
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University M icrofilms International
A Bell & H owell Information C o m p an y

3 0 0 North Z e e b R oad. Ann Arbor. Ml 4 8 1 0 6 -1 3 4 6 U SA
3 1 3 /7 6 1 -4 7 0 0 8 0 0 /5 2 1 -0 6 0 0

Order N u m b er 9501052

M a p p in g a n d sch ed u lin g o f con cu rren t com m u n ica tion traffic in
m u ltico m p u ter netw ork s

Tsai, Bingrung, Ph.D.

The U niversity of M ichigan, 1994

C opyright © 1994 by T sa i, B ingrung. A ll rights reserved.

U M I
300 N. Zeeb Rd.
Ann Arbor, Ml 48106

Mapping and Scheduling of Concurrent Communication
Traffic in Multicomputer Networks

by

B ingrun g T sai

A dissertation su b m itted in partia l fulfillment
of th e requirem ents for the degree of

D octor of Philosophy
(C o m p u te r Science and Engineering)

in T he University of Michigan
1994

D octoral C om m ittee:
Professor K ang G. Shin, C hair
Associate Professor Kevin J. C om pton
Associate Research Scientist C hinya V. Ravishankar
Professor T hom as F. S torer
Professor Quentin F. S to u t

© Bingrung Tsai 1994
All Rights Reserved

my parents

ACKNOWLEDGEMENTS

I ’d like to express my deepest, g ra ti tu d e to my advisor Prof. K ang G. Shin. T he constan t
guidance, timely encouragem ent and unwavering support he provided me to pursue this
research has been priceless during my entire g rad u a te study.

M any th an k s are ex tended to the members of my com m ittee for their constructive
criticism and tim e spen t in reviewing this d issertation. Also, I am obliged to the Office of
Naval Research for their financial support .

I am forever grateful to my paren ts for the support and encouragem ent they have given
me t h a t m ade my g ra d u a te s tudy possible. Finally, a very special th an k goes to my fiancee
Szu-ping (G race), with whom I feel very fo r tuna te to be able to share my life, for her
encouragem ent and confidence in me.

TABLE OF CONTENTS

D E D I C A T I O N ... ii

A C K N O W L E D G E M E N T S ... iii

L I S T O F T A B L E S .. vi

L I S T O F F I G U R E S .. vii

C H A P T E R S

1 I N T R O D U C T I O N ... 1
1.1 M o t i v a t i o n .. 1
1.2 Preliminaries and Previous Research ... 2

1.2.1 M ulticom puter N e tw o r k s ... 2
1.2.2 C om m unication M e c h a n is m s .. 3
1.2.3 Traffic M o d e l s ... 4
1.2.4 Traffic Flow Control .. A
1.2.5 Task M a p p i n g ... 7

1.3 Research O bjective and General M e t h o d o l o g y ... 9
1.4 A M ap of the D i s s e r t a t i o n ... 10

2 C O M B IN E D R O U T IN G AND SCH ED U LIN G O F C O N C U R R E N T C O M
M U N ICA TIO N T R A F F IC IN H Y P E R C U B E M U L T IC O M P U T E R S . . . 13

2.1 I n t r o d u c t i o n .. 13
2.2 N otation and D e f in i t i o n s ... 16
2.3 T h e Proposed Message R outing and Scheduling S c h e m e s 17

2.3.1 S c h e d u l in g .. 17
2.3.2 R o u t i n g .. 19

2.4 Perform ance Evaluation .. 21
2.4.1 S c h e d u l in g .. 22
2.4.2 R o u t i n g .. 27
2.4.3 S teady-S ta te P e r f o r m a n c e .. 31

3 S E Q U E N C IN G O F C O N C U R R E N T C O M M U N IC A T IO N T R A F F IC IN A
M ESH M U L T IC O M P U T E R W IT H VIRTUA L C H A N N E L S 34

3.1 I n t r o d u c t i o n .. 34
3.2 Preliminaries .. 37
3.3 Form ulation and Analysis ... 40
3.4 Simulation Results ... 44

iv

4 M A P P IN G O F C O M M U N IC A T IN G TASK M O D U LES IN I IY P E R C U B E
M U L T IC O M P U T E R S W IT H PO SSIB L E LINK F A I L U R E S 55

