
INFORMATION TO USERS

The most advanced technology has been used to photograph and
reproduce this manuscript from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any
type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Beil & Howell Information C o m p a n y

3 0 0 North Z e e b Road . Ann Arbor, Ml 4 8 1 0 6 - 1 3 4 6 USA
3 1 3 / 7 6 1 - 4 7 0 0 8 0 0 / 5 2 1 - 0 6 0 0

Order Num ber 9023586

Probabilistic m ultiprocessor and m ulticom puter diagnosis

Lee, Sunggu, Ph.D .

The University of Michigan, 1990

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

PROBABILISTIC

MULTIPROCESSOR AND MULTICOMPUTER

DIAGNOSIS

by

Sunggu Lee

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
1990

Doctoral Committee:

Professor Kang G. Shin, Chair
Associate Professor John R. Birge
Professor John P. Hayes
Professor Keki B. Irani
Assistant Professor Pinaki Mazumder

RULES REGARDING THE USE OF

MICROFILMED DISSERTATIONS

Microfilmed or bound copies of doctoral dissertations sub­
mitted to The University of Michigan and made available through
University Microfilms International or The University of Michigan are
open for inspection, but they are to be used only with due regard for the
rights of the author. Extensive copying of the dissertation or publication
of material in excess of standard copyright limits, whether or not the
dissertation has been copyrighted, must have been approved by the
author as well as by the Dean of the Graduate School. Proper credit must
be given to the author if any material from the dissertation is used in
subsequent written or published work.

To my parents

ACKNOWLEDGEMENTS

The author wishes to thank Professor Kang G. Shin for his guidance and encouragement

during the course of his graduate study at The University of Michigan. Many thanks go to my

committee members for their helpful comments and suggestions. I also wish to thank my fel­

low graduate students at the Real-Time Computing Laboratory and Beverly J. Monaghan for

their help and stimulating discussions.

Financial support provided by the National Aeronatics and Space Administration under

Grants NAG-1-492 and NAG-1-296 is gratefully acknowledged.

Finally, I would like to thank my family and especially my wife for their support and

encouragement

TABLE OF CONTENTS

DEDICATION ii

ACKNOWLEDGMENTS .. ,....... iii

LIST OF FIGURES .. vi

LIST OF TABLES .. viii

CHAPTER

1. INTRODUCTION ... 1

1.1. Objectives ... 1
1.2. Overview of Dissertation ... 2
1.3. Outline of Dissertation... 5

2. PRELIMINARIES .. 7

2.1. Notation and Definitions .. 7
2.2. Testing M odel.. 8
2.3. Methods for Inter-Processor Testing... 9
2.4. Categorization of Diagnosis Algorithms... 11
2.5. Probability Model .. 12
2.6. Overview of Related W ork.. 13

3. MOST PROBABLE DIAGNOSIS ... 17

3.1. Introduction.. 17
3.2. Background .. 19
3.3. Bayesian Analysis .. 21
3.4. Most Probable Diagnosis Algorithm... 25
3.5. Simulation Results ... 35
3.6. Conclusion .. 39

iv

4. OPTIMAL SINGLE SYNDROME DIAGNOSIS .. 41

4.1. Introduction... 41
4.2. Background ... 44
4.3. Optimal Probabilistic Diagnosis Algorithms... 46
4.4. Analysis .. 51
4.5. Theoretical Results.. 62
4.6. Simulation Results .. 67
4.7. Conclusion .. 72

5. OPTIMAL MULTIPLE SYNDROME DIAGNOSIS 73

5.1. Introduction... 73
5.2. Background 75
5.3. Analysis of Multiple Syndrome Testing ... 78
5.4. Optimal Multiple Syndrome Diagnosis Method 82
5.5. Asymptotic Analysis ... 88
5.6. Simulations ... 92
5.7. Conclusion .. 94

6. DISTRIBUTED DIAGNOSIS ... 98

6.1. Introduction... 98
6.2. Distributed Implementation of Category 2 and 2A Algorithms............... 100
6.3. All-to-All Reliable Broadcast... 102
6.4. Nearest-Neighbor Reliable Multicast ... 131
6.5. Conclusion .. 138

7. DISCUSSION .. 141

7.1. Summary... 141
7.2. Future W ork.. 144

BIBLIOGRAPHY... 147

v

LIST OF FIGURES

Figure

3.1. £>j 2 testing graph of Example 3.1 .. 22

3.2. Fault set lattice ... 25

3.3. Simulation results of MPD and BSM on a (2g with/j. = 0.01 assuming (a)
no probability parameter errors and (b) 30% parameter errors...................... 37

4.1. Diagnostic accuracy on (a) £?g and (b) with MTTF = 50K hours 69

4.2. Diagnostic accuracy with 30% parameter errors on gg with MTTF = 50K
hours .. 71

5.1. Probability distributions with (a) / = 0.0484 and (b) /= 0.0050 81

5.2. Distributions of random variables Zq, Z j, and Z^ ... 85

5.3. Accuracy with square mesh and MTTF of (a) 10K and (b) 100K hours 95

5.4. Accuracy with TMR structure and MTTF of (a) 10K and (b) 100K hours
... 96

6.1. Illustrative examples of hypercubes (a) Q y (b) Q^, and (c) 108

6.2. Torus-wrapped square mesh (a) with all links and (b) decomposed into
HC’s ... 110

6.3. Hex-mesh of size 3 (a) without wrapping and (b) with C-type wrapping
 112

6.4. Node architecture to support virtual cut-through.. 115

6.5. KS algorithm initiated in one direction .. 122

6.6. VSQ algorithm initiated in one direction ... 122

6.7. as a function of ri with N = 1000 .. 126wax

6.8. Set of y shortest disjoint paths between adjacent nodes for the (a) square
mesh, (b) hex-mesh, and (c) hypercube.. 133

6.9. SQ-NNRM patterns for stages (a) 1, (b) 2 — 5, and (c) 6 — 13 135

6.10. HM-NNRM patterns for stages (a) 1 — 3, (b) 4 — 11, and (c) 12 — 35
.. 136

• •vn

LIST OF TABLES

Table

2.1. Probability parameters ...

2.2. Categorization of diagnosis and syndrome information u sed

3.1. Posterior probabilities for Example 3.1 ..

3.2. Results of Algorithm MPD on a go with f . = 0.01, r.. = s.. - 0.5, and p..
= 0 .6 .

3.3. Statistical results of Algorithm MPD on a go with parameter values of
Table 3.2 ...

4.1. Eq. (4.8) with y = z + 1 for various values of /a n d p

4.2. Threshold values z ^ with different/and p values

4.3. Prior fault probability mean and mean difference values..............................

4.4. Diagnostic accuracy with respect to MPD for gg with MTTF = 50K
hours ...

5.1. Categorization of diagnosis using local syndrome information.....................

5.2. Threshold values for torus-wrapped square mesh (y = 4)

5.3. Threshold values for TMR structure (y = 2) ..

6.1. Communication patterns for Example 6.2 ..

6.2. Communication patterns using the VRS-IHC algorithm on a gg

6.3. Execution times with p = 0 ...

6.4. Maximum expected execution times with p > 0 ..

CHAPTER 1

INTRODUCTION

The progress made in the design of powerful single-chip computers (and even single-chip

multiprocessors) has led to the construction of increasingly sophisticated multiprocessor and

multicomputer systems with tens of thousands of processors. Even if the MTTF (mean time

to failure) of a processor is 10 years, a system with 10,000 processors can expect to have 952

failing processors in one year, assuming an exponential failure arrival process. Thus, it is

imperative that such systems be provided with good fault-tolerance capabilities. In addition, in

order to maintain a highly reliable system, faulty processors must be diagnosed and periodi­

cally removed (either physically or by reconfiguration) from the system. The problem of iden­

tifying the faulty processors in such a large system is an extremely difficult task, especially

since it is possible for faulty processors to accuse non-faulty processors of being faulty and

since processors can be intermittently faulty.

1.1. Objectives

This dissertation addresses the general problem of diagnosing faulty processors in a

multiprocessor/multicomputer system. The system is modeled by a directed graph in which

the vertices correspond to processors and the edges correspond to testing assignments. The

fault syndrome is defined to be a binary labeling of the directed edges in which each label

represents the result of the corresponding inter-processor test. Commonly referred to as

system-level diagnosis, diagnosis using tliis type of system model was first addressed by

1

2

Preparata et. al. [52], Over the past 20+ years, numerous theoretically interesting models and

results have been presented for this type of diagnosis [1,13,14,32,47,56,57,62]. However,

very few practical approaches have come from these efforts, mainly because of the overly res­

trictive assumptions that were made in order to analytically obtain good results. Thus, the fol­

lowing seven objectives have been identified for designing useful and practical solutions to the

general diagnosis problem addressed.

1. It has to be optimal or close to optimal in terms of diagnostic accuracy (percentage
of correct diagnoses),

2. it has to be efficient (quadratic or lower computational complexity),
3. the testing required to obtain the fault syndrome has to be efficient,
4. it has to be implementable on all types of system topologies,
5. it has to be able to handle both intermittent and permanent faults,
6. it has to be implementable in a distributed maimer with low communication

and processing overhead, and
7. the requirements imposed by the solution have to be practical.

1.2. Overview of Dissertation

In addressing the multiprocessor/multicomputer diagnosis problem, an incremental diag­

nosis strategy is proposed, in which testing is conducted for a predetermined interval of time

and then diagnosis is performed using these test results and the fault coverages obtained. If

the quality of diagnosis obtained is unacceptable, then further testing is requested to obtain

higher fault coverage values. The results of the diagnosis can be used to guide the testing pro­

cess. This cycle of testing and diagnosis is repeated until a diagnosis of sufficiently high qual­

ity is achieved or the time allotted for diagnosis expires. In the latter case, it is desirable to

produce the best diagnosis given the information available at the time. In general, the time

required for testing will be much longer than the time required for diagnosis. If a sufficiently

good diagnosis can be obtained even with low fault coverage values, then overall testing and

diagnosis time can be substantially reduced. These concerns are addressed by the seven objec­

tives listed in the previous section.

3

Optimal probabilistic diagnosis algorithms are presented. If the entire syndrome informa­

tion is used, then optimal diagnosis is an NP-hard problem [43]. However, it is possible for

each node to use only part of the syndrome information to arrive at a diagnosis of itself, in

which case the diagnosis component must be assumed to be part of an ultra-reliable hardcore.

Several categories of diagnosis are defined based on the type of fault syndrome information

used in the diagnosis. For each such category defined, Bayesian probability analysis is used to

derive optimal probabilistic diagnosis algorithms. One reason that this categorization is impor­

tant is because the amount of communication overhead required to implement distributed diag­

nosis algorithms is significantly different for each category. Also, because these algorithms

must be implemented as part of an ultra-reliable hardcore, simplicity of implementation is

important, and the algoritluns in each category differ in the calculations required.

It is possible to aclueve higher diagnostic accuracy by using multiple rather than a single

fault syndrome. In multiple syndrome diagnosis, it is assumed that the testing is conducted in

stages and a fault syndrome is collected after each stage. The proposed multiple syndrome

diagnosis method is dependent on the use of a comparison-testing method, in which a test

between two processors is actually a comparison of the outputs of the processors on identical

tasks. A special method of obtaining the multiple fault syndromes, termed multiple syndrome

testing, is also used. As will be shown, it is possible to achieve significantly higher diagnostic

accuracy than single syndrome diagnosis methods by using multiple syndrome testing, even

when the total time devoted to testing is the same. In diagnosis using multiple syndromes, it

is important that the fault syndrome obtained in a later testing stage be partially dependent on

the fault syndrome obtained from an earlier testing stage. The main reason that higher diag­

nostic accuracy is possible with multiple syndrome testing is that certain “patterns” of fault

syndromes implicate certain sets of processors as being faulty. It is not possible to achieve

this effect when only one fault syndrome is used. Based on Bayesian probability analysis, an

4

optimal multiple syndrome probabilistic diagnosis algorithm is derived.

Finally, it is important to be able to implement all of the proposed algorithms efficiently

in a distributed manner. In distributed diagnosis, the syndrome information that each proces­

sor needs must be reliably communicated to it. Since processors can be intermittently faulty,

one cannot use a technique such as that used in [34] in which a non-faulty processor only

sends information to those processors that pass its test. Instead, the communication problem

must be viewed as a Byzantine Generals [41] type of problem, and multiple copies of mes­

sages must be sent along disjoint paths. If each processor uses the entire syndrome informa­

tion in the diagnosis, then an all-to-all reliable broadcast operation is required. This results in

an extremely high communication overhead because of the requirement of sending multiple

copies of messages along disjoint paths. However, if each processor uses purely “ local” syn­

drome information in the diagnosis, then the communication problem is considerably

simplified. Our analysis shows that it is possible to execute distributed versions of algorithms

that use a summarized form of the global syndrome information by only requiring a relatively

small number of reliable communication steps between adjacent processors. The problem of

distributing the testing information is then reduced to a reliable multicast problem, in which

each processor must reliably send messages to its immediate neighbors.

New all-to-all reliable broadcast and nearest-neighbor reliable multicast algorithms, which

are designed to work with virtual cut-through switching [38] on regular meshes and hyper­

cubes, are presented. When routing a message using virtual cut-through, instead of buffering

the message in its entirety at an intermediate node, the message is forwarded directly from

incoming to outgoing channels, referred to as a cut-through operation. Only a few bytes of

routing information have to be examined (using an “ on-line” buffer) to determine the outgo­

ing channel of the message. If the outgoing channel is busy, the message must then be

buffered in intermediate storage as in traditional store-and-forward routing. The all-to-all

5

reliable broadcast and nearest-neighbor reliable multicast algorithms presented are designed

such that the maximum number of cut-throughs can be achieved.

1.3. Outline of Dissertation

This dissertation is organized in the following manner. In Chapter 2, the necessary back­

ground for the dissertation is presented. Some of the definitions and notation used in the

dissertation are introduced. Then the testing and probability models used are presented, and

diagnosis methods are categorized based on the types of syndrome information used in the

diagnosis. A brief survey of related diagnosis methods in the literature is also presented.

From this survey, it is concluded that a probabilistic diagnosis method is the most appropriate

in addressing the seven objectives outlined in Section 1.1. Practical methods for performing

the inter-processor tests required for multiprocessor/multicomputer diagnosis are also identified

in tills chapter.

In Chapter 3, an algorithm is presented for finding the most probable diagnosis given the

entire syndrome. Given that a certain type of syndrome information is being used, it is proven

that (lie optimal diagnosis algorithm is the one which finds the most probable diagnosis given

the available syndrome information. Thus, the algorithm presented in Chapter 3 is the globally

optimum diagnosis algorithm. Since the problem of finding the most probable diagnosis given

the entire syndrome is an NP-hard problem, this solution is 0 (2 ^) , where F is the set of

faulty processors. A set of methods based on Bayesian probability analysis is used to reduce

tire effort of searching for the most probable diagnosis. This set of methods for efficiently

conducting tire search for the most probable diagnosis permits the diagnosis algorithm to be

used on systems with up to several hundred faulty processors. In practice, the optimum diag­

nosis algorithm should be used in conjunction with a fast probabilistic diagnosis algorithm

(such as one of the algorithms presented in later chapters) to produce tire “ best” diagnosis

6

whenever possible and to produce a “ good” diagnosis in all other cases.

Chapter 4 presents a series of probabilistic diagnosis algorithms that are the optimal sin­

gle syndrome diagnosis algorithms for the categories of diagnosis in which restricted fault syn­

drome information is available. The optimal diagnosis algorithms are compared with each

other and with several related diagnosis algorithms in the literature using probabilistic analysis

and simulation results. Based on this analysis, a simple near-optimal diagnosis algorithm

which does not use probability parameters is also presented.

Chapter 5 addresses optimal multiple syndrome probabilistic diagnosis. Fussell and Ran-

garajan [30] presented a multiple syndrome diagnosis algorithm based on the use of two thres­

hold values. Probability analysis is used to derive the optimum values for these two thres­

holds. The resulting diagnosis algorithm is the optimal multiple syndrome diagnosis algo­

rithm. Probability analysis is also used to demonstrate that higher diagnostic accuracy can be

achieved with multiple fault syndromes.

Chapter 6 addresses the distributed implementation of the diagnosis algorithms presented

by solving the problems of all-to-all reliable reliable broadcast and nearest-neighbor reliable

multicast using virtual cut-through switching. The all-to-all reliable broadcast algorithm works

on a class of regular interconnection networks that includes regular mesh and hypercube struc­

tures. Nearest-neighbor reliable multicast using virtual cut-through is presented as a type of

“mosaic-fitting” problem, in which differently shaped pieces must be brought together such

that no empty spaces remain. Specific solutions are presented for the square mesh, hexagonal

mesh, and binary hypercube structures.

The dissertation concludes with Chapter 7, where the main contributions of this disserta­

tion are summarized and important future work is identified.

CHAPTER 2

PRELIMINARIES

This chapter presents the notation, testing model, and probability model used in the

dissertation, describes practical system-level testing methods, categorizes diagnosis methods,

and provides a brief survey of related work.

2.1. Notation and Definitions

hi large multiprocessor and multicomputer systems, a point-to-point interconnection net­

work is commonly used to connect the set of processing nodes. The system S is represented

by an undirected graph G = (V, E) in which the set of vertices (or nodes) V corresponds to

the set of N processing nodes and the set of edges E corresponds to the set of communication

links in the interconnection network. Hie nodes in V are denoted by n,- (0 ^ i <, N - 1) and

the edges in E are denoted by e,;- (0 <. i , j £ N - 1). If directed communication links are

used, each edge corresponds to 2 communication links. Thus, given an undirected graph G ,

the corresponding directed graph Gd,r = (V , E d,r) is defined to be the graph G with every

undirected edge replaced by two directed edges (one in each direction). Reliable broadcast

and multicast algorithms are described with respect to Gd,r.

For diagnosis purposes, the set of testing assignments in 5 is represented by a directed

graph Gt = (VT, ET), called the testing graph. Gr is assumed to be a subgraph of G d,r in

which VT = V and Ej- c E d,r. Each edge el} e ET represents llie fact that n; tests Uj. Test

7

8

outcomes are represented by binary variables ay such that ay = 1 if uj fails «,■ ’s test and

ay = 0 if Uj passes m; ’s test, ay is undefined if ux does not test Uj. A fault set (or diagnosis)

F c VT is the set of nodes such that each «,• e F is postulated to be faulty and each

Uj g VT — F is postulated to be fault-free. A (fault) syndrome SD is a function from ET to

{0, 1 j. The function SD is defined such that for all ey g Et , SD(ey) = a y . Given a syn­

drome SD , a diagnosis is said to be correct iff the set of nodes diagnosed to be faulty is the

same as the actual fault set.

The following additional definitions and conventions are used. The set of nodes that a

given node «,• tests will be denoted by r(n,). Likewise, the set of nodes that test «,• is

denoted by r-,(«i) and r -1(n,) = T f^n ,) t^j Tq1 («,•), where T*'(n,) =

{ Uj g r - , («/) : aj; = k }, k = 0, 1. The one-condensation o f G, denoted by G x = (Vj, E x),

is the subgraph of GT with E x = {e,j g Et : ay = 1) and V x = (n,- g Vt : m, is the endpoint

of an edge in E x). Given a node w; g Vt , d(ux) = | |n ;- g r - l (n;) : fly,- = 1)|. In discussing

probabilities of events where the set of basic events is clear, the notation P(x) is used to

denote the probability of the event x . Section 2.4 introduces the probability model and nota­

tion used when more formal treatment is required.

2.2. Testing Model

The testing model used in this dissertation is the “partial tester” model ApT [28]. In this

testing model, the result of a non-faulty node testing another non-faulty node is the only com­

pletely reliable test result. The probability parameters that describe the possible values of ay

given different fault statuses of m,- and Uj are given in Table 2.1. The fault status of uk (k = i

or j) is denoted by 8* (for uk is faulty) and 5*. (for uk is non-faulty). Let fs; g {5; , 5,-} and

f s j g {8y , Z j }. All possible combinations of f s x, fSj , and ay = nt values are shown along

with P(ay = m | fs-, , fSj) in each of these situations, where m = 0 or 1. Thus, py is the

9

probability that a non-faulty node m; will correctly diagnose a faulty node u}. Hence, under a

permanent fault model and assuming that all possible faults within a node are equally likely,

p,j is the fault coverage of the test applied by «,• on uy. For ease of notation, py will be

referred to as fault coverage even when intermittent faults are permitted. ri;- and s ;y are the

probabilities of a faulty node correctly diagnosing a non-faulty and faulty node, respectively.

As explained in [7], r,y and s;j can model the extent to which a faulty node «,• can pass judge­

ment on Uj. These two parameters are useful in modeling the behavior of faulty nodes.

Finally, /,• will denote tire prior fault probability of . In part of the probability analysis, the

use of average probability parameter values will be required. The average values of probabil­

ity parameters will be denoted by the corresponding letters without subscripts. Thus, for

example, / and p will refer to the average /,■ and pjj values, respectively.

f s f s j m f S i , f S j)
s h 0 1
5 1 0
5 8, 1 Pij
8 «/ 0 1 “ Pij
5 5, 0 rij
5 8/ 1 1 - r fy

8 8, 1 Sij
5 */ 0 1 - su

Table 2.1: Probability parameters.

2.3. Methods for Inter-processor Testing

There are several possible methods for conducting the inter-processor tests required by

system-level diagnosis. The most generally accepted method is comparison-testing [13]. In

comparison-testing, in order for node U; to test another node tij, identical application tasks are

executed on the two nodes. The test result is a 1 if and only if u{ and My produce different

results. This also results in a test for node n; by My. Thus, comparison-testing only requires

10

an undirected testing graph model. NMR (N-Modular Redundancy) [61] can be viewed as an

implementation of comparison-testing. In NMR, the nodes are grouped into clusters of N

nodes each. Within a cluster, all of the nodes execute the same task and a voter votes on the

outputs of the nodes. Rangarajan and Fussell [55] investigated the use of NMR for diagnosis.

Another practical method of system-level testing is on-line processor monitoring. In the

on-line monitoring method of [4], a simple hardware device is used to repeatedly capture a

block of data from the tested node and then analyzed on the testing node for the presence of

an error. Indications of abnormal behavior in the captured data block signal a faulty proces­

sor. Alternatively, one could consider creating a system task which snoops on the packets

coming in and going out of a node. The task examines the packet formats and checks whether

they conform to the standard. The error rates detected in the packets and the traffic volume

can also be monitored to decide whether the node from wliich the packets originate is faulty.

Also, to detect communication link failures and node crashes, a status monitor task can be

established on each node to periodically exchange data with neighboring nodes.

Finally, a low-level self-testing method can be used [40]. In this method, each node per­

forms a self-test and stores the result of the self-test in a special fault status register. When a

node wishes to test another neighboring node, it simply reads the special fault status register of

the node to be tested. This method requires that the fault status register and the mechanism

for reading it be part of an ultra-reliable hardcore. Also, the reader will note that this method

simply relegates the testing problem to a lower level.

This dissertation uses a directed testing graph model so that all inter-processor testing

methods can be included into the testing model. However, comparison-testing will be

assumed whenever examples using the average probability parameter are needed. Also, all

simulations reported in Chapters 4 and 5 were done assuming comparison-testing.

11

2.4. Categorization of Diagnosis Algorithms

Methods for diagnosis can be categorized based on the type of syndrome information

used to identify faulty nodes. Looking at the diagnosis algorithm executed on each node, the

maximum amount of information that can be used by each node is the entire syndrome. A

diagnosis method which uses the entire syndrome is defined as a category 1 diagnosis method.

Die optimal diagnosis algorithm in this category is the algorithm which finds the most prob­

able fault set given the syndrome. Diis diagnosis algorithm was used in [7] and [43]. Diis

category of diagnosis is inherently inefficient because the entire syndrome must be reliably

communicated to each node.

Suppose instead that each node is aware of only the part of the syndrome that directly

implicates it as faulty or non-faulty, i.e., each node ut is only aware of the o;i- values such that

Uj e r-'(M,). Diis is referred to as local syndrome information. It is possible to summarize

this local syndrome information as the ordered pair (d(w;) , |r _l(i/;)|), where d {ut) is as

defined above. In category 2 diagnosis, faulty nodes are identified one at a time, using local

syndrome information and the identity of the nodes diagnosed as faulty in previous steps.

Dius, since the calculations of all of the nodes have to be examined to determine the order in

which faulty nodes are identified, a summarized form of the global syndrome is effectively

being used in the diagnosis. This method approximates the category 1 method by looking at

individual nodes instead of subsets of nodes. Category 2A diagnosis is similar to category 2

diagnosis except that summarized local syndrome information is used. The diagnosis methods

of [5,19] fall into this latter category. In category 3 diagnosis, local syndrome information is

used to identify each node as faulty or non-faulty independently of llie other nodes in the sys­

tem. In category 3A diagnosis, summarized local information is used to diagnose each node.

Die diagnosis method of [5] can be easily modified to fall into diis category. Table 2.2 sum­

marizes diis categorizadon.

12

Category Syndrome Information Used
1 All
2 Local & nodes previously diagnosed as faulty

2A Summarized local & nodes previously diagnosed as faulty
3 Local

3A Summarized local

Table 2.2: Categories of diagnosis and syndrome information used.

The categories of diagnosis defined differ in the amount of communication overhead

required for distributed diagnosis and the computational complexity, diagnostic accuracy, and

ease of hardware implementation of the diagnosis algorithms. Category 1 diagnosis requires

the highest level of conununication overhead, has exponential computational complexity, has

the highest level of diagnostic accuracy, and is the most difficult to implement in hardware.

Category 2 diagnosis requires a moderate amount of communication overhead, has linear to

quadratic computational complexity, has the second highest level of diagnostic accuracy, and is

difficult to implement in hardware. Category 2A diagnosis is the same as category 2 diagnosis

except that it has slightly lower diagnostic accuracy and is much simpler to implement in

hardware. Category 3 diagnosis requires the least amount of communication overhead, has

linear computational complexity, has lower diagnostic accuracy than category 2 or 2A, and has

a very simple hardware implementation. Finally, category 3A diagnosis differs from category

3 only in that it has slightly lower diagnostic accuracy.

2.5. Probability Model

A probability model is defined by defining a probability space, which is a triple

(£2 , 0 , P), where £2 is the sample space, 0 is the event space, and P is a probability meas­

ure. However, for each category of diagnosis, the type of syndrome information used in the

diagnosis is different. Tims, for each category of diagnosis, a different probability space is

used in talking about the probability of certain types of syndromes and fault sets being present.

13

Consider category * diagnosis, where x can be any of the categories defined above.

Suppose the syndrome information used in diagnosing node m, g Vt is denoted by SD{. SD{

is a restricted form of the information present in the syndrome SD . For a given node «,•, its

fault status set is defined as Status JSet; = {8; , 5;). Let us consider an arbitrary category x

diagnosis algorithm A . In order for the diagnosis by A to be correct, A ’s diagnosis of each

node Uj e V must be correct. Let At denote the part of A which diagnoses the fault status of

node Uj, and define as basic events the pairs (SX>, , f s ;), where ££>,- is a “partial syndrome”

and fs i g StatusJSeti. The set of all possible SDi’s will be denoted by SDf". The diagnosis

of Ui by A when executed on a syndrome containing the partial syndrome SD{ is denoted by

DiagA,{SDi) g Status_Seti.

For category x diagnosis on node m, , the sample space

Q.f = {(SDi , f s () : SD{ g SDf" , f s { g Status_Sett }, the event space 0 f is all possible sub­

sets of Q.f, and the probability measure P f is defined for category x diagnosis such that it is a

legitimate probability measure. Although not explicit in this notation, the probability measure

P f is also dependent on the testing graph G = (V, E). Given a testing graph G and a diag­

nosis algorithm A , let CorrectG{A{) = {(SDi , f s t) : DiagA/(SDi) = f s i }. For a testing graph

G , the probability of correct diagnosis of w,- by A is

P f (C orrected)) = X Pf(SDi , DiagAi(SDi)) .
SDieSUS1"

2.6. Overview of Related Work

System-level diagnosis methods can be broadly classified into complete-test, mcomplele-

test, and probabilistic methods.

14

2.6.1. Complete-Test Methods

Complele-test methods assume that tests executed by one unit on another are always

complete in the sense that all possible faults are covered by the tests. Preparata et. al.'s

system-level diagnosis model (referred to as the PMC model) and method [52] is representa­

tive of the efforts in this class of methods. In this diagnosis model, it is assumed that a fault-

free unit Uj will always correctly determine a faulty unit w;- which it is assigned to test. It is

further assumed that there is an upper bound t on the maximum size of allowable fault sets.

A system S is said to be r-diagnosable if all faulty units within the system can be identified

without replacement provided the number of faulty units does not exceed t [52]. There exist

polynomial-time algorithms for determining f-diagnosability [62] and for solving the diagnosis

problem [15,17,50]. Other efforts in this class of methods include t /s -diagnosability [27],

f/r-diagnosability [14,37], and p - t -diagnosability [18,29,47,63,64].

There are several problems with these complete-test methods. The major problem is

their assumption that all tests are complete. This requirement is impossible to meet in incre­

mental diagnosis, where diagnosis begins before the testing is complete, and in diagnosis with

intermittently faulty units. Another problem with the above methods is that they limit the

types of testing graphs allowed. The types of testing graphs required bear no relation to the

types of interconnection networks in use or being proposed for distributed systems. Finally, a

problem with the PMC model is that it requires a large number of testing links [37].

2.6.2. Incomplete-Test Methods

There are several diagnosis methods which deal with diagnosis in the presence of possi­

bly incomplete tests, i.e., tests with less than 100% fault coverage. Assuming possibly incom­

plete tests is equivalent to permitting intermittent faults from a system-level diagnosis

viewpoint [5]. Tins is because if a unit uj is intermittently faulty, then any fault-free unit «,

15

which tests u} may evaluate Uj to be faulty or fault-free, depending upon the status of Uj dur­

ing the test. Additionally, Uj can arbitrarily evaluate any units that it tests since it is faulty.

The same statement can be made if My is assumed to be permanently faulty but the tests per­

formed upon My are incomplete.

