 6 *(x), the minimum system hazard among the set of all complete
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Table 4.1. The Correspondence of Terms Between MPSP and Task Allocation

Multi-Project Scheduling -* Complete-Assignment Scheduling

project S't -> task invocation Tiv

machine Mk processing node (PN) Nk

multi-project graph (MPG) task graph (TG)
operation —> computation or communication module

time delay —> communication delay

release time rf of invocation time r/v of Tiv

completion time c,- of / , -> completion time civ of Tiv

normalization factor w,- of invocation period pi of T,

normalized project flowtime ct of -» nomalized task flowtime q v of 7;v

system hazard 6 system hazard 6 .
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assignments each with x  as its partial assignment. The non-terminal vertex x  can be 

represented as a subset of {(Th Nk) | r .e T ,  Nke N ) ,  where each pair (T,-, Nk) represents the 

assignment of T, to Nk.

For each partial assignment x ,  the following two steps are necessaiy to derive d(x).

•  Construct a precedence graph TGk(x) for each Nk from the original task graph TG .

•  Apply an optimal scheduling algorithm £ on a simplified version of TGk(x) to obtain the 

lower-bound cost &k(x). The desired &Qc) is then chosen as the maximum of &k(x) 

overall it.

These steps are detailed in the next two subsections.

43.1. Obtaining TGk{x)

Each TGk(x) is composed of two subgraphs: TG lQt) that represents those tasks already 

assigned within partial assignment x  and is common for all it, and TG2k(x) that represents 

the load to be imposed on Nk by those tasks that have not yet been assigned within x.  To 

obtain TGk(x), the following notation is used:

qk: The processing power of Nk for Tt .

l  ^  •

ela ~ eio/<ik‘ the execution time (measured in seconds) of on Nk, where is the 

nominal computation of .

X i j j : The communication module on T, ’s side, e = i, j ,  associated with Xtj.

Xijjg: the nominal computation (measured in number of basic steps) of Xtj  a. The value of

Xijjg depends on whether both T, and Tj are assigned to the same PN or not. The 

value of Xij,e is denoted as Xij,e (0) (Xy,«(l)) if and Tj are (not) assigned to the 

same PN.
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%ijyi = Xijjlfk'- the execution time (measured in number of seconds) of Xijti on Nk. The 

value of iij,i depends also on whether both Tt and 7) are assigned to the 

same PN or not The value of xljj is denoted as xfj j(0) (XijjO) ) lf Ti 311(1 

Tj are (not) assigned to the same PN.

yu=yijdhk-  the actual delay (measured in number of seconds) of communication Xtj,  when 

Ti and Tj are assigned to Nh and Nk, respectively.

F or a given partial assignment x ,  le t Bk(x) be the set o f  tasks already assigned to Nk, 

B(x ) =  *j  Bk(x), and B(x) =  T —  B(x),  the set o f tasks not yet assigned within jc. TG l(x )

can be obtained from TG by the following steps.

51. For all a,  compute efc if Tt e Bk(x), and let e& = 0 if Tt e  B(x).  This represents the

computation load on Nk contributed by 7; under the partial assignment x .

52. Case 1: 7* e Bk(x) and Tj e  Bh(x), h ± k .

Compute Xijj = XijjO) / 4k and xji,i = XjijO) 1 4k to represent the load on Nk 

imposed by the communication between and Tj when Tj is assigned to Nh.

Case 2: 7* e  Bk(x) and either Tj e  Bk(x) or Tj e  B(x).

Obtain xlj,i = XijAQ) > 4 k and Xjij = Xy7.;(°) / 4k to represent the load on Nk 

imposed by the commiuiication between T(- and Tj when Tj is either assigned to 

Nk or not yet assigned at all

Case 3: 7* e  B(x).

Sot Xij.i Xji.i ,= 0*

53. Set yjj1 := yijdi^ if 7) e  Bk(x) and Tj e Bh(x), k * h .  Otherwise, set y l f  := 0  to

represent the case where at least one of 7*,- and Tj is not yet assigned within x.
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54. Assign the above e£, Xiy,;. Xjij> 311(1 y $  38 the weights of their corresponding arcs on 

theTG.

55. Simplify and restructure the resulting task graph to obtain TG l(x) by deleting and/or 

adding dummy modules to preserve the precedence and timing constraints. (A dummy 

module is a module with zero computation time or communication delay.)

The resulting TG l(x) is the partial task system corresponding to those tasks already 

assigned within x  while ignoring those tasks not yet assigned. For example, consider the TG 

shown in Fig. 4.2, where T h T2 and r 3 are to be assigned to Ni  and N 2 with d \ 2 = d2\ = 1. 

Assume q\=q\=q\=2  and q2 =q2 =ql=^- Let x={(r i» N{), (T2, Nj)}, i.e., T\  is assigned 

to N lt T2 to N 2 and B(x)  = {T3}. The resulting TG l(x) is shown in Fig. 4.5 with all related 

execution times and actual communication delays properly indicated, but all modules 

associated with r 3, an unassigned task, are ignored. While all the nodes associated with T3 

are merged and/or deleted in the restructured TG, n n  and n 15 cannot be merged because the 

earliest time n\s can be realized is 20 (T32 s invocation time), but ti\2 may be realized before 

or after f=20. For x  = {(Tlt N j), (T3, N£}  it is interesting to see TG l(x) in Fig. 4.6 that a 

dummy module between n4 and n ^ ,  and another between its and t in  are added to preserve 

the precedence constraints between modules of T 1 and T 3 as T2 is ignored.

TG2k(x) represents the total minimum load on Nk imposed by the unassigned tasks, and 

thus, can be expressed as TG2k(x) = {Viv(*)l v = 1, 2, • • • , L/pf, Tt e  B(x)},  where 

V,v(x) represents the minimum load imposed on Nk by Tiv, the v-th invocation of Tt e  B(x). 

\|/,v(x) is derived by considering whether or not Ti will be assigned to Nk. For each 

Ti e B(x), \etMIL(x)  (MIL(x)) represent the Minimum Imposed Load on Nk by Tiv when T-t 

is (not) to be assigned to Nk. MIL(x) consists of three parts: 1) Tiv’s computation modules, 

2) communication modules X ^ y s  and X ^ / s  between Tiv and Tj’s invocations that have
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Figure 4.5. TGl(x) for x ={ (Tlf N^, (T2, N2»
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Figure 4.6. TGl(x) for x={(T1( Nj), (T,, 1^)}
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already been assigned to Nh, h*k,  and 3) all the other communication modules to those tasks 

that have been either assigned to Nk, or not yet assigned. Because of the way TGlQc) is 

constructed, MILQc) is composed of (Xjiji 1) -  x f i j W s  and Ot«*j(l) “  x!jj(P))'s for each 

communication between Tj e Bk(x) and TIV. In other words, MILQc) is an extra load on Nk 

to facilitate the IPC between Nk and Nh, k * h , to which Tiv is assigned. Since each module 

of MIL(x) (MILQc)) usually has a different release time and deadline, and is necessary for the 

completion of other tasks, it is very difficult to determine the actual minimum load imposed by 

Tiv without further simplifications of MILQc) and MILQc). We have thus taken the following 

simplifying steps:

SP1. Since only those modules which are required for Tiv’s completion are of interest to us, 

those modules unnecessary for Tiv *s completion are excluded from MILQc) and MILQc).

SP2. MIL(x) and MILQc) of SP1 are then treated as two independent single modules with the 

following execution times Efc(x) and E*v(x), respectively:

Note that the three terms of the RHS of Eq. (4.3) correspond to the three parts of MIL(x) 

mentioned above.

It can be seen that if MILQc) (MILQc)) of SP1 together with TG l(x) generates a lower- 

bound of 0*(x), then so does MILQc) (MILQc)) of SP2 together with TGlQc), because the 

single-module representation of MILQc) (MILQc)) has less precedence and timing constraints 

than its counterpart of SP1. Even though each of MILQc) and MILQc) of SP2 is needed for

4 ( * ) = +  x  f x i - a ) + xAid)] + s  fxi.iCO)+x,?,<o)l,
r y6fl*C *)>  J T jeB k (pc) o A  J

ElQc) = E | [xjb<i) - xĵ (0)l + [x f j j d )  -  xL-(O)]
T,eBk(?c)l J
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Tiv’s completion, they are not necessarily released at the same time. This is because MIL(x) 

is part of the Tiv’s communication partner Tj, whose period is pj,  whereas MIL(x) is part of 

Tiv, whose period is pt . Therefore, it is still difficult to determine the minimum imposed load 

by simply comparing E*v{x) and £,*(*)• The following step can be used to overcome this 

difficulty.

SP3. The minimum load Y/vOO imposed on Nk by Tiv is constructed with a) the lumped 

execution time being min {£,*(*), £,*(*)}, b) the release time being the minimum of the 

release times of MIL(x) and MIL(x), and c) the cost function = (t -  riv) / p{.

The above v,*(x) is the minimum load imposed on Nk by Tiv in the sense that \\ffv(x)'s

together with TGl(x)  generate a lower-bound of 9*(x) regardless whether 7, is assigned to
«

Nk or to a different PN. Using Y*(x), the minimum load TG2k(x) imposed by all the tasks 

in B(x)  is calculated as TG2k(x)=  u  Rnally, we calculate
1 £  v £  L/pt
T, 6 ff(*)

TGk(x) = TG l(x) U TG2k(x).

43J2. Lower-Bound Cost d(x)

The lower-bound node hazard of Nk, &k(x), (and thus, 9(x) = max &k(x)) can be
Nk e N

obtained by applying an optimal scheduling algorithm on the partial task graph 

TGk(x) = TG l(x) u  TG2k(x). Since the problem of deriving such a 6*(x) is NP-hard, some 

form of approximation is called for. Some of precedence and/or timing constraints on TGk(x) 

need to be relaxed in order to derive an approximate polynomial-time algorithm. Several 

candidate d*(x)’s can be obtained depending on the extent to which these constraints are 

relaxed. For example, in TG l(x), we may ignore timing and/or precedence constraints 

between PNs and derive a &k(x) as was done in deriving the two lower-bounds in Section
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3.4.2. However, both of these two bounds are obtained without considering the completion of 

any other tasks on different PNs. In what follows, a third method for deriving a d*(x) will 

be described by considering both task completions on Nk as well as on other PNs. Thus, the 

resulting d*(x) should be the best among the three.

Since Algorithm A (Section 2.3.1) is to be used for Nk, the main theme in deriving a 

better &k(x) relies solely on how to embed the effects of those tasks of TGl(x) located in 

PNs other than Nk into the release times and cost functions of those modules of TG l(x) 

located in Nk. The release time of any module mb of TG l(x) (the release times and the cost 

functions of TG2k(x) were already determined in the last subsection) is relatively easy to 

obtain because it is the latest task invocation among those having at least a module preceding 

mb. For example, M u  (and also the dummy of Fig. 4.5 has a release time of 0 since 

Tii, T2i and r 31 are all invoked at time 0 (see also Fig. 4.2). However, the release time of 

X32i2 is 20 because 7 32 is invoked at time 20.

To derive the cost function for each module of TG l(x) located in Nk, the notion of 

outgoing communication point (OCP) needs to be introduced. An OCP of Nk is a node on 

TG l(x) which is located at the tail of a delay module. A module mb in Nk is called an OCP 

module if head (mb) is an OCP, i.e., a module whose completion may enable some modules in 

PNs other than Nk. See Fig. 4.5 for an example. Since n 4 is an OCP of N u X l2,i is an OCP 

module. Consider an OCP and a node nq = vz on TG l(x), i.e., nq is the node representing 

the completion of certain task invocation vz. Assume that vz has been assigned to a PN other 

than Nk , where the OCP is located. If the OCP precedes vz (i.e., nq), then the critical path (it 

may contain some modules in Nk) of length pz from the OCP to vz represents the minimum 

time to complete vz after realizing the OCP. Otherwise, the completion time of vz is 

independent of the realization time of the OCP.
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Let V(mb) denote the set of all invocations preceded by the OCP, headQnb). Also, let 

vy be a task invocation on Nk, and f y(t) be the cost function, ry the invocation time and py 

the period of vy. The cost function f b(t) of mb can now be obtained using the following 

rules.

Rl. If mb is not a completing module and mb is not an OCP module then f b(t) := 0.

R2. If  mb is not a completing module and mb is an OCP module then f b(t) := 

max gz (t), where gz (r) = (f + pz -  rz) / pz , and pz is the length of the critical path
v, 6 V(mb)

from head(mb) to vz.

R3. If  head(mb) = vy and mb is not an OCP module then f b(t) := f y(t) = (t — ry) / py, 

the cost function of vy.

R4. If  head(mb ) = vy and mb is an OCP module then f b(t) '•= max { f y(t), 

max gz (r) }, where gt (t) as is in R 2.
v, e V(mt )

Once the release time and cost function of each module on TGk(x) located in Nk are

determined, Algorithm A can be applied to obtain Qk(x), and thus, &(x) = max 6*00.
NkeN

Notice that the optimal schedule obtained above is only for Nk in this simplied version of 

TGk(x). Also, the computational complexity of deriving £(*) is 0 ( \ N \ Q 2), where \N\ is the 

number of PNs and Q the total number of modules in the system.

4.4. An Example

Consider an example of allocating the three tasks T lf T 2 and T 3 to two PNs, N  i and N2, 

in Fig. 4.2. Within the planning cycle [0,40), T x and r 2, both with period 40, are invoked 

only once while T3, with period 20, is invoked twice. Suppose q{ = 2, q \  = 1, q \  = 1, 

<72 = 1. <72 = 2, q \  -  1, and d X2 = d 2l = 1.
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Fig. 4.7 shows all the vertices which arc numbered in the order of their generation times. 

The assignment and &(x) associated with each vertex x  are also indicated in Fig. 4.7. Our 

B&B algorithm is shown to be quite efficient in this example because only two (out of a total 

of 8) terminal vertices are generated before an optimal assignment is found. Specifically, 

vertex 6, with d(6) = 39/40, is first eliminated as soon as vertex 8 with the exact cost 

28/40 £ £(6) is generated. Then, all active vertices 4, S, and 8 are eliminated after vertex 9 is 

generated since the value of H  of this complete assignment is 23.5 / 40 is the smallest. Thus, 

vertex 9, which assigns all three tasks to N 2, is an optimal assignment, and its optimal 

schedule derived by Algorithm A is shown in Fig. 4.8. One reason for this counter-intuitive 

result was already given in Section 4.2; communication modules and delays are the major part 

of the TG , and thus, assigning all tasks to a single PN to minimize the communication and 

delays is superior to the others. There is another reason why all tasks are not assigned to Ni. 