4.1 I n t r o d u c t i o n .. 55
4.2 Preliminaries .. 56
4.3 O ptim ization Heuristics and Performance E v a l u a t i o n 60
4.4 An A lterna tive R outing Algorithm ... 65
4.5 Rem arks . .. 69

5 M A P P IN G C O N C U R R E N T L Y C O M M U N IC A T IN G M O D U LES O N T O
M ESH M U L T IC O M P U T E R S E Q U IP P E D W IT H VIRTU A L C H A N N ELS 72

5.1 I n t r o d u c t i o n .. 72
5.2 Preliminaries .. 74
5.3 Perform ance Evaluation ... 81

6 M A P P IN G C O M M U N IC A T IN G SU BCUBES IN A I IY P E R C U B E M U L
T IC O M P U T E R .. 95

6.1 I n t r o d u c t i o n .. 95
6.2 Definitions, A ssum ptions, and Problem S t a t e m e n t 96
6.3 M athem atica l P r o p e r t i e s ... 98

6.3.1 Uniform-Sizc S u b c u b e s ... 99
6.3.2 Non-uniform Size Subcubcs ... 107

6.4 Heuristic M apping S t r a te g ie s .. I l l
6.4.1 Fixcd-Size Target H y p e r c u b e s ... 112
6.4.2 S trategics for Unconstraincd-Size Target Hypercubcs 114

7 C O N C LU SIO N S A N D F U T U R E D I R E C T I O N S .. 117
7.1 S um m ary ... 117
7.2 C o n t r i b u t i o n s .. 119
7.3 F u tu re W o r k .. 120

B I B L I O G R A P H Y 122

v

LIST OF TABLES

Table
2.1 Perform ance of scheduling policies under the e-cube routing a lgorithm 22
3.1 Perform ance of w-meshcs and f-mcshes with s tr ic t R R flit multiplexing . . . 45
3.2 Perform ance of w-mcshcs and f-mcshes with D D -R R .. 46
4.1 T im ing com parisons for various a lgorithm s.. 62
4.2 Effects of changing A7" under message sw itching.. 64
6.1 $ of m appings found by various s tra teg ics ... 114

* 6.2 $ of m appings found by different heuristics ... 116
6.3 Average size of required ta rg e t hypcrcubcs for various heuris tics 116

VI

LIST OF FIGURES

Figure
1.1 A b inary 4-cube .. 2
1.2 A 4-ary 2-cube... 3
1.3 Organization of the d isse r ta t io n .. 10
2.1 An example Q 2.. 14
2.2 An example d em ons tra t ing the definition of m ak esp an .. 14
2.3 T he remaining bandw id th against time under two different message schedul

ing policies 17
2.4 Uniformly d is tr ibu ted traffic, message sw itching .. 24
2.5 Uniformly d is tr ibu ted traffic, circuit switching... 24
2.6 Uniformly d is tr ibu ted traffic, virtual cu t- th ro u g h ... 25
2.7 H o t- sp o t traffic, message sw itching... 25
2.8 H o t- sp o t traffic, circuit sw itching... 26
2.9 H o t-sp o t traffic, virtual c u t - th ro u g h ... 26
2.10 Uniformly d is tr ibu ted traffic, message sw itching ... 28
2.11 Uniformly d is tr ibu ted traffic, circuit switching... 28
2.12 Uniformly d is tr ibu ted traffic, v irtual c u t- th ro u g h ... 29
2.13 H ot-spot traffic, message sw itching.. 29
2.14 H ot-spot traffic, circuit switching... 30
2.15 H ot-spot traffic, v irtual c u t- th ro u g h .. 30
2.16 S te a d y -s ta te perform ance under message sw itching ... 32
2.17 S te a d y -s ta te perform ance under circuit switching.. 32
2.18 S te a d y -s ta te perform ance under v irtual cu t - th ro u g h .. 33
3.1 A time-space diagram of wormhole switching... 35
3.2 Wormhole rou ting with (a) single v irtual channel (b) two v ir tual channels. . 36
3.3 A 4-ary 2-cube.. 37
3.4 An exam ple deadlock caused by priority-based flit m ultip lex ing.......................... 43
3.5 M akespan com parison .. 47
3.6 Mean latency com parison ... 47
3.7 M akespan com parison .. 48
3.8 M ean latency com parison ... 48
3.9 M akespan com parison .. 50
3.10 M ean latency com parison ... 50
3.11 M akespan com parison .. 51
3.12 Mean latency com parison ... 51

