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C H A PTER  1

INTR O D U CTIO N

1.1 O verview

Real-tim e computing is becoming a major discipline in Computer Science and 

Engineering due mainly to its increasing number of applications, such as command and 

control systems, process control systems, flight control systems, nuclear reactors, and life- 

support systems. Real-time systems differ from the traditional computer systems in tha t 

their correctness depends not only on the logical results of computation, but also on the time 

at which the results are produced. Failure to complete a (real-time) task before its deadline 

could cause a disaster [1, 2, 3]. Due to their potential for high performance and fault- 

tolerance with the multiplicity of processors, distributed systems are natural candidates to 

implement real-tim e applications [4, 5, 6, 7, 8, 9, 10]. Thus, scheduling real-tim e tasks 

to guarantee the deadlines in distributed real-time systems has become an active area of 

research [11].

Real-time tasks can be periodic or aperiodic. Periodic tasks have regular ar­

rival times and deadlines while aperiodic tasks have random arrival times and deadlines. 

Scheduling periodic tasks in a uni-processor to meet hard deadlines was studied by Liu and 

Layland [12]. In terms of CPU utilization and deadline guarantees, the rate-monotonic 

and earliest deadline scheduling algorithms are shown to be optimal in static and dynamic 

priority cases, respectively [12]. The problem of scheduling real-time tasks on multiproces­
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sor/distributed systems is shown to be NP-hard [13, 14], thereby leading to the development 

of many heuristic approaches [15, 16, 17, 18, 19]. Although some of these approaches, such 

as those in [16, 19], considered the possible arrival of aperiodic tasks, they assumed/implied 

tha t periodic tasks form the m ajor portion of the task system. Extension of the rate mono­

tonic and earliest deadline scheduling algorithms to multiprocessor or distributed systems 

has been studied extensively [2, 14, 20, 21, 16, 22, 17].

Aperiodic tasks are invoked by external interrupts, such as an abnormal reading 

from a sensor, obstacles encountered in case of a robot controller, or detection of a transient 

overload. Since aperiodic tasks arrive randomly, it is in general impossible to guarantee the 

completion of aperiodic tasks before their deadlines. Keeping the probability of missing 

deadlines, called the probability o f dynamic failure, Pdyn [1], below a certain required level 

while minimizing the ensuing overhead is therefore the only meaningful course to take for 

scheduling aperiodic tasks.

Scheduling aperiodic tasks in distributed real-tim e systems is more difficult than 

scheduling periodic tasks, due to their random arrivals [23, 24]. Moreover, if task arrivals 

are unevenly distributed over the nodes in a distributed real-time system, some nodes may 

become overloaded, and thus, unable to complete all their tasks in time, while other nodes 

are left underloaded. In such a case, even if the to tal processing power of the system is 

sufficient to  complete all incoming tasks in time, some tasks arriving at overloaded nodes 

may not be completed in time. One way to alleviate this problem is load sharing (LS); 

some of those tasks arriving at overloaded nodes are transferred to underloaded nodes for 

execution [5, 25, 26, 27].

Scheduling both periodic and aperiodic tasks in distributed real-time systems is 

far less addressed in literature than considering periodic or aperiodic tasks alone due to 

its difficulty and has not been treated extensively until recently [28, 29, 30, 31]. Sprunt et 

al. proposed a scheme that can guarantee the deadlines of periodic tasks while m i n i m i z i n g
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the response time of aperiodic tasks by exploiting the unused (by periodic tasks) CPU 

cycles [30]. In their study, aperiodic tasks are assumed to  have soft deadlines with the lowest 

priority. Ram amrithain et al. proposed to combine local and global scheduling approaches 

in distributed systems for both periodic and aperiodic tasks [19]. Periodic tasks are assumed 

to  be known a priori and can always be scheduled locally. On the other hand, an aperiodic 

task may arrive at a node at any time and will be scheduled locally on the node if its 

deadline can be met there; otherwise, the task will be transferred to  a remote node, which 

is called global scheduling in [19]. If none of the remote nodes can guarantee the deadline 

of this aperiodic task, it will be rejected and may seriously affect the system performance. 

Hence, the main effort in [19] was to design a heuristic, global scheduling policy so as to 

reduce the number of rejected aperiodic tasks. Three algorithms — called bidding, focused 

addressing, and flexible algorithms — were used to select a remote node for each aperiodic 

task which cannot be guaranteed locally. The basic idea of these algorithms is to collect state 

information, such as the surplus processing power, from other nodes such th a t, when a node 

cannot guarantee an aperiodic task locally, it will attem pt to  locate a remote node which 

can guarantee the task. The sinndated best acceptance ratio of aperiodic tasks achieved 

in [19] is reported to be 96% of the to tal arrived aperiodic tasks. However, the impact of the 

rejected tasks on the system performance was not analyzed in [19]. It is also worth noting 

th a t the algorithms in [19] are variations of the bidding algorithm originally proposed for 

load balancing in general-purpose distributed systems [32, 33, 34, 35], where the primary 

goal is to reduce the average task response time. The bidding algorithm is not efficient for 

real-tim e applications due to the long delay of the bidding process [25, 36].

In this dissertation, a new Load Sharing Method with State-Change Broadcasts 

(LSMSCB) is proposed to schedule aperiodic tasks in distributed systems. In this approach, 

whenever the state of a node changes from “underloaded” to “fully-loaded”1 and vice versa,

1 These terms will be defined formally in Chapter 2



the node broadcasts this change to a set of nodes, called a buddy set, in its physical prox­

imity. An overloaded node can select, without probing other nodes, the first available node 

from its preferred list, an ordered set of nodes in its buddy set. Preferred lists are con­

structed so th a t the probability of more than one overloaded node “dumping” their loads 

on a single underloaded node may be made very small. Performance of the proposed LSM­

SCB is evaluated with both analytic modeling and simulation. The LSMSCB is modeled 

first by an embedded Markov chain to which numerical solutions are derived.

The problem of scheduling both periodic and aperiodic tasks on distributed sys­

tems is studied in a new scheduling algorithm, called the reservation-based (RB) scheduling 

algorithm. In this approach, periodic tasks are scheduled first according to the rate mono­

tonic priority algorithm [12]. Aperiodic tasks are assumed to have the lowest priority and 

are scheduled by utilizing the remaining unused CPU cycles. The RB scheduling algorithm 

is implemented on distributed real-tim e systems by modifying the LSMSCB. The set of 

periodic tasks on each node is pre-assigned and scheduled, and the CPU utilization on each 

node is known upon arrival of each aperiodic task. An aperiodic task will be scheduled 

locally if the unused CPU time is larger than its required computation time, otherwise the 

task will be either transferred to another node tha t can guarantee its deadline, or rejected 

if none of the nodes can guarantee its deadline.

1.2 O utline of th e  D issertation

In a real-tim e system, the probability of missing a deadline must be kept as low as 

possible because the loss of a task may lead to a disastrous circumstance [1, 37]. Scheduling 

aperiodic tasks in distributed real-tim e systems is a load sharing problem, since tasks 

arriving at overloaded nodes must be transferred to idle or underloaded nodes to  meet their 

deadlines [5, 25, 26].

A new load sharing method with state-change broadcasts (LSMSCB) for dis­



tributed real-tim e systems is proposed in Chapter 2. The LSMSCB is modeled with an 

embedded Markov chain to which numerical solutions are obtained by a two-step approxi­

mation. The numerical solutions are then used to compute the distribution of queue length 

(QL) at each node and the probability of meeting deadlines. As mentioned earlier, keeping 

Pdyn below a given required level while minimizing the resultant overhead is the only course 

to  take for scheduling aperiodic tasks.

Deriving a closed-form distribution of QL to  characterize the behavior of a real­

time system is the subject of Chapter 3. Based on this closed-form distribution, ‘optim al’ 

LS solutions can be determined either by minimizing the communication overhead — such 

as the frequency of collecting state information and the number of task transfers — incurred 

by the LSMSCB while keeping Pdyn below any required level, or by minimizing Pdyn while 

keeping communication cost below any given level.

Chapter 4 identifies and solves two im portant issues associated with the use of 

preferred lists and buddy sets. First, when the number of overloaded nodes is less than, 

or equal to, the number of underloaded nodes, no more than one overloaded node should 

be allowed to select the same underloaded node as a receiver. Simultaneous selection of 

an underloaded node by multiple overloaded nodes results from lack of coordination among 

them, and will henceforth be called the coordination problem. Second, to minimize the task 

transfer delay, the buddy set of a node is composed of those nodes in its physical proximity 

(e.g., those one or two hops away). The overloaded nodes in a buddy set should be able to 

transfer their tasks to the nodes in different buddy sets such th a t those tasks arriving at 

overloaded nodes within a hot region — a region where the number of overloaded nodes is 

greater than tha t of underloaded nodes — can be shared throughout the entire system, not 

just by these nodes in the same buddy set. Formation of hot region(s) with an excessive 

number of overflow tasks will henceforth be called the congestion problem.

Chapter 5 addresses and analyzes two fault-tolerance issues associated with the
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LSMSCB in hypercube multicomputers: (i) ordering fault-free nodes as preferred receivers 

of overflow tasks and (ii) developing a LS mechanism to handle node failures. The occurrence 

of node failures will destroy the original structure of a preferred list if the failed nodes are 

simply dropped from the list. Three algorithms are proposed to modify the preferred list to 

retain its original features regardless of the number of faulty nodes in the system. Based on 

the modified preferred lists, a simple mechanism is proposed to avoid/minimize task loss. 

Each node is equipped with a backup queue of its most preferred node. Whenever a node 

fails, its most preferred node will process the unfinished tasks in the backup queue, i.e., the 

tasks in the failed node’s queue. By using the proposed algorithms, the failed node will be 

replaced by a fault-free node such tha t the node, which was originally supposed to select 

the failed node as its most preferred node, will always be backed up by a fault-free node.

Chapter 6 considers the problem of scheduling both periodic and aperiodic tasks in 

distributed real-tim e systems. A reservation-based (RB) scheduling algorithm is proposed 

and studied to  guarantee the deadlines of periodic tasks while minimizing the probability 

of missing the deadlines of aperiodic tasks. A fraction R  of CPU time is reserved in each 

unit cycle without violating the deadlines of periodic tasks. A unit cycle is the greatest 

common divisor (G C D ) of all task periods [38]. The value of R  is found to greatly affect 

the probability of guaranteeing aperiodic tasks even when the average CPU utilization on a 

node is fixed. The relation between the reserved fraction of CPU time and the probability 

of guaranteeing aperiodic tasks is studied. The maximum value of R  is derived such that 

the probability of guaranteeing aperiodic tasks can be maximized.

Chapter 7 concludes this dissertation with the summary of contributions and un­

solved research issues.



C H A PTER  2

DEVELO PM ENT A N D  EVALUATION OF A

DECENTRALIZED LOAD SHARING M ETHOD

2.1 Introduction

LS in general-purpose distributed systems has been studied extensively by nu­

merous researchers [39, 40, 41, 42, 43, 44, 45]. Decisions on how to  share loads among 

the nodes are either static or dynamic [46, 42, 47]. A static decision is independent of the 

current system state, whereas a dynamic decision depends on the system state at the time 

of decision. Static LS can also be viewed as nondeterministic allocation of tasks in a system 

[44, 48, 49, 50, 41], where an overloaded node Ni  will transfer some of its tasks to node N j  

with probability Pij, which is independent of the current system state. Although static LS 

is simple and easy to analyze with queueing models, its potential benefit is limited since it 

does not adapt itself to the time-varying system state [40, 34, 33, 51, 52, 53, 54, 55]. For 

example, even when IV; is overloaded, it still has to accept tasks from other nodes with the 

same probability as if it were underloaded. On the other hand, when dynamic LS is used, 

an overloaded node can transfer its task(s) to other node(s) using the information on the 

current system state [40, 42, 43, 46, 56, 57]. Since any dynamic policy requires each node 

to know states of the other nodes, it is inherently more complex than any static policy. The 

advantage of a dynamic policy is tha t it adapts itself to the time-varying system state, and 

thus, can ease the difficulty associated with static LS.

7



LS algorithms can be source-initiated or server-initiated, depending on which node 

initiates task transfer. The node at which external tasks arrive is the source (sender) node, 

and the node tha t processes these tasks is the server (receiver) [39]. In the source-initiated 

approach, an overloaded source node initiates the transfer of a newly arriving external task 

based on some strategies, while in the server-initiated approach, an underloaded server 

will probe each of the potential source nodes to share its load with. LS algorithms are 

further divided into several levels according to the amount of information required for them. 

After analyzing and comparing the performance of these algorithms, Wang and Morris [39] 

concluded tha t an algorithm that collects more information will generally produce better 

results and th a t the server-initiated approach will usually outperform the source-initiated 

approach if the task transfer cost is not significant.

As was discussed by Eager et al. [40], LS is composed of a transfer policy and a 

location policy. The transfer policy determines when a node should transfer its task(s), i.e., 

when a node becomes overloaded. The location policy determines where to send task(s) to. 

Their objective was to minimize the average system response time by moving tasks from 

overloaded nodes to underloaded ones. A simple threshold was used in the transfer policy; 

th a t is, whenever the queue length of a node exceeds this threshold, it will attem pt to 

transfer its incoming task to another node. Three different location policies were simulated 

and compared: random, threshold, and shortest. In the first method, an overloaded node 

(sender) will randomly choose another node (receiver) and transfer a task to  th a t node. 

In the second method, the sender randomly selects one node and checks its load. If the 

load of this node is below the threshold, the sender will transfer a task to tha t node; 

otherwise another node is randomly chosen and checked. This process will repeat until a 

receiver is found or a prespecified checking limit is reached. If the sender cannot find a 

receiver, it will execute all its tasks. The shortest policy is a variation of the threshold 

policy in which the sender will choose a receiver with the shortest queue among the nodes
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it has probed. Their simulation results indicate that the random policy improves system 

performance significantly, as compared to the system without LS. The threshold policy can 

further improve system performance, as compared to the random policy. The improvement 

of the shortest policy is about the same as tha t of the threshold policy, although it requires 

more system state information than that of the threshold policy.

LS in distributed real-tim e systems is addressed far less in literature than tha t in 

general-purpose distributed systems. Kurose and Chipalkatti proposed a quasi-dynamic LS 

algorithm in a soft real-time system [5]. A job is considered lost if it is not completed before 

its deadline. Their primary objective was to reduce the probability of losing a job with LS. 

A node will transfer some of its jobs to another node if the unfinished workload exceeds its 

time constraints. The server was selected on a probabilistic basis which is independent of 

the current system state.

The location policy in most early work can be viewed as sender-initiated, since an 

overloaded node (sender) selects another node (a candidate receiver) and checks whether or 

not this node can share its load. If it can, the sender will transfer some of its tasks to tha t 

node; otherwise, the sender will probe another node. This process will repeat until a receiver 

is found or a prespecified limit is reached. There are two major drawbacks associated with 

this approach. First, the sender needs to probe other nodes before transferring any of its 

tasks. This will introduce an additional delay in completing the tasks to be transferred. 

Second, if only a few nodes in the system are underloaded, the sender may not be able to 

locate a receiver by probing only a limited number of nodes. In such a case, overloaded 

nodes must execute all their tasks locally, missing the deadlines of some of these tasks.

To alleviate the above drawbacks, we propose a load sharing method with state- 

change broadcasts (LSMSCB). In this method, each node needs to maintain the state in­

formation of only a small set of nodes, called a buddy se t , in its physical proximity. Three 

thresholds, denoted by T I Iu, T I I j  and T H V, are used to  define the (loading) state of a



node. A node is said to be underloaded if its queue length (QL) is less than or equal to 

T H U, medium-loaded if T H U < QL  < T H j , fully-loaded if T H j  < QL < T H V, and over­

loaded if QL > T I I V. Whenever a node becomes fully-loaded (underloaded) due to the 

arrival and/or transfer (completion) of tasks, it will broadcast its change of state to  all the 

other nodes in its buddy set. Every node tha t receives this information will update its state  

information by eliminating the fully-loaded node from, or adding the underloaded node 

to, its ordered list (called a preferred list) of available receivers. An overloaded node can 

select the first node in its preferred list and transfer a task to tha t node. Notice th a t our 

LS method is completely different from conventional receiver-initiated LS methods th a t are 

characterized in [39]. An underloaded server in the conventional receiver-initiated approach 

probes other nodes to share their work with. The difficulty of a receiver-initiated method 

lies in th a t once a node switches to II-state, this state-change must be multicast to  other 

nodes so th a t this ‘new’ overloaded node may be drafted by an underloaded node as soon 

as possible. A large number of control messages need to be multicast if the load switches 

frequently between N-state and If-state. Although many protocols were considered in [35], 

this problem could not be solved completely without causing drafting delays to H-state 

nodes. By contrast, the LSMSCB is sender-initiated with receiver-initiated state updates, 

an overloaded node can locate, without any delay, an underloaded node using its preferred 

list. So, the state  wiggling between T U f  and T H V will not introduce any communication 

overhead a t all, because the underloaded nodes need not know the exact state of overloaded 

nodes. Moreover, the state wiggling between T H U and T H j  can be reduced by increasing 

the magnitude of T i l  j  — T  I iu without affecting the system performance as long as there 

are some underloaded nodes.

Section 2.2 discusses the problem of implementing the LSMSCB. Collection of 

state information and construction of preferred lists are detailed in Section 2.3. Section

2.4 presents one exact model, one approximate model, and an approximate solution to  the
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exact model for the proposed LS method. In Section 2.5, the performance of the proposed 

LS method is evaluated with the models derived in Section 2.4 and is also simulated to 

verify the analytic results.

2.2 P rob lem s A ssociated  w ith the LSM SCB

In the LSMSCB, each node must maintain and update the state information of 

other nodes in its buddy set. An overloaded node can transfer a task to another node based 

on the state  information without any probing delay. To implement this method, one must 

develop:

• Efficient means of collecting and updating state information; collection of the state 

information must not hamper normal communications, such as inter-task communi­

cations and task transfers.

• An autom atic method for selecting a server node in case there are more than one 

underloaded node, and for minimizing the probability of more than one overloaded 

node simultaneously transferring their overflow tasks to the same underloaded node.

These issues are addressed below in detail.

2.2.1 S tate  Inform ation

To collect state information, one must decide from which nodes the information 

should be collected and how often this information should be updated. One straightforward 

m ethod is for each node to collect and update state information from all other nodes in the 

system at a fixed time interval. However, it is very difficult to determine an appropriate 

collection and update interval which ensures the accuracy of the state information while 

keeping below an acceptable level the additional network traffic resulting from the collection 

of state  information. Although a short interval (i.e., frequent state update) ensures the 

accuracy of the state information, this will introduce an 0 (n2) traffic overhead each time
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to collect the state information, where n is the number of nodes in the system. This 

may, in turn , severely delay normal inter-task communications and task transfers, thus 

degrading (rather than improving) system performance. On the other hand, the traffic 

overhead decreases as the frequency of state collection and update decreases. But, this 

may cause the state information recorded in a node to be obsolete. For example, if the 

state of a node has changed from underloaded to fully-loaded before the next update, other 

nodes may transfer their tasks to this already fully-loaded node based on the obsolete state 

information.

Ideally, each node should keep the state information as accurate and as up-to-date 

as possible while keeping the traffic overhead as low as possible. To achieve this goal, we 

propose state-change broadcasts within the buddy set of each node to collect and update 

the state  information at the node. Thus, each node needs to maintain only the state 

information of a small set of nodes in the system, e.g., neighbors of the node. Each node 

will broadcast the change of state to all the other nodes in its buddy set only if it switched 

from underloaded to fully-loaded, and vice versa. Since a node will receive new information 

only when the state of a node in its buddy set has been changed, each node will have 

the exact state information of all the other nodes in its buddy set, as long as there is no 

significant delay in broadcasting state changes. Since the buddy set of each node is formed 

by those nodes in its physical proximity, the delay in broadcasting a state-change and/or 

transferring a task should not, in general, be too long. (See Section 2.5.1 for more on the 

broadcasting delay.) Moreover, as we shall see, the additional network traffic resulting from 

state-change broadcasts can be controlled by adjusting the two thresholds, T H U and T i l f .

2.2.2 Preferred List

Under a sender-initiated location policy, an overloaded node will transfer a task to 

the underloaded node found first during the probing [39,40, 5]. The problem in the proposed



location policy is th a t an overloaded node may find more than one underloaded node in its 

buddy set and/or more than one overloaded node could select the same node to transfer 

their tasks to. One must therefore establish a rule for selecting a receiver among possible 

multiple underloaded nodes while minimizing the probability of more than one overloaded 

node simultaneously transferring tasks to the same underloaded node. A preferred list is 

proposed to counter this problem. Since each node maintains the state information of the 

nodes in its buddy set, one can order these nodes in each node’s preferred list. The first 

node in this list is the most preferred and the second the second most preferred, and so on. 

Note th a t order of preference changes with time, e.g., if the most preferred node becomes 

overloaded, then the second most preferred node, if not overloaded, becomes the most 

preferred. An overloaded node will transfer its task(s) to its most preferred node available 

in the list.

Based on the system topology, the “static” order of nodes in each node’s preferred 

list is so permuted th a t a node is the most preferred of one and only one other node in the 

corresponding buddy set. (This order does not change with time, although some of nodes 

will drop out of the list of available receivers when they become fully-loaded, and regain 

their spots when they become underloaded again.) Since each overloaded node is most likely 

to select the first node in its preferred list, the problem of more than one overloaded node 

“dumping” their loads on one node is unlikely to occur. Nevertheless, dumping could occur 

since, for example, the third most preferred node, say N x, of an overloaded node N 0 can 

become its most preferred while Nx is also the most preferred of another overloaded node. 

But the probability of this happening is small, since it will occur only after overloading all 

the nodes ahead of N x in No s preferred list.
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2.3 S tate  Inform ation and Preferred List

The nodes in the system are connected by an arbitrary network, and each node 

is equipped with a network processor which handles the usual communications and task 

transfers between nodes without burdening the node processor. A node has two sources of 

task arrivals, external tasks and transferred-in tasks, and one server (single node processor). 

The tasks arriving at each node may be executed locally, or remotely, at any other nodes 

in the system.

Every node is assumed to be stable, or its load density (i.e., the ratio of average 

external arrival rate to average service rate) is less than one. Thus, the need of load sharing 

arises when there are bursty arrivals of external tasks at one or more nodes in the system.

2.3.1 C ollection  o f S tate Inform ation

As mentioned earlier, three thresholds, TI Iu, THf ,  and TIIV, are used to determine 

the state  of a node. These thresholds can be QL or cumulative execution time (CET), 

depending on task characteristics. For example, if every task has the same (identically 

distributed) execution time, one can use the (average) QL to measure the workload of each 

node. However, if task execution times are neither identical nor identically distributed, 

one must use the CET to  measure the workload of each node. By comparing each node’s 

current workload with these thresholds, the node is determined to be in one of four possible 

states: under (U), medium (M), full (F), and over (V). QL will be used to measure a node’s 

workload throughout this dissertation. A node is in U state if QL < T H U, M state if 

TIIu < QL < THf ,  F state  if T Hf  < Q L <  T H V, and V state if QL > T H V.

A U-state node can accept one or more tasks from other nodes and complete them 

before their deadlines. A node in F state cannot accept tasks from any other nodes but 

can complete all of its own tasks in time. A node in V state cannot complete all of its own 

tasks in time, and thus, must transfer, if possible, some of its tasks to other node(s). Since



15

a node in U state can share other nodes’ work, it is said to be in share mode. A node in F 

state  will neither accept tasks from other nodes nor transfer its own tasks to others, and is 

said to be in independent mode. A node in V state must transfer some of its tasks, and is 

said to be in transfer mode. Note tha t V is usually a transient state because, if arrival of a 

new task at a node switches the node to V state, the node will transfer this task to another 

underloaded node and then switch back to F state. However, if a V-state node cannot find 

a U-state node from its buddy set, it will be forced to remain in V state, missing some 

deadlines.

According to the state-change broadcasts, each node will broadcast the change of 

state to all the other nodes in its buddy set only when it switches from U to F and/or F 

to U. Upon receiving a state-change broadcast, every node in the corresponding buddy set 

will update its state information accordingly.

Two different thresholds, TIIU and THf ,  are used in the proposed LS method for 

the following reason. If only one threshold were used instead, a node would be in U (F) 

state when its QL is less (greater) than this threshold. In such a case a U-state node may 

switch to F state after receiving a task from another node, and an F-state node may switch 

back to U state after completing a task. Since a U-state node will accept tasks from other 

overloaded nodes, it is likely to  switch to F state. On the other hand, an F-state node only 

accepts its own external tasks and is likely to switch back to U state, since every node is 

assumed to be stable. Thus, every node in the system will frequently switch between U 

and F, thereby increasing the network traffic to broadcast these state  changes. Change of 

state  occurs infrequently (frequently) when the difference between T IIu and T Hf  is large 

(small).

The third threshold, TIIV, is used to avoid unnecessary task transfers. If we 

combine T H f  and T H V into one threshold, then acceptance of one transferred task may 

make a node fully- as well as over- loaded. In this case, the fully- and over- loaded
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node must transfer its own newly arriving task to another node. Had it not accepted the 

transferred task, the node would not have to transfer the newly arriving task, and thus, one 

of the two task transfers would not have been needed. By introducing another threshold 

T I i v, each node will broadcast the change of stale when it switches to F state, preventing 

other nodes from transferring tasks to tha t node. Since T H V — T H f  /  0 and every node is 

assumed to be stable, a node is unlikely to become overloaded with its own arriving tasks. 

Thus, this difference can be used to control unnecessary task transfers.

The above three thresholds greatly influence system performance, such as the 

average task execution time, the probability of missing deadlines, and the traffic overhead 

of broadcasting state changes. These thresholds must therefore be determined to  meet the 

system performance requirement. For example, in a real-time system, T H V is a critical 

point below which a node processor can complete all queued tasks before their deadlines 

with a probability higher than required. The difference between T H U and T i l j  must be 

chosen to keep the traffic overhead induced by the state-change broadcasts below a specified 

value. These thresholds are also sensitive to system load and have to be adjusted as system 

load varies. (More on this will be discussed in Section 2.5.)

2.3.2 List o f Preferred N odes

As mentioned in Section 2 .2 , the purpose of constructing a preferred list for each 

node is to  avoid the probing delay and the dumping problem. The cost of task transfer 

is an increasing function of the physical distance between the sender and receiver nodes. 

To reduce this cost, the receiver node should be located as closely to the source node as 

possible. The preferred list of each node is thus structured based on the number of hops 

between the source and receiver nodes. The first entry of a node’s preferred list consists of 

its immediate neighbors, and the second entry consists of those nodes two hops away from 

the node, and so on. When there are more than one node in each entry, these nodes must
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be ordered to minimize the dumping problem.

To dem onstrate how to order the nodes in each buddy set based on system topol­

ogy, consider a regular1 system with n nodes, N\,  JV2, . . . ,  N n, where the degree of A; is 

k , Vi. Link j  of A; is assigned a direction d j , 0 < j  < k — 1. A ;’s “static” preferred list2 is 

then constructed as follows. The set of A ;’s immediate neighbors, denoted by P], is placed 

in the first entry of A ;’s preferred list. The A,-’ s second entry, denoted by P], consists of 

the nodes in the first entry of every node in P], excluding the duplicated nodes. Generally, 

PI is the set of nodes which are listed in the first entry of every node in P^_l5 excluding the 

duplicated nodes.

Among the nodes in P ], the node in direction do is chosen to be the A ,’s most 

preferred node in this entry, denoted by N I1, and the node in direction d\ is the A,-’s second 

most preferred node in this entry, denoted by A ]1, and so on. The nodes in P] are ordered 

as follows. The nodes in the A ]l5s first entry are checked according to their order in the 

entry. If a node in the IV]1’s first entry did not appear at any IV,-’s previous entry, it will be 

copied into the second entry of Ni in the same order as in the IV]1’s first entry. After all 

nodes in the first entry of A ]1 are checked and copied, the nodes in the first entry of node 

A ]1 will be checked and copied by the same procedure. This procedure will repeat until P] 

is completed. The ordering of nodes in P^, Mi > 2, can be determined similarly.

As an example, consider how the preferred list of each node in a 4-cube system 

(Fig. 2.1) is actually constructed. The identity (ID) of each node is coded with a 4-bit 

number, b^bxbo.  The direction d,- of A& is the link tha t connects Nk to a node whose 

ID differs from A^’s ID in bit position i, where 0 < i < 3. One can now apply the above 

procedure to construct the preferred list for each node in the 4-cube system as shown in 

Fig. 2.2. Once each node’s preferred list is constructed, an overloaded node A,- can select an

1A system  is said to be regular if  all node degrees are identical.

2This list is determined by the system  topology and remains unchanged, but the availability of each node 
in this list changes with time.
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underloaded node as follows. Check N{* first; if it is underloaded, N{ will transfer a task to 

N I1', otherwise, is checked, and so on. (This checking can easily be implemented with 

a pointer which is made to point to the first available node in the list.) If all the nodes in 

P{ are overloaded, Ni  will sequentially check the nodes in P\. If, albeit rare, an overloaded 

node cannot find any underloaded node from its preferred list, all of its tasks will be forced 

to execute locally.

The preferred fist constructed above has the following advantages. First, since 

each node is the most preferred node of one and only one node in the “static” fist, the 

probability of an underloaded node being selected by more than one overloaded node is 

very small. Second, the cost of task transfer is minimal, since a receiver node is selected, 

with a high probability, from the physical proximity of the source node. Moreover, the time 

overhead for selecting an underloaded node is negligibly small, because the time-consuming 

probing procedure used in most known methods [40, 5, 43] is not needed (More on the 

preferred lists will be addressed in Chapter 4).

Since the size of preferred list or buddy set will affect the probability of a task 

missing its deadline, it must be chosen to ensure tha t this probability is lower than the 

specified limit. However, a buddy set must not be too large because the larger the size of 

buddy set, the higher traffic overhead for the state-change broadcasts will result. Thus, 

there is a tradeoff between the capability of meeting deadlines and the traffic overhead 

caused by the state-change broadcasts. More on this will be discussed in Section 2.5.

2.4 M odels for the LSM SCB

An embedded Markov chain is used to model the performance of the LSMSCB. 

We begin with the development of an exact model from which an approximate solution 

and an approximate model, called the upper bound model, will be derived. The exact 

solution will be shown to be (i) always upper bounded by the solution to the upper bound
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Figure 2.1: A 4-cube system.
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Order of preference 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

node 0 1 2 4 8 6 10 12 3 5 9 14 13 11 7 15
node 1 0 3 5 9 7 11 13 2 4 8 15 12 10 6 14
node 2 3 0 6 10 4 8 14 1 7 11 12 15 9 5 13
node 3 2 1 7 11 5 9 15 0 6 10 13 14 8 4 12
node 4 5 6 0 12 2 14 8 7 1 13 10 9 15 3 11
node 5 4 7 1 13 3 15 9 6 0 12 11 8 14 2 10
node 6 7 4 2 14 0 12 10 5 3 15 8 11 13 1 9
node 7 6 5 3 15 1 13 11 4 2 14 9 10 12 0 8
node 8 9 10 12 0 14 2 4 11 13 1 6 5 3 15 7
node 9 8 11 13 1 15 3 5 10 12 0 7 4 2 14 6
node 10 11 8 14 2 12 0 6 9 15 3 4 7 1 13 5
node 11 10 9 15 3 13 1 7 8 14 2 5 6 0 12 4
node 12 13 14 8 4 10 6 0 15 9 5 2 1 7 11 3
node 13 12 15 9 5 11 7 1 14 8 4 3 0 6 10 2
node 14 15 12 10 6 8 4 2 13 11 7 0 3 5 9 1
node 15 14 13 11 7 9 5 3 12 10 6 1 2 4 8 0

Figure 2.2: Preferred lists of a 4-cube system.

model, called the upper bound solution, and (ii) very close to the approximate solution. 