Since T32 is invoked at f=20, the length of a path from n 15 to /*2o (Fig* 4.2) is critical to the 

performance of the assignment. If all tasks are assigned to IV t which has a smaller processing 

power for T 2 than N z, then this path will be longer than the optimal solution.

To see how d(x) is obtained for a non-terminal vertex x ,  6(5) is computed as follows. 

Since £ i(5 H ?i}*  f f (5 M r3), and q \  =q% = 2 , e\a :=ela/2, e h

y  «. XiVid) := Xi2,i(l) / 2, x ii.id ) := X2i,id ) / 2, X i^ d )  := Xi2,2d )  / 2,

X2u ( ! )  := X2u 0 ) / 2, X23j ( 0 ) := X23 (̂0) 1 2, X3^(0) := X32,2(0)1 2 to accommodate the loads 

imposed on N \  and N z  by the tasks in £i(5) and B 2(S), respectively. The resulting TG 1(5) is 

shown in Fig. 4.9, ignoring r 3 and the communication delays between T3 and T2. (Note the 

differences between this figure and Fig. 4.5.)

To derive $i(5), we need to obtain the minimum load 7TG21(5) imposed only by T3 on 

N t since B(5) = {T3}. Thus, TG2j(5) = {V3i(5), Vm(5)} since T3 is invoked twice in any 

planning cycle. However, a further examination on the original TG shows that there is no
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extra load imposed on N x by T3, if T3 is not assigned to N j, because T3 does not 

communicate with T j. It follows that, although assigning T3 to N x will impose some load on 

N x, we need not consider T3 to derive 6j(5). That is, 6i(5) can be obtained by scheduling 

only TG^S) = TG 1(5). The release time and cost function of each module in Tj are 

determined as follows. Since no modules of T x are preceded by T32, each of them has a 

release time of t  = 0. To find the cost functions, rules R1-R4 of the last section are followed. 

Specifically, from R3 the cost functions of M l3 and AT2ifl (Fig. 4.9) is f/40, which is identical 

to that of T j. From Rl, the cost functions of M n  and M X2 arc 0. Finally, the cost function 

of X12ti is determined by considering the critical paths of lengths Pj and p2 from n4, which is 

an OCP, to « i9 and «20> respectively. That is, from R2, the cost function of AT12,i is max 

te i ( 0 .£ 2(0} = * i(0 . where gi(f) = (* + P ! - 0 ) / 4 0  = (r + 2 5 .5 )/4 0  and g 2(t) = 

(f + p2 -  0) /  40 = (/ + 13) / 40. As a result of applying Algorithm A, 6j(5) = 27.5/40.

To derive 6 2(5), we need to obtain the minimum load TG 22(5) = {y3i(5), t|/32(5)} 

imposed by T 3 on N 2 when T 3 is and is not assigned to N 2. If T3 is assigned to N 2, from 

Eq. (4.3), £ 3! (5) = 4 (E32(5) = 5) since all modules of T3 contributing to the summation are 

required for T31’s (T3 2 s) completion. On the other hand, if T3 is not assigned to N 2, the 

extra loads imposed on N 2 (Eq. (4.4)) are E 3X (5) = (2 - 1)/2 = 0.5 and 

^32(5) = (2 -  0)/2 = 1 since the first (second) X322 is not required for T31’s (T3 2 s) 

completion. Following SP3 in the last section, we derive the \y3i(5)’s execution time as min 

{4,0.5} = 0.5, release time as 0, and cost function as (r -  0)/20. \y32(5) can be derived 

similarly to y 31(5) except for its release time. Specifically, the execution time is derived as 

min {5, 1} = 1, cost function = (t -  20) / 20, and release time as 0 since is executable 

before T32 is invoked. In order to use Algorithm A for deriving 6 2(5), the release time and 

cost function of each module in N 2 on TG 1(5) also need to be determined. As a result of 

scheduling the simplified version of TG2(5), we get 6 2(5) = 20/40. Therefore, 6(5) = max



{&i(5), 6 2(5)} = &i(5) =  27.5/40.



CHAPTER 5

MODELING OF CONCURRENT EXECUTION OF TASKS

5.1. Introduction

In the previous chapters, task execution times were assumed to be fixed so that optimal 

scheduling and allocation of the tasks can be property handled. However, in practical systems, 

task execution times may be random. In such a case it is virtually impossible to guarantee that 

each task be completed before its deadline under any task allocation. Therefore, modeling 

concurrent execution of tasks, termed task system modeling, is an essential step in the analysis 

and design of distributed real-time systems and is the main purpose of this chapter.

Conventional task modeling approaches either consider each task as a basic unit or 

decompose a task into smaller units, called modules. The former is called a task-oriented 

model [Hua85, Vir85], whereas the latter is called a module-oriented model [Mok83, ChL84]. 

Most of these models, however, have some of the following disadvantages:

•  The task-oriented model is too coarse. Most tasks communicate with each other during 

the course of execution, and inter-task communications impose complex precedence 

constraints which are usually difficult to analyze [Hua85].

•  The inter-task or inter-PN communication delay is either assumed to be constant or have 

a fixed probability distribution. It is impossible to describe the delay under, for example, 

different communication protocols, or different task scheduling or message handling 

policies adopted by communication partners.

125
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•  It is not easy to describe which task stage each PN has been executing. This information 

is essential when we need to dynamically prioritize the execution of some part of the 

task system for each PN.

In order to remedy the above shortcomings, we present a module-oriented model with a 

finer granularity than the conventional module-oriented models. Our modeling process 

consists of the following two steps:

(1) Contiguous stretches of executable code of the task system are combined into a set of 

basic entities called activities. A set of activities is formed in such a way that any 

inherent precedence constraint within the task system and the expected task execution 

times are preserved.

(2) A Generalized Stochastic Petri Net (GSPN) [MBC84] is used to model the activities and 

their precedence constraints. These activities are then modeled by a sequence of 

Continuous-Time Maikov Chains (CIMC’s) [Kle75, Ros83] by performing reachability 

analysis on the GSPN and assuming independently, exponentially distributed transition 

firing delays1.

The state of each CTMC describes the task execution stage each PN (which could be a 

multi-processor) is in, and a state transition corresponds to the execution of an activity. As 

will be seen later, the use of a sequence of CTMC’s is to facilitate time-driven task 

invocations. The CTMC model offers a useful base on which various problems, such as task 

response time estimation, optimal message handling policy, and optimal time-out policy, can 

be rigorously studied.

1The set of transitions that can be fired is time dependent, however.
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The test of this chapter is organized as follows. Section 5.2 describes the task system 

and states some simplifying assumptions. Section 5.3 introduces necessary concepts, 

definitions and notation. The problem statement and the proposed modeling process are 

presented in Section 5.4. Finally, the probability of missing deadlines is computed in Section

5.5 to demonstrate the use of our model.

5.2. The Task System

Only periodic tasks are considered here since they are not only the nucleus but also the 

unique feature of real-time tasks.

As mentioned earlier, most periodic tasks communicate to accomplish the overall control 

mission. The communication between two cooperating tasks usually establish precedence 

constraints between them. These constraints specify the completion of some parts of one task 

to enable some parts of the other task to be ready for execution. As we shall see later, these 

precedence constraints may even form a chain of cyclic precedence relations. To identify a set 

of tasks with precedence constraints, all tasks in the system can be partitioned into mutually 

exclusive sets of tasks called precedence classes. Two tasks are in the same class if and only 

if they communicate, directly or indirectly, with each other.

For the purpose of modeling, we need the following assumptions:

Al. At any given time, all resources in the system are dedicated to a single control mission.

A2. Tasks are pre-assigned to the PNs, and remain unchanged throughout the control mission 

lifetime.

A3. Each aperiodic task alone forms a single precedence class.

Al indicates that no other control mission can begin execution before the current one is 

completed. This assumption excludes a rare and more complex case where more than one 

control mission simultaneously compete for system resources. A2 is usually the case in
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practice due to the time oveihead associated with on-line assignment of tasks. A3 is to 

simplify the treatment of the task system. Specifically, if each aperiodic task alone forms a 

distinct class, by definition, it does not communicate with any other task and, thus, imposes no 

precedence constraints in the task system. Notice that the above assumptions do not exclude 

the case where the periodic tasks may form more than one precedence class.

To analyze normal system behavior, a planning cycle /  = [0, L) of the task system is 

identified such that the task system can be fully characterized in 7, where L is the least 

common multiple (LCM) of fa  I i = 1,2, ,m }, the invocation period of J; and m 

the total number of periodic tasks in the task system. The example in Fig. 3.1 shows a system 

with 3 tasks T lt J 2 and J 3, with p x = 6, p 2 = 3 and p 3 -  4 time units. Within I  = [0, 12), 

T j, T2 and r 3 are invoked 2 ,4  and 3 times, respectively.

It is also assumed that no pipelining of tasks is allowed. The current invocation of a 

task must be completed before its next invocation; if a task is not completed prior to its next 

invocation, it is simply discarded. Since the process under control may have changed, for 

example, its sensor values by the time of the next invocation of a task, there is no need to 

execute a previous invocation of the task with obsolete sensor data.

5 J . Definitions and Notation

This section introduces concepts, definitions and notation that will be used throughout 

this chapter. The task flaw graph (TFG), and its task tree, which serve as the input to our 

modeling process, are first presented and then followed by a discussion of the combination and 

expansion processes which deal with modules.

A TFG describes a task to be executed by a PN in the distributed system. The TFG is 

composed of four types of subgraphs; chain, And-Fork to And-Join, Or-Fork to Or-Join, and 

loop.
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A chain (Fig. 5.2) is the largest possible concatenation of multiple entities called 

execution objects. A communication point is an execution object which represents one of the 

six communication primitives (to be elaborated on in Section 5.4) used in the system or an 

output signal sent to the processes under control. A sequential code stretch or a 

communication point is called a basic execution object, and a single execution object, which is 

not a chain by definition, is called a stand-alone execution object. A stand-alone execution 

object may be a basic execution object, an And-Foik to And-Join subgraph, an Or-Foik to 

Or-Join subgraph, or a loop.

An And-Fork to And-Join subgraph (or simply called an And-Subgraph) (Fig. 5.3) 

consists of more than one branch, all of which must be executed (possibly in parallel). A 

branch of the And-Subgraph may be a stand-alone execution object or a chain.

Similarly, an Or-Foik to Or-Join subgraph (or simply called an Or-Subgraph) (Fig. 5.4) 

consists of more than one branch. However, one and only one branch of the Or-Subgraph is 

executed, and the probability of choosing each branch is assumed to be given. Another point 

that differentiates an Or-Subgraph from an And-Subgraph is that a branch of the Or-Subgraph 

could contain no execution object at all.

A loop (Fug. 5.5) consists of a loop body with a “ looping back” probability p . Like a 

branch of the And-Subgraph, the loop body may be a stand-alone execution object or a chain.

Also shown in Figs. 5.2 thru 5.5 are the upper-end and the lower-end points of a chain, 

the fork and join points of an And-Subgraph and an Or-Subgraph, and the collecting and 

branching points of a loop. Since these points serve as boundaries of their respective 

subgraphs, they are called structure points. Note that there is no structure point defined for a 

basic execution object, and that there may or may not be structure points for a stand-alone 

execution object, depending on the specific execution object it represents.
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A task tree describes how the TFG is organized by the four types of subgraphs and the 

basic execution objects mentioned above. The root of the task tree is the TFG itself, the 

leaves are the basic execution objects while the non-leaf nodes are the four types of subgraph. 

A layer number is a non-negative integer assigned to each node in the task tree to indicate the 

relative position of the node in the tree and, consequently, of the subgraph and the basic 

execution object in the TFG. A higher layer number is assigned to a node of an inner layer, 

while a lower number is assigned to a node of an outer layer, and the lowest layer number, 0, 

is assigned to the node of the outermost layer, the TFG itself.

For example, Fig. 5.6 is a TFG whose task tree is shown in Fig. 5.7. The TFG in Fig.

5.6 as a whole is a chain which consists of two execution objects: E l and an And-Subgraph. 

The And-Subgraph has three branches: the first is a stand-alone (and basic) execution object 

E2, the second is a stand-alone execution object (a loop), while the third is a chain which 

contains two execution objects: E5 and an Or-Subgraph. The loop body in the second branch 

is also a chain consisting of two basic execution objects E3 and E4. Since El and the And- 

Subgraph are one layer * ‘inside”  the chain (or the chain is said to be one layer “ outside”  E l 

and the And-Subgraph) representing the TFG itself, each of them is assigned the layer number 

1. Likewise, each of the three branches of the And-Subgraph is one layer inside the And- 

Subgraph, so each of the branches is assigned layer number 2, and so on. Note that an outer 

layer node contains all inner layer nodes under itself. For example, the chain on the third 

branch of the And-Subgraph contains E5, the Or-Subgraph and, thus, E6 and E7.

In a chain, an execution object is not ready for execution until the one immediately 

preceding it has been completed. In an And-Subgraph, however, no precedence constraints are 

needed among its branches. Because of the constructs of an Or-Subgraph and loop, it is not 

possible to use a relation such as partial ordering to describe the precedence constraints 

between any two basic execution objects.
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A module is an entity resulted from combining a set of two or more code stretches or 

modules.2 A combination is said to retain the precedence constraints among the original 

stretches if and only if the combined set belongs to one of the two types: 1) a set of 

contiguous modules on a chain, and 2) a set of branches of a single module of an And- 

Subgraph or Or-Subgraph. All combinations to be discussed here are of this type. When a 

set of modules is combined into a module e, e is said to be an equivalent module of the 

combined set. The largest module that can be formed without violating any precedence 

constraint is called an activity. Depending on how far the combination process can go in the 

TFG, the boundary of an activity may or may not be a communication point The boundary of 

an activity which is not a communication point is called a control point. After all the 

activities are found, the resulting graph is called a Communication Flow Graph (CFG). More 

on this will be discussed in Section 5.4.

We have introduced the TFG, its task tree and the combination process which are 

necessary tools for our modeling process. In what follows, a brief discussion on a GSPN 

[MBC84] and related definitions necessary to our modeling process is given.

A Petri Net [Pet81] is a four-tuple, C = ( P , T , I ,  O ), where P = {<J>!3, <j>2, ... , <j>p } is 

the set of places, T  = {rlf t2, ■ • • ,  tp } the set of transitions, /  : T  -» P  the input function, 

and O : T -»  P the output function. A marking p : P  -» I* represents the number of tokens 

for each place ^  e  F , where I*" is the set of non-negative integers. M  = (P, T,  1 , 0 ,  P) is a 

Petri Net with a marking p. After being enabled, a transition fires by removing one token 

from each of its input places and adding one token to each of its output places.

2This is a recursive definition. Further, we will use the term "module" to refer to both the code stretch and 
module in the rest of the chapter.