vii

3.13 M akespan com parison .. 52
3.14 M ean la tency com parison... 52
4.1 An example d em ons tra t ing the definition of m ak esp an .. 58
4.2 Perform ance of various a lgorithm s... 61
4.3 Perform ance of m appings under message sw itching.. 66
4.4 Perform ance of m appings under inaccurate task in fo rm ation 66
4.5 C om m unica tion bandw id th under the DFS a lg o r i th m 68
4.6 Perform ance of m appings under the DFS a lg o ri th m .. 69
4.7 P lo t of remaining bandw id th versus t im e .. 70
5.1 T he rem aining bandw idth versus tim e under two different message scheduling

policies... 73
5.2 M akespan comparison of m appings optimized with various cost functions. . 83
5.3 Average la tency comparison of m appings optimized with various cost functions. 84
5.4 M akespan com parison of m appings optimized with various cost functions,

uniform traffic.. 85
5.5 Average latency comparison of m appings optimized with various cost func

tions, uniform traffic.. 85
5.6 M akespan com parison of m appings optimized with various cost functions,

ho t-spo t traffic... 87
5.7 Average la tency comparison of m appings optimized with various cost func

tions, ho t-spo t traffic... 87
5.8 M akespan of m appings optimized with f 7 | f 3 versus varying A T 88
5.9 Average latency of m appings optimized with f 7 \ f 3 versus varying A T . . . 88
5.10 M akespan of m appings optimized with f 7 | f 3 using inaccura te f,-’s 89
5.11 Average la tency o f m appings optimized with f 7 | f 3 using inaccura te f , ’s. • • 89
5.12 M akespan of m appings optimized with f 7 \ f 3 under different flow-control

s tra teg ie s ... 90
5.13 Average latency of m appings optimized with f 7 \ f 3 under different flow-

control s tra teg ie s ... 90
5.14 P lo t of rem aining bandw id th versus time, uniform traffic 92
5.15 P lo t o f rem aining bandw idth versus time, ho t-spot traffic.............................. 93
6.1 Tw o example m ap p in g s ... 100
6.2 An example Q 4.. 101
6.3 An example G ... 102
6.4 A m apping for (G 1, 0, 3) ... 103
6.5 An example G \ .. 104
6.6 Tw o m appings for (G , 1 ,3) .. 105
6.7 A sub-m apping which cannot be p ar t of a valid m apping for (G , 1 ,3). . . . 106
6.8 A m apping for (G , [1 ,2 ,2 ,1] ,4) ... 109
6.9 A G ' construc ted from G .. 109
6.10 Exam ple m appings for non-uniform subcube sizes.. 110
6.11 Average d iam eter versus C C P .. 112
6.12 Average node distance versus C C P .. 113
6.13 Average subcube distance versus C C P ... 113

CHAPTER 1

INTRODUCTION

1.1 Motivation

T he com puting speed of a single com puter has been greatly improved over the last two

decades. However, there arc intrinsic limitations in the com puting capability of a single

com puter . C o m p u te r scientists have always been exploring th e possibility to m ake multiple

com puters to work in parallel to achieve b e t te r performance.

Due mainly to the availability of inexpensive, h igh-perform ance microprocessors and

new networking technology, it has recently become very a t t ra c t iv e to link together many

au tonom ous com puters, called computing nodes, to build a m u lticom puter system for b e t te r

perform ance. In a m ulticom puter , a com putational task is divided into smaller modules,

and each module is assigned to a com puting node. To coord ina te these nodes and ensure

t h a t they cooperatively execute a common task , there needs to be a com m unication network

so th a t any node can send messages to any o ther node. In m ost s ituations, these com puting

nodes do not work independently. One node may need to wait for messages from some

o th e r nodes to continue its work. Therefore, if com m unications are not done efficiently, the

overall com puting perform ance of a m ulticom puter can be seriously degraded. This has been

recognized as a m ajo r bo ttleneck in the perform ance of existing m ulticom puters [25, 66, 42].

T h e com m unication issue becomes even more of a concern if there are a large num ber

of nodes try ing to send messages to o ther nodes (a lm ost) concurrently. This occurs quite

often if m any nodes need to exchange their par tia l results or synchronize their executions.