Mallela and Masson [48] introduced the problem of diagnosable systems for intermittent

faults. They defined a system to be r, -diagnosable if, when no more than r, units are intermit­

tently faulty, a fault-free unit will never be diagnosed as faulty and the diagnosis may be

incomplete but never incorrect [48]. They characterized r(--diagnosable systems and gave an

exponential time complexity procedure for determining r-, the least upper bound of f,-. Yang

and Masson [65] gave a linear tune diagnosis algorithm for r,--diagnosable systems. A distri­

buted implementation of this diagnosis algorithm was described in [66]. In [49], Mallela and

Masson generalized the r,—diagnosability model to hybrid fault situations, which they defined

to be explicitly bound combinations of permanently and intermittently faulty units. Butler [9]

presented an algebraic method for finding all possible sets of intermittently faulty and per­

manently faulty units given a syndrome. His method extends tire fault pattern generation tech­

nique of [1] to the hybrid fault case.

A major problem with the above models is that, even with Yang and Masson’s efficient

algorithm [65], the probability that a single faulty unit can be diagnosed from a syndrome

approaches 0 as the total number of units approaches infinity. In general, diagnosis algorithms

for intermittent faults which do not use probability parameters tend to be too conservative and

only identify units which are definitely faulty given the syndrome and a fault set size limit f,.

Also, ti -diagnosable systems require even more testing links than the PMC model with t = *,•.

Additionally, Butler’s algebraic method [9] is an exponential complexity procedure which is

unpractical even for systems with more than about 20 units.

16

2.6.3. Probabilistic Methods

Several probabilistic methods have been introduced for solving the system-level diagnosis

problem. Blount [7] used probability parameters and the “O-information tester” model [28] to

define a mapping from syndromes to fault patterns, which is used as tire basis of the diagnosis.

Blough et. al. [5] presented, a linear-time algorithm which utilizes a relatively small number

of tests and achieves correct diagnosis with high probability. Dahbura et. al. [19] gave a

similar quadratic-time heuristic diagnosis algorithm. Both of these algorithms are heuristic

algorithms which use the number of 1-links (ei;- such that = 1) incident on a unit as the

basis for classifying the unit as faulty or fault-free. However, in Blough et. a l .'s algorithm,

the probability of 100% correct diagnosis can be shown to approach 1 as N —> °o provided

that |r _1(M,)| grows faster than log N for all w,- e V . Recently, Fussell and Rangarajan [30]

presented a fast probabilistic algoritlim which uses multiple syndromes and produces asymptot­

ically correct diagnosis provided the number of tests (as opposed to testers) conducted on each

unit grows faster than log IV. This algorithm requires the use of multiple syndromes and is

limited to syndromes formed using comparison-testing.

Given fault syndromes generated from tests with incomplete fault coverage, the proba­

bilistic methods in general have much better performance (in terms of diagnostic accuracy)

than the other types of diagnosis methods which were examined. The reason for this is that

the probabilistic diagnosis algorithms are designed to work well given almost “ any” type of

fault syndrome. There is no upper bound on the number of permitted faulty units. There is

also no resUiction on the structure of the testing graph. In addition, if it turns out that the

structure of the testing graph satisfies certain desirable properties on connectivity, Blough et.

a l .'s algorithm is guaranteed to asymptotically produce 100% correct diagnosis as N grows to

infinity. Given these considerations, it is concluded that a probabilistic diagnosis method is

the most practical for the system-level diagnosis problem considered in this dissertation.

CHAPTER 3

MOST PROBABLE DIAGNOSIS

This chapter presents a diagnosis algorithm, referred to as the MPD algorithm, which

uses the entire syndrome information and guarantees the most probable diagnosis based on

Bayesian probability analysis. Since determining the most probable diagnosis given global

syndrome information is an NP-hard problem, this diagnosis method has exponential computa­

tional complexity. However, in the MPD algorithm, several methods based on probabilistic

analysis are used to constrain the search for the most probable diagnosis. The most important

among these is a method for dynamically determining an upper bound on the size of the fault

set which must be considered. Because of these probabilistic methods, the MPD algorithm

can be used on systems with up to several hundred nodes.

It is shown how this diagnosis algorithm can be used as part of an incremental diagnosis

strategy, in which diagnosis begins before the testing is complete. The performance of the

MPD algorithm is compared with a probabilistic diagnosis algorithm which can asymptotically

produce 100% correct diagnosis on certain types of systems.

3.1. Introduction

In general, the time required for testing will be much longer than the time required for

diagnosis. If a sufficiently good diagnosis can be obtained even with low fault coverage

values, then testing time can be substantially reduced. Also, since the tests used in system-

level diagnosis are typically comparisons of tasks or on-line monitoring of one processor by

17

18

another, the fault coverages obtained can be expected to be quite low (assuming a realistic

low-level fault model). This justifies the use of a sophisticated diagnosis algorithm if the diag­

nosis produced is more accurate and the time required for diagnosis is still reasonable.

In addition, it is desirable to be able to use the diagnosis method as part of an incremen­

tal diagnosis strategy, in which testing is conducted for a predetermined interval of time and

then diagnosis is performed using these test results and the fault coverages obtained. If the

quality of diagnosis obtained is unacceptable, then further testing is requested to obtain higher

fault coverage values. The results of the diagnosis can be used to guide the testing process.

This cycle of testing and diagnosis is repeated until a diagnosis of sufficiently high quality is

obtained or the time allotted for diagnosis expires. In the latter case, the diagnosis algorithm

should still give the best diagnosis given the information available at the time.

Based upon a survey of the currently available methods for system-level diagnosis in the

literature (Section 2.6), it was concluded that a probabilistic diagnosis algorithm was the most

practical and appropriate for diagnosis using inter-processor tests with low fault coverage.

Among the probabilistic diagnosis algorithms, a few have the property that as the system size

grows to infinity, the probability of correct diagnosis approaches 1 given certain constraints on

the set of tests conducted [5,30]. However, it can be proven that the optimal diagnosis algo­

rithm is the one that guarantees that the most probable diagnosis is made [6]. Thus, it is

highly desirable to be able to find the most probable diagnosis.

In this chapter, a diagnosis algoritlim for finding the most probable diagnosis based on

Bayesian probability analysis is presented. This algoritlim, referred to as the MPD algorithm,

is the optimal category 1 diagnosis algorithm (proven in Chapter 4). It is shown in Section

3.3 that finding the most probable diagnosis is an NP-hard problem. However, the search for

the most probable diagnosis can be made to be exponential with respect to the number of

faulty nodes. Our most significant contribution is the discovery of methods which are found

19

to make most probable diagnosis practical even for very large systems with up to several hun­

dred nodes using currently available computers. By contrast, Blount’s algorithm [7], which

also finds the most probable diagnosis, cannot be used on systems with more than about 20

nodes due to the computational complexity of the algorithm. Through simulations, the perfor­

mance of our diagnosis algorithm is compared to Blough et. a l.'s algorithm [5], which is a

fast probabilistic diagnosis algorithm with desirable asymptotic properties. This comparison

supports the argument that the most probable diagnosis algorithm should be used in conjunc­

tion with a fast probabilistic diagnosis algorithm to achieve good diagnostic results. The MPD

algorithm works with any general interconnection network and any set of probability parame­

ters. As will be shown, because inter-processor tests with less than 100% fault coverage are

premitted, the MPD algorithm is also applicable to tire diagnosis of intermittent faults.

3.2. Background

In addition to the notation introduced in Chapter 2, the following definitions and conven­

tions are used. Each fault set F is a basic event in a formal probability model. Likewise,

each syndrome SD is a basic event. In particular, this means that P(F) denotes the probabil­

ity of the basic event F (not the probability of the event set F).

Definition 3.1: A diagnosis (or fault set) F c VT is said to be consistent if and only if

there does not exist an edge e ET such that = 1 and , uj e VT - F .

Definition 3.2: A set F c VT is said to be minimally consistent if F is consistent and

no proper subset of F is consistent.

Definition 3.3: A set o f minimal consistent diagnoses is defined as

MCD = { F c VT | F is minimally consistent).

Among the probabilistic diagnosis methods surveyed in Section 2.6, Blount’s method [7]

is the only one which guarantees that the most probable diagnosis is found. However,

Blount’s method [7] is a complete enumeration algorithm which is not only 0(2Ŵ £I) but

always requires exactly iterations. By contrast, the MPD algorithm is 0 (2 ^) , where F

is the set of faulty nodes. Because of this difference, our diagnosis algorithm can be used on

testing graphs with an order of magnitude more nodes. The MPD algorithm should be used in

conjunction with a fast probabilistic algorithm such as Blough et. al.'s algorithm or one of the

algorithms in Chapter 4 in order to produce the “ best” diagnosis whenever possible and a

“ good” diagnosis in all other cases. Blough et. al.'s diagnosis algorithm is chosen because

of its desirable properly of asymptotically correct diagnosis given certain conditions on the

testing graph. Fussell and Rangarajan’s algorithm [30] also has the property of achieving

asymptotically correct diagnosis. However, their algorithm uses multiple syndromes, which is

a somewhat different problem addressed in Chapter 5 and [44].

Blough et. a l.'s (BSM) algorithm is an 0(]£ |) approximation algorithm for the method

used to diagnose mixtures of permanent and intermittent faults in [16]. This algorithm com­

pares d(ui) s | [uj e r - ,(n() : Uj; = 1 }| to a threshold value Kf, which is the assumed max­

imum number of faulty nodes testing . Converting the formula for k ; in [5] into our testing

model and using our notation:

* = ! z [/> + /> * (» - • /»] •

2 r.yer-*(«()L J

Algorithm BSM:

0. Let F <— 0 be the set of diagnosed faulty nodes;
1. For each ut e VT, let D, <— d(u{) - k ,-;

2. While maxlli6Vr_F£>, = D; > 0 do
F * - F {u j);

21

3.3. Bayesian Analysis

Given a fault set F and a syndrome SD , the posterior probability of F given SD is

P(F\SD)= P(SD\F) P(F) = P(SD\F)P(F)
v 1 ' P(SD) £ P(SD\F')P(F') ' (3.1)

F's Vt

Thus, if P(SD\F) and P(F) can be detennined, then the posterior probabilities of possi­

ble fault sets can be derived. P(F) is the prior probability of the fault set F and can be easily

determined if the probability of failure of each node is assumed to be independent of the pro­

bability of failure of the other nodes. Specifically,

^) = n / . - n a - / . -) - 0 2)
u /e F u, g Vt - F v ' ’

P(SD\F) is slightly more complicated but can be determined from the syndrome, the fault set,

and the probability parameters discussed in Section 3.2.1. Given a binary variable x, let T

denote the complement of x. Then,

P(SD\F)= n [H -ify + 8,.5.(+aij(l - p ij))

+ 8;5;.(Oiji'ij + Oiji 1 - ri})) + 8;8,(a.jSij + ay (l - stJ))].(3 3)

Note that only one of the additive terms within the brackets will be non-zero for each edge

eSj e Et . Hie followmg example illustrates tlie calculation of the probabilities described.

Example 3.1: £>§, design with 8 = 1 and t = 2 (Fig. 3.1). A system S belongs to a

design D s, when ei;- e ET if and only if j - i = 5m modulo N, where N = the number of

nodes in S and m - 1, 2, • • • , t [52], Let F° = {w0 , r/(} and SD° be the syndrome shown

in Fig. 3.1. Then,

P(F°) = / 0 / , (l - / 2) (l - / ,) (l - / 4)

Pi SD^F0) = (1 - ioi) r 02 (1 ~ r 12) r 13p30 (1 ~P4o)P41

22

p g ^ S D 0) = r t s p W y 0)
£ PiSD^F^PiF')

F's Vt

U.

2 3

Figure 3.1: D l2 testing graph of Example 3.1.

By enumerating all possible fault sets and calculating their posterior fault probability

values, the most probable fault set F* can be directly determined. However, a large subset of

2Vr can be removed from consideration altogether by the following two properties that result

from the definition of a consistent diagnosis and Equations (3.1) — (3.3).

Property 1: Every superset of a consistent diagnosis is a consistent diagnosis.

Property 2: If F is an inconsistent diagnosis and P (SD) > 0, then P (F| SD) = 0.

A straightforward diagnosis algorithm would be to calculate P(F\SD) for all consistent

diagnoses F c VT and identify the fault set F* with the maximum posterior probability. The

probability calculations in this method are essentially the same as in Blount's diagnosis

method [7]. However, this method is 0(2N) as opposed to 0(2Ŵ £I) for Blount’s method. In

addition, this algorithm produces complete probabilistic information for every possible con­

sistent diagnosis or fault set. Tltis information can be used to not only obtain the most prob­

able diagnosis but also to determine the effect of including any other node into the postulated

fault set. Thus, if a subset of nodes A s VT is replaced, then 2 P {^\SD) is the probability
F s / i

that all of the faulty nodes have been replaced.

Table 3.1 shows the result of applying this algorithm to the D 12 graph of Example 3.1

with f i = 0.4, = 0.9, and ri}- = = 0.5 for all nodes «,• e VT and edges € ET. Note

that given two consistent fault sets A and B such that A a B , it is still possible for P(B\SD)

to be greater than P(A\SD) (compare 5-th and 6-th fault sets in Table 3.1). This is contrary

to the minimality criterion used by many other authors, e.g. [9], to determine the most likely

diagnosis given a syndrome. Since this complete enumeration diagnosis algorithm is 0(2W), it

is not suitable for large systems. (Recall however that Blount’s method [7] is worse than this

algorithm by a factor of 2,El.) In Section 3.4, a more efficient and practical diagnosis method

is described.

Rank Probability Fault Set
1 0.5962 1 0 , 1 }
2 0.0994 1 0 , 1 , 2 }
3 0.0994 { 0 , 2 , 4 }
4 0.0663 { 1 , 3 }
5 0.0341 { 0 , 1 , 2 , 3 , 4 }
6 0.0184 1 0 , 1 , 2 , 4 }
7 0.0184 { 0 , 2 , 3 , 4 }
8 0.0184 { 0 ,1 , 2 , 3 }
9 0.0110 { 2 , 3 , 4 }

10 0.0110 { 0 , 1 , 3 }
11 0.0110 { 0 , 1 , 4 }
12 0.0110 { 1 , 2 , 3 }
13 0.0020 { 0 ,1 , 3 , 4 }
14 0.0020 { 1 , 2 , 3 , 4 }
15 0.0012 { 1 , 3 , 4 }

Table 3.1: Posterior probabilities for Example 3.1.

24

If one only wishes to find the most probable fault set given a syndrome, then it is possi­

ble to search significantly fewer fault sets than in the case where exact posterior probability

values must be determined. However, a polynomial time algorithm probably does not exist for

even this simpler problem because it is an NP-hard problem. This is formalized in the follow­

ing theorem.

Theorem 3.1: The problem of finding the most probable fault set given a fault syn­

drome is NP-hard.

Proof. A fault set of size k (1 <,k <,N) can be made to be less probable than any fault

set of size I (k < I <,N) simply by making /,• = e > 0 sufficiently small for all nodes

«,• e VT. It is always possible to obtain a sufficiently small e since r(M,) is finite for all

Hi e VT and all probability values range from 0 to 1. Then, the most probable diagnosis will

always be a consistent fault set of minimum size. However, obtaining a minimum size con­

sistent fault set is equivalent to obtaining a minimum size vertex cover of the one-

condensation of the testing graph (refer to Section 3.5). Thus, since obtaining a minimum size

vertex cover is a known NP-hard problem, the problem of finding the most probable fault set

given a syndrome is NP-hard. Q.E.D.

Due to this NP-hardness result, the best that can be done is to produce a good expected-

case algoritlim. An alternative solution is to use a good heuristic algorithm to produce a diag­

nosis Fp. The latter solution is the approach taken in most previous work on probabilistic

diagnosis. In this case, since FD will not be guaranteed to be the most probable diagnosis, the

percentage of correct diagnoses will be lower. In the next section, a more efficient method of

finding the most probable diagnosis is described.

25

3.1. Most Probable Diagnosis Algorithm

The problem of finding the most probable fault set F* can be viewed as a search prob­

lem. The search space is the fault set lattice shown in Fig. 3.2 with 0 at the bottom and VT

at the top of the lattice.

VT

0

Figure 3.2: Fault set lattice.

It is desirable to conduct the search in such a manner that the fewest possible number of

fault sets are searched before concluding that one of the fault sets searched is F *. The most

significant contribution of this chapter is the discovery of methods (referred to as heuristics)

which are found to make most probable diagnosis practical in large testing graphs. Although

many heuristics were found for limiting the number of fault sets which must be searched in

order to find F *, experiments showed that only some of the heuristics were useful in reducing

total diagnosis time.

3.1.1. Useful Heuristics

Heuristics which were found to be useful in reducing total diagnosis time were of two

types. The first type limited the sizes of possible fault sets. The second type could be used in

26

a preprocessing stage to determine those nodes which were definitely members of F* and

those nodes which were definitely not members of F * .

In a large testing graph, lire 1-links will tend to be sparse and widely distributed. Given

a testing graph G = (VT, ET) and a syndrome SD , let us extract the digraph G t = (Vi, E{)

such that eij e E { <— > ei;- e ET and ei;- = 1. Also, «,• e V\ <— > ekl e E\ such tliat i = k

or i - I. G { is called the one-condensation of G . Clearly, every fault set in MCD , the set of

minimal consistent diagnoses, will consist of members of V Based on Property 1, it is

known that every consistent diagnosis is either a member of MCD or a superset of a member

of MCD. Heuristic #1 is to count the number of connected components (or simply com­

ponents) of G |. Let a denote the number of components of G). o is a crude lower bound on

the size of the smallest consistent fault set. Assuming that fault sets are searched from smaller

fault sets to larger fault sets, the search can start from all subsets of Vi of size o.

Heuristic #2 is to impose a static upper bound t ' on the size of possible fault sets. Since

f i values will tend to be small, F* will tend to be near the bottom of the fault set lattice.

Thus, a method of constraining the search from the top is extremely useful in reducing total

search time. Also, with large numbers of faulty nodes, the syndrome produced is more arbi­

trary because the test evaluation results of more faulty nodes are used. With this heuristic, our

algorithm will only guarantee the most probable diagnosis if the number of faulty nodes is less

than t'.

Dynamic Upper Bound

In many cases, it is found that a dynamic upper bound on the size of possible fault sets

can be used which is smaller than t'. Heuristic #3 is to determine a dynamic upper bound t

on die maximum size of F * .

27

Some preliminaries are required. Let p q be the probability contribution of q and its

outward-bound testing links, e.g., pq = (1 - /,•) given q e VT — F , Uj e F ,

r(«;) = [u j}, and atj = 1. Then,

P (F , S D) = P(SD\ F)P(F) = n PCi •
ute V T

P(F , SD) is the “unnormalized” posterior probability of F . Since only unnormalized poste­

rior probabilities need to be compared when searching for the most probable diagnosis,

P (F , SD) values will be referred to simply as probability values.

To dynamically determine the upper bound on the sizes of the consistent fault sets which

must be considered, let us first consider an upper bound on the maximum probability value

that any fault set of size t or greater can attain. Let us sort {/, : 1 <. i <, n } in decreasing

order. If there exists a positive integer k such that f k > 0.5 and f k+l <, 0.5, then let M = max

M N
{fc, 1 1; otherwise, let M = t . Then 0, = J1 f i I I (1 ~ f i) *s a definite upper bound.

i- 1 1=̂ +1

Since /,• values will typically be very small in large systems, t)t should suffice for most situa­

tions.

Nevertheless, it is possible to obtain a smaller upper bound P, by considering the max­

imum probability contribution of each node in its faulty and fault-free state. For each

u, G VT, let Pi ' = f i n itik^ik + aikfik ’ Pi — (1 f i) I I J" aikPik -h aik , and
«*e r(n,) L J r(u,)L

ratioi =pi° / p i '. Let us sort /?,•', /5,°, and ratio-, in increasing order of ratiot (this means that

when ratbj is swapped with ratioj during the sorting process, p i1 and /5,° are also swapped

with p j 1 and pj°, respectively). Let ratioN+l = 2.0. If there exists a positive integer a such

that ratioa < 1 and ratioa+l £ 1, then let M = max (a, t J; otherwise, let M = t. Then,

M Nn = nft' n p . ■

;=i i=M+1

28

Although the method described above may seem rather complex, it is an intuitively sim­

ple method. px 1 and j5, ° are simply upper bounds on p q given that q g F and w,- g Vt - F ,

respectively. Since a node must either be faulty or fault-free, one of / ; ,1 and /J,0 must be

included in fi, for each node n,-. Finally, determining whether to postulate q as faulty or

fault-free for purposes of calculating fi, is dependent on which option results hr a larger value

of f i , . The results of numerous experiments show that fi, is a fairly tight upper bound. This

is due to the fact that all of the available syndrome information is used in the calculation of

the upper bound.

Theorem 3.2: fi, is an upper bound on the maximum probability value that any fault set

of size t or greater can attain.

Proof. Let us assume that the process described earlier has been used to calculate fi, but

that there exists a syndrome SD in which the probability value of a fault set of size ^ t is

greater than f i , . Let P(F, SD) be this probability value and let pc; values be defined as

above. Sort the values p q in decreasing order.

Each p q (1 <; i <N) has a corresponding uk g Vt upon which its calculation is based.

An analogous statement can be made for each p-x 1 and p;°. Let p = P , . For each i

(1 <>i <, M), let j be such that pcj and Pi1 correspond to the same node uk g Vt . For each

pfi
such uk found, if uk g Vt - F , let p = P — For each x (M+l <, x <, N), let y be such

Pi

that pcy and px° correspond to the same node uz g Vt . For each such uz found, if uz g F ,

fix 'let P = P — Let us consider the following three cases.
fix

Case 1: M = |F |

hi this case, all factors hi p are such that p i1 corresponds to a node g F and P;°

corresponds to a node uk g Vt - F . Thus, P(F ,SD)<, p. Also, for each p{ 1 that

29

was multiplied out from P,, there exists a pj° which was also multiplied out. For each

such pair,

i L - . i L - S .
A 1 A 0Pi Pj

since the first ratio is £ the inverse of the second ratio (because i <,M < j) . There­

fore, p £ P, and it follows that P (F , SD) <. P <, P t .

Case 2: M >\F\

In this case, there exist factors fi; 1 in p such that p * corresponds to a node

Uj e VT - F. However, there do not exist factors j9,° in P such that pj° corresponds

to a node Uj e F . Also, note that by the same argument as in case 1, P £ Pt . Let

P °
P' = p. For each p{ 1 that corresponds to a node w.- e VT - F , let p ' = P' -^-r. Since

Pi

M >\F\ ^ r, this multiplicative factor is < 1 and P '< p. Also, P(F, SD)<, P'.

Therefore, P (F , SD) <, p' < p <; P , .

Case 3: M < |F |

In this case, there exist factors in p such that p® corresponds to a node «,■ e F .

However, there do not exist factors pt 1 in p such that p-t 1 corresponds to a node

uj e VT - F . Also, note tliat by tire same argument as in case 1, P ^ P,. Let p' = p.

q \
For each /5(° that corresponds to a node «, e F , let p' = p' ~^-r. Since t <, M < |F |,

Pi

this multiplicative factor is £ 1 and p' £ p. Also, P(F, SD) <, P'. Therefore,

P (F , SD) <1 P' <1 P ^ T5, . Thus, in all cases, P (F , SD) <, P,. However, this contrad­

icts the assumption that P (F , SD) > P,. Q.E.D.

The dynamic upper bound t can be determined as follows. Recall that the search is con­

ducted from smaller fault set sizes to larger fault set sizes. Before any fault sets of size t are

30

searched, the maximum P (F , SD) value obtained for all F £ VT (jF| < f) is compared

against P,. At any time, if the largest P (F , SD) value is greater than Pt , then the search can

be stopped and t = t - 1.

Preprocessing Heuristics

In many cases, with some simple preprocessing, it is possible to determine that certain

nodes are definitely members of F* and that certain nodes are definitely not members of F *.

The first preprocessing heuristic uses the fact that a static upper bound t ' has been

assumed on the sizes of possible fault sets. For a bound-size fault set model, Dahbura and

Masson [16] introduced the following theorem.

Theorem 3.3: [16] For a digraph G{VT, ET) and a syndrome produced by a fault set

containing at most t ' faulty nodes, a node t<; is diagnosable as faulty if and only if

Ir^w,) y j r r '(« ;)| + vc(vT - r,(n ,) - r r ' f a) - «,) > t ' .

Tire quantity vc (D), D <zVT, is defined as the size of the minimum vertex cover set of the

subgraph with D as its vertex set and the 1-links of G between members of D as its edge set.

This theorem is not directly implementable because determining the minimum size vertex

cover set of a general graph is an NP-hard problem. Tlius, as an approximation, the following

condition is used to determine if w,- can be diagnosed to be faulty:

C l: | r , (« i) u r r W l + 0 - 1 > .

Condition C 1 is valid as a - 1 is a lower bound on the size of the minimum size vertex cover

set of the remainder of G\. Heuristic #4 applies C l to all «,• e V { to find the nodes which

are definitely faulty, assuming that the number of faulty nodes is not more than t'.

Heuristic #5 applies a check on the probability parameters to quickly determine the fault

status of some of the nodes. Each node n; e VT must be either faulty or fault-free. Let c; be

31

the probability contribution of m; and its outward and inward-bound testing links. Let <?,•1 and

q 1 (q° and q°) be upper and lower bounds on q given that nf is faulty (fault-free). For each

e.j e Et , let fy = max , (1 - r,7)j, = max{j,7 , (1 - Sy)}, tjj = min{r,7 , (1 - r,7)},

sjj = m in{^ , (1 - S;j)}, (3,7 = max|pf/ , s{j }, d>,7 = max{(l - py) , (1 - Sy)),

g,7 = min{pij , sy J, and to,7 = min{(l - py) , (1 - sy)). Then q \ £,°, q \ and q ° can be

calculated as follows:

q =

ci

C; 1

/ . n aik$ik + aikfk

a - f i) n»*er(n() aikPik + &ik

IT [aki Pki + (*ki foki

F I [aki (! ~ r ki) + aki
r/ter_,(K,)

f i J. J. &ik§jk "b fykLjk
ukeT(n()

n aik2ik + aikQik

(1 - / .) E[aik (1 ~Pik) I I °ikrik

(3.4)

(3.5)

(3.6)

(3.7)

If a subset of nodes A c VT are known to be faulty and a subset of nodes B c VT are known

to be fault-free, then the parameters p{ c?,1, q°, q ', and q ° must be modified to take

this new knowledge into account. This is a straightforward modification of the Eqs. (3.4) —

(3.7).

Heuristic #5 is based on iteratively using Eqs. (3.4) — (3.7) to determine the maximum

and minimum probability contributions of each node in its faulty and fault-free state. For each

node Hi e VT, if q ° > Cj', then can be diagnosed to be fault-free. Likewise, if q 1 > q°,

then m; can be diagnosed to be faulty. In our numerical experiments, this heuristic was found

to be most useful in eliminating from consideration most of those nodes in VT - V {. An

assumption made by many previous authors is that no node is suspected of being faulty if it is

not evaluated to be faulty by another node and it does not evaluate another node to be faulty

[5,19]. However, this assumption is not always justified. Suppose that it has somehow been

32

determined that a node uk is faulty with very high probability. Now, if a node «,• not in V (

evaluates uk to be fault-free with very high confidence (high pik value), this makes u; a very

suspicious node. The condition check C j ° > 1 is meant to ensure that this special case does

not apply to the node n; .

Summary and Remarks

The above five heuristics were found to be easily implementable and useful in reducing

total search time. Heuristic #1, counting the number of components in G t, was used to deter­

mine a starting point for the diagnosis search. Heuristic #2, imposing a static upper bound t '

on the size of possible fault sets, was necessary to keep the computation time down in worst-

case type situations. Heuristics #1 and #2 were also used to aid in the implementation of

Heuristic #4. Heuristic #3, dynamically determining an upper bound on the size of F *, was

found to be a very useful heuristic which frequently allowed the search to stop before fault set

size t ' was reached. Heuristic #4, which applies Condition C l to quickly determine faulty

nodes, was found to be especially useful when the number of faulty nodes was close to t ' and

o was large. Finally, Heuristic #5, applying a check on the probability parameters to quickly

determine faulty and fault-free nodes, was useful in determining many definitely fault-free

nodes when low fault parameter values were used.

Besides the above five heuristics, there are several other heuristics which could reduce

the number of fault sets to be searched. Heuristic #6 is based on an idea due to [51] and uses

the observation that certain inconsistent fault sets larger than a need not be searched at all.

Suppose A is an inconsistent fault set. Then, when searching supersets of A of size |/4| + 1,

it is only necessary to look at sets of the form A [uk }, where uk e V t and uk covers at

least one 1-link that A does not cover. A is an inconsistent fault set because it does not cover

all of the 1-liuks in the syndrome. Thus, any superset of A which does not cover more 1-

33

links than A will also be inconsistent.

Heuristic #7 is based on searching within each component of Gy independently of the

other components of Gy. Let Ty be the number of vertices in the largest component of Gy.

MCD can be constructed with an algorithm of computational complexity 0 (T ,° + 2 ’) since

MCD can be constructed using the minimal size vertex covers of the components of Gy.

Heuristics #6 and #7 were found to entail a significant amount of bookkeeping. For all

cases attempted in our experiments, it was found that the use of these two heuristics increased

the diagnosis lime required. Although Heuristic #6 might look promising at first and was the

basis for guiding the diagnosis search in [51], because so few fault set sizes were searched

using our method with Heuristics #1 through #5, the extra time required to generate the fault

sets nullified the savings of generating fewer fault sets using Heuristic #6.

3.4.2. Description of Most Probable Diagnosis (MPD) Algorithm

The most probable diagnosis (MPD) algorithm is described below. The only assumption

made is that the fault parameters for each vertex and edge in the testing graph are independent

of the fault parameters for all other vertices and edges.