3We use <(>/, instead of the more frequently used pt, to represent the i -th place of a Petri Net to avoid confu­
sion with the period of the i -th periodic task.
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A GSPN is a type of marked Petri Net, where a non-negative random variable 

representing the firing delay is associated with each transition. Depending on its firing delay, 

each transition of the GSPN can be classified into one of the two types: immediate and timed. 

A transition is immediate if its firing delay is zero with probability one, and timed otherwise. 

A place pi in the GSPN is said to be instantaneous if a transition with <(>,• as a sole input place 

is immediate, and non-instantaneous otherwise. The state of the GSPN is the marking of the 

set of all non-instantaneous places. A state is vanishing if it enables at least one immediate 

transition and tangible otherwise.

The procedure to find the reachability set S of states from some initial marking p. is 

called the reachability analysis of the GSPN. A non-instantaneous place <J>; of a GSPN with 

an initial marking (3 is safe if V p e S, P(<t>,) ^  1. A GSPN is safe if every non- 

instantaneous place in the net is safe. As will become clearer, all GSPN’s considered in this 

chapter are safe. The remaining part of this section will deal with the CTMC model 

describing the task system.

Let N  be the set of all PNs in the system, each of which is assigned a priori a set of 

tasks to be executed, and Z (k ) be the number of processors of Nk e  N . Assuming that, in a 

planning cycle of the task system, tasks are invoked at times ©i, ©2, • • • , © / ,  where ©1 = 0, 

the beginning of the cycle, and ©! < ©2 < • • • < ©/ < ©/+1 = L , a sequence of CTMC's, 

{(S„, Au, 0 U) | u = 1, 2, • • • , / } ,  is necessary to model die task system.

State space Su is the set of states of the CTMC model reachable during time interval

t
lu ~  [©„, ©u+i). Then, S = { j S u is the total state space.

list

Au : Su x  Su -» T  is the event-driven transition function between two states in Su. 

Each element in T  is a triplet (p, %, k), where p. £ 0 is the transition rate whose inverse 

represents the activity execution time, £ the prespecified branching probability, and k  the PN
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to execute the activity. Let |iy , Jjy, and ktj  denote the transition rate, the branching

probability, and the PN associated with states si and Sj, respectively. A transition with

\iij = 0 is trivial, meaning no transition between these two states. A set of non-trivial

transitions from to some other states Sj such that Yhij = 1 is called a branching set, and
j

each transition in the set with < 1 is called a branching transition. On the other hand, a 

transition with = 1 is called a lone transition. As will be seen in Section 5.4, a branching 

set results from either an Or-Fork or a loop.

A set of event-driven transitions associated with e Su and Nk e  N  is defined as: 

OUT(sit k) = {(|iy, k)  | Sj e  Su, * 0}, the set of all nontrivial transitions from s( to 

be fired in Nk during Iu. Given that the task system is in sit the number of transitions, 

|OUT(S[, k) |4, may be larger than the number of processors, Z(k),  for some Nk e  N.  

Therefore, a decision must be made as to which activities/transitions will be chosen5 to fire. 

An activity selection policy it specifies this choice for each Nk e N  and for each st e  S. Let 

£>,• denote the set of all decisions available at s,-. The policy space II is defined as the set of 

all such policies, i.e., n  = {re} = D t x  • • • x D t x  • • • x Z>|5|, where |S| is the cardinality 

of S.

Given the policy tc, the set of transitions chosen for concurrent firing at st is called an 

active transition set, ATS”. Note that ATS” is a subset of OUT(sit *) = OUT(si, k).
NkeN

©u : Su —> Su+i is the time-driven transition function. All transitions specified by 

occur at time cou+i and take no time to complete the transitions. Specifically, @u specifies 

which state in Su+i to start with at time cou+i for each state in Su upon some task invocations.

4Each branching set as a whole is counted as a single transition.
sIf Z (k )  £ | OUT(S(, &)|, then all elements in OUT fa , k ) are chosen.
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5.4. The Modeling Process

Given the Task Flow Graphs (TFG’s) and their task trees for each PN, our objective is 

to model the task system with a sequence of CTMC’s such that:

Cl. the resulting CTMC model has as small a state space as possible,

C2. the precedence constraint between any two basic execution objects in the original TFG is 

retained, and

C3. the expected execution times for each task invocation and for the task system as a whole 

are preserved in the resulting CTMC model.

Cl is concerned with optimality, while C2 and C3 are constraints. Since the size of the 

total state space S is generally an exponential function of the number of activities, modules 

should be combined, whenever possible, to build the smallest set of activities while satisfying 

C2 and C3. This combination may cause the following two problems: PI) loss of potential 

parallelism, and P2) dependency among resulting activities. PI is due to the combination of 

modules in an And-Subgraph. This is acceptable since analysis based on such a combination 

will err on a conservative side in meeting hard deadlines. P2 is caused by the combination 

between modules inside and outside an Or-Subgraph. A combination of this kind merges an 

outside module with a module on each branch of the Or-Subgraph, and, thus, introduces 

dependency between the resulting modules on any two branches. This calls for the use of a 

stochastic process with mutually dependent transition delays. However, since such a 

combination could drastically reduce the size of state space, we choose to approximate the 

model by ignoring this effect

The overall procedure to build the proposed CTMC model of the task system is divided 

into three sequential stages: building the smallest activity set of a TFG, constructing a GSPN 

of concurrent task execution, and deriving the CTMC model from the GSPN.
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5.4.1. The Smallest Activity Set

Given the TFG’s and their task trees for each PN, the set of activities of each TFG is 

determined by identifying their boundaries. We propose a procedure consisting of N  iterations 

of combination and expansion phases, where N  is the largest layer number in the task tree of 

interest The combination phase merges modules within subgraphs of the same layer while the 

expansion phase penetrates the boundaries of the subgraphs being worked on and performs 

some preprocessing for die next combination phase.

Starting from the second innermost (i.e., layer N- l ) ,  and working through the outer 

layers, each iteration works on all subgraphs in the layer until the outermost layer is expanded. 

The layer which is currently being worked on is called the active layer.

5.4.1.1. The Combination Phase

To meet C2, only three types of combinations are allowed: vertical, horizontal, and total 

combinations. A vertical combination merges vertically adjacent modules of a chain into a new 

equivalent module. A horizontal combination operates on two or more branches in an And- 

Subgraph or an Or-Subgraph. A total combination merges the whole subgraph into a single 

equivalent module as was done in [ChL84].

A chain can have vertical and total combinations, an And-Subgraph or an Or-Subgraph 

can have horizontal and total combinations, while a loop can have total combination only. 

These combinations are performed only in the subgraphs in the active layer of the TFG.

To satisfy C3, the expected execution time of an equivalent module is computed as 

follows. The expected execution time of the equivalent module after a vertical combination in 

a chain or the horizontal combination in an And-Subgraph6 is the sum of those of all the

6As mentioned before, potential parallelism is lost if, for example, there are more than two processors avail­
able to execute in parallel any two branches to be combined.
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component modules combined into it. For the horizontal combination in an Or-Subgraph, the 

branching probability, pe , and die expected execution time, E[Te]t of the equivalent module e 

are determined by the following two equations:

Pe = 2  Pi
it-G (5.1)

2  E\Ti}Pi
E[Te] =  , p ,  *  0, (5-2)

Pe

where G is the non-empty set of modules combined into the equivalent module e, Pi and 

E [Ti ] are respectively the branching probability and the expected execution time of module7 i 

in G.  Note that both Eqs. (S.l) and (5.2) also hold for the total combination of an Or- 

Subgraph. For a loop, however, the expected execution time E{Te] after the total combination 

is:

E[T,]
E[Te ] = - ± ± L ,  p *  1, (5.3)

1 - p

where E [7/] is the expected execution time of the single equivalent module in the loop body.

To facilitate the next phase, if a total combination is performed in any of the four types 

of subgraph, the subgraph is replaced with its equivalent module, and its two structure points 

are removed.

For example, Fig. 5.8 illustrates the horizontal combination of an Or-Subgraph, and Fig. 

5.9 shows the total combination of a loop. In the figures, I COMM I represents a 

communication primitive, 1 OUTPUT I is the point where an output signal is sent, and |EXE

represents a module. Also indicated in Fig. 5.8 are structure points which have been 

aggregated in the previous expansion phase.

7The context is clear enough to avoid confusions on 7> between representing the execution time of module i 
and representing the /-th periodic task.
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5.4.I.2. The Expansion Phase

The expansion phase is to remove the structure points of the subgraphs of the active 

layer such that the next combination phase can be applied across the original boundaries. This 

is done by applying two operations: module migration and structure points aggregation. 

Modules outside an Or-Subgraph and adjacent to its join point are moved inside the subgraph 

only if the next combination phase can reduce further the total number of resulting activities. 

This is the case when there is a module on each branch of the Or-Subgraph ready to be 

combined with the migrated module. Two adjacent structure points are aggregated into one if 

the aggregation should decrease the number of instantaneous places in the resulting GSPN 

model.

While performing the above two operations, control points need to be assigned and 

communication points to be identified to “ stop” further combination on modules located 

between these points in order not to violate the precedence constraints. Therefore, each of 

these “ stopping points”  will serve as the boundary of the two activities, if any, on each side 

of the point, and no other point in the TFG will serve the same purpose.

The rules for module migration are summarized as follows.

Rl. Vertically combine all contiguous modules in the active layer into their equivalent 

modules as in the combination phase described above.

R2. If a module is outside only one Or-Subgraph whose joint point is adjacent to the module, 

move the module into the subgraph if there is a module adjacent to the join point on 

each branch of the Or-Subgraph8 (Fig. 5.10).

R3. If a module is outside only one Or-Subgraph whose fork point is adjacent to the module, 

or the module is between two Or-Subgraphs, assign control point(s) to the structure

8This is the case that introduces dependency relationship among combined modules on any two branches of 
the Or-Subgraph.
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point(s) associated with the subgraphs) without moving the module (Fig. 5.11).

R4. For any module that is adjacent to an And-Subgraph or a loop, assign a control point to 

the adjacent structure point of the subgraph without moving the module (Fig. 5.12).

R5. For any subgraph that is adjacent to a communication point, assign a control point to the 

adjacent structure point of the subgraph without moving the module.

After module migration is performed, structure points should be aggregated as required 

to eliminate redundant structure points and prepare for the next combination phase. 

Apparently, different modeling bases have different modeling efficiency, making the conditions 

for aggregation different. For example, a structure point regarded as redundant by a more 

efficient modeling base, such as Stochastic Activity Networks [MoM84], may not be regarded 

redundant by a less efficient base such as a GSPN,9 whose modeling efficiency is limited by 

its execution rules. Since the GSPN cannot efficiently model a logic structure which is more 

complex than the fork or joint point of an And-Subgraph or Or-Subgraph, a structure point is 

regarded redundant only if aggregation on this point should result in a logic structure which is 

logically less complex than AND Fork, AND Join, OR Fork, and OR Join. (Each of these is 

called an “ AND/OR logic” ).

The notation PI -> P2 is used to denote a case of two adjacent structure points, where 

PI is immediately followed by P2. Depending on the relative positions of PI and P2 in the 

TFG, three different classes can be identified:

•  P2 is in the active layer, which is one layer inside the layer of PI.

•  PI is in the active layer, which is one layer inside the layer of P2.

^Irrespective of the various modeling bases used, the resulting CTMC models are the same. However, using 
a more efficient modeling base makes the corresponding reachability analysis more difficult
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•  Both PI and P2 are in the active layer.

One example of structure point aggregation of each of the above classes is shown in Fig. 

5.13 where A l, A2, R1 and R2 represent the foik and join points of the And-Subgraph and 

the Or-Subgraph, respectively. When the inner Or-Subgraph is expanded (Fig. 5.13(a)), the 

inner R1 is redundant and, thus, aggregated into the outer R1 to forni an AND/OR logic. In 

order to include new branching probabilities after aggregation, each branching probability in 

the inner Or-Subgraph should be adjusted by multiplying each branching probability in the 

inner subgraph by their probability in the outer subgraph. In this case, since further 

combination may still be possible, no control point is assigned. In Fig. 5.13(b), the inner 

And-Join cannot be aggregated into the outer Or-Join to form an AND/OR logic, implying that 

no aggregation is possible and, thus, a control point is assigned to the inner And-Join to 

represent a boundary between certain activities. Fig. 5.13(c) shows an Or-Subgraph 

immediately followed by an And-Subgraph in the same layer. Since no AND/OR logic can be 

formed by aggregating these two structure points, they remain unchanged, except that each of 

them is assigned a control point.

Since only four types of subgraph are considered, it is not difficult to (i) enumerate all 

different cases in which two structure points are adjacent to each other, and (ii) set up the 

aggregation rules for each case. All 39 cases and their aggregation rules are given in the 

Appendix A.

Upon completion of the current iteration of both phases, the active layer is raised 

outward by one so that the next iteration can be applied on the new active layer. This 

procedure is repeated until the outermost layer is finally expanded. Fig. 5.14 is the summary of 

the process described thus far. Clearly, since the precedence constraints and the expected 

execution times are preserved under each operation, C2 and C3 are both satisfied, and the
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PROCEDURE combination_phase( layerjam )
BEGIN /*** combination phase for the current active layer ***/
FOR each subgraph whose layer number = layer j a m  DO 

BEGIN /  ***combination phase for one subgraph ***/
Perform vertical, horizontal, and total combinations on modules 
in the subgraph as described in Section 5.4.1.1.

END /*** combination phase for one subgraph ***/
END /*** combination phase for the current active layer ***/

PROCEDURE expansion_phase( layer ja m )
BEGIN /*** expansion phase for the current active layer ***/

Identify all communication points whose layer number = layer ja m .
FOR each subgraph whose layer number = layer j a m  DO

BEGIN /*** code stretch movement for one subgraph ***/
Move modules whose layer number = layer j a m  into the 
subgraph according to the rales Rl, R2, R 3,ll4  and R5 as 
described in Section 5.4.1.2.

END /*** code stretch movement for one subgraph ***/

FOR each structure point whose layer number = layer j a m ,  and has 
no module adjacent to it DO 
BEGIN /*** structure point aggregation ***/

Aggregate the structure point, and assign control point 
according the rules listed in Appendix A.

END /*** structure point aggregation ***/
END /*** expansion phase for current active layer ***/

y******************* Main Program ****+*++*+***++++**+***/ 
BEGIN /*** Decomposition Process ***/

FOR active Jayer = N - 1 to 0 DO
BEGIN /* 1 iteration of combination and expansion phases */ 

combination_phase( active Ja yer ); 
expansionjphase( active J a y e r );

END /*** 1 iteration ***/
END /*** decomposition process ***/

Figure 5.14. Summary of the Process to Build the Smallest Activity Set
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resulting set of modules is the minimal set of activities. Because the decomposition process is 

communication-oriented, the resulting graph is called a Communication Flow Graph (CFG).