Consequently, a congestion, which is similar to a traffic jam , in the network occurs and

messages m ay need a long t im e to get th rough . Worse yet, before these messages reach

their destinations, many nodes cannot continue their com puta t ion and thus, the overall

perform ance of th e m ulticom puter suffers. It is therefore im p o r tan t to improve the ne tw ork ’s

1

2

ability to handle this kind of concurrent traffic arrivals.

1.2 Preliminaries and Previous Research

1.2.1 M u lticom p u ter N etw orks

O ur research focuses mainly on m ulticom puter systems with a large num ber of processor

nodes. In these system s, instead of global memory, each processor has its own local memory,

so each processor does no t have im m ediate access to all of the available d a ta . If a required

d a tu m is not in a processor’s local memory, it m ust request and receive the d a tu m from

an o th e r processor whose m em ory stores the d a tu m . T he processors are connected via a n e t

work for such com m unication. We will only deal with direct networks, in which processors

com m unica te with one an o th e r by using dedicated communication links. In co n tra s t , in an

indirect, network, processors com m unicate th rough a series of in term ediate devices, and is

often referred to as a multistage interconnection network.

In ou r s tudy, we will focus on the network topology family called Avary n-cubes, and

particularly , binary hypercubes where k = 2, and meshes where n = 2. A binary 4-cubc

is shown in Fig 1.1, and a 4-ary 2-cubcs shown in Fig. 1.2. An exam ple of th e existing

m ulticom putcrs using the b inary hypcrcube topology is the Cosmic C ube [96]. On the

o ther hand , the J-M achine [8-1] uses a mesh-like network with n = 3.

1110 1111

1100 1011 /

0110 0111

0100 0101

00110010

1011

0001

1000 1001

F i g u r e 1.1: A binary 4-cube.

3

F i g u r e 1 .2: A 4-ary 2-cube.

1.2 .2 C om m u n ication M echanism s

S w i tc h i n g M e t h o d s

T here arc four basic switching m ethods for in terprocessor com m unication in m ulticom

puters : message switching, circuit switching, v irtual cu t- th rough , and wormhole switching.

Message switching behaves in a store-and-forward m anner , analogous to the usual mail

service. This m ethod is generally advantageous when messages are short a n d /o r infrequent.

M inimum message latency is proportional to the p roduc t of th e num ber of hops and the

message length.

Circuit switching behaves like telephone systems. A p a th from th e source to th e desti

nation is initially established and the circuit is held until th e entire message is t ran sm it te d .

This m eth o d is generally m ost effective when messages are long a n d /o r infrequent. Mini

m um message latency is proportional to the sum of the message length and some constan t

(> 1) multiple of the p a th length.

W ormhole switching a t te m p ts to combine the benefits of message switching and circuit

switching. T h e message is broken into small parcels called f low control d ig its , o r f l i t s ,

which are pipelined th rough th e network. As soon as enough rou ting inform ation becomes

available a t an in term edia te node and a corresponding o u tp u t link is free, forw arding of

flits begins even before the entire message is received. If no out-going link is free, flits are

buffered a t in te rm edia te nodes. If the buffers are not large enough, th e message will be

4

buffered across several in te rm edia te nodes, thus holding the links between them . Minimum

latency is p ropor tional to th e sum of th e message length and th e p a th length.

V ir tua l cu t- th rough is a special case of wormhole switching in which the buffers a t any

in te rm ed ia te node are large enough to hold the entire message. T here is no link held when

messages are blocked.

Virtual Channels

A virtual channel is a logical en tity associated with a physical link used to distinguish

multiple d a t a s tream s traversing the sam e physical channel. Messages in virtual channels

are time-multiplexed over the physical channel by the underlying flow-control m echanism.

V irtual channels are used for deadlock avoidance by imposing routing restr ic tions [24].

T hey can also increase netw ork th ro u g h p u t by reducing physical link idle tim e [27], espe

cially in wormhole-switched networks. If v irtual channels are not used in wormhole-switched

networks, when a rou ting header blocks, all physical links in th e p a th are idle until the

header can advance. W hen virtual channels are used, o th e r messages can use these physical

links while the blocked header waits.