Algorithm MPD:

0: Given a fault syndrome SD and a testing graph G - (VT, ET),
1: Let G | = (V|, 2? i) be the one-condensation of G , and F0 <— VT - V\\
2. Perform preprocessing (Heuristics #4 and #5) to determine nodes which

are definitely faulty (set A) and nodes which are definitely fault-free (set B);
3: Let min_size = <y (number of components of G j);
4: Le tF 0 < - F 0 - f l ;
5: Calculate py1 and py° for each element tty e VT;
6: Let sz <— min size, Pmin size <— 1.0, 0-0, f_set <— 0 , maxjprob <— 0.0,

and max_set <— 0 ;
7: While max_prob < Ps: and sz <, t ' do

begin
for each consistent set D c V (with D 3 A and |£>| = sz do

begin
f_set <r- f j s e t \ j D ;
if P (D , SD) > max_prob then

34

begin
max_prob *- P (D , SD);
max_set <— D ;

endif
endfor;

sz <— sz + 1;
endwhile,

8: Let sz <— minjsize + 1;
9: While max_prob < Ps2 and sz <, t ' do

begin
for each D =?F ET 3 (F e f j s e t , ET e F 0, |D | = sz), do

if P (D , SD) > max_prob then
begin

maxjprob «- P (D , SD);
maxjset <— D ;

endif;
sz <— sz + 1;

endwhile
10: Return max_set.

Theorem 3.4: Given that the syndrome SD is produced from a set of faulty nodes of

size not more than t', Algoritlim MPD returns the most probable diagnosis given the syn­

drome.

Proof. From Theorem 3.3, it is known that Heuristic #4 is a valid preprocessing heuris­

tic. Also, from the definitions of q ', c,0, c , ', and cj°, Heuristic #5 is a valid preprocessing

heuristic. By Properties 1 and 2, o is a valid lower bound on the fault set lattice that must be

searched. Since P, is a valid upper bound on the maximum probability that any fault set of

size t or greater can attain, using the condition max_prob < to consider searching sets of

size sz or greater is valid. Thus, the minimum of t ' and f is a valid upper bound on the fault

set lattice that must be searched. Since all consistent fault sets between the lower bound and

upper bound are searched by the MPD algorithm, the most probable fault set must be found

during the search. Q.E.D.

The MPD algoritlim is conceptually a very simple algorithm. It uses a as the lower

bound, the minimum of t and t ' as its upper bound, and searches all of the consistent fault

35

sets between the lower and upper bounds in the fault set lattice. In searching the fault sets,

those nodes whose statuses are already determined through preprocessing (Heuristics #4 and

#5) are removed from consideration.

3.5. Simulation Results

Numerous simulations were run with the BSM and MPD algorithms on several types of

testing graphs. Since similar comparative results were obtained in all cases, only a representa­

tive set of results are presented in this section. In evaluating diagnosis algorithms, certain

values were assumed for the probability parameter values and the set of faulty nodes and syn­

dromes were generated randomly using these probability parameters. 1000 diagnoses were

performed to evaluate each diagnosis algorithm with each set of probability parameter values.

In order to demonstrate the practical use of the MPD algorithm on a large system, BSM

and MPD were executed on a Q$, a 256-node hypercube of dimension 8. Each node in the

hypercube was assigned to test 4 of its neighbors and to be tested by 4 of its neighbors in a

symmetric fashion. Fig. 3.3(a) shows the simulation results for the MPD and BSM algorithms

with f t = 0.01 and py values ranging from 0.3 to 0.9. Comparison-testing was used in these

simulations, resulting in rV] = 1 - p i;- and si} = 1 - (1 - pi;)2 [19]. Experiments were also

conducted to determine the effect of inaccurate probability parameter values on the diagnostic

accuracy of the MPD and BSM algorithms. Although the same probability parameter values

as in the previous simulations were used by the diagnosis algorithms, an error of -30% in each

probability parameter value was introduced in generating the set of faulty nodes and the fault

syndromes. Fig. 3.3(b) shows the results of these simulations for a g 8.

Tables 3.2 and 3.3 show the results for the MPD algorithm with /,• = 0.01,

t'ij = Sjj = 0.5, and p,;- = 0.6. Table 3.2 shows the simulation results for 1000 syndromes ran­

domly generated assuming the above probability parameter values. Table 3.3 shows the simu­

36

lation results for 1400 iterations with the number of faulty nodes chosen to produce useful

diagnostic accuracy statistics. A static upper bound of t ' = 7 was used. All CPU times are

given in average CPU milliseconds on a Sun 3/280 running SunOS 3.5.

The hypercube Q g was found to be an excellent interconnection structure for diagnostic

purposes. Even with p,j = 0.6, very accurate diagnoses were possible, as demonstrated by

Fig. 3.3 and Table 3.2. From Fig. 3.3(a), it can be seen that the MPD algorithm produces

significantly better results than the BSM algorithm when p,;- < 0.9. The MPD algorithm pro­

duces good results when ptj ^ 0.5 even with inaccurate probability parameter values. The rea­

son for the jagged diagnostic accuracy curve of the BSM algorithm in Fig. 3.3(b) is that the

BSM algorithm is based on the use of a threshold on the number of one-links incident on each

node. With inaccurate probability parameter values, an incorrect threshold may be chosen,

resulting in lower diagnostic accuracy.

Di
ag

no
sti

c
A

cc
ur

ac
y

37

100

MPD
BSM

0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a)

1001

MPD
BSM

0.3 0.4 0.5 0.6 0.7 0.8 0.9

<b)

Figure 3.3: Simulation results of MPD and BSM on a with = 0.01 assuming

(a) no probability parameter errors and (b) 30% parameter errors.

38

Faults Avg CPU Tune # Instances # Correct % Correct
1 2101 212 210 99.06
2 2131 270 270 100.00
3 2202 221 214 96.83
4 2458 174 167 95.98
5 2537 72 68 94.44
6 6809 31 29 93.55
7 2119 16 16 100.00
8 849 4 0 0.00

Cumulative 2367 1000 974 97.40

Results of Algorithm MPD on a Q s with /,■ = IIO©

j = 0.5, and /

Faults Avg CPU Time # Instances # Correct % Correct
1 2067 200 198 99.00
2 2136 200 197 98.50
3 2155 200 196 98.00
4 2374 200 194 97.00
5 3313 200 188 94.00
6 4601 200 193 96.50
7 9706 200 186 93.00

Cumulative 3765 1400 1352 96.57

Table 3.3: Statistical results of Algorithm MPD on a Q 8 with parameter values of Table 3.2.

In the MPD algorithm, a rather surprising result was that the processing time required

was fairly uniform regardless of the number of faulty nodes. This is explained by two

offsetting factors. With a smaller number of faulty nodes, the diagnosis is easier and the

dynamic upper bound t is quickly reached, resulting in fast diagnosis. With a larger number

of faulty nodes, the diagnosis is more difficult but o tends to be larger, making Heuristic #4

more useful in quickly diagnosing some of the faulty nodes and thus making the rest of the

diagnosis easier.

Ideally, the static upper bound t ' should be chosen based on simulation results that show

that diagnostic accuracy falls to unacceptable levels when the number of faulty nodes is more

than t'. In order to use such simulation results, the simulation should produce the same

number of instances of each fault set size, instead of using the /,• values to produce the set of

39

faulty nodes. Tliis type of simulation result is shown in Table 3.3 for the situation in Table

3.2. Note that with 7 faulty nodes, the diagnostic accuracy has fallen to 93% from a diagnos­

tic accuracy of 99% for 1 faulty node, thus justifying the choice of t ' = 7. With a larger t '

value, Heuristic #4 becomes less useful, thus making the diagnosis in all situations more

difficult and time-consuming. Thus, another consideration in choosing t ' is the desired aver­

age diagnosis time. Finally, t ' can be chosen based on the distribution of the number of faulty

nodes.

After a diagnosis is done, it is desirable to be able to obtain an estimate of the accuracy

of the diagnosis. P(F*\SD) is the desired accuracy value. However, if a Bayesian analysis is

used, then even if F* is known, all of the consistent fault sets must still be searched in order

to determine the exact value of P(F*|5D). This is because every consistent fault set can

potentially contribute a positive amount to the calculation of P (SD), which is necessary to cal­

culate P(F*\SD). Peng and Reggia [51] describe a systematic method of making a lower

bound estimate of P(F*\SD) without searching all of the consistent fault sets. However, their

method, when applied to the multiprocessor diagnosis addressed in this chapter, results in

extremely poor lower bound estimates because so few consistent fault sets are searched by our

diagnosis method. Thus, a much more practical method is to generate simulation results such

as those in Table 3.3 to estimate the accuracy of a diagnosis based on factors such as |F*|.

For example, for the situation in Table 3.2, if a diagnosis implicating 3 faulty nodes is found,

an estimate of the diagnostic accuracy is 98%.

3.6. Conclusion

Probabilistic diagnosis methods can be used as part of an incremental diagnosis strategy.

The choice of which diagnosis method to use will be dependent on the accuracy of diagnosis

required and (lie time available for diagnosis. To achieve the maximum level of diagnostic

40

accuracy, a diagnosis method that finds the most probable diagnosis given the syndrome must

be used. This chapter has presented the MPD algorithm, which guarantees that the most prob­

able diagnosis is found (given enough time and a sufficiently large static upper bound) and is

suitable for systems with up to several hundred nodes. This diagnosis algorithm should be

used in conjunction with a fast probabilistic algorithm such as one of the algorithms in

Chapter 4 in order to produce “ good” diagnoses in those fault situations where the MPD

algorithm is unable to produce the most probable diagnosis (because there are too many faulty

nodes — resulting in the static upper bound being reached). Our simulation results indicate

that the MPD algorithm can produce significantly better diagnosis than the BSM algorithm,

which can produce asymptotically correct diagnosis. Good diagnostic accuracy is achievable

with the MPD algorithm even when inaccurate probability parameter values are used. The

main contribution in this chapter is the discovery of methods which are found to make most

probable diagnosis practical in large testing graphs.

CHAPTER 4

OPTIMAL SINGLE SYNDROME DIAGNOSIS

This chapter presents optimal single syndrome diagnosis algorithms for the categories of

diagnosis in which a restricted form of the syndrome information is used. Probability analysis

is used to derive optimal diagnosis algorithms for the categories 2, 2A, 3, and 3A defined in

Chapter 2. By analyzing the behavior of the optimal diagnosis algorithms, it is shown that the

algorithms work well even when probability parameters are inaccurate or unknown. Probabil­

ity analysis also results in new bounds on the required number of tests for which asymptoti­

cally correct diagnosis is possible as the system size grows to infinity. Finally, simulations

and probability analyses are used to compare the performance of the optimal algorithms with

several other previous probabilistic diagnosis algorithms and with each other.

4.1. Introduction

In addressing the diagnosis of multiprocessor and multicomputer systems, most of the

system-level diagnosis techniques based on the PMC model [52] are insufficient because of the

objectives stated in Chapter 1. Several authors [48,49,65] have addressed the problem of

diagnosis of intermittent faults in r, -diagnosable systems, in which if no more than r,- nodes

are intermittently faulty, a non-faulty node will never be diagnosed as faulty [48]. However,

because a node is identified as faulty only if there is sufficient evidence to definitely identify it

as faulty given the upper bound r, on the number of faulty nodes, these methods rarely

achieve correct diagnosis (according to our definition in Chapter 2). Other authors [5,19]

41

42

have presented fast probabilistic diagnosis algorithms which achieve correct diagnosis with

high probability given intermittently faulty nodes. The method presented by Rangarajan and

Fussell [30] degenerates to Blough et. a l.’s method when only one syndrome is used in the

diagnosis.

In addition to the fact that optimal diagnosis using all of the fault syndrome information

is NP-bard, it is desirable to restrict the amount of fault syndrome information used in the

diagnosis because of the communication requirements. Consider an algorithm which is exe­

cuted at each node and makes a diagnosis using all of the fault syndrome information. This

implies that the testing results of every non-faulty node must be reliably communicated to

every other non-faulty node. In the presence of intermittently faulty nodes, several identical

copies of the message from any node to any other node must be sent along disjoint paths to

guarantee reliable communication. Thus, the communication requirements of this reliable all-

to-all broadcast operation are immense. Because of this, it is desirable to be able to perform

the diagnosis at each node based on limited fault syndrome information.

In this chapter, diagnosis using limited fault syndrome information is addressed and

optimal probabilistic diagnosis algorithms for several categories of diagnosis methods are

derived. This chapter is restricted to diagnosis using a single syndrome. Although it is some­

times possible to obtain better diagnosis results by using multiple syndromes [55], in order to

derive more general results, single syndrome diagnosis is addressed. Multiple syndrome diag­

nosis can be based on single syndrome diagnosis methods. In Section 6.2, it is shown how

diagnosis algorithms such as those described in [5] and [19] can be efficiently implemented in

a distributed manner. The resulting distributed diagnosis algorithms have linear computational

complexity and require low communication overhead.

Probabilistic analysis is also used to obtain new bounds on tire required number of tests

for which asymptotically correct diagnosis is possible as the system size grows to infinity. In

43

[6], Blough showed that for regular testing graphs with N nodes, the probability of correct

diagnosis of any diagnosis algorithm approaches zero as N —> if the number of test con­

ducted grows slower than N log N . He also described a diagnosis algorithm in [6] and [5] for

which the probability of correct diagnosis approaches one as N —» °° if the number of tests

conducted grows faster than N log N. In this chapter, these bounds are improved by showing

that when the number of tests conducted grows as N log N , then certain types of probabilistic

diagnosis algorithms can achieve 100% correct diagnosis as N —> °° under certain conditions

on the fault coverage and prior fault probability parameter values. In addition, if certain other

conditions on the fault coverage and prior fault probability are not satisfied, then it can be

shown that no diagnosis algorithm (of a certain type to be specified) can achieve 100% correct

diagnosis as N oo.

Probabilistic diagnosis algorithms introduced by other researchers [5,19] have been based

on simply trying to achieve 100% correct diagnosis as the system size grows to infinity, given

certain restrictions on the interconnection network structure. However, under these same res­

trictions, there are many probabilistic diagnosis algorithms that achieve 100% correct diagnosis

as the system size grows to infinity. This point is addressed by introducing probabilistic diag­

nosis algorithms that achieve the optimal level of diagnostic accuracy given that certain types

of syndrome information are being used. However, the optimal diagnosis algorithms intro­

duced may appear to have the disadvantage that they are dependent upon the accurate charac­

terization of the behavior of non-faulty and faulty nodes with probability parameters.

Nevertheless, by analyzing the behavior of our optimal diagnosis algorithms given reasonable

ranges of probability parameter values, it is shown that the optimal diagnosis algorithms per­

form as well as the best alternative algorithms in the literature when probability parameters are

incorrectly specified.

44

The probabilistic analysis methods introduced in this chapter permit us to compare proba­

bilistic diagnosis algorithms introduced by previous researchers with each other and with our

optimal algorithms. The analysis shows that Dahbura et. al.'s (DSK) algorithm [19] is supe­

rior to Blough et. al.'s (BSM) algorithm [5]. Both algorithms perform worse than the optimal

category 2 and 2A algorithms. Simulation results are also used to support the analytic results.

Based on probabilistic analysis of the DSK algorithm, a modified form of the DSK algorithm

that uses only relative prior fault probability parameter information is introduced. This algo­

rithm, called the DSK* algorithm, performs significantly better than DSK and achieves close

to optimal performance in many instances.

4.2. Background

There are a few diagnosis algorithms in the current literature which are closely related to

the diagnosis algorithms presented in this chapter. The MPD algorithm, described in Chapter

3 and in [43], guarantees the most probable diagnosis given a syndrome. Since the MPD

algorithm results in the highest achievable level of diagnostic accuracy, it is used to evaluate

the performance of other diagnosis algoritlims. Blough et. al.'s (BSM) diagnosis algorithm

and Dahbura et. al.'s (DSK) diagnosis algorithm are category 2A probabilistic diagnosis algo­

rithms. The MPD, BSM, and DSK diagnosis algorithms will be compared to the diagnosis

algorithms presented in this chapter and to each other.

In comparing these algorithms, the testing models used in each of the algorithms must be

unified. The MPD algorithm uses the testing model introduced in Chapter 2. The BSM algo-

ritlim uses a testing model in which the behavior of a faulty node is completely unspecified,

i.e., r,y and parameter values are not known. The DSK algorithm is based on a

comparison-testing model. To convert the undirected testing graph model required by

comparison-testing into a directed testing graph model, each undirected testing edge between

45

nodes ut and Uj is replaced by two directed edges e,;- and . af;- = ayt = 1 if nodes ut and uj

produce different results for the same task. In this case, the parameter = 1 - . In the

DSK algorithm, it was assumed that faulty nodes could produce M different types of outputs

with uniform probability, with M being a large number. Thus,

s{j = 1 - (1 - Pij)2 - (PijM~1)2 ~ 1 - (1 - P i j f = 1 - r Note also that p}i = pu , rtj = rji,

and sp = Sjj.

The DSK algorithm is a simple algorithm which repeatedly selects and removes from the

updated syndrome an arbitrary node which is incident on the greatest number of one-links until

no one-links remain in the syndrome.

Algorithm DSK:

0. Let G ' = G\ (G' = (V', E ') with V ' = Kj and I?' = E {);
Also, let F <—0 be the set of diagnosed faulty nodes;

1. For each e V', let d'(u;) <— d (i<;);
2. While E ' # 0 do

choose uk e V' such that d'(uk) = max,(j{(/'(«;));
for each e E ' such tliat akm = I do

d \u m) = d \ u m) - 1;
F <r- F t j {uk J and G ' <- G ' - [uk };

hi the DSK algorithm, one node uk is chosen arbitrarily from among the nodes «,■ with the

maximum value of </'(«,■).

The BSM algorithm is described in Section 3.2. Blough [6] showed that the BSM algo­

rithm has a time and space complexity of OdEj-l) and achieves 100% correct diagnosis as

N —> °o for systems containing a number of edges growing faster than N log N. In Section

4.4.1, it is shown that the DSK algorithm is also 0()£rl) 311(1 has the same property of asymp­

totically correct diagnosis.

46

4.3. Optimal Probabilistic Diagnosis Algorithms

Iu this section probability analysis is used to derive optimal diagnosis algorithms for

category 2, 2A, 3, and 3A probabilistic diagnosis. Each category of probabilistic diagnosis is

defined by the type of syndrome information used in the diagnosis. Given a certain type of

syndrome information, the optimal diagnosis algorithm is to make the most probable diagnosis

at each node. This was shown formally for category 1 diagnosis by Blough [6]. The same

property is now shown for general categories of diagnosis. Consider category jt diagnosis.

Let OPTx denote the algorithm which makes the most probable diagnosis for each node «,

given SDj.

Theorem 4.1: For any category x diagnosis algorithm A, P({A produces correct diag­

nosis}) P{[OPTx produces correct diagnosis}).

Proof. Consider a testing graph G and an arbitrary category x diagnosis algorithm A . A

produces correct diagnosis if and only if the diagnosis of each node is correct. Let Ay denote

the diagnosis of node w; by A . For an arbitrary node e VT,

Pf{ConectG(A,-)) = £ Pf{SDi , D iag^SD ^)
SDt € SD""

= £ Pf(DiagAi(SDi) | SD;) PftSDi)
S D jSSD f"

£ 2 P^D iagop^iSDM SD^PfiSD,)
SDj<=SDf

= Pf{CorrectG{OPTXj)) .

Then, since Pi{CorrectG{Ai)) <, Pi{CorrectG{OPTXi)) for all nodes ut e VT, the theorem fol­

lows. Q.E.D.

Thus, the strategy used for deriving an optimal diagnosis algorithm is based on the calcu­

lation of the posterior fault probability for each node given the syndrome information for that

category of diagnosis.

47

Several assumptions are made in our probability analysis. It is assumed that the proba­

bility parameter values of different nodes are independent. /,-, p{j, , and si;- probability

parameter values are assumed to be greater than 0 and less than 1. Since values arbitrarily

close to 0 or 1 can be chosen, this is a reasonable and non-restrictive assumption. The proba­

bility of a faulty node having a one-link incident on it is assumed to be greater than the proba­

bility of a non-faulty node having a one-link incident on it. This last assumption is required if

any probabilistic system-level diagnosis is to work.

4.3.1. Diagnosis Using Purely Local Syndrome Information

Given an arbitrary node w; e VT and a node uj e I”"1 (//,•), let Ay — P (ay = 1 | 8 ,) and

By = P(ay = 1 | 5,). It is assumed that Ay > By. Using the parameters of our testing

model,

Let the local syndrome information used by node «,• e VT be denoted by LSt . Then the pro­

bability measureP* is defined as

Ay = (1 ~ f j) Py + f j sy .

By = f j (l - r y) .

P,3(jLSt , 8i) = / i n Ay n (I - A y) ,
KySr,-'(»<,) HySlVO/,)

P ^LSi , 5,.) = (! - / ,) n By n (1 - B y) .

It can be checked that P 3 is a legitimate probability measure. It follows that

/Y1(8I | LSi) =
P?{LSi , 8 .)

Pi\LSi , 8i)+ P i3(LSi ,5 0

1

JuyeroVll;) 1 - A ;i
(4.2)

48

To make the most probable diagnosis for «,• based on u-t ’s local syndrome information,

U; must be diagnosed to be faulty if and only if Eq. (4.2) > 0.5. Thus, the optimal category 3

probabilistic diagnosis algorithm is given as:

Algorithm OPT3:

For all nodes «,• e VT, do
1. calculate posterior fault probability for using Eq. (4.2);
2. if P(8j | LSj) > 0.5, then label h; as faulty;

otherwise, label n,- as non-faulty;

hi category 3A probabilistic diagnosis, the strategy is to determine the fault status of

each node based on summarized local syndrome information, i.e., the number of neighbors of

the node that test it to be faulty. The main advantages of using summarized local syndrome

information (instead of local syndrome information) are that the resulting diagnosis algorithms

are simpler, less dependent on the accuracy of probability parameter values, and implement-

able as constant-time distributed algoritlims. In the probability analysis for the category 3A

probabilistic diagnosis on an arbitrary node n; e VT, it is assumed that the testing graph is

regular (has constant node-degree) and that the average probability parameter values of nodes

in r _l(w,) are being used. Then, going through a similar process as the previous analysis, one

can write the posterior fault probability of u, given z = d (m;) one-links directed into ut out of

a maximum of y = |r—'(«,-)) (denoted by z one-links : y) as

Pi3\ S j | z one-links : y) = -------- 3-----3— r^-^2 ^

t i
where A = (1 - f) p + f s and B = / (! - /) .

?,

B_ 1 - B
A I - A

(4.3)

Implicit in the above analysis is the fact that the partial syndrome information used in

category 3A probabilistic diagnosis is denoted by z o n e - l i n k s : y (note that z = d (U j)) . Also,

although the probability measure P?A has not been formally defined, it is easy to see what

PjM(z o n e - l i n k s : y , 8 ,) and Pj3A(z o n e - l i n k s : y , 5,) must be by referring to the analysis

49

for P? and Eq. (4.3). A similar procedure will be used in describing category 2 and 2A pro­

babilistic diagnosis (the notation for the partial syndrome information used and the definition

of the fonnal probability measure will be obvious from the discussion).

Eq. (4.3) is an increasing function of z since A > B . By setting Eq. (4.3) equal to —
2

and solving for z , a threshold value zthi can be determined. When z > ztht (z < z//(/), node

is likely to be faulty (fault-free) since P (6/ | z one-links : y) > 0.5

(P (5; | z one-links : y) > 0.5). Solving for z,/)(,

log ' 1 log 1 - B

I f i I - A

log A (l - B)
(1 - A) B

1 i
log A (l - B)

(1 - A)B

This results in the following optimal category 3A probabilistic diagnosis algorithm.

Algorithm OPT3A:

For all nodes n,- g VT, do
1. calculate z„1(using Eq. (4.4);
2 . if </(«,) > z</l(, then label u; as faulty;

otherwise, label u: as non-faulty.

4.3.2. Category 2 and 2A Probabilistic Diagnosis

The first node that is identified to be faulty should be the one with the highest posterior

fault probability. Once the first node is identified to be faulty on the basis of Eq. (4.2), the

node with the next highest posterior fault probability must be identified. However, the fact

that one node has already been identified to be faulty can be used to update the posterior fault

probability of adjacent nodes. Suppose uk has previously been identified to be faulty. Let

m, g r(Wfc) be an arbitrary as-yet undiagnosed node. Then, from Table 2.1, it is known that

Aki = P (aki = 1 1 8,) = ski and Bki = P(aki = 1 1 8 ,) = 1 - rw. In general, if the nodes in

50

H{ i c r | \u {) and Hi0 c Tq'(m;) have previously been identified to be faulty, then

1
 r

Sji Jl<j <=//,(, I ̂ Sj‘ .
^ U - s i - («>

^err'O,,)-//„ l n j i J u j e T o H i ' i h H w l

Relying purely on probabilistic information, the process of identifying faulty nodes

should stop when there does not exist any node with a posterior fault greater than 0.5. This

can result in a fault set F which is not a vertex cover of G j, the one-condensation of the test­

ing graph G . A fault set which is not a vertex cover of G , can not have produced the syn­

drome for which the diagnosis is made. Thus, a better stopping condition is to continue iden­

tifying faulty nodes until the resulting fault set is a vertex cover of G j. (In effect, a little bit

more syndrome information is being used.) By careful analysis [43], it can be shown that

except under extremely extraordinary circumstances, the most probable fault set is a subset of

Vi, the node set of G {. The fault set found by using Eq. (4.5) and this stopping condition is

also typically a subset of V {. The following is the optimal category 2 probabilistic diagnosis

algorithm.

Algorithm OPT2:

0. Let F <— 0 be the set of diagnosed faulty nodes;
let G 2 = (V2, E 2) be a copy of G

1. For all Hi e VT do
- use Eq. (4.5) with H; \ = Hi0 = 0 to calculate posterior fault probabilities;

2. While E 2 * 0 , do
2a. Let u* be the node with highest posterior fault probability;
2b. F f - F u {«*};
2c. For all nodes Uj e r(uk) do

- update posterior fault probability of itj using Eq. (4.5);
2d. Update E 2 by removing all links to and from uk \

The main advantage in going from a category 2 to a category 2A probabilistic diagnosis

method is that the resulting diagnosis is less susceptible to inaccurate probability parameter

51

values. In category 2A probabilistic diagnosis, the first node to be identified as faulty is the

node with the highest posterior fault probability as calculated using Eq. (4.3). But then, the

equation for updating the posterior fault probability of nodes adjacent to previously identified

faulty becomes similar to Eq. (4.5). If the nodes in t s T f *(«,-) and Hi0 c Tq'(«,-) have

previously been identified to be faulty, then

Pi-2/1(8 ; | z one—links : y , Hi{ , Hi0) =

1

1 + 1 -/,-
f i

- * - M i l " y - z
B 1 - B
A I - A n

UjeHn

1 - r,-, n
1 ~ S:,

(4.6)

Thus, Algorithm OPT2A is the same as Algorithm OPT2 with Eq. (4.5) replaced by Eq. (4.6)

in Steps 1 and 2c.

4.4. Analysis

4.4.1. Analysis of DSK Algorithm

In this section, it is shown that for regular testing graphs, the DSK algorithm has the

same property of asymptotically correct diagnosis as the BSM algorithm. It is also shown that

the DSK algorithm has the same computational complexity as the BSM algorithm. Finally, the

DSK algoritlun is analyzed to show that its diagnostic accuracy can be improved by using

prior fault probability information. For simplicity of analysis, average values of probability

parameter values will be used. Let y =• | F —*(M»)l» which is a constant given a regular testing

graph. Then, k, the average tc,- value, is equal to f + p (l - f) .

Computational Complexity

Dahbura et. al. [19] showed that the DSK algoritlun has computational complexity

O(N2). However, using a proof similar to [6], it can be shown that the DSK algorithm is also

52

OdEr |).

Theorem 4.2: Algorithm DSK has a time and space complexity of Odf?r |).

Proof: Referring to the description of Algorithm DSK in Section 4.2, Steps 0 and 1 (the

initial calculation of d (ut) values) can clearly be done in 0 (|£ r l) t*me and space. The loop in

Step 2 can be implemented in the following manner. A data structure of N - 1 buckets

labeled 0 through TV — 1 is constructed and each processor is placed in the bucket correspond­

ing to its initial d (it;) value. Next, a processor from the largest non-empty bucket is selected

and placed in F . For each processor added to F , the bucket assignments of the processors

that it tests are changed. Then this process is repeated for the next non-empty bucket — the

process stops when the only non-empty bucket is bucket 0. Since processors can be added to

F at most once, each testing list is traversed at most once. Finally, by using doubly-linked

lists within tire buckets and keeping pointers from processors to their positions in the buckets,

a processor can be found and moved in constant time. Thus, the loop in Step 2 can be imple­

mented in 0(|£'r |) time and space. Q.E.D.

Asymptotic Performance of DSK

If the testing graph is regular, the reader will note that algorithms BSM and DSK

become similar. However, there are two important differences between the two algorithms

that make the following theorem concerning tire asymptotic performance of DSK non-trivial.

First, when a node Uj is placed in the set F in BSM, its outward-bound 0-links are changed to

1-links, while in DSK, u f s outward-bound 1-links are changed to 0-links. Second, BSM ter­

minates when the maximum “updated” </(«,■) value is not more than a fixed threshold value

k , while DSK continues until the maximum “ updated” */(«,) value is 0.

Theorem 4.3: Given a regular testing graph G(VT,E T) with |r _l(M,)| = y for all

m; e VT, if y 2: co(N) log N , where ca(N) —» °° as N —> and p > —^— , then P({DSK
 ̂ f

53

produces correct diagnosis}) -» 1 as N -> <*>,

Proof: Let us divide the operation of DSK into two parts, DSK1 and DSK2. In DSK1,

Algorithm DSK is executed until maxHj{d(n/)} < k for all n; e V'. In DSK2, the rest of

Algorithm DSK is executed.

We now prove that Algorithm DSK1 approaches 100% correct diagnosis as N -» o°.