As an example, the resulting CFG for the TFG in Fig. 5.15 is shown in Fig. 5.16. 

Notice that the CFG does not maintain the structure of the original TFG. The CFG is just a 

collection of activities, communication and control points properly organized by AND/OR, 

sequential and loop logic structures and, more importantly, no longer contains the four types 

of standard subgraph.

5.4.2. GSPN Representation

To fully describe the task system with a GSPN, the following three aspects of the task 

system must be properly modeled and incorporated:

FI. the precedence constraints among activities within a single task, which are imposed by 

the corresponding CFG,

F2. the precedence constraints among activities of two communicating tasks, which are 

imposed by the semantics of the communication primitives used, and

F3. the time-driven, rather than event-driven, task invocations.

FI and F2 determine the structure, whereas F3 affects the initial markings, of the 

resulting GSPN. FI requires to model sequential, AND/OR, and looping logics on the 

activities in a CFG. This modeling process is straightforward and, thus, omitted here 

(interested readers may consult [Pet81, Mol81]). F2 and F3 are addressed in Sections 5.4.2.1 

and 5.4.2.2, respectively.

5.4.2.I. The GSPN Models of Communication Primitives

The communication primitives to be modeled include SEND-RECEIVE-REPLY, 

QUERY-RESPONSE, and WAITFOR. Although these primitives were proposed in [ShE87]



155

C START )

collecting point

upper-end point

| COMM |
fork point

fork poim

upper-end
point

upper-end
point

collecting
point

fork point

EXE EXE EXEbranching
point

l-Pi
join pointEXE

lower-end
point

low er-en d
point

join point

join point

low er-end point

branching point

Figure 5.15. The TFG o f a PN



156

(  START )
** : Control point 

* : Communication pointEXE

COMM

9*

AND
EXE

EXE

COMMEXE

OR
AND

EXE

1 - p

OUTPUT

Figure 5.16. The CFG of the TFG in Figure 5.15.



157

for inter-task communications in an integrated multi-robot system (IMRS), they are typical to 

real-time control systems. If task A issues a SEND to task B, A remains blocked until a 

REPLY message from B is received. If B executes a RECEIVE before the message arrives, it 

also remains blocked. QUERY and RESPONSE are used to allow one task to interrupt 

another for information, e.g., to avoid collision between two robots that share the same 

workspace. If A issues a QUERY to B, A remains blocked until the RESPONSE message 

from B arrives. Upon arrival of the QUERY message from A, B can decide to either accept 

the QUERY and respond to A immediately or queue the QUERY for a later RESPONSE. 

WA1TFOR is the primitive to allow more than two tasks to synchronize among themselves. 

Note that a processor can switch to other tasks while the current task is being blocked.

A. SEND-RECEIVE-REPLY

Assuming task A issues a SEND to task B in a different PN, the GSPN model for this 

communication is given in Fig. 5.17, where the integer numbers in circles are the place 

numbers.

When A issues a SEND, a token will be placed in <|>i, and a timed transition T\,  which 

represents the transmission delay of the message, is fired. A token will be created at <t>2 at the 

other end of the message transmission after units of time, the time required for T x. A token 

will also be placed in <J>3 if B executes a RECEIVE, This token together with that in <J>2 will 

enable the timed transition T2, which represents the necessary processing by B after the 

message is received. Upon completion of T2, two tokens are generated. One is placed in <j>4 to 

unblock B, the other in $5 to issue a REPLY to unblock A. Again, the delay for the REPLY 

message is represented by the timed transition r 3. If A and B are executed on the same PN, 

then the message passing delays T x and T3 are zero, implying that <t>i and <t>6 will coincide 

with <t»2 and fo, respectively.
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B. QUERY-RESPONSE

QUERY is used to allow a task to interrupt another task for information. The queried 

task will decide to either accept or queue the QUERY. When the task accepts the QUERY, it 

stops its current thread of control, starts executing the RESPONSE routine, returns to where it 

left off after the RESPONSE routine is completed, and issues a REPLY to unblock the 

querying task. The GSPN model for QUERY is shown in Fig. 5.18. In essence, the task 

issuing a QUERY creates an activity, i.e., the RESPONSE routine, to be executed by the task 

accepting the QUERY. Upon arrival of the QUERY message, the corresponding RESPONSE 

routine will be ready to be scheduled for execution by the accepting task. Note that such a 

GSPN allows a blocked task to respond to or queue a query, and to schedule RESPONSE’S in 

case of multiple queries.

C. WAITFOR

WAITFOR allows more than two tasks to synchronize with one another. It can be 

implemented as follows. When a task Tt in a PN executes a WAITFOR, it sends a message, 

say waitforit to each of the tasks named in its WAITFOR list. T, remains blocked until it 

receives the waitfor messages from all the tasks in its waitfor list. After Tt is unblocked, a 

named function F,- included in the WAITFOR will be executed. When F; is completed, 

execution of the task continues from the point immediately after the WAITFOR. Fig. 5.19 is 

the GSPN model of WAITFOR for three tasks residing at different PNs participating in a three 

way synchronization.

After precedence constraints FI and F2 are properiy modeled, a system-wide GSPN can 

be obtained by “pasting together” all GSPN’s corresponding to each individual task 

invocation in a planning cycle. The system-wide GSPN is unmarked until tasks are invoked. 

Section 5.4.2.2. describes how the unmarked GSPN is marked at each task invocation to
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correctly model the behavior of the task system.

5A2.2. Modeling the Time-Driven Task Invocations

Since Petri net type modeling bases are good only for event-driven parallel transition 

firings, time-driven task invocations add more complexities to our modeling process. This is 

because time-driven task invocations dictate the state evolution of the (marked) GSPN at 

invocation times. Therefore, instead of a single CTMC, a sequence of CTMC’s has to be used 

to correctly model the task system.

Assume, as before, that each periodic task begins its first invocation at time 0, and that 

the set of invocation times in a planning cycle [0, L) is {©i, ©2, • •*,©/},  where 

0 = ©i < ©2 < •••  <©/  < L . The following steps show how the unmarked system-wide 

GSPN built above is maiked such that a sequence of CTMC’s, 

{S„, Ah , 0 B) | u = 1, 2, • • • , / } ,  can be built for the task system.

1) At the beginning of a planning cycle, the unmarked system-wide GSPN is maiked by 

creating a token in each place corresponding to the START points of the individual 

GSPN’s of all periodic tasks to serve as the initial marking of the planning cycle.

2) The marking at time t <= [©lt ©2) is determined by the event-driven transition firings in 

the system-wide GSPN with its initial marking at time ©j.

3) The marking at time ©y , 2 <, j  £ I, is determined by three parts: (i) a token is created in 

each place corresponding to the START points of the individual GSPN’s of the tasks 

invoked, (ii) to disallow task pipelining, all tokens associated with previous task 

invocations are removed from the individual GSPN’s before the same tasks are invoked 

again, and (iii) the number of tokens in each place is determined by the event-driven 

transition firings of the marked system-wide GSPN with its initial marking at time ©y_i. 

This marking serves as the initial marking of the GSPN beginning at time ©y-.
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4) At time t e  [oa;, (0;+1), 2 £ j  £ I, where C0/+i = L , the marking is determined by the 

event-driven transition firings in the system-wide GSPN with its initial marking at time 

coy-.

For example, the unmarked GSPN of a task system that consists of three periodic tasks 

TV r 2, and T 3 residing in three different PNs N lt N 2 and N 3 is shown in Fig. 5.20, where T j 

queries T2 for information and T3 communicates with T2 by sending messages. T u T2 and 

T3 with periods 5, 10 and 5, respectively, are first invoked at time 0. In Fig. 5.20, immediate 

transitions are denoted by “ bars’*, timed transitions by “ ovals” , and integer numbers in 

circles are the place numbers. At the beginning of the planning cycle, a token is generated in 

4>lt <j>9 and <|>lg; at time t e [0, 5), the state evolution is driven by transition firings. At t  = 5 

when T i and T3 are invoked again, the marking of the GSPN is determined by: (i) a token is 

generated in $5 and <(>23 to indicate the second invocations of T j and T3, (ii) all tokens in <j>! - 

<p4 and <|>18 - <|>22 are removed to disallow task pipelining, and (iii) the tokens in <t>9 - <t>17 are 

determined simply by event-driven transition firings since t  = 0. Likewise, at t e  [5, 10), the 

state evolution is determined by event-driven transition firings. At t = 10, the same is 

repeated again for the next planning cycle. Notice that the random switches at $13 and <t»2i 

should be the same to assure fault-free message passing since no time-out provisions are made 

in receiving messages. The same also holds for the two random switches at <t>j5 and §26-

Following the execution rules of GSPN introduced in Section 5.2, it is easy to prove that 

if the task system is fault-free, then the system-wide GSPN marked above is safe.

5.4 .3. Construction of the CTMC Model

Given the system-wide GSPN marked as above, the state-transition-rate (STR) diagram 

of the u-th  CTMC is built as follows.
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1) For the ease of analysis, replace each random switch with its GSPN equivalent [MoM84] 

as shown in Fig. 5.21.

2) Find Su by performing reachability analysis on the GSPN initially marked at (Ou. This 

set serves as the state space of the STR diagram in [a>ul <oB+i). Note that, except for 

those introduced above, there are no vanishing states in Su.

3) Assume that each timed transition delay between states is independently and 

exponentially distributed with a transition rate equal to the reciprocal of the expected 

execution time of the corresponding activity.

For example, the STR diagrams of the task system in Fig. 5.20 are given in Fig. 5.22 

with p , = P3 = p4 = ^  = 2, Us = p5 = 4, p7 = p 10 = \in  = p 12 = p 13 = 1, p8 = 6, m, = 4, and 

branching probabilities p x = 2/3, and p 2 = 1/2, where p,- is the transition rate for activity af.

As shown in Figs. 5.22(a) and (b), all states are represented by a set of integers 

representing the set of (non-instantaneous) places each with one token, and the number on 

each arc indicates the transition rate.

Examination of these diagrams leads to the following insights:

i
•  Each state in the total state space S = kjSu globally describes which stage of the tasksusl

each PN has been executing. For example, (2, 10, 12, 19) in Fig. 5.22(a) represents a 

state where T x is blocked waiting for a response from T 2, T2 has neither finished a 7 nor 

responded to the query from T x, and the message from r 3 has arrived at N 2 waiting to 

be handled.

•  The state spaces for any two different invocation intervals are disjoint. Further, S x 

contains a unique starting state sq, and St contains a unique ending state Sf of the 

planning cycle. For example, state (1, 10, 12, 18) (Fig. 5.22(a)) is the starting state,
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while state (8, 17, 27) (Fig. 5.22(b)) is the ending state.

•  If a CFG contains loops, then all STR diagrams will be cyclic as shown in Figs. 5.22(a) 

and (b), and acyclic otherwise.

•  Depending on the marking at coj t  the STR diagram in [®7 , cdj+1) could be disconnected 

(Fig. 5.22(b)).

•  Since the precedence constraints among all activities are properly conveyed in the 

system-wide GSPN, the resulting STR diagrams implicitly show all possible execution 

sequences of activities of the task system in a planning cycle.

•  Depending on the task system, some states could be time critical. For example, if there 

is a hard deadline for N i to complete the first invocation of T it then at least one state of 

the form (4, * ,* ,* ) in Fig. 5.22(a) has to be reached before that deadline.

•  For a specific state, the number of activities that can be concurrently executed by a PN 

may be larger than that of the processors available to that PN. For example, the system 

is in state (6, 10, 14, 24), three activities (a$, a 7, and a 9) can be concurrently executed 

by N 2. If N 2 has only two processors, then a decision must be made as to which two of 

the three activities in N 2 are to be chosen for parallel execution.

5.5. An Application Example

In this section, we demonstrate the use of the proposed CTMC model 

{(5U, Am, 6 u) | u = 1, 2, • • • ,  /} by computing the probability of missing a hard deadline 

given the activity selection policy and the local state of a PN. Clearly, estimating task 

execution time is a special case of this problem.

The concurrent task execution can be thought as the “movement”  of tokens in the 

GSPN. A place in the GSPN is said to be realized if it has a token implying the completion 

of those activities that “ precede”  the place. Therefore, a hard deadline in the task system is
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associated with the realization of a place. For example, a hard deadline for N x in Fig. 5.20 to 

complete the first invocation of T  t is the maximum time allowed for <t>4 to be realized. A 

place is said to be time critical if it has a hard deadline. A state st which contains a set, say 

/?;, of realized time critical places is called a goal state with the realized set Rit and written as 

r(Si) = Ri. Denote the set of all time critical places by 'F. Clearly, y(Si) c  ¥ ,  V s { e  S. 

For the previous example, if H* = {4, 8, 17), then y((4, 11, 14, 21)) = {4}, and \|/((6, 17, 25)) 

= \j/((7, 17, 27)) = {17}. If ¥  = {11, 22, 27}, then \|/((6, H . 14, 25)) = {11}, \|/((8, 17, 27)) = 

{11, 27},10 and y((8, 10, 16, 25)) = 0 .  The set Gh of goal states each of whose realized sets 

contains the time critical place <(>/, is called the goal set with respect to place and written as 

Y(<1>h) = Gh. Obviously, Y(<|)*)cS, For the same task system in Fig. 5.20,

Y(<j>i7) is the subset of all states of the form (*, 17, *).

The first passage time Ytj  from st to Sj is a r.v. representing the time needed for the 

task system to reach sj for the first time from s*. Denote the CDF of Yq  by 

Q ij(t) = P r[Y ij £ t ) .  A set of initial states, E , with known element probabilities could 

sometimes be given instead of a single initial state s,-. Similarly, a set of final states F may 

be known in place of a single final state Sj. In such a case, the first passage time is defined as 

the time needed for the task system to reach any sj e  F  for the first time given that the task 

system is initially in some state £; e E  at time tc. Denote the CDF of the first passage time 

of this type by Qejf^ c' 0 » where t represents the time measured from tc .

The local state space S* associated with Nk within Iu = [co„, co„+1) is constructed as 

follows: identify the set of places, Pk, belonging to Nk, and then select the markings of Pk 

from Su. Note that for any v ^  u, 5* n  S% = 0  because Sv n S u = 0 .  Taking the task 

system in Fig. 5.20 again as an example, <|>i, <t>4, <t>5> and <f>8 belong to N it S* = {(1), (4),

1(>rhe realized set of (8, 17. 27) is that of (8, 11,16, 27).
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(.nil)) and = {(5), (8), (nil)}, where (1), (4), (5), and (8) stand for the local states that 

each of <t>lt <t>4, fo, and $8 contains a token, and (nil) for the local state where no place 

contains a token. Clearly, Su <zSj x S„2 x • • • x S k x  • • • x SJ, V u  = 1, 2, • • * , / ,  

where n = |N |.