1 .2 .3 Traffic M od els

In this d isserta tion , we will mostly discuss the network transient behaviors under heavy

com m unication traffic arrivals. A group of messages which are sent th rough th e network

in a small t im e span is called a com m unication m ission , or m ission for short. T h e time

required for a network to complete a mission is called makespan. Once th e com m unication

mission is in progress, no additional messages are allowed into the network. This was called

the non-renewal context in [45] and had been in troduced in [111, 110] for synchronous

com m unications. This traffic model was also used in [103, 53, 54, 61, 113].

T h e opposing contex t to th e non-renewal context is called th e renewal context [45], in

which messages are generated and allowed into the network continually and asynchronously.

Analysis o f the renewal contex t is mostly applied to s ituations in which th e system has

reached a s tead y -s ta te [82, 25, 26, 27, 42, 43, 1],

1.2 .4 Traffic Flow C ontrol

In a m u lticom puter network, traffic flow-control mechanisms include message routing

a lgorithm s, message scheduling policies, and in the case of v irtual-channel networks, time-

5

division multip lexing m ethods. Flow-control mechanisms have little to do with the switching

m e th o d used in a network. In general, any flow-control m echanism can be used with all

four switching m eth o d s m entioned above.

Routing

R o u tin g is th e process of determ ining the pa th for a message to traverse in o rder to

reach its destination . R outing decision can be m ade using a centralized algorithm , which

globally coord ina tes th e p a th s for all messages, or using a distributed a lgorithm , which

m akes rou ting decisions locally on each processor node.

A centralized algorithm is useful only if the traffic p a t te rn of a set of messages is known a

p r io r i , or the netw ork load condition is stored in a routing table whose contents are upda ted

regularly. W hen using a centralized routing algorithm , message pa th s can be chosen to

minimize contention so t h a t th e performance can often be optim al or near-optim al [103, 53,

54, 16]. For on-line applications, the inform ation required to perform centralized rou ting is

no t easily ob ta ined , and hence, a d istributed algorithm is more practical.

D is tr ibu ted algorithm s can be oblivious, in which a fixed p a th is chosen for a given

pa ir o f source and destination nodes regardless of th e network traffic condition. T h is type

of a lgo ri thm s m ake poor use of network bandw id th , thus blocking messages even when

a l te rn a t iv e pa th s a re available. They are also particu larly susceptible to com ponent failures.

O ne of th e m ost com m only used oblivious rou ting algorithm s for k -ary n-cubes is th e e-cube

a lgo ri thm . R outing proceeds traversing a fixed sequence of dimensions. W hen the difference

in th e address of th e curren t node and th a t of th e destination node is 0 in dimension i, the

message is said to have traversed dimension i. Once all dimensions are successfully traversed ,

th e message is a t th e destination node.

In co n tra s t , adaptive a lgorithm s can use a l te rna tive pa ths between com m unicating p ro

cessor nodes, m aking more efficient use of network bandw id th and providing resilience to

failures. W hen an adap tive algorithm is used in a fc-ary n-cube, th e traversal of dimensions

is n o t fixed in a par ticu la r sequence. A daptive rou ting algorithm s have received considerable

a t te n t io n from researchers [18, 32 ,44 , 5 ,8 ,1 1 , 12, 20, 22, 23, 37, 36 ,49 , 48, 52, 56, 60, 83, 90],

and can be fu r ther classified as fu lly or partially adaptive . A fully adaptive algorithm can

use all possible p a th s between the source and destination , and requires certain m echanism

to prevent a livelock. For example, in [18], the algorithm adds an e x t ra field to the message

to record its rou ting “h is tory” . A partia lly adap tive algorithm explores a subset o f possible

6

p at hs, e.g., the shortes t ones only, and is generally of lower complexity th an a fully adaptive

one.

A lthough m ost simulation studies have shown adaptive algorithm s to have superior

perform ance over oblivious algorithm s, the practicality of building an adap tive network

ro u te r has been questioned due to the ro u te r ’s complexity. Also, adap tive rou ters m ust m ake

m ore complex decisions and m aybe slower, hence offsetting their perform ance advantages

over oblivious routers . However, some of the m ost recent h igh-perform ance rou ters [10, 31]

are able to su p p o r t less complex adaptive routing w ithou t incurring significant overhead over

oblivious routing. This dem onstra te s th e feasibility of low-complexity adap tive routing.

M essage Scheduling

Message scheduling is the process of determ ining which message is allowed to access

com m unication resource in case of contention. In efTcct, a message-scheduling policy o r

ders messages in th e queues. Message scheduling policies can also be either centralized or

d is tr ibu ted .