Note tha t an embedded Markov chain is commonly used to analyze arbitrary task arrivals. 

Since (average) QL is used to measure workload, without loss of generality, one can assume 

(average) task execution time to be one unit of time. Let kt and a/-t be the number of task 

arrivals and the probability of having kt arrivals during the interval [/, I +  1), respectively. 

For example, when the interarrival time of external tasks is exponentially distributed with 

rate A, can be calculated as shown in [58] by:

a kt =  (2>1)

Let Xt and xt+i denote the QL at time t and t  +  1, respectively. Then,

kt if xt = 0 and kt < T I I v

x t+i — x t +  kt — 1 if xt > 0 and xt + kt < T H V +  1 (2-2)

T H V if xt +  kt > T I I V.

The above relation represents the case of ideal LS, since overloaded nodes are
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assumed to always find underloaded nodes to  transfer their overflow tasks to.

Using Eq. (2.2), one can derive the probability distribution of QL. Two modifi­

cations must be made to  include the effects of transferring and accepting tasks among the 

nodes in a buddy set. The first modification is to adjust the task arrival rate to include 

transferred-in tasks when a node is in U state. As shown in Fig. 2.3, the total arrival rate 

becomes u  =  A +  r ,  where A and r  are the arrival rates of external and transferred-in 

tasks, respectively. A node’s state  transition probability depends on w when the node is in 

U state, and thus, a ’s must be recalculated accordingly. Let a* ’s represent the transition 

probability corresponding to u ,  whereas a ’s represent th a t corresponding to A only. The 

second modification is made to  the maximum QL. Since a node will always transfer tasks 

to other nodes when QL > T H V, the QL of a node with ideal LS is bounded by T H V.

To illustrate these modifications, consider the threshold pattern “1 2 3” (i.e., T H U = 

1 , T H f  = 2 , T H V =  3) as an example, and let qi =  P(QL  =  i), V i. Then,

qo =  a p  <jfo +  « o  <7i

qx =  a l q 0 +  a x qi +  a 0 q2

<72 =  « 2  <Zo +  « 2  <7i +  « i  92 +  ai0 <73

q3 -  ( 1 - a : o - - « 2 ) 9 o  + ( 1 - « 5 - « i - « 2 ) 9 i

+(1  -  a 0 -  a i )  q2 + (1 -  a 0) <73 

qk = 0 for all k > 3. (2-3)

Note th a t the assumption th a t a task takes one unit of time to complete is used in the 

above equation.

As mentioned earlier, Eq. (2.3) represents ideal LS, i.e., overloaded nodes can 

always locate underloaded nodes to  which their overflow tasks are transferred. In reality 

however, an overloaded node may not always be able to find an underloaded node from its 

buddy set. An embedded Markov chain is developed below to handle this realistic case.
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In the LSMSCB, the tasks in a node will be transferred to other nodes if its QL exceeds 

T H V +  1 (T II V) upon (before) completion of a task. A node can accept tasks from other 

nodes only when QL < THf .  To transfer overflow tasks, the sharing capacity of each buddy 

set must be greater than or equal to the total number of overflow tasks in th a t buddy set. 

If this condition does not hold, an overloaded node’s QL could grow larger than T I I v. To 

calculate the probability of a node’s QL growing larger than T HV, the following parameters 

are introduced. Let e* (OQ be the probability of having exactly (at least) i nodes available 

to  share the overflow tasks within a buddy set. So, 0t = 1 — X)/c=o £k for 1 < i < n, and 

9i =  £j =  0 for i > 7i, where n is the size of buddy set.

Assuming xt > 0 for the previous example with threshold pattern  “1 2 3” , the 

number of overflow tasks in a node is kov =  x t +  kt — T I I v. When kov =  1, x t+1 =  T H V and 

the node will not transfer any task. When kov — 2, x i+i = T H v if there is at least one node 

available for LS in its buddy set, and xt+1 = T I IV +  1 if none of the nodes in the buddy set 

is available for LS. Similarly, when kov — I > 2 , xt+1 =  T I I V if there are at least I —I nodes 

available in its buddy set, or x t+i — T H V +  1 if there are exactly 1 — 2 nodes available, or, 

in general, x t+i = T H V +  j  when there are exactly I — (j  +  1) nodes available. Then, the 

state transition relation can be rewritten as:

kt i f x t = 0 and kt < T H V

T I I V with prob. Okt-THv-, or (T H V + l)w ith  prob.

£kt-THv- i ,  • • •, or kt with prob. e0 if x t =  0 and kt > T H v

xt + kt — 1 if x t > 0 and

x t + kt -  1 < T H v

T H V with prob. 0Xt+kt-THv- \ , or (T H V +  1) with prob.

£Xt+kt-THv- 2, • • •, or (xt + k t - 1 )  with prob. e0 if > 0 and

x t +  kt -  1 > T H V.
(2.4)

xt+i =

From the above relation, q^s  can be derived. For example, when the threshold
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pattern  “1 2 3” is used, one can derive:

( OO \  4 /  OO \

a 3 +  E  di  ® i+3 I (?0  +  9 l )  +  E  a '4"* +  E  63 ®J+4—* Qi

2 =  1 /  2 =  2 \  j  =  l  /

O o / o O  \

X ]  I E  a i-* '+4  J
*=5 \ j = i - 4 /

n  A ;+ l  /  0 0  \  c o  /  o o  \

% = E £ * a*+* («0 + gi) + E  E  £ i  a . i + k - i + 1 + E  E e i+ * - f c - i  a 3 Qi
i =0 2=2 \j=0 )  i = k +2 \j=0 /

for fc =  4 , . . .  00. (2-5)

Note tha t the gjt’s for fc < T H V — 3 are the same as shown in Eq. (2.3), and q^s  for other 

threshold patterns can be derived similarly.

Although the above equations can be used to calculate the distribution of QL, 

£fc’s and Ok s are in practice too complex to compute. For example, £/. is the probability of 

having k nodes available for LS in an n —node buddy set, the calculation of which requires to 

consider n\ / (n  — k)\ k\ different possibilities. The total number of possibilities th a t need to 

be considered for the calculation of Ek for k — 1 , . . . ,  n is 2n. The analysis shows this number 

to be over 1,000 patterns when each buddy set contains 10 to 15 nodes. Furthermore, each 

of these patterns needs to be analyzed separately, since the probability of a node being in U 

state  depends on the state of other nodes in the buddy set. Thus, it is extremely tedious to 

compute these parameters. To alleviate this difficulty, we develop the upper bound model 

and an approximate solution to  Eq. (2.4). The former is used to derive and a rough 

idea on the performance of the LSMSCB, while the latter to obtain approximate qk s from 

Eq. (2.4) using the parameters derived from the upper bound model.

2.4.1 U pper Bound M odel and Solution

Upper Bound Model

This model is derived under the assumption tha t every node can always transfer 

only one overflow task to another node and the rest of its overflow tasks are forced to queue
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at th a t node. Since on the average 50% of the computation capacity in each buddy set 

has to be available for LS,3 the exact probability of an overloaded node being unable to 

transfer a task is always less than tha t derived from this model. The beauty of this model is 

the extreme simplicity in describing the state transition relation, as compared to the exact 

model. If kov = 1, then ^ 4.1 =  T H V and no task will be transferred. If kov — 2, then 

.7^41 =  T H V with probability Q\ — 1 — £0, or 2*41 =  T H V +  1 with probability £0. When 

kov =  £, .Ti+i =  T H V + 1 — 2 with probability <?i, or #*41 = T I I v + £ — 1 with probability £0. 

Summarizing the above leads to:

kt if x t = 0 and kt < T H V

(kt — 1) with prob. 0l5 or kt with prob. £0 if x t =  0 and kt > T H V

x t+1 =  xt +  kt — 1 if x t > 0 and xt +  kt — 1 < T H V

(xt +  kt — 2) with prob. 6\,

or (xt +  kt — 1) with prob. £0 

The distribution of QL can now be derived from this equation as follows:

if xt > 0 and xt + kt — 1 > T H V.
(2 .6 )

Qo =  ot*Q g0 +  Oq ?i

q\ -  qo +  aq qx +  a 0 q2

?2 =  «2 qo +  «2 qi +  « l 52 +  a 0 q3

53 =  [« 3  +  (1  — £ ) ^ 4 ] 5o +  [ « 3  +  (1  — e )  a q ] qi +  [oi2 +  (1  — £ )  £*3 ] q2

+ [«! +  (1 -  £) a 2] q3 +  [ « 0  + (1 -  e )  ai] q4 + (1 -  e )  a 0 q5

54 — [s 04 +  (1 — e) ctg] (qo +  qi) +  \e a 3 +  (1 — e) aq] q2 +  [£ a 2 +  (1 — e) a'3] q3

+[e ai  +  (1 -  £) a 2] q\ +  [£ a 0 +  (1 -  e) cci] q5 +  (1 -  e) a 0 5e
h-f-1

qk  =  [e cxl  +  ( 1  ~  £ ) a fc+i] (5o +  5 i )  +  X ]  t£  a k - j + 1 +  (1  — e )  a k ~ j + 2 ] q j
3 = 2

+ ( l - £ ) a 0 qk+2 for all k > 4, (2.7)

3Otherwise, load sharing is usually infeasible, and thus, should not be considered.
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where e =  £o- Eq. (2.7) can be rewritten in vector form: Q = AQ, where Q — [50, • • ■, qn]T> 

A  is an n x n coefhcient matrix, and n is the size of buddy set. Using Eq. (2.7) and 

Yl?=o qi — one can s°lve f°r Q: the upper bound solution.

The upper bound solution bounds the exact solution for the following reason. The 

only difference between the exact model Eq. (2.4) and the upper bound model Eq. (2.6) is 

tha t transitions to queue lengths T I IV, T H V +  1, . . . ,  (xt +  kt — 2) in Eq. (2.4) are combined 

into a single transition to QL = x t + kt — 2 in Eq. (2.6). Since x t + kt — 2 > T H V, the 

transition to a QL  > T H V is exaggerated in Eq. (2.6). Thus, the solution to the exact 

model will be bounded by the upper bound solution when k > T H V. Note tha t the upper 

bound model is identical to the exact model when k < T I I V.

Solving Upper Bound Model

The upper bound model is analyzed first to get a rough idea on the performance

of the LSMSCB. w’s and e must be known before solving the upper bound model for s.

On the other hand, these parameters depend on qk s, and thus, the model cannot be solved 

for r//c’s without knowing u>’s and e. A two-step approximation approach is taken to handle 

the difficulty associated with this recursion problem. In the first step, the model is solved 

for r and qk s with £ = 0. The resulting %’s are still an upper bound for the exact solution.

The second step is to compute e based on the </&’s obtained in the first step.

By setting e := 0, %’s for k > 3 in the upper bound model become:

93 =  (a 3 +  ^4 ) (9o +  9i) +  (a 2 +  <23) 92 +  («i +  ^2) 93

+ (a 0 +  « i) 94 +  «o 95

</4 =  «5 (90 +  9l) +  «4 92 +  «3 93 + «2  94 +  Ctl g5 +  cto 96
A;+l

9fe =  a&+1 (90 +  91) +  X l Q;fc- i+ 2 ^  +  a ° Vk+2 f°r all & > 4. (2.8)
i - 2

The above equation can be solved by using an iterative method. Initially, r is set
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to 0. One can compute q^s  and then r  from

E (*-3)o*
.k= 4

(qo + qi) + 22
i = 2

J ]  ( / c - 4  +  j)o:fc
k = 5 —i

qi +  X I
i= 5 Lfc=o

«• (2.9)

Note th a t j3 is the rate of task transfer out of a node. If all nodes’ external task arrival rates 

are identical, then r  = (3. Otherwise, r  must be calculated by Eq. (2.10). After calculating 

r ,  uj is obtained by adding A to r ,  and then s are recalculated with the new w, which 

will, in turn , change r . This procedure will repeat until q^s  and r  converge to fixed values. 

(The convergence will be proved later in Theorem 1.) 

d qkL em m a 2.1
doj

satisfies the following properties:

i . i p <  odu:

v"' d qk
2- J 2  ' = 0

k —0 

I d q k

d u  

< 1 , V k.
doj

Proof: Since the probability of a system being idle (q0) will decrease as the task 

arrival rate increases, the first property holds. The second property holds because the sum 

of all r/fc’s is equal to 1, and thus, the sum of the variations of all qk s must be equal to

0. The last property can be proved by contradiction. Suppose d q k

d u
|>  1. Then qk may

become negative or greater than 1 if the variation of ui exceeds 1, a possible event when 

a U-state node is surrounded by more than one V-state node. However, qk can be neither 

negative nor greater than 1. Contradiction. □

d r
L em m a 2.2 0 < - — < 1.

doj

Proof:

d t 
du>

CO  7 *

£ < * - ■ > &.« = 4

(qo +  q\)  + 3) “ *
lk=4

4

+E
2 =  2

2 2  (k -  4 +  i) Oik
k —5—i 2 =  5

22^ ak

dqo d q i  
du> du>

dqk

lk=0 du>
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OO
( 1  - a S - « i - « 2 ) ( ? 0  +  f f 1 ) +  E ( k ~ 3) al

dqo d g A
dw doj JU = 4

According to the definitions of a*, and aj£, each summation in the above equation is equal

Lemma 1, the sum of the last three terms will be less than one. Furthermore, the first term

(i +  l ) th iteration, we get < drW  and doj^+1  ̂ < do j^ f  Thus, the variation

of r  will decrease to zero after a finite number of iterations, and so is oj. Substituting the 

convergent r  and oj into Eq. (2.8), unique qk s can be determined, i.e., qk s also converge. 

□

The numerical experiments show that r  and oj converge after only two to  three 

iterations, indicating th a t the derivatives of r  and qk with respect to oj are much smaller 

than 1.

to, or less than, the average task arrival rate which is less than 1 in a stable system. (Recall 

tha t each node’s service rate is assumed to be unity.) By the second and third properties of

will be much less than one, because the first three a*’s usually dominate the determination

of transition probabilities. Thus, the lemma follows. □

T h e o re m  2.1 qk’s and r  derived from the above iterative method converge to fixed values

in a finite number of steps.

P ro o f: Let dojW and drW  be the variations of o j  and r  at the ith iteration, 

respectively. These parameters at the (i +  l ) th iteration are related to those at the ith 

iteration by:

d r ( J+1) = 4 ^  rfw(i)doj

doj^+l>> =  7-(i+1> -  t-W =  d r ( i+1\

Since |) ^ |  < 1 by Lemma 4, d r  at the ( i  + l ) th iteration will be smaller than doj at the 

i t h  iteration. Since the variation of o j  at the ( i  + l ) t h  iteration is equal to th a t of r  at the
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Derivation of e

The main difficulty in deriving e^’s lies in the fact tha t the queue lengths in a 

buddy set depend on one another. Thus, the dependent LS environment is converted to an 

independent environment by using the Bayes theorem. To facilitate the description of this 

approach for an (ra +  l)-node buddy set, it is necessary to introduce the following variables.

• N j : the j th preferred node of N{.

® xf. the jVj-’s queue length.

e Xij: iVj’s queue length.

® x)k: the queue length of the kth preferred node of JVj.

® j3i\ the rate of task transfer out of N{.

• /3ij\ the rate of task transfer out of JVj.

e j ii  the rate of task transfer out of N{ given tha t Ni  is not in sharing mode.

® 7 ij: the rate of task transfer out of N ,• given tha t Nj  is not in sharing mode.

® tj: the rate of task transfer into N{.

It is easy to see tha t 7 j > /?*, since tasks are not actually transferred out of a node unless 

the node is in V state and (3{ is the average transfer-out rate over the entire time period of 

interest.

Let No be the node under consideration, then

e = P ( x 0i > T H f , . . . , x 0n > T H j )  (2 .10)

To — An P ( x 0 < T H U) +  P0 2  P ( x 0 < T H U, x®i > T H f )

+/S03 P(x  0 < T H U, x°31 > T H f, x°32 > T Hf )  +  • • •

+0on P ( x 0 < T H u,x°nl > THf,x°n2 > T H f , . .  .,x°nn > T H f ). (2.11)

Note th a t To derived from Eq. (2.10) would be identical to tha t derived from Eq. (2.9) 

if all nodes have the same external task arrival rate. Using Eq. (2.9) in such a case, for
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j  = l , . . . , n

4 ro
qi

70, = E
1 = 2

5 3  (fc -  4 +  0  a*
k = 5 —i

p n s h + E Y l k a k
■k—0

qi (2 .12)p n s h  ’

where P ns/l =  1 — g0 — #i. Using the Bayes formula, the probability of both N± and N 2 not 

being in sharing mode can be calculated by

P(*oi > T H f , x 02 > T Hf )  — P( x oi > T Hf )  P( x 02 > T H f  | a?oi > THf ) .  (2.13)

Since the dependence between queue lengths is included in oj, its effect can be included 

by adjusting the rate of task transfer into N 2 given tha t N® is not in sharing mode. So, 

the conditional probability P ( x 02 > T Hf  \ xqi > THf )  can be equated to P ( x 02 > THf ) ,  

while the u  of N® must be adjusted to  reflect the effect of JV®’s unavailability. As shown in 

Eq. (2.12), such an adjustment will increase the rate of task transfer out of N® given th a t it 

is not in sharing mode, which will, in turn, increase N ®’s task transfer-in rate. Moreover, 

Nq will select as the most preferred node given that N® is not in sharing mode, and 

thus, the task transfer-in rate of should be recalculated. For notational convenience, 

let IV2 represent the node N® under consideration, then

t-2 =  021 P{x  2 <  T H U) +  022 P( x2 < T H u) +  023 P(x2 < T H u, x 231 > T H f , x \ 2 >  THf )  

+  • • • +  02„ P( x 2 <  T H U, x 2nl > T H f , x 2n2 > T H f , . . . ,  x2nn > T H f ). (2.14)

The first two terms of Eq. (2.14) represent the transferred-in tasks from the N 2,s most 

preferred node and N 0 (=  iV |). Since A a° is unavailable, N 2 becomes the most preferred 

node of both N 2 and N 0. Clearly, N 2 s co will be larger than those of N 0 and A f. Hence, 

it is likely to switch to no-sharing mode when A° is in 110-sharing mode. Similarly, the 

probability of all N®, N 2 , and N 3 not being in sharing mode can be calculated as:

P(x  01 >  THf ,  x02 > T H f , x  03 >  THf )  = P(  x01 > T H f , x02 > T H f ) x

P( x03 >  THf  | *01 >  T H f , xq2 > THf )

= P( x 03 > THf )  P( x01 >  T Hf , x  02 >  THf )
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=  P( x03 >  THf )  P( x01 >  THf )  P( x 02 >  THf ) .

The u  of N 2 and iV° must be recalculated as described above. The correctness of Eq. (2.10) 

can be verified as follows. When all nodes in the system have the same distribution of QL 

and the same /?, Eq. (2.10) can be simplified as:

ro =  /3o i P ( x o < T H u) + f3o2 P ( x o < T H u) P ( x 02 1 > T Hf )  + ••• 

+  Pon P(x  o <  T H U) P(x°nl > T H f ) P( x°n2 > THf )  ■ ..P(x°nn > THf )

=  P  P( x0 < TIIu) [l +  P(x°n  > THf )  +  P(x°31 > T Hf ) 2 +  • • • +  P ( 4 !  > T H f ) r 

=  P  P(xo < TIIU) 1 7  P( ' J l ^  P  P(Xo < TIIU) 1
1 -  P( x2i >  THf )  ^  v -  UJ 1 -  P(a:2i >  THf )

= ^ p(a;o < -  P'

Consider a 4-cube system as an example, in which, without loss of generality, Nq 

can be viewed as the center node for the derivation of e. From Fig. 2.2, IVo’s preferred list 

is N 1N 2 N 4 N s N 6NioN12 N 3N sN 9N i 4 N i 3 N n N 7. Since the nodes near the end of the list are 

unlikely to be selected for LS, the adjusted task transfer-in rate of these four nodes can be 

approximated by adding Po P(xq < T H U) to the r  of these nodes. Since increasing task 

transfer-in ra te  will change QL, the % ’s of these nodes need to be recalculated for

P ( * i  >  T H f , ®2 >  T Hf , x  4 >  THf ,  x8 > T H f ) = P( x1 > THf )  P( x2 > T H f ) x  

P( x4 > T Hf ) P ( x 8 > THf )

= (2.15)

Note th a t the states of these four nodes are different from that of N q , because their task 

transfer-in rates are higher than that of N q . Thus, these nodes are more likely to be in 

V-state than N q . Similarly, one can calculate the adjusted task transfer-in rates for iV5 — 

N \ q . As shown in Fig. 2.2, each of these nodes has two of the previous four nodes in its 

entry-1. Furthermore, as the number of V-state nodes increases, tasks will be transferred
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to  a less preferred node of N o -  The adjusted task transfer-in rates of these nodes are:

r6 =  r  +  72 P ( x 6 < T H U) P (x 7 > THf )  +  74 P (xe < T H U) P ( x 7 > T Hf )

+  /?o P( x 6 < T H U) 

tio = T +  7sP(®io < T H u) P ( x n > T H f )  + P o  P ( x 10 < T H U)

+ 72 P(®io < T H u) P ( x n  > T Hf )  P{x1A > T Hf )

+  76 P ( x io < T P „ ) P(® n > T Hf )  P ( x i 2 > T Hf )  P ( x u  > T H f ) 

r i 2 = r  + l 8 P ( x 12< T H u) P ( x 13> T H f ) P ( x 14> T H f )  + f30 P ( x 12< T H u)

+ (74 +  76 +  7 io) P(x  12 < P P U) P{x\z > T Hf )  P ( x M > T Hf )

T3 =  T +  71 P ( x 3 < T H U) +  72 P(®3 < P  Pit) +  Po P(X3 < PP it)

+  (75 +  79) P ( x 3 < T H U) P ( x 7 > T Hf )  P ( x n  > T H f )

+  (76 +  7io) P(®3 <  T H U) P(x 7 > THf )  P{xn  >  P P , )  P ( * 16 >  THf )  

r 5 =  r  +  74 P(® 5 <  P P U) +  7i P (*5 <  P P « )  P(®7 >  THf )  +  P o  P( x5 <  P P U) 

+  73  P( x 5 <  P P U) P(a.”7 >  THf )  P( x 13 > THf )

+ (76 +  712) P(*5 < THu) P ( x 7 > THf )  P ( x 9 > THf )  x 

P(®13 > T P / )  P (x 15 > T P /)

7"9 =  T +  78 P(aj9 < P P „ )  +  7 i P(a;9 < T P tt)P(®i i  > T H f ) P ( x 13 > T Hf )

+ P o  P( x 9 < T H U) +  (73 +  75 +  710 +  712) P( x 9 < T H U) P (« n  > T H f )  x

P( x 13> T H f ) P ( x 15> T H f ) .

Once the task transfer-in rates of entry-2 nodes are adjusted, the probability of having all 

entry-1 and entry-2 nodes in no-sharing mode can be calculated as:

P(xi  > THf , X2 > THf ,  . . . , x q >  THf )  =  P(xj  > THf )  P( x2 > T H f )

■ • • P(xq > THf )  (2.16)
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= £(10).

Similarly, one can calculate the probability of all other nodes in a 4-cube system being 

unavailable as =  e.

2.4.2 A pproxim ate Solution

Although qk s and £ (=  £o) can be derived from the upper bound model, it is still 

very tedious to calculate £&, V/c > 0, because there are too many possibilities to consider and 

each of them is difficult to analyze due to the dependence of LS among the nodes in a buddy 

set. Moreover, the upper bound model solution fails to include the effects of buddy set size 

and threshold patterns on the capability of meeting deadlines, while the simulation results 

in Section 5 did show significant differences when these parameters were changed. So, it is 

necessary to derive a solution which is simple but closer to the exact solution to Eq. (2.4) 

than  the upper bound solution. Since there are n\ / (n  — k)\k\ possibilities in calculating eu 

in an n-node buddy set, these possibilities can be approximated with only one possibility 

in which a node is in no-sharing mode with the largest probability. This possibility occurs 

when all other nodes in the buddy set are in no-sharing mode.

Consider the Ao’s preferred list in Fig. 2.2 again. The probabilities of Nr. to N q 

being in no-sharing mode are different from one another due to the adjustment of task 

transfer-in rates given tha t more preferred nodes are in no-sharing mode. As the number 

of no-sharing nodes increases, the adjusted task transfer-in rate of the next preferred node 

increases. Eventually, Nr,  the least preferred node of N q , will receive the largest number 

of transfer-in tasks, thus moving it in no-sharing mode with the highest probability within 

Ao’s buddy set. Let P sh and P nsh denote the probabilities of Nr  being in sharing and 

no-sharing mode, respectively. Then, e ^s  can be approximated by:

£‘ =  („ -"* )!* !  P ' 17)
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Inserting the e^’s derived from Eq. (2.17) into Eq. (2.5) and applying the iterative method 

discussed in the previous subsection, we can easily obtain an approximate solution. The 

calculated results are listed in Tables 2.1 and 2.3 in comparison with the results derived 

from the upper bound model and simulations (to be discussed in the next section).

Note th a t the e^’s derived from Eq. (2.8) are essentially the same as those derived 

from Eq. (2.7) since both have the same queue state equations for QL < T H V which are 

dominant in the probability calculation.

2.5 Perform ance A nalysis

The performance of the LSMSCB is evaluated with the upper bound model, the 

approximate solution, and simulation. The first two are used to derive the distribution of 

QL at each node and the probability of meeting deadlines, and analyze the effects of buddy 

set size, the frequency of state  change, and the average system sojourn time of each task. 

On the other hand, simulation is used to verify the analytic results.

2.5.1 A nalytic  R esu lts

The proposed model can be applied to any arrival process, but the transition 

probability oikt must be given prior to the calculation of q^s with Eqs. (2.4) and (2.8). 

To demonstrate the main idea of the LSMSCB, we present some numerical results for the 

case when both arrivals of external and transferred-in tasks follow exponential distribu­

tions. (Note, however, th a t the LSMSCB and models are not restricted to exponential 

distributions.)

Distribution of Queue Length

The distributions of QL for two different external task arrival rates in a 16-node 

system are calculated with the upper bound model and the approximate solution, and
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compared with simulation results as well as with the case of no LS (Table 2.1). The % ’ s 

calculated with the upper bound solution and the approximate solution are very close to each 

other when k < T H V. This was expected because the two differ only when k > TIL,,, This 

fact also ensures the accuracy in calculating e, since it was computed with the % ’s derived 

from the upper bound model and then used to derive approximate % ’s from Eq. (2.4). 

Moreover, the distribution of QL obtained via simulation is shown to be very close to  the 

approximate solution for all k and is bounded by the upper bound solution when k > T H V. 

Since the approximate solution is always very close to the exact solution, we will use it in 

the following discussions unless stated otherwise.

Probability of Meeting Deadlines

A task is said to be missed if its system sojourn time4 exceeds a given deadline. 

According to the queueing model, the completion time of a newly arriving task is equal to 

the current queue length plus one unit of time. Since the probability of QL  > TIIV is quite 

small, one can choose TLIV to be one less than the given deadline such tha t the probability 

of missing deadlines, or simply called the missing probability, becomes the probability of en­

countering QL > T H V at the time of a task arrival. Clearly, the missing probability depends 

on the given deadline and system load. However, by selecting a proper threshold pattern 

and a buddy set size, it is possible to minimize the missing probability. Figs. 2.4 and 2.5 

are the plots of missing probabilities vs. task deadlines for different threshold patterns.

Generally, the missing probability increases as the system load gets heavier (Fig. 2.6) 

and /or the deadline gets shorter. By choosing an appropriate threshold pattern, e.g., “1 

2 3” in Figs. 2.4-2.6, the missing probability can be reduced to a small value even when 

system load fluctuates (except when the system is overloaded, e.g., A > 0.9). The analytic 

results also show that the choice of a threshold pattern  is sensitive to system load. For ex-

4The system  sojourn time of a task is composed of its execution time, queueing time, and task transfer 
time.
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ample, threshold pattern  “0 1 1” results in a small missing probability when the system is 

underloaded, while resulting in a much higher missing probability as system load increases. 

Threshold pattern  “1 2 3” is found to yield a reasonably small missing probability for a wide 

range of load density (0 < A < 0.8). Fig. 2.4 shows an interesting result of the upper bound 

model: missing probabilities for different threshold patterns are quite close to each other, 

and thus, difficult to  tell which pattern is better over the others. This is opposite to what 

has been shown by the approximate solution in Figs. 2.5 and 2.6. T hat is, the upper bound 

model exaggerates the probability of switching to a queue length greater than  TI1V, and 

thus, the effect of threshold pattern  becomes insignificant. Since threshold pattern  “1 2 3” 

exhibits the best performance among the three patterns considered, the performance with 

this pattern  is further compared with simulation results. As shown in Figs. 2.7 and 2.8, 

the missing probability obtained from the simulation is always upper bounded by those 

obtained from the upper bound model and is very close to the approximate solution.

Average System Sojourn Time vs. Missing Probability

The average system sojourn time can be obtained by dividing the sum of all tasks’ 

system sojourn times by the to tal number of tasks processed. Mathematically, the average 

system sojourn time is equal to  the expected task execution time, J2kl=o +  !)<&• The 

average system sojourn time is calculated for several different threshold patterns and buddy 

set sizes as presented in Table 2.2. One interesting result is tha t the lower TIIU and TIJU, 

the smaller the average system sojourn time results, and tha t buddy set size has only 

minor effects on the average system sojourn time. This is in sharp contrast with the results 

reported in [40], where the average system sojourn time under the shortest queue policy was 

shown to be only slightly smaller than tha t under the threshold policy. In the LSMSCB, 

the shortest queue (threshold) policy is equivalent to selecting T I i u = 0 and T H f  =  1 

{ T H U > 0). As shown in Table 2.2, the threshold pattern with T H U =  0 and T H j  = 1
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always results in a substantially smaller average system sojourn time than the pattern with 

T H U > 0. This is the advantage resulting from the state-change broadcasts since the traffic 

overhead for collecting state information in the case of T I Iu =  0 is essentially the same as 

the case of T H U > 0. However, the traffic overhead associated with the shortest queue policy 

is higher than th a t of the threshold policy due to its required probing of other nodes [40], 

offsetting the potential gain to  be made by transferring tasks to a node with the shortest 

queue. Consequently, the LSMSCB outperforms other sender-initiated LS algorithms even 

when the average system time is used to measure their performance.

Another im portant result is that a threshold pattern that results in a lower average 

system sojourn time does not always yield a lower missing probability. For example, consider 

the buddy sets of size 10 in Tables 2.2 and 2.3. Pattern  “0 1 2” results in a smaller average 

task system sojourn time than “1 2 2” , but a larger missing probability than “1 2 2” when 

the deadline is greater than 2. Moreover, some thresholds may result in almost the same 

average task system sojourn time but yield quite different missing probabilities, e.g., “0 2 

3” and “1 2 3” when the deadline is greater than 3 in Table 2.3. Hence, those approaches 

based on minimizing the average task system sojourn time alone may not be applicable to 

the analysis of real-time systems.