Given the activity selection policy it* used by the task system and the local state x k at 

time tc ^  0 , we want to compute the probability at  of missing the hard deadline d, £ tc for a 

time critical place <J>e in the current planning cycle. More formally, we want to calculate

oe = Pr [We > de | it = it*, X k(tc) = x k ], (5.4)

where We is a r.v. representing the time <J>e is realized for the first time, n  a variable 

representing the activity selection policy used by the task system, and X m(t) a r.v. for the 

local state of Nk at time t.

Given the GSPN and CTMC models of the task system, the above problem can be 

solved by using the following CTMC properties.

51. Construct the CTMC model that includes the activity scheduling policy it*. This is done 

by deleting all arcs not in the active transition set A T S f  from the set OUT(sit *) for 

each Si e  S to queue the corresponding activities for later execution.

52. Solve the forward Chapman-Kolmogorov (C-K) equations for the sequence of CIMC’s 

from SI to obtain the prior probability P,(rc) and apply Bayes* Theorem [DeG70] to get 

the posterior probability P-,(tc) that the system is in s-t at time tc given X k(tc) = x k. The 

initial probability of state sb of the CTMC for interval Iu = [cato, cdm+1) is determined 

from the final probability of state sa of the CTMC for /M_j = [co„_i, coM), u * 1, by the 

following equation:
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0 if B = 0

otherwise,
s.eB

where B  = {ja|©tt-i(5a) = fy}. By Bayes’ Theorem, the posterior probability is 

Pi'(tc) = Pr {X(tc) = Si\Xk(tc) = x k ) =

Pj(tc) . .  r 
Y P-fr i S‘G^  (5.6)

*l*Lxk
0 otherwise,

where Lxk is the set of states with X k(tc) -  xk .

53. Identify the goal set Y(<j»a) = Gt . Since each sj e  G, is a state with <(>, realized, the

event that is realized is equivalent to the event that at least one state in Ge is reached.

54. Using the posterior probabilities P,-(fc) computed in S2 as the initial probabilities at time

tc, compute the CDF of the first passage time Ql kt O  to any sj in Gk given that

Xk(tc) = x k, where t is the time period measured from tc. QL t iG (fc , t )  can be found

by making each state in Ge an absorption state in the CTMC model, and then solving the 

C-K equations again for these new CTMC’s to compute P r[X (t) =  S j \
jjeG,

Xk(tc) = x k ).

55. Considering the current time tc and Ql q tic* t )  computed above, oe is determined by:* *

oe =  Pr {We > d e\n = K ,  X k(tc) = x k )

-  1 “  Ql *,Gf(*c» de - t c).X* *

As an example, each N lt N 2, or N 3 in Fig. 5.20 is assumed to have only one processor 

dedicating to normal computations. From Fig. 5.20 or 5.22, it is easy to see that N \ is the 

only PN with an insufficient number of processors since, among the set [a2, a lt a 8} or
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{as, a 7, a9), two or more transitions can be fired simultaneously at some state. Thus, the 

activity selection policy is determined by how N 2 picks its transition to fire at each state. In 

this example, we assume that N 2 picks the transition according to the order a 2, a2, a 8 or 

a s, a-j, a 9 to fire in each state. Fig. 5.23 is the CTMC’s corresponding to this policy.

Suppose the only information available to derive a ,  is that <t>t is realized in [0, 5) and $5 

is realized in [5, 10). Suppose also that <t>4, <t>8, $n, <(>22 and <j>27 are all time critical with hard 

deadlines d4 = <*22 = 5, d8 = d i7 = d^i = 10. Following the above solution steps, we obtain 

Fig. 5.24 showing the probabilities of missing these hard deadlines as functions of tc, the time 

the information is observed. It is not surprising that o4 and o8 are identical, since N 2 always 

chooses a2 or a$ first, whenever possible. This implies that the ordered activities {alt a 2, <z3} 

or {a4, as, a^} will be executed without interruption. For tc e  [0, 5) and tc e  [5, 10), Gyj is 

nearly stable at the value 0.575 because of the dominating fact that, after the second 

invocation of T 2, T2 may be waiting hopelessly at <t>12 for the message which will never arrive 

from the first invocation of r 3 that has already been discarded, is a monotonically 

decreasing, although not significant, function of tc. The high probability of missing 2̂2 1S due 

to the high branching back probability p \  as well as the tightness of the deadline. o27 

fluctuates around 0.628, a value larger than <5^  by approximately 0.1, because, in addition to 

similar reasons for 022. the message from the current invocation of T3 may wait hopelessly to 

be processed by T2 which, unfortunately as discussed above, is also waiting hopelessly for the 

message from the already-discarded invocation of r 3. From this example, we can see the 

importance of the time-out mechanism on message communications in a distributed real-time 

system.
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CHAPTER 6 

OPTIMAL SCHEDULING OF PERIODIC TASKS AND MESSAGES

6.1. Introduction

Since inter-task communications impose precedence constraints among tasks, the 

scheduling of communication messages is an indispensable part of task scheduling. The main 

objective of this chapter is to formulate and solve die integrated problem of scheduling 

periodic tasks and messages in a distributed real-time system using the CTMC model 

developed in the last Chapter. The scheduling objective is to minimize the long-term expected 

number of periodic tasks missing their deadlines.

The integrated scheduling problem is described as follows. At any time t ,  each PN has 

to make the following decisions on the execution of its periodic tasks:

Dl. While waiting for a specific message to arrive, the PN either continues to wait for the 

message or abandons the waiting and executes, instead, a certain default activity.

D2. Which of ready activities in the PN should be executed next if the number of free 

processors at the PN is less than that of ready activities?

D3. Which of the queued messages must be processed first?

D2 and D3 are self-explanatory, while Dl needs further elaboration as follows. Since a 

given goal is accomplished through the cooperative execution of periodic tasks, they 

communicate with one another to synchronize or exchange information. The communicating 

partners are usually blocked [ShE87] until the communication is completed, meaning that no

178
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activities requiring the information are allowed to continue. This blocking communication 

scheme could result in a situation where one or more of the communicating partners are 

delayed indefinitely waiting for a message which may never arrive. This could be due to, for 

instance, the failure of the sending PN or a communication link. To assure the timely 

completion of each task, there must be a provision for a communicating partner to carry on its 

execution even in the absence of the requested information. Of course, to compensate for the 

missing information, some form of default activity should be invoked. This default activity 

introduces an extra computation load to the corresponding PN. It is D l that deals with the 

decision on whether to wait for an outstanding message or to invoke a default activity. D1-D3 

are actually three dependent parts of a single problem since neither of them can be solved 

without considering the others. Therefore, we shall henceforth call them collectively the 

task/message scheduling problem (TMSP).

While scheduling tasks with fixed execution times has long been studied, scheduling 

tasks with random execution times is a relatively new and more difficult problem [Web82]. 

To our best knowledge, the TMSP with dependent periodic tasks has not been addressed in the 

literature. Perhaps, the most relevant work is the scheduling of a fixed set of dependent tasks 

with stochastic execution times (e.g., [Dem81, PiS81]). However, none of these addressed 

scheduling problems which are as complicated as the TMSP. We will first transform the 

TMSP into a semi-Markov decision process (SMDP) [Ros70] and then use the Dynamic 

Programming (DP) [Den82] technique to solve the SMDP. The SMDP is constructed based 

on the extended CTMC model of periodic tasks with the notion of default activity included.

Both centralized and decentralized solutions to the TMSP are derived. In the centralized 

case, a central monitor with perfect observations of the execution stages of all PNs is assumed 

to exist, which determines a globally optimal scheduling decision for each PN. In the 

decentralized case, however, each PN makes its own scheduling decision based on private and,
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peitiaps, out-dated information received from other PNs.

The rest of the chapter is organized as follows. In Section 6.2, the original CTMC model 

of periodic tasks is extended to include a default activity if die system gives up on waiting for 

an outstanding message for whatever reasons, e.g., time-out. The centralized TMSP is 

formulated and solved in Section 6.3. In Section 6.4, we solve the decentralized TMSP for 

which each PN periodically broadcasts its local state to other PNs. Finally, we also determine 

an optimal frequency of state broadcast

62. The Extended CTMC Model of Periodic Tasks

Since message scheduling is not separable from the TMSP, the original CTMC model 

built in Chapter 5 needs to be extended to include the notion of default activity.

A default activity is extra work that a PN has to perform in order to assure the quality of 

computation in case the system gives up on waiting for an outstanding message for some 

reason. For each message that is supposed to be received, the execution time of the 

corresponding default activity is assumed to be exponentially distributed with a fixed rate. 

According to the semantics of blocking communication and the purpose of a default activity, it 

is assumed that no activities in the program located after the receipt point of a message r can 

be executed before either receiving r or completing the corresponding default activity Rr. 

Notice that a communication primitive, such as SEND-RECEIVE-REPLY, may account for 

two message receipts (one on sender’s side and the other on receiver’s side), and the default 

activities for these two receipts need not be the same.

Default activities are implemented as follows. While waiting for an outstanding message 

r ,  the PN may or may not choose to execute the default activity Rr. The PN’s next action 

will depend on the following two cases:
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CS1. Rr is chosen and completed before r  arrives. The PN proceeds as if the precedence 

constraints imposed by r  were met, and does not send a REPLY to unblock the 

communicating partner from which the r was sent.

CS2. r  arrives before completing (choosing) Rr. The PN stops executing (choosing) Rr, 

processes r ,  and replies to unblock its communicating partner.

The GSPN representation for this extended model can be built, as shown in Fig. 6.1, by 

adding a timed transition representing Rr to the original GSPN. Notice that in Fig. 6.1(a), 

where the extended GSPN model for SEND-RECEFVE-REPLY or WATIFOR is shown, if the 

receiving PN gives up on waiting for an outstanding message s and completes a default 

activity Rs instead, then the sending PN will eventually be forced not to wait for the 

associated reply message r (which will never arrive anyway), and, instead, execute Rr. 

Consequently, a control place is added to assure that only one immediate transition will be 

fired after either receiving the expected message or completing the corresponding default 

activity Rr . On the other hand, from CS2, if message s arrives before completing Ra, then the 

receiving PN switches immediately to processing s provided a free processor is available. The 

extended CTMC model can then be constructed by performing reachability analysis on the 

extended GSPN. For convenience, the extended CTMC model will simply be called the 

CTMC model for the rest of the chapter as long as it does not cause any confusion/ambiguity.

For example, consider the task system shown in Fig. 6.2 (which will also be used 

throughout the chapter). It shows an extended GSPN where three periodic tasks T x, T2 and 

T3 are pre-assigned to N u N 2 and N 3, respectively. T j ,  T2 and T3 with periods p  i = 5, 

p 2 = 10 and Pj = 5 are invoked twice, once and twice, respectively, within the planning cycle 

/  = [0, 10). Ti queries T2 for information while T3 communicates with T2 for 

synchronization. Suppose default activities, labeled as a 14 and a  15 in Fig. 6.2, are provided 

only for T x to estimate the values of two parameters related to T2 s response, whereas no
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default activity is provided for synchronization between T2 and T3. Following the common 

practice, immediate transitions are denoted by bars and timed transitions by ovals, and integer 

numbers in the circles are place numbers. All but a% and a xx, each of which creates a 

branching set, are lone transitions. Further, to assure successful synchronization between T2 

and T3, the random switches at places $23 and <t>30 are assumed to be identical.

At the beginning of / ,  a token is generated in each of (thus, <t>2, $4 and <t>5), <t>19 ($20 

and <(>22) and $27; at time t e (0, 5), states evolve based on event-driven transition firings. At 

t = 5  when T x and T3 are invoked again, the marking of the extended GSPN is determined 

by: 1) a token is generated in <|>io and 2) all tokens in $1 — $9 and f a  — <j)31 are 

removed to abandon unfinished invocations of T x and T3,1 and 3) the tokens in <|>19 — are 

determined simply by event-driven transition firings since t = 0. At f e  (5, 10), the state 

evolution is again determined by event-driven transition firings until t — 10 when the system 

repeats itself for the next planning cycle. Let M-i = M-3 = M-4 = = M-is = 2, p.2 = p5 = 4,

H7 = H10 = fin = M-12 = M-13 = M'i4 = 1 , M-8 = 6, m  = 4, and branching probabilities p = 2/3, 

where jx; is the execution rate of at. After performing reachability analysis on the extended 

GSPN, a total of 90 (108) non-vanishing states are generated within I x = [0, 5) (I2 = [S, 10)) 

as shown in the Appendix B (Appendix C).

6.3. Optimal Centralized Periodic TMSP

The TMSP is formulated as a semi-Markov decision process (SMDP) by discretizing a 

planning cycle into a number of small intervals or epochs. We first justify why it is sufficient 

to base the criterion function on one planning cycle, rather than the whole mission lifetime. 

Then, the three characterizing factors of the SMDP, decision set, one-step transition 

probability, and one-step cost [KuV86], are identified/calculated in the context of the

1An invocation of a periodic task is simply discarded if it is not completed before the next invocation, since 
its execution results will become obsolete.
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underlying problem so that functional equations can be built and the dynamic programming 

(DP) technique applied for an optimal solution.

Consider a renewal reward process [N(t), t £ 0} [Ros83] with inter-arrival times Vn, 

n = 1, 2, , and suppose further that a reward Rn is earned at the time of the n-th

renewal. Let C(f) = J^R„ be the total reward earned by time t. For eveiy n £ 1 if Rn = R 
«»1

is independently, identically distributed (iid) and E[Vn] = E[V] is finite, then we get the 

long-term expected reward limC(f) / 1 = £ [/? ] / E[V] with probability one. This implies that
t-*oa

the policy that optimizes the long-term expected reward also optimizes the mean reward in any 

renewal cycle. Thus, the optimal solution to the TMSP is the one that minimizes the expected 

number of periodic tasks missing deadlines within a planning cycle I  = [0, L).

Unfortunately, there is no closed form solution to this type of optimization problems. A 

well-known approach is to approximate the optimal solution by discretizing the planning cycle 

into a number of equally-spaced epochs and then applying the DP technique to find an optimal 

solution at each of these time epochs and states [Dij84, Mil68].

Following the common practice, we will divide the planning cycle I  into V equally- 

spaced epochs, or intervals of length h each, such that each task invocation time coincides 

with one of these epochs. Since the solution algorithm of DP is well-known, we need to 

formulate die problem to be solved in terms of DP’s three characterizing factors: decision sets, 

one-step transition probability and one-step cost In what follows, these three factors are 

established.