In centralized policies, full knowledge of traffic p a t te rn s and message arrival times is

necessary. T he problem is t rea ted as a classical scheduling problem [41, 81] for general

traffic p a t te rn s , o r as an integral p a r t of rou ting algorithm s [103, 53, 54, 61] for some

specific traffic pa t te rns .

In d is tr ibu ted policies, only th e information already contained in a message is avail

able to a scheduler on a processor node. Research on d is tr ibu ted message scheduling has

been mostly in the com pu ter network l i te ra tu re [112, 116, 15]. On a m u lticom puter , m ost

low-complexity scheduling policies can be implemented with small modifications to the a r

ch itec ture of message queuing mechanisms [27, 28].

Tim e-Division M ultiplexing

In a network with v irtual channels, time-division multiplexing m ethods determ ines the

way messages in different virtual channels are time-multiplexed over a physical channel.

Usually, messages are par ti t ioned into flits and multiplexing m ethods determ ines th e order

in which the flits from different messages access th e physical channel.

Due to th e complex n a tu re of multiplexing, multiplexing m ethods are rarely cen tra l

ized. Also, since flit multiplexing is performed on a flit-by-flit basis, a feasible multiplexing

m ethod m ust be of very low complexity and incur extremely low overhead. Time-division

7

multiplexing has been discussed mostly in the l i te ra tu re related to the ATM networks [88].

On a m ulticom puter , several low-complexity multiplexing m ethods have been discussed in

[43]. A m ore complex, age-based m ethod was used in [27].

1.2 .5 Task M apping

Before executing a task , if there is sufficient knowledge of th e behavior of the task , then

this ta sk can be m apped onto the m ulticom puter to improve their run-tim e performance.

In a m ulticom pu ter system, a task is usually decomposed in to a set of coopera ting task

modules which are then assigned to a set of processors. Therefore, a task -m app ing problem

is essentially a m odule-m apping problem.

M odels and Formulations

As shown in the survey by Norm an and Thanisch [85], th e problem of ta sk m apping

has been addressed by num erous researchers using a wide range of models. T hey can be

generally categorized into 5 basic types [85].

• Model 1: No precedence relationship am ong modules

• Model 2: Precedence relationship b u t with no com m unication cost

• Model 3: Precedence relationship and with communication delay

• Model 4: Both com m unication costs and com putation costs

• Model 5: Com m unica tion costs only

Model 1 is th e simplest and m ost com putationally t rac tab le of all. Each of th e modules

are executed sequentially on a single processor and there is no in ter-m odule com m unication.

It also often referred to as event parallel [91] and related to th e bin-packing problem [41].

Theoretical results and perform ance bounds regarding this model have been derived in

[14, 47,63]. Some researchers [65,40] have also extended Model 1 to allow certain constra in ts

such as on the locations of modules th a t can be m apped to.

In Model 2, the modules com m unicate results to o ther modules on their completion of

execution, and the s tru c tu re of the com putation is represented as a directed g raph in which

a directed arc connects a pair o f modules if and only if the m odule a t the source of th e arc

requires the results of com puta tion from the module a t the destination of th e arc. However,

it is assum ed th a t there is no com m unication cost. Since there is no com m unication delay,

processors are never idle waiting for messages to t ran sm it , b u t can be idle waiting for a

precedence relation to be satisfied. Complexity results related to th is model were presented

in [40, 51, 30]. A lgorithm s or approx im ate algorithm s for this model include those discussed

in [19, 58, 67, 39].

Model 3 is an elaboration of Model 2 by adding a weight on each arc of the task graph

to ind icate the cost of an instance of com m unication. Complexity results of this model were

reported in [95, 87, 64], A pproxim ation algorithm s were discussed in [87, 105, 73, 59], and

som e heuristics can be found in [115, 6].

Models 4 and 5 difTcr from Models 2 and 3 in th a t modules are mostly represented by

undirec ted graphs. T hey are often used for modeling com pu ta t ions a t a coarser g ranu la ri ty

where there arc predic table communication pa t te rns .

Model 4 can be typified by S tone’s [101] model, in which there is a co m puta t ion cost

associated with each module and a com m unication cost associated with each message. T he

to ta l cost of a m apping is the sum of all the com putation costs and com m unication costs.

Results based