Consider the following two cases: 1) a non-faulty node is tested by more than k faulty nodes,

and 2) a faulty node is not failed by more than k non-faulty nodes. Clearly, given either of

these two cases, it is possible for DSK1 to produce an incorrect diagnosis. Suppose neither

Case 1 nor Case 2 holds. Then, for every non-faulty node n; , d (w;) <, k , and for every faulty

node uj, d(uj) > k on each iteration of Step 1 of the DSK1 algorithm. Thus, DSK1 will pro­

duce a correct diagnosis if neither Case 1 nor Case 2 holds. Let the random variables X and

Y denote the number of nodes that satisfy Case 1 and Case 2, respectively. Then,

/ ’({DSK1 produces correct diagnosis}) ^ 1 - E[X] - E[Y] . By using Chemoff bounds

(Section 5 .5) , Blough [6] showed that E[X] and E[Y] approach zero a s W when

p > / / (l - /) and |r - ,(n,)| ^ oo(/V) log N. Thus, /*({DSK1 produces correct diagnosis}) —»

1 as N —» °o.

Since DSK = DSK1 if DSK1 has caught all of the faulty nodes that exist,

/ >({DSK = DSK1}) -» 1 as TV —» °°. Therefore, / ’({DSK produces correct diagnosis}) —» 1

as N oo. Q.E.D.

Probabilistic Analysis of DSK

By analyzing the DSK algoritlun, it is possible to make the choice of uk in Step 2 of the

algoritlun more intelligently based on prior fault probability values. Intuitively, if f j > /,• and

bolli nodes u,' and Uj have the same number of one-links incident on them, then it is better to

choose uj over «,•. Probabilistic analysis supports this observation. However, if f j > /,• and

54

d (uj) <d(Ui), the choice to be made is not immediately clear. In this case, the current syn­

drome points to Uj but prior knowledge points to Uj. The choice depends on the extent to

which the current syndrome is believed over the prior knowledge. Bayesian probability

analysis provides us with an answer to this problem.

Given a node w, with z one-links incident on it out of a maximum of y (denoted by

z one-links : y),

P (z one-links : y | 8,)jP(8,)
P (8 ; I z one-links : y) = , .

P(z one-links : y)

P (z one -links : y | 8,) P (8;) = f j
Y (J . niin{;,z)r f tz d-/y/w x [p k v - p r k

k=0 ^ J

y - j
z —k s *-* (i _

= f i A (z) ,

P(z one-links : y) =/,• A{z) + (1 - / ,)
y

X ij
y=2H j) f J l i J r;_z

= f j A (z) + (l - f j) B (z)

Then using tliese equations, one obtains

P (8m | z one-links : y) fm A{z) [/ ,A (y) + (l - / ,) B (y)

P (8/ | y one-links : y) f i A(y) [f m yl(z) + (l — f m) B(z)

frn f i A(z) A{y) + f m (I - f ,) A (z) B O’)
(4.7)f m f , A (z) A(y) + f , (1 - f m) A(y) B(z)

If y = z, f m > f j implies that Eq. (4.7) > 1, which in turn implies that u„, should be chosen

as faulty over Uj.

Since llie first terms in both the numerator and denominator of Eq. (4.7) are the same,

Eq. (4.7) depends on the second terms. The crossover point at which f m > f t implies that um

55

is more likely to be faulty than w, occurs at

f m (1 - / /) ^ A (y) B(z)
/ / (I - / *) M z) B (y) • K™ J

Thus, Eq. (4.8) tells us when um should be chosen as faulty over ut even though

d (um) < d(ui). Intuitively, it can be observed that the greater the difference y — z , the greater

the ratio of /„ ,/(1 - /„ ,) to / / / (l - / ,) must be for um to be chosen as faulty over ut . Thus,

if um would not be chosen as faulty over ut with y = z + 1, then um would also not be

chosen as faulty over ut with y = z + k (I < k <,y — z). Eq. (4.8) was calculated for the

case y = z + 1 using all sets of parameter values used in our experiments. Empirically, it was

found that the equation is insensitive to the parameters z and y. This can also be seen by

using Eq. (4.3) as the posterior fault probability equation. Table 4.1 shows Eq. (4.8) calcu­

lated for the case y = z + 1 with several / and p values. As can be seen from the table, the

values of Eq. (4.8) for y = z + 1 are typically fairly large.

/ = 0.0484 / = 0.0099 / = 0.0050
p = 0.3 30.5 145.3 286.7
p =0 .4 35.4 169.4 334.3
p =0.5 42.3 203.0 401.0
p = 0.6 52.7 253.5 501.0
p =0.7 69.9 337.7 667.7
p = 0.8 104.3 506.1 1001.0
p =0.9 207.6 1011.1 2001.0

Table 4.1: Eq. (4.8) with y = z + 1 for various values of / and p.

The somewhat surprising conclusion is that unless the differences in the prior fault pro­

babilities are extremely large, prior fault probabilities should only be used to break ties and

not to override current syndrome information, i.e., one should not choose um over ut when

d(um) < d(ut) and/„, > / , for most cases.

56

Based on this conclusion, a new diagnosis algorithm called the DSK* algorithm, based

on the DSK algorithm, is designed as described below.

Algorithm DSK*:

0. Let G ' = G , {G' = {V', E') with V ' = V, and£ ' = £ ,);
Also, let F <— 0 be the set of diagnosed faulty nodes;

1. For each «,• e V', let rf'(w,-) <— d(w,);
2. While E ' * 0 do

let R be the set of nodes ut such that d{ut) = maxKj {</(«,)};
choose the node uk with the highest / f value in R ;
for each e E ' such that akm = 1 do

= <* '(«„,)-1;
F <— F (uk } and G ' <— G ' — {uk };

The DSK* algorithm has O(N2) time and space complexity. DSK* is identical to DSK except

for Step 2 of the DSK algorithm, in which the choice of node uk is changed slightly. As will

be seen in Section 4.6, this apparently small change results in a significant improvement in

diagnostic accuracy.

4.4.2. Analysis of Behavior of Optimal Algorithms

Optimal diagnosis algorithms have been derived for category 3, 3A, 2, and 2A proba­

bilistic diagnosis. However, all of these algorithms depend upon the use of several probability

parameters. Some of these probability parameters such as sy values are difficult to determine

accurately. The parameter p i;- (= 1 - r;V with comparison-testing) is also difficult to deter­

mine accurately since intermittent faults can occur. This means that Ay, and By, also cannot be

accurately determined. Although it is possible to estimate f , values based on manufacturers’

reliability estimates of components and standard failure rate models (e.g., exponential or

Weibull distributions), the accuracy of such /,• estimates is limited. Therefore, it is necessary

to show (hat our optimal diagnosis algoritlims perform well even when inaccurate probability

parameter estimates are used. A basic assumption used in our analysis is that the probability

parameter values of different nodes do not vary extremely widely. For instance, it is assumed

57

that fault coverage values p do not vary by more than a factor of about 10.

Consider category 3 and 3A probabilistic diagnoses. If the probability parameter values

of different nodes do not vary extremely widely, then .Algorithm OPT3A approximates the

behavior of Algorithm OPT3 since Eq. (4.3) approximates Eq. (4.2). Now, the behavior of

Algorithm OPT3A depends on the threshold value zthj chosen for each node n; . Suppose

another threshold value q is chosen for n,-. The behavior of Algorithm OPT3A in diagnosing

does not change as long as \zthjJ = |c,- J . Table 4.2 shows the values of z(/lj given three

different / values and 7 different p values with y = 10. The reader will note that when [z„,J

values are considered, a fairly wide range of p and / values will result in identical OFT3A

algorithm behaviors. As y is increased, the range of p and / values for which this is true will

become smaller since z,hj is a linear function of y. However, it is also true that as y is

increased, the effect of small differences in zlhj threshold values on the diagnosis produced

become smaller. As will be seen in Section 4.5, this is because the number of nodes u-t with

intermediate d («,•) values (for which diagnosis is difficult) decreases as y is increased. Thus,

even with inaccurate probability parameter values, the OPT3A algorithm performs almost well

as when the correct probability parameter values are used.

p f = 0.0484 f = 0.0099 f = 0.0050
0.3 1.91 1.64 1.57
0.4 2.27 1.89 1.79
0.5 2.65 2.17 2.04
0.6 3.06 2.49 2.33
0.7 3.54 2.86 2.67
0.8 4.10 3.32 3.10
0.9 4.87 3.99 3.73

Table 4.2: Threshold values z,/(j witli different / and p values.

The analysis for category 2 and category 2A probabilistic diagnosis is a bit more

involved. First, it can again be stated that if the probability parameter values of different

58

nodes do not vary extremely widely, then Algorithm OPT2A approximates the behavior of

Algorithm OPT2 since Eq. (4.6) approximates Eq. (4.5). Now it will be shown that the

OPT2A algoritlun performs as well or better than the DSK* and DSK algorithms, even with

inaccurate probability parameter estimates, if the estimates are within a factor of about 30 of

live correct values.

From Eq. (4.6), it is known that the initial posterior fault probability of each node is

directly related to the number of one-links incident on it. Let um and ut be two arbitrary

nodes with z and y one-links incident on them, respectively. Then, calculating the ratio of the

posterior fault probabilities of um to ut and simplifying (note that 0 , 0 refers to the values

of the sets //, t and H i0),

| y one-links : y , 0 , 0)

1 +
1 - / / B

y
1 - B

t-y

f l A 1 - A

1 +
1 - f m B

Z

1 - B
y-z

f m A 1 - A

If this ratio is greater than 1, then um should be chosen as faulty over ut . This condition can

be simplified by requiring that the following condition be satisfied:

f m (I ” / /) .Cl:
f t (1 ~ f m)

A (1 - B)
B (1 - A)

y-z

Tims, if y = z and f m > f t , then um will be chosen as faulty over u,. Suppose /„, > / ,

but z < y . Condition Cl tells us when um should be chosen as faulty over «/ even though

z = d{um) < d(ut) = y. The right side of condition Cl increases with y - z . Even when

y = z + 1 , the right side of condition Cl is typically a fairly large number. For example, sup­

pose p = 0.6 and / =0.01. Assuming comparison-testing is used, A ~ p = 0.6 and

B = f p = 0.006. Thus, the right side of condition C l = 248.5. This says that the ratio of /„,

to f t must be greater than at least 248.5 for us to choose um as faulty over ut when

59

y = z + 1 . Calculating the right side of condition Cl for all sets of p and / values used in

our simulations, the smallest value obtained was 30.5 with / = 0.0484 and p = 0.3. Thus, it

can be concluded that when / values of different nodes do not vary extremely widely (by

more than a factor of approximately 30), using Eq. (4.6) to calculate initial posterior fault pro­

bability values will result in the same initial diagnosis as DSK*.

Now, consider what happens after several nodes have been identifled to be faulty. If

diagnosis is based purely on (lie number of one-links incident on a node, then it is desirable to

be able to compare a node adjacent to several previously identified faulty nodes with nodes not

adjacent to any previously identified faulty nodes. If this comparison is made based on the

number of one-links incident on that node, one would like to estimate Eq. (4.6) by an equation

of the form P;U(d \ z one-links : y , 0 , 0) even when Hn ^ 0 and/or Hi0 & 0 . If this can

be done, then it will be seen that the OPT2A algorithm identifies faulty nodes in order from

nodes with large d(ui) values to nodes with small d(Uj) values.

Consider a node n,- and suppose that Hn c T f '(«,•) and Hi0 c Tq'(«,) have previously

been identified to be faulty. Let ltn = and hi0 = |/f;o| . The BSM algorithm effectively

says to make the approximation

/ >,-2/i(8I- | y one-links : y , Hn , Hi0) ~ P ^ i f y \ y + /i,0 one-links : y , 0 , 0)

and the DSK algorithm effectively says to make the approximation

/ >,Z4(8i | y one-links : y , Hn , Hi0) = JPI-2/i(6l- | y - hn one-linlcs : y , 0 , 0) .

Wliich is the better approximation? Is it possible to make an approximation which is better

than both of them?

Let C(z , y , hn , /il 0) represent the denominator of Eq. (4.6) minus one. Then,

60

C(y , y , 1 , 0) = C(y , y , 0 , 0)

CO ,Y , 1 ,0) = C O -1 , Y . O , 0)

CO , Y > 0 , 1) = CO+1 , Y . 0 , 0)

CO , Y . O. l) = CO , Y » 0 »0)

1 - r A

t--- V B

1 - r
s 1

r

iJ

1 - A
1 — B

/' t - A
1 - 5 1 - B

(4.9)

(4.10)

(4.11)

(4.12)

Thus, in the two cases of ft; t and hi0 pairs considered, the BSM approximation would say that

(Eqs. (4.9) and (4.11))

1 . . A « A

and the DSK approximation would say tliat (Eqs. (4.10) and (4.12))

1 - A

1 — r A r A
s B 1 - 5 B

1 - r 1 - A r
s 1 - B 1 - 5 1 - B

~ 1

Using our previous example with A = 0.6, B = 0.006, p = 0.6, and assuming

comparison-testing,

1 - r A = 71.43 ,
■

r
B 1 - 5

47.62 ,

-\ 1 -t 1 - A

5 1 - B

-l
= 3.479 and r 1 - A

l/ f
1 to

V

-i
= 5.218

Thus, for this example, it appears that the DSK approximation is far superior to the BSM

approximation but that even the DSK approximation is not that good. However, from our pre­

vious analysis, it is known that for tliis example, nodes with z one-links : y and

z+1 one-links : y have the same posterior fault probability only if

C(z v 0 0) —L-LJ— 1—— =248.5. Tims, both estimates are “ safe” . However, every time /i.i or
C (z +1 , Y» 0 , 0) • / .1

61

/i,0 is increased, the error in the estimate increases by the appropriate factor, e.g., 3.479 for the

DSK approximation with increasing h-t (. Assuming that / values do not vary by more than a

factor of about 30, the DSK approximation is safe with /*,• y <, 4, hi0 £ 3, and /*,-1 + hi0 <, 6 .

It is possible to make a better estimate than both the DSK and BSM approximations.

Let us call this the BETTER approximation. Suppose the situation in which hi0 or hn is

increased by one at each “ step” is considered. Then, a better approximation strategy is to

make the DSK approximation for several steps, followed by the BSM approximation for one

step, followed by the DSK approximation for several steps, etc. The reason for this is that the

DSK approximation underestimates the denominator of Eq. (4.6) and the BSM approximation

overestimates the denominator of Eq. (4.6), with the overestimation several times more severe

than the underestimation. By analyzing Eq. (4.6) and the DSK and BSM approximations, it is

possible to determine exactly when each approximation should be used in the BETTER

approximation.

Let us summarize the behavior of the OPT2A algorithm as compared to the DSK* and

DSK algorithms. Suppose probability parameter values used by the OPT2A algorithm are

wrong. The initial diagnosis made by the OPT2A algorithm is still the same as the DSK*

algorithm. Assuming that the incorrect probability parameter values are within a reasonable

range of the correct probability parameter values (e.g., within a factor of about 30), the DSK

approximation (which is also used in the DSK* algorithm) is worse than the BETTER approx­

imation. Thus, in diagnosing faulty nodes after the initial diagnosis, the OPT2A algorithm

performs as well as or better limn the DSK* algoritlun. To summarize, the OPT2A perfonns

as well or belter than the DSK* algorithm (which in turn performs as well or better than the

DSK algoritlun) when probability parameter values used are within a reasonable range of the

correct probability parameter values.

62

4.5. Theoretical Results

In this section, new bounds are derived for the asymptotically correct diagnosability of

category 2, 2A, 3, and 3A diagnosis algorithms.

In our asymptotic analysis, it will be assumed that all probability parameter values used

are average values. A y-regular testing graph will also be assumed. Suppose that a category

3A probabilistic diagnosis algorithm is being used with the threshold value zth. Let the ran­

dom variable Y denote the number of faulty nodes that are tested to be faulty by <, zth other

nodes. Let the random variable X denote the number of non-faulty nodes that are tested to be

faulty by > z,h other nodes. In the following analysis, log N will refer to logaN .

Lemma 4.1: Given y = log N and zth = c t log N , lim E[Y] = 0 ifW-»0O

A > 1 - (2c?)C| 1

Proof. P{d(u,) = z | 8,) = 1 A z (l - A) y~z . Thus,

E[Y) = £ f i £ [f] A* (1 -A)* "*
«,eVY *=0 v

= W £ (VIa* (1 - A f
k-n vv

- k

lim E[Y] = lira N f £ loS N A k (1 - A) lo*N ~ k
V —*00 N —400 • n I J

C J log N r

N —>0O N->°° Jt=0 ^N->°°

= f lim a ,ogW (1 - A)(
W-*°o

(1 - c,)log N ci i°s Nr.
£ ? A k (1 - A) l°e N ~ k

fc-n v- K J

<,f lim a l°eN (1 - A)
N —»oo

= / lim (i - A) (, - c,)Io8 iVflIogW2 ,ogW

63

■ f lim
N - * »

[<1 - A f ~ c |) 2 a
log N

= 0

since A > 1 - (2a)C| ' implies thal [(1 - A)‘ " c' 2a] < 1. Q.E.D.

Leinma 4.2: Given y = log N and z th = c2 log IV, lim E[X] = 0 \£B < (2a)
N -* OO

/ V o < # P (d (U i) = z \ 5,)= Y flz (1 - 5) Y_Z. Thus,

£(X]= 2 (l - / i) Z JJ 5* (1 - B f ~ k
f l j € V r *=z„, + 1

y
I

*=z,;, + I
= N a - f) x m a - jb)y

lim £[X] = lim IV (1 - /) £
Al-» *=z,ft + 1

<S lim N (1 - /) X

fl* (1 - f l) Y~*

B k (1 - B) y - k
k=z,h

y-z*z
k=0

< l - c 2)logJV

r_ 2th r -)
= lim N (1 - /) X I (1 ~ B) k B t - k I V v y

= l im TV (1 - /) X
w-»°° *=o

log N
I * J

(1 - B)* f

which is the same form as lim f?[T] with / replaced by (1 - /) , c (replaced by (1 - c 2),
N-*oo

and A replaced by (1 - B) . With these replacements, the condition A > I - (2a) 1'

Q.E.D.

c , - 1

becomes B < (2a)”2. Therefore, it follows that lim E[X] = 0
7V->~

Theorem 4.4: Given y = l ogW, Algorithms OPT3, OPT3A, OPT2, OPT2A, DSK,

l
DSK*, and MPD all achieve 100% correct diagnosis as TV —» if A > l - (2 a) , - c and

64

-±
B < (2a) c , where c and the threshold value z„, (if one exists) are chosen appropriately.

Proof. By Lemmas 4.1 and 4.2, if the conditions of the theorem are satisfied, then as

N —> oo, every non-faulty node m, has d (n,-) £ c log N and every faulty node Uj has

d (Uj) > c log N. The threshold value z,ft/ chosen in Algorithm OPT3A is a linear function of

y (refer to Eq. (4.4)). Thus, clearly the theorem holds for OPT3A. Because Algorithm

OPT2A uses the same initial posterior fault probability equation as OPT3A, the theorem holds

for OPT2A. Since Algorithms DSK and DSK* identify faulty nodes in order from larger d (.)

values to smaller d{.) values, the theorem holds for DSK and DSK*. The theorem also holds

for Algorithm MPD since MPD has liigher diagnostic accuracy than any other diagnosis algo­

rithm [6]. Likewise, since Algorithms OPT3 and OPT2 have higher diagnostic accuracy than

OPT3A and OPT2, respectively, Theorem 4.4 holds for OPT3 and OPT2. Q.E.D.

The above theorem places a lower bound on A and an upper bound on B such that

asymptotically correct diagnosis can be obtained when the number of required tests grows as

log N. It is also possible to determine a fairly close upper bound on A and lower bound on

B such that no category 3A probabilistic diagnosis algorithm can achieve asymptotically

correct diagnosis when y = log N . Also, from the same analysis, it will be evident that all

other diagnosis algorithms will probably not be able to do much better.

Leinina 4.3: Let y = log N and zth = c log N . Then (1) lim E [T] = oo if (0.5 <, c ^ 1
N —ioo

and [Ac(l - A) x ~ c 2a) > 1) or (0 <; c < 0.5 and [Ac(l - A)' ~ c a] > 1), and (2)

lim E [X] = oo if (0 £ c £ 0 . 5 and [Bc(l - B)' “ c 2a] > 1) or (0.5 < c £ 1 and
J V - » oo

[£c(l - B) ' ~ ca] > 1.

Proof Suppose 0.5 <1 c £ 1. Then,

65

lim £ [7] = N f N] A k (1 - A) * * * - *
N -* °o k=0

S> / lira a'°*NA c ">z” (i - A f -c)y°BN C
N —* > O £ _ Q * J

log N
Z f lim a ,og nA c ,og n (1 - A f ~ c),og N

N -> CO
Y M
*=oL K J

= f c l im /T 108̂ ! - A) (,_c)log/v a ioeN 2ioeN
N - i OO

if [j4= oo if |AC(1 - ^) l_C2o] > 1

Now suppose that 0 <, c < 0.5. Then,

c log N
lim £ [7] ^ / l ima'°gJVAc ' " ^ (l - A) (, - c),og;v £

w-> *=o
log TV
. k

t f n m a {osNA clo&N(l - A f - c)lo*N
N -> OO

if |a c(1 - A) 1-0*?] > 1 .

From the proof of Lemma 4.2, it is known that lim £ [7] has tire same form as
iV -» oo

l im£[X] with / replaced by (1 - /) , c replaced by (1 - c), and A replaced by (1 - B).
JV—>0O

When these replacements are made, part (2) of Hie theorem follows. Q.E.D.

Theorem 4.5: Given y = log TV, all category 3A probabilistic diagnosis algorithms pro­

duce 0% correct diagnosis as TV -» °o if there exists a value c (0 <, c <, 1) such that either part

(1) or part (2) of Lemma 4.3 is satisfied.

Proof. Consider any category 3A probabilistic diagnosis algorithm. Let z„, be the thres­

hold value used by the algoritlun. Suppose z,h is not a linear function of y = log TV. If z,h

grows slower than a linear function, then as TV —» °o, it is possible to choose a constant c

between 0 and 1 (depending on B) such that zlh < c log TV and part (2) of Lemma 4.3 is

satisfied for any B value. If z„, grows faster than a linear function, then as TV —> oo, it is pos­

66

sible to choose a constant c between 0 and 1 (depending on A) such that zth > c log N and

part (1) of Lemma 4.3 is satisfied for any A value.

Now suppose zth is a linear function of y = log N . Then, as N —¥ <*>, there exists a

value c (0 <, c ^ 1) such that (c - e)log N ^ zth <, (c + e)log N for any e > 0. Thus, either

E [F] —> oo or E [X] —> oo. Q.E.D.

Theorem 4.5 only places an upper bound on A and a lower bound on B such that no

category 3A probabilistic diagnosis algorithm is able to produce correct diagnosis as N

However, if part (1) of Lemma 4.3 is satisfied for a sufficiently small c value or if part (2) of

Lemma 4.3 is satisfied for a sufficiently large c value, then it is likely to be the case that no

diagnosis algorithm can achieve correct diagnosis as N -» °°. To see the reason for this

observation, suppose part (1) of Lemma 4.3 is satisfied for c = 0. This says that as N —> «>,

the number of faulty nodes with no one-links incident on them goes to infinity. It is unlikely

that any diagnosis algorithm will be able to correctly diagnose all of these faulty nodes.

Alternatively, suppose part (2) of Lemma 4.3 is satisfied for c = 1. Then as N -» oo, the

number of non-faulty nodes which are tested to be faulty by all of their testing neighbors goes

to infinity. It is unlikely that any diagnosis algorithm will be able to correctly diagnose all of

these non-faulty nodes. Simulation results with the MPD algorithm in Section 4.6 support

these observations.

Let us use examples to illustrate the utility of the bounds developed in this section. Let

us assume comparison-testing is being used. Suppose y = log N with <7 = 2 , i.e., a hypercube

network (hypercubes are formally defined in Section 6.3.1). Let us assume a category 3A pro­

babilistic diagnosis algorithm with threshold value z„, = c log N and c = 0.5. Then,

sufficient conditions for asymptotically correct diagnosis are A > 0.9375 and B < 0.0625.

Necessary conditions for asymptotically correct diagnosis are A > 0.9330 and B < 0.0670.

Thus, p = 0.937 and / = 0.05 works but p = 0.927 and / = 0.075 does not. If c = 0.25,

67

sufficient conditions for asymptotically correct diagnosis are A > 0.8425 and B < 0.0039.

Necessary conditions are A (1 - A) 3 < 2 ^ and B (l - 5) 3 < 4 -4. Thus, p =0.842 and

/ = 0.004 works but p = 0.495 and / = 0.009 does not.

All of the bounds developed have been for testing graphs with y = log N. If y grows

faster than log N, it has already been shown in [6] that 100% correct diagnosis can be

achieved as IV -> °° as long as A > B . In addition, Blough [6] has shown that if y grows

slower than log N, no diagnosis algorithm can achieve 100% correct diagnosis as N —»

4.6. Simulation Results

Simulations were conducted to evaluate the performance of the diagnosis algorithms stu­

died. However, since optimal diagnosis algorithms have been designed for each category of

probabilistic diagnosis studied, the results of simulations are not as important as they would be

for heuristic diagnosis algorithms. This is pointed out because it was already shown in [45]

that the DSK* algoritlun achieves diagnostic accuracy very close to that of the globally

optimal MPD algorithm for all testing graphs on which simulations were attempted. There­

fore, our simulation results will not show that our optimal category 2 or 2A probabilistic diag­

nosis algorithms do much better than DSK*. Due to the random nature of the simulations, it

is possible for OPT2 and OPT2A to perform worse than DSK* in some cases. However,

given a sufficiently large enough testing graph and appropriate probability parameter values, it

is expected that Algorithms OPT2 and OPT2A will perform significantly better than Algorithm

DSK*.

The simulations were conducted on a Sun 3/280 for hypercubes of dimension six through

ten. The same experimental setup as in [45] was used. In assigning prior fault probability

values, an exponential failure arrival rate was assumed. For each node w; , a time value t ; ,

corresponding to the length of time wf has been in the system, was generated from a uniform

68

distribution over the interval [0, T], Then /,• = ! - e~Xz‘ was assigned, where X = MTi'F 1 is

the mean failure arrival rate. T = 103 hours and the three MTTF values 104, 5 x 104, and 105

hours were used, resulting in XT values of 0.1, 0.02, and 0.01 respectively. The same simula­

tion results can be obtained by decreasing T and increasing X by the same factor. Tlius, this

can model components which have been in the system for different lengths of times and com­

ponents which have different MTTF values (their x,- values can be appropriately adjusted).

The E[f ,] and £ [| / ;- - / , |] values calculated are shown in Table 4.3 below. The equations

For each of the four diagnosis algorithms BSM, DSK, DSK*, and MPD, 1000 syn­

dromes were produced and diagnosed assuming p values of 0.3 to 0.9 (in 0.1 increments).

Each node in the hypercube was assigned to test each of its immediate neighbors. To accom­

modate all diagnosis algorithms, comparison testing was implicitly assumed and the method

described in Section 4.2 was used to calculate r and s values and to produce the directed test­

ing graph. Let Qr denote a hypercube of dimension r. The diagnosis algorithm MPD was

only executed on hypercubes Q 6 through Qg with MTTF = 50K hours because of its high

computational cost. Figs. 4.1(a) and 4.1(b) show the results of the simulations on a g 8 and

Q jo with MTTF = 50K hours. Similar results were obtained for all hypercube dimensions and

for E \fi] and E [\fj - / , |] are

E\ f i]

MTTF E\ f j] E|]/ j -/,•!]
10.000 0.0484 0.0317
50.000 0.0099 0.0066

100,000 0.0050 0.0033

Table 4.3: Prior fault probability mean and mean difference values.

69

100

T T T
0.3 0.4 0.5 0.6 0.7 0.8 0.9

(a)

MPD

OPT2

OPT2A

DSK*

DSK

OPT3

OPT3A

BSM

0.3 0.4 0.5 0.6

(b)

0.7 0.8

ioo -1
90-

OPT2

OPT2A

DSK*60-
DSK50-
OPT340-
OPT3A30-
BSM2 0 -

10 -

PT T T T T TT

0.9

Figure 4.1. Diagnostic accuracy on (a) g 8 811(1 0>) Q io with MTTF = 50K hours.

70

MTTF values used. From Figs. 4.1(a) and 4.1(b), it is hard to see how the DSK*, OPT2,

OPT2A, and MPD algorithms compare because their diagnostic accuracy values are so close

together. Therefore, in Table 4.4, the relative performance of the DSK, DSK*, OPT2A, and

OPT2 algorithms with respect to the globally optimal algorithm MPD for a 2 s with MTTF =

50K hours and p values from 0.3 to 0.9 is shown. Denoting the the diagnostic accuracy of

Algorithm A by DA (A), the formula for the relative performance of Algorithm A is

DA {MPD)

p 0.3 0.4 0.5 0.6 0.7 0.8 0.9
DSK
DSK*
OPT2A
OPT2

-11.4%
-0.1%
-0.2%

+0.1%

-3.6%
-0.6%
-0.4%

+0.1%

-2.1%
-0.2%
-0.5%
0.0%

-0.6%
0.0%
0.0%
0.0%

-0.2%
0.0%
0.0%
0.0%

0.0%
0.0%
0.0%
0.0%

0.0%
0.0%
0.0%
0.0%

Table 4.4: Diagnostic accuracy with respect to MPD for g 8 with MTTF = 50K hours.

Experiments were also conducted to show what happens when incorrect probability

parameter values are used. Although the same probability parameter values as in the previous

simulations were used by the diagnosis algorithms, an error of -30% in each probability

parameter value was introduced in generating the set of faulty nodes and the fault syndromes.

Fig. 4.2 shows the results of these simulations for a g 8 with MTTF = 50,000 hours. Our

analysis in Section 4.4.2 showed that even when inaccurate probability parameter values are

used, the OPT3 and OPT3A algorithms perform almost as well as they would with (lie correct

probability parameter values and the OPT2 and OPT2A algorithms perform as well or better

than the DSK* and DSK algorithms. The simulation results shown in Fig. 4.2 support our

analytical results.

Di
ag

no
sti

c
A

cc
ur

ac
y

71

100

0.3 0.4 0.5 0.6 0.7 0.8 0.9

OPT2

OPT2A

DSK*

— DSK

-■— OPT3

■o— OPT3A

-*— BSM

Figure 4.2. Diagnostic accuracy with 30% parameter errors on Q % with MTTF = 50K hours.