System Utilization

The system utilization is defined as the ratio of external task arrival rate (A) to 

the system service rate, which is unity in the LSMSCB model. (Thus, the system utilization 

is simply A.) Since the missing probability depends on system workload (Fig. 2.8), we can 

solve Eq. (2.8) to  derive A as a  function of % ’s and then the maximum system utilization 

can be obtained by equating qTHv+1 to the specified missing probability. Some of calculated 

results are plotted in Fig. 2.9. This is in sharp contrast to the common notion tha t the 

real-time systems have to be designed to sacrifice utilization for a lower missing probability.
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Buddy Set Size and Preferred List

The effect of changing buddy set size on the missing probability can best be ex­

plained by the approximate solution as shown in Fig. 2.10. Buddy set size affects the missing 

probability significantly when it grows from 4 to 10 and A > 0.7, but its incremental effect 

becomes insignificant when buddy set size is greater than 10. Actually, there is little notable 

decrease in the missing probability when buddy set size grows beyond 15. Surprisingly, the 

missing probability for a 4-node buddy set is about three orders of magnitude less than 

th a t without LS when the system is underloaded (A < 0.5), and is about the same as those 

for buddy sets of size larger than 10 when the system is overloaded (A > 0.8). So, buddy 

set size can be chosen to range from 10 to 15, regardless of the system size. The most 

interesting result is found to be tha t the missing probability in a large system (of 64 nodes 

in Table 2.4) is much smaller than tha t of a small system (of 16 nodes in Table 2.3). For 

example, consider threshold “1 2 3” with a 10-node buddy set at A =  0.8. The missing 

probability of a 64-node system is about 3, 4, and 20 times smaller than tha t of the 16- 

node system when the deadline is 4, 5, and 6, respectively. This significant improvement 

was found for all other threshold patterns, thus indicating th a t the larger the system size, 

the better the performance of the proposed LS method will result. (See the next paragraph 

for a reasoning about this.) Note tha t the traffic overhead for broadcasting state changes 

remains unchanged and independent of system size because the buddy set size is fixed (to 

10-15). Furthermore, the incremental decrease in missing probability becomes insignificant 

when the buddy set size is over 15 (Table 2.4).

Use of buddy sets and preferred fists in the LSMSCB plays a m ajor role in lowering 

the missing probability for a large system. As discussed in Section 2.3, the buddy set of a 

node consists of those nodes in its physical proximity, and each node in the buddy set is 

selected according to the order of its preference. Moreover, preferred fists are constructed 

in such a way tha t each node is the ith (? = 1 , . . . ,  n) preferred node of only one other node
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and the preferred lists of the nodes in the same buddy set are completely different from each 

other. As a result, the overflow tasks within each buddy set will be evenly shared by all 

underloaded nodes in the entire system, rather than overloading a few underloaded nodes 

within the same buddy set. As the system size grows, the percentage of common nodes in 

the preferred lists of a buddy set gets smaller, and thus, the overflow tasks are more evenly 

distributed in the system, resulting in a better performance.

Frequency of State Change

In the LSMSCB, each node needs to broadcast change of state to  all the other nodes 

in its buddy set. Since a state change occurs when a node switches from U -state  to F -sta te  

and vice versa, the probability of a state change becomes: P(xkt+1 < T H u\xkt > TIJj )  

+P(xkt+1 > THf \ x k t < T H U). The computation results of Table 2.5 showed tha t the 

frequency of state change can be reduced to 10 -  15% of the total number of arrived tasks 

by setting T H f  — T H u — 2. Note tha t this frequency becomes about 100% of the number of 

external task arrivals when T I I u = 0 and T i l j  = 1. The resulting high frequency of state 

change should rule out this type of threshold patterns.

The traffic overhead for collecting state information in the LSMSCB is determined 

by the frequency of state change and buddy set size, while it was determined by the number 

of task transfers and probing in [40]. Since the frequency of state change can be controlled 

by adjusting the difference between T H U and T Hf ,  this frequency with threshold “1 3 3” 

and A > 0.7 is found to be about the same as the percentage of external arrivals th a t are 

transferred out. Moreover, transferring one task may require the probes of 5 to 6 other 

nodes [40] and each probe generates two communication messages (one for request and the 

other for response) in sender-initiated methods, whereas each state-change broadcast in 

the LSMSCB generates n messages, where n is the buddy set size. The traffic overhead 

for broadcasting state changes for threshold “1 3 3” and a 10-node buddy set is about the
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same as th a t in a sender-initiated approach. However, the time for selecting a destination 

node in this method is much smaller than that in any sender-initiated approach, because in 

this approach, a task can be transferred upon its arrival without probing any other nodes. 

Besides, each task transfer in the LSMSCB will take less time than other LS methods, 

because use of a preferred list will usually locate a receiver in the sender’s physical proximity.

Delays in Task Transfer and State-Change Broadcasts

When a node selects and transfers a task to a U -state node, the U -state node 

may receive an external task and switch to V -state  before the transferred task arrives. In 

this case, the transferred task will actually arrive at a V -state node. Thus, the probability 

of transition to  V -sta te  with non-zero task arrivals (i.e., a & for k > 0) is larger than tha t 

used in Eq. (2.5), where transferred tasks are assumed to be accepted only when a receiving 

node is in U -state. One can estim ate this probability and adjust the corresponding a /.’s. 

The broadcasting delay has the same effect as the task transfer delay.

Although these delays may affect the distribution of QL, the missing probability 

can be made insensitive to them  by properly choosing a threshold pattern. For example, 

a task which arrives when QL  =  T i l  f  will not be transferred again if T I I v > T H f , e.g., 

threshold “1 2  3” , but it will be retransferred if T I I V = T H f , e.g., threshold “1 2  2” . 

Since task retransfers induce traffic overheads without improving the capability of meeting 

deadlines, the threshold patterns tha t are sensitive to these delays may result in a higher 

missing probability than those th a t are not. The effect of these delays on the missing 

probability is investigated further in the simulation.

2.5.2 Sim ulation R esu lts

For the simulation the average load density is varied from 0.5 to 0.9, and buddy 

sets of sizes 4, 10, and 15 are considered. Ten threshold patterns are chosen out of all
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possible combinations for the simulation of a 4-cube system and the results are given in all 

tables except for Table 2.2. A few selected thresholds for a 6-cube system are also simulated 

and given in Table 2.4. The time for transferring a task between two nodes within a buddy 

set is assumed to be 10% of the task execution time and the time for informing a state 

change to one of the nodes in a buddy set is assumed to be 1% of the task execution time.

In most cases, simulation results are consistent with, and close to, the approximate 

solution. However, the analytically derived q^s  for k > T H V are always less than those 

obtained from the simulation when the system is underloaded (A < 0.5) or overloaded 

(A > 0.9), especially in the threshold patterns with T H U > 0. This discrepancy may have 

been caused by the delays in transferring tasks and broadcasting state changes. The effect 

of setting TIIV to be larger than T H f  is also observed in the simulation. The percentage of 

task retransfers for the case of T H f  — T H V is higher than tha t for the case of T H f  <  T H V. 

Hence, the threshold pattern  with T H f  < T H V is a better choice than the pattern  with 

T H f  = T H V. This observation also explains why the missing probability associated with 

threshold “1 2 3” is smaller than tha t of “1 2 2” when A > 0.7, deadline > 3, and buddy 

set size > 10 .

To study the effect of changing task transfer costs, we ran simulations with task 

transfer costs 5, 10, 20, and 30% of the task execution time. As shown in Table 2.6, the 

missing probability of threshold “1 2 3” remains almost unchanged. Based on all the above 

results, it is concluded th a t threshold “1 2 3” is good for a wide range of system load. 

Note tha t, although the missing probability of threshold “1 2 2” is usually close to th a t of 

threshold “1 2 3” , the task transfer rate associated with “1 2 2” is much higher than tha t 

with “1 2 3” . Thus, considering cost-performance effectiveness, threshold “1 2 3” is a better 

choice than “1 2  2” .
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2.5.3 A dvantages of U sing A nalytic Approaches

There are several advantages of using the upper bound model and the approximate 

solution, as compared to simulations. First, the results derived from the upper bound 

model can be used to guarantee the specified system reliability, because the actual missing 

probability is always less than tha t derived from the upper bound model. Second, system 

utilization can be analyzed by using the analytic models. Third, the analytic models provide, 

at almost no cost, many pieces of useful information with accuracy. For example, any 

meaningful simulation of the LSMSCB requires hundreds of CPU hours (in a computer 

as powerful as VAX-11/780) to  get an accuracy of 10~6 in the calculation of s for a 

system of m oderate size. Moreover, simulation may be able to provide information only for 

a particular system workload; it is too costly to generate q^s  with simulation as a function 

of system workload.
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Figure 2.4: Upper bound missing probabilities vs. deadlines for different thresholds when
A = 0.8.



M
iss

ing
 

pr
ob

ab
ili

ty
 

(A
pp

ro
xi

m
at

e 
so

lu
tio

n)

44

10

10r t

10

10

10rS

10r  8

10

10

r?

10

**«

Legend
Threshold : 0 11 

' Threshold : 1 2 2

□ Threshold : 1 2 3

h Threshold : 2 3 3 

® No .Sharing,........

JL x
5 6

Deadline
8

Figure 2.5: Approximate missing probabilities vs. deadlines for different thresholds when
A = 0.8.
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(Ae =  0.5) Model 
Queue Length

Simulation Approximation Upper bound no load sharing

0 0.5037 0.4987 0.4992 0.5000
1 0.3316 0.3317 0.3321 0.3244
2 0.1254 0.1289 0.1278 0.1226
3 0.0387 0.0406 0.0398 0.0377
4 3.13 x 10“ 7 1.43 x 10“ 8 0.0010 0.0109
5 < 10~7 1.21 x 10~9 0.0001 0.0031
6 < i o - 7 9.09 x 10"11 1.3 x 10~5 0.0009
7 < io~ 7 5.96 x 10~12 1.4 x 10~6 0.0003
8 < 10“ 7 3.35 x 10~13 1.33 xlO -7 7.16 X 10~5
9 < 10“ 7 1.46 x 10"14 1.28 XlO-8 2.04 x IO"5

(Ae = 0.8) Model 
Queue Length

Simulation Approximation Upper bound no load sharing

0 0.2213 0.2264 0.2185 0.2004
1 0.3317 0.3194 0.3136 0.2456
2 0.2656 0.2675 0.2651 0.1898
3 0.1810 0.1862 0.1853 0.1278
4 0.0002 0.0003 0.0135 0.0834
5 2.01 x 10~5 5.94 x 10~5 0.0032 0.0542
6 8.98 x 10-6 8.99 X 10~6 0.0007 0.0353
7 3.21 x 10“6 1.18 x 10-6 0.0001 0.0229
8 7.81 x 10“7 1.36 x 10“7 1.86 x l0 “ 5 0.0149
9 3.90 x 10~7 1.41 x 10~8 2.38 XlO"6 0.0097

Table 2.1: Comparison of distributions of queue length from analytical and simulation 
results with threshold pattern =  “1 2 3” , the number of nodes =16 and buddy set size =10.
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(Ae =  0.5) 
Threshold

Buddy set 4 10 15

0 1 1 1.414 1.394 1.401
0 1 2 1.609 1.602 1.605
0 2 2 1.608 1.608 1.622
0 2 3 1.696 1.695 1.700
1 2 2 1.618 1.618 1.625
1 2 3 1.698 1.698 1.701
1 3 3 1.700 1.700 1.703
2 3 3 1.701 1.701 1.703

No sharing 1.750 1.750 1.750

(Ae =  0.8) 
Threshold

Buddy set 4 10 15

0 1 1 1.918 1.692 1.651
0 1 2 2.236 2.065 1.033
0 2 2 2.120 2.075 2.071
0 2 3 2.426 2.382 2.380
1 2 2 2.123 2.109 2.110
1 2 3 2.423 2.407 2.405
1 3 3 2.427 2.422 2.421
2 3 3 2.475 2.472 2.473

No sharing 3.370 3.370 3.370

Table 2.2: Average task system sojourn time.



(A* =  0 .5)
Threshold

D eadline

0 1 1 0 1 2 1 2 2 1 2  3 2 3 3 No Sharing

2 0.0007 0.1298 0.1330 0.1642 0.1661 —
3 4.81 x  10“ * 8.82 X 10“ ® 1.73 x  10“ ® OX38B 0.0392 __

sim ulation 4 3.10 x 10“ ® 5.32 X 10“ ® 1.46 x  10“ * 3 4 3  X 10“ * 6X9 x  10“ * —
5 2.85 x  10“ r <  10“ * < 1 0 “ * <  10“ * <  10“ * —
6 <  10“ ' <  10“ * < 1 0 “ * < 1 0 “ * <  10“ * __

2 0.0004 0.1370 0.1446 0.1681 0.1691 0.1756
3 5.10 x  10“ 8 8.41 x  10“ ® 7.46 x  10“ * 0X398 0.0406 0.0530

ana ly tic 4 6.25 x  10“ ® 9.73 x  10“ ® 7.11 x  10“ ® 1.46 X 10“ * 1X7 x  10“ ° 0.0152
(app rox im ation ) 5 6.81 x 10“ ' 9.51 x  10“ * 6.01 x  10“ ® 14 1  x  10“ ® 1.44 X IO "10 0.0043

6 7.61 x  10“ ® 8.8 x  10“ ® 9.11 x  10“ “ 1.31 x  10“ “ 1.01 X 10“ “ 0.0012

ft 11 © co

Threshold

Deadline

0 1 1 0 1 2 0 2 3 1 2  2 1 2 3 2 3 3 No Sharing

2 0.0746 0.3258 0.4414 0X461 0.4468 0.4858
3 0.0176 0.0305 0.1805 0X019 0.1812 0.2007

sim ulation 4 0.0045 0.0067 0.012 0X003 0.0002 0X002 —
5 0.0014 0.0015 0.0003 8X7 X 10“ * 2.11 x  10“ * 2.28 x  10“ * —
6 0.0006 0.0004 0.0001 3.61 x  10“ * 1.11 x  10“ ® 6.18 X 10“ ®
2 0.0161 0.3315 0.4342 0X723 0.4541 0.5151 0.5539
3 0.0043 0.0105 0.1772 0X032 0.1866 0.2256 0.3641

ana ly tic 4 0.0011 0.0024 0.0013 0X007 0.0004 0.0009 0.2363
(approx im ation) 5 0.0004 0.0005 0.0003 0X001 6.54 x  10“ * 0.0002 0.1528

6 0.0002 0.0002 6.95 x  10“ ® 2.64 x  10“ * 1.2 x  10“ * 2.58 x  10“ * 0.0986

Table ‘2.3: Missing Probabilities for various threshold patterns and task deadlines when 
Ae =  O.o and Ae =  0.8, and buddy set size =  10.
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(Ae =  0.8) 

Buddy set

Threshold

Deadline
0 1 2 1 2 2 1 2 3 1 3 3 2 3 3

2 0.3702 0.3491 0.4506 0.4555 0.4873
3 0.0950 0.0071 0.1856 0.1885 0.2018

4 4 0.0320 0.0018 0.0047 0.0041 0.0011
5 0.0107 0.0004 0.0008 0.0006 0.0002
6 0.0034 9.1 x IO-5 0.0002 0.0002 5.8 x IO"5
2 0.3181 0.3448 0.4463 0.4526 0.4856
3 0.0229 0.0012 0.1806 0.1860 0.2008

10 4 0.0043 8.9 x IO"5 6.4 x IO"5 0.0004 0.0002
5 0.0008 8.1 x 10"6 5.2 x IO"6 1.6 x IO"5 6.6 x IO"6
6 0.0001 6.4 x 10"7 4.7 x IO"7 2.9 x IO"6 5.8 X IO"7
2 0.3073 0.3448 0.4463 0.4532 0.4856
3 0.0089 0.0012 0.1806 0.1863 0.2006

15 4 0.0013 5.7 x 10"5 3.9 x 10"5 0.0004 0.0002
5 0.0002 5.1 x 10"6 3.2 x IO"6 1.1 x IO"5 7.6 x IO"6
6 2.0 x IO"5 2.4 x 10"7 1.6 x IO"7 8.4 x IO"7 2.6 x IO"7
2 0.3026 0.3445 0.4463 0.4526 0.4856
3 0.0033 0.0012 0.1806 0.1860 0.2008

21 4 0.0004 6.0 x 10"5 3.7 X IO"5 0.0004 0.0002
5 9.2 x 10"5 4.1 x 10"6 2.2 x IO"6 1.1 x IO"5 4.6 x IO"6
6 1.1 x IO"5 1.7 x IO"7 < IO"7 7.4 x IO"7 2.9 x IO"7

Table 2.4: Missing Probabilities in a 6-cube for different thresholds and buddy set sizes.
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(Ae =  0.5) 
Threshold

Transferred Tasks Frequency of State Change
Simulation Analytic Simulation Analytic

0 1 1 0.1071 0.1300 1.0792 1.1128
0 1 2 0.0304 0.0330 1.0203 1.0266
0 2 2 0.0484 0.0501 0.1327 0.1471
1 2 2 0.0332 0.0392 0.1574 0.1754
1 2  3 0.0092 0.0098 0.1511 0.1552
1 3 3 0.0097 0.0101 0.0407 0.0370
2 3 3 0.0089 0.0100 0.0472 0.0487

(Ae =  0.8) 
Threshold

Transferred Tasks Frequency of State Change
Simulation Analytic Simulation Analytic

0 1 1 0.2241 0.2230 0.6277 0.8118
0 1 2 0.1145 0.1600 0.5283 0.5984
0 2 2 0.2274 0.2015 0.1613 0.2531
1 2 2 0.1677 0.1891 0.2576 0.3316
1 2 3 0.0877 0.0811 0.2182 0.2404
1 3 3 0.1064 0.0934 0.1050 0.1204
2 3 3 0.0875 0.1050 0.1646 0.1782

Table 2.5: Number of task transfers vs. frequency of state change for different thresholds.
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(Ae =  0.8) 

Transfer Cost

Threshold

Deadline
0 1 2 1 2 2 1 2  3 2 3 3

2 0.3227 0.3460 0.4473 0.4860
3 0.0307 0.0013 0.1812 0.2007

5% 4 0.0067 0.0002 0.0003 0.0001
5 0.0015 6.51 x 10~5 4.26 x 10~5 i . 6 5  x n r 5

6 0.0004 2.83 x 10~5 9.11 x 10~6 5.98 x 10~6
2 0.3258 0.3461 0.4468 0.4858
3 0.0305 0.0019 0.1812 0.2007

10% 4 0.0067 0.0003 0.0002 0.0002
5 0.0015 8.37 x IO"5 2.11  x n r 5 2.28 x 10“ 5
6 0.0004 3.61 x H T5 1.11 x 10~5 6.18 x 10"6
2 0.3300 0.3530 0.4504 0.4847
3 0.0295 0.0046 0.1835 0.2017

20% 4 0.0065 0.0005 0.0004 0.0007
5 0.0015 8.69 x 10~5 5.58 x 10~5 5.31 x 10~5
6 0.0004 3.8 x 10~5 1.29 x 10-5 6.33 x 10~6
2 0.3488 0.3817 0.4681 0.4914
3 0.0320 0.0168 0.1956 0.2177

30% 4 0.0072 0.0023 0.0016 0.0050
5 0.0016 0.0003 0.0002 0.0005
6 0.0004 4.34 x 10~5 2.93 x 10~5 4.95 x 10~5

Table 2.6: Missing Probabilities vs. task transfer costs for different deadlines and thresholds.



C H A PTER  3

OPTIM IZATION OF THE LSMSCB

3.1 Introduction

The numerical solutions for QL derived in Section 2.5 showed only a few examples 

and it is practically too tedious to derive the numerical results for all threshold patterns and 

buddy set sizes. It is therefore im portant to derive a closed-form expression for the distri­

bution of QL to characterize the behavior of a real-time system. Based on this closed-form 

distribution, ‘optim al’ threshold patterns and optimal buddy set sizes can be determined 

either by minimizing the communication overhead — such as the frequency of collecting 

state information and the number of task transfers — incurred by the LSMSCB while keep­

ing Pdyn below any required level, or by minimizing Pdyn while keeping communication cost 

below any given level [59]. An upper bound of processor utilization can also be derived 

while reducing Pdyn to any given level.

The derivation of the approximate closed-form solution is discussed in Section 3.2, 

and the optimization of LSMSCB is treated in Section 3.3.

3.2 A pproxim ate C losed—Form Solution

Eq. (2.5) cannot be solved in one step for the following two reasons. First, a* ’s 

in these equations depend on the task transfer-in rate, r ,  which in turn  depends on q^s. 

Second, since qk s for k > v depend on those q^s  for k < v, it is impossible to obtain the

56
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distribution of queue lengths in one step. Since the probability of QL  > v is very small, 

Eq. (2.5) can be divided into two parts which are then solved separately: q^s  for 0 < k < v 

and qk s for k > v.

3.2.1 Solving qk for 0 <  k < v

Eq. (2.5) can be rewritten as:

« ; -  i
_ * 
a o

a? -  1
~  9i H------ ;—«S «o

l - « o9i = a*a o

9i +  92 = a i
- 3 T  90 a 0

92 +  93 =
a 0

90

(3.1)

< - i  a u- 2  oA a? -  1
~a*~ qx ~a*~ q2 + ' "  + &  qu~ 2 +  +  9* “ ------- 3 T~ 9oa 0 a 0 a 0 a 0 a 0

a *_i , a * _ 2 , , a*_u ( , aq -  1 , a*_j
 9i H ~  92 + • • •H---------9u + • —I-------- q v-1 + q v  — -------- 9o-

«o <*o a o a o a o

Eq. (3.1) can also be expressed in vector-form as A iQ i  =  C q o ,  where Ai is a v X v 

lower triangular m atrix, Q\ =  [qi q% • ■ -qu • • - q v ]T > and

C l - « 0  _ « !  _ ^ 2  _ <  _ < ± i  < - i lT
« o  a o a o « o  “ 0 « o  Cto .

Notice th a t there are v + 1 variables in Q i, and only v equations in Eq. (3.1). The 

normalization equation is needed to solve Eq. (3.1) for Q j:

kmax
qo +  9i +  • • • +  qv = 1 -  £, where £ =  ^  g*. (3.2)

Since £ is usually very small (<  10-4 ), Eq. (3.1) will give a good approximate solution even 

if £ is set to zero.

We now want to compute Qi = A \ yC. Since Ai  is a lower triangular matrix, 

A j-1 will also be a lower triangular matrix. For convenience, let and c,-j be the nonzero
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elements of A 1 1 and A \,  respectively, and let C\ be the elements of C. Then for i , j  

l , . . . , u

1 * =  j

0 i ^ j .

Solving Eqs. (3.1) and (3.2) for bhj,  we get:

^  b i ,k c k , j  
k=l

h i , j  —

bi.i —Jl,t

bi,i—1 

b i , i — 1 

bi,j

bi,j —

0, j  > i

1, 1 < i < v

Ci,i—1

1 —

1 -  q j 

«o 

1 -  q ;
Ctn

1 _ )|c 
-  «1
«0

1 -  a \
a0

E
k=2

-T  b*ag
i - j
E
k=2 Q!o

1 < i < u 

u +  1 < i < v

i , j + k  ? u +  1 < i < v, 1 < j  < i — 1.

Substituting bij into Eq. (3.1), we have

qk = E  b*.i cj
i= i

qQ 1 < k < v. (3.3)

Substituting qk s in Eq. (3.3) into Eq. (3.2),

qo = (3.4)
1 +  [E iU  T . U  i c .

Then, q^s  for 1 < k < v can be determined by substituting Eq. (3.4) into Eq. (3.3).

For example, when u =  1, /  = 2, v = 3, the distribution of queue length becomes

(1 - 0  a*0 a*2
qo = 

qi =

<72 =

93 =

«0 -  «2 + (! + a'0 -  «l) (1 -  a0 -  al)«2
(1 -  6) (1 -  ag)agl ~ « o

an <7o =

1 -  a g  -  a \
a g - a g  +  ( l  +  a 0 - « i )  (1 -  ag -  aj)qg

( i - 0 ( i - « 5 - « I ) « 2
9o =

1
a0 (ag -  « 2  + (! + «o -  «i) (1 -  qg -  «i)a2 ) 

r ( l - a 1 ) ( l - a g - a O

a o  a 0
q-iao 9o-
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3.2.2 Solving qk for k > v

We now want to  derive % ’s for k > v. The last formula in Eq. (2.5) was:

n u I  oo \  fc+1 /  oo

Qk =  Y Si a *i+k (Q0  + Ql)+ Y  I Y £j a3+k-i+1 I Qi +  Y  ( Y S3 a j+k-i+1 | Qi
i~ 0  i—2 \ j —0  J  t=ti+l \j=0

0 0 / 0 0  \
+  Y  I Y e3 + i-k-1 aj \Qi for k = V  +  1 , . .  . 0 0 .

i=k+ 2 \i=0 /

To simplify this expression, define

d f  °
^   ̂ £j 5 0 ^  f^max
3=0

n u /  00 \

Bk d= Y £i a *3+v+k Qo + Y  X I £i a *v+k+j-i+1 Qi 
j=0 i=1 \i=o /

V I  OO \

H- ^  '  I ^   ̂ £j otv+k+j—i+i J Qi 1 1 fs & ^  kmax.
i=M+l \j=0 /

Since % <C 1 for & > u, the terms related to %+2, & > u, in Eq. (2.5) can be set 

to  zero, yielding approximate equations:

(1 -  vt ) qv+i - v 0  qv + 2  =  P i

-^2  g«+i +(1 -  v i )Qv+2 - t 'o  ft,+3 =  #2

k -2
~  ^  , ^k—iQv+i +  (1  ^ 1 ) % + / : —1 ~ I/OQv+k — Bk —1

2 = 1

4 ^  fc ^  fcmaa;? where <  P ^ .

The above equations can be rewritten as A 2 Q 2 — B,  where Q 2 =  [%+i qv+2 • • • Qv+kmax ]T, 

B  =  [Bi B 2  ■■■ B kmax- 1 ]T, and A 2 is a {kmax - 1 )  X (kmax -  1) lower triangular m atrix if

vo is set to zero. The inverse of A 2 is calculated using the perturbation approach as shown

below.

C a lcu la tio n  o f  A 2 1

Let A \  be the original m atrix and A 2 be the matrix after setting v0  to zero. Since 

A 2  is a lower triangular m atrix, A 2 X can be easily computed as follows. Let denote the
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nonzero ( i , j ) th element of A J 1, then

1
® i,i — 1

I  —  V \

i —jE vk _j_ j .
1 a i,j-\-ki 1  ^  * 5: k m a x i  1 5; J ^  ~  1*

*=1 1 -1 /1

A few examples of are:

O'i.i =   ̂ 5 1 5; 5; kmax1 -  I/X
_  ^2 o /  „• /  uO'i.i—1 — \o  ? 2  n  J \  n m ax

{ i - v i Y
1'3 0 /  , /

\o  i- ✓̂  S.O } <5 _i * S  ™max-( l - z / i f  ( l - / / i ) 2

Finally, the distribution of queue length can be calculated as:

k
Qv+k  =  ^  1 a k,j  B j i  1 5: k  5; k m a x . (3 * 6 )

J=1

Successive Approximation

The perturbation approach is applied to account for the effect of v$ ^  0. The 

basic idea of perturbation theory works as follows. Suppose the solution of a linear system 

A X  = B  is known. When A  and B  change to A + eA and B  +  eB, respectively, the new 

solution X  + eX  can be derived from A  and X  instead of inverting A + eA if c is a small 

number [60].

Let Q I and 8 A 2 be the exact distribution of queue length, and the m atrix that 

contains //0, respectively. The solution to A \Q \ — B  can be successively approximated as 

follows. Let Q 2 — Q 2  T 8 Q\- Since A ^ 1 has already been calculated, Q2 can be computed 

first. Then, (/I2 — <$A2)£<22 = 8 A 2 Q 2 , where 6 A 2  is a matrix of the same size as A 2  with 

vq at element ( i , i  +  1 ) ,  1 < i <  kmax, and zero otherwise. The same method can be used 

to  solve for 8 Q\- Let 8 Q\ =  6 Q^  +  8 QT2, then (A2 -  6 A 2 )(8 Q ^  +  8 Q 2 ) = <5A2<52- This 

equation can be divided into two parts which are then solved separately. The first part is 

A 2 $ Q ^  — 6 A 2 Q 2 and the second part is (A2 —£A2)<!><32 =  8 A 2 Q ^ -  Since we have already



61

found A2X, 8Q^  can be calculated by 8Q^ = A2X8A2Q2. This method is applied again

{2 ̂ /to solve for 8Q2 in the second part. Let 8Q2 — 8Q2 ’ + 8Q2 , then there are two equations 

similar to  the previous iteration:

A2 8 Q f  = 8A2q £ }

(.A2 - 8 A 2)8Qi = 8A2Q{2\

Again, 8Q22̂  is calculated first (=  A2l 8A2Q ^) ,  and 8Q2 is decomposed into 8Q23̂  and 

8Q2". Eventually, 8Q2 can be approximated as the sum of an infinite series of 8Q2k\  

k = 1 , . . . ,  oo as follows:

sqP  = a 2Ha 2q 2

i(2) _  A -ixA ^n W8 QW  =  A 2 X8 A 2 Q (X) = (A 2 1 8 A 2 )2 Q 2

8 Q{k) =  A ^ 6 A 2 Q {t X) =  (A 2 l 8 A 2 )kQ 2

  «/n(l) i JT/o(2) i   (■'̂ 2 ^A 2 )̂ ^
8Q 2 — oQ 2 + ^ 2  + • • • — 7 A- l c A  Q 2I  -  A 2  l 8 A 2

Q \  =  Q2 + SQI  = + Q 2

_  Q 2 

I -  Ao'SAo

{a 2 H a 2)
I  — A 2 x8 A 2  

= ( I  — A 2 1 8 A 2 )~1 Q2. (3.6)
i2 V-tt-2

In most calculations, Q \ converges to a fixed constant after two to three iterations, 

it is not necessary to  invert ( I  — A 2 l 8 A 2) in Eq. (3.6). Combining Eqs. (3.3) to (3.6), the 

distribution of queue length can be derived for any threshold patterns.

3.2.3 D eriving the Com bined Task Arrival R ate u>

Two unknown parameters, u> and e’s in Eqs. (3.3) to (3.6) need to be derived 

before solving these equations. Deriving the combined task arrival rate u  is discussed in
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this section. In the proposed LSMSCB, a node is overloaded when its queue length is greater 

than v. Only overloaded node can transfer tasks to other underloaded nodes in its buddy 

set. The task transfer out ra te  (/?) is shown as:

P = 1 3  (*-■ »)«*
k = v -(-1

D+l
(?0 +  ?l) +  ] £

i=2
5 3  (A; -  v -  1 +  i) a k

k—v-i-2—i

+ Ei=t;+2
Y u k a k

lk- 0
Qi (3.7)

Note tha t /3 is the rate of task transfer out of a node. If all nodes’ external task arrival 

rates are identical, then r  =  /?. Otherwise, r  must be calculated by Eq. (2.10).

Combining r  and A, the distribution of r//c’s for k < v can be calculated by 

Eqs. (3.3) and (3.4). Substituting the newly calculated qk s into Eq. (3.7), one can get 

a new r .  The same procedure is applied again to adjust qk s. This procedure will repeat 

until qk s and u  converge to a fixed number.

3.2 .4  A pproxim ation Accuracy

Due to the complexity of Eq. (3.1), the closed-form solution is derived by separating 

it into two parts and solving them approximately. It is desirable to analyze the accuracy of 

the derived solution.