6.3.1. Decision Set

The decision set D, for state s, e  S  — the total state space of the CTMC model — is 

the set of all scheduling options available when the system is in s,-. £>,• is determined by
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combining over all Nk’s the set of all scheduling options available to iV* when the system is in 

For example, if there is only one processor in each PN, then the set of scheduling options 

available to N* is the set of all activities ready for execution on N*. A policy t c  specifies 

which activity to choose for each PN for each given state Si e  S at epoch v, 0 £ v ^  V—1. 

Hie policy space II is defined as the set of all such it’s. For convenience, the set of all 

activities chosen under t c  in state s,- by all PNs at the v-th epoch is denoted by ATS*(y).

63J2. One-Step Transition Probability

The epochs resulting from the discretization of a planning cycle serve as the stages of the 

corresponding dynamic programming netwoik [Den82], i.e., transitions occur only between 

states of adjacent epochs. Let Py(y) denote the one-step transition probability from state 

Si e  S  at epoch v within I u =  [coB, (D „ + 1 )  to s j  e  S at epoch v+1 under a certain policy t c .  

Also, let Li be the total transition rate of all transitions in ATS*(v), i.e., L,- = £  ZijVLy* where
jeA,

A[ = {sj | Au(si, sj) e  ATSin(y)}, %y is the branching probability, and \ iy  the transition rate 

from Si to Sj. Depending on whether or not a task will be invoked at the next epoch, P y (y )  

is determined as follows.

TP1: (v+l)fi < a>M+1.

Pif(v )  =

0

j  e  Ai and j  * i

1 -  Lih + $u\luh j  = i

j  4 Ai and j  * i

(6.1)

because the execution time of each activity is assumed to be exponentially distributed.

TP2: (v+l)/t = (0M+1. The transition probability in this case is similar to that of TP1
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except that the time-driven transition function 0 M is fiied. Specifically,

A?(v) = Z  sx e  Su+U (6.2)jeB x

where Bx = | 0 M(sy) = j*}, and Ptf(v) is the transition probability obtained from Eq.

(6.1).

6 3 3 . One-Step Cost

Before deriving the one-step cost corresponding to the mean number of tasks missing 

deadlines, it is necessary to recall the concepts of the goal state and its realized set introduced 

in Chapter 5. hi the CTMC model, concurrent task execution can be viewed as the movement 

of tokens in the corresponding GSPN. A place in the GSPN is said to be realized if it has a 

token, implying the completion of all the activities that precede the place. In other words, a 

deadline in the task system is essentially associated with the realization of a place. A place is 

time-critical if a deadline is associated with it. A state S; containing a set ft; of realized time- 

critical places is then called a goal state with realized set ft;. A time-critical place is assumed 

to occur only at the conclusion of the task containing the place. This assumption allows the 

deadline of a task invocation to be set to its next invocation time. Let and <£; = -  ft;,

1 £ u £ I, denote, respectively, the set of all current invocations that should be completed 

before the next task invocation time (ou+1, and those that have not been completed while in s,- 

before ©M+i. Since whether or not a task misses its deadline is not known until its next 

invocation, Y  n e  II and V J;gSm, it is natural to set the cost function as:

0
c*(v, s ,)= - (6.3)

i
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where PiJ(v) is the one-step transition probability without considering the time-driven 

transition function 8 „ and | ^ |  represents the number of time-critical places that should be, 

but will not be, realized at gdw+i.

Under the assumption that a central monitor exists and has a perfect observation of all 

Si’s, one can construct the following functional equations and then apply backward recursion 

to derive an optimal solution [KuV86]:

Uy(Si) =  0 ,  (6.4)

Uv(s;) = min 
ne n

Note that the minimum expected number J* of tasks missing deadlines —  which is achieved 

under an optimal policy it — is equal to 7* = U0(so), where sa is the unique starting state of 

the CTMC model of the task system.

Consider again the task system of Fig. 6.2 as an example. Since alternative decisions are 

available only to N 2, it is necessary to derive the optimal policy for N 2 only. Recall that the 

deadlines for the first and second invocations of and T3 are 5 and 10, respectively, and that 

for r 2 is 10. To obtain a good approximate solution, the planning cycle I  = [0, 10) is 

discretized into V = 1000 intervals of length h = 0.01 each. The first epoch (v=0) is the 

beginning of /  while the last epoch, i.e., v = V  = 1000, is the beginning of the next planning 

cycle. Our objective is to find the optimal policy it that specifies the activity to be chosen by 

N 2 at each epoch v, 0 £  v £  999, such that the expected number of task invocations missing 

their deadlines within 1 is minimized.

The optimal policy obtained by solving Eq. (6.5) backward recursively for each epoch v 

is shown in Figs. 6.3(a) and (b) which correspond to I\ = [0, 5) and l 2 = [5, 10), respectively. 

The optimal decisions at different epochs are shown only for those states in which N 2 has

c**(v, Si)  + £P £(v) Uv+i(sj) 0 £  v < V. (6.5)
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multiple options. For example, as the system is in state s 3 = (2,4, 6, 20, 22, 27) e  5 1 (see 

Appendix B.) at time t e  I lf the optimal policy for N 2 (Fig. 6.3(a)) is to execute a7 if 

t 5 0.89, and execute a2 (i.e., respond to T x’s query) if t ^  0.90. Suppose the system is in s 3 

at r < 0.89, when N  i executes R\ = a J4, N 2 executes a7 and N 3 sends a message to N2. 

Assume further that a 14 is finished at the next epoch t+h bringing the system to state s$. 

Then, as shown in Fig. 6.3(a), the optimal policy for N 2 is still to execute a 7. However, if the 

message from N3 arrives at N 2 before completing a 7 or a 14 (i.e., bringing the system to 5 tl), 

then N 2 should reply to N 3 (i.e., execute as) immediately, instead of executing a7. The 

optimal policy in any other state and at any other time can be obtained similarly from Fig. 6.3. 

Notice that ag (a 9) is always executed before a2 (fls) or a7 within I \  (/j). This is because the 

completion of ag (a9) is essential for those of T2 and both (the second) invocations of T3. 

Thus, a g is more “ urgent”  than a7 and a2, since the completion of the latter enables only one 

task to complete. Also, in s 4, s 9, s l2 and s %g within / 2, a$ is always executed before a7 (Fig. 

6.3(b)). This is obvious, since at these states, the token is in $22. rather than <t>24, meaning that 

T2 is stuck at waiting hopelessly for a message that will never arrive. Hence, it is 

meaningless for N2 to execute a7 since T2 will not be completed in time anyway.

The optimal cost 7* = 1.3045, which is rather high. Two reasons explain this subtlety: 

(1) the absence of default activities for N2 in waiting for outstanding messages, and (2) the 

tightness of deadlines. To see how the tightness of deadlines affects performance, we solved 

the same problem with each deadline extended and with V  = 10,000. Specifically, the 

deadlines for the first invocations of T\ and T3 are extended to 50, those for T2 and the 

second invocations of and T3 to 100 while maintaining h — 0.01. These changes resulted 

in /*  = 0.00056, a significant reduction. This reduction can be explained by the fact that with 

a much higher probability, the token originally in §22 can now move to (j)24 before t = 50 and, 

thus, each invocation can be completed before its deadline. It is worth pointing out that the
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optimal policies of these two cases for N 2 are not necessarily the same nor similar.

6.4. Sub-Optimal Decentralized TMSP

Since there does not usually exist a central monitor with complete knowledge of every 

PN’s current task execution status, it is important to derive a decentralized policy under which 

each PN makes its own pait of scheduling decision using its locally available information such 

that the overall system performance is still optimized (to a lesser extent than the centralized 

case). A PN’s local information consists of its current state and possibly out-dated 

information on the other PNs. Specifically, each PN synchronously and periodically 

broadcasts its local state to all the other PNs, based on which scheduling decisions ate made. 

Simultaneous broadcasts can be accomplished by using a system-wide common time base 

established by either a software method [LaM85] or hardware method [ShR87]. (Note that 

there are many other reasons why a common time base is needed as outlined in [Lam84]). 

Such broadcasts can be accomplished, for instance, by using a method similar to the one 

proposed in [GrS88], where fault-tolerant distributed communication is achieved through 

maintaining synchronous replicated data. The algorithms used to maintain and recover 

synchronous replicated data include atomic broadcast, handshake, membership, and clock and 

join synchronizations. Except for the handshake algorithm, all the other algorithms are based 

on the notion of diffusion, or the passing of information from neighbor to neighbor in a point- 

to-point communication network. Further, to prevent the broadcast messages from saturating 

the network, we assume that each PN broadcasts state information only after the previous 

broadcast state has been received by all other PNs.

Theoretically, the more frequently does each PN receive the other PNs’ state information, 

the better scheduling decisions it will make. However, frequent state broadcasts induce a 

higher overhead to normal inter-task communications, thus degrading the overall system
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performance. Our objective is then to find an optimal frequency of state broadcasts and the 

corresponding optimal decentralized policy that minimizes the expected number of tasks 

missing deadlines.

Given a state broadcast frequency, system performance depends heavily on how each PN 

uses the broadcast information and makes a best possible scheduling decision. This problem is 

known as a dynamic team2 decision problem with delayed shared information structure 

[HoC72], and is frequently encountered in large scale systems, such as transportation, data 

communication and power systems. Unfortunately, dynamic team decision problems are 

known to be extremely difficult to solve [Wit71, Wit73] except in a particular class of 

problems with so called one-step delay sharing (1SDS) information pattern [ADM87, HsM82, 

VaW78, YoS75]. Therefore, a sub-optimal solution is derived using the DP technique.

In the following subsections, we first derive the delays both in state broadcasts and in 

normal inter-task communications. Then, the “ probability state”  of the DP network, the set 

of action rules, one-step transition probability, one-step cost and the functional equations are 

described.

6.4.1. State Broadcasts and Their Effects on Normal Communication

The communication subsystem is approximated by two single-server queues: an M/M/1 

queue for inter-task communications and a D/D/1 queue for state broadcasts.

Communication delays depend essentially on what portion of die communication 

subsystem's power is used to serve each of these two queues. Let Xx and bx be respectively 

the arrival rate of inter-task messages and the average service need measured in number of bits 

for each inter-task message. For the D/D/1 queue, let Xy and by be the number of 

synchronous state broadcasts per unit time and the service need for each broadcast (to be

2A team is said to be dynamic if the action of one member affects the information of another member. Oth­
erwise, the team is said to be static [MaR71].
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elaborated further). Then, the portion of the communication subsystem's power for serving

b
inter-task messages is ;... and that for state broadcasts is

^  \ xbx + lyby

= 1 -  = Ay fey Recaii that in the CTMC model without state broadcasts, the
Axbx +Ayby

delay of an inter-task message i was represented by an exponentially distributed random 

variable with rate p.,-. The average system (sojourn) time S  of messages in the communication

subsystem is then approximated by 5 = — £  — , where A is the set of all inter-task messages
n ieAVi

within a planning cycle and n = \A I. It follows from [Kle75] that the service rate p.* of the 

M/M/1 queue becomes p* = \*  + 1/S. Thus, given Ij*. the “ adjusted”  service rate \lx' of 

inter-task messages is detemiined as p ./ = J^p* = ^  (A* + 1/S). This means that the average 

sojourn time S ' of inter-task messages becomes

1 1
S '  =

Wx'-K S*M* -  K
i  g  (6-6a>

5 A  + i/?)-x, t - 5 ,M

Notice that 0 < ^  - ^yXxS S I ;  the total traffic density will otherwise saturate the 

communication subsystem. Given S', the adjusted transition rate p.- as a result of introducing 

state broadcasts becomes:

Vi = J r  = Vi k x  -  %  • (6.6b)

Since the communication subsystem’s power is actually allocated indiscriminately among 

all the messages, A*W'X = ’kyWy must hold provided the communication subsystem is not 

saturated, where Wx (Wy) is the average service time of each inter-task message (state 

broadcast) at the M/M/1 (D/D/1) queue. Therefore, the delay (sojourn time) of each state 

broadcast, Wy , can be expressed as:



In the above derivation, while each inter-task message is treated as a single arrival at the 

M/M/1 queue, all the states broadcast simultaneously by all PNs at a given time are combined 

into a single arrival at the D/D/1 queue. The length or service need of this “ combined 

message" is the sum of those of m (m -l) individual messages, and no individual message is 

considered received by a PN until the combined message at the D/D/1 queue is completely 

served. Note that all of the m (m -1) broadcast messages will not arrive at their respective 

PNs at the same time even though they are broadcast simultaneously, and that a message is 

not considered usable by the receiving PN until all the other PNs receive their respective 

messages. The inter-broadcast interval 1 /Xy must always be larger than Wy, since broadcast 

messages alone will otherwise require more power than the communication subsystem’s 

capacity [Kle75]. A PN broadcasts its state only after its previously broadcast state has been 

received by all other PNs. This broadcast scheme is essential for the applicability of the DP 

technique.

In what follows, we assume that each PN broadcasts its state B times within a planning 

cycle I  = [0, L )  with the inter-broadcast interval g = LIB £ Wy. That is, the first broadcast 

is made at t *  O,3 the last at t = (B - \)g , and all messages broadcast at t will be received at 

t + Wy £  t + g . Further, the time axis is discretized into epochs in such a way that states are 

always broadcast and received at some epoch boundaries. In what follows, the decentralized

3The first broadcast is actually not necessary since all PNs already know the unique starting state S0 of the 
system. The first broadcast is introduced simply to meet the requirements of the arrival pattern of the D/D/1 
queue.
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TMSP is formulated in such a way that the DP algorithm can be used to find a sub-optimal 

solution. Like its centralized counterpart, the decentralized TMSP is formulated by the 

characterizing factors of the underlying DP algorithm.

6.42. Probability States of the DP Network

For each epoch v in /„ = [tou, (o„+i) define a “probability state”  as the vector

p = [Pi, p 2, * - - , p isj], where p t is the marginal probability that the system is in s,- at time 

vh. Obviously, there are infinitely many probability states. However, since 1) both ISu I and 

the number of available policies are finite and 2) Wy time unit old (global) state information is 

available (via state broadcasts) to all PNs once every g time units, only a finite subset of 

probability states will be generated.

6.4J. Set of Action Rules

The set of all action rales that Nk can possibly take within Iu is the Cartesian product of 

the sets of all scheduling options available to Nk when Nk is in each of its local states within 

Iu. Thus, the entire set Tu of action rules for all m PNs within Iu becomes the Cartesian 

product of the sets of action rules for each Nk.