72

4.7. Conclusion

In this chapter, several important theoretical and practical results concerning the diag­

nosis of a multiprocessor/multicomputer system based on inter-processor tests with imperfect

fault coverage have been presented. Necessary and sufficient conditions on probability param­

eter values have been shown such that 100% correct diagnosis can be achieved as N —> °° in

systems where the number of tests per processor grows as log TV. Optimal diagnosis algo­

rithms have been derived for four important categories of diagnosis defined previously in

Chapter 2. It is shown that these optimal diagnosis algorithms perform well even when inac­

curate probability parameter estimates are used.

Probabilistic analysis has been used to compare the diagnosis capabilities of Dahbura et.

al.'s (DSK) probabilistic diagnosis algorithm, Blough et. al.'s (BSM) probabilistic diagnosis

algorithm, and our optimal probabilistic diagnosis algorithms. This analysis shows that the

DSK algoritlun is superior to the BSM algorithm because it approximates the optimal category

2A diagnosis algorithm better than the BSM algoritlun. The comparative analysis is supported

by our simulation results. Based on the comparative analysis, the DSK* algorithm, which is a

modified form of the DSK algorithm, has been derived. The DSK* algorithm performs

significantly better than the DSK algorithm and achieves close to optimal performance in many

instances. The DSK* algorithm has an advantage over the optimal category 2A algorithm in

that it is only dependent on relative prior fault probability values.

CHAPTER 5

OPTIMAL MULTIPLE SYNDROME DIAGNOSIS

This chapter addresses diagnosis using multiple fault syndromes. It is shown that by

using multiple syndromes, significantly better diagnosis can be achieved than by using a single

syndrome, even when the amount of time devoted to testing is the same. A multiple syndrome

diagnosis algorithm, in which testing is conducted in stages and a fault syndrome is collected

after each testing stage, is derived which is optimal in the level of diagnostic accuracy

achieved (among diagnosis algorithms of a certain type to be defined) and produces good

results even with sparse interconnection networks and inter-processor tests with low fault cov­

erage. Furthermore, upper and lower bounds are proven on tire number of fault syndromes

required to asymptotically produce 100% correct diagnosis as N —> °°. Our solution and

another multiple syndrome diagnosis solution (by Fussell and Rangarajan [30]) are evaluated

both analytically and with simulations.

5.1. Introduction

The previous two chapters addressed the optimal diagnosis of

multiprocessor/multicomputer systems based on the analysis of a single syndrome. What hap­

pens if multiple syndromes are used? Is diagnostic accuracy improved by using multiple syn­

dromes instead of a single syndrome if lire same amount of time is devoted to testing in both

cases? In [55], Rangarajan and Fussell gave examples to show that the additional information

available when multiple syndromes are used permits correct diagnosis in some fault situations

73

74

where an “ accumulated” single syndrome results in incorrect diagnosis. These examples were

dependent on the assumption that faulty processors will sometimes give correct results. How­

ever, a more fundamental reason for the better diagnostic capability possible with multiple

fault syndromes is the testing method used. In Section 5.3, it is shown that by using a special

method of testing to generate the multiple syndromes, significantly higher diagnostic accuracy

can be achieved than by using only a single syndrome.

Tins chapter addresses multiple syndrome diagnosis for a variant of category 3A diag­

nosis assuming that comparison-testing is being used as the inter-processor testing method.

Although it is possible to derive multiple syndrome diagnosis algorithms for all of the

categories defined in Chapter 2, it is not always beneficial to do this. For instance, with

category 1 diagnosis, it has already been shown that most probable diagnosis is NP-hard even

with a single syndrome. In addition, an extremely high communication overhead is required to

reliably distribute the syndrome information to all of the nodes. These problems are com­

pounded when multiple syndromes are used. For category 2 and 2A diagnosis, because of the

particular testing method used (described in Section 5.3), the diagnostic accuracy achievable

with multiple syndrome diagnosis is no higher than for categories 3 and 3A. The calculations

for category 3 diagnosis are significantly more complex than for category 3A diagnosis with

no appreciable increase in diagnostic accuracy. Finally, the multiple syndrome diagnosis

method developed is limited to comparison-testing because of the way in which the multiple

syndromes are formed (described to Section 5.3).

Several authors [5,19] have presented fast probabilistic diagnosis algorithms which

achieve correct diagnosis with high probability given intermittently faulty processors. Blough

et. al. [5] showed that they could asymptotically achieve 100% correct diagnosis in an N

processor system as N —> «> provided that a (N) log N tests were performed on each proces­

sor, where a(N) —» °° arbitrarily slowly as N —> In Blough et. al.'s method, lire number

75

of tests on processor is equivalent to the number of processors testing n; . Fussell and Ran­

garajan [30] improved on [5] by showing that the same asymptotic result can be obtained for

systems with lower connectivity (e.g., meshes or rings) if each pair of processors conducts

multiple tests and the number of these tests on each processor grows faster than log N .

Fussell and Rangarajan’s algorithm can be viewed as a multiple syndrome diagnosis algorithm.

This chapter improves upon Fussell and Rangarajan’s (FR) algorithm [30] by deriving a

multiple syndrome diagnosis algorithm which is optimal in the level of diagnostic accuracy

achieved. Since multiple syndromes can be formed in many different ways and since many

different types of syndrome information can be used in the diagnosis, a specific categoiy of

multiple syndrome diagnosis (of which the FR algoritlun is a member) is defined and our

analysis is restricted to this category. Our diagnosis algorithm is provably optimal among all

multiple syndrome diagnosis algorithms which use the same type of syndrome information as

the FR algorithm. In addition, our optimal multiple syndrome diagnosis algorithm has the

same desirable asymptotic properties as the FR algorithm. Upper and lower bounds on the

number of tests required for asymptotically correct diagnosis are shown.

5.2. Background

In this chapter, inter-processor testing is assumed to be done by comparison-testing, in

which a test between two processors m, and Uj is actually a comparison of the outputs of two

identical tasks. Thus, the testing graph is assumed to be an undirected graph (the edges

etj e E t are assumed to be undirected edges representing comparison tests). For an

undirected testing graph, r(n,) = r _l(w,). Thus, r(Mf) refers to all of the testing neighbors of

ut and d(Ui) = | e r(w,): = 1)j.. Also, for comparison-testing, fault coverage p has a

slightly different meaning. Given a node «,• e VT and a test task tk , the fault coverage pik is

the probability that ut produces an incorrect result for task tk given that ut is faulty. Finally,

76

in tliis chapter, the actual set of faulty nodes which are to be diagnosed is denoted by F '.

The testing methods used in single and multiple syndrome diagnoses are referred to as

single syndrome testing and multiple syndrome testing, respectively. Most of the previous

work on diagnosis based on comparison-testing have assumed a single syndrome testing

method. In single syndrome testing, it is assumed that the comparison test between a node u,-

and another node uk e r(u f) is independent of any other comparison test. If two nodes u-t

and Uj execute and compare more than one task, then atj — o;V = 1 if any of the task outputs

are different for the two nodes. The accumulated syndrome formed in this manner is the syn­

drome used by a single syndrome diagnosis algorithm

In multiple syndrome testing, testing is done in stages, and in each testing stage, it is

assumed that the same task is used in the comparison tests between a node n; and nodes in

r(M,). A “new” fault syndrome is formed after each testing stage using the same testing

graph. In a single testing stage, each processing node is assigned at most one task to execute.

Tims, all nodes in the same connected component of the testing graph must execute the same

test task in a testing stage. In diagnosis based on multiple-syndrome testing, the fact that the

syndromes obtained in later testing stages are partially dependent on the syndromes obtained in

earlier testing stages can be used. The number of testing stages used in multiple syndrome

testing is denoted as R .

To obtain an efficient and practical diagnosis algorithm, algorithms in which each node

Uj is only aware of the results of its tests with its neighbors, referred to as local syndrome

information in Chapter 2, are considered. For multiple syndrome diagnosis, summarized local

syndrome information for a node u; can be written as \dk{u;) : 0 <, k £ R }, where

d k{u,) = d(i<i) for testing stage k. There are two dimensions to the syndrome information:

one dimension is d k(ui) for a fixed k and the other dimension is the number of testing stages

hi which d k(Ui) is greater than a fixed tlireshold. Given an integer m, m -threshold local

77

syndrome information is defined as | (fc : 0 ^ k £ R and d k(Ui) > m }|. Category 3, 3A, and

3AM diagnosis are defined as diagnosis using local, summarized local, and m -threshold local

(for any fixed m) syndrome information, respectively. This categorization is shown in Table

5.1, which is an extension of the categorization of Chapter 2. The diagnosis algorithm derived

in this chapter is (he optimal category 3AM multiple syndrome diagnosis algorithm.

Category Syndrome Information Interpretation
3
3A
3AM

Local
Summarized local
m -threshold local

Uji values for iij e F(«i)
{</*(«,-) :0<S k <, R }
| {k : 0 <, k <, R and d k(Ui) > m }|

Table 5.1: Categorization of diagnosis using local syndrome information.

The FR algorithm [30] is characteristic of category 3AM diagnosis. In the FR algorithm,

testing is conducted in stages and two thresholds kv; and jv,- are used. In testing stage i , it is

assumed that all processors execute the same test task f; . Let T = (fj , • • • , tR) be the set

of R test tasks executed on all processors and M be the number of distinct faulty results for a

test task, where all tasks are treated identically.

Algorithm FR:

0. Let F <— 0 be the set of diagnosed faulty nodes;
1. For each Uj e VT do

kVj < - |r (n y)| - 1;
sv: <— R - krR{ 1 - p (l - where 1 £ kr <, 2;

J M
2. For each r(- e T do

for each Uj e VT do
if d(uj)> k\’j

then L (i , j) = 1;
else L (i , j) = 0;

3. For each uj e VT do
if £ L (/ , j) > svj

l , e T

then F <— F |w;-};

In Step 1 of the description of the FR algorithm, kVj is chosen to be |r(«;)| - 1 and a range

of values is indicated as being acceptable for (lie choice of svj. These thresholds were simply

78

chosen in order for the the algorithm to satisfy desirable asymptotic properties. The authors

proved that as N <», the diagnostic accuracy of the FR algorithm asymptotically approaches

100%. An earlier algorithm by the same authors [55] can be considered to be the same as the

FR algorithm with s v j = 0 for all U j g VT.

5.3. Analysis of Multiple Syndrome Testing

The two main differences between multiple and single syndrome testing are the use of

multiple versus single syndromes and the constrained manner in which the syndromes are

formed in multiple syndrome testing. In [55], examples are given to show that the additional

information available when multiple syndromes are used permits correct diagnosis in some

fault situations where an “ accumulated” single syndrome results in incorrect diagnosis. In

this section, it is shown that the way in which syndromes are formed in multiple and single

syndrome testing also results in a significant difference in diagnostic capability.

Suppose all of the syndromes associated with the multiple testing stages in a multiple

syndrome testing method are used to form an updated syndrome. The single syndrome gen­

erated using this process has the property that for a given node u,- e VT, all of the tests eik for

uk g r(n,) use the same set of tasks in their testing. However, the syndrome used in single

syndrome testing has no such restriction. In single syndrome testing, it is assumed that the

test eik g Et is independent of all of the oilier tests in ET. As will be shown shortly, this

“ small” difference in testing method results in a significant difference in diagnostic capability.

To get a direct comparison, let us compare the difference in diagnostic capability

between single and multiple syndrome testing when only one syndrome is used in the multiple

syndrome testing method. For simplicity of analysis, average parameter values will be used

and a regular testing graph with node-degree y will be assumed. The probability analysis for

single syndrome testing has been done in [46J. Given a node u-t and any node uj g r(n,), let

79

A =P(aji = 1 1 8,) = p (i - f) + f { i - l L)) + (\ - p) (f p) = (i - f) p + f p (2 - p
1 M M

and B - P (<a = 1 1 5;) = f p . For single syndrome testing, the probability of having

z = d (it;) one-links incident on n; out of a maximum of y links (denoted z one-links : y)

given that u,- is faulty and non-faulty are

P{z one-links : y | 8,) = |jj A 2 (1 - A) y~2 , (5.1a)

P(z one-links : y | 5.) = jjj B 2 (1 - B) y~2 . (5.1b)

It follows (after simplification) that

P (8,- | z one-links : y) =
(5.1c)1 . W i

v--g
B

Z f*--------S
1 - B

y - z

1 1 f i A 1 - A

For multiple syndrome testing with a single syndrome, the probability that there are z

one-links incident on a node w,- e VT given that U; is non-faulty and faulty are:

P(z one-links : y | S.) = X (j] f 3(l ~ f) y 3 (j) P z(l - p V z
] = Z

= h(z) ,

P(z one-links : y| 8.) = p X (j) (1 - f Y f y ~ 3 (j l j) (1 - j ’~)2 ~ 3(j ~) y '

+ (1 - p) h(z)

= P 8 (2) + (1 - P) h(z) .

Thus, the posterior fault probability of n; given z one-links incident on ti; is

(5.2a)

(5.2b)

P (8 ,- | z one-links : y) =
Si P 8(2) + (1 - p) h(z)

f i \l>8(2) + (l ~ p) h (2)] + (! - / ,) /«(z)
(5.2c)

80

1 ifz = y ,

The approximation holds if M is large and y <. 4. Then, Eq. (5.2c) is close to a delta function

with a spike at z = y since / (prior fault probability) values are typically fairly small. If

y > 4, then Eq. (5.2c) becomes close to a step function. In general, Eq. (5.1c) is a much more

smoothly increasing function of z than Eq. (5.2c).

Let us consider the testing time required for single versus multiple syndrome testing.

Suppose that it takes t units of time to execute each task and that each task has the same level

of fault coverage p . Then, for multiple syndrome testing using a single syndrome, it takes T

units of time to obtain the syndrome since each node executes at most one task. In single syn­

drome testing, x y units of time are required for testing since each node executes y tasks (in

order to make y comparison tests). Thus, using the same amount of testing time, y test tasks

(treated as one “ large” test task) can be executed in one testing stage of the multiple syn­

drome testing method, thereby achieving an effective fault coverage of 1 - (1 - p)y.

Fig. 5.1 shows the distributions of z = </(«,•) given w; faulty and «,• non-faulty for both

multiple syndrome testing (Eqs. (5.1a) and (5.1b)) and single syndrome testing (Eqs. (5.2a)

and (5.2b)) using M = 1000, y = 4, p = 0.4, and two different values of / . The fault cover­

age value p used for single syndrome testing is actually l - (l - p) Y= 0.87 since this level of

fault coverage can be obtained in the same amount of testing tune required to achieve fault

coverage of p for multiple syndrome testing. Naturally, a high level of diagnostic accuracy

can be achieved if the syndrome information perceived when is faulty is drastically different

from the syndrome information perceived when ut is non-faulty. From our analysis, it can be

seen that the syndrome used in multiple syndrome testing fits this mold much more closely

than the syndrome used in single syndrome testing.

Pr
ob

ab
ilit

y
Pr

ob
ab

ili
ty

81

1.0 n

single

syndrome
testing

multiple

syndrome

testing0.6

— ♦ - - Eq. (5.1b)
_Eq. (5.2a)
_ Eq. (5.2b)

0.4-

0.0
0 1 2 3 4 0 1 2 3 4

(a)
l.o

single

syndrome
testing

multiple

yndrome
testing

0.8 -

0.6 -

 B— Eq. (5.1a)
— ♦ - - E q . (5.1b)
 b Eq. (5.2a)
 . Eq- (5.2b)

0.4-

0 2 -

0.0

(b)

Figure 5.1. Probability distributions with (a) / = 0.0484 and (b) / = 0.0050.

82

5.4. Optimal Multiple Syndrome Diagnosis Method

In Theorem 4.1 of Chapter 4, it was proven that for any category of diagnosis, the

optimal diagnosis method is to make the mos'fprobable diagnosis at each node given the type

of syndrome information available. Thus, to derive the optimal category 3AM multiple syn­

drome diagnosis algorithm, the posterior probability of a node «,• e VT being faulty given the

syndrome information for w; must be analyzed. Category 3AM multiple syndrome diagnosis

is based on m -threshold local syndrome information for any fixed m. Under the assumption

that the test evaluation by a non-faulty processor is at least as good as the test evaluation by a

faulty processor, the posterior fault probability of «,• is a non-decreasing function of d k(Ui)

and also of | {& : 0 <, k <. R and d k{ui) > m)| for any m . Then, the optimal category 3AM

multiple syndrome diagnosis algorithm is based on the selection of two thresholds. The first

threshold z,hj is for the number of one-links incident on w; during a single testing stage. The

second threshold H0l(is for the number of testing stages in which a given node passes the first

threshold. In the FR algorithm, z,/l(= = y - 1 and Hlhj = s\>i. The thresholds &v; and svt

were simply chosen so that desirable asymptotic properties of the algorithm could be proven.

Optimal threshold values can be obtained by calculating posterior fault probabilities. The

optimal choice for zth) is obtained using Eq. (5.2c). The optimal zlhj value, denoted z*hj, is

equal to z such that P(5j | z one-links : y) ^ 0.5 and P (8,- | z+1 one-links : y) > 0.5.

Although calculation of Eq. (5.2c) for large values of y is computationally expensive, since y

is at most the node-degree of the processor interconnection network, very large y values will

not be needed for most practical partially-connected systems. Also, from the analysis done in

Section 5.3 (approximation for Eq. (5.2c)), it is evident that when y <, 4, z*h) = y - 1. Since

Eq. (5.2c) is a monotonically non-decreasing function of z , one can obtain z*,h for y > 4 by

evaluating Eq. (5.2c) for several values of z near y.

83

Probability analysis is now used to derive H *hj, the optimal value of Hlhr For simplicity

of analysis, it will be assumed that y £ 4 so that z*hj = y — 1. (The changes required in the

analysis when y > 4 is discussed at the end of this section.) For a single syndrome,

U ^ P + (i - P) p y i f r (« ,) c F '
P (y one-links : y | 8f) = 1 A j S i p otherwise ? (5.3)

J f * i = p y i f r ^ o e F '
P {y one-links : y | 5.) = \ B Q otherwise _ (5-4)

The approximations in Eq. (5.3) hold since M is assumed to be large, that is,

A i = P (1 - -£-)Y + (1 ~ P) P y ~ P + 0 ~ P) P y .M

P (l ~ M)Y_I ^ A l ^ P => A 2 ~ P ■

If r(M,) c F ' , then A t and B j are the probabilities of having greater than z*hj one-links

incident on given that n; is faulty and non-faulty, respectively. A 2 and B 2 are the same

probabilities when T(m,) c VT - F '. Next, the probabilities of having H syndromes in which

d (Ui) > z*hj (denoted H passes) given that nf is faulty and non-faulty are

P{H passes | 8,) = /* (*] A*f (1 - A {)R ’ H + (I - / *) (£) A 2 (1 - A 2f ~H , (5.5)

P(H passes | 5.) = /* (£] d - B tf ~H + (1 - /*) (£] B 2 (1 - B 2f ~H . (5.6)

Finally, the posterior fault probability of n,- given that d(it;) > z*hj for H syndromes is

i „ x P(H passes \ 5 i) P 0 i)
P (8 ; H passes) = ----------------- —------ — . (5 7)

P(H passes | 8,) P (8 ,) + P(H passes | S,) P (5,-)

Tlie value of H at which P (8,- | H passes) = 0.5 is the optimal Hlhi value, H*hj. It is

difficult to determine H*ht directly because of the form of Eq. (5.7). However, since H*hj is to

be used as a tlireshold for an integer quantity, it is only necessary to determine Hthj = \H*hj J .

84

Eq. (5.7) is a monotonically non-decreasing function of H . Thus, H,hj can be determined by

calculating Eq. (5.7) for several values of H . This process is made simpler if a close upper

bound for H*,ti can be calculated. Denoting this upper bound by f t th{,

th,

log ' l - f i '
f i

log
A x(l - B x)

(1 - A X) B X

+ R
log

1 - B x
1 - A ,

log
A , (l - 5 ,)

(5.8)

Theorem 5.1: i?„,(is an upper bound for H *hj.

Proof: Fig. 5.2 shows the distributions of three random variables Z 0, Z h and Z 2. Z0

denotes the number of testing stages (out of R) that a faulty node «,• has </(«,•) > z,*)(. Thus,

(lie distribution for Z0 has Eq. (5.5) as its probability mass function. Z t is the binomial ran­

dom variable with parameters R and A x. Likewise, Z 2 is the binomial random variable with

parameters R and A 2. Since A x £ A2, it is clear that the distribution for Z x is strictly to the

right of the distribution for Z 2. Also, from the form of Eq. (5.5), it is evident that the distri­

bution for Z0 must lie in between tire distributions for Z x and Z 2. This relationship is shown

graphically in Fig. 5.2. Since B x ^ B 2, the distribution for Eq. (5.6) can be shown to reside

between two analogous random variable distributions. Thus, the distributions for Eqs. (5.5)

and (5.6) are both shifted to the right when A 2 and B 2 are replaced by A x and B x, respec­

tively. When these replacements are made, is the value of H at which

\P{H passes | 8 ,-) P (8,-) P (H passes | 5,) P (5;) Q.E.D.

To calculate Hth , the following procedure needs to be executed.

85

Figure 5.2. Distributions of random variables Z0, Z ,, and Z :

86

Procedure C a lc ji:

1. Calculate/?^ using Eq. (5.8);
2. For H from 0 to mini/? »\0tu,\ + 1} do

calculate P (5,- | H passes) using Eq. (5.7);
3. Hlhj <— H ' such that P (8; | H ' passes) <, 0.5 and P (5,- | H ' + 1 passes) > 0.5.

Algorithm OPTM, the optimal category 3AM multiple syndrome diagnosis algorithm, is

essentially the same as the FR algorithm except that the thresholds are chosen differently.

This, however, is a crucial difference since the performance of the algorithm hinges upon the

choice of thresholds. In the description of the FR algorithm in Section 5.2, it was assumed

that all processors execute the same set of tasks T = (rx , • • • , tR }. Since all tasks are

treated identically in our analysis, the OPTM algorithm is also described under this assump­

tion.

Algorithm OPTM:

1. For each «,• e VT doparallel
calculate z*hj using Eq. (5.2c);
calculate Hth{ using procedure Calc_H;

2. For each Uj e VT doparallel
for each tj e T do

if d(tij) > z*h)
then L (i , j) = 1;
else L (i , j) = 0;

3. For each Uj e VT doparallel
if X L (i , j) > H „

then Uj is faulty;
else U; is non-faulty;

Although the OPTM algoritlun is the optimal category 3AM diagnosis algorithm, it is not

the optimal category 3 or even category 3A diagnosis algoritlun. Since the effort required to

obtain and use the syndrome information for category 3 or 3A is only slightly more than for

category 3AM, it might seem worthwhile to derive the optimal category 3 and 3A multiple

syndrome diagnosis algorithms. However, the diagnostic accuracy achieved by the OPTM

87

algorithm is very close to the best possible even when category 3 or 3A syndrome information

is used.

To see the reason for this, let us refer to the analysis of Section 5.3 and Fig. 5.1. Given

a non-faulty node nf, it is most likely to not have any one-links incident on it. Given a faulty

node «,•, if it fails a test task tj (in other words, t} covers the fault), then it is most likely to

have y one-links incident on it; otherwise, if n; passes t j , then it is most likely to not have any

one-links incident on it. Therefore, in all cases, n,- will most likely either have y one-links or

zero one-links incident on it. Given this observation, the syndrome information used in

category 3AM contains almost all of the important category 3A syndrome information. In

simulations using the experimental setup to be described in Section 5.6, out of 80,000 syn­

dromes generated for a 100-node torus-wrapped square mesh, there was exactly one syndrome

in which a node «,• had neither d (u,) = y nor d («,•) = 0. Thus, the OPTM algorithm produced

the optimal category 3A diagnosis over 99.998% of the time. Also, as explained in [46], the

optimal category 3A diagnosis algorithm approximates the behavior of the optimal category 3

diagnosis algorithm since average probability parameter values are used in the analysis for

category 3A. In summary, the OPTM algorithm is the optimal category 3AM multiple syn­

drome diagnosis algorithm and the “near-optimal” category 3A and category 3 multiple syn­

drome diagnosis algorithm.

In deriving the thresholds for the OPTM algorithm, the assumption that y £ 4 has been

used. If y > 4, then it is possible that z,/l(< y - 1. In that case, the A t, A 2, B ,, and B 2

values used in Eqs. (5.3) - (5.8) must be changed. Let A, a |r(«,) F] = x . Then,

A { = P(d(ui) > z*,u : y | 8, , A; = y) , • • • , = P(rf(«,) > z,*I(: y | 8, , A, = 0) and

B { = P{d(Uj) > z*hj : y | 5; , A(- = y) , • • • , B^+{ ■= P(d(Uj) > z*,h : y | 5, , A, = 0)

should be used instead of A u A 2, B t, and B 2. A t and B i are replaced by A { and B respec-

88

lively. A 2 is replaced by A { through A ^ ' aud B 2 is replaced by B 2 through B ^ .\. Note

that Eqs. (5.3) and (5.4) will now have more additive terms. It may be possible to combine

some of the Ak' or Bk' values as was done in the analysis for the case of z*h(= y - 1.

5.5. Asymptotic Analysis

One of the main desirable aspects of the FR algorithm was that it was shown to asymp­

totically achieve 100% correct diagnosis a s N —>ooi fyS : 2 and R grows faster than log N .

But, when Hlh is calculated as in the previous section, it is noted that H,hj is not necessarily

one of the permitted values for sv(- in the FR algorithm (refer to Section 5.2). However, it is

possible to directly prove that the OPTM algorithm also asymptotically achieves 100% correct

diagnosis as N -*• oo. Let a(N) be any function of N such that lim a (N) = <*>. in this sec-

tion, it is proven that the OPTM algorithm asymptotically achieves 100% correct diagnosis as

N —» oo if y ^ 2 and R IS a(N) log N. It is also proven that no category 3AM multiple syn­

drome diagnosis algorithm achieves 100% correct diagnosis as N —» °° if R <, J2.8L^ .
a(N)

For the asymptotic analysis of the OPTM algorithm, the following corollary [6] to a

theorem proved by Chemoff [11] is needed.

Corollary 1: Let Z be a binomial random variable with parameters n and q . Then

P(Z <,cnq)<, e_(l “ c)2"*/2 , 0 < c £ 1 ,

P{Z Z cnq) £ ~ U2"*13 , c S> 1 .

For the purposes of analysis, let us assume that H*hj = H*h for all «, e VT (the proofs

also work when this does not hold). Since H*,t is equivalent to HlU when used as a threshold,

the analysis will be done assuming that H*h is the threshold used in the OPTM algorithm.

Also, let a be the base of the logarithm unless otherwise specified. Let the random variable Y

denote the number of faulty nodes h, for which </(«,•) > z*h(for <1 Hth syndromes. Let the

89

random variable X denote the number of non-faulty nodes «,• for which d (m,) > z*h{ for > Hth

syndromes. For a multiple syndrome diagnosis situation, if there are no nodes which fit the

requirements for random variables Y or X, then OPTM produces correct diagnosis. However,

if there is any node that fits the requirement for random variable Y or X, then OPTM does not

produce correct diagnosis. Thus,

1 - E[X] - E[Y] £ P((OPTM produces correct diagnosis)) £ 1 - max(£[X] , E[T]}.

Lemma 5.1: If R ^ a(N) log N, where lim a(N) = oo, and RB (^ H*h <, RA2, then
N -* o°

lim £[X] = liraZ?(Y] = 0 .
N-*oo N -* oo

Proof. In the following, let m = \H*h J . The comments refer to Fig. 5.2.

E [X] = £ P(>H ?h passes | S() P (5,)
(tj € Vj*

* E
ttf € VT

R

E R
k B \ (1 - B y f - k

A=m+1
(1 - / ,) (distribution shifted right)

R

E
£ = m + l

= d ~ f) N £ [J] B \ (1 - B yf - k

£(1- /) WE
k=m

R
.K B \ (1 - B y f ~k

= (l - f) a lo*N P (X Z c lRBl)

<f(C| “ l)2RB'13 •r m i
i f C i = — — > 1

RB,

Since Hth 2: m ^ RB j and R £: a (TV) log N , lim E[X] = 0. Similarly, for E[Y],
W-»0O

E[Y]= £ P (^ H ? n passes | 8;) P (5.)
» ,e V r

z E
hi e VT

m
E R

k A k2 (\ - A 2f ~ k
£=0

f i (distribution shifted left)

90

= / * £ fj]^2 (1 - ^ 2)
k=0 W

= f a logW P{X <, c2RA2)

,R - k

^ x loe N “ (I - c^ 2RA2I2 . - m . , . n< ,f a 8 e i f c 2 = — — £ 1 andc2 > 0 .
RA2

Since (H*h <.RA2)=> (m <,RA2) and R 2: a(N) log N, lim E[Y] = 0. Q.E.D.
N ~ t 0 0

Theorem 5.2: If R ^ a(N) log N, where lim a(N) = <», then P({OPTM produces
N - t 0 0

correct diagnosis}) -> 1 as N -> °°.

Proof. Let the random variables Z0, Z , and Z 2 be as defined in the proof of Theorem

5.1. As shown in Fig. 5.2, Z0 is sandwiched in between Z2 and Zj. Since Z y and Z 2 are

binomial random variables, E [Z X]= R A y and E[Z2] = RA2. Thus, RA2 £E[Z<j[£ R A y.

Likewise, if the random variable W0 denotes the number of syndromes for which a non-faulty

node M; has d(u;) > z *hj, then RB2 <, E[W0] <, RB j. Tlien, from Eqs. (5.3) and (5.4),

M

since M has been assumed to be a large number.

Now, let D be a category 3AM multiple syndrome diagnosis algorithm with z,/l(= z*h)

and Hth = 0.5 R (B y + A 2). Then, since R B y <, Hth <>RA2, D produces correct diagnosis as

N 00 provided the conditions of the theorem are satisfied. Thus, for any e > 0, there exists

an N ' > 0 such that P({D produces correct diagnosis}) > 1 - e. H*n is the optimal Hth thres­

hold value. Therefore, P({OPTM produces correct diagnosis}) > P({£> produces correct diag­

nosis}) > 1 - e. Since this holds for any e > 0, the theorem follows. Q.E.D.