The task transfer-in rate r  is approximated by Eq. (3.7). Since e cannot be deter­

mined before deriving r ,  only % ’s for k < v are used in Eq. (3.7). Let St  be the difference 

between the derived results and the actual value, then

St = 1 3  (k ~ v ) a t
k—%i+ l

u+l
(Sqo +  <fyi) +  T3

i= 2
5 3  ( k - v - l  + i ) a k

k = v + 2 —i
Sqi +

Y l k a k
lk= 0

Sqi

where

Sq0 =
1 + ELi ELi h d Cj
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£  h j  Cj 
J =1

%  = qk k > v. (3.8)

%  = Sqo 1 < k < v

The variation of r  will in turn  affect the distribution of queue length. As an 

example, the changes of r  and queue length are studied for the threshold pattern  u =  1, 

f  =  2, u =  3 with buddy set size 10 and system load p — 0.8. As shown in Table 3.1, the 

transfer-in task rate is 0.059 (0.065) when £ is omitted (considered); the difference is about 

10%. The change of qk’s is around 1% due to the variation of r .  The beauty of the proposed 

approximate m ethod in deriving r  is that qk s for k < v are increased a little by omitting £ 

while qk s for k > v are completely ignored to compensate for the omission of £. So, r  can 

be derived quite accurately.

The variation of e^s vs. the change of distribution of queue length is given in 

Table 3.2. The variation of Cks is found significantly larger than the change of qks for k < 3. 

The variation of qk s for k > 3 is found to be about 10% due to  the change of c^’s. Note 

th a t the variation of qk s for k > 3 given in Table 3.1 is derived by only considering the 

variation of r  (c^’s are assumed unchanged). It is clear tha t e^’s dominate the variation of 

qks for k > 3.

Summarizing the above analysis, we found tha t the first part of qk s (for k < v)  is 

not sensitive to the second part of q^s  (for k > v) as long as £ is small. However, the second 

part of qk s is very sensitive to the accuracy of the first part of qk s. Since the approximate 

closed-form solutions determine the first part of qk s very accurately, the inaccuracy of the 

second part of qk s and Pdyn is within 10% of the corresponding true value when £ < 10-4 .

3.3 D esign  of an O ptim al LSM SCB

The QL derived from Eqs. (3.3) to (3.6) is verified/compared with the results 

derived in Section 2.5. As shown in Fig. 3.1, in most cases, the QL derived from the
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closed-form equations is closer to the true (simulation) result and is also consistent with 

the results calculated numerically. The QL derived from the numerical method is always 

smaller than the closed-form result, because some of the high-order coefficients were ignored 

in the numerical method due to the use of restricted matrix size.

Since Pdyn depends on the system utilization and task deadlines, there are upper 

bounds of system utilization and deadlines for any given value of Pdyn, denoted by Pdyn ■ 

For example, as shown in Fig. 3.2, both threshold patterns ‘1 2 3’ and ‘2 4 5’ failed to meet 

the specification if P J =  10-8 and deadline D < 5 with system load higher than 0.5. On 

the other hand, to ensure Pdyn < Pdyn even system load =  0.9, the task deadlines 

must be greater than 12. Due to the nature of LSMSCB, minimizing Pdyn will increase the 

communication overhead. The communication cost, denoted as Ccom, includes the overheads 

associated with task transfers and state-information collection. The cost of collecting state 

information is determined by the product of the frequency of state change ( f sc) and the size 

of buddy set (cr). The task transfer cost (/3) can be controlled by adjusting T I i v; a higher 

T I I v will lower /i. For example, minimizing Ccom can be achieved by reducing the frequency 

of state  change, the buddy set size, or the task transfer rate. The frequency of state  change 

can be reduced by increasing the difference between T H U and T Hf .  A small buddy set 

size will reduce the cost for collecting state information, but will increase Pdyn- The task 

transfer rate can be reduced by increasing T I I  v. However, Pdyn will generally increase 

with any attem pt to reduce Ccom. Thus, the primary goal in the design of an optimal 

LSMSCB is either to ensure the system’s Pdyn to be lower than P2yn while minimizing the 

communication cost, or to minimize Pdyn while keeping the communication cost below a 

pre-specified level, C*om.

The problem of optimizing LSMSCB is formally stated as follows.

O p tim a l L SM S C B 1: Minimize Ccom = a fsc +  P subject to Pdyn < P*iyn •

O p tim a l L S M S C B 2: Minimize Pdyn subject to Ccom < C*om.
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From the analysis in Section 2.4, f sc is equal to the total number, T, of arriving
kmax

tasks times the probability, Psc, of state change. Pdyn can be computed as ^  qk, where
k = D

D is the given task deadline. The closed-form equations can be used to derive the optimal 

threshold patterns and buddy set sizes for both the minimization problems.

Since Pdyn and Ccom are determined by the threshold pattern and buddy set size 

used, the optimal threshold pattern  and buddy set size can be found by an exhaustive 

search. In such a case, the search complexity is 0 ( D 3  N ) ,  where N  is the total number of 

nodes and D is the given deadline. This complexity can be greatly reduced by utilizing the 

results in [25] as follows. First, the frequency of state change is 100% if T H f  — T H U, and 

f sc can be greatly reduced if TI I j  — T1TU > 1, or T H f  > T H U +  1. Second, the number 

of unnecessarily transferred tasks will increase if TI I j  is close to TI I v, thus increasing 

the probability of missing task deadlines. This effect can be explained by the following 

example. Let pjpn and pff^n denote the probability of missing task deadlines under two 

threshold patterns with the same T I IU and T I IV, but T H j 1̂  and T H ^p ,  respectively. If 

T H .p  < T I i P  < T H V and Pjpn < Pdlh, then it is impossible to find a threshold pattern  

with the same T I I U and T I IV, but a T H f  greater than T H f  ' tha t results in a lower Pdyn 

than  Pjyl- In other words, the search for an optimal solution can skip all of the threshold 

patterns with such a THf .

Third, the effect of changing buddy set size on Pdyn is quite complicated due to 

the interaction between nodes in a buddy set. As shown in Fig. 3.3, Pdyn continues to 

decrease with the increase of buddy set size when system load is 0.5, and Pdyn approaches 

a constant when system load is 0.7, but it may even increase with the increase of buddy set 

size when system load is higher than 0.9. Nonetheless, buddy sets of larger than  20 nodes 

will only reduce Pdyn infinitesimally, and cannot offset the increasing cost of state-change 

broadcasts.

Based on the above observations, one can find the optimal threshold pattern  and
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optimal buddy set size subject to the given D , Pjyn, and C*om by the following procedure. 

The first phase is to  find a threshold pattern  th a t satisfies the constraint. The search starts 

at T I i u -  0, T H f  =  T H U +  1, T H V = T H f  +  1, and a -  20 (or any other large number). 

If the resulting Pdyn > Pdyn > increase T H V until it becomes equal to D. Then, increment 

T H f  or TIIU, and restart the search until a pattern th a t satisfies the constraint is found. 

The next phase is either to minimize Ccom for the optimal LSMSCB1, or to minimize Pdyn 

for the optimal LSMSCB2. The former is done by increasing the difference between T H U 

and T H f , or increasing T H V, or reducing a. Since any of these attem pts will increase Pdyn, 

once the constraint cannot be satisfied, the minimizing procedure should stop. The optimal 

LSMSCB‘2 is solved by increasing T H U and buddy set sizes until the constraint cannot be 

satisfied.

3.3.1 O ptim ization resu lts

Many im portant and useful results are drawn from the above optimization process. 

First, the minimum achievable Pdyn with no constraint on Ccom is given in Fig. 3.4. The 

results show th a t Pdyn can be reduced to below 10-15 when D > 7 and A =  0.8. In most 

cases, Pdyn can be easily reduced to below 10“ 7. The next figure shows the minimum 

achievable Pdyn subject to  the constraint Cc0m < C*om. The cost shown in Fig. 3.5 is 

normalized to the to tal number of arrived tasks on a node, so Ccom =  1-0 means tha t one 

control message will be generated per task arrival. Fig. 3.6. shows the minimum achievable 

Ccom while keeping Pdyn < Pdyn• When A =  0.5 and D > 6, LSMSCB can reduce Ccorn to 

below 1% while keeping Pdyn < 10-6 . Even when A = 0.8 and P£ = 10~10, Ccom can still 

be reduced to below 0.1 if D > 10.

Another im portant result found in the derived optimal threshold pattern and 

buddy set is tha t the system utilization is significantly increased, as compared to the re­

sults calculated based on the upper bound model in Section 2.5. For example, as shown in



Fig. 3.7, the external task arrival rate is increased from 0.3, 0.06, 0.03 (from Fig. 2.9) to 

0.88, 0.7, 0.57 when D  =  4 and Pdyn = 10“ 4, 10-6 ,10-8 , respectively.

Some optimal solutions found for the various values of D  and P$ are given in 

Table 3.3. This table is useful in the design of real-time systems for the following reasons. 

First, the system can be easily verified if it can meet the specification. The empty entries 

indicate the nonexistence of such a system. Second, a solution can always be found under 

any given D  and P J if such a  solution exists. Third, an existing solution is optimal in the 

sense th a t the system constraint is satisfied and the communication cost is minimized.

f  =  0 f  =  4.9 x 10~4 Variation Variation in %
p 0.59 0.65 0.06 10.17
90 0.2352 0.2327 -0.0025 -1.08
9i 0.3203 0.3200 -0.0003 -0.1
92 0.2630 0.2641 0.0011 0.44
93 0.1816 0.1828 0.0012 0.66
94 4.03 X 10~4 4.06 X 10"4 3.08 X 10~6 0.76
95 7.26 X 10~5 7.30 X 1 0 -5 5.6 x 10~7 0.77
96 1.10 x 1 0 -5 1.12 x 10 -6 8.72 x 10 -8 0.78
97 1.48 x 10~6 1.49 x 10~6 1.17 x 10 -8 0.79
98 1.70 x 10“ 7 1.72 x IQ"7 1.4 x 10~9 0.82

Table 3.1: Variation of q^s  and r  by omitting £.

0II<KJ> (  =  4 .9 x  10~4 Variation Variation in %
e0 0.001749 0.001932 0.000183 10.46
Cl 0.015509 0.016771 0.001262 8.14
£2 0.061889 0.065514 0.003625 5.86
€ 3 0.146354 0.151663 0.005309 3.63
94 4.03 X 10“ 4 4.35 X 10"4 3.2 x 10~5 7.9
95 7.26 x 10~5 7.87 x 10“ 5 6.1 x 10“6 8.4
96 1.10 x 10“ 5 1.21 x 10“ 5 1.1 x 10“6 10.0
97 1.48 x  10~6 1.62 x 1 0 -6 1.4 x 1 0 -7 9.46
98 1.70 x 10~7 1.87 x 10“ 7 1.7 x 10~8 10.0

Table 3.2: Variation of q^s  vs. the change of
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Load (A) 0.5 0.7 0.9

P*
dyn Deadline T H U T H f TH V a TH U TH f T H V a T H U T H f T H V a

< 2 — — —
3 0 1 2 , 10 — —
4 1 2 3, 5 2 3 4, 9 —

1(T6 5 1 2 3, 5 2 3 4, 7 2 3 4, 15
6 2 4 5, 3 2 4 5, 6 3 4 5, 13
7 2 5 6, 3 3 5 6, 6 3 5 6, 13
8 4 6 7, 2 4 6 7, 5 4 5 6, 11

< 3 — — —
4 1 2 3, 9 1 2  3, 14 —

5 1 3  4, 8 2 3 4, 12 —
10-8 6 2 4 5, 6 2 4 5, 9 3 4 5, 17

7 3 5 6, 5 4 5 6, 7 3 4 5, 14
8 4 6 7, 5 4 6 7, 7 5 6 7, 14
9 5 7 8, 4 5 7 8, 6 5 7 8, 13

< 3 — — —
4 1 2 3, 13 — —

5 1 3  4, 8 2 3 4, 16 —
lO -10 6 2 4 5, 7 2 4 5, 10 —

7 4 5 6, 6 4 5 6, 9 —

8 4 6 7, 6 5 6 7, 8 —

9 5 7 8, 5 5 7 8, 8 6 7 8, 16

Table 3.3: Optimal threshold patterns and buddy set sizes under given D  and P j yn



C H A PTER  4

A  COORDINATED LOCATION POLICY IN  

H Y PE R C U B E  M ULTICOM PUTERS

4.1 Introduction

A variety of topologies have been proposed to interconnect the processors in dis­

tributed systems. Among these topologies, the hypercube has drawn considerable atten­

tion due mainly to its regularity, potential for fault-tolerance, and scalability over a useful 

range [61, 62, 63, 64, 65]. Various research issues in hypercube multicomputers have been 

addressed, such as fault-tolerant routing and broadcasting [66, 67, 68, 69], and subcube 

allocation [70]. However, very little on workload distribution/redistribution to meet certain 

criteria (e.g., task deadlines) in hypercube multicomputers has been reported in the open 

literature. Bursty task arrivals may temporarily overload some hypercube nodes while leav­

ing others underloaded. This chapter is concerned with the application of the LSMSCB to 

hypercube multicomputer systems.

Any efficient LS approach requires to resolve the issues of determining the load 

state  of each node, collecting and updating state information, locating underloaded nodes 

and transferring overflow tasks [35, 40, 55]. Since the issues of determining the load state and 

collecting/updating state information have been treated in Chapter 2 and 3, we will in this 

Chapter focus on the location policy. Unless properly coordinated in locating underloaded 

nodes, overloaded nodes may ‘dum p’ many overflow tasks on a few underloaded nodes, thus

76
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needing to  transfer some of the transferred-in tasks again [71]. In such a case, LS may not 

improve system response time even at the expense of communication overheads resulting 

from transferring tasks and /o r collecting load states of other nodes.

Unfortunately, almost all existing location policies have deficiencies of one form 

or another. In the probing m ethod [40], an overloaded node selects a node (a candidate 

receiver) and checks whether or not this node can share its load. If it can, the node 

will transfer an overflow task to tha t node; otherwise, it will probe another node. The 

communication overhead for probing nodes was shown to depend only on the number of 

probes regardless of system size. However, probing nodes is inefficient, because not only 

will it introduce an additional delay in completing the tasks to be transferred, but also 

the overloaded node may not be able to locate a receiver within a pre-specified number of 

probes if there are only a few underloaded nodes in the system. In case a bidding algorithm 

[32, 33, 34] is used, an overloaded node first broadcasts a request for bids. Three to four 

rounds of messages have to be generated and exchanged before a task is actually transferred. 

For the purpose of load balancing, if an underloaded node’s bid is accepted by more than 

one overloaded node, the underloaded node may be able to accept the task from only one 

of the overloaded nodes, and thus, the rest of the overloaded nodes must start another 

round of bidding. This bidding process usually causes excessive communication delays to 

the tasks to be transferred. To reduce the number of messages in the bidding algorithm, 

Ni and Xu proposed a drafting algorithm by allowing underloaded nodes to initiate the 

drafting process [35]. This algorithm is shown to be able to reduce the number of message 

exchanges to about one third of tha t of a bidding algorithm. However, if an underloaded 

node is accepted by more than one overloaded node, it may not be able to accept tasks 

from all overloaded nodes.

Any good location policy must be the result of resolving the following two issues. 

F irst, when the number of overloaded nodes is less than, or equal to, the number of un­
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derloaded nodes, no more than one overloaded node should be allowed to select the same 

underloaded node as a receiver. Simultaneous selection of an underloaded node by multiple 

overloaded nodes results from lack of coordination among them, and will henceforth be 

called the coordination problem [71]. Specifically, n task collisions are said to occur if n +  1 

overflow tasks are sent simultaneously to an underloaded node.1 Second, to minimize 

the task transfer delay, the buddy set of a node is composed of those nodes in its physical 

proximity (e.g., those one or two hops away). The overloaded nodes in a buddy set should 

be able to  transfer their tasks to the nodes in different buddy sets such th a t those tasks 

arriving at overloaded nodes within a hot region — a region where the number of overloaded 

nodes is greater than th a t of underloaded nodes — can be shared throughout the entire 

system, not just by these nodes in the same buddy set. Formation of hot region(s) with an 

excessive number of overflow tasks will henceforth be called the congestion problem.

The main purpose of this chapter is to solve both the coordination and congestion 

problems in hypercube multicomputers. Specifically, it will be formally proved tha t the 

method of constructing the preferred list discussed in Section 2.3 can minimize the prob­

ability tha t more than one overloaded node transferring overflow tasks to an underloaded 

node and distribute the overflow tasks in a buddy set over many different buddy sets, rather 

than overloading the nodes in its own buddy set. Based on modeling and simulation, the 

LS method with the proposed preferred lists will be shown to outperform the bidding or 

drafting algorithms and other LS methods tha t are either based on probing or without using 

preferred lists.

In Section 4.2, the differences between the LSMSCB and the drafting algorithm are 

discussed first. Then the problems of coordination and congestion which may be encountered 

when implementing the LSMSCB are discussed. These problems are resolved by properly 

constructing the preferred list of each node. Analysis and construction of preferred lists

1This is to reflect the severity of the coordination problem. For example, sending three tasks to a node 
would be more severe than sending two tasks to the node.
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are the subject of Section 4.3. Using the number of task collisions as a yardstick, the 

performance of the LSMSCB with the proposed solutions to the coordination and congestion 

problems is evaluated in Section 4.4. In Section 4.5, the proposed location policy is compared 

with the random selection, probing, bidding, and drafting algorithms.

4.2 A dvantages and Problem s of the LSM SCB

As discussed in Section 2.3, three thresholds, TH U, T H f , and T H V, are used 

to  determine the state of a node. Since the main intent of this chapter is to solve the 

coordination and congestion problems in realizing the LSMSCB, it is first compared with 

the drafting algorithm [35] which is a similar, most commonly used method. The LSMSCB 

uses state-change multicasts within the buddy set of each node to collect and update the 

state information. This differs from other LS methods in the following aspects. Although 

the three thresholds defined in Section 2.3 are based on an idea similar to the three load 

states (L-, N-, and II- state) used in the drafting algorithm [35], their functions are quite 

different. For example, task transfer is initiated by an underloaded node in the drafting 

algorithm (i.e., receiver-initiated), and by an overloaded node in LSMSCB. The difficulty of 

a receiver-initiated method lies in that once a node switches to H-state, this state-change 

must be multicast to other nodes so tha t this ‘new’ overloaded node may be drafted by 

an underloaded node as soon as possible. A large number of control messages need to 

be multicast if the load switches frequently between N-state and H-state. Although many 

protocols were considered in [35], this problem could not be solved completely without 

causing drafting delays to H-state nodes. By contrast, since the LSMSCB is sender-initiated 

with receiver-initiated state updates, an overloaded node can locate, without any delay, an 

underloaded node using its preferred list. So, the state wiggling between TH f  and T I i v 

will not introduce any communication overhead at all, because the underloaded nodes need 

not know the exact state of overloaded nodes. Moreover, the state wiggling between T H U
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and T H /  can be reduced by increasing the magnitude of T H j  — T H U without affecting the 

system performance as long as there are some underloaded nodes.

Since the cost of task transfer increases with the physical distance between the 

sender and receiver nodes, the receiver node must be located as closely to the source node 

as possible. Thus, it is desirable to  restrict a node’s loads to be shared with those nodes in 

its proximity, i.e., local LS. Although a similar idea was adopted by others [35, 72, 55], they 

did not address several potential drawbacks of local LS. For example, if all the neighbors 

of an overloaded node are also overloaded while there are still many underloaded nodes 

elsewhere in the system, the conventional local LS will not be able to locate the underloaded 

nodes. Furthermore, the local LS in a hot region will tend to confine the overflow tasks 

only to a small number of nodes, thus making it impossible to balance/share the system 

load globally. By contrast, the buddy set used in the LSMSCB is constructed based on the 

distance between the sender and receiver nodes. The first entry of a node’s preferred list 

consists of those nodes one hop away from the node, and the second entry consists of those 

nodes two hops away from the node, and so on. As was discussed in Section 2.5, the size 

of buddy set depends on system load and topology. For example, buddy sets of 10 to 15 

nodes are shown to provide good performance over a wide range of system load. Note, for 

example, th a t the buddy set of a node in a 6-cube is formed with those nodes one and two 

hops away from the node.

However, both the coordination and congestion problems must be resolved before 

realizing the LSMSCB. These problems can, of course, be resolved easily if every overloaded 

node knows the receivers of other overloaded nodes. It is, however, practically impossible to 

equip every overloaded node with this knowledge, because each overloaded node is required 

to  communicate with all the other overloaded nodes before transferring an overflow task to 

an underloaded node. This will not only introduce a great deal of communication traffic, 

but also result in severe delays in completing the tasks to  be transferred, thus offsetting any
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Figure 4.1: Coordination problem
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benefit to  be gained from LS.

One must therefore establish a rule for selecting a receiver among possibly multi­

ple underloaded nodes while minimizing the probability of more than one overloaded node 

simultaneously transferring overflow tasks to the same underloaded node. For example, 

consider Fig. 4.1, where node ‘O’, ‘3’, and ‘5’ are overloaded and all other nodes are under­

loaded. Unless properly coordinated, the three overloaded nodes may choose node ‘1’ as 

the receiver, thus overloading node ‘1’ and leaving the other nodes underloaded. Similarly, 

the congestion problem is illustrated in Fig. 4.2. Suppose nodes ‘O’, ‘1’, ‘2’, ‘4’, and ‘8’ are 

in the same buddy set and three of them are overloaded (shaded circles), then they should 

transfer overflow tasks to the nodes outside of the buddy set. This problem can be resolved 

if the overloaded nodes select the underloaded nodes using preferred lists. As shown in 

Fig. 4.3, the overflow tasks within a hot region can be shared by the underloaded nodes 

outside of the region, thus spreading the overflow tasks more evenly over the entire system.

4.3 C onstruction o f Preferred Lists and Buddy Sets

The congestion problem can be solved by designating each node in an ra-cube as 

the kth preferred node of one and only one other node. In such a case, since each node 

is designated as the most preferred node of one and only one node, the probability of an 

underloaded node being selected for task transfer by more than one overloaded node will 

be very small. Moreover, to enable the entire system to share the overflow tasks in any hot 

region, the most preferred receiver of each node in a buddy set must belong to a different 

buddy set. Since an overloaded node is most likely to transfer an overflow task to its most 

preferred receiver, the overloaded nodes in a buddy set will spread their overflow tasks over 

many different buddy sets, thus solving the congestion problem.
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Figure 4.2: C ongestion problem



Figure 4.3: Solution for congestion problem
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4.3.1 C onstruction of a Preferred List

Definition 4.1 A n n-dimensional hypercube, Qn, is defined recursively as follows.

1 . Qo is a trivial graph with one node, and

2 . Qn =  J i2 x Q n - 1 , where K 2 is a complete graph with two nodes and x is

the product operation on two graphs [73].

The address of a Q 2  can be represented by a sequence of binary digits and *, 

bn- 1 • ■ '62 * *5 where * represents either 0 or 1. The four nodes, 6n_ 1 • • -^OO, 6n_ 1 • • -6201, 

bn—i • • • &2IO, 6^—x • ■ - ^ l l ,  form a Q2. Let the address of node i (denoted by jVt-) be 

in- \ i n - 2  • • • «o, Ik be the unit vector in which all but k-th  bit (which is set to ‘1’) are 

‘O’, and © denote the bitwise exclusive-or operation. For example, every node, IV;, of an

ra-cube has n nodes within one hop and the address of each of these n nodes can be obtained

by N{ © Ik for k =  0 , . . . ,  n -  1.

Since the cost of transferring a task increases as the distance between the sender 

and receiver increases, it is naturally to order the nodes within one hop of the sender first, 

then the nodes within two hops, and so on. For convenience, the nodes within one hop of 

a node N x are said to be in the first entry of N fis preferred list, the nodes within two hops 

are in the second entry, and the nodes within m  hops are in the m th entry.

The nodes in all entries of N [ s preferred list are ordered as defined below.

Definition 4.2 (1). The nodes in the first entry are ordered as {(in_ iira-2  •• -Zo)ffi I i}j=o_1 •

(2). The nodes in the second entry are ordered as {(in_j i„_2 • • •io)®Ij®Ik} (j =  1 , . . . ,  n — 

2,0 and j  +  1 < k < n — 1).

(3). The nodes in the third entry are ordered as {(in- i in - 2  ••■*0) © Ij  © Ik © If}  (j —

n — 3,0, j  +  1 < k < n — 2 and k + l < £ < n  — l) .

(4). In general, the nodes in the k th (k < n)  entry of N i ’s preferred list are ordered as

{(*n—l*n—2 ’ ‘ ‘ *0 ) © I j \  © I j 2 ' © I J k }  — 1, . . . ,  k ,  0, j \  © 1 ^  J*2 ^  n  k  -\- 1,
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• • •, and j k- i  +  1 < j k < n -  1 ).

The first i nodes in the first entry are often referred to as the most, second, . . . ,  and 

ith preferred nodes. Consider N 0  (labeled as 000) in a Q3, the three nodes in JVo’s first and 

second entries are ordered as {No © Jo, No © I \ , No © I 2} =  {001,010,100} =  { N x, IV2, N 4}, 

and {No © /1 © I2, No ffi Io © Tl> No © Iq © I 2 } = {HO, 011,101} =  {No, N 3, IV5}. Similarly, 

the three nodes in N 3 S (labeled as 011) first and second entries will be {010, 001 , 111} =  

{N 2, N u  N 7}, and {101,000,110} -  {iV5, N 0, N 6}.

The ordering sequence in the first entry (shown in Definition 2) is one out of 

the nl possible ways of ordering n nodes. I will show that all of such ordering ways are 

indistinguishable with respect to the capability and performance of load sharing: one can 

simply choose any one of them.

Ordering the nodes in the second entry is more involved than ordering the nodes in 

the first entry as discussed above. Consider No in the previous example. Basically, one can 

copy the first entry nodes N \ , N 2, and N 4  to iVo’s second entry. However, the most preferred 

nodes of the three nodes in iV0’s first entry ({N \ , N -2, # 4}) will select the three nodes in JVj’s 

first entry ({Ao, IV3, N$}) as their most preferred nodes. Notice that No will not transfer 

overflow tasks to nodes within two hops, i.e., in its second entry, unless N X, N 2 , N 4  are all 

either fully-loaded or overloaded. Since it is very likely tha t all these three nodes need to 

transfer tasks to their most preferred nodes ({No, N 3, N$}), it is better for No not to select 

iV3 first in its second entry to avoid collisions with No and N x in transferring tasks to A3. 

So, we consider the second preferred node of No, (i.e., N 2 ) first in generating iVo’s second 

entry, and then the first entry of JVo’s most preferred node (N%).

Another issue in ordering the nodes in the second entry is to eliminate the du­

plicated nodes when copying the first entries of the nodes of iVo’s first entry nodes. For 

example, the first entries N x, N 2, and N 4  are {iV0, N 3, N 5}, {N 3, N 0, N 6}, and {N 5 ,N 6, N0}, 

respectively. There are only three nodes, N 3, N$, and Nq, need to be ordered in iVo’s second
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entry. A systematic way to extract these distinct nodes is to set the index k of the second 

unit vector, Ik, in Definition 2 to be one larger than the first index j  and increment k until 

it becomes n — 1. So, the first index j  of unit vector Ij can only be incremented up to n — 2 

and there is no need to consider the first entry of JVo’s third preferred node (i.e., IV4) in this 

case.

Ordering the nodes in the third entry is similar to ordering the nodes in the second 

entry. According to Definition 2 nodes are ordered as {(in_ i?n_2 • ■ • «o) © Ij  © Ik © I t }• The 

first two indices j  and k in Ij and Ik follow the same sequence as the ordering in the second 

entry except th a t the first (second) index j  (k) can only be incremented up to n — 3 (n  — 2), 

as explained above. The third index I  starts from k +  1 and increments up to  n — 1 to 

avoid the duplication of nodes in Ao’s the third entry. The fourth and higher entries are 

generated likewise. The preferred lists of all nodes in a 4-cube can be found in Fig. 2.2.

Once each node’s preferred list is constructed, its buddy set can be formed by any 

required number of nodes counting from the top of its preferred list. (Note tha t the issue of 

determining the size of a buddy set has already been addressed in [25].) An overloaded node 

can then select an underloaded node from its buddy set based on the order of preference 

determined above. This selection can easily be implemented with a pointer to the first 

available node in the node’s preferred list. If, albeit rare, an overloaded node cannot find 

any underloaded node from its buddy set, all of its tasks will be executed locally.

In what follows, we show that the above preferred lists can solve both the coordi­

nation and congestion problems.

Theorem 4.1 Each node in an n-cube will be selected as the k th preferred node by one and 

only one other node for k =  1, . .  . , N ( N  = 2n).

The proof of this theorem is obvious according to Definition 2. Since the nodes 

in the first entry of each node are defined by {(in- \ i n - 2  • ■ • «o) © IjYjlro_1? ^  is clear tha t 

the product of (?’n_ i*ra_2 • • -«o) ffi Ij on any two different nodes will be different for j  =



88

0. . .  . , n  — 1. Moreover, ordering the nodes in the second and higher entries lists of each 

node is basically determined from the ordering of the first entry nodes. So, a node will be 

selected as the k th preferred node by one and only one other node for k =  1 , . . . ,  N .

Since each node in a Qn will be selected as the most preferred node by one and 

only one other node, the probability of an underloaded node being selected by more than 

one overloaded node is very small, thereby solving the coordination problem.

Before presenting Theorem 2, it is necessary to consider one special feature on 

hypercube structure, i.e., there does not exist a cycle which is composed of an odd number 

of nodes. For example, let the sequence of nodes No, N \ , . . . ,  be part of a cycle. N t 

and Ni+i are adjacent to each other for i — 0, . . . ,& — 1. Using the 0  operation for 

0 < i < k — 1, this sequence of nodes can be represented as follows. iV,-+i =  TV,; © I p, and 

N {-(_2 =  iV;+i 0  Iq ~  Ni 0  Ip 0  I q for some 0 < p, q < n — 1. Then it is easy to show th a t 

iVj+1 is one hop away from No, and iV2+2 is either two hops away from No if p /  q or equal 

to No if p — q. Repeating this procedure, iV,-+3 = iVo © Iv 0  Iq © I r is either one hop away 

from No if any two of p , q, r are equal, or three hops away from No if p, q, r are all distinct 

integers. Generally, one can show that 1V,+,- will be an odd (even) number of hops away 

from No if j  is odd (even). In order to form a cycle, the start and end nodes must be one 

hop away from each other, so j  can only be an odd number, thus making the to tal number 

of nodes in a cycle even.

Theorem 4.2 The most preferred node of each node in a buddy set must come from a 

different buddy set i f  the buddy set size is no greater than ( 2 ) •

Proof: Since the number of nodes in the first and second entries of an n-cube is 

( ) and ( 2 ) ’ respectively, the buddy set of size no greater than  ̂ ) wdl consist of only

the nodes in the first or second entries. This theorem is proved in the following two steps.

1. No two nodes in the first or second entry can be adjacent to each other, otherwise one 

can form a cycle with an odd number of nodes, thus contradicting the feature of hypercube
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structure mentioned above. Since the most preferred node of any node is within one hop, 

any nodes in the first or second entry cannot select any other nodes in the same entry as 

its most preferred node.