When some components of p in Iu are zero, only a subset of the action rules in r u are 

admissible, i.e., only those with non-zero marginal probabilities are omissible. To determine 

this set of admissible action rules for a certain p, we first identify the set of all local states of 

Nk within Iu, each of which has a non-zero marginal probability at p. (This can be achieved 

by choosing each of those local states of Nk such that there exists at least a state containing 

the local state with a non-zero marginal probability in p.) After constructing the set of all 

action rules for Nk from this set of local states, the set of all admissible action rules f ^ p )  is 

then built as the Cartesian product of the sets of such action rules over all PNs.
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6.4.4. Probability State and Its One-Step Transition Probability

For the centralized TMSP, the one-step transition probability was one of the three 

components needed in its DP formulation. For the decentralized case however, except at those 

epoches where state broadcasts are received, it is the probability state, rather than the 

probability of jumping into a state, that is essential to the DP formulation. This is because the 

system always jumps from one such probability state to another (of the next epoch). As will 

be seen below, a unique “ destination" probability state can be identified with the one-step 

transition probability matrix whose elements are obtained from Eqs. (6.1) and (6.2).

Suppose the system is in probability state p at epoch v e Iu. The probability states 

generated at epoch v+1 and their one-step transition probabilities are determined depending on 

whether or not epoch v+1 represents the time of receiving state broadcasts.

A: v+1 is not a message receipt epoch:

Each admissible action rule y e  t u(p) identifies a unique decision for each PN for each 

state si e  Su if pt * 0. Given that the system is in s, at epoch v and (v+l)/t < ©M+i, one can

use Eq. (6.1) to determine the marginal probability P j(v ) that the system will move to s, at

epoch v+1 if y  is adopted. Given the marginal probability px of st at epoch v, one can

, , I «
compute the marginal probability pj of Sj at epoch v+1 as: pj = £p» P j(v). Therefore, the

i=1

unique probability state p = (P i,P 2> • ' .  P Is. I) at epoch v+1 given

P = (Pi* P 2» • • • . p is, 1) at epoch v is determined by:

p' = p F ( v ) ,  (6.8)

where P*(v) is the one-step transition matrix whose elements are determined by Eq. (6.1). 

When (v+1)/j = ooM+i, the one-step transition matrix is determined similarly except with
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elements P j(v ) ’s, sx e  Su+i, determined by Eq. (6.2). For notational convenience, we write 

p' =  G*(p)) to denote that p’ is the unique probability state from p given y.

From Eq. (6.8), the probability states p 's form the If^p)! branches of p, which, in turn, 

is one branch of another probability state at epoch v-1, and so on. Given p' at epoch v+1 in 

between states were broadcast and received (Fig. 6.4), this relationship continues to hold 

through a particular probability state, written as X  (p), at the epoch when states were 

broadcast, and finally rooted at a unique probability state at an epoch where the last state 

broadcasts were received. Specifically, X(p') represents the prior probability of each (global) 

state at the epoch of broadcast, and the particular state realized at that epoch will be globally 

known after Wy time units. X  (p) plays an important role in determining the one-step 

transition probability in the following case.

B: v+1 is a message receipt epoch:

Since Wy time unit old global state information is available to each PN at epoch v+1, the 

probability states at epoch v+1 are not generated by Eq. (6.8). Rather, from the idea of one- 

step delayed sharing (1SDS) information pattern, and by extending the delay to s = Wylh > 1 

steps4, a total of ISUI lr„ I '5 probability states are possible at each of such epoches. Each of 

these probability states corresponds to: (i) a specific state deduced from the state broadcasts 

received and (ii) a specific sequence of scheduling rules adopted from the state broadcast 

epoch to epoch v+1. In other words, each of these probability states can be identified (Fig. 

6.4) as an (s+l)-tuple (sf , y(0), y(l), • • • , y (s-l)), where s4- is the actual system state at Wy 

time units ago, and y\e), e = 0, 1, • • ,  s -1 , represents the action rule adopted at the e-th 

epoch since the last state broadcast Similarly, one may equivalently represent each

4The information pattern resulting from this extension is not the same as the common multi-steps delayed 
sharing information pattern, where the current states are broadcast, and multi-steps delayed messages are received 
at each epoch.

^Notice that if we set s  = 0, then the number of states generated is consistent with the centralized case.
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probability state p at epoch v with an s-tuple (X(p), y(0), yd), • • • ,  y(s-2)), where X(p) is 

the root of p at the epoch the states were broadcast, and y(e) the action rule adopted at the e- 

th epoch since the last state broadcast

Given p and p at epoches v and v+1, respectively, let y(s—1) denote the decision rule 

adopted at epoch v . Then, the one-step transition probability horn p to p' can be determined 

as:

O YC?-i) _  Vfpp
® if y(e) = y(e), e = 0, 1, • • * , s -1 ,

(6.9)
0 otherwise,

where qt is an element of X  (p) representing the marginal probability of the system being in s,-. 

Since the marginal probability of s,- is qi within X(p), when s = 0 and before applying any 

action resulting from y(0), the one-step transition probability from X(p) to a particular 

P = (P i . P 2» ' '  ' .  Plsmi) must be qit where p i  = 1  and p j  = 0 if j  * i .  When s > 0, the 

same conclusion holds as long as the sequence of action rules adopted are the same for p and 

P-

6.4.5. One-Step Cost

The one-step cost d \ v , p) corresponding to the expected number of tasks missing 

deadlines at epoch v e /„ and probability state p given action rule y can be easily determined 

using the one-step cost cn(v , s,) obtained from Eq. (6.3) for the centralized TMSP. 

Specifically, we have

is, I
d \ v , p) = c ”( y , Si), (6.10)

i*l

where ic is the centralized action rule corresponding to the decentralized action rule y if the 

system is known to be in s,-.
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6.4.6. Functional Equations and the Sub-Optimal Polity

Unlike the centralized case for which only one pass is needed, three passes are required 

to derive the sub-optimal decentralized policy. The first pass is to generate all the probability 

states of the DP network. The second pass solves the functional equations backward 

recursively to find the “ optimal”  action rule at each probability state p and each epoch v. 

Since, except at the message receipt epoches, p is not observable by any PN, the third pass is 

used to identify the “optimal”  policy at each epoch. In what follows, the last two passes are 

described; the first pass has already been described by Eqs. (6.8) and (6.9).

A: Functional Equations

Similarly to the centralized case, the functional equations Uv(p) is the cost-to-go 

representing the number of task missing deadlines given the system is in p at epoch v. Uv(p) 

can be determined easily by using backward recursion as follows.

UN (p) =  0, (6.11)

u .fp )  = i f  W l ,  p) + Gjfo-1>£ W p '))  . (6.,2)

where is the one-step transition probability from p to p' as determined by Eqs. (6.8)

and (6.9). Notice that the minimum expected number J* of tasks missing deadline, which is 

achieved under the sub-optimal decentralized policy y*, is equal to Uo(Po). where po is the 

probability state representation of the unique starting state s0 of the task system.

B: Sub-Optimal Policy

The sub-optimal policy is found by identifying the path with the least total cost within 

the DP network. Since p is unobservable between two adjacent message receipt epoches, the 

sub-optimal policy at each epoch is identified using forward recursion as follows. Let p0 be
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the initial probability state at epoch 0 (i.e., s0) and yv(p) the sub-optimal action rule for p at 

epoch v . Three intervals need to be considered: 1) from epoch 0 to the first message receipt 

epoch, 2) from the i-th to the (i+l)-th message receipt epoch, 1 £ i £ 5 -1 , and 3) from the 

5-th  message receipt epoch to the end of the planning cycle. Consider first the interval 

between epoch 0 and the first message receipt epoch Define the probability state p* and 

action rule y* at epoch v as

Po = Po . (6.13)

Pv+i = G y v (p \ p * ) ,  0 <1 v < v ! , (6.14)

and

Yv = Yv(P*). 0 £ v < v i , (6.15)

where GY(p) denote the unique probability state from p given y. Next, consider the interval

from the i-th to the (i+l)-th message receipt epoch, 1 £ i £ 5 -1 . Let vf (vl+1) denote the i- 

th ((i+l)-th) message receipt epoch. From the results of the second pass and using the 

information contained in the received states, a unique probability state pV( at epoch vf is 

determined. Similarly to Eqs. (6.13)-(6.15), we may derive

Pv( = Pvj * (6.16)

Pv*+i = G7vCP:)(p;). vf £ v < vi+1 , (6.17)
and

Yv = Yv(Pv). v,- £ v < vi+1. (6.18)

At epoch vi+1, when state broadcasts are received again and used, a unique probability state 

pv<+i can be identified by using the results of the second pass as well as the information 

contained in the received states. This process repeats itself for all such intervals between

epoch V/ and vi+1 until the final message receipt epoch vB . Within the interval from epoches
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Yb to V, the last epoch of the planning cycle, one can derive:

Pv* =  Pva • (6.19)

P;+1 = vB Z v < V , (6.20)
and

Yv = Yv(Pv). vB <.v <V. (6.21)

Obviously, y  = fto, Yi • "  • * Yv-il is a sub-optimal policy for the decentralized TMSP with 

periodic state broadcasts.

In summary, three passes are needed to solve the decentralized TMSP:

PI. Generate the DP netwoik (forward recursively) as described in Sections 6.4.2-6.4.4.

P2. Solve the functional equations, Eqs. (6.11) and (6.12), backward recursively using the 

one-step cost derived in Eq. (6.10) for the DP netwoik generated in PI.

P3. Identify the sub-optimal decentralized scheduling rules forward recursively from the 

solutions obtained in P2 using Eqs. (6.13)-(6.21).

Consider again the task system in Fig. 6.2 as an example. Within /  = [0,10), suppose 

inter-task messages a 1( a 3, a 4, a 6, <z12 and a i3 each occur only once, while a i0 and a n  each 

occur twice, resulting in a total of 10 messages. Recall that Pi = p3 = |x4 = |ig = 2 and 

Pio = Pit = M-12 = P13 = 1. The average sojourn time S of these inter-task messages within

the communication subsystem is S = = 4/5. Since = 10 / L -  1, the service rate
10 T n /

of the M/M/1 queue p* = Xx + 1/S = 9/4. Let the arrival rate of state broadcasts Xy = 2  and 

the service need by = 0.2 bx , where bx is the service need for each inter-task message. Then,

bx
the portion of power used to serve inter-task messages is .  .. = 5/7 and the

bx + \)A b x

adjusted service rate = =(5/7)(9/4) = 45/28. From Eq. (6.6a),
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S ' = — r ~ ^ r -  = 28/17 > 4/5 = S ,  and S /S ' = 17/35. From Eq. (6.7), the delay in 
Mac ~  * x

broadcasting states becomes Wy = ~ -W x = (l/2)(28/45) = 14/45 since Wx = 1 /p / = 28/45.

Notice that the inter-broadcast interval ( =  0.5) is larger than Wy satisfying the requirement 

that states are broadcast only after the previously broadcast states have been received. Also, to 

avoid saturating the communication subsystem, the maximum of Ay with by = 0.2 bx occurs 

only when S ' = °°, i.e., p /  = %x\ix -  Xx or = ,̂yXxS (Eq. (6.6)). This occurs at 

Ay = 25/4 when %x = 4/9, where Wx =Wy =

To ease the computation difficulty of the DP algorithm mentioned above, the following 

approximations are made: a) the planning cycle is discretized into 200 intervals, b) Wy is 

discretized into only two stages, each of which contains several intervals, and c) the marginal 

probability of each state is discretized into 10 different intervals. Applying this approximation 

to the decentralized TMSP with by = 0.2 bx and Ay = 0.4, 0.8, 1.0, 2.0, 3.0 and 4, we 

obtained J* = 2.309, 1.577, 1.445, 1.446, 1.489 and 1.543, respectively, showing that Ay = 1 

is the best among the five broadcast frequencies. To show the fact that the optimal frequency 

depends on by , the same algorithm is applied again to the cases with by = 0.5 bx and 

Ay = 0.2, 0.4,0.8,1.0 and 2.0. The best broadcast frequency again turned out to be Ay = 1.0, 

but with corresponding J* = 1.544 > 1.445. However, as shown in Fig. 6.5, the true optimal 

broadcast frequency of the former should be greater than that of the latter case. These results 

are not surprising since the communication subsystem now needs to allocate more power to 

deliver the same state information and, thus, degrades the normal inter-task communications.
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CHAPTER 7 

CONCLUSION

7.1. Summary

Real-time systems are characterized by the fact that the execution of computational tasks 

must not only be logically correct but also be completed in time to avoid severe consequences 

which might otherwise ensue. The major contribution of this dissertation is to solve the 

integrated problem of efficient execution of real-time tasks through modeling, assignment and 

scheduling of the tasks with respect to a new performance measure — the system hazard. The 

main results are summarized as follows:

•  In Chapter 1, the new performance measure, system hazard, for scheduling real-time 

tasks of fixed execution times have been proposed and analyzed. The system hazard can 

be used not only for meeting deadlines but also for measuring how early each task can 

be completed.

For a single processor with only independent periodic tasks, optimal static and 

dynamic scheduling algorithms are derived. In the static case, the RMS algorithm is 

shown to be optimal w.r.t. the system hazard. In the dynamic case however, the EDD 

scheduling algorithm is shown to be not optimal w.r.t the system hazard. More 

importantly, two best bounds of processor utilization are derived for these two cases. 

The optimal scheduling algorithms and the associated two utilization bounds can be used
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as a guide for task allocation where each task must be completed before its deadline.

Since optimal on-line algorithms w.r.t the system hazard are shown to be non­

existent for all but some special cases, simple mechanisms are derived to check whether 

or not an arriving aperiodic task can be completed with a system hazard not exceeding 

the prespecified value. These mechanisms are useful in a system where load-sharing 

strategies are adopted to improve system performance. An over-loaded PN may use the 

mechanisms to determine whether or not to transfer an arriving task to an under-loaded 

PN.

For communicating (dependent) tasks in a distributed system, an optimal scheduling 

algorithm is derived in Chapter 3, where the scheduling problem is treated in a context 

called the multi-project scheduling problem (MPSP). Since the MPSP with precedence 

constraints is generally NP-hard, some form of enumeration is necessary to derive their 

solutions. In this chapter, we have presented a new approach to the problem using a 

B&B algorithm on the basis of (i) modeling the multi-project with an acyclic graph, (ii) 

identifying the dominance properties (DPs) w.r.t all regular measures and the system 

hazard, (iii) developing a vertex expansion algorithm using the DPs into which the B&B 

algorithm is embedded, and (iv) deriving lower-bound costs for each non-terminal vertex 

so that the B&B algorithm may be guided more efficiently for an optimal schedule.

Our computational experiences have indicated that this approach is very efficient for 

the MPSP. Because it depends on the B&B algorithm for a solution, extensions of this 

approach to similar problems with other types of resource constraints are also possible.