Theorem 5.2 could also have been proven by using the fact that the FR algorithm is in

category 3AM since the OPTM algorithm is the optimal category 3AM multiple syndrome

91

diagnosis algorithm and Theorem 5.2 was proven for the FR algorithm [30]. However, a more

direct proof of Theorem 5.2 has been provided in this section.

Lower bounds are now determined for the number of testing stages required for asymp­

totically correct category 3AM multiple syndrome diagnosis. In [6], Blough essentially proved

that if <, log N/a(N) tests are performed on each processor, where lim a(TV) = °°, then no
N -+ oo

category 3AM diagnosis algorithm which uses a single syndrome can achieve asymptotically

correct diagnosis as N -> °°. It follows that if y is constant and R ^ log N/a(N), where

lim a(N) = oo, then no category 3AM multiple syndrome diagnosis algorithm can achieve
N -*»o

asymptotically correct diagnosis as IV —> <*>. However, what happens when R = log IV? The

following theorem answers this question.

Theorem 5.3: If A i < 1 - — (recall that a is the base of the logarithm) and
a

R = log N , then for any category 3AM multiple syndrome diagnosis algorithm D , P({D pro­

duces correct diagnosis)) —> 0 as N -» 0.

Proof. Suppose that A i < 1 - — and R = log N . Then,
a

limE[T] ^ limIV/ (1 - A ,) R = / lim [(1 - A ,)* !108*
N —>oo N —} oo N —)ooL J

Thus, as IV —> oo, P({OPTM produces correct diagnosis)) —»0 and likewise for any other

category 3AM multiple syndrome diagnosis algorithm. Q.E.D.

As an example of the use of Theorem 5.3, if a - 2 (as in a hypercube structure),

Theorem 5.3 tells us that one must have A , k 0.5, which implies that p > 0.4 (with y i> 2). It

is unlikely that such a high p (fault coverage) value can be obtained using a single test task of

short duration. A slightly higher upper bound for A i can be obtained by using a closer lower

bound approximation for E[F]. In summary, it appears unlikely that any category 3AM mul­

tiple syndrome diagnosis algorithm can achieve asymptotically correct diagnosis when

92

R = log N unless a is very small, implying a quickly growing logarithm function, or very

long test tasks are used.

5.6. Simulations

Simulations were conducted to evaluate the performance of the diagnosis algorithms stu­

died. In assigning prior fault probability values, an exponential failure arrival rate was

assumed. For each node a time value xf, corresponding to the length of time «,• has been

in the system, was generated from a uniform distribution over the interval [0 , T] for some T .

Then /,• = 1 - e~^x‘ was assigned to n,-, where X - MTTF-1 is the mean failure arrival rate.

Tire simulated experiments were conducted on a Sun 4/280 for a 100-node torus-wrapped

square mesh and a 300-node TMR structure. A TMR structure is a 2-regular graph in which

nodes are clustered into completely connected components of size 3 each. T = 103 hours and

MTTF values 104 and 10s hours were used, resulting in XT values of 0.1 and 0.01 respec­

tively. Given MTTF values of 104 and 105, £ [/ ,] = 0.0484 and 0.0050, respectively.

For all diagnosis algorithms evaluated, 1000 fault situations were produced and diag­

nosed assuming p values of 0.1 to 0.5 (in 0.1 increments) and the two MTTF values given

above. For each fault situation, R = 8 testing stages were used, resulting in 8 syndromes.

The OPTM algorithm was compared with the FR algorithm and the OPT3A algorithm, which

is the optimal category 3A single syndrome diagnosis algorithm [46]. Assuming that it takes x

units of time to execute a single test task, multiple syndrome testing requires R% time units

while single syndrome testing requires y x time units. Thus, for single syndrome diagnosis, if

the same amount of time is devoted to testing, it is possible to use test tasks which are R /y

times as long as those used in multiple syndrome diagnosis. Therefore, in the simulations for

the OPT3A algorithm, p ' = 1 - (1 - p)R/y was used as the fault coverage value.

93

In the simulations for the FR algorithm, values for fcv,- and sv; must be chosen. The FR

algorithm specifies that fcv(- = y - 1 but indicates that a range of values is acceptable for sv,-

(refer to Section 5.2). If the equation for sVj in Section 5.2 is used, it is possible to get a

negative value for sv(-. Since a negative SVj threshold value implies that all nodes in VT will

be diagnosed to be faulty, this possibility is discounted. Then the modified equation for jv(is

max{0 , R - 2 R (l - p { \ - -£-?)} <£ sv{ <, R - R (l - p (l - In our simulations,
M M

s\>i was chosen to be the value halfway between the lower and upper bounds for sv; . M was

chosen to be 1000. Tables 5.2 and 5.3 show the values of Hth and sv,- for the torus-wrapped

square mesh and TMR structure, respectively. H„, values shown in Tables 5.2 and 5.3 are for

both / = 0.0484 and / = 0.0050 unless otherwise specified, svf and sv/"'J (used in the simu­

lations) are independent of / . In Table 5.3, threshold values for p = 0.7 and / = 0.0484 are

shown to demonstrate that f/f and SVj values do diverge.

H,u 5 \’i svr d
p = 0.1 0 0 — 0.80 0.40
p = 0.2 0 0 — 1.60 0.80
p = 0.3 0 0 — 2.40 1.20
p = 0.4 0 0 — 3.19 1.60
p = 0.5 0 0 — 3.99 2.00

Table 5.2: Threshold values for torus-wrapped square mesh (y = 4).

Hat SVi s v f d
p = 0.1 0 0 — 0.80 0.40
p = 0.2 0 0 — 1.60 0.80
p =0.3 0 0 — 2.40 1.20
p =0.4 0 0 — 3.20 1.60
p = 0.5 0 0 — 4.00 2.00

p =0.7 1 i f = 0.0484) 3.18 — 5.59 4.38

Table 5.3: Threshold values for TMR structure (y = 2).

94

Figs. 5.3 and 5.4 show the results of the simulations for the torus-wrapped square mesh

and TMR structure, respectively. In all cases, the OPTM algorithm performs significantly

better than the OPT3A algorithm, with the difference more acute when p is small. The FR

algorithm performs the same as the OPTM algorithm for p = 0.1 and p = 0.2, but then

quickly falls off in accuracy as different [w/""*] threshold values are used. Similar results

were obtained for all simulations attempted.

5-7. Conclusion

In this chapter, an optimal category 3AM (and near-optimal category 3A and category 3)

multiple syndrome diagnosis algorithm has been derived. Using probability analysis, multiple

syndrome testing is shown to be more effective than single syndrome testing. Our simulation

results support the probability analysis. It is proven that Algorithm OPTM, the optimal

category 3AM multiple syndrome diagnosis algorithm, achieves 100% correct diagnosis in an

N processor system as IV —> oo provided that R 2: a(IV) log N testing stages are used, where

a(N) —► oo arbitrarily slowly as IV -> oo. it is also shown that no category 3AM can achieve

asymptotically correct diagnosis as IV —> oo if y is constant and R <. log N/a(N). If y is con­

stant, the computational complexity of the OPTM algorithm is 0(1?), which is the minimum

possible for any multiple syndrome diagnosis algorithm since R testing stages are required.

The OPTM algorithm requires each processor to execute identical tasks with its neigh­

bors, send and receive the results of the tasks from its neighbors, compare the results received

with its own results, and execute a diagnosis procedure to determine whether it should diag­

nose itself to be faulty or non-faulty. The diagnosis procedure must be executed by a diagnos­

tic component which is either ultra-reliable (part of the hard-core of the processor) or

operates in a “ fail-safe” mode. In the former case, the diagnosis algoritlun is required to be

simple. The thresholds used by the OPTM algorithm can be precomputed. Thus, the OPTM

Di
ag

no
sti

c
Ac

cu
ra

cy

Di
ag

no
sti

c
A

cc
ur

ac
y

95

100

0.1 0.2 0.3 0.4 0.5

— o —

OPTM
- FR

OPT3A

(a)

0.1 0.2 0.3 0.5

 D— OPTM
— FR

OPT3A

(b)

Figure 5.3. Accuracy with square mesh and MTTF of (a) 10K and (b) 100K hours.

96

u
•Z3Cfi0
1

50

40

30

20

10

0
0.1 0.2 0.3 0.4 0.5

OPTM
- FR

OPT3A

(a)

100-1

80-
8<
u

*X3
0
1
S 40-

o —’

0.1 0.2 0.3 0.4 0.5

OPTM
FR
OPT3A

(b)

Figure 5.4. Accuracy with TMR structure and MTTF of (a) 10K and (b) 100K hours.

97

algorithm simply requires the diagnostic component to accumulate integer quantities and com­

pare them against precomputed threshold values. The diagnostic component can therefore be a

very simple digital circuit.

CHAPTER 6

DISTRIBUTED DIAGNOSIS

This chapter addresses the distributed implementation of the algorithms presented in the

previous chapters.

6.1. Introduction

There are three main aspects to the distributed diagnosis problem: getting the syndrome

information to all of the nodes, performing the diagnosis in a distributed manner, and getting

(he diagnosis decisions to all of the nodes. However, given certain assumptions, the last

aspect of the distributed diagnosis problem may not be necessary. During normal operation, if

the diagnostic component of a given node knows that the node is faulty, then any time a task

is sent to that node, the diagnostic component can intervene and refuse to accept the task.

Thus, if the diagnosis information that each node has is consistent with the diagnosis informa­

tion of all other nodes (e.g., each node only makes a diagnosis of itself), then it may not be

necessary to exchange diagnosis information. Therefore, this chapter addresses only the first

two aspects of the distributed diagnosis problem: getting the syndrome information to all of

the nodes and performing the distributed diagnosis.

For a category 3 or 3A probabilistic diagnosis algorithm, executing the algorithm in a

distributed maimer is very simple. Each node executes its assigned inter-processor tests, using

comparison-testing or an alternate method. Each time a node m; tests another node Uj, ut tells

Uj its test result. Then, each node executes its diagnosis algorithm to diagnose itself as faulty

98

99

or non-faulty. Since purely local syndrome information is being used, no other communica­

tion is necessary.

For category 2 and 2A probabilistic diagnosis, distributed implementation is not so

straightforward. The difficulty lies in the fact that this type of algorithm effectively uses a

summarized form of the entire syndrome information. Thus, the testing result at one comer of

the system interconnection network may have to be sent to the opposite comer of the intercon­

nection network. Part of the proposed solution to this problem involves making all required

communication occur between nodes which are adjacent in the interconnection network. The

number of such communication steps required (besides the initial reliable communication

between neighboring nodes to determine each other’s testing results) is at most 2 |F | , where F

is the set of nodes diagnosed as faulty by the diagnosis algorithm.

Category 1 diagnosis requires the entire syndrome to be reliably communicated to every

non-faulty node. Unlike categories 2 and 2A, there is no other choice but to send multiple

copies of each node’s broadcast message to every other node in the system. Once each node

has all of the syndrome information, it can simply execute the diagnosis algorithm indepen­

dently of the other nodes. However, in order to guarantee that each node diagnoses the same

set F as the set of faulty nodes, it is normally required that every node must agree on the test

results of faulty as well as non-faulty nodes. Since nodes can be intermittently faulty and no

assumptions have been made regarding the manner in which nodes can be faulty, this implies

that the communication problem must be viewed as a Byzantine Generals problem [41].

For llie distributed implementation of the diagnosis algorithms presented, it is now clear

that solutions to the all-to-all reliable broadcast and nearest-neigbbor reliable multicast prob­

lems are required. Efficient solutions to Uiese problems are presented in Sections 6.3 and 6.4.

Note that one possible all-to-all reliable broadcast method is to use x iterations of nearest-

neighbor reliable multicast, where x is the diameter of the interconnection network. However,

100

this solution is not as efficient as the one presented in Section 6.3. In the next section, a

method is shown for efficiently implementing distributed versions of category 2 and 2A algo­

rithms using only nearest-neighbor reliable multicast. The computational complexity analysis

in this chapter is done under the assumption that a node can use all of its incoming and outgo­

ing links concurrently. This assumption is not unrealistic as it is satisfied by the HARTS rout­

ing controller chip [23].

6.2. Distributed Implementation of Category 2 and 2A Algorithms

The method for the distributed implementation of category 2 and 2A diagnosis algo­

rithms is illustrated by describing the distributed implementation of the DSK* algorithm. To

implement other category 2 or 2A probabilistic diagnosis algorithms, the evaluation function

e(.), the procedure for updating the evaluation function when nodes are identified as faulty,

and the stopping condition must be appropriately modified. The following is the distributed

version of the DSK* algorithm.

Algorithm DDSK*:

1. for each e V, doparallel
let e(Ui) = d(ui) + /,•;
send message <e(u,)> to the nodes in r(w,);

2 . for each «,• e V , doparallel
if e(Uj) ^ 1 and Vuj e ĵ (e(w;) > e(u j)) or (e(n,) = e(uj) and (i > J))

begin
declare u-t to be faulty;
e(Ui) = 0;
for each uk e r(M(), doparallel

begin
Ui sends < e (n ,) , fau lty> to uk\
if aik = 1 then

begin
e(uk) = e(uk) - 1;
uk sends <e (uk)> to r(«t);

endif
endfor

endif;
3. repeat Step 2 until e(n,-) < 1 for all r/f- e V ;

then

101

The execution of the DDSK* algorithm is very simple and requires a minimal amount of

communication overhead. As defined above, e(w,) £ 1 if and only if </(«,) > 0. Thus, the

stopping condition in Step 3 simply checks whether all one-links in the syndrome have been

accounted for. In Step 2, the algorithm checks whether node u,- can be considered to be a

local maximum. The reason for the second condition within the brackets in Step 2 is so that

two adjacent nodes do not both consider themselves to have locally maximum e (.) values. All

communication is done between nearest neighbors. In each iteration of Step 2, messages are

propagated at most two hops. Effectively, this two-hop message propagation allows the global

diagnosis algorithm to be implemented using local calculations. The following theorem states

that DDSK* is a correct distributed implementation of DSK*.

Theorem 6.1: If /,• < 1 for all m ; g V, Algorithm DDSK* always produces the same

diagnosis as Algorithm DSK*.

Proof. Given an arbitrary syndrome, let F x be the diagnosis produced by DSK* and let

F 2 be the diagnosis produced by DDSK*. For simplicity in analysis, let us assume that e (.)

values are different for all nodes. If e(.) values are ever identical, the ordering implied in

Step 2 of DDSK* can be used to break ties.

Suppose there exists a node uk g F j that is not a member of F 2. Without loss of gen­

erality, let uk be the first such node chosen by DSK*. Then uk had to have the globally max­

imum updated e (.) value in the DSK* algorithm. All nodes um chosen in previous steps by

DSK* must also have been chosen by DDSK*. Thus, since the updating procedure is the

same for DSK* and DDSK*, uk has the globally maximum updated c(.) value in the DDSK*

algorithm. This implies that e(uk) is also locally maximum, and thus, uk g F 2 because of

Step 2 of DDSK*. Therefore, F (c F 2.

102

Suppose there exists a node uk e F 2 that is not a member of F t. By Step 2 of DDSK*,

it is known that uk has a locally maximum e(.) value and that e{uk) £ 1. Note that e(.)

values are never increased as nodes are identified to be faulty in both DSK* and DDSK*. Let

«m be the node with the globally maximum e(.) value. e{um) > e(uk) 5: 1. Thus, um must

be chosen to be faulty by DSK*. Since a globally maximum e(.) value is also a locally max­

imum «?(.) value, um must also be chosen to be faulty by DDSK*. Since uk is itself a local

maximum, while the e(.) values of uk ’s neighbors may be decreased, e{uk) cannot be

decreased by the above choice of . Eventually, all such nodes um will be exhausted. At

that time, uk will have a globally maximum e{.) value, Thus, at that tune, uk will be chosen

as faulty by DSK*, and thus, uk e Fj. Therefore, F 2 c F | . Q.E.D.

The computational complexity of the DDSK* algorithm is 0(]F /|), where F ' is the set of

faulty nodes. Thus, since the number of faulty nodes is typically much less than the number

of nodes in the system, this is an efficient distributed algorithm.

6.3. AH-to-AlI Reliable Broadcast

In addition to distributed diagnosis, all-to-all (ATA) reliable broadcast is essential for

implementing several key fault-tolerant algorithms for clock synclironization [39,42,54] and

distributed agreement [22,41]. In these algorithms, each non-faulty node must be able to

correctly deliver its message to all of the other non-faulty nodes in the system. Given a regu­

lar interconnection network with N nodes and connectivity y, this can be done if every non-

faulty uode sends its message to every other node through y disjoint paths. All algorithms

described in this section are of this type. Using this type of method, y - 1 faulty nodes/links

can be tolerated if signed messages are used; min{[-^] - 1 , [y] - 1 J faulty nodes/links with

unsigned messages. To disrupt communication between nodes n and v with ^ y faulty

nodes/links, there must be at least one faulty node or link in every disjoint path from u to v .

103

Thus, using this type of method, the probability of correct operation is high even when £ y

faulty nodes/links are present.

In this section, an efficient solution for ATA reliable broadcast is presented that works

on a class of interconnection networks which includes regular meshes and binary hypercubes.

Regular meshes [10] and binary hypercubes [3,59] have drawn considerable attention in recent

years as an interconnection topology for the processors of a distributed computing system.

Most previous work on reliable broadcast [53] and ATA reliable broadcast [26] has

implicitly assumed a store-and-forward routing method. These algorithms can be described by

executing the broadcast in several steps and specifying the point-to-point communication pat­

terns that occur at each step. Then the objective is to minimize the total time required for the

broadcast operation by using a minimal number of steps with minimal-length messages

transmitted at each step. Ramanathan and Shin’s reliable broadcast (RS) algorithm [53]

requires y + 1 steps on a hypercube of dimension y if each node can simultaneously use all of

its outgoing links. Fraigniaud’s ATA reliable broadcast (FRS) algorithm for hypercubes [26]

simply involves executing the RS algorithm at each node in lock step. In every step after the

first, each node must merge two messages from the previous step before sending the larger

message in the current step. In the last step, the message formed after merging can be made a

little bit shorter by removing the portion of the message that would be returned to the origina­

tor of that portion of the message. The time required for the FRS algorithm is

(y 3- 1) + (2Y- 1) L xl , where xs is tire message startup time, L is the message length, and

xL is the propagation time per unit length message. To achieve this time, 100% of the link

capacity must be used for the entire duration of the ATA broadcast operation.

Recently, there has been work on broadcast algorithms that take advantage of the faster

communication possible using virtual cut-through switching [36]. In virtual cut-through [38]

and wormhole routing [21], instead of storing a message completely in a node and then

104

forwarding it to the next node, the head of the message is advanced directly from incoming to

outgoing channels. Only a few control bytes are buffered (in a small on-line FIFO buffer) at

each node to determine the outgoing channel for the message. If all outgoing channels are

busy, then the entire message is buffered (in a much larger intermediate storage buffer) in the

case of virtual cut-through and prevented from moving forward in the case of wormhole rout­

ing. Deadlock-free wormhole routing is addressed in [21]. Special routing controller chips

have been designed for wormhole routing [20] and virtual cut-through [23]. The operation of

advancing a message immediately from incoming to outgoing channels is referred to as cut-

through. When a message is being advanced in this manner, it is possible for the node to also

receive the message by copying the portions of the message as they pass through the FIFO

buffer [36]. In this section, it is assumed that all messages are transmitted in fixed sized pack­

ets. It is also assumed that different sizes can be used for packets of different types.

Kandlur and Shin’s reliable broadcast (KS) algorithm [36] is an efficient algorithm for a

regularly wrapped hexagonal mesh topology which uses virtual cut-through. In broadcast

algorithms that use virtual cut-through, besides minimizing the number of send-receive opera­

tions on the longest path, it is desirable to maximize the number of send-receive operations

that can be implemented with cut-through. In the KS algorithm, the longest path has

2 x (diameter of mesh) send-receive operations, among which all but three can use cut-

tlirough. The analysis done in [36] shows that for a single reliable broadcast operation, the

KS algorithm is much faster than an algorithm based on the use of edge-disjoint Hamiltonian

cycles (HC’s).

ATA reliable broadcast is an extremely expensive operation. For any interconnection

network with N nodes, (N - 1) x is the minimum time required, where % is the time to

transmit a packet from a node to its neighbor. To achieve this minimum time, 100% of the

link capacity must be used for the entire duration of the ATA reliable broadcast operation. As

105

an example, if N = 10,001 and x = 1 millisecond, the entire operation requires 10 seconds,

during which lime the network is completely congested with the ATA reliable broadcast.

The ATA reliable broadcast operation should have minimal adverse effect on the normal

operation of the system. At the same time, for applications such as clock synchronization,

timely execution of the ATA reliable operation is required [54], These two requirements are

contradictory since a lower total execution tune Tall implies a higher link utilization, H , by the

ATA reliable broadcast operation. Thus, it is desirable to be able to adjust H and Tall values

depending on the priority of the task requiring the ATA reliable broadcast. One method for

reducing H is to execute the RS algorithm (for hypercubes) or the KS algorithm (for hexago­

nal meshes) for each node in turn, with the reliable broadcast for one node starting when the

previous node finishes. This method reduces H at the expense of increasing the required exe­

cution time Tall by a factor of N . An alternate method is to have several nodes execute the

reliable broadcast operation at any given tune. However, if this is done using the KS or a

similar reliable broadcast algorithm, it is possible for two ATA reliable broadcast packets to

contend for the same communication link, thus eliminating the possibility of both packets

using cut-through.

In heavy network traffic, the advantages of virtual cut-through are minimal because most

send-receive operations will be forced to use store-and-forward instead of cut-through. In fact,

as will be shown in Section 6.3.4, in heavy network traffic, a solution to the ATA reliable

broadcast problem using store-and-forward routing has lower execution time than any solution

that uses virtual cut-through. Thus, an ATA reliable broadcast algorithm using virtual cut-

through routing should be optimized for low to moderate network traffic and have minimal

adverse effect on the normal operation of the system.

In the ATA reliable broadcast solution presented, for implementation reasons, the algo­

rithm interleaves the nodes that send a broadcast message along a particular HC and executes

106

the required broadcast operation in several stages. By adjusting the interleaving distance Tj, it

is possible to decrease H and increase Tall by the same factor. This solution can be used

essentially unchanged on a large class of interconnection topologies including hypercubes and

meshes. Under a model suitable for analyzing virtual cut-through, it is proven that this solu­

tion with the choice of minimum Tj results in the minimum value of TaU when there is no

other network traffic. Under normal network traffic conditions, this solution with a suitable

choice of Tj compares favorably to several other possible ATA reliable broadcast algorithms.

Under heavy network traffic conditions, a store-and-forward solution results in lower Tall than

any virtual cut-through solution. However this comes at the expense of significantly delaying

normal network traffic. The advantages of the proposed solution are most evident when the

probability of cut-through is high, broadcast messages are short, and the interconnection net­

work is large.

6.3.1. Interconnection Networks

Recall from Chapter 2 that G is the undirected graph corresponding to the physical inter­

connection structure of the system and that GlUr is the graph G with every undirected edge

replaced by two directed edges (one in each direction). A graph is said to be y-regular if all

nodes in the graph have degree y. A regular graph is one that is y-regular for some y [8]. A

graph G is said to belong to the class A if the following two conditions are satisfied.

LC1: G is y-regular for an even integer y.

LC2: There are undirected edge-disjoint HC’s in G .

The ATA reliable broadcast algorithm described in this chapter can be used on any graph

belonging to the class A. Note that if G belongs to the class A, then y is the connectivity of

G by condition LC1.

107

An m -dimensional hypercube, denoted by Qm, has N = 2m nodes and m2™"1 edges. If

directed communication links are used, Q ^r has m lm directed edges. A Qm is recursively

defined as: (1) go is a single point, and (2) Q„, = K 2 x g m_j, where K 2 is a complete graph

of 2 nodes and x denotes the product operation on two graphs [8]. Fig. 6.1 shows examples

of 0i> 0 2 0 3 - Each node in a Qm is uniquely represented by an m -bit address such that

the addresses of adjacent nodes differ in exactly one bit. The bits in an address are referred to

in right to left order from 0 to m - 1. Two adjacent nodes which differ in the i -th bit will be

said to be in direction i (0 <, i <, m - 1) with respect to each other.

Hypercubes of even dimension belong to the class A. Condition LC1 is satisfied because

a Qm is m -regular with degree y = m . Condition LC2 is satisfied by Theorem 6.2 below.

The proof of Theorem 6.2 is a constructive one; thus, it can be used to construct the m

undirected edge-disjoint HC’s in a Q 2m. As an example, two undirected edge-disjoint HC’s in

a Q4 are shown in Fig. 6.2(a) (although Fig. 6.2(a) shows a square mesh, it is also a Q 4 since

a Q4 can be redrawn as a 4 x 4 torus-wrapped square mesh). Let Ck denote an undirected

cycle of length k. Then Theorem 6.2 can be proven with the aid of the following two lem­

mas. Reference [24] gives the construction method for products of two cycles and reference

[25] gives the construction method for products of three cycles.

Lemma 6.1: [24] Ck x Ct (k, I £ 3) can be decomposed into 2 undirected HC’s.

Lemma 6.2: [24,25] Ck x Ct x Cr (k, I, r S 3) can be decomposed into 3 undirected

HC’s.

Theorem 6.2: [33] A Q2m contains m undirected edge-disjoint HC’s.

Proof. The theorem can be proven by induction on 2m . For fixe induction basis, a Q 2 is

a cycle and a Q4 has two undirected edge-disjoint HC’s by Lemma 6.1. Assume a Q 2k con­

tains k undirected edge-disjoint HC’s for all k <,m. We must show that a 0 2 m+2 contains

108

o — o
(a)

00
(b)

010

110 111

Oil

100 101

000 001

(c)

Figure 6.1. Illustrative examples of hypercubes (a) Q i, (b) Q%, and (c) Q 3.

109

m + 1 undirected edge-disjoint HC’s.

If m + 1 is even, then decompose the Q 2m+2 int° two Qm+\'s. By induction, each Qm+\

contains (m + l)/2 undirected edge-disjoint HC’s. Create (m + l)/2 graphs by multiplying

(applying the product operation on) the i -th HC’s in the two decomposed hypercubes, for all

1 £ i £ (m + l)/2. By Lemma 6.1, each product graph contains two undirected edge-disjoint

HC’s. Then, since all product graphs are edge-disjoint, there exist (m + 1) undirected edge-

disjoint HC’s in the Q 2m+2-

If m + 1 is odd, then decompose the 0 2 m+2 int0 a Qm and a 0„l+2. Create m/2 - I

graphs by multiplying the / -th HC’s in the two decomposed hypercubes, for all

1 £ 1 <*m/2- 1. By Lemma 6.1, each product graph again contains 2 undirected edge-

disjoint HC’s. There remains one unused HC in Qm and 2 unused HC’s in 0„l+2. From

Lemma 6.2, it is known that the product of these 3 cycles can be decomposed into 3 HC’s.

Thus, there are (m + 1) undirected edge-disjoint HC’s in the 0 2m+2. Q.E.D.

The torus-wrapped square mesh, shown in Fig. 6.2(a), belongs to the class A. SQm is

defined to be a torus-wrapped square mesh of size m , where m is the number of nodes in a

single row or column. Since the degree of every node in a SQm is 4, condition LC1 is

satisfied with y = 4. Fig. 6.2(b) shows two undirected edge-disjoint HC’s in a SQ4, thus satis­

fying condition LC2. A similar pattern can be used to find two undirected edge-disjoint HC’s

for any SQm.

A hexagonal mesh (hex-mesh) has the general structure shown in Fig. 6.3(a), which is an

unwrapped hex-mesh of size 3. In order to achieve regularity and homogeneity such that

identical hardware, software and protocols can be applied uniformly over the network, it is

required that the nodes on the hexagonal periphery be wrapped around systematically.

(<5 hV |-V
> - - c > - - c > - - c ?)
> - - c y - - c y - - c

b

< S
>
K L S 1

> >
H >)

(a)

O

+y

HCx HCy

Figure 6.2: Torus-wrapped square mesh (a) with all links and (b) decomposed into HC’s.

I l l

A general systematic method for wrapping, called C-type wrapping is defined in [10].

The six oriented directions in a hex-mesh are shown in Fig. 6.3(a). A hex-mesh of size m can

be partitioned into 2m - 1 rows with respect to any of the three directions +x, +y, and +z.

For notational purposes, when a hex-mesh is partitioned into 2m - 1 rows with respect to any

direction and the hex-mesh is rotated such that the corresponding direction points to tire right,

the rows are referred to as rows 0 through 2m - 2 from the top to the bottom. In addition,

rows 0 to m - 2 and rows m to 2m - 2 are referred to as the upper and lower parts of the

hex-mesh, respectively. [a]b a a mod b , where a and b are integers. C-type wrapping is

defined in [10] as follows: Wrap a hex-mesh of size m in such a way that for each of the

three ways of partitioning the nodes into rows, the last node in row i is connected to the first

node in row [/+ m -l]2nl_1.

Several topological properties of hex-meshes with the C-type wrapping are given in [10].

Fig. 6.3(b) illustrates a C-type wrapped hex-mesh of size m , denoted as HMm. A HMm is a

homogeneous processing surface, i.e., all nodes are topologically identical. The diameter of

HMm is m - 1, and there are 3m (m - 1) + 1 nodes in a HMm [10]. The edges in any direc­

tion of a HMm have a very useful property. Theorem 6.3 states that the edges in any direction

of a HMm describes a HC. Based this theorem, it is known that there are three undirected

edge-disjoint HC’s in a HMm. Thus, since a HMm is also y-regular with y = 6 , it belongs to

the class A.

Theorem 6.3: The edges in any direction of a HMm describes a HC.

Proof. Without loss of generality, let us consider the +x direction. Referring to the

definition of a C-type wrapping, we know that a HC will result if, starting from any row i and

applying the definition repeatedly, all rows are visited and no row is visited twice before row i

is encountered again. Checking this condition for row i = 0, repeated application of the C-

type wrapping definition results in the sequence of row visits

112

- * +JT

+ 2
13]

(a)

2 3 3 4 4 5

13

17

16

14

14

15

Figure 6.3: Hex-mesh of size 3 (a) without wrapping and (b) with C-type wrapping.