2.  Each node in the first entry will be adjacent to some other nodes in the second entry, but 

these adjacent nodes will not select each other as its most preferred node if the buddy set 

size is not greater than  ^  ) f°r the following reason. As stated earlier, the most preferred 

node of each node in the first entry will be the nodes in the first entry of the most preferred 

node. According to Definition 2, the first entry of the most preferred node is the last entry 

to be considered in generating of the second entry for each node. Since there are ( ™ j  

nodes in the first entry, if the buddy set size is not greater than ( 2 )5  then only the first 

( 2  ) — ( l  ) n°h es in the second entry will be included in the buddy set. Thus none of the 

nodes in the first entry will select any nodes in the second entry which are included in the 

buddy set as their most preferred node. □

If system load is well balanced, the probability of staying in overloaded state is 

much smaller than  in underloaded state. So, an overloaded node is most likely to transfer 

a overflow task to its most preferred node; the overloaded nodes in a buddy set will spread 

their overflow tasks out to many different buddy sets instead of overloading the nodes in its 

own buddy set, thus solving the congestion problem. As concluded in [25], buddy sets with 

10 to 15 nodes perform well in most cases, so the buddy set size of ^  ) h1 Theorem 4.2 

will not alter the usefulness of the preferred fists in practice for hypercube multicomputers 

larger than Q 5 .

As mentioned earlier, ordering the nodes in the first entry (Definition 2) is one out 

of n\ possible ways. It is easy to show th a t all these ordering ways are indistinguishable 

with respect to the properties of Theorem 4.1 and 4.2.
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From Definition 2, the nodes in the first entry are ordered as {(in- i i n - 2  •••*())© 

I j Y j Z o_1- One can generate another set of preferred lists by interchanging the incrementing 

sequence of index j  of I j .  However, such preferred lists will also satisfy the properties 

of Theorem 4.1 and 4.2. So, they are indistinguishable with respect to the properties of 

Theorem 4.1 and 4.2.

4.4 C alculation of th e  N um ber of Task Collisions

The location policy is one of the key issues tha t determine the performance of LS 

schemes. A good location policy should be able to move the overflow tasks from overloaded 

nodes to underloaded nodes in such a way that each underloaded node shall not exceed its 

capability due to transferred tasks; otherwise, some of the underloaded nodes may become 

overloaded and need to transfer out some of the received tasks, thus possibly increasing the 

network traffic and the task transfer delay without improving the performance.

So, we develop a model using the number of task collisions to analyze the goodness 

of a location policy. Specifically, if n +  1 overflow tasks are sent simultaneously to an 

underloaded node, n task collisions will result. This quantification of task collision is to 

reflect the severity of the coordination problem. We want to devise a location policy so tha t 

each overloaded node may find an underloaded receiver without any conflicts with other 

overloaded nodes. Although acceptance of more than one overflow task at a time may not 

necessarily make an underloaded node overloaded, the average response time in such a case 

will be larger than the case when each overloaded node can find an underloaded node which 

is not being chosen by any other overloaded node. For example, if an underloaded node 

can complete only one overflow task in time, then the rest of simultaneously transferred-in 

tasks will miss their deadlines or must be retransferred. Under this model, the best location 

policy is the one tha t results in no task collision at all.

The number of task collisions is strongly related to the performance of any location
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policy, if an optimal location policy is defined based on the fact tha t each underloaded node 

must not receive tasks more than its capacity at any moment. In such cases the optimal 

location policy is the one tha t results in no task collision; otherwise, some of underloaded 

nodes may exceed its capacity and have to retransfer received tasks.

Let the capacity of an underloaded node be defined as the maximum number of 

tasks th a t a node can receive without becoming overloaded. Assuming th a t the number 

of underloaded nodes is always greater than or equal to the number of overloaded nodes, 

the to ta l number of overflow tasks is less than the combined capacities of all underloaded 

nodes. One can show that the only condition to guarantee tha t each underloaded node not 

to exceed its capacity by accepting transferred tasks is to avoid task collisions. Since each 

underloaded node can accept at least one task, it will not exceed its capacity when there is 

no task collision (each underloaded node will receive at most one task at a time). As soon as 

an underloaded node receives a transferred task, it will update and multicast its load state 

to the nodes in its buddy set. If there are task collisions, some of the underloaded nodes 

may receive more transferred tasks than their capacity, thus needing to retransfer some of 

the received tasks. So to guarantee each underloaded node not to receive more transferred 

tasks than its capacity is to avoid task collisions.

In the rest of this section, we shall derive the number of task collisions for the 

proposed location policy as a function of the total number of nodes and the number of 

overloaded nodes. To simplify the analysis, we assume th a t only U - or V -sta te  nodes exist 

in the system. We will show later tha t this analysis can be easily adapted to the case with 

F -sta te  nodes. The conditions tha t result in no task collision are stated in the following 

two lemmas.

L em m a  4.1 I f  at most two nodes in a Q 2 are overloaded, there will be no task collisions 

in the Q 2 .

Proof: If there is only one overloaded node in a  Q 2 , this node will transfer an
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overflow task to its most preferred node which is underloaded. If there are two overloaded 

nodes in the Q 2 , these two nodes will both select their first or second preferred nodes to be 

the receivers. In either case, no task collision will occur according to Theorem 4.1. □

Note tha t without using the preferred fist, there is a 50% chance tha t two over­

loaded nodes will simultaneously transfer tasks to the same underloaded node in a Q 2 , thus 

resulting in one task collision. Let N  — 2n and k be the number of overloaded nodes in an 

re-cube. From Lemma 4.1, the number of ways these k overloaded nodes can be distributed 

in the system without resulting in any task collision is given by:

r*/21 (fc-Q ! [ N /4  \  / 4 \ * - 27 4 V _ v Y  N/4
4 ^  i \ ( k - 2 i ) \  \ k - i )  U ;  _  2 ^  \ N / 4 - k  + i )  V * M U
2 =  0 i = 0

r*/2i

i= 0

a! , / „ \ a!
w h e r e ( M f a - <M ' aJld ( b , ac , d )(0 - 6)! 6! \b, c, a J blc'.dl'

For convenience, let A(JV,fc)= g  ( J V / 4 - t  dr -  2.’)  ( l U  ( 2 ) '-

Eq. (4.1) can be explained as follows. Let x and y be the number of (JUs tha t 

have one or two overloaded nodes in a Qn, respectively. Then x +  y < 2n~2 (=  N /4 )  and 

2 x +  y — k when k < 2ra_1, for x — 0. . . [ fc/2] ,  y — k — 2x. The number of ways of 

distributing k overloaded nodes in the system without any task collision is equivalent to the 

number of ways of choosing x +  y out of the total number of Q2’s (N /4 )  in a Qn] thus 

giving the (  ) term  in Eq. (4.1). Since there are many possible combinations of a: and\ k - i

y, we need to sum up all these possible combinations. Furthermore, the number of ways 

of assigning the overloaded nodes to the selected Q 2 s is exactly the same as the binomial 

formula, thus giving the term in Eq. (4.1).

L em m a  4.2 I f  all four nodes in a Q 2  are overloaded but none of the nodes in its most 

preferred Q 2 is overloaded, no task collision will occur to this CM
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Proof-. Even if all four nodes are overloaded in a Q 2 , each of them will select one 

node from its most preferred Qi- Since none of the nodes in the latter Q 2  is overloaded, no 

task collision will occur. □

From Lemma 4.2, the number of ways k overloaded nodes can be distributed over 

N  nodes without any task collision is

( N / 4 \ x
a=l

Lfc/4J

E  v .  ,

= E  ( JV«/ 4 ) x
a=1 V '

Jfc/2

E
i—0

N '/4  
k' — i

k' -  i
i a r *  (!)■

k / 2

E
2 =  0

N ' t 4  ̂ / 4 >
N /4  -  k' -  i, i, k' -  2i J V U

k'—2i

(1)' (4 .2 )

where a is the number of groups with four overloaded nodes, N ' — N  — 8 a, and k' — k — 4a. 

The first term  ^ ^ in Eq. (4.2) is the number of ways of selecting a <22’s out of the to tal

JV/4 and all four nodes in these selected Q2S are overloaded. The rest of overloaded 

nodes, k' — k — 4a, can be distributed among the rest of nodes, N 1 — N  — 8 a, as shown in 

Eq. (4.1).

Combining Eqs. (4.1) and (4.2), the probability, Pq, of no task collision given N  

and k, can then be calculated by:

Lfc/4j
A(JV,*)+ Y .  ( Nl i )  A(JV',A')

Po =
a = l where N ' = N  — 8 a, k' = k — 4a. (4.3)

T h e o re m  4.3 A t least three nodes must be overloaded to result in task collisions, and these 

three nodes must include a node, and both its first and second preferred nodes; otherwise, 

no task collision will occur.

Proof: If the number of overloaded nodes is less than three, or if there are three 

overloaded nodes distributed over at least two Q 2’s, then no collision will occur according 

to  Lemma 4.1. If all three overloaded nodes reside in the same Q2, one can show that these
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three nodes must include a node and both its first and second preferred nodes, and in such 

a case, a task collision will always occur.

Since there is no replication of nodes in a preferred list, a node and its first and 

second preferred nodes must all be different. Since there are only four different ways to 

choose three out of the four nodes in a Q2, each of these choices must include a node and 

its first and second preferred nodes.

The last part of this proof is to show that if a node and its first two preferred nodes 

are overloaded, a task collision will always occur. According to Definition 2, the first and 

second preferred nodes of a node N; are in_ i *n_2 • • -io © lo and in-i*n -2 * * ‘*'o © h -  Since 

all these nodes are overloaded, each of them will try  to transfer a task to an underloaded 

node in its preferred list. It is easy to show that N; will transfer an overflow task to 

node in_i*,j_ 2 • • • io © I 2 1 while node in_ i «n_2 • • • ?’o © Iq ( Nf s  first preferred node) will 

transfer an overflow task to node ^ - 1^-2  • ■ • *offiio ©-^l? an<i node in_ i i n_2 • • • *’o ffi-fi ( N f  s 

second preferred node) will transfer an overflow task to node zn_ i i n_2 • ■ • io © h  © Iq- Since 

Io © I\ — Ii  © Iq, the first and second preferred nodes of N; will simultaneously transfer 

tasks to the same node in- i *n-2  • • ■ io © Io © h ,  thus resulting in a task collision. □

Corollary 4.1 I f  the number of overloaded nodes is greater than 3 and includes the pattern 

described in Theorem f.3, task collisions will always occur; otherwise, no collision will occur.

Task collision will occur with the following patterns of overloaded nodes, or com­

binations thereof:

P attern  1: three overloaded nodes in a Q 2 

one task collision.

P attern  2: four overloaded nodes in a Q2 whose most preferred Q2 has one overloaded node 

=$■ one task collision.

P attern  3: four overloaded nodes in a Q 2  whose most preferred Q 2 has two overloaded nodes
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=>  two task collisions.

Given N  and k, the probability of resulting in a task collision is given by

(  N ( 4  )  ( 3 ) A(JV'- k') +  (  " 2  * )  ( 1 )  A(N "’k")

P l  =    it) ------------------------------------------------------------  ( 4 ' 4 )

where N '  =  iV — 4, IV" =  N  — 8, =  k — 3, and k" — k — 5. The first (second) term

in Eq. (4.4) is the number of ways to select one Q2 out of the total N /4  Q25s and assign 

three (four) overloaded nodes in this Q2 times the number of ways of distributing the rest 

of overloaded nodes without any task collision.

When two or more task collisions occur, all combinations of these patterns need 

to be considered. For example, £ collisions can residt from any combination of a groups of 

pattern  1, b groups of pattern  2, and c groups of pattern 3, such that a +  b +  2c =  I  and 

a ,b ,c  G {0 ,1 , . . . , £ } .  Given N  and the number, £, of collisions, Algorithm 4.1 determines 

the to ta l number of combinations of these patterns.

Algorithm 4.1

For trej := 1 to £ do

for i := 0 to  do

for j  := trej — 2i to  0 do
P attern 1 <—  j;

P a ttern 2 <—  trej —2i — j \
Pattern^ *—  *;

Nover *—  Patterni  x 3 +  Pattern2 X 5 +  Patterns  x 6;

j  *—  j  — i;
end_do
i <—  i +  1 

end _do 
end _do

Although many combinations of the above three patterns can result in the same 

number of task collisions, they may require a different number of overloaded nodes which
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was given as N over in Algorithm 4.1. Once combinations of these patterns are determined, 

the probability of resulting in I  task collisions, denoted by P^, can be calculated by:

where I  =  1 , . . .  , t rej, N '  =  N  — 4£, and k' = k — N over.

It should be noted th a t in the above analysis only U - and V -state nodes are 

considered. Eqs. (4.4) to (4.5) can be easily modified to derive task collisions in the presence 

of F -sta te  nodes. Let F  and k be the number of nodes in F -  and V -state, respectively. One 

can add F  to k as the total number of V -state  nodes and calculate the task collisions by 

Eq. (4.5). The actual number of task collisions will be [k/ (F +  k )]2 times Eq. (4.5), because 

a task collision will occur only when two V -state nodes simultaneously send tasks to the 

same U-sta,te node.

4.5 Com parative Perform ance Evaluation

The performance of the proposed location policy is compared to tha t of other 

policies based on probing, random selection, bidding and drafting algorithms. The random 

selection policy is exactly the same as the proposed location policy except th a t it does not use 

preferred lists. Since each node collects, via state-change multicasts, the state information 

of other nodes in its buddy set, V -sta te  node can randomly select one of the U -state nodes 

and transfer an overflow task to  tha t node. Note tha t this is a typical location policy when 

a node’s LS is restricted to its neighboring nodes. Moreover, the performance obtained from 

this method can be used for comparison with the approach of using the preferred lists. In 

the probing policy, on the other hand, a V -state  node will randomly probe the nodes in a 

buddy set to  find a receiver. The V -state  node will transfer an overflow task to the node it 

probed if it happens to be underloaded; otherwise, it will repeat the probing process with



97

another node, up to a total of 5 probes. The reason for using up to 5 probes is based on the 

finding in [40]. The buddy set size is chosen to be 10, since the performance improvement 

by increasing the buddy set size beyond 10 was shown to be insignificant [25].

In the bidding algorithm [33, 34], the V -state  nodes will broadcast the bids to all 

other nodes and the U -state nodes will send their bids to the V -sta te  nodes. If every U - 

state node has the same load state, the V -state  node will randomly accept one of the bids 

received; this is similar to the random selection policy. However, if the U -state  nodes have 

different load states, the node with the least workload will be selected by all V -sta te  nodes, 

so some of the transferred tasks need to be retransferred if the total number of overflow 

tasks exceeds the capacity of this U -state node. In the drafting algorithm [35], two more 

messages will be sent between the U -state  and V -sta te  nodes to avoid ’dumping’ many 

overflow tasks to the same U -state node. So, the U -sta te  node can reject selection by the 

rest of V -state  nodes when its state moves to F, thus avoiding task retransfers.

The coordination problem is analyzed when the V -sta te  nodes are randomly dis­

tributed in the system. It is necessary to introduce the following notation:

e N  = 2n : to tal number of nodes in the n-cube system

• F  : to tal number of fully-loaded nodes in the system

• ks : to tal number of overloaded nodes in the system

• kb : average number of overloaded nodes in a buddy set

• (7 : size of a buddy set

• ct (Ft) • (average) number of task collisions

• Pi(k) : probability of i task collisions when there are k overloaded nodes

• P0W : probability for the ith overloaded node to find an underloaded node within 5 

probes.



98

4.5.1 Probing policy

Under this policy, an overloaded node randomly probes up to live nodes and trans­

fers an overflow task to the first underloaded node found during the probing process. Based 

on the location of the nodes to  be probed, two cases are considered: the entire system and 

a buddy set.

Probing the Entire System

In order for each V -sta te  node to locate U -state node whenever U -state node 

accepts an overflow task, it will refuse, even if it is still underloaded, to accept any more 

overflow tasks unless it is instructed otherwise. If a V -state node cannot find a U -state node 

which has not yet received any overflow task within five probes, it can either process this 

task locally or transfer this task to one of the U -state nodes which had already accepted one 

overflow task. In either case, a  task collision is considered to have occurred in our model. 

The probability th a t each of ks overloaded nodes can find an underloaded node is given by:

d(1)
r 0

10 W
li 

10

li
p(m)

r 0

II

i
t

i

2 - 1n F  +  ks — j  
N - j

N  — F  — k.

..7 =  1

j-j- F  +  ks — j  +  m  — 1 

j= i

N - i

N - F - k s - m + l  
N - iN - j

Then the probability of rt =  m  (1 < m  < ks) can be calculated as:

ks

for m  = 1 , . . . ,  ka.

Po(ks) ■

Pi(ks) = £  

Pm{ks) :

n 'i
i~l
ks

(0

ii
i~i

ks ks
E  -  E

X\— 1 %m—xm — 1

'ks

II (l--FoXl)) ••• {l-PhXm))Ph%T ) ( y ) .(4.6)

Although cl =  1]/=! i Pi(ks) can be calculated by using Eq. (4.6), the nested 

summations in these equations require a prohibitive amount of computation. The required 

computation can be reduced significantly if there is one representative, approximate value
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(e.g., average value) for all Pq̂ ’s. Eq. (4.6) can then be simplified as

P ( M = ( ^ S )  ( 4 j ) ) ks~ ‘ for * =  1 , . . . ,  ks. (4.7)

To get a better approximation, j  can be set to ks/ 2, or Pq  ̂ can be replaced by the average 

value of all these terms. Comparison between the approximate and simulation (exact) results 

for 6- and 8- cubes is summarized in Table 4.1. The approximation by using the average 

value is shown to be close to the simulation results except when the number of overloaded 

nodes reaches N / 2. In such a case the median value approximation works better.

Although Eq. (4.6) is derived in a sequential manner, it gives the same result 

as when all overloaded nodes perform the probing procedure concurrently. Suppose an 

underloaded node receives more than one probe at the same time, then this node should 

reply to only one probe when it is in U -state whereas it must reply to all other probe 

requests when it is in F -  or U - state; otherwise, this node may receive more than one 

overflow task and may become overloaded. So, although different nodes run the probing 

procedure concurrently in practice, the probability of probe collisions remains the same as 

the case when the probing is done sequentially by the nodes.

Random Probing in a Buddy Set

When the nodes to be probed by an overloaded node are restricted to its own 

buddy set, the overloaded node may not be able to find an underloaded node if there are 

more than 5 overloaded nodes in the buddy set. So, the first step in calculating cf is to 

derive the number of overloaded nodes each with more than 5 overloaded nodes in their 

buddy set.

Let x ( m i ks) be the number of nodes each with m  overloaded nodes in their buddy 

set, where ks is the to tal number of overloaded nodes in the system, and let rj =  (N  — cr)/N. 

x ( m , k s) is a recursive function given by:

X ( m, k s ) =  x ( m , k s - l ) - ( l - r ] ) x { m , k s - l )  +  ( l - 7 ] ) x ( m - l , k s - l )
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x K  ks)

Initial conditions

T] x (m ,  fc, -  1) +  (1 -  rj) x (m  -  1, ks -  1) (4.8)

for m = 0 , . .  . , c r  — 1

X(cr,  ks -  1 )  + (1 -  rj) X(c ~  1, ks -  1 )  (4.9)

X(0, 0 ) = N

x ( m ,k s) — 0, m = 0, . . . ,cr ,  ks =  0 ,1 , . .  . , ra — 1

x(m , ks) =  0, if m  < 0.

x(7n, ks) in Eq. (4.8) is obtained by introducing one more V -state  node in the system with 

k s — 1 overloaded nodes. Since these overloaded nodes may be formed with either m  — 1 

or m  V -sta te  nodes in the buddy set with probability 1 — i], the former case will add up

to  x ( m i ks) and the la tte r case will move to y(m  + 1, ks), thus giving the third and second

terms in Eq. (4.8). The rest of nodes, x(?n,fcs — 1), will become x ( m j k s) as the first term  

in Eq. (4.8).

Eqs. (4.8) and (4.9) can be solved by successively decrementing ks until the initial 

conditions are reached, leading to the following closed-form equations:

' N  - < r xfc
X(0 , k s) = N

X(1 , k s) =  o  k s

N
N - a

N

k3— 1

x(2, ka)

x(<7, ka) =

ks
2 s ) cr(1 ~ ,n)

N  - a \  k s - 2

( a - 1 ) 1

10 
ml

(! -  V)
<7 —1

N  
ks - 1

.3=0

X ( m , k s ) «  ~ T  (1 ~ v ) m 1 Vks m k™ for m =  3,4, . . . , c r - 1.

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

Note th a t Eqs. (4.10) to (4.13) give the exact solutions while Eq. (4.14) gives an
/Sc —1

approximate solution in which V ' j a is approximated b y  . Thus
U  “ + 1

Ct -  N
X( m, k s) II

rn—5 i= 0  j = l

F  + ks — j  N  — F  — ks
N N

(4.15)
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4.5.2 R andom  Selection

Under this policy, an overloaded node randomly selects one underloaded node to 

which an overflow task is transferred. There are m  — 1 task collisions if m  > 1 overloaded 

nodes simultaneously transfer tasks to  the same underloaded node. Again, two cases need 

to be considered on the basis of the location of nodes to be selected: the entire system or 

a buddy set.

Random Selection in the Entire System

For convenience, define a function which gives the probability of no task collision: 

„  , ..........\ (a -  V ~ s) (x -  y -  s -  1) • • • 0  -  2 y -  5 +  1) 2/! ( y )
(* -  y f  (a -  y ) y

where x and y can be the to tal number of nodes and V -state nodes in the system, respec­

tively, and s is generally related to the number of possible patterns tha t will result in the 

same number of task collisions. When s = 0, Po(N, k, 0) becomes

U t ( N - k a
n „ , (N  -  ks) (N  -  ks -  I) ■■■ (N  -  2ks +  1) ^  V ks
-M)\Ks) = -------------- ( N  -  ks)1"  (N  -  k , )1"  '

This is the probability of no task collision in a system with N  nodes and ks overloaded nodes, 

where the numerator represents the patterns of task transfer without any task collision, 

while the denominator represents all possible patterns of task transfer. Since there will be 

one collision if any two out of k overloaded nodes simultaneously transfer tasks to the same 

underloaded node, the probability of resulting in one collision is shown to be: 

k s \
2 )  (iV — &s — 1) • • • (A  — 2ks +  2)

P l ( k s )  =
i  y n,s yj.y rvs j  ~

=  h i — = h i ^ - ^ - ^



Similarly, when x overloaded nodes simultaneously transfer tasks to the same underloaded 

node, x — 1 collisions will occur with a probability:

P i t  1 -  ( * ' )  (N -  ks -  !)■■ -(N -  2k3 + 2)
x~l{ s) ( N - k s ) * - 1 ( N  -  ks)ks~x

( £ )  (*=.--)!
(IV -  hs ) * - 1 (N  -  ks)k°~x

' Yc-i Po(N — x, ks — x, 1) where x — 2 , 3 , . . . ,  ks. (4.16) 
s ) x

However, in the cases of two or more collisions, many possible task transfer patterns need 

to be considered. For example, two collisions will occur when either one group of three 

overloaded nodes, or two groups of two overloaded nodes each transfer tasks to one under­

loaded node. A sequence, {xi}f=1, of positive integers are used to  represent a task transfer 

pattern  which results in m  collisions. A transfer pattern which results in cp collisions can 

be represented as

patterna — > m  — 1 • • -3 — 32 • — 2 where m = cp + 1 ,a;m_i =  1.
X m - 1 X m - .2  x ? X 1

We then have cp — i 1 ^x i and kp = (* +  1 )x i- Although many transfer patterns

may result in the same number of collisions, the number of overloaded nodes, kP (<  ks), may 

not be the same in these patterns. Eq. (4.16) can be generalized to calculate the probability 

of having cp collisions under patterna:
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Generating All Possible Patterns

When using Eq. (4.17) to calculate the average number of task collisions under 

the random selection policy, one must generate all possible patterns tha t result in the same 

number of collisions. We will show that the number of patterns to  be considered grows 

rapidly as the number of collisions increases. Let function F(cp) be the to tal number of 

patterns th a t result in cv collisions under the random selection policy. Also, let function 

f m( cp) be the number of patterns th a t result in cp collisions with m  as the first integer — 

called the leading number — in the patterns.

Lemma 4 .3  F(cp) =  1 +  £ m =3 fm(cp).

Proof: When X{ =  0 for i > 2, there will be only one pattern  with aq(= cp) 2’s. 

When Xi , X2  ^  0 and aq = 0 V * > 3, the number of patterns is and determines / 3(cp). 

Similarly, when Xj ^  0 V j  < /; and aq =  0 V i > /.:, the number of patterns determines 

fk(cp). So, the to ta l number of patterns for a given cp is 1 +  Z)m=3 /m(cp). □

Lemma 4 .4  f m(cp) =  1 +  Z)S=3 f x ( cp -  m + l ) / o r m  = 3 , . . . , c p +  l .

Proof: Since the largest leading number in the patterns specified by f m(cp) is m, 

the first pattern  will be 2_—j_2,. Other than the first integer m, the rest of (cp — m  + 1)
1  cp —m-(-l

2’s can have leading numbers from 3 to m, so the to tal number of patterns in f m(cp) is 

equal to  1 +  f x (cp -  m  +  1). □

According to Lemma 4.4, f m(cp) can be obtained by successively replacing f m(cp — 

m +  1) by the functions with the leading number < m :

x_2 |_*ij l'eaj
fx+ i(m )  =  L ^ - J + X l  £  f x - j ( k s — xi) = L^J  +  f x - i ( h - x i )

j = o  i = 1  i = 1

L̂-J L̂-J
+  ^  f x - 2 ( k s  - » * )  +  ■• ' +  S  f 3 ( k s  ~  Xi)* (4 ' 18)

i = 1  i = 1



104

A few examples of approximate, closed-form expressions for these functions are:

h ( k . )  =  l y j

f 4 (ks) ~  — ks(ks +  1)

M h )  « 4  ( I  *3 + |  k2 + 3, kJ

M h ’) x  h  ( i i k* + 1  *•+ i  k‘ + 41*■
1 (  1 k .v - 2  , x  ( x  -  3) 3

However, it is still tedious to derive f m(ks) for the patterns with leading numbers greater 

than 10. The following theorem shows that F( ks) is a polynomial of ks.

T h e o re m  4 .4  F( k s) is at least O(kg),  where x can be any positive integer greater than 2.

Proof: Consider the first term in functions of f m(ks) in Lemma 4.3 and the ap­

proximate closed-form expressions derived above. F(ks) as 1 +  (x- 2 )r Since

the summation runs from s  =  3toa:  = A:s +  l,  one can choose one term from this summation 

where x  <C ks, such tha t the summation will become at least O(kg).  When ks —> oo, x  will 

also get large, and thus, the theorem follows. □

A p p ro x im a te  F o rm u la

Although the above method can give the exact number of task collisions in the 

system, it is, in practice, too tedious to calculate the related equations, because the number 

of possible patterns grows much faster than the number of collisions. Moreover, these 

patterns must be stored in memory; even for a moderate range of cp (a few hundred) the 

required storage space exceeds by far the capacity of any existing computer systems (several 

hundred giga bytes). Thus, a good approximation to the number of collisions is called for.

Since task collisions occur when more than two overloaded nodes simultaneously 

transfer tasks to the same underloaded node, one can choose i overloaded nodes out of the
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to tal ks overloaded nodes for i =  2 , . . . ,  ks such tha t these i overloaded nodes simultaneously 

choose the same underloaded node for task transfer. The rest of overloaded nodes (ks — i) 

can choose any other underloaded nodes except those already chosen. The average number 

of collisions can then be calculated by summing all possible values of i as:

Eq. (4.19) gives an approximate figure in the sense that the rest of overloaded nodes (other 

than the chosen nodes) may also simultaneously transfer tasks to some other underloaded

Table 4.2).

Random Selection in a Buddy Set

Under this policy, an overloaded node randomly selects one underloaded node 

within its buddy set. A collision will occur only when the buddy sets of two overloaded

According to [25], buddy sets of 10 to 15 nodes yield good results, and thus, the overlap 

between the buddy sets of any two nodes can be approximated under the assumption tha t 

each node’s buddy set is formed with only its immediate neighbors.

and only two nodes overlap between the two buddy sets.

Proof: If a buddy set is composed of only immediate neighbors of the corre­

sponding node, then the nodes in a node «o’s buddy set can be determined by io © Ip 

(0 < p < n — 1) according to Definition 2. The buddy sets of nodes io@Ij®Ik  (0 < j  < n — 1 

and j  + l < k < n  — 1) will overlap node «o’s buddy set when p = j  or p = k, because 

(io © Ij  © Ik)  © Ik =  *o © Ij- So, a to tal of ^  ) nodes will overlap node z0’s buddy set, 

and only two nodes overlap, i.e., when p = j  and p = k. □

(4.19)

nodes and result in collisions, but are not included in the above equation. When compared

with the simulation (exact) results, Eq. (4.19) is shown to be a good approximation (see

nodes overlap. So, the first step is to determine the intersection (overlap) of two buddy sets.

Theorem 4.5 The number of ways that the buddy sets of any two nodes overlap is (
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Theorem 4.6 The number of ways the buddy sets of k nodes overlap is 2(n — k + 1) for  

k =  3 , . . . ,  n, and only one node overlap between the k buddy sets.

Proof: From Theorem 4.5, if the buddy sets of k nodes overlap, these nodes must 

contain a node io and the nodes which are two hops away from node io- One can choose 

the first k -  1 nodes as *0, io © Ip © la, *o 0  Ip © h ,  ” ••> and i0 0  I p © I x , where a, b, . . . ,  x, 

and p  are distinct integers between 0 and n — 1 (both 0 and n — 1 inclusive). Then these 

k — 1 nodes will have a common node, i0  © Ip, in their buddy sets. There are n — (k — 1) 

other nodes, io © Ip © Ik, 0 < k < n -  1, k ^  p ,a ,b , .. . ,x ,  whose buddy sets contain the 

same node, io © Ip. So, there are n — k +  1 ways th a t the buddy sets of k nodes intersect 

at node i0 © Ip- Similarly, one can show that there are n — (k — 1) nodes, io © I q © Ik, 

0 < k < n — 1, k /  q ,a ,b , .. . , x ,  whose buddy sets intersect at node *o © I q with those 

of nodes *0, io © I q © Ia, io © Iq © lb, io • • *, and i0  © I q © Ix , where p /  q. So, there are 

2 (n — k +  1) ways the buddy set of k nodes overlap. □

Once the intersection of buddy sets is determined, one can calculate the average 

number of collisions in case of the random selection of an underloaded node in a buddy set 

by:

k\)
o’ ks

i= 2

( k \  2 g
Vi ' (a -  fa)'

' T O ' " 1'

( I ) /
(4.20)

where C2  — ^2 ) l ^ i  ci ~  ci - i  x W -i+ 2  > 3 < j  < o'. Note that if buddy set size is greater 

than the hypercube’s dimension, a node’s buddy set must contain nodes which are two or 

more hops away from the node. Even in such a case, the above equation can be used to 

get approximate results, or the coefficients cfs  need to be adjusted to  get the exact value 

of Cf. Again, it should be noted th a t in the above analysis only U -state  and V -sta te  nodes
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are considered. One can follow the same procedure described at the end of Section 4 to 

calculate the task collisions in the presence of F -sta te  nodes.

4.5 .3  Com parison of Perform ance of Different Location Policies

The performance of different location policies is compared in terms of the number 

of task collisions, number of rounds to  offload overflow tasks, and communication overhead. 

Qs is chosen for this comparison.

The numbers of task collisions under the preferred list, random selection, and 

probing methods are plotted in Figs. 4.4 to 4.7. Generally, the number of task collisions 

increases with the number of overloaded nodes in all of the three location policies. When 

the number of overloaded nodes is less than 0.15N , there is no significant difference in the 

number of collisions among the three. However, when the number of overloaded nodes is 

close to  0.51V, the number of collisions of the proposed location policy with preferred lists 

is about 30% of tha t of the random selection policy and 60% of tha t of the probing policy. 