Using the above results for an optimal scheduling, optimal static allocation of periodic 

tasks is derived in Chapter 4. Our task allocation method is different from others’ 

because most of other allocation methods are to minimize the sum of total task execution



and communication costs.

Task allocation problem is generally known to be NP-hard even without considering 

the precedence constraints among tasks. In this chapter, we have addressed the problem 

of allocating a set of periodic tasks with precedence constraints among the set of PNs of 

a distributed real-time system. First, the task system is modeled with a task graph (TG), 

which describes the computation and communication modules as well as the precedence 

constraints among them. Then, besides using the results of Chapter 3, lower-bound costs 

are computed such that a B&B algorithm can be established to find an optimal allocation.

Although more computational experience with the proposed algorithm needs to be 

gained, we believe that both the dominance properties and the lower-bound costs 

presented in this chapter can ease the computational difficulty significantly. This fact has 

been confirmed partially by our computational experiences obtained in Chapter 3 and the 

demonstrative example presented in Chapter 4.

In Chapter S, A Continuous-Time Markov Chain (CTMC) model is presented for the 

concurrent execution of periodic tasks assigned in a distributed real-time system. In the 

modeling process, activities are first identified by alternately applying combination and 

expansion phases on the original TFG’s of the task system. Secondly, the activities and 

the precedence constraints among them are modeled by a system-wide GSPN. Finally, 

after considering time-driven task invocations, a sequence of CTMCs is built with the 

assumption of independently, exponentially distributed activity execution times.

The proposed CTMC model has a finer granularity in describing the execution 

stages of tasks than most other models. Thus, the CTMC model has high potential use 

for resolving various design issues of distributed real-time systems, such as task 

execution time estimation, message handling, time-out, and task allocation. One of these 

issues is treated in Chapter 6.
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•  Scheduling tasks and messages is one of the most important issues in distributed real­

time systems since time-critical tasks must be completed before their deadlines. In 

Chapter 6, we have presented both centralized and decentralized algorithms for the 

problem of optimally scheduling periodic tasks and their inter-task communication 

messages to minimize the average number of tasks missing deadlines.

The CTMC model is first extended to incoiporate the notion of default activities for 

message scheduling. Then, based on the extended CTMC model, the task/message 

scheduling problem is transformed into a Semi-Markov Decision Process (SMDP) on 

which the DP technique can be applied for an optimal or sub-optimal policy for all PNs. 

For the centralized case, the optimal policy is computed by assuming the existence of a 

centralized monitor which dictates the scheduling decisions for each PN. For the 

decentralized case, however, we assume that all PNs periodically broadcast their local 

state information so that other PNs can make better scheduling decisions. Because of the 

difficulty of deriving an optimal solution, a sub-optimal solution is presented. The sub- 

optimal decentralized scheduling policy for each PN, and its associated optimal state 

broadcast frequency are also derived by using the DP technique.

1 2 . Future Work

Many difficult problems need to be solved in the design and analysis of distributed real­

time systems. In this dissertation, we have only looked into a few problems regarding the 

efficient execution of real-time tasks. Following are some of the closely related problems that 

warrant further research.

•  Task allocation and scheduling with other resource constraints.

In each of the five research problems, processors and communication bandwidth are
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assumed to be the only resource constraints. In practical systems other resources, such 

as memory and I/O processors, may also be needed by different tasks at the same time. 

However, considering more resource constraints will generally make task allocation and 

scheduling more difficult Therefore, efficient algorithms with known performance 

bounds for the above problems as well as for the problems addressed in the thesis need 

to be derived.

•  Load sharing for aperiodic tasks.

A proper load sharing strategy for aperiodic tasks may improve performance significantly 

in a distributed real-time system. Any load sharing strategy consists of two components:

(i) transfer policy, which decides whether and when to transfer an aperiodic task, and (ii) 

location policy, which determines where to transfer the aperiodic task. While the transfer 

policy has been partially addressed in Chapter 2, the research results to date on the 

location policy for real-time systems are far from being satisfactory. This is because the 

loading state of a PN is unavailable to other PNs without incurring extra communication 

costs. A different approach to the location policy could be to use the technique of 

information theory. That is, a location policy could be derived based on a different 

quantity such as entropy. Research issues on such a policy include static policies, which 

do not use information obtained through extra communication, and dynamic policies, 

which do.

•  Task modeling, assignment and scheduling with fault-tolerance.

Fault-tolerance is also essential in distributed real-time systems. Tasks for fault-tolerance 

are usually treated differently from those for pure system performance. Thus, a new set 

of schemes and optimal algorithms under those schemes for the modeling, assignment 

and scheduling of tasks may be needed such that both performance and reliability



requirements of the real-time system can be met
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APPENDIX A 

AGGREGATION RULES FOR STRUCTURE POINTS

Denote the upper-end and lower-end points of a chain,1 the foik and join points of an 

And-Subgraph, the foik and join points of an Or-Subgraph, and the collecting and branching 

points of a loop by Cl, C2, A l, A2, R l, R2, LI and L2, respectively.

There are a total of 39 cases to be considered, each of which is in the form of PI —> 

P2. The aggregation rule to reduce the number of redundant structure points for each case is 

formulated in the following format:

P 1 -> P 2  : AGGREGATION RU LE , CONTROL POINT ASSIGNMENT RULE

The AGGREGATION RULE indicates either of the following two actions:

(a) G => x means “ aggregate PI and P2, and replace them by the structure point x,“  where 

x is either PI or P2.

(b) NG means “ do not aggregate.”

The CONTROL POINT ASSIGNMENT RULE also indicates either of the following two 

actions:

(i) S => y means “ assign a control point to structure point y,”  where y is either PI or P2.

(ii) NS means “no control point is assigned.”

‘The START and END points of the TFG are treated as upper-end and lower-end points, respectively.
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The following are the rules for all 39 cases:

CL1: P2 is in the active layer, which is one layer inside the layer of PI

(1) Cl Al: G => Al, NS

(2) Al —» Cl: G => Al, NS

(3) Cl -»  R l: G => R l, NS

(4) Rl -» Cl: G => R l, NS

(5) Cl -> LI: G => LI, NS

(6) LI -> Cl: G => LI, NS

(7) A l —» Al: G => Al(outer layer), NS

(8) Rl —» Al: NG, S=> Al

(9) Al —» R l: NG, S=> Rl

(10) LI -> Al: NG, S=> Al

(11) Al LI: NG, S=> LI

(12) Rl Rl: G => Rl(outer layer), NS (with proper adjustments of the branching proba­

bilities of the inner layer Or-Subgraph.)

(13) LI -> Rl: NG, S=> Rl

(14) Rl -» LI: NG, S=> LI

(15) LI -»  LI: G =>Ll(outer layer), NS

CL2: PI is in the active layer, which is one layer inside the layer of P2

(16) C2 -> A2: G => A2, NS
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(17) A2 —> C2: G => A2, NS

(18) C2 —>R2: G => R2, NS

(19) R2 C2: G => R2, NS

(20) C2 -> L2: G => L2, NS

(21) L2 —>C2: G => L2, NS

(22) A2 -> A2: G => A2(outer layer), NS

(23) A2 -» R2: NG, S=> A2

(24) R2 -> A2: NG, S=> R2

(25) A2 L2: NG, S=> A2

(26) L2 —> A2: NG, S=> L2

(27) R2 —>R2: G => R2(outer layer), NS

(28) R2 —>L2: NG, S=> R2

(29) L2 —» R2: NG, S=> L2

(30) L2 L2: G => L2(outer layer), NS

bilities of the outer layer loop.)

CL3: Both PI and P2 are in the active layer

(31) A2 -» Al: G => A2(or Al), S=>A2(orAl)

(32) A2 -> Rl: NG, S => A2 and Rl

(33) A2 -> LI: NG, S => A2 and LI

(34) R2 -> Al: NG, S => R2 and Al

(35) R2 -> Rl: NG, S => R2 and Rl
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(36) R2 -> LI: NG,

(37) L2 -> Al: NG,

(38) L2 —> Rl: NG,

(39) L2 —» LI: NG,

S => R2 and LI 

S => L2 and Al 

S => L2 and Rl 

S => L2 and LI
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APPENDIX B

SYSTEM STATES OF FIGURE 6 . 2  F O R  I x = [0,5)

A state is represented as i = { j | place has a token }.

- 2 4 5 20 22 27 33 - 6 9 21 22 28 65 - 2 4 7 20 24 31

- 5 9 20 22 27 34 - 6 9 20 22 29 66 - 2 4 6 21 24 31

- 2 4 £ 20 22 27 35 - 6 9 20 24 29 67 - 8 9 21 22 28

- 2 4 5 21 22 27 36 - 5 9 21 22 29 68 - 8 9 20 22 29

- 2 4 5 20 22 28 37 - 5 9 21 24 29 69 - 8 9 20 24 29

- 6 9 20 22 27 38 - 5 9 20 24 31 70 - 7 9 21 22 29

- 5 9 21 22 27 39 - 3 9 20 22 27 71 - 7 9 21 24 29

- 5 9 20 22 28 40 - 2 9 21 22 27 72 - 7 9 20 24 31

- 2 4 7 20 22 27 41 - 2 9 20 22 28 73 - 6 9 21 24 31

- 2 4 6 21 22 27 42 - 2 4 7 21 22 28 74 - 3 9 21 22 28

- 2 4 6 20 22 28 43 - 2 4 7 20 22 29 75 - 3 9 20 22 29

- 2 4 5 21 22 26 44 - 2 4 7 20 24 29 76 - 3 9 20 24 29

- 2 4 5 20 22 29 45 - 2 4 6 21 22 29 77 - 2 9 21 22 29

- 2 4 5 20 24 29 46 - 2 4 6 21 24 29 78 - 2 9 21 24 29

- 7 9 20 22 27 47 - 2 4 6 20 24 31 79 - 2 9 20 24 31

- 6 9 21 22 27 48 - 2 4 5 21 24 31 80 - 2 4 7 21 24 31

- 6 9 20 22 28 49 - 8 9 21 22 27 81 - 8 9 21 22 29

- 5 9 21 22 28 50 - 8 9 20 22 28 82 - 8 9 21 24 29

- 5 9 20 22 29 51 - 7 9 21 22 28 83 - 8 9 20 24 31

- 5 9 20 24 29 52 - 7 9 20 22 29 84 - 7 9 21 24 31

- 2 9 20 22 27 53 - 7 9 20 24 29 85 - 3 9 21 22 29

- 2 4 7 21 22 27 54 • 6 •9 21 22 29 86 - 3 9 21 24 29

- 2 4 7 20 22 28 55 - 6 9 21 24 29 87 - 3 9 20 24 31

- 2 4 fi 21 22 28 56 - 6 9 20 24 31 88 - 2 9 21 24 31

- 2 4 6 20 22 29 57 - 5 9 21 24 31 89 - 8 9 21 24 31

- 2 4 £ 20 24 29 58 - 3 9 21 22 27 90 - 3 9 21 24 31

- 2 4 5 21 22 29 59 - 3 9 20 22 28

- 2 4 5 21 24 29 €0 " 2 9 21 22 28

- 2 4 5 20 24 31 61 - 2 9 20 22 29

- 8 9 20 22 27 62 - 2 9 20 24 29

- 7 9 21 22 27 63 - 2 4 7 21 22 29

. 7 9 20 22 28 64 • 2 4 7 21 24 29
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APPENDIX C 

SYSTEM STATES OF FIGURE 6.2 FOR I 2 = [5.10)

A state Si is represented as / = {/ | place has a token }.

11 13 14 20 22 32 37 - n 13 14 20 24 32 73. - 12 18 20 24 32

11 13 14 21 22 32 38 n 13 14 21 24 32 74 - 11 18 20 24 33

14 18 20 22 32 39 - 14 18 20 24 32 75 - 11 13 16 20 25

11 13 15 20 22 32 40 - 11 13 15 20 24 32 76 - 11 13 15 20 25

11 13 14 20 22 33 41 m 11 13 14 20 24 33 77 - 17 18 21 24 32

14 18 21 22 32 42 - 14 18 21 24 32 78 16 18 21 24 33

11 13 IS 21 22 32 43 - 11 13 15 21 24 32 79 15 18 26 34

11 13 14 21 22 33 44 - 11 13 14 21 24 33 80 14 IB 26 35

15 18 20 22 32 45 - 15 18 20 24 32 81 12 18 21 24 32

14 18 20 22 33 46 - 14 18 20 24 33 82 11 18 21 24 33

11 13 16 20 22 32 47 - 11 13 16 20 24 32 83 11 13 16 26 34

11 13 15 20 22 33 ' 48 - 11 13 15 20 24 33 84 11 13 15 26 35

15 18 21 22 32 49 - 11 13 14 20 25 34 85 17 18 20 24 33

14 18 21 22 33 50 - 15 18 21 24 32 86 16 18 20 25 34

11 13 16 21 22 32 51 - 14 18 21 24 33 87 IS 18 20 25 35

11 13 15 21 22 33 52 - 11 13 16 21 24 32 88 12 18 20 24 33

16 18 20 22 32 53 - 11 13 15 21 24 33 89 11 18 20 25 34

IS 18 20 22 33 54 - 11 13 14 26 34 90 mm 11 13 16 20 25

11 18 20 22 32 55 - 16 18 20 24 32 91 m 17 18 21 24 33

11 13 16 20 22 33 56 - 15 18 20 24 33 92 16 18 26 34

16 18 21 22 32 57 - 14 18 20 25 34 93 tm 15 18 26 35

15 18 21 22 33 58 - 11 18 20 24 32 94 m 12 18 21 24 33

11 18 21 22 32 59 - 11 13 16 20 24 33 95 m 11 IB 26 34

11 13 16 21 22 33 60 - 11 13 15 20 25 34 96 11 13 16 26 35

17 18 20 22 32 61 - 11 13 14 20 25 35 97 17 18 20 25 34

16 18 20 22 33 62 - 16 18 21 24 32 98 16 18 20 25 35

12 18 20 22 32 63 - 15 IS 21 24 33 99 12 18 20 25 34
11 18 20 22 33 64 - 14 18 26 34 100 11 IB 20 25 35
17 18 21 22 32 65 - 11 18 21 24 32 101 17 18 26 34
16 18 21 22 33 66 - 11 13 16 21 24 33 102 16 18 26 35
12 18 21 22 32 67 - 11 13 15 26 34 103 12 18 26 34
11 18 21 22 33 68 - 11 13 14 26 35 104 m 11 18 26 35

17 18 20 22 33 69 - 17 18 20 24 32 105 m 17 18 20 25 35

12 18 20 22 33 70 - 16 18 20 24 33 106 m 12 18 20 25 35

17 18 21 22 33 71 15 18 20 25 34 107 17 18 26 35
12 18 21 22 33 72 - 14 IB 20 25 35 108 12 18 26 35
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