113

fc+t fc
0 — > t t i— 1 2m — 2 — > h i — 2 — T 2m — 3 — > ■ ■ • — > 2m — ----------------—> m — — —T • • •

2 2

where k denotes the order in wliich the row is visited. Except for the first two rows visited,

k+1all rows of the form 2 m — are in the lower part of the hex-mesh and all rows of the

fcform m - — are in the upper part of the hex-mesh given k <. 2m - 1. Thus, if fc ^ 2m - 1,

fcit is clear that no row is visited twice. Setting m = 0, we get fc = 2m. Thus, on the
2

2m -th row visit, row 0 is encountered again, and no row is visited twice before fc = 2m .

Thus, all 2m - 1 rows must have been visited. Q.E.D.

6.3.2. Proposed Solution

The proposed ATA reliable broadcast solution is described for all interconnection net­

works in the class A. Let G be the undirected graph representing any such interconnection

network. G is a y-regular graph (y even) with undirected edge disjoint HC’s. In G d,r,

there are y directed HC’s HC H C2, • • * , HCr For a given node v, nexti (v), and previ (v)

denote the nodes immediately following and preceding node v in directed HC HC{. Let us

arbitrarily designate a node as N 0. For any node v , lDt (v) is the distance from N 0 to v when

traversing HCt . The proposed solution is described below.

IHC Algorithm:

For / = 0 to T| — 1 do
begin

for j = 1 to y doparallel
for every node v doparallel

if ([/£>; 0')]n = /) then
v sends its message to nextj(v)',

for j = 1 to N - 1 do
for fc = 1 to y doparallel

for every node v doparallel
begin

receive message from prevk (v); (*}
if (y < N - 1) then

114

relay message to nextk (v); {*}
end;

end.

The IHC algorithm is performed in T| stages. In a single stage, every T|-th node in HCj

is permitted to start a message along HC} for every j (1 <, j <, y). t | can be considered as the

interleaving distance. Once messages have been started along directed HC’s, they keep

flowing for N - 1 hops along the cycles in which they started. If there are no other messages

in die network, then the two steps indicated by “ {*}” correspond to a single cut-through

operation at each node. In discussing the IHC algorithm, the outermost for loop is referred to

as the t| stages of the algorithm and the transmission of packets in cycle HC} during stage i is

referred to as a HCj-cycle.

We now address the implementation of the IHC algorithm using virtual cut-through. Let

us use an architecture similar to the routing controller chip [23] for HARTS [10], a 19-node

(HM3) version of which is currently being built at the Real-Time Computing Laboratory. A

crucial feature in the HARTS routing controller chip is that all incoming and outgoing links

(receivers and transmitters) can be used simultaneously. Thus, such a capability is also

assumed in our architecture, shown in Fig. 6.4.

hi high bandwidth communication networks, it has been observed that a large portion

(about 80%) of the communication latency is spent in the processing at the transmitters and

receivers [35]. (The delay caused by the actual transmission accounts for only 20% of the

latency.) Virtual cut-through can be seen as an attempt to eliminate much of the processing

(i.e., store-and-forward) at the intermediate nodes between a source and a destination. Thus,

when an incoming message cuts through a node, only a very small amount of processing (with

the aid of special hardware) is required to determine where and how to advance the message.

In Fig. 6.4, the length of the FIFO buffer is determined by the minimum number of bytes that

115

Intra-node
Communication

System

FIFO transmitter

FIFO transmitter

FIFO
transmitti

intermediate storage buffer

Figure 6.4: Node architecture to support virtual cut-through.

116

must be seen and the additional delay required to determine the outgoing transmitter. Thus,

the FIFO buffer has a length of at least three words: one word for start-of-packet, one word

for the type of packet (control, low/high priority, broadcast, etc.), and one word for a routing

tag to be used in routing decisions. Many applications in which ATA reliable broadcast is

required, such as clock synchronization and distributed diagnosis of intermittently faulty pro­

cessors, have very short messages that must be broadcast (such as a single clock value or y

bits). For other applications, the messages can be split into fixed size packets. Thus, for the

IHC algorithm, a packet size of p x BFIFO is used, where BFIFO is the size of the FIFO

buffers at die receivers and p. is a small integer greater than 1.

Under ideal conditions, in which all nodes can operate perfecdy synchronously and there

are no other messages in the network, the IHC algorithm can be executed with r\ = p (assum­

ing that = 0). In this case, all possible cut-throughs in the IHC algorithm can occur. If

the conditions are less than ideal, then an interleaving distance t| diat is greater than p must be

used. With q > p, strict synchronization is not required and normal network traffic can be

accommodated. The choice of r\ depends on the degree of link utilization (by the ATA reli­

able broadcast operation) desired and the degree of synchronization available. Note tiiat even

if nodes start sending packets in a cycle H C j “ out of sequence” (possibly due to synchroniza­

tion inaccuracies), it merely affects the amount of time required and does not affect the correct

execution of the algoritlun. Also, if normal network traffic or synchronization inaccuracies

cause one H C j-cycle to complete before the other HC'k-cycles (k * j) , then the nodes on cycle

H C j can start on stage i + 1 immediately.

When a packet arrives at a node v on cycle H C j , it is possible that the transmitter for

H C j is busy. In this case, the packet is stored in the intermediate storage buffer at node v . If

the next packet arrives on cycle H C j before the transmitter for H Cj is made available, then it

is also blocked. This packet is then queued behind the first packet. This queue of H C j

117

broadcast packets is built up as long as the transmitter for H C j is busy (since broadcast pack­

ets are short, space should not a problem). When the transmitter for H C j becomes available,

the packets in the H C j broadcast queue are transmitted one after the other with the spacing

between packets determined by the capabilities of the transmitters and receivers. If any new

H C j broadcast packet arrives during this time, it is permitted to pass by if possible, and

queued otherwise.

There are several ways in which nodes can determine when to stop relaying packets

flowing in any given cycle H C j . One method is to count the number of packets which have

been passed. However, this can result in one extra “ send” back to the originator of the

packet. To avoid this last “ send” , the suggested method is to add the address of the last node

w (with respect to node v) to node v ’s packet (in the space normally reserved for the routing

tag). Then, instead of counting packets, node w simply checks the address of each HCj

broadcast packet to determine if it should stop relaying the packet.

6.3.3. Reliable Broadcast with Virtual Cut-Through

An ATA reliable broadcast algorithm can be described by first presenting the reliable

broadcast algorithm for a single node and then showing how all nodes execute this reliable

broadcast algorithm. Two methods have previously been proposed for converting a reliable

broadcast algorithm into an ATA reliable broadcast algorithm. In the first method, every node

executes the reliable broadcast algorithm concurrently and in lock step [26]. In general, this

uses 100% of the available link capacity and may require merge and possibly even split opera­

tions. These operations can only be done with store-and-foiward routing, i.e., it is not possi­

ble with virtual cut-through switching.

In the second method, each node executes the reliable broadcast algorithm in turn, with

the reliable broadcast for one node starting when the previous node finishes. This method

118

leaves a certain amount of unused link capacity (for use by other tasks) and can be executed

with virtual cut-through if the individual reliable broadcast operations can use virtual cut-

through. This method can be considered as an alternative to the proposed solution. Thus, the

VRS algorithm, which is the RS algorithm modified to use virtual cut-through, is described.

The KS and VSQ algorithms are described next. The VSQ algorithm is a virtual cut-through

reliable broadcast algorithm for a SQm. These three algorithms can form the basis for ATA

reliable broadcast in hypercubes, hex-meslies, and square meshes. VRS-ATA (KS-ATA,

VSQ-ATA) is defined to be the ATA reliable broadcast algorithms in which the VRS (KS,

VSQ) algorithm is executed for each node in turn, with one node starting the VRS (KS, VSQ)

algorithm when the previous node completes.

Hypercube Algorithm

The RS algorithm is based on the recursive doubling algorithm for broadcast in a hyper­

cube. The recursive doubling algorithm is illustrated with Example 6.1.

Example 6.1: Suppose that node 0 wishes to broadcast in the Q 3 in Fig. 6.1. This is

accomplished as follows:

Step 1: Node 0 sends its packet to node 1 (direction 0).

Step 2: Nodes 0 and 1 simultaneously send the packet to nodes 2 and 3, respectively (direc­

tion 1).

Step 3: Nodes 0 through 3 simultaneously send the packet to nodes 4 through 7, respectively

(direction 2).

In the RS algorithm, the node that wishes to broadcast a packet sends a copy of the

packet to all of its neighbors. Each of its neighbors then simultaneously execute the recursive

doubling algorithm. This algoritlun requires y + 1 (2y) steps if each node can use all (only

119

one) of its outgoing communication links at a time. It was proven that if (tie RS algorithm is

used, each node receives y copies of the packet through y disjoint paths in the fault-free situa­

tion [53]. Hie execution of the RS algoritlun is illustrated with Example 6.2.

Example 6.2: Suppose node 0 wishes to reliably broadcast a packet to all other nodes

in a 6 4. The send-receive operations that occur at each step of the algorithm are shown in

Table 6.1. The send-receive operations shown in bold in Step 5 of the algorithm (column 8)

can be optionally omitted since they simply return copies of the packet to their originator.

Column Number
Step # 1 2 3 4 5 6 7 8

1
0—>1
0-^>2
0->4
0—>8

2
1—>3
2—>6
4->12
8—>9

3
3->7
6->14

12—>13
9—>11

1—>5
2—>10
4—>5
8—>10

4
7—>15

14—>15
13—>15
11—>15

5—>13
10->11
5—>7

10—>14

3—>11
6—>7

12—>14
9—>13

1—>9
2—>3
4—>6
8—>12

5
15—>14
15—>13
15—>11
15—>7

13—>12
11—>9
7—>3

14—>6

11—>10
7—>5
14—>10
13—>5

9—>8
3—>1
6—>2
12—>4

7—>6
14—>12
13—>9
11—>3

5—>4
10—>8
5—>1

10—>2

3—>2
6—>4

12—>8
9—>1

1-> 0
2—>0
4—>0
8—>0

Table 6.1: Communication patterns for Example 6.2.

To convert the RS algorithm into an efficient virtual cut-through algorithm, it is neces­

sary to convert the maximum number of store-and-forward operations into cut-through opera­

tions. When a node n receives a packet from direction i and then immediately sends it on in

direction [/+!]„,, w will be said to have forwarded the packet. When a node « sends a packet

120

in direction i and later sends a copy of the same packet in direction [i+ l]w, u will be said to

have redirected the packet. Clearly, every time a node forwards a packet, a cut-through opera­

tion can be used at that node. Also, every time a node has to initiate or redirect a packet, it

cannot be done with cut-through. In Table 6.1, the send-receive operations have been

separated into columns. In a given column, all of the send-receive operations except the first

and last ones are operations in which the packet is being forwarded to the next node. When­

ever a new column is started, a redirection is taking place.

In the VRS algorithm (RS algorithm modified to use virtual cut-through), all send-receive

operations in which a packet is forwarded is implemented as a cut-through operation. All

send-receive operations in which a packet has to be redirected is implemented as a store-and-

forward operation. The longest path in the VRS algorithm consists of y - 1 store-and-forward

operations and 2 cut-through operations (since there is no redirection of the packets received in

Step 2 of Table 6.1).

C-wrapped Hex-mesh

The KS algorithm is an efficient virtual cut-through reliable broadcast algorithm for a

HMm. When a node v wishes to perform a reliable broadcast, it initiates a copy of its broad­

cast packet in all six directions. The pattern of cut-through and store-and-forward operations

are identical for each of the six directions. This pattern is shown for one direction in Fig. 6.5.

By inspection, it can be seen that the longest path consists of 3 store-and-forward operations

and 2m - 5 cut-through operations. Assuming m £ 2, the number of cut-lhroughs required is

no more than 2 a / — ------ 5 since 3m {m - 1) + 1 = N .

121

Torus wrapped Square Mesh

The VSQ algorithm is a virtual cut-through reliable broadcast algorithm for a SQm, an

m x m torus-wrapped square mesh. This algorithm is similar to the KS algorithm. When a

node v wishes to perform a reliable broadcast, it initiates a copy of its broadcast packet in

each of the four possible directions. Then the pattern of cut-through and store-and-forward

operations are identical for each of the four directions. When designing this pattern for one

direction, it must be insured that the patterns for any of the other directions do not “ interfere”

with the patterns for that direction. Interference would correspond to two arrows pointing in

the same direction over the same link, which would mean that one packet could block the pro­

gress of another. A pattern satisfying this condition for one direction is shown in Fig. 6 .6 .

The longest path length consists of 3 store-and-forward operations and 2Vv — 6 cut-through

operations.

6.3.4. Comparative Analysis

In this section, the IHC algoritlun is compared with other possible ATA reliable broad­

cast algorithms on the basis of (1) generality, (2) effect on normal system operation, and (3)

execution time. In this analysis, it is necessary to distinguish between the utilization of the

available communication links by the ATA reliable broadcast operation and by all other tasks.

The former is referred to by the link utilization parameter H and the latter is referred to by p.

p = 0 (p = 1) represents an unloaded (completely congested) system. In the context of this

chapter, H is referred to as link utilization and p is referred to as normal network traffic.

Generality

In tenns of generality, the IHC algoritlun is clearly superior to any of the VRS-ATA,

KS-ATA, VSQ-ATA, and FRS algorithms since the IHC algorithm can be executed on any

topology in the class A while all of the other algorithms are each restricted to one topology.

122

,(d)

»------ (c)

(b)

(a)

(c)

(b)

<d)

Figure 6.5: KS algorithm initiated in one direction.

Figure 6 .6 : VSQ algorithm initiated in one directioa

123

However, if there is a regular, homogeneous topology for which one wishes to design an ATA

reliable broadcast algorithm, then using the same method as in the KS-ATA algorithm, one

can design an efficient reliable broadcast algorithm and simply have each node execute the

reliable broadcast algorithm in turn. Alternatively, using the same method as in the FRS algo­

rithm, one can have all of the nodes execute the reliable broadcast algorithm in lock step, with

messages being merged and split as required. Thus, in this sense, the IHC algorithm is more

general only because it does not require a new reliable broadcast algorithm to be developed for

each new topology.

The ideas presented in the IHC algoritlun can be used in a more general manner to

design alternative ATA reliable broadcast algorithms. To illustrate, note that when the IHC

algorithm is used, the y disjoint paths taken from a source to a destination are not necessarily

the shortest paths. The RS algorithm has the property that the y disjoint paths taken from the

source to any other node are the y shortest such disjoint paths. This is desirable because the

probability of successfully sending a packet from a source to a destination is dependent on the

length of the path taken.

Let us design an interleaved ATA reliable algorithm which is based on the RS algorithm.

To do tins, the RS algorithm is first converted to the VRS algorithm. However, referring to

Table 6.1, the send-receive operations are coordinated such that Column k is executed after

Column k - 1 for all k (2 <, k <, 7). Denoting node k 's broadcast packet as Mk, Table 6.2

shows the entire sequence of send-receive operations for all Mk (0 <, k ^ 7) in a Q 3. If all

nodes execute their send-receive operations in lock step, then store-and-forward routing must

be used. However, assuming that p = 2, virtual cut-through can be used if nodes 0, 3, 5, and

6 initiate their broadcast packets in the first stage and nodes 1, 2, 4, and 7 initiate their broad­

cast packets in a subsequent second stage. In general, for a Qm, the nodes initiating broadcast

packets in the first stage should be such that the distance between any two nodes is two. If

the maximum number of such nodes is chosen for the first stage, then the remaining nodes

should also be separated from each other by at least two hops. Thus, two stages are sufficient

for any Qm. This algorithm, denoted as the VRS-IHC algorithm, is similar to the IHC algo­

rithm in that the ATA reliable broadcast is performed in stages to prevent contention for the

same communication link by two or more broadcast packets at any time.

Step # M0 M , m 2 m 3 m 4 m 5 m 6 m 7

1
0-41
0—>2
0—>4

l -) 0
1-43
1—>5

2-»3
2-40
2-46

3-42
3-41
3-47

4-45
4—>6
4—>0

5—44
5-47
5-41

6-47
6-44
6—42

7-46
7-45
7-43

2
1—>3
2—>6
4-45

0 —>2
3—>7
5—>4

3-41
0-44
6-47

2-40
1-45
7-46

5-47
6—42
0-41

4-46
7-43
1-40

7-45
4-40
2—43

6-44
5-41
3-42

3
3—>7
6—>7
5—>7

2—>6
7—>6
4—>6

1-45
4-45
7-45

0-44
5-44
6-44

7-43
2-43
1-43

6-42
3-42
0-42

5-41
0—4l
3-41

4—40
1-40
2-40

4
7—>6
7—>5
7—>3

6-47
6-44
6—>2

5-44
5-47
5-41

4-45
4-46
4-40

3-42
3—41
3—47

2-43
2-40
2-46

1-40
1-43
1-45

0-41
0—42
0-44

5
1—>5
2-43
4—>6

0-44
3-42
5—>7

3-47
0-41
6—44

2—>6
1-40
7-45

5-41
6-47
0-42

4-40
7-46
1-43

7-43
4—45
2—40

6-42
5-44
3-41

6
5—>4
3-4l
6—42

4—>5
2—>0
7—>3

7-46
1-43
4-40

6-47
0-42
5—41

1-40
7-45
2—46

0-41
6-44
3-47

3—42
5-47
0-44

2-43
4-46
1-45

7
3—>2
6-44
5—>1

2-43
7-45
4-40

1-40
4-46
7—43

0-41
5-47
6—42

7-46
2-40
1—45

6-47
3-41
0—44

5-44
0—42
3-4-7

4-45
1-43
2—46

Table 6.2: Communication patterns using the VRS-IHC algoritlun on a (23-

Effects on Normal System Operation

The ATA reliable broadcast operation affects normal system operation by imposing extra

load on the processing nodes, increasing the link utilization factor, and delaying the transmis­

sion of packets created by other normal system tasks. When a cut-through occurs at a node,

the node processor does not have to examine and process the packet going through the node.

Thus, given the same number of send-receive operations, virtual cut-through algorithms have

125

an advantage over store-and-forward algorithms in the amount of processing required by the

node processor. However, in the FRS algoritlun, only y N (y + 1) send-receive operations are

required as opposed to y N (N - 1) for the virtual cut-through algorithms. Thus, if the normal

network traffic is high, the FRS algorithm may incur less processing cost than the virtual cut-

tlirough algorithms. However, it should also be noted that the FRS algorithm requires mes­

sages to be merged and split. Depending on the implementation, such operations may incur an

expensive processing cost. Among the virtual cut-through algorithms, the IHC algorithm

requires the least number of store-and-forward operations if there is no normal network traffic.

Even with normal network traffic, with a suitable choice of T | , the IHC algorithm requires the

least number of store-and-forward operations. This is elaborated on shortly.

A high level of link utilization for the ATA reliable broadcast operation implies a pro­

portionately large delay in transmitting packets created by other (normal) tasks. Two impor­

tant aspects of this delay are the expected and maximum delays experienced in transmitting

packets created by normal tasks. The expected delay experienced by a normal task’s packet is

an increasing function of H . In general, the link utilization H is a. function of time. Let H max

denote the maximum link utilization. For the IHC algorithm, H max = For the VRS-ATA
T1

Nalgorithm, H mnx = 0.5 since — nodes can be sending packets of length p. £ 2 over 2-hop

routes simultaneously in all directions in the worst case (refer to Table 6.1). For the KS-ATA

and VSQ-ATA algorithms, / / m0J[> 6(V(/V + 5)/3 - 1)/N and / / max i> 4/'In , respectively, since

that many (times N) send-receive operations can occur simultaneously. Thus, with a suitable

choice of t|, the IHC algoritlun has lower link utilization than any of the other algorithms

(recall that /7max = 1 .0 for the FRS algoritlun). Also, the IHC algorithm has an advantage

over all the other algorithms considered in that / / max can be flexibly adjusted by changing t\.

Fig. 6.7 shows a plot of / / max versus 1) with N = 1000.

126

VRS-ATA
0.5

0.4

0.3

0.2

KS-ATA
0.1 -

VSQ-ATA

IHC
0.0

0 10 20 30 40 50 60 70 80 90 100

Figure 6.7: H mn as a function of r| with N = 1000.

127

The maximum delay experienced by a packet is dependent on the number of times that it

has to wail for a broadcast packet and the length of the broadcast packet it has to wait for. In

routing a normal system task packet Pnst» the length of the path chosen is an upper bound on

the number of times has to wait for broadcast packets. With random network traffic, it is

not possible to control the number of times Pnst has to wait for other packets. However, the

length of broadcast packets is fixed in the virtual cut-through algorithms and variable in the

FRS algorithm. In fact, in the FRS algorithm, the broadcast messages sent in the final stage

Nare of length (—— 1)\xBf i fo . In the virtual cut-through algorithms, all broadcast messages

are of length fiBFwo. Thus, in terms of the expected and maximum delays experienced by

Pnst > the FRS algorithm is the least desirable.

Execution Time

In sending a packet from a node v to its neighbor w , there are several time parameters

of interest. If the packet cuts through node v, then the delay experienced is denoted by a ,

which is proportional to BFlF0. If the packet is stored into the intermediate storage buffer

before being transmitted, then the delay experienced is xs + L xl . Since a packet has fixed

length and fits into exactly p FIFO buffers, L xl = pa. If the packet has to wait because the

transmitter to node w is busy, then the additional queueing delay experienced is denoted by

D .

Let us consider the ATA reliable broadcast operation with p = 0. The times required by

the IHC, VRS-ATA, KS-ATA, SQ-ATA, and FRS algorithms are shown in Table 6.3. Note

that for the KS-ATA algorithm, m refers to the dimension of a HMm, a C-wrapped hex-mesh.

The IHC algorithm performs better than all of the other virtual cut-through algorithms if

T | <, min(2 log2W + 1 , 2 a / — ^ ----- 3 , 2^N - 4}. Since T | £ p and p can be assumed to

128

be a small fixed constant, this condition is easily achieved. If r\ = p, the IHC algorithm is

also faster than the FRS algorithm. Theorem 6.4 further states that the IHC algorithm with

r\ = p has the optimum execution time among all algorithms that deliver y copies of every

node’s packet to every other node using y disjoint paths.

Algorithm Execution Time
IHC
VRS-ATA
KS-ATA
VSQ-ATA
FRS

t|(ts + pa + (N - 2)a)
N((y - l)(xs + pa) + 2a)
N(3(ts + pa) + (2m - 5)a)
N (3(ts + pa) + (2'Jn - 6)a)
(y + l)!^ + (N - l)pa

Table 6.3: Execution times with p = 0.

Theorem 6.4: When p = 0, Algorithm IHC with T| = p delivers y copies of every

node’s packet to every other node along y disjoint paths in the minimum possible time.

Proof. Since there are N nodes, each of which must receive y copies of packets from all

other nodes, a total of y N (N — 1) packets must be sent and received. This is the exact

number of send-receive operations in the IHC algoritlun. With T| = p, every directed link in

Gd,r is being used during every step of the algorithm. When using virtual cut-through, com­

munication time is minimized if the minimum number of intermediate store-and-forward opera­

tions are used. All intermediate send-receive operations in the IHC algoritlun can be imple­

mented with cut-through. The IHC algorithm with t) = p executes the minimum number of

send-receive operations, among which all but the initial sends are cut-through operations. It

also uses the maximum link capacity for the entire duration of the algoritlun. Thus, the

theorem follows. Q.E.D.

Now let us consider the general case of p > 0. Consider sending a packet from a node v

to all other nodes on Hie cycle H C j. If the packet cuts through all N - 2 intermediate nodes,

tire amount of time required is %s + p a + {N - 2)a. However, if the packet is buffered and

129

has to wait at i of the N - 2 intermediate nodes, then the time required is

xs + p a + / (t5 + p a + D) + (N - 2 - i)a. Assuming that the network is uniformly loaded

and that the utilization of the links (by other tasks) is p, the probability that a packet has to be

buffered when it requests a link is p. Since the probability of having to wait for a link is

independent of the probability of having to wait for any other link, the number of times a

packet has to wait for a link follows a binomial distribution. Thus, the expected number of

times that a packet has to wait for a link on a path of length N - 1 is p(N - 1).

In the IHC algoritlun, since there are up to N /r\ packets in a cycle H C } at any given

time, it is possible that a broadcast packet has to be buffered at a node because another broad­

cast packet which was previously buffered is being transmitted. The probability of this

occurrence is dependent on p and t|. Denoting this probability as p', the effective network

traffic perceived by broadcast packets in the IHC algorithm is p + p'.

Let denote the length of P nst, a packet created by a normal system task. Let P x

and P 2 be two consecutive broadcast packets in an H C j cycle. The initial separation between

P | and P 2 is ^-BFiFO. For P 2 to be buffered because P i is being transmitted, P i must previ-
M'

ously have been buffered in a node uk . P i could itself have been buffered because another

broadcast packet was being transmitted. However, the first such buffering of a broadcast

packet must have been due to a packet P„st. Thus, suppose P t was buffered due to Pml. Let

xres be the time required to reserve an outgoing transmitter. If priority is given to P t and the

buffering and subsequent redirection of P i is done efficiently, P i will have completely left

node uk after p'a + p a + 2xres time units. This says that P 2 will not have to wait for P t at

node uk if r| > p + p ' + 2xresla. Also, since the time for a packet to cut through a node

includes xres, it is clear that xres < a. Therefore, given these considerations, we make the

assumption that p' < p, which is reasonable if T| > p + p'. Then, since a broadcast packet

130

travels N - 1 hops in a H C] -cycle, the expected number of times it is buffered is

(p + p')(N - 1) < 2p(N - 1).

We consider the maximum expected execution time of a single computational thread of

an ATA reliable broadcast algorithm, referred to simply as the maximum expected execution

time, as a measure of the performance of the algorithm. For a single stage in the direction of

cycle H C j , the IHC algoritlun has expected time (1 - p - pOĈ s + + (N - 2)a) +

(p + p')(N - 1)(t5 + p a + D). Since the next stage for cycle H C j can start immediately

after this stage completes, the IHC algoritlun in direction H C j has expected time

r|(l - p - p')(Ts + p a + (N - 2)a) + r|(p + p')(N - 1)(ts + pa + D). Since the computa­

tion in each of the y directions is similar, this is the maximum expected execution time of the

IHC algorithm.

In the VRS-ATA, KS-ATA, and VSQ-ATA algorithms, there are N stages of reliable

broadcasts. Thus, the maximum expected execution time is N times the average delivery lime

for a packet in the longest path of the reliable broadcast. The average delivery time in the

longest path of the VRS algorithm is (1 - p)((y - 1) (t 5 + pa) + 2a) +

P(Y + l)(^s + pot + D). hi a single reliable broadcast of the KS-ATA algorithm, the longest

path has expected time (1 - p)(3(xs + pa) + (2m - 5)a) + p(2m - 2)(xs + p a + D), where

m £ ' \ j - - * ^ if m £ 2. In a single reliable broadcast of the VSQ-ATA algorithm, the long­

est path has expected time (1 - p)(3(x5 + pa) + (2'IW - 6)a) + p(2^N - 3)(t,s + p a + D).

Table 6.4 shows the maximum expected execution times of the ATA reliable broadcast algo­

rithms considered.

131

Algorithm Maximum Expected Execution Time
m e
VRS-ATA
KS-ATA
VSQ-ATA
FRS

11(1 - P - p')(% + pot + (N - 2)oc) + r|(p + p')(N - l)(x5 + pa + D)
W(1 - P)((Y - l)(is + + 2a) + Np(y + l)(xs + pa + D)
N(1 - p)(3(x5 + pa) + (2m - 5)a) + Np(2m - 2)(xs + pa + D)
N (1 - p)(3(xs + pa) + (2W - 6)a) + Np(2^N - 3)(xs + pa + D)
(1 - p)((y + 1)t5 + (N - l)pa) + p(Y + l)(x5 + xpa + D), 1 <, x £ N/2

Table 6.4: Maximum expected execution times with p > 0.

Among the virtual cut-through algoritluns, the IHC algorithm with a suitable choice of i)

has the best performance. Using the assumption that p' < p, the maximum expected execution

time of IHC is less than T|(l - p)(x5 + pa + (N - 2)a) + 2t|p(/V - 1)(% + pa + D). Thus,

IHC has the best performance if 2tj <, min(log2lV + 1 , 2*\J^ ^ ~ 3 , + 1). We also

need t| > p + p' for the assumption of p' < p.

If p is close to 1, the FRS algorithm performs better than all of the virtual cut-through

algorithms. This can be seen from Table 6.4 by setting p = 1. The reason for this is that

broadcast packets are merged into larger messages in the FRS algoritlun. Thus, since there are

fewer send-receive operations that have to wait for a communication link to become available,

the FRS algoritlun completes the ATA reliable broadcast faster. However, this ignores the

cost of merging and splitting messages. To determine the value of p at which a virtual cut-

through algorithm is better than the FRS algoritlun, one should first include the cost of merg­

ing and splitting messages into an exact equation for the maximum expected execution time of

FRS, and then compare maximum expected execution times.

6.4. Nearest-Neighbor Reliable Multicast

The nearest-neighbor reliable multicast (NNRM) algorithms presented are designed to

take advantage of the faster communication possible using virtual cut-through. The main

difference between NNRM and ATA reliable broadcast is that NNRM is a much less expen­

132

sive operation in terms of the required communication and processing overhead. In NNRM, it

is only necessary to reliably send y copies of each node’s message to its immediate neighbors,

hi this section, efficient NNRM algorithms are presented for the SQm (torus-wrapped square

mesh), HMm (C-wrapped hex-mesh), and Qm (hypercube).

Consider a node u(- reliably sending a message to its neighbor uj. In order to use the

least number of send-receive operations, the set of disjoint paths used must be the set of y

shortest disjoint paths. The set of y shortest disjoint paths between two adjacent nodes are

shown for the square mesh, hex-mesh, and hypercube in Figs. 6.8(a) - (c). In Fig. 6.8(c),

m = y is the dimension of the hypercube.