When there is no F -sta te  node, the probing method performs as well as the preferred 

list method except when k  approaches N /2 .  However, when the number of F -sta te  nodes 

increases, the task collisions resulted from probing increase much faster than the preferred 

list method. As shown in Figs. 4.6 and 4.7, the probing results in more collisions than the 

preferred list method in all cases.

It is im portant to observe th a t use of preferred lists requires no extra state infor­

mation as compared to the random selection policy. However, the number of task collisions 

resulting from the la tter policy is more than 3 times that of the proposed policy with pre­

ferred lists. This result indicates the importance of coordinating overloaded nodes when 

locating underloaded nodes, which is an important issue tha t has been overlooked in existing 

local LS methods.

Task collisions under the probing policy are another interesting issue. The number
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of collisions is found to  increase as the number of probes decreases. When only 2 (instead 

of 5) probes are used, this policy results in even more collisions than the random selection 

policy. Although the number of collisions can be reduced by increasing the number of 

probes, it also increases the probing delay as the number of probes increases. (Note that 

two messages need to be exchanged for each probe, one request and one reply.) Since an 

overloaded node cannot transfer an overflow task before locating an underloaded node, the 

probing delay will prolong the completion of the tasks to be transferred. Use of more than 

5 probes is shown in [40] th a t the resulting probing delay will outweigh the benefit that 

might be gained by transferring a task from an overloaded node to an underloaded node.

The advantage of using preferred lists in general becomes more pronounced as the 

system gets congested. To see this tendency more clearly, suppose overloaded nodes are 

concentrated in an area forming a hot region. Table 4.3 shows the case when every node 

in a subcube is overloaded, where one to two Q ^s  and one to four Qq1 s are considered 

in 6- and 8- cubes, respectively. An interesting result can be found in Table 4.3: both 

the random selection and probing policies result in more collisions than the case when 

overloaded nodes are randomly distributed throughout the system. This indicates tha t both 

the random selection and probing policies cannot handle the congestion problem efficiently. 

Unsurprisingly, the location policy with preferred lists has resulted in no collision at all in 

these cases, because if all the nodes in a subcube are overloaded, they will transfer their 

overflow tasks to the underloaded nodes in another subcube, thus eliminating the possibility 

of task collision.

In Table 4.4, overloaded nodes are assumed to be concentrated in one to four buddy 

sets (overloaded buddy sets), where the address of the node whose buddy set is overloaded 

is given at the bottom  row. Two collisions will always result if every node in a buddy set is 

overloaded. The first collision occurs, because the node with the overloaded buddy set will 

not be able to find any underloaded node to transfer an overflow task. A second collision
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occurs by the nodes in the overloaded buddy set as proved in Theorem 4.3. The location 

policy with preferred lists always results in less task collisions, except for one overloaded 

buddy set under the random probing policy which results in slightly less collisions. Note 

th a t in case the system is congested, Eqs. (4.15) and (4.20) need to be adjusted to calculate 

the number of task collisions under the random probing and selection policies, because 

these equations are derived under the assumption that the overloaded nodes are randomly 

distributed throughout the system.

The number of rounds to offload the overflow tasks is shown in Fig. 4.8. It is 

clear th a t the preferred list method requires the least number of rounds when k > 40. The 

number of tasks actually transferred in terms of k is shown in Fig. 4.9. It should be noted 

th a t in both the probing and drafting algorithms, there is no retransfer of “collided” tasks, 

so the number of actually transferred tasks is equal to the number of overloaded nodes, 

assuming th a t each overloaded node has only one overflow task. In all other methods the 

number of transferred tasks is always greater than the number of overflow tasks, but the 

preferred list method is still the best among these methods.

Note, however, th a t it is not fair to consider only the number of transferred tasks as 

the performance measure of a location policy, because in the probing and drafting methods 

many control messages need to be exchanged before transferring an overflow task. So, it 

is desirable to compare the performance of location policies based on a to tal number of 

messages exchanged as shown in Figs. 4.10 to 4.12. The time to transfer a task is assumed 

to be 2, 5, and 10 times the time of exchanging a control message between U -sta te  and 

V -sta te  nodes. It is easy to see from Fig. 4.10 that the preferred list policy results in the 

least number of messages. When the time to transfer a task becomes much longer than th a t 

of exchanging messages, the gap between the preferred list, probing and drafting algorithms 

decreases. It is found th a t as long as the time to transfer a task is not greater than 20 times 

of exchanging messages, the preferred list method will result in less communication delay



110

than all the other methods.

Eval. methods 

Overloaded nodes
simulation approximation

(median)
approximation

(average)
2 0.000 0.0000 0.0000
6 0.000 6.573e-05 6.573e-05
10 0.007 0.0038 0.0038
14 0.074 0.0419 0.0419
18 0.293 0.2271 0.2297
22 0.997 0.7773 0.8709
26 2.532 1.7381 2.5484
28 3.710 2.6857 4.0582
30 5.288 4.4459 6.3214
32 7.252 6.9511 9.5599

N  = 64

Eval. methods
simulation approximation approximation

Overloaded nodes (median) (average)
10 0.000 3.131e-06 3.131e-06
20 0.001 0.0004 0.0004
40 0.027 0.0318 0.0318
70 1.070 0.8793 1.0298
80 2.354 1.6096 2.3334
90 4,653 3.2155 4.7855
100 8.323 6.5668 9.1233
110 13.803 11.8384 16.3212
120 21.625 20.1099 27.7301
125 26.348 25.4312 35.5508

N  =  256

Table 4.1: Task collisions under the random probing policy.
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Eval. methods 

Overloaded nodes
simulation approximation difference (%)

2 0.021 0.0161 -  23.2
4 0.100 0.0988 -  1.1
6 0.248 0.2527 1.9
10 0.797 0.7934 -  0.4
14 1.651 1.6821 1.8
18 2.919 2.9700 1.7
22 4.677 4.7178 0.9
26 7.034 6.9956 -  0.5
30 9.944 9.8844 0.6
32 11.605 11.5857 -  0.2

N  =  64, buddy set=10.

Eval. methods 

Overloaded nodes
simulation approximation difference (%)

10 0.184 0.1809 -  0.3
20 0.793 0.7849 -  1.0
40 3.489 3.4081 -  2.3
70 11.469 11.5345 0.6
90 20.503 20.3685 -0 .6
100 25.947 26.0039 0.4
110 32.705 32.5518 -0 .5
120 40.113 40.0947 -  0.1
125 44.314 44.266 -  0.1

N  — 256, buddy set=10.

Table 4.2: Task collisions under the random selection policy.
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N  = 64

Strategies
Average number of task collisions

random selection 2.99 2.72 9.92
random probing 1.93 1.61 11.61

preferred lists 0.00 0.00 0.00
address of overloaded nodes 0 - 1 5 32 -  47 0 -  15, 32 -  47

N  = 256

Strategies
Average number of task collisions

random selection 14.8 13.28 58.36
random probing 11.57 10.13 35.41

preferred lists 0.00 0.00 0.0
address of overloaded nodes 0 - 6 3 128 -  191 0 -  63, 128 -  191

Table 4.3: The number of task collisions in overloaded subcubes.

N  = 64

Strategies
Average number of task collisions

random selection 3.65 3.32 8.67
random probing 1.54 1.48 7.31

preferred lists 2.00 2.00 4.0
overloaded buddy set(s) of node 0 node 10 node 1 and 12

N  = 256

Strategies
Average number of task collisions

random selection 2.5 9.11 20.08
random probing 1.89 6.47 14.11

preferred lists 2.00 4,00 8.0
overloaded buddy set(s) of node 0 node 1 and 63 node 0, 63, 128, 191

Table 4.4: The number of task collisions in overloaded buddy sets.



C H A PTER  5

LOAD SH A RIN G  IN H Y PER C UBE  

M ULTICO M PUTERS IN THE PRESEN CE OF NODE

FAILURES

5.1 Introduction

Two im portant fault-tolerant issues associated with the LSMSCB in hypercube 

multicomputers are (i) ordering fault-free nodes as preferred receivers of overflow tasks and 

(ii) developing a LS mechanism to handle node failures. In Chapter 4, the preferred lists and 

buddy sets are constructed in such a way tha t the coordination and congestion problems 

can be resolved. However, occurrence of node failures will destroy the original structure of a 

preferred list if faulty nodes are simply dropped from the preferred list. Thus, it is desirable 

to develop an algorithm to modify the preferred lists in case of node failures in order to 

retain the original features of LS. We will show th a t such a modification/adjustment is 

always possible regardless of the number of faulty nodes in the system.

Thre,e algorithms are proposed to modify the preferred list to retain its original 

features regardless of the number of faulty nodes in the system. It is shown that either the 

number of adjustments or the communication overheads introduced by these algorithms is 

minimal.

If a node becomes faulty before completing all tasks in its queue, all of the un­

finished tasks in the queue will be lost unless some fault-tolerant mechanisms are pro­
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vided. Using the modified preferred lists, a simple fault-tolerant mechanism can be used 

to avoid/minimize tasks losses as follows. Each node is equipped with a backup queue of 

its most preferred node. Whenever a node fails, its most preferred node will process the 

unfinished tasks in the backup queue, i.e., the tasks in the failed node’s queue. If this node 

is overloaded, it can transfer them just like those tasks arriving at the node. By using the 

proposed algorithms, the failed node will be replaced by a fault-free node such th a t the 

node, which was originally supposed to select the failed node as its most preferred node, 

will always be backed up by a fault-free node. Since the proposed adjustment algorithms are 

shown to induce minimal communication overhead, the probability th a t both a node and 

its most preferred node tha t had failed before completing the adjustment is very small, thus 

reducing the number of task losses significantly, as compared to those approaches without 

using backup queues. Two other alternative methods are simulated in which each node 

is backed up by two (three) nodes from its most and second (second and third) preferred 

nodes. The results show that the simple mechanism with one backup queue performs as 

well as those more complex alternatives, insofar as the number of faulty nodes is less than 

40% of the to tal number of nodes.

The adjustment algorithms and fault-tolerant mechanisms are discussed in Section 

5.2. The performance of the proposed approach is evaluated via modeling and simulation 

in Section 5.3.

5.2 LSM SCB in the Case of N ode Failures

Node failures are detected by the other nodes through communication time-outs. 

Upon detection of a node failure, how to modify the preferred fists for the purpose of LS is 

the subject of this section. Implementation of backup queues will be treated in Section 5.3.
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5.2.1 M odification of Preferred Lists

Before delving into the adjustment algorithms, it is convenient to introduce two 

operators, —► and , which are used to describe the relation between nodes in a preferred 

list. Note th a t N ^ j  is the j th preferred node of N t , while N ^ j  is the node tha t selects 

N{ as its j th preferred node. When two or more operators are combined in an expression, 

the interpretation applies from left to right. For example, is the k th preferred node

of and N i ^ j ^ k  is the node that selects IV;—j as its k th preferred node. Similarly,

is the £th preferred node of N i ^ j ^ k  and N i^ j^ k^ - i  is the node tha t selects 

./V;—?—A,- as its I th preferred node. The two operators can be combined in any order; for 

example, / V ; i s  the kth preferred node of the node which selects TV; as its j th preferred 

node and IV;— is the node tha t selects iV; as its I th preferred node, and so on. 

For the preferred lists in Fig. 2.2, examples of using the two operators are /Vo—i- ^  =  N 3 , 

No-yii- 3  =  ^ 5? V̂o—2—-3 =  Nq, and iVi<_2*-3 =  IV7.

If faulty nodes are simply dropped from the preferred lists, some nodes will be 

selected by more than one node as the I th preferred nodes for some 1 < I  < a. For example, 

suppose No is faulty, then the preferred lists of the nodes in =  {IVo<-i, -Wo<-2> . . . ,  -/Vo<_CT 

} = {iVi, iV2, N 4 , JV8, N G, N w } will be changed as follows. The (k +  j ) th preferred node 

of will become the (k +  j  — l ) th preferred node for j  = 1 , . . . , a  and k — 1 . , 0  — j .  

However, according to Theorem 4.1, the (k +  j ) th preferred node of Ni<-j (i.e., N lt^,j^k+j) 

is already assigned as the (k + j  — l ) th preferred node of another node Ni<-j->k+j*-k+j-i ? so 

Ni<-j->k+j will be selected by two nodes as the (k + j  — l ) th preferred node when the faulty 

node No is dropped from the preferred list of N i^  j.

Generally, if there are /  faulty nodes, none of which are located in the same buddy 

set, then there will be /  x k nodes to be selected as the k th preferred node of two other 

nodes. However, if some faulty nodes are located in the same buddy set, the number of 

nodes th a t will be selected by more than two nodes is very difficult to derive. Table 5.1
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lists the number of nodes th a t are selected by more than two nodes in an 8-cube system.

In case of node failures, some nodes are likely to be selected by more than one node 

at a time and the properties stated in Theorem 4.1 and 4.2 will no longer hold. Moreover, 

in the proposed fault-tolerant backup queue mechanism of Section 4, the backup node is 

assigned based on the corresponding preferred list. If a node were selected by more than one 

node as their most preferred node, the failure of this node will affect more than one node. 

Thus, it is desirable to adjust the preferred lists dynamically whenever a node becomes 

faulty such th a t Theorem 4.1 and 4.2 will hold even in ease of node failures. The following 

theorem states th a t such an adjustment is always possible but not unique.

T h e o re m  5.1 Regardless of the number of faulty nodes in a system, there always exists 

an algorithm to adjust the preferred lists such that Theorem 4-1 and 4-2 will always hold. 

Moreover, such an adjusting algorithm is not unique.

Proof: Let Sg be the ordered set of fault-free nodes in the system. Suppose 

|Sg| =  x, and let N t be the i th node in Sg. The following preference assignment in Sg will 

not violate the conditions of Theorem 4.1 and 4.2. For example, N \  can choose any other 

node (in x — 1 ways) as its most preferred node, N 2  can choose any node except itself and 

the one just picked by N \  as its most preferred node (in x — 2 ways), and so on. Thus, 

there are (x — 1)! ways to assign the most preferred node to each of the nodes in Sg. The 

assignment of the second preferred node for each node in Sg without violating the conditions 

of Theorem 4.1 and 4.2 can be obtained by letting N{ pick N{+i ’s most preferred node for 

i =  1, . .  . , x  — 1 while letting N x pick IVj’s most preferred node. The rest of the preferred 

lists can be constructed in a similar way. Thus, there are at least (x — 1)! ways to modify a 

preferred list for the nodes in Sg without violating the conditions of Theorem 4.1 and 4.2. 

□

When N{ becomes faulty, the preferred list of each node in needs to be ad­

justed. Since adjusting a preferred list will introduce computation and communication
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overheads, it is desirable to develop an algorithm which requires a minimal number of ad­

justm ents in case of node failures (Section 3.2). Moreover, in the fault-tolerant backup 

queue approach, the most preferred node should be located as close to the failed node as 

possible to reduce the communication overhead for m aintaining/updating the backup queue 

(Section 3.3).

5.2.2 T he N um ber of A djustm ents

An adjustment algorithm is said to be ‘optimal’ if the number of nodes needed to 

be adjusted is minimal.

T h e o re m  5.2 When Ni is faulty, the minimal adjustment to the preferred list of each node 

in is to change the k th preferred node of either one node if N ^ k  7̂  Ni*-k QL two nodes 

i f  N ^ k  — N i^k  for k =  1 , . . . ,  it without violating the conditions of Theorems j . l  and j.2.

Proof: Since A  is the k th preferred node of A<-fc> it needs to be replaced by a fault-

free node. Note tha t the kih preferred node of A  (i.e., A->fc) will not be the kth preferred

node of any other node according to Theorem 4.1 because A  is faulty. If A-*A: 7̂  A«-fc, 

one can simply substitute A-ufc for A  as the k th preferred node of A+-k- This adjustment 

will satisfy the conditions of Theorems 4.1 and 4.2.

However, in most cases A-*/.- = A<-fc, V/,: . It can be shown that there always 

exist a pair of nodes (say N x- N y), such tha t changing the k th preferred node of both A-+fc 

and N x will satisfy the conditions of Theorem 4.1 and 4.2. For notational convenience, let 

N x and N y be two distinct nodes, such tha t N y — Nx^,k, N ^ k  $ Sn x, and N y (j SNi^.k- 

Then the following adjustments:

Replace A  with N y as the k lh preferred node of A«-&

Replace N y with A<_fc as the kth preferred node of N x

will satisfy the conditions of Theorem 4.1 and 4.2 for the following reasons. Theorem 4.1 is 

satisfied by assuring A«-ft $ S n x and N y ^ Spjt^ k ■ Before making this adjustment, A«-fc is
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the kth preferred node of N{ only and thus will not be selected as the kth preferred node by 

any other node when JV* becomes faulty. So, Ni^-k (Ny) will be selected as the kth preferred 

node by N x ( N ^ k )  only after making the adjustment, thus satisfying Theorem 4.2.

As long as the size of a buddy set is less than a half of the system, the (N x- N y) 

pair always exists in the system. The restriction N y $ SNi*_k implies tha t N y must be at 

least two hops away from and the relation N y =  N x-+k implies tha t N x must be at

least three hops away from Ni<-k■ 1=1

The pair N x- N y can be found systematically for each node in as follows. Since 

N y will replace Ni as N.t^ i :'s kth preferred node, it must not be in N ^ k ’s buddy set. So, one 

can search s preferred list, starting from the first node which is outside of its buddy set.

(Note th a t iVj’s buddy set is formed with the first a nodes in iVj’s preferred list.) If this node 

is two (three) hops away from iVjV-6, it can be found by N ^ k  © Ip 0 1q ( A,v-a © Iv ® Iq © I t)»

where p =  1 , 2 , . . . , n -  1,0, q = p + 1 , 2 , . . . , n -  1, and r =  <? +  1 , 2 , . . . ,  n — 1. The next

step is to ensure tha t N ^ k  is not in N x’s buddy set. This can be accomplished by keeping 

N x farther away from W ithout loss of generality, one can consider the case of k  < n,

and assume that the buddy set of a node contains all nodes one hop away from N& and 

some of the nodes which are two hops away from Nk- The replacement of faulty nodes can 

be found by using Algorithm 5.1.

A lg o rith m  5 .1 : Minimal adjustment of a preferred list.

fo r k =  1 to <7 do

1. Find N y = N i^k  © Ip © Iq, such tha t p, q ^  k — 1 and N y £

2. Replace Ni by N y as JVj«_fc’s kth preferred node.

3. Find N x -  N y © T t-i

4. Replace N y by N i^k  as N x s k ih preferred node. 

end_do
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T h e o re m  5.3 The preferred list resulting from the adjustment Algorithm 5.1 will satisfy 

the conditions o f Theorems j . l  and j .2  in the presence of faulty nodes.

Proof: According to the definition of a preferred fist, Ni-*k =  Ni © h -1 and

Ny =  ® Ip © Iq = © Ik—i © Ip © Iq ■ Then N x = N yt—fz =  N y © Ik—\ — Ni © Ip © I q is

farther away from Ni<-k if p, q /  k — 1 than before the adjustment. Since a preferred fist is 

generated according to the distance between nodes, if N y is not in Ajv-fc’s buddy set, then 

N x, which is farther away from than before the adjustment, will not be in its buddy

set either. So, the pair N x- N y will satisfy the conditions of Theorems 4.1 and 4.2. □

Although Algorithm 5.1 can modify the preferred fists by using a minimal number

of adjustments, the distance between a node and the nodes in its buddy set is found to 

increase significantly after these adjustments for the following reason. Whenever N{ becomes 

faulty, the nodes in must adjust their preferred fists. In each of these adjustments a 

pair of nodes N x- N y need to be selected. According to Algorithm 5.1, every node in 

will select the first fault-free node as N y in . Suppose N y =  N t © Ij._x © Ip © I g, then

N x =  N y^ k  =  Ny © I k -1 = N i®  Ip © Iq. So, N x = Ni © Iv 0  Iq is a common element 

of all node pairs used for adjusting preferred fists. In other words, after completing the 

adjustments for every node in the nodes in node N{ © Ip © A/s buddy set will be at 

least three hops away from this node, making the average distance greater than 2, while 

the average distance is around 1 in all other nodes’ buddy sets.

To alleviate this problem, Algorithm 5.1 is modified in such a way tha t a different

— 1pair N x- N y of nodes is selected for each node in SNi ■ In such a case, after completing 

the adjustments for all nodes in the average distance between a node and the nodes 

in its buddy set will become smaller than the average distance resulting from Algorithm

5.1. From the definition of a preferred fist, the nodes which are two hops away from N{ are 

ordered according to the operation of A j© /j © Ik (j  — 1 , . . . ,  n — 1,0, and j  + 1 < k < n — 1). 

For convenience, the nodes with the same j  in the above operation are grouped as parcel
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j , denoted as (parcel j  of node i). The kth node in can be obtained by JV; 0  Ij  © Ik. 

For the example preferred lists in Fig. 2.2, 4/q =  {JVi, N%, iV4, IVg}, =  {N 6 ,N io}  and

n  = { n 15}.

Algorithm 5.2: Adjustment of a preferred list with reduced average inter-node distances 

in a buddy set:

For k =  1 to a  do

1. Find the first parcel j  of for j  ^  k — 1.

2. If j  = 1 then

if  j  +  k < n -  1 then N y =  N i^k  0  Ij © Ij+k 

else j  <—  j  +  1 goto Step 2. 

else p = k — M \

if  p > 0 then N y =  © Ij © Ij+p

else N y = N i^k  © I j  © Ij+i

3. Replace Ni by N y as N ick 's  k th preferred node.

4. Find Nx -  N y © 4 .

5. Replace N.tJ by N ^ k  as N x’>s kth preferred node. 

end_do

The difference between Algorithm 5.1 and Algorithm 5.2 can best be explained by 

the following example. Let N 0  be the only faulty node in a Q 4  and assume a =  4. Then 

SNq =  {N \ , A 2, IV,1, N$}. From Algorithm 5.1, the pair N x- N y for each node in S n 0 wiU be 

N 6 - N 7 , N q-N 2 , N q -N i 4 . So, after completing the adjustments, Nq s buddy set will

become {Ax, N 2 , IV4, N 8} where A x and iV8 are three hops away from Nq. However, from 

Algorithm 5.2, the pair N x- N y for each node in S'n0 will be Nq-N^, N 1 2 - N 4 4 , N 4 0 - N 1 4 , 

and N 3 - N 1 1 . In this case, AVs buddy set will become {IV7, IV4, IV2, IV14}. It is easy to  see

tha t the average distance between N q and the nodes in its buddy set is reduced by using

Algorithm 5.2.
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5.2.3 M inim ization of Average Inter-node D istance in a B uddy Set

Although the number of adjustments in preferred lists is minimized by Algorithm

5.2, the distance between a node and its most preferred node is not necessarily minimal. 

When Ni is faulty, according to Algorithm 5.2, the k th preferred node of (i.e., Nf) is 

replaced by N y which is two or more hops away from Wv-fc. Moreover, the k th preferred 

node of N x (i.e., N y) is replaced by Ni->k which is at least three hops away from N x . For 

example, when k =  1, the most preferred nodes of N i<-1 and N x will be two and three hops 

away from , respectively.

Since each node Ni needs to be aware of the tasks arriving at the node(s) to be 

backed up, the longer distance between Ni and the node(s) to be backed up means larger 

communication delays between them. So, we have to minimize the distance between the 

nodes and their replacement nodes.

First, we want to find the condition under which the most preferred node of a 

node can always be located one hop away irrespective of the number of faulty nodes in 

the hypercube. We will then develop an algorithm which minimizes the average distance 

between a node and the nodes in its buddy set.

L em m a  5.1 I f  there are an odd number of faulty nodes in a hypercube, the only way to 

locate every fault-free node’s most preferred node within one hop of itself is to find a cycle 

with an odd number of fault-free nodes.

Proof: Suppose there are m  (an odd number) fault-free nodes in a hypercube. 

Each node’s most preferred node can be found within one hop of itself as follows. First, 

one can find a path with an even number of nodes, say, N 0, N \ , . . (A; is an even 

number). Then N{ and iV;+i can be chosen as the most preferred node to each other for 

i — 0 , — 2.

For the remaining odd number of fault-free nodes, the only way to  assign each 

node the most preferred node within one hop is to find a cycle formed by these nodes. Let
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Nk, Nk+i, ■ ■ ■, Nk+e-i be the nodes in this cycle. Then one can assign Nk+i as the most 

preferred node of Nk+i+i and Nk+e will be the most preferred node of iV* for i = 0 , . . . , I — 1. 

However, if one cannot find a cycle in the remaining nodes, it is impossible to assign a node 

the most preferred node within one hop. □

T h e o re m  5.4 I f  there are an odd number of faulty nodes in a hypercube, it is impossible 

to assign every fault-free node the most preferred node within one hop.

Proof: From Lemma 5.1 the only way to assign every fault-free node the most 

preferred node within one hop is to find cycles with odd numbers of fault-free nodes. This 

theorem is proved by showing tha t such cycles do not exist in hypercubes.

Let the sequence No, N i , . . . ,  jV*. be the nodes in a cycle. Ni and iVj+i are adjacent 

to each other for i =  0 , . . . ,  k — 1. Using the ® operation for 0 < i < k — 1, this sequence 

of nodes is represented as follows. Ni+i = N t © Ip, and N{+2 = -A^+i © Iq =  N{ 0  Ip © I q 

for some 0 < p, q < n — 1. Then it is easy to show that JVj+1 is one hop away from jV0, 

and N l + 2  is either two hops away from iV0 if p /  q or equal to No if p = q. Repeating this 

procedure, N {+3 =  Nq 0  I p © Iq 0  IT is either one hop away from No if any two of p, q, r 

are equal, or three hops away from No if p, q, r are all distinct integers. Generally, one can 

show th a t Ni+j will be an odd (even) number of hops away from No if j  is odd (even).

In order to form a cycle, the start and end node must be one hop away from each 

other, so j  can only be an odd number making the to tal number of nodes in a cycle even.

□

Every node is guaranteed to  have the most preferred node within one hop only 

when there are an even number of fault-free nodes tha t form a Qk, k > 1. We prove this 

formally in the following lemma.

L em m a  5.2 The most preferred nodes of all nodes in a subcube form another subcube of 

the same dimension.
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Proof: According to the definition of a preferred list, the most preferred nodes of 

all nodes in a Qk can be found by J0© every node’s address of the Qk . Since the © operation 

with Io complements the digit at position ‘0’ and does not change any other digits, the result 

of the above operation gives another subcube of the same dimension. □

T h e o re m  5.5 I f  there are an even number of faulty nodes in a hypercube and all faulty 

nodes form at least one Qk, k > 1, it is always possible to assign every fault-free node the 

most preferred node within one hop.

Proof: According to Lemma 5.2, the most preferred nodes of nodes in a subcube 

also form a subcube of the same dimension. When the faulty nodes form Qifs, k > 1, one 

can always find an even number of fault-free nodes in a subcube such tha t these nodes can 

be paired to be the most preferred node to each other. □

If there are an even number of faulty nodes and some of these nodes do not form a 

Qk, k >  1, it may or may not be able to  locate the most preferred node within one hop for 

every fault-free node. For example, as shown in Fig. 5.1(a) it is impossible to find a path 

with an even number of nodes among the fault-free nodes, so at least two nodes cannot be 

assigned the most preferred node within one hop. However, in Fig. 5.1(b) one can find two 

paths connected with an even number of nodes, i.e., path N \-N ^  and path N§, A n , . . . ,  

Ne, and IV2.

The following algorithm will adjust the preferred list of each fault-free node such 

th a t the most preferred node is located one hop away from each fault-free node if Theo­

rem 5.5 holds; otherwise, one node will be assigned the most preferred node within one hop 

and the other node within two hops.

A lg o rith m  5 .3 : Adjustment of a preferred list with minimal average inter-node distance:

F o r k = 1 to \o /2 \  do

I f  Nii-k is not faulty th e n
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(a).

m m

1 2

14

( b ) .

Figure 5.1: Example o f  assigning most preferred nodes in the presence o f  faulty nodes
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Replace N{ with Ni<-k^n-k as the k th preferred nodes of 

Replace Ni^k-^n-k  with iV;_k as the kth preferred node of Ni<-k-+n-k*-k 

Use the same procedure in Algorithm 5.2 to find a node to replace 

Nii-k^n-k*-k  as the (n  — k)ih preferred node of N i^k  

else no adjustment 

end_do

for k =  [ct/2J +  1 to a  do 

Same as Algorithm 5.2 

end_do

Note th a t in Algorithm 5.3, the distance between a node and its most preferred 

node is always one for N i^k ,  k < \ p j 2J, but it requires four adjustments (if N ^ k  is not 

faulty). This algorithm can be run concurrently on every node in , as long as A^’s failure 

is detected by the nodes in When there are more than one faulty node, Algorithm 5.2 

and 5.3 can be used sequentially to make the adjustments. An example of adjusting the 

preferred list in an 8-cube is shown in Fig. 5.2.

The number of adjustments, and the average distance between a node and its most 

preferred node resulting from these algorithms are compared in Table 5.2. It is shown that 

Algorithm 5.1 results in the largest distance among the three schemes while Algorithm 5.3 

results in minimal distance between a node and its most preferred node. If the number 

of adjustm ents is the main concern, Algorithm 5.2 should be used because it results in a 

smaller average distance than Algorithm 5.1 while minimizing the number of adjustments.

5.3 Im plem entation  and A nalysis of Backup Queues

Based on the proposed adjustment algorithms, a simple fault-tolerant mechanism 

can be implemented to reduce the number of task losses when a node fails. Each node 

maintains two task queues, one for its own arrivals (EAQ) and the other for the arrivals
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from its most preferred node (BKQ). The BKQ is updated upon arrival/completion of each 

task at a node’s most preferred node.

Assuming tha t A; fails at time t, node !Vj_>i will accept a11 unfinished tasks in its 

BKQ (as bursty arrivals). Based on the LS method in [25], it will process all of these tasks 

if it can meet their deadlines; otherwise, it will transfer some or all of these tasks to other 

underloaded nodes in its buddy set. The most important issue in this approach is to adjust 

the preferred list of AjV-i and update its BKQ with the newly-assigned, most preferred 

node.

Since each node in S ^ 1 can execute the adjustment algorithm concurrently with 

other nodes in .S'//1, the communication delay, Tadjust, associated with updating the BKQ 

of node and the newly-assigned, most preferred node N x , can be derived as TadjUst —

(&i +  ^2) X Tt + 'Tci where k\  and &2 are the numbers of tasks in the EAQ of iV;<_ 1 and Ax_>i, 

respectively, Tt is the task transfer time, and Tc is the communication time between 1V;_i 

and N x, or between N x<-1 and JV ^i required to set up the updating procedure. If fails 

before completing the adjustment of preferred lists and the updating procedure, the tasks 

in EAQ and BKQ of this node will be lost. Since the communication delay for updating 

BKQ increases as the number of preferred lists to be adjusted increases, it is im portant to 

use an algorithm that requires minimal adjustments.

To further reduce the probability of losing tasks, multiple BKQs can be provided 

to m aintain/update the tasks from a node’s second, or higher, preferred nodes. But the 

communication overhead and delay for m aintaining/updating these BKQs in each node may 

increase to an extent to offset any improvement to be gained by using multiple BKQs. In 

fact, our simulation results show that the improvement with more than two BKQs in each 

node is insignificant, as compared to a single BKQ when the number of faulty nodes is less 

than 25% of the total number of nodes in the system.