Consider the square mesh. Each node w, in the square must send four copies of its mes­

sage to each of its neighbors. The paths that must be followed between node «,• and its neigh­

bor Uj are the four paths shown in Fig. 6.8(a). The problem then is to fit the sixteen paths

emanating from each node «,• (four sets of four directed paths to each of ut ’s neighbors) onto

SQm'r, the directed graph corresponding to SQm. At least four “ stages” of multicast are

required since the total number of paths is four times the total number of directed edges in

SQ%r. However, in order to implement live NNRM such that cut throughs are used, more

“ stages” of multicast are required since three of the four paths shown in Fig. 6.8(a) pass

tlirough intermediate nodes. When a pattern of paths (or partial paths) is laid down on a

square grid, it is desirable to lay down the pattern such that no two paths require use of the

same directed edge. If this condition is satisfied, then none of the paths contend for the same

communication links, i.e., cut tlnoughs can be achieved at all intermediate nodes on a path.

This is the strategy used for designing efficient virtual cut-through NNRM algorithms for the

square mesh, hex-mesh, and hypercube.

SQ-NNRM, the NNRM algorithm for the square mesh, is described by the number of

multicast stages and the pattern of send-receive operations in each stage. The references to

133

(a)

P6

(b)

Pm

(c)

Figure 6.8. Set of y shortest disjoint paths between adjacent nodes

for the (a) square mesh, (b) hex-mesh, and (c) hypercube.

134

paths are to the set of paths shown in Fig. 6.8(a). Algorithm SQ-NNRM is executed in 13

stages. In stage 1, each node uses path PI. By the end of stage 1, the first part of paths P2,

P3, and P4 has already been traversed for every node. In stages 2 and 3, the rest of the path

P2 must be traversed for every node. Likewise, in stages 4 and 5, the rest of path P3 must be

traversed for every node. Finally, stages 6 through 13 are required to send the rest of path P4

for every node. In each stage, the partial paths are laid down in a pattern such that all of the

directed edges are occupied by exactly one partial path. Fig. 6.9(a) shows the pattern for stage

1, Fig. 6.9(b) shows the pattern for stages 2 through 5, and Fig. 6.9(c) shows the pattern for

stages 6 through 13.

HM-NNRM, the NNRM algorithm for the hex-mesh, can be described similarly to the

SQ-NNRM algorithm. The references to paths are to the set of paths in Fig. 6.8(b). Algo­

ritlun HM-NNRM is executed in 35 stages. In stage 1, each node traverses path PI using the

pattern in Fig. 6.10(a). Again, by the end of stage 1, the first part of paths P2 through P6 has

already been traversed for every node. The remaining parts of paths P2 and P3 for each node

can be traversed with an identical pattern in stages 2 and 3. For the remainder of paths P4

and P5, eight stages of the pattern shown in Fig. 6.10(b) is required. Finally, for the remain­

ing part of path P6, 24 stages of the pattern shown in Fig. 6.10(c) is required.

Q-NNRM, the NNRM algoritlun for the hypercube, is similar to the SQ-NNRM algo­

ritlun since each set of four dimensions in the hypercube can correspond to the edges in a

square mesh. As can be seen from Fig. 6.8(c), Q-NNRM requires only the patterns in

Fig. 6.9(a) and (b). The references to paths are to the set of paths in Fig. 6.8(c). In stage 1,

each node traverses the path PI using the pattern in Fig. 6.9(a) replicated in each of the y

directions. After stage 1, the first parts of paths P2 through Pm have been traversed. The rest

of the paths are traversed using the pattern of Fig. 6.9(b). For every set of four dimensions in

the hypercube, four stages using the pattern of Fig. 6.9(b) is required. Thus, the total number

135

Figure 6.9: SQ-NNRM patterns for stages (a) 1, (b) 2 - 5, (c) 6 -13.

136

Figure 6.10: HM-NNRM patterns for stages (a) 1 - 3, (b) 4 -11, and (c) 12 - 35.

(continued on next page)

137

4- ---------^ ^ _ _<& ^ N / _ _ 1 - / _
v ' ' ' \ ' s ' s\ ' N ' \ ' \ ' ' ' \\ ^ v / N ✓ \ » .✓ N

Figure 6.10: continued.

138

of stages required in an m -dimensional hypercube is 4 [7»/4] + 1 .

Note that in the NNRM algorithms as well as in the ATA reliable broadcast algorithms,

the times when different copies of a broadcast message arrive at a destination node may be

different. There are several ways in which a receiver node can make use of redundant copies

that arrive at different times. In [53,60], several methods are shown for establishing a quorum

such that a receiver node can verify a broadcast message before all of the copies of the mes­

sage have been received. One way of establishing a quorum is to wait until [2y/3| copies of

the broadcast message arrive before voting on the information contained in them. With this

method, a maximum of [y/3| faults can be tolerated. Alternatively, by maintaining a count of

identical copies received, a quorum can be established when there are at least py/2) identical

messages. With this latter method, a maximum of |_y/2| faults can be tolerated.

The NNRM algorithms presented in this section are efficient because the number of mul­

ticast stages required is small and the length of the longest path in a multicast stage is at most

8 (in the square mesh). Dally and Seitz quoted a time of 150 ns as the time required to per­

form a cut-through operation using the torus routing chip [20]. Then, assuming that there are

no conflicts in using links and that the message startup time is 1 ms (as in the previous sec­

tion), each multicast stage requires at most 1.0012 ms. For the square mesh and hex-mesh,

the total time required for the NNRM operation is approximately 13 ms and 35 ms, respec­

tively, given an arbitrarily large system. For a hypercube of dimension 16 (with 64K nodes),

the total time required is approximately 17 ms. These times are substantially less than the

execution times required for the ATA reliable broadcast (recall that 2.0 seconds were required

for a 10,001 node system). Note that the calculations for the number of multicast stages and

execution time required by the NNRM operation used the implicit assumption that the patterns

shown in Figs. 6.9 and 6.10 could all fit onto the system topology. However, with a finite

processing surface in which the edges at the periphery wrap around, some of the patterns may

139

nol fil perfectly. In that case, the number of multicast stages (and consequently exection time)

required should be multiplied by a factor of at most 2 (extra multicast stages are needed to

cover the “ irregular” parts of the processing surface).

6.5. Conclusion

Distributed diagnosis has been addressed in this chapter. Distributed implementation of

diagnosis algorithms in categories 1, 2, 2A, 3, and 3A were all considered. For category 1, it

was seen dial an all-to-all reliable broadcast operation was required. For categories 2 and 2A,

a method was presented for reducing the distributed diagnosis problem to a nearest-neighbor

reliable multicast problem. Diagnosis algorithms in categories 3 and 3A can also be imple­

mented with a nearest-neighbor reliable multicast solution.

The all-to-all (ATA) reliable broadcast problem was considered for a class of regular

interconnection networks. Although good solutions to this problem exist if store-and-forward

routing is assumed, better solutions can be found by taking advantage of the faster communi­

cation possible with virtual cut-lhrough. When designing an ATA reliable broadcast algorithm

that uses virtual cut-through, the objective is to ensure diat all possible cut-throughs can be

achieved when there is no other network traffic. This implies diat nodes must coordinate their

actions such that “ collisions” of broadcast packets do not occur. One method for doing this

to stagger die nodes that initiate reliable broadcasts and to finish the individual reliable broad­

casts as fast as possible. Anodier method is to interleave the nodes that initiate reliable broad­

casts. However, with this latter method, the reliable broadcasts by individual nodes should be

performed such that two broadcast packets from the same or different nodes do not interfere

with each odier’s progress.

In Uiis chapter, a general mediod has been proposed for performing ATA reliable broad­

cast in an interleaved manner. The proposed solution, the IHC algorithm, compares favorably

140

to several other possible virtual cut-through and store-and-forward algorithms in terms of gen­

erality of usage, the effect on normal system operation, and execution time. Unlike the other

algorithms studied, the IHC algorithm can be used on a large class of interconnection net­

works. In addition, using the ideas presented in the IHC algorithm, we can design interleaved

ATA reliable broadcast algorithms based on efficient reliable broadcast algorithms. ATA reli­

able broadcast is an expensive operation which affects normal system operation by imposing

extra load on the processing nodes and delaying the transmission of packets created by normal

system tasks. Unless the normal network traffic is heavy, the virtual cut-through solutions

incur less processing cost than the store-and-forward solutions since cut-through is handled at

the link level with the aid of special hardware. Also, with a suitable choice of the interleaving

distance T|, the IHC algorithm introduces the least delay on the transmission of normal system

task packets. In terms of execution time, the IHC algorithm is shown to be optimal if there is

no other network traffic. In heavy network traffic, a store-and-forward algorithm that merges

packets as they are being relayed has the best overall performance. In light to medium net­

work traffic, the IHC algorithm has the best performance among the virtual cut-through algo­

rithms considered if T| is chosen such that

M + p ' < ti ^ j min{log2W' + 1 , 2 *\J ^ * - 3 ,'lN + 1}.

Nearest-neighbor reliable multicast was addressed by identifying a set of minimal-length

disjoint paths and then addressing the problem of fitting the paths onto the topological struc­

ture such that none of the paths contend for the same communication links. If this property is

satisfied, then cut through can be used at all intermediate nodes in the paths. Specific solu­

tions to the nearest-neighbor reliable multicast problem were presented for the square mesh,

liex-mesh, and hypercube topologies. It was shown that these solutions required significantly

less processing time than all-to-all reliable broadcast.

CHAPTER 7

DISCUSSION

7.1. Summary

This dissertation has addressed the general problem of locating faulty processors in a

large multiprocessor/multicomputer system. The diagnosis is done on the basis of a fault syn­

drome consisting of a set of binary pass-fail tests conducted by processors on each other. The

result of an inter-processor test can be incorrect because (1) the testing processor is faulty or

(2) the tested processor is faulty but the test is not able to catch the fault. The diagnosis task

is difficult because a consistent and highly probable set of faulty nodes must be identified

based on a collection of incomplete tests.

The main results of (his dissertation are:

• an algorithm for finding the most probable diagnosis given the fault syndrome,

• the derivation of probabilistic algorithms which are optimal in diagnostic accuracy given

limited fault syndrome information,

• the development of an optimal multiple syndrome probabilistic diagnosis algorithm, and

• efficient methods for implementing all of the diagnosis algoritluns presented in a distri­

buted manner.

The optimal diagnosis algorithm is the one which finds the most probable diagnosis

given the fault syndrome. However, the problem of finding the most probable diagnosis given

141

142

the entire syndrome information is shown to be an NP-hard problem. In Chapter 3, this prob­

lem is formulated as a search problem and methods are developed for conducting the search in

an efficient manner such that the most probable diagnosis can be found in systems with up to

several hundred nodes.

In Chapter 4, optimal probabilistic diagnosis algorithms are presented for diagnosis using

limited fault syndrome information. Because optimal diagnosis given the entire syndrome is

an NP-hard problem, previous researchers have proposed heuristic algorithms which are

efficient and produce “ good” diagnostic accuracy results. However, their algorithms were

found to use a limited form of the available fault syndrome information. Given that the same

type of fault syndrome information is being used, OPT2A (one of the algorithms presented in

Chapter 4) is an optimal O(N2) diagnosis algorithm, where N is the number of nodes in the

system. Diagnosis algorithms are categorized based on the type of fault syndrome information

used in the diagnosis. For each such category defined, Bayesian probability analysis is used to

derive an optimal probabilistic diagnosis algorithm. All algorithms derived (except for

category 1: unrestricted syndrome information) have quadratic or lower computational com­

plexity. Because these algorithms are based on the use of probability parameters, simulations

were conducted to show that the algorithms perform well even with inaccurate probability

parameter estimates. Furthermore, the probabilistic analysis methods developed permit us to

evaluate heuristic diagnosis algorithms, such as those presented by previous researchers, based

on how closely they approximate the optimal algorithm for that category.

In certain situations, it is possible to obtain a significantly better diagnosis by using mul­

tiple rather than a single fault syndrome. Chapter 5 presents a multiple syndrome probabilistic

diagnosis algorithm which is optimal given limited fault syndrome information. Through

analysis of probability distributions, it is shown that significantly better diagnosis can be

achieved by using multiple rattier than a single fault syndrome given a special inter-processor

143

testing method described in Chapter 5. Previous researchers presented heuristic diagnosis

algorithms for multiple syndrome probabilistic diagnosis. Given that the same type of fault

syndrome information is used, our algorithm is optimal in diagnostic accuracy.

Chapter 6 addresses distributed diagnosis. A method is shown for distributing a special

type of global fault syndrome information with a small number of reliable communication

steps between nodes which are physically adjacent in the interconnection network. Next, solu­

tions are presented for all-to-all reliable broadcast, in which every node is required to reliably

send a message to every other node, and nearest-neighbor reliable multicast, in which every

node is required to reliably send a message to its nearest neighbors. The solutions presented

are designed to lake advantage of the faster communication possible with virtual cut-through

switching.

In Chapter 1, seven objectives were identified in designing useful and practical solutions

to tlie multiprocessor/multicomputer diagnosis problem. All of these objectives are satisfied to

some degree by the algorithms developed in this dissertation. All of the diagnosis algorithms

presented (MPD, OPT2, OPT2A, OPT3, OPT3A, DSK*, and OPTM) are probabilistic algo­

rithms dial can be implemented on all types of system topologies and can handle both inter­

mittent and permanent faults. The reliable broadcast and multicast algorithms presented (IHC,

SQ-NNRM, HM-NNRM, and Q-NNRM) permit these diagnosis algorithms to be implemented

in a distributed manner with relatively low communication and processing overhead. The

MPD algorithm is optimal in terms of diagnostic accuracy if all of the fault syndrome informa­

tion is used. However, because the specific problem solved by the MPD algorithm is NP-

hard, MPD can only be executed on systems with small numbers of faulty nodes.

The other diagnosis algorithms (OPT2, OPT2A, OPT3, OPT3A, DSK*, and OPTM) are

“close to optimal” in terms of diagnostic accuracy. However, these algorithms are all

efficient (quadratic or lower computational complexity) and achieve good diagnostic accuracy

144

even when inter-processor tests with fairly low fault coverage are used. Since good diagnosis

results can be obtained with low fault coverage tests, a relatively short amount of time needs

to be devoted to the testing required to obtain the fault syndrome. Finally, it was shown that

all of the diagnosis algorithms presented work well even when inaccurate estimates are used

for the probability parameters required.

In summary, the main contribution of this dissertation has been to show that it is possible

to derive efficient and optimal probabilistic diagnosis algorithms if limited fault syndrome

information is used.

7.2. Future Work

There are three main tasks worth further investigation. These include accurate probabil­

ity parameter estimation, design of better and more general diagnosis algorithms (particularly

for multiple syndrome diagnosis), and hardware experimentation.

While it has been shown that the diagnosis algorithms presented in this dissertation per­

form well even with inaccurate estimates of probability parameters, accurate probability param­

eter estimates are nevertheless required to obtain the best diagnosis results. Methods are

needed to acquire accurate estimates of probability parameters such as prior fault probability of

nodes and fault coverage of inter-processor tests. It is particularly difficult to obtain an accu­

rate estimate of fault coverage since nodes can be intermittently faulty.

Next, better and more general diagnosis algorithms are desired, particularly for multiple

syndrome diagnosis. In Chapter 5, it was shown that by using a special testing method and

multiple fault syndromes, significantly better diagnosis can be achieved than traditional diag­

nosis methods based on single fault syndromes. However, the method described is restricted

to the comparison-testing inter-processor testing method and is optimal only if limited fault

syndrome information is used. It should be possible to derive better and more general multi­

145

pie syndrome diagnosis methods by using probabilistic analysis methods similar to those

developed in this dissertation.

The most important future task is implementation of the proposed algorithms on a real

system and measurement of their performances. Although simulations have been conducted to

show that the diagnosis algorithms perform well given various combinations of probability

parameters and system topologies, experimentation with actual multiprocessor or multicom­

puter systems is required to verify the practicality and usefulness of the probabilistic diagnosis

methods. Such experimentation would be extremely difficult with a commercial

multiprocessor/multicomputer system since realistic fault injection (for both intermittent and

permanent faults) is required to be able to evaluate various inter-processor testing methods and

high-level diagnosis methods. Thus, the experiments can be performed on HARTS, an experi­

mental multicomputer currently being built in the Real-Time Computing Laboratory. Since the

operating system (HARTOS) [36], interconnection network, and network interface processor

are all being designed and built by us, we have the flexibility to make low-level changes to the

multicomputer system and conduct realistic experiments.

The proposed experiments are divided into several parts. Our diagnosis methods are

based on the results of system-level inter-processor tests. Several inter-processor testing

methods, including comparison-testing and on-line processor monitoring, have been described

in Chapter 2. The first part of the experiments will be aimed at evaluating the fault coverage

obtained using various combinations of these testing methods. Based upon these initial experi­

ments, several testing mechanisms can be selected to be used in subsequent experiments in

which llie effectiveness of various diagnosis methods can be evaluated.

Fault injection methods [2,12,31,58] are required to inject faults for our experiments

since the occurrence of natural faults are rare and not easily reproducible. Fault injection can

be accomplished through hardware or software. Due to limited resources, software fault

146

injection methods are proposed for our experiments. The types of faults to be injected include

memory faults, register faults, and communication faults. To inject memory faults it is neces­

sary to alter the contents of memory at certain locations. In an operating environment with vir­

tual memory, this can be achieved with operating system support by marking the particular

blocks as unavailable and handling the resulting page faults appropriately. It is also possible

to alter memory belonging to a particular task since the system task has knowledge of the

internal data structures of the operating system. Register faults can be injected in a similar

fashion. Communication faults, which are manifested as missing or corrupted messages, can

be inserted using a monitor process in the network processor that screens packets and occa­

sionally corrupts a few packets. The monitor process can also be used to suppress all packets

originating from, or destined to, a particular process.

For these fault insertion and testing experiments, we must design and develop HARTOS

system and application tasks. A fault injection support task is required at each node for the

software fault injection. The implementation of these experiments also requires the develop­

ment of several utilities and support programs, including utilities for specifying the types, loca­

tions, and the numbers of faults to be injected into the system. Tools are also needed to

streamline the generation of the executable objects from a set of possible test tasks, given the

parameters for the experiment.

BIBLIOGRAPHY

147

148

BIBLIOGRAPHY

[1] M. Adliam and A. D. Friedman, “Digital system fault diagnosis,” Design Automation
and Fault-Tolerant Computing, vol. 1, no. 2, pp. 115-132, February 1977.

[2] Jean Arlat, Yves Crouzet, and Jean-Claude Laprie, “Fault injection for dependability
validation os fault-tolerant computing systems,” Digest o f Papers, FTCS-19, pp. 348-
355, 1989.

[3] B. Becker and H. U. Simon, “How robust is the n-cube?,” Proc. 27th Ann. Symp. on
Found. ofComput. Sci., pp. 283-291, October 1986.

[4] D. M. Blough and G. M. Masson, “ Performance analysis of a generalized upset
detection procedure,” Digest of Papers, FTCS-17, pp. 218-223, 1987.

[5] D. M. Blough, G. F. Sullivan, and G. M. Masson, “ Almost certain diagnosis for
intermittently faulty systems,” Digest of Papers, FTCS-18, pp. 260-265, 1988.

[6] D. M. Blough, Fault Detection and Diagnosis in Multiprocessor Systems, Ph. D.
Dissertation, The Johns Hopkins University, Baltimore, Maryland, 1988.

[7] M. L. Blount, “Probabilistic treatment of diagnosis in digital systems,” Digest o f
Papers, FTCS-7, pp. 72-77, 1977.

[8] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, New York, NY:
North-Holland, 1976.

[9] J. T. Butler, “Diagnosis of intermittently faulty and permanently faulty processors in
a multiprocessing system using three-valued functions,” 12th Int’l Symp. on Multiple
Valued Logic, pp. 122-128, May 1982.

[10] M. S. Chen, K. G. Shin, and D. D. Kandlur, “Addressing, routing and broadcasting
in hexagonal mesh multiprocessors,” IEEE Trans. Comput., vol. C-39, no. 1, pp. 10-
18, January 1990.

[11] H. Chemoff, “A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations,” Annals Math. Stat., vol. 23, pp. 493-507, 1952.

149

[12] Ram Chillarege and Nicholas S. Bowen, “ Understanding large system failures - a
fault injection experiment,” Digest o f Papers, FTCS-19, pp. 356-363, 1989.

[13] K. Y. Chwa and S. L. Hakimi, “ Schemes for fault-tolerant computing: a comparison
of modularly redundant and t-diaguosable systems,” Information and Control, vol. 49,
pp. 212-238, June 1981.

[14] K. Y. Chwa and S. L. Hakimi, “ On fault identification in diagnosable systems,”
IEEE Trans. Comp., vol. C-30, no. 6, pp. 414-422, June 1981.

[15] A. T. Dahbura and G. M. Masson, “ Self-implicating structures for diagnosable sys­
tems,” Digest o f Papers, FTCS-13, pp. 332-335, 1983.

[16] A. T. Dahbura and G. M. Masson, “ Greedy diagnosis of hybrid fault situations,”
IEEE Trans. Comput., vol. C-32, no. 8, pp. 777-782, August 1983.

[17] A. T. Dahbura and G. M. Masson, “ An 0 (/i2'5) fault identification algorithm for diag­
nosable systems,” IEEE Trans. Comp., vol. C-33, no. 6, pp. 486-492, June 1984.

[18] A. T. Dahbura, “ An efficient algorithm for identifying the most likely fault set in a
probabilistically diagnosable system,” IEEE Trans. Comp., vol. C-35, no. 4, pp. 354-
356, April 1986.

[19] A. T. Dahbura, K. K. Sabnani, and L. L. King, “The comparison approach to mul­
tiprocessor fault diagnosis,” IEEE Trans. Comp., vol. C-36, no. 3, pp. 373-378,
March 1987.

[20] W. J. Dally and C. L. Seitz, “ The torus routing chip,” J. Distributed Computing, vol.
1, no. 3, pp. 187-196, 1986.

[21] W. J. Dally and C. L. Seitz, “ Deadlock-free message routing in multiprocessor inter­
connection networks,” IEEE Trans. Comput., vol. C-36, no. 5, pp. 547-553, May
1987.

[22] D. Dolev, “ The Byzantine generals strike again,” J. Algorithms, vol. 3, pp. 14-30,
1982.

[23] J. W. Dolter, P. Ramanathan, and K. G. Shin, “ A microprogrammable VLSI routing
controller for HARTS,” Proceedings oflCCD ’89, pp. 160-163, October 1989.

[24] M. Foregger, “ Hamiltonian decompositions of products of cycles,” Discrete Math.,
vol. 24, pp. 251-260, 1978.

150

[25] M. Foregger, personal communication, December 1989.

[26] P. Fraigniaud, “ Asymptotically optimal broadcast and total-exchange algorithms in
faulty hypercube multicomputers,” Laboratoire de Vlnformatique du Parallelisme,
Ecole Normale Superieure de Lyon, May 1989.

[27] A. D. Friedman, “A new measure of digital system diagnosis,” Digest of Papers,
FTCS-5, pp. 167-170, 1975.

[28] A. D. Friedman and L. Simoncini, “ System-level fault diagnosis,” Computer, pp.
47-53, March 1980.

[29] H. Fujiwara and K. Kinosliita, “ Connection assignments for probabilistically diagnos­
able systems,” IEEE Trans. Comp., vol. C-27, no. 3, pp. 280-283, March 1978.

[30] D. Fussell and S. Rangarajan, “ Probabilistic diagnosis of multiprocessor systems with
arbitrary connectivity,” Digest o f Papers, FTCS-19, pp. 560-565, 1989.

[31] Ulf Gunneflo, Johan Karlsson, and Jan Torin, “ Evaluation of error detection schemes
using fault injection by heavy-ion radiation,” Digest o f Papers, FTCS-19, pp. 340-
347, 1989.

[32] S. L. Hakimi and A. T. Amin, “ Characterization of connection assignment of diag­
nosable systems;” IEEE Trans. Comp., vol. C-23, no. 1, pp. 86-88, January 1974.

[33] C. T. Ho, personal communication, November 1989.

[34] S. H. Hosseini, J. G. Kuhl, and S. M. Reddy, “ On self-fault diagnosis of the distri­
buted systems,” IEEE Trans. Comp., vol. 37, no. 2, pp. 248-251, February 1988.

[35] H. Kanakia and D. R. Cheriton, “ Die VMP network adapter board (NAB): high-
performance network communication for multiprocessors,” SIGCOMM '88, pp. 175-
187, August 1988.

[36] D. D. Kandlur and K. G. Shin, “ Reliable broadcast in hexagonal mesh multiproces­
sors,” submitted for publication, November 1989.

[37] A. Kavianpour and^A. D. Friedman, “ Efficient design of easily diagnosable systems,”
3rd USA-JAPAN Computer Conference, pp. 251-257, 1978.

[38] P. Kermani and L. Kleinrock, “ Virtual cul-tlirough: a new computer communication
switching technique,” Computer Networks, vol. 3, no. 4, pp. 267-286, September
1979.

151

[39] C. M. Krishna, K. G. Shin, and R. W. Butler, “ Ensuring fault tolerance of phase-
locked clocks,” IEEE Trans. Comput., vol. C-34, no. 8, pp. 752-756, August 1985.

[40] J. G. Kuhl and S. M. Reddy, “ Distributed fault-tolerance for large multiprocessor sys­
tems,” 7th Int'l Symp. on Comp. Arch., pp. 23-30, May 1980.

[41] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,” ACM
Trans. Prog. Languages and Systems, vol. 4, no. 3, pp. 382-401, July 1982.

[42] L. Lamport and P. M. Melliar-Smith, “ Synchronizing clocks in the presence of
faults,” J. ACM, vol. 32, no. 1, pp. 52-78, January 1985.

[43] S. Lee and K. G. Shin, “ Incremental incomplete-test system-level diagnosis,” submit­
ted for publication, June 1989.

[44] S. Lee and K. G. Shin, “ Optimal multiple syndrome probabilistic diagnosis,” submit­
ted for publication, November 1989.

[45] S. Lee and K. G. Shin, “ Comparison of probabilistic diagnosis schemes,” Real-Time
Computing Laboratory, August 1989.

[46] S. Lee and K. G. Shin, “ Optimal and efficient probabilistic distributed diagnosis
schemes,” submitted for publication, November 1989.

[47] S. H. Maheswari and S. L. Hakimi, “ On models for diagnosable systems and proba­
bilistic fault diagnosis,” IEEE Trans. Comp., vol. C-25, no. 3, pp. 228-236, March
1976.

[48] S. Mallela and G. M. Masson, “Diagnosable systems for intermittent faults,” IEEE
Trans. Comp., vol. C-27, no. 6, pp. 560-566, June 1978.

[49] S. Mallela and G. M. Masson, “ Diagnosis without repair for hybrid fault situations,”
IEEE Trans. Comp., vol. C-29, no. 6, pp. 461-470, June 1980.

[50] G. G. L. Meyer and G. M. Masson, “ An efficient fault diagnosis algorithm for sym­
metric multiple processor architectures,” IEEE Trans. Comp., vol. C-27, no. 11, pp.
1059-1063, November 1978.

[51] Y. Peng and J. A. Reggia, “ A comfort measure for diagnostic problem solving,”
Information Sciences, vol. 47, pp. 149-184, 1989.

[52] F. P. Preparata, G. Metze, and R. T. Chien, “ On the connection assignment problem
of diagnosable systems,” IEEE Trans. Electron. Comp., vol. EC-16, no. 6, pp. 848-
854, December 1967.

152

[53] P. Ramanatfaan and K. G. Shin, “ Reliable broadcast in hypercube multicomputers,”
IEEE Trans. Comput., vol. 37, no. 12, pp. 1654-1657, December 1988.

[54] P. Ramanathan, D. D. Kandlur, and K. G. Shin, “ Hardware-assisted software clock
synchronization for homogeneous distributed systems,” IEEE Trans. Comput., vol.
C-39, no. 4, April 1990 (in press).

[55] S. Rangarajan and D. Fussell, “ A probabilistic method for fault diagnosis of multipro­
cessor systems,” Digest o f Papers, FTCS-18, pp. 278-283, 1988.

[56] J. D. Russell and C. R. Kime, “ System fault diagnosis: closure and diagnosability
with repair,” IEEE Trans. Comp., vol. C-24, no. 11, pp. 1078-1088, November 1975.

[57] J. D. Russell and C. R. Kime, “ System fault diagnosis: masking, exposure, and diag­
nosability without repair,” IEEE Trans. Comp., vol. C-24, no. 12, pp. 1155-1161,
December 1975.

[58] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton, D. Rancey,
A. Robinson, and T. Lin, “ FIAT - fault injection based automated testing environ­
ment,” Digest o f Papers, FTCS-19, pp. 102-107, 1988.

[59] C. L. Seitz, “ The cosmic cube,” Commun. ACM, vol. 28, pp. 22-33, January 1985.

[60] K. G. Shin and J. W. Dolter, “ Alternative majority voting methods for real-time com­
puting systems,” IEEE Trans. Reliability, vol. 38, no. 2, pp. 58-64, April 1989.

[61] D. P. Siewiorek and R. S. Swarz, The Theory and Practice o f Reliable System
Design, Digital Equipment Corporation, Bedford, MA, 1982.

[62] G. F. Sullivan, “ A polynomial time algorithm for fault diagnosability,” Proc. Found.
Comput. Sci., pp. 148-156/1984.

[63] G. F. Sullivan, “ System-level fault diagnosability in probabilistic and weighted
models,” Digest o f Papers, FTCS-17, pp. 190-195, 1987.

[64] G. F. Sullivan, “ An 0 (f3 + If? I) fault identification algorithm for diagnosable sys­
tems,” IEEE Trans. Comp., vol. 37, no. 4, pp. 388-397, April 1988.

[65] C. L. Yang and G. M. Masson, “ A fault identification algorithm for r; -diagnosable
systems,” IEEE Trans. Comp.,, vol. C-35, no. 6, pp. 503-510, June 1986.

[66] C. L. Yang and G. M. Masson, “ A distributed algorithm for fault diagnosis in sys­
tems with soft failures,” IEEE Trans. Comput., vol. 37, no. 11, pp. 1476-1479,
November 1988.