5.3.1 A nalysis of A verage N um ber of Task Losses

To analyze the average number of task losses with a  different number of backup 

nodes, we need to introduce the following notation:

• 1/A : mean time between failure (MTBF).

•  Texe : (average) task execution time.

® ci : ratio of M TBF to Texe.

® j3 : ratio of task transfer time to Texe.

® A t  : average number of tasks queued in a node.

® Pf  : probability of a node failure before completing the updating process.

® Pj( t i ,  t 2) : probability of a node failure in time interval

® t u : time to transfer a task between two adjacent nodes.

® A e~A 1 : probability density function (pdf) of a node failure in [0, tj.

® Tiost : average number of lost tasks in a node

• TqNi : JV.-’s queue for externally arriving tasks.

® : the j th backup queue of A;.

Single Backup Queue

Suppose iV-i and N 2 back up each other, then we have =  T ^ 2 and B ^ \  = T ^ 1. 

If N\  becomes faulty, N 2 will treat the tasks in its backup queue as its own externally- 

arriving tasks, the new task queue of N 2 will be T ^ 2 U = T ^ 2 U T ^ 1. Since N 2 was 

backed up by Ni,  it must find a new backup node N x and copy the new T ^ 2 to B^J .  If 

this process is completed before N 2 becomes faulty, no tasks will be lost; otherwise, some
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of the tasks will be lost. Let the time of IVi’s failure be the reference time ‘O’. Since the 

average number of tasks in T ^ 2 is 2Ay after N\  becomes faulty, 2Ay tasks will be lost if 

N 2 fails between [0,tw], 2Ay — 1 tasks will be lost if N 2 fails between [tu,2 tu\, and so on. 

The average number of tasks lost is derived as:

Tiost = 2Ay Pf(Q,tu) +  (2Ay -  1) (1 -  P f(0 , tu)) P j ( tu,2tu) +  • • •

+2 [1 -  Pf (0, {2A t  -  2)tu)] P /((2A y -  2)tu, (2AT -  1 )tu) +

[1 -  P^O , (2At  -  l) ti) ]  P/((2A y  -  1 )tu, 2ATtu)
2At - 1

=  2A t  P f (0 , tu) + (2 /ir  “  0  [1 _  **«)] P f i^u ,  (i +  1 )ti)- (5.1)
i =1

From the definition of P j ( i i , h ) ,  we have

P f ( h i h )  =  /  Ae
Jt 1

-At ■̂ 1 _  2

Then, we have

«  A(̂ 2 — ti)  when A /1, A <2 <  1.

P /(0 ,ra ti)  =  mAt„

P / ( m f tt, ( m + l ) i u) =  Afu.

Using the above equation, we can rewrite Eq. (5.1) as follows.

Tiost — 2A t  Atu -f {2A t  — 1) (1 — Atu) Atu +  • ■ •

+2 [1 -  (2A t  -  2)Xtu] Xtu +  [1 -  (2A T -  l)A t,] At,
'ZA'j' —1

At,,. Y 2  * ~  A/u ^  (2 /ly  -  i) i
t=1

At, Ay (2Ay +  1) -  At
Ay (2Ay — l)(2A y +  1)

[Ay (2Ay +  1)] Atu when Atu <  1 (5.2)

Double Backup Queues

Let N \ , N 2, and IV3 back up each other, then B^{ = T ™2, =  T ^ 3, .0 ^  =  T ^ 1,

and =  T'f)Vl. Note tha t the second (first) backup queue of N 2 (IV3 ) will be the task
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queue of some other node. If N\  becomes faulty, N 2 will treat the tasks in its backup queue 

as its own tasks, the new task queue of N 2 will be T ^ 2 U = T ^ 2 U T ^ 1. Since iV2’s

first backup queue was in N \ ,  it must find a new first backup node and copy its T ^ 2 to 

the newly-selected node. If iV2 failed before completing this process, iV3 will take over its 

B ^ 2  ■, and the same process will start on N 2j. However, if IV3 failed before completing this 

process, some of tasks in Ni  will be lost. The probability of losing tasks is analyzed as 

follows. Suppose N 2 fails in [0, tu\, then

At —1
'̂lost ~  Pf(®itu) E  Pf(jtu,  ( j  +  l)^u)

3=0

=  ( X t n ) 2 E  { A t  -  3 ) { I - j  t e n) -
3 =0

Suppose N 2 fails in [tu, 2tu], then

7 (̂2) _J- 1

At —2
lost -  (!  -  Pf(0 ,tu))  Pf(tu,2tu) Y / (AT - j - l ) [ l - P f ( 0 , j t u)}Pf ( j t u, ( j  + l ) tu)

3 = 0

A t  —2

= (1 -  Xty) ( \ t U)2 ^  (AT ~ j -  l ) ( l ~ j \ t U).
3=0

Since N 2 can fail at any time in [0, A t U], we have

At — 1
Tiost -  YZ  C1 _  PsAAU)) Pf{itu,{i +  l)t«) (5.3)

i- 0
At — 1

Y 2  {At - i -  j)  [1 -  Pf(0,jU)} Pf(jU,{j  + 1 )U)
3 = 0

^T-1 (Atu)2 ,4 Atu
= (^«)2 E

;=0
At <'* 2̂

+

+

1 -

1
2

6

(A/u)

P + ~  [(3 At  -  1) Xtu) -  5] i3

a \ , / 3 At u A t  , ,6 +  At Xtu( -  H - - A

A U (A tu)2 , A  , At  n a_ w M At , A y/W n2
6 + (g + ~ y ) A T Xtu + (1 -  —  + — ) — (AUY

+A y(l +    At ) -  -(1 +  - ){At  -  1))

(A U f A' h 1 -2 A  n a a- a2 At -  1E  1 + (9 _  2 At )i + At -------— —
L

— (Atu)2 At  ( -A y 4- -A- + — ) . (5.4)
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Eq. (5.3) gives the probability of task loss when iVi’s failure is followed by fV2 and 

IV3. Since iV2 and IV3 both have one backup queue on IVi, if the nodes tha t hold another 

backup queue of 1V2 or IV3 fail, the primary tasks in 1V2 and N 3 will be lost. This probability 

can be expressed exactly as Eq. (5.3). So, the total probability of task loss is three times 

of Eq. (5.3). However, there are many higher-order probabilities of task loss. T hat is, 

when N i ,  iV2, iV3, jV4, and N 5 all failed, if the nodes that hold iV4 and iV5’s backup queue 

fail, the prim ary tasks in iV4 and IV5 will also be lost, and so on. Since there are many 

combinations (2n for an n-cube) th a t will result in higher-order probabilities of losing tasks 

and these probabilities decrease exponentially as the number of nodes involved increases, 

the combinations with more than 5 nodes are ignored in the analysis.

Triple Backup Queues

In the case of three backup queues, the probability of task loss can be expressed 

as follows. (Due to its complexity, a closed-form solution cannot be found.)

A t —1 A ? —i —1
Tiost =  52  (1 -  Pf (0 , i tu)) Pf (itu,( i  + l)t.u) 52  (A T - i - j ) [ l - P f ( 0 , j t u)\

i = 0  j = 0

A T - i - j - l

Pf(j tu ,  (j  + l)tu) 5 2  (a t  - i - j - k )  [1 -  P /(0 , ktu)\ P f (k tu, (k +  1) tu)
k - 0

A rp —\  A'j'—i —1
= 52  ( l - * A t u)Atu 52 ( A t  -  i -  j )  ( 1  -  jX tu) \ t u x

i=o j=o
A T - i - j - 1

52 (AT -  i -  j  -  k) ( 1 - kXtu) Xtu.
k = 0

For the case of multiple backup queues, one can express the probability of task 

loss similarly to the above equation, but it is too difficult to derive a closed-form solution. 

Note th a t Ai u in all equations is equal to (5/a .
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5.3.2 Sim ulation R esults

In addition to modeling, the performance of the proposed adjustment algorithms 

and fault-tolerant BKQ mechanisms are also evaluated via simulations. The results in [25] 

show th a t threshold pattern ‘1 2 3’ performs well in a wide range of system load, and thus, 

is used in the simulations. The size of buddy set is chosen to be 10, because the performance 

improvement beyond this size is shown to be insignificant [25]. The system load is varied 

from 0.5 (medium-loaded) to 0.9 (overloaded) and the number of faulty nodes is changed 

from 5% to 50% of the total number of nodes in an 8-cube system.

The first simulation is run without adjusting preferred lists. Faulty nodes are 

randomly generated before the simulation and no new faults are assumed to occur during 

the simulation. Since the faulty nodes are simply dropped from the preferred lists, the 

missing probability — the probability of a task missing its deadline — increases very fast 

with the number of node failures when preferred lists are not adjusted. The missing prob­

abilities in the presence of faulty nodes are normalized to the case without faulty nodes in 

Fig. 5.2. In the case when 50% of nodes are faulty and the system load is 0.8, the missing 

probability can be two times as high as the case without faulty nodes.

Another simulation is run to test the goodness of Algorithms 5.2. In order to elim­

inate other factors tha t may influence the results, the faulty nodes are randomly generated, 

and the preferred lists of the nodes with faulty nodes in their buddy set are adjusted before 

the simulation. No new faults are assumed to occur throughout the simulation. These 

results are superimposed in Fig. 5.2. Surprisingly, the missing probability obtained for the 

case with faulty nodes is found to be nearly the same as tha t for the case without faulty 

nodes regardless of the percentage of faulty nodes and system load.

The performance of the fault-tolerant BKQ method is measured by the number 

of lost tasks. The tasks in a node and its most preferred node will be lost when these 

two nodes fail within the time period, TadjUsti required to adjust the preferred lists. The
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simulation results are tabulated in Table 5.3, where three BKQs (=  1, 2, 3) along with the 

case of BKQ = 0 are listed at each run under different system loads. The analytical results 

are plotted in Figs. 5.3 and 5.4. The simple fault-tolerant mechanism with BKQ = 1 is 

shown to completely eliminate the number of lost tasks when the number of faulty nodes 

is less than 15% of the to tal number of nodes and the system load is less than 0.7. Except 

in an extreme case when the number of faulty nodes reaches 50% of the total number of 

nodes, this simple approach can reduce the number of lost tasks significantly, as compared 

to the approach without BKQ.

Using multiple BKQs reduces further the number of lost tasks for the cases of a 

higher percentage of faulty nodes. However, due to the increased communication overhead 

and delay with the multiple BKQs, the number of lost tasks cannot be completely eliminated 

when 50% or higher percentage of the to tal number of nodes are faulty. As shown in Fig. 5.3 

the cases of BKQ=2 and 3 yield more tasks losses as compared to BKQ=1 when the node 

is not too reliable (M T B F  =  200Texe). On the other hand, when the node is relatively 

reliable (M T B F  =  5000Tex.e), using of the multiple backup queues can reduce the number 

of task losses except when /3 > 0.7 in the case of the two backup queues.

The analytical results agree well with the simulation results in all cases. For 

example, consider the case when 35% of nodes are faulty, (3 =  0.1, and p =  0.8. A t  is 

approximately equal to  1.5 [25] (Table 2.1) and MTBF is close to 5000 Texe. From Fig. 5.4, 

the average number of tasks lost on a node by using 1, 2, and 3 backup queues are 8 X 10-5 ,

1.0 x 10—5, and 1.1 x 10-7 , respectively. The total number of lost tasks is equal to the 

above values times the to tal number of processed tasks which is around 4.1 x 104 in the 

simulation. So, the total number of lost tasks for 1, 2, and 3 backup queues will be 32.8, 

4.1, and 0.045, while the simulation results are 27, 6 , and 0, respectively.

An interesting problem found during the simulation is that the probability of 

missing task deadlines in the case of using BKQs is higher than the case without any
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BKQ. The reason is th a t a node may fail during the processing of a task, and this task is 

restarted on another node instead of continuing its execution from the point in time when 

the node failed. Although this task can be successfully completed by another node, the 

to tal processing time may often exceed its deadline if it is queued at the new node before 

its execution.

Preference 

#  of faulty nodes
1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 7 8
2 2 4 6 8 10 12 14 12 12 14
3 3 6 9 12 15 18 21 16 16 20
12 10 19 25 29 36 40 43 60 45 46
38 30 42 47 49 58 55 60 62 58 59
64 36 46 52 51 51 53 52 51 54 52

Table 5.1: Number of nodes selected by more than two nodes as their k th preferred nodes 
in an 8-cube system with buddy set of 10 nodes where 1 < k < 10

Average distance Distance to most 
preferred node Number of adjustments 

on a nodeLower Upper Lower Upper
Algorithm 1 1.33 2.89 1 4 2
Algorithm 2 1.33 1.46 1 4 2
Algorithm 3 1.33 1.51 1 2 4

Table 5.2: Comparison of perferred list adjustment algorithms in an 8-cube system with 15 
faulty nodes
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% of faulty nodes 

System load #  of BKQs
5% 15 % 25 % 35 % 50 %

0 10 29 36 50 67
0.5 1 0 1 3 8 29

2 0 0 0 2 10
3 0 0 0 0 2
0 14 35 46 74 106

0.6 1 0 3 4 10 35
2 0 0 0 5 13
3 0 0 0 0 3
0 23 46 73 105 180

0.7 1 0 3 4 15 47
2 0 0 0 5 15
3 0 0 0 0 5
0 31 59 87 134 211

0.8 1 0 3 6 27 61
2 0 0 1 6 26
3 0 0 0 0 9
0 42 86 96 164 297

0.9 1 0 5 11 35 84
2 0 0 5 7 30
3 0 0 0 1 12

Table 5.3: The number of lost tasks vs. number of backup queues.



No
rm

al
ize

d 
m

iss
in

g 
pr

ob
ab

ili
ty

 
(p 

= 
0.

8)

144

1.9

1.8

Legend
a before adjusting 
o offer adjusting

1.7

1.6

1.5

1.4

1.3

1.2

1.1

0 5 10 15 20 25 30 35 40 45 50 55
Fraction of faulty nodes (%)

Figure 5.2: Comparison of missing probabilities.
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Figure 5.3: Number of lost tasks vs. /? ( M T B F  = 200 x T exe)
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Figure 5.4: Number of lost tasks vs. f3 ( M T B F  = 5000 x T exe)
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N o d e P r e f e r r e d  list in buddy sets  w ith  10 nodes
0 1 2 4 8 16 32 64 128 6 10
1 0 3 5 9 17 33 65 129 7 11

19 3 5 9 17 33 65 129 7 11
18 19 16 22 26 2 50 82 146 20 24

1 16 22 26 2 50 82 146 20 24
2 3 0 6 10 18 34 66 130 4 8

3 14 6 10 18 34 66 130 4 8
12 13 14 8 4 28 44 76 140 10 6

13 2 8 4 28 44 76 140 10 6
4 5 6 0 12 20 36 68 132 2 14

5 6 38 12 20 36 68 132 2 14
34 35 32 38 42 50 2 98 162 36 40

35 32 4 42 50 2 98 162 36 40
8 9 10 12 0 24 40 72 136 14 2

9 10 12 74 24 40 72 136 14 2
66 67 64 70 74 82 98 2 194 68 72

67 64 70 8 82 98 2 194 68 72
16 17 18 20 24 0 48 80 144 22 26

17 18 20 24 146 48 80 144 22 26
130 131 128 134 138 146 162 194 2 132 136

131 128 134 138 16 162 194 2 132 136

Figure 5.5: Adjustm ent o f the preferred lists in a 8-cube system with faulty node *0’
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N o d e Prefer red list  in bu d dy  sets  w ith  10 nodes
0 1 2 4 8 16 32 64 128 6 10

32 33 34 36 40 48 0 96 160 38 42
33 34 36 40 48 52 96 160 38 42

20 21 22 16 28 4 52 84 148 18 30
21 22 16 28 4 32 84 148 18 30

64 65 66 68 72 80 96 0 192 70 74
65 66 68 72 80 96 100 192 70 74

36 37 38 32 44 52 4 100 164 34 46
37 38 32 44 52 4 iZAV I 164 34 46

128 129 130 132 136 144 160 192 0 134 138
129 130 132 136 144 160 192 196 134 138

68 69 70 64 76 84 100 4 196 66 78
69 70 64 76 84 100 4 128 6 10

6 7 4 2 14 22 38 70 134 0 12
7 4 2 14 22 38 70 134 142 12

136 137 138 140 123 152 168 200 8 142 130
137 138 140 128 152 168 200 8 6 10

10 11 8 14 2 26 42 74 138 12 0
11 8 14 2 26 42 74 138 12 58

48 49 50 52 56 32 16 112 176 54 58
49 50 52 56 32 16 112 176 54 10

Figure 5.6: Adjustment of the preferred lists in a 8-cube system with fauitv node 'O’ f Con­
tinued) • v



C H A PTER  6

SCH EDULING PERIODIC TASKS W ITH  

CO NSIDERATIO N OF LOAD SHARING OF 

A PERIO DIC TASKS

6.1 Introduction

Scheduling both periodic and aperiodic tasks in real-time systems is a much more 

difficult problem than considering periodic or aperiodic tasks alone [28, 29, 30, 31]. Sprunt 

et al. proposed a scheme that can guarantee the deadlines of periodic tasks while minimizing 

the response time of aperiodic tasks by exploiting the CPU cycles left unused by periodic 

tasks [30]. In their study, aperiodic tasks are assumed to have soft deadlines with the lowest 

priority. One difficulty in scheduling aperiodic tasks in the presence of periodic tasks is the 

lack of a priori knowledge of their interarrival times and deadlines. Although aperiodic tasks 

can be guaranteed by using the worst-case interarrival time between two aperiodic tasks as 

the period for all aperiodic tasks and treating them as periodic tasks, the CPU cycles will 

be greatly wasted in most cases, because the worst-case interarrival time is usually much 

smaller than the average case. The problem of under-utilizing CPU cycles can be eased 

by requiring a minimum separation time p for any two aperiodic tasks. Mok showed th a t 

aperiodic tasks can be guaranteed if p is large enough [28], but did not discuss the case 

when this condition does not hold.

The main purpose of this chapter is to propose a new scheduling algorithm, called
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the reservation-based (RB) scheduling algorithm that can guarantee the deadlines of peri­

odic tasks while minimizing the probability of missing the deadlines of aperiodic tasks. In 

this algorithm, periodic tasks are scheduled according to the rate monotonic priority algo­

rithm  (RMPA) [12]. Aperiodic tasks are assumed to have the lowest priority and scheduled 

by utilizing the CPU time left unused by periodic tasks in each unit cycle. A unit cycle u 

is the greatest common divisor (G C D ) of all periods [38]. The CPU utilization, U(i), in 

unit cycle i is calculated by dividing the used CPU time in that unit cycle by u. In the RB 

algorithm, a certain fraction of CPU time, denoted by R , is reserved for aperiodic tasks in 

each unit cycle without violating the deadlines of periodic tasks. So, at least a fraction R  

of unit cycle will be left unused in each unit cycle after scheduling all periodic tasks. The 

value of R  is found to greatly affect the probability of guaranteeing aperiodic tasks even 

when the average CPU utilization is fixed. For example, let the period and computation 

time of task t\ be 3 and 1.5 unit cycles, respectively. This task can be scheduled by either 

allocating 1.0 and 0.5 in the first and second unit cycles, or 0.5 in each unit cycle. However, 

if an aperiodic task u\ with computation time of 1.0 unit cycle and a deadline of 2 unit 

cycles arrives when T\ is initiated, then the first scheduling scheme can only allocate 0.5 

unit cycle for v\,  thus missing its deadline. By contrast, the second scheduling scheme will 

be able to allocate 1.0 unit cycle to v\,  thus guaranteeing its deadline. Thus, one of the 

most im portant issues in the RB algorithm is to derive the relation between R  and the 

probability of guaranteeing aperiodic tasks. Since the probability of guaranteeing aperiodic 

tasks is a monotonic increasing function of IE, we want to derive the maximum value of J?, 

denoted as R max, which is the maximum fraction of CPU time that can be reserved in each 

unit cycle without violating the deadline of any periodic task in a given task set.

Another goal in this chapter is to implement the RB scheduling algorithm by 

modifying the LSMSCB. A set of periodic tasks on each node is pre-assigned and scheduled, 

and the CPU utilization on each node is known at the time an aperiodic task arrives. R max is
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derived for a given task set1. Upon arrival of an aperiodic task the node will check the CPU 

utilization at tha t unit cycle; if the task can be guaranteed locally, the node will schedule 

this task by using the unused CPU time and broadcast the change of CPU utilization (due 

to the addition of the task) to the nodes in its buddy set. If this task cannot be guaranteed 

locally, the node will check the available CPU time on other nodes using its preferred list. 

If a receiver node is found, this task will be transferred to the selected node, otherwise it is 

rejected.

The RB algorithm is attractive in scheduling both periodic and aperiodic tasks, 

because it increases the total number of tasks that can be guaranteed for the following 

reason. Since periodic tasks are invoked at the beginning of their respective periods, there 

may be more tasks invoked in some time intervals than others if the first release times of 

periodic tasks are different. For example, as shown in Fig. 6.1, U(i) varies from 0 to 1.0. 

Moreover, the CPU utilization by periodic tasks is 100% from unit cycle 15 to 18, while it 

is only 50% from unit cycle 25 to 28. The variation of U(i) is not desirable in any real-tim e 

system, because the probability of guaranteeing an aperiodic task depends not only on its 

deadline but also on its arrival time. Since the variation of U(i) residts from the RMPA 

algorithm, some other schemes must be used to reduce the variation of U(i). The earliest 

deadline (ED) algorithm is not suitable for scheduling both periodic and aperiodic tasks 

for the following reason. Since under the RMPA algorithm, the lower priority task cannot 

preempt the higher priority task, and since aperiodic tasks have the lowest priority and 

cannot preempt any of the periodic tasks, their deadlines cannot be guaranteed by the ED 

algorithm. By contrast, the RB algorithm reduces the variation of U(i) in each unit cycle, 

thus increasing the to tal number of tasks tha t can be guaranteed.

Section 6.2 states the problem and reviews some related results in [12]. Section 6.3 

presents the RB scheduling algorithm and an analytic model for its performance analysis.

1each node may have a different task set
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Section 6.4 discusses the implementation of the proposed algorithm in conjunction with 

our load sharing method discussed in Chapter 2. The performance of the RB scheduling 

algorithm is evaluated via both simulation and analytic modeling.

6.2 R eserved Fraction o f C P U  Tim e

We want to  guarantee the deadlines of periodic tasks by using the RMPA algo­

rithm  while maximizing the probability of guaranteeing aperiodic tasks. Some of the basic 

definitions in [12] are introduced first before presenting the RB scheduling algorithm.

Let aperiodic task //; be represented by a three tuple (a,i,Ci,Di), where a; is its 

release time, C{ is the computation time, and D; is the deadline relative to a,; measured 

in unit cycles. For periodic task r,-, the release time is at the beginning of its period and 

the deadline of each invocation of r; is assumed to be the beginning of the next period. 

T{ is represented by a three tuple (r ^ C ^ T i ), where r; is the first release time of Ti, C{ 

is the com putation time, and Tt is the period. So, the ith invocation of r; is released at 

Ti +  (i — 1)7;. All periodic tasks are given a priori and the priority of a periodic task is 

determined by its period; the shorter the period the higher its priority. Every periodic task 

is assumed to arrive at the beginning of a unit cycle [38], but the computation time can be a 

fraction of one unit cycle. All periodic and aperiodic tasks may be preempted at any time. 

Since real-time tasks must usually be stored in main memory before putting the system in 

operation, the time to  switch between tasks is assumed negligible.

Using the same notation in [12], the CPU utilization U in executing a set of m

tasks is

m
U = £  A  (6.1)

i=1

The m,ajor cycle, Tmc, for a set of tasks is the least common multiple of all task periods 

in the set measured in number of unit cycles [38]. For example, the ith major cycle starts 

at t = (i — 1 )Tmc and ends a t t = i T mc. Eq. (6.1) gives the average CPU utilization in
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a node over one m ajor cycle for a given set of periodic tasks. Let s; denote the i th unit 

cycle ((i — 1) u < t < i u) in a major cycle. The CPU utilization in Si, denoted by U(i), is 

calculated by dividing the processor busy time in s; by u. So, the unused (used) CPU time 

in Si is u ( l  — U(i )) (u U ( i )). From Eq. (6.1) and the definition of U(i),

, ,  =  v  £• =  U(i)
i = 1 1 mc

It is not sufficient to analyze the probability of guaranteeing aperiodic tasks by using U 

alone. For example, consider the average CPU utilization over N  unit cycles for different 

time intervals in Fig. 6.2 while changing N  from 2 to 20. Although U =  0.6, the average 

CPU utilization over a small N , such as N  < 6 , can be as high as 100% or as low as 1%. 

Thus, the probability of guaranteeing the aperiodic tasks with deadlines shorter than 6 unit 

cycles will greatly depend on their arrival times. This is not desirable in any real-tim e 

system, because the probability of guaranteeing an aperiodic task depends not only on its 

deadline but also on its arrival time. The difference between the maximum and minimum 

average utilization over N  unit cycles for different time intervals reduces to within 30% of 

each other only when N  > 13.

As mentioned earlier, the fraction of CPU time reserved in each unit cycle will 

greatly affect the probability of guaranteeing aperiodic tasks even when U is fixed. The 

importance of the reserved fraction of CPU time to the guarantee of aperiodic tasks can be 

seen from the example in Fig. 6.3 (assuming u =  1.0 for convenience). Let T\ =  (0,1 .5 ,3) 

and T2 =  (0 ,0 .5 ,5). As shown in Fig. 6.3, for an aperiodic task — (0,0 .6 ,2) only the 

third scheduling scheme can allocate 0.6 to complete before its deadline, although all 

three scheduling schemes guarantee the deadlines of t\ and t^. However, if the deadline 

of v3 is 3 instead of 2, it will be guaranteed by all three scheduling schemes. In this case, 

even if the computation time of is increased to 1.0 , it will still be guaranteed by all three 

scheduling schemes. We define the reserved fraction, R , of the CPU time as the minimal 

fraction of CPU time left unused in each unit cycle after scheduling all periodic tasks; that
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is, R  =  1 -  m ax;I7(i). For the example in Fig. 6.3(a), no time is reserved in and s2, 

while 0.5 unit cycle is reserved in s2 in (b), and 0.3 unit cycle is reserved in each unit cycle 

in (c). Note th a t reserving a fraction, R,  of each unit cycle does not always guarantee the 

aperiodic tasks. For example, the first and second scheduling schemes can guarantee an 

aperiodic task 7/4 =  (1 ,1 .0 ,2), hut not the third scheme even though R  = 0.3. There is also 

an upper bound of R  in order to  guarantee the deadlines of all periodic tasks. Consider the 

third scheduling scheme in Fig. 6.1(c); if R  =  0.4 from si to 53, then only 40% of unit cycle 

can be allocated to r 2 before its next invocation, thus missing the deadline.

If U is fixed, the value of R  will affect the probability of guaranteeing aperiodic 

tasks with short deadlines and may not affect the tasks with long deadlines. For example, 

consider the average CPU utilization over 2 < N  < 20 unit cycles with R  =  0.3 in Fig. 6.4. 

The maximum and minimum U(i ) are 70% and 1%, respectively, for N  < 6 , while they were 

100% and 1%, respectively for the example in Fig. 6.2. However, the difference between 

the maximum and minimal U(i) is about the same in Figs. 6.2 and 6.4 for N  > 12. Since 

reserving a fraction, R, of each unit cycle does not change U, the value of R  has less effect 

on the amount of CPU time th a t can be allocated for aperiodic tasks with long deadlines.

It should be noted th a t in the proposed scheme, periodic tasks are scheduled 

according to the RMPA algorithm. If no aperiodic task arrives, there is no need to reserve 

any fraction of CPU time in each unit cycle. However, as soon as an aperiodic task arrives 

at a node, it will check its unused CPU time. If the task can be guaranteed by the node, 

it will be scheduled locally. Upon completion of an aperiodic task, periodic tasks will be 

scheduled back according to the RMPA algorithm if there is no aperiodic task in the queue; 

otherwise the RB algorithm will be used to process the remaining aperiodic tasks.

In the RB scheduling algorithm, U{i) < 1 — R  for all i after scheduling the pe­

riodic tasks according to the RMPA algorithm. To analyze the performance of the RB 

scheduling algorithm, we must know the pattern of deadlines of aperiodic tasks, which can
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T1 = 3  T2 = 5  C i  =1.5 C 2 =0.5
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Figure 6.3: Three scheduling schemes with different CPU reservation ratios.
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be specified by a probability distribution. The probability of guaranteeing an aperiodic 

task Vi =  (a,i,Ci,Di) is the probability of allocating an amount of CPU time > C{ after 

ai but before or on a* +  Di — C{. Thus, the deadline distribution of aperiodic tasks is one 

of the main factors tha t determine the performance of the RB scheduling algorithm. To 

implement the RB scheduling algorithm, one must consider:

® Derivation of the CPU utilization in each unit cycle after scheduling a given set 

of periodic tasks, and the relation between R  and the probability of guaranteeing 

aperiodic tasks.

• Determination of the value of R  tha t maximizes the probability of guaranteeing ape­

riodic tasks while guaranteeing all periodic tasks.

® The deadline distribution of aperiodic tasks for performance analysis.

6.3 The R B  A lgorithm  and A nalytic M odeling of Its Perform ance

We will first introduce the RB scheduling algorithm and then derive the CPU 

utilization in each unit cycle.

Each periodic task r; =  (r,-, C;, T;) is assumed to arrive at the beginning of a unit 

cycle, but C{ can be a fraction of one unit cycle. So, the first release time i\  of r; is a random 

number between 0 and Tmc — 1 if the first release times of periodic tasks are different; r\ — 0 

if all periodic tasks are released at the beginning of each m ajor cycle. A set, Sp, of m  

periodic tasks are sorted in ascending order of their periods, where T\  < I 2 < • • ■ < Tm. 

Since the first release time r; ranges from 0 to Tmc — 1, U(?) will repeat itself after the second 

m ajor cycle, i.e., U(i +  Tmc) =  U(i +  n T mc) for all n > 1. Note tha t U(i) in the first m ajor 

cycle may not be equal to  U(i +  Tmc) for some ?, because the periodic tasks with r; > i are 

not yet released in the first major cycle. Thus, it is sufficient to consider periodic tasks for 

2 m ajor cycles to derive U(i) after all periodic tasks are released. In the RB algorithm, the 

initial value of U(i) is set to R  for i — 0 , 1 , . .  . , 2 Tmc. After scheduling all periodic tasks, R
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is subtracted from U(i). Since at most 1 — R  fraction of CPU time in each unit cycle can 

be allocated for periodic tasks, R  is the minimal unused fraction of each unit cycle. If the 

current invocation of a task cannot be completed before the next invocation, the task set 

is unschedulable and the RB scheduling algorithm terminates.

RB scheduling Algorithm

for i := 0 to  2Tmc do 
U(i) := R; 

end_do
for i 1 to  IS Î do

for Si := ri to  2Tmc do 
schedule_time := Ci ; 

s' := Si;
while schedule_time > 0 do 

F ( s ' )  := (1 -  U(s'))u;  

if schedule_time < F  (s') then
U (s') := U (s ') +  schedule_time/u;

else
if F ( s ' )  > 0 then

schedule_time := schedule.time -  F  (s')

U(s ')  U(s ')  +  F ( s ' ) / u
end_if 
s' <—  s' +  1;

if s' ^ Si I ) , stop, task set unschedulable, 
end_if 

end_do 
end_do 

end_do
for i := 0 to  2Tmc do 

U(i) :=  U(i) -  R] 

end_do

The RB scheduling algorithm schedules a set of periodic tasks according to the 

RMPA algorithm while reserving a fraction R  of each unit cycle. In the RMPA algorithm, 

the task with the shortest period is scheduled first, so the assignment starts from T\ in
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the RB scheduling algorithm. The scheduling of T\ starts from its first release time r\. 

The scheduled time for t\ ( “schedule_time” ) is set to C\ first, then the unused CPU time 

at r i (F(s ' )) is compared with the r i ’s scheduled time. If F(s') > schedule_time, the 

schedule_time will be added to  uU(s') and the scheduling of t\ is done; otherwise, F(s') is 

subtracted from schedule_time and s' is incremented by one. The above procedure continues 

until schedule_time becomes 0 .

6.3.1 T he C P U  U tilization  for a Set o f Periodic Tasks

In order to  derive the relation between R  and the probability of guaranteeing 

aperiodic tasks, it is necessary to derive U(i). From [12], if U < m(21̂ n — 1) for a set Sv 

of m  periodic tasks, the task set is schedulable. Let t \ ,  . . .  , r m be the tasks in Sp. These 

tasks are sorted in ascending order of their periods, i.e., T\ < T2 < • • • < Tm. After T\ is 

scheduled, U(i) can be calculated as follows.

If C\ < re(l — R),  then

U(ri + nTi) = C i /u ,  n -  0 , 1, 2 , . . .

If Ci > u ( l  -  R),  then

U (i  + nTi)  =  1 -  R, i =  n ,  n  +  1 , . . . ,  r i +  L~-^3 jg) j ~ 1

(  , Ci , \  Cx -  x (1 - R )
u ( r 1 + [ r ^ \ + n T1J =  n = 0 , 1, 2 , . . .

Similarly, U(i) can be calculated after scheduling Tj, j  = 2 , . .  . , k  as follows. Let 

l n be the minimum number of unit cycles needed to execute r ? at its nth invocation and 

Aj  be the sum of the unused CPU times within this number of unit cycles and F(i) be the
£ n £ n ~  1

unused CPU time in unit cycle Then we have Aj  ^  ^   ̂ A*j —
i=r j +nTj i—rj +nTj

re =  0 , 1, . . . ,  00.

If C j /u  < 1 — U{rj +  reTj), n =  0 ,1 , . . . ,  then

U(ri +  n T j ) = U(i + nTj) +  C j/u ,  re =  0 , 1 , . . .
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If C j / u > 1  — U(rj  +  nTj), n =  0 , 1 , . . then

U(i + n T j ) = 1 — R, i = r j , . . .  ,r j  + £n — 1 (6-2)

A - — A'-
U(jj  +  i n +  nTj) = U(vj +  l n +  nTj) H ------- - ,  ft =  0 , 1 , . . .

The calculated values of U(*) for a task set with U = 0.6 and it! =  0.1,0.2,0.3 

are plotted in Figs. 6 .5-6.7. From these figures, it is found that many unit cycles are 

under-utilized or even unused even though the average CPU utilization (U) is around 60%. 

This observation justifies the approach of reserving a certain fraction of each unit cycle to 

improve the overall CPU utilization. Another interesting result found in the RB scheme 

is tha t the variation of U(i) decreases as R  increases, thus making U(i) closer to U. As a 

result, the probability of guaranteeing aperiodic tasks will be less dependent on their arrival 

time, because a minimal fraction R  of CPU time is reserved in each unit cycle for aperiodic 

tasks (Figs. 6 .5-6.7). Recall tha t when no CPU time was reserved, the U(i) can be as high 

as 100% in some unit cycles; thus the probability of guaranteeing aperiodic tasks depends 

not only on their deadline but also on their arrival time as shown in Figs. 6.1 and 6 .2 .

6.3.2 P robability o f G uaranteeing an A periodic Task

The probability of guaranteeing an aperiodic task, ua — (aa ,C a, D a), is the prob­

ability tha t Ca is less than or equal to the sum of the unused CPU times during the interval 

[aQ, aa +  Da}. For convenience, Ca is assumed to  have an exponential distribution with 

mean fx. Then,

Cloim\'D oi

P ( c a < ^ (0) = P(Ca < F D a)
i=CLa

D m a x  p F  D

V  P ( D )  x / p e - ^ d t
D - D  J o

D m a x _______________________ _
= £  P(D)(  1 - e - " ™ ) ,  (6.3)

D —D m in
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  V-'Oa + Da _
where F  =  . F  is the average unused CPU time in [aa , aa + D a]. Dmin (D max) is

the minimal (maximum) task deadline (more on the deadline distribution will be discussed 

in Section 6.3.4). P ( D ) is the probability density function of task deadlines.

We are interested in deriving a condition under which P(Ca < F  D a) is max­

imized. From Eq. (6.3), it is easy to see th a t the probability of guaranteeing aperiodic 

tasks is a monotonic increasing function of F.  When U is fixed, reserving a fraction R  of 

each unit cycle will increase the utilization (or decrease F) in those unit cycles which were 

under-utilized or even unused as shown in Figs. 6.5-6.7. Since the probability of guarantee­

ing an aperiodic task is increased (decreased) by increasing (decreasing) F,  the increase in 

the probability of guaranteeing aperiodic tasks in these unit cycles with increased F  must 

be greater than the decrease in the probability of guaranteeing aperiodic tasks in those unit 

cycles with decreased F.

Intuitively, the probability of guaranteeing aperiodic tasks is a monotonic increas­

ing function of R.  However, this is not clear when a large increase of F  in a time interval 

causes small decreases of F  in many other time intervals. So, we have the following theorem.

T h e o re m  6.1 The probability o f guaranteeing aperiodic tasks is a monotonic increasing 

function o f R.

Proof: Let F \  be the average unused fraction of CPU time over a time interval, say 

I \ . If F \ < R , after reserving a fraction R  of each unit cycle, the average unused fraction 

of CPU time over I \  becomes F'x — R . Since U is fixed over a major cycle, increasing the 

unused fraction of CPU time, in R  will cause the unused fraction of CPU time to decrease 

over some other intervals in which the average unused fractions of CPU time were used 

to be greater than R  (before the reservation). Let I jl , Ln , • • •, I3k be those intervals and 

Fji {F"'n  ), F j2 (F'j2 ), • •-, F jk (F*jk) be the average unused fractions of CPU time over 

these intervals before (after) reserving the CPU time as shown in Fig. 6.8. Note tha t the 

distance between I jk and I\ is larger for larger k as shown in Fig. 6.8. Then we have
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Fje — R  if F j t > 2R,  andF i +  £*= i F je =  F i  +  E f c i  Note th a t > R , F J( 

F je = R  if F jt < 2R  for £ = 1 , . . k.

Note that the increase of F[ in Ji causes many decreases of the unused fraction of 

CPU time over intervals In  , I V2, • ■ • , I ]k. Let A F je =  \Fje — F'j{\ for £ = 1 , . . .&.  Then each 

of these A L j/s  will contribute to F[. So, A F \  =  |F i  — -Fi| =  E*=i A F je. Also, note tha t 

the decreases of the unused CPU time over intervals , i j2, • • •, f j k due to the increase of 

F i  will occur first on In , then I j2, and so on, because in the RB scheduling algorithm the 

task’s scheduled time is shifted to an adjacent unit cycle first. So, it is sufficient to consider 

the following three cases.

Fraction of the unused 
CPU time

■Q'F.

AFi

, ( 2)’

3D’
T

F,

Fji

iji

J2
Fj2 J1

*52

©

F*

^ F . { 
jk l

F:jk

t
Figure 6.8: The variation of the unused CPU time over some time intervals after reserving 
a fraction R  of CPU time in each unit cycle.

(1). Consider the variation of F^  in Ij1 first. For notational convenience, let F\  

be the unused CPU time in I \  when only A F jy is considered, i.e., assuming A F je = 0 

for £ =  2 , . . . ,&.  We then have F ^  =  F\  +  A Fjx. The variation of the probability of
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guaranteeing an aperiodic task va =  (aa,Ca,D a) is computed by:

Pi (Ca < F 1 D a) - P i ( C a < f f Y Da) = P(Da) ( e - ^ 1),D° - e - ^ D°) 

P2 (Ca < Fn Da) -  P2{Ca < F'n Da) =  P(Da)(e~^'n D« -  e~ ^ i  ^ ) .

—  — C1 ) 7
The increased probability of guaranteeing the task is P(Da)(e~ltFl Da — e~flFi Da) while 

the reduced probability of guaranteeing the task is P{D a){e~^F^  Da — e~^Fh Da). So, the 

net change is:

AP^1)(guarantee va) = P (D a )

=  P (D a)

(g ~ ^  F i  F a  e -At ̂   ̂ F a ) T  (e _M ̂ n   e -M  F J i  F a  ^

e - l i F i D a ^  _  e ~n  A F j j  D Q )  _|_ D a _

= P (D a)( 1 -  e"" AF« Da -  e~^F'h D°).

From the initial condition we have F \ < R  and F*n  > R, thus F \ < P ^ .

So, A P ^^ g u aran tee  ua) > 0.

(2). Consider only the variation of the unused CPU time in intervals I jx and I j2.
—(2\i —ny —

For notational convenience, let F \ — F \ +  A F n . The net change in the probability of 

guaranteeing va is

A p (2)(guarantee va ) =  P{D a)( l — e_At AFjz D°‘)^e~tlF i  ̂D<* _  e~(lFh  Da).

Since F ^  < F'j2, AP^2)(guarantee ua ) > 0.

(3). Generally, consider the variations of the unused CPU time in intervals I j1 to 

I j{, and let A F jt = F j( — f ':u and F^p = F^ ^  +  A P 7f. The net change in the probability 

of guaranteeing va is

A P ^  (guarantee va) =  P (D a )( l — e- ^ A-F’h I>oi)(e” /t^  ^Da — e~tJ'F:>tDa).

Since F ^  < F jt , A PW (guarantee va) > 0 for I — 1 , . . . ,  k.

As a result, the increase in the probability of guaranteeing aperiodic tasks by

increasing P  in I \  will always be greater than the total reduced probability of guaranteeing
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aperiodic tasks in , • • •, Ijk . Since 1 -  e~,i AFjt is a monotonic increasing function of A Fjt , 

the increase in the probability of guaranteeing aperiodic tasks is a monotonic increasing 

function of R.

In practice, the decreases of the unused CPU time over some intervals may be 

caused by the increases of the unused CPU over a multiple number of intervals instead of 

only one interval i i  as discussed above. However, we can always identify the decreases of the 

unused CPU time over those intervals which is caused by the increase of the unused CPU 

time in a particular interval and apply the same arguments, thus we show that the increase 

in the probability of guaranteeing aperiodic tasks is a monotonic increasing function of R.

□

6.3.3 D eriving Rmax

Since Eq. (6.3) is a monotonic increasing function of R, it is desirable to derive 

Rmax without missing the deadline of any periodic task. Consider the case of two periodic 

tasks r i =  (C i,T i)  and 72 =  (C ^,!^), and let T\ < T2. As discussed in [12], the critical 

instant for any task occurs whenever it arrives simultaneously with all other higher priority 

tasks. So, the most difficult situation for scheduling r 2 is when it is released at the same 

time as Ti. It was shown in [12] tha t the minimal U occurs when C\ = T2 — T\ [T ^/T i], 

leading to :

_  +  C2
T2

p ̂ 2 *| -{-Ĉ
So, R max is the maximum unused fraction of CPU time, i.e., .Rmax — 1 — U =  1— y- .

Generally, R max for a set of m  periodic tasks (Ci ,Ti) ,  • • •, (Cm, Tm) such tha t T\ < T2 <

. . .  < Tm is

. , Er=2r£ic1+EU£ic2 + ...+ r%̂ ic,„+cv
ftmax — rp *J- m.
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6.3.4 C alculating the P robability  o f G uaranteeing A periodic Tasks

Substituting the R max derived from Eq. (6.4) into Eq. (6.3), the probability of 

guaranteeing aperiodic tasks can be maximized, because P(Ca < F  D a) is a monotonic 

increasing function of R. Since deadlines of aperiodic tasks are known upon their arrival, 

P{D)  in Eq. (6.3) can be calculated and the probability of guaranteeing aperiodic tasks can 

then be derived from Eq. (6.3). However, any a priori performance evaluation requires the 

distribution of aperiodic task deadlines. A uniform or exponential distribution of deadlines 

has been commonly used in early studies [16, 19, 24]. In case of an exponential distribution, 

randomly-generated deadlines are close to their mean value, and thus the variation of dead­

lines is not large. The probability of guaranteeing aperiodic tasks is closely related to the 

distribution of deadlines; the performance data  obtained from an exponential distribution 

strongly depends on the mean value used. Since the distribution of deadlines of aperiodic 

tasks is application-dependent, one can let

D  =  D min +  [(1 +  a X ) C i \ , (6.5)

where D min is the minimal deadline of an aperiodic task, a  is an integer number, and X  is 

a random variable uniformly distributed in [0, 1]. As stated earlier, C{ is assumed to have 

an exponential distribution with mean p.

The deadline distribution in Eq. (6.5) allows us to adjust the control parameters, 

D min and a , to choose an appropriate range of deadlines for aperiodic tasks. D min serves 

a purpose similar to the minimal separation p  in [28]. By varying D min, one can control 

the worst-case probability of missing deadlines, thus guaranteeing the deadlines up to any 

acceptable level. [(1 +  «A )CiJ determines the range of deadlines; a large a  will generally 

result in a wide range of distribution. Since it is assumed that X  is uniformly distributed 

and C'i is exponentially distributed, the range of deadlines is a composite function of uni­

form and exponential distributions. Using Eq. (6.5) to specify the deadline of an aperiodic 

task can avoid the drawbacks of assuming either a loose bound or a tight bound of dead-
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lines. Moreover, the randomly-generated deadlines are uniformly distributed in the range 

determined by [_(l +  a:X)C;J, so the deadlines is more evenly distributed in a specified range 

than the exponential distribution. To be consistent with the case of periodic tasks where

the deadlines are equal to the period (an integer number of unit cycles), the deadlines of

aperiodic tasks are rounded to  be integer numbers in Eq. (6.5).

Consider D a =  P mm as an example:

P (D a = D min) = P( Ca < T ^ )  + P ( ( l  + a X ) C a < l ) p [ T ^ < C a < l }

1 +  a '  a \ C a J \1  + a  J
i_ u f 1 e~^lt , 1 .
^  i  I  dt -| (e ^ — e !+«). (6.6)

a  J -i— t a1 + a

If Ca < the second term  in Eq. (6.5) is always less than 1; this gives the first 

term  in Eq. (6.6). If 1/(1 +  a )  < Ca < 1.0, D a is equal to D min when (1 +  a X )C a < 1.0. 

Since X  is a uniformly distributed random variable in [0, 1], P (( l+ a X )C a < 1) =  ^ ( l / C a — 

1), thus giving the second term  in Eq. (6.6). If Ca > 1.0, D a is always greater than D min. 

Similarly, P (D a = D min +  1) can be shown as:

P(D a = Dmin +  1) =  P ( ( l  +  a X )C a > 1 )P (—^— < Ca < r-y— ) +l  +  o  1 +  a

P ( 1 < (1 +  a X )C a < 2)P  <  2 )

1 1 . f ttz f a f 2 , .
=  ^  d t + ^ L — dt <6 j )l + a l*f-a

= (l H ) ( e — e i+« j  /  d t  +  —
a V / a  J  t-2— t  a  J -

dt.

When Ca £ [jq^ , T+^)> (1 +  otX)Ca is always less than 2. So, the probability 

of resulting D a =  Pram +  1 is (1 +  a X )C a > 1, thus giving the first term in Eq. (6.7). 

W hen Ca £ [2/(1 +  ct), 2), D a — D min +  1 if (1 +  a X )C a £ [1,2); this is the second 

term  in Eq. (6.7). When Ca > 2, D a is always greater than D min +  1. Generally, for 

P ( P a  =  Pram T &), k — 2 , . . . ,  D max, we get:

P ( D a -  Dmin +  k)  =  P ( { l  +  a ) C a > k ) P ( ~ ^ — < C a < ^ )  +
1 +  a  1 +  cr



From Eq. (6.5), the deadline of an aperiodic task is generated based on its com­

putation time which was randomly-generated from an exponential distribution. The effect 

of D min and a  on the probability of guaranteeing an aperiodic task will be discussed in the 

next section.

6.4 Im plem entation  and Perform ance A nalysis of R B A lgorithm

To implement the RB algorithm in a real-world system, one needs to consider the 

issues of both local and global scheduling (load sharing) of aperiodic tasks.

6.4.1 Local Scheduling

Periodic tasks are considered as the base workload and assigned higher priority 

than aperiodic tasks. The U calculated from Eq. (6.1) is the CPU utilization for a given 

set of periodic tasks. Aperiodic tasks are processed by utilizing the unused fraction of 

CPU time, 1 — U. The decision of accepting an aperiodic task =  (aa,C a, D a) is made by 

comparing Ca with F  D a. If Ca < F  Da, this task will be accepted and scheduled locally; 

otherwise it will be either transferred out or rejected. Transferring an aperiodic task is the 

subject of global scheduling or load sharing and will be discussed in the following subsection. 

Since acceptance of an aperiodic task depends on the amount of unused fraction of CPU 

time on a node, if U is high, say over 0.6, the node may not be able to process many 

aperiodic tasks. In such a case, the chance of accepting more than two aperiodic tasks in a 

short time interval is very small, so the FCFS scheduling policy can be used. However, if 

U is low, say below 0.4, the node will be able to process a large number of aperiodic tasks,
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and more than  two aperiodic tasks are likely to  be accepted within a short time interval. 

Thus, a good local scheduling scheme better than the FCFS policy is desirable to maximize 

the probability of guaranteeing aperiodic tasks.

Hong et al. has proved that the minimum laxity first (MLF) policy is the optimal 

local scheduling scheme in real-time systems without periodic tasks [24]. Unfortunately, 

MLF policy is not feasible in the RB algorithm for the following reason. Since periodic 

tasks are considered as the base workload, U(i) varies even when some fraction II of a unit 

cycle is reserved as shown in Fig. 6.7. So, the laxity of an aperiodic task cannot be given 

a priori and must be calculated upon its arrival. Moreover, the laxity of an aperiodic task 

depends on its arrival time. The difficulty of using the MLF policy for the RB scheme 

can be seen from the following scenario. Consider an aperiodic task u\ — (a ,C \, D i). If 

Vi is accepted and scheduled locally, U (i) in [sa, .Sa+joJ will be updated accordingly. If a 

second aperiodic task i^  arrives later, say at t =  a+  1, its laxity can be calculated based on 

either the updated U(i),  or the original U(i).  If it is calculated based on the updated U(i),  

the MLF policy does not make any sense, because V\ has already been scheduled. If it is 

calculated based on the original U{i) and scheduled ahead of v\ when its laxity is smaller 

than v\ ’s original laxity, v \ ’s laxity needs to be re-calculated based on the newly updated 

U{i) after scheduling v%. It may turn out tha t the adjusted laxity for v\ may be shorter 

than V2 s laxity leading to a conflict. In fact, it is also shown in [24] tha t the MLF policy 

works best only in nonpreemptive systems [24] to avoid the above difficulty. Since in our 

model, all tasks can be preempted at any time, the MLF policy is not feasible for the RB 

scheme.

The earliest deadline (ED) policy does not outperform the FCFS policy in the 

RB scheme, because if the ED policy can guarantee a number of aperiodic tasks, so can 

the FCFS policy for the RB scheme for the following reason. Consider two aperiodic tasks 

v\ =  (a, C i, D i), — (fit, C2, D 2 ), and assume D \ < D 2 . Suppose these two aperiodic tasks
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can both be guaranteed by the ED policy. Then the sum of the unused CPU time in the 

unit cycles from sa to s(1+d 2 will be at least C\ +  C2. If 2̂ is scheduled before v \ , one 

can reserve a t least C\ of CPU time from sa to sa+r>1 while still meeting the deadline of 

i>2 ■ Since the sum of the unused CPU time is at least C\ from sa to sa+D 15 ny can also 

be guaranteed even if it is scheduled after z/2, tha t is, the FCFS scheduling pohcy can also 

guarantee both v\ and za> .

Generally, consider a  set of aperiodic tasks V \  =  (a ,Ci,  D%), V 2 = (a, C21D 2), 

. . . ,  vn =  (a,G'n, D n). For convenience, assume D\ < D 2 • ■ ■ < D n. If these tasks can be 

guaranteed by the ED scheduling algorithm, we have Ya=1 Cj G Y^j=ak Fj for k — 1 , . . . ,  n. 

When these tasks arrive in any arbitrary order, they can still be guaranteed by the FCFS 

scheduling algorithm. For example, suppose vm = (a ,Cm, D m) is scheduled first. Since the 

sum of the unused CPU time from sa to sa+Dm is a t  least C{, we can reserve YjI^ 1 C'i 

amount of CPU time from sa to sa+£>m, such th a t tasks v\ to can still be guaranteed 

even if they are scheduled after um. Similarly, any other task can be scheduled next to  vm 

by reserving some amount of CPU time for the rest of tasks with shorter deadlines. So, the 

FCFS scheduling algorithm can perform as well as the ED pohcy.

6.4.2 G lobal Scheduling

As shown in Figs. 6.5 to 6.7, U (i) varies from 0 to 1 -  R. Those aperiodic tasks 

arriving a t the unit cycles with larger U(i)  will not be guaranteed with the same probability 

as those arriving at the unit cycles with smaher U(i). One way to alleviate this problem is 

to transfer the tasks tha t cannot be guaranteed locally to some other nodes with a sufficient 

amount of unused CPU time.

The results in Section 2.5 showed that the LSMSCB can significantly reduce the 

probability of missing task deadlines. Thus, we want to modify the LSMSCB to implement 

the RB scheduling algorithm in a distributed system. Note tha t periodic tasks on each node
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cannot be transferred, because missing the deadline of a periodic task may mean missing 

deadlines of all invocations of this task. So, only aperiodic tasks can be transferred for the 

purpose of load sharing.

It takes t  unit cycles to transfer an aperiodic task. The set of periodic tasks and 

U(i)  of each node are known to  all other nodes. A node will broadcast its state change to 

the nodes in its buddy set only when an aperiodic task is scheduled on it; this task can be 

its own arrival or a transferred-in task. Recall tha t the transfer pohcy is to determine when 

to transfer an aperiodic task and the location pohcy is to determine where to send the task.

Whenever Ca > S a „ +'Da -^(0 holds for an aperiodic task va — (aa ,C a , Da), the 

task must be transferred. A node will check U(i) of the nodes in its buddy set according to 

its preferred hst, and the first node th a t satisfies the condition Ca < Y^aa+ti? F(i)  will be 

selected as the receiver for the task. Since the time to transfer a task is t u , the transferred 

task will arrive at the receiver node at time aa + 1 u, assuming tha t both the location and 

transfer pohcies wih take no time. So, the minimal deadline of this task is assumed to be 

t u  +  Ca relative to aa .

The performance of the RB scheme is evaluated by simulation and compared with 

the analytic results. Several interesting results are obtained. First, as shown in Fig. 6.9, the 

probability of missing aperiodic task deadlines decreases as R  increases, confirming Theo­

rem 6.1. Increasing the value of a  reduces the probability of missing aperiodic task dead­

lines. The effect of increasing Dmin for aperiodic tasks can be seen in Figs. 6.10 and 6.11. 

The probability of missing a deadline can be reduced to as small as 10~4 with D min =  5. 

The effects of varying D Tn:m and R  on the probability of missing deadlines are plotted in 

Fig. 6.12. The effects of varying U are plotted in Fig. 6.13. The probability of missing 

deadlines of aperiodic tasks increases as U increases. Thus, U must be kept below a certain 

level in order to reduce the probability of missing aperiodic task deadlines to an acceptable 

level.
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C H A PT E R  7

CONCLUSIONS

7.1 Sum m ary

This dissertation has addressed the problem of scheduling both periodic and ape­

riodic tasks in distributed real-tim e systems. One of the m ajor contributions in this disser­

tation is the LSMSCB for aperiodic tasks by which the probability of missing task deadlines 

can be reduced to below 10-7 in most cases. Using the buddy sets and preferred lists to 

solve the coordination and congestion problems in distributed systems is the second con­

tribution. The third contribution is the reservation-based scheduling algorithm which can 

guarantee the periodic tasks while minimizing the probability of missing the deadlines of 

aperiodic tasks. Specifically, the contributions of each chapter are summarized as follows.

• In Chapter 2, the LSMSCB is developed for scheduling aperiodic tasks in distributed 

real-tim e systems. The performance of the LSMSCB is analyzed by using an embed­

ded Markov chain model. Numerical solutions are derived from the model equations 

and provide many interesting results for the design of threshold patterns and buddy 

sets. It is shown that by selecting an appropriate threshold pattern and a buddy set, 

Pdyn can be reduced to below 10-7 for a wide range of system load, thus making the 

LSMSCB suitable for various real-tim e applications.

The LSMSCB is based on an interesting but different idea from existing approaches 

which attem pt to modify/generalize a periodic-task scheduling algorithm for aperiodic
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tasks [74]. Instead of trying to design a complex scheduling algorithm to guarantee 

aperiodic tasks, tasks arriving at each node are processed on a FCFS basis in the 

LSMSCB. However, if a node cannot meet the deadline of some tasks, the node will 

transfer these tasks to the nodes in its buddy set for processing, so deadlines can 

be met by using the ‘combined’ processing power of all nodes in the system. Both 

simulation and analytic results indicate th a t the LSMSCB is very efficient in meeting 

the deadline of aperiodic tasks.

• An approximate closed-form expression for the distribution of QL under the LSMSCB 

is derived in Chapter 3. Based on the closed-form distribution, ‘optimal’ threshold 

patterns and buddy set sizes are determined either by minimizing the communication 

overhead — such as the frequency of collecting state information and the number of 

task transfers — incurred by the LSMSCB while keeping Pdyn below a specified level, 

or by minimizing Pdyn while keeping communication cost below a given level. An 

upper bound of processor utilization is also derived while reducing Pdyn to a given 

level. Moreover, the system utilization is significantly improved, as compared to the 

results calculated based on the upper bound model in Section 2.5.

• In Chapter 4, the location pohcy used in the LSMSCB is elaborated on for hypercube 

multicomputers. The coordination and congestion problems associated with the use 

of preferred lists and buddy sets are identified and solved. The performance of the 

proposed location pohcy is analyzed and compared with others, such as probing, 

random selection, and bidding algorithms, in terms of the number of task colhsions. 

The proposed location pohcy is shown to minimize the number of task collisions, and 

its superiority to other location pohcies becomes more pronounced when one or more 

hot regions are formed in the hypercube.
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• Chapter 5 addresses and analyzes two im portant fault-tolerant issues associated with 

the LSMSCB in hypercube multicomputers: (i) ordering fault-free nodes as the pre­

ferred receivers of overflow tasks and (ii) developing a LS mechanism to handle node 

failures. Since the occurrence of node failures will destroy the original structure of 

the preferred lists, three algorithms are proposed to adjust the preferred lists. The 

preferred lists modified by the proposed algorithms are shown to retain their original 

properties regardless of the number of faulty nodes in the system. Moreover, these 

algorithms can either minimize the number of adjustments or minimize the distance 

between a node and the nodes in its buddy set. A simple backup queue can be im­

plemented based on these algorithms. The communication overhead and delay for 

m aintaining/updating the backup queue are shown to be minimal, thus reducing the 

number of lost tasks.

® The problem of scheduling both periodic and aperiodic tasks is considered and eval­

uated in Chapter 6. A reservation-based (RB) scheduling algorithm is proposed to 

schedule both periodic and aperiodic tasks on distributed real-tim e systems. The 

deadlines of periodic tasks are guaranteed first by using the rate monotonic schedul­

ing algorithm. Aperiodic tasks are then scheduled by reserving a fraction, R , of CPU 

time in each unit cycle. R  is shown to have great efFects on the probability of guaran­

teeing aperiodic tasks even when the average utilization is fixed. The relation between 

R  and the probability of guaranteeing an aperiodic task is established, and the max­

imum feasible value of R  is derived under which the probability of guaranteeing an 

aperiodic task can be maximized. Moreover, the RB scheduling algorithm can be im­

plemented in a distributed real-tim e system by using the LSMSCB. Both simulation 

and analysis results indicate tha t the drop-out rate of aperiodic tasks can be reduced 

to below 10-4 , whereas the previous best results were shown to be 0.05 [19].
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7.2 Future Work

Although the LSMSCB is shown to greatly improve the performance of a dis­

tributed real-tim e system, there are several remaining issues th a t warrant further investi­

gation.

® All tasks are assumed to have an identical, or identically-distributed, execution times 

in Chapter 2, which is not realistic. When all tasks have an identical execution time, 

QL can be used to determine the workload of each node as was discussed in Chapter 

2. If tasks have different execution times, cumulative execution time (CET), rather 

than QL, should be used to measure the workload in each node [75]. Moreover, task 

execution time may be a random variable due to, for example, conditional branches 

and loops in the task. Modeling the LSMSCB in the case of general task execution 

times is an interesting problem. For example, the load states, U, F, and V used in the 

LSMSCB will no longer be meaningful, because the task deadline must be compared 

with the CET on a node to determine whether the task can be transferred to  tha t 

node. One way to solve this problem is to use multiple thresholds as discussed in [75]. 

In [75], k thresholds are used to determine the load states on a node and the node will 

broadcast the state change to all other nodes when its load state switches from an odd- 

numbered threshold interval to an even-numbered threshold interval. Although using 

multiple thresholds can define the load state more accurately and improve deadline 

guarantees, the frequency of state change will be higher than the approach of using 

three thresholds in the LSMSCB. How to define the load state accurately while keeping 

the communication overhead below an accepted level is an interesting problem.

® The FCFS policy is used as the local scheduling policy in the LSMSCB. Under this 

policy, if the deadline of a newly arrived task cannot be guaranteed, it will be trans­

ferred to another node. However, it is possible that the deadline of the newly arrived
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task can be guaranteed locally by rearranging the tasks in the queue. For example, 

suppose the deadline and computation time of the newly arrived task is D \ and C \, 

and the cumulative execution time in the task queue is C E T . If 3 = {D 2 1 C 2 ) in

the queue such tha t D 2  >  C E T  + C\ and D \ > C E T ', where C E T ' is the cumulative 

execution time of the tasks queued ahead of v2 , then replacing z^ by zq will be able to 

guarantee the deadlines of both tasks, thus eliminating one task transfer. Moreover, 

if the newly arrived task cannot be guaranteed by any possible rearrangement of the 

schedule, it is still not necessary to transfer the newly arrived task. For example, 

suppose the deadline of zq can not be guaranteed by node IV;. If the transfer time of 

zq is too long or its deadline is very short, it might be possible to transfer some other 

tasks, say zq, in the queue with a shorter transfer time or longer deadline such tha t the 

deadline of zq can be guaranteed after transferring zq. Hence, a good local scheduling 

algorithm will be able to  improve the probability of guaranteeing task deadlines.

9 The preferred lists are generated according to the physical distance between nodes, 

and the nodes with shorter distance between them will be assigned higher preference. 

When some nodes failed, as was discussed in Chapter 5, the distance between nodes 

might be changed. How to modify the preferred lists to adapt to  this change needs to 

be studied further. Moreover, Pdyn in the presence of faulty nodes is found to be higher 

than the case without faulty nodes even when some BKQs are provided. This problem 

occurs when a node fails while some tasks are being processed. If intermediate results 

are not saved, the tasks must be restarted again, thus increasing the processing time 

and missing the deadlines. How to design and use BKQs for real-tim e applications is 

worth further investigation.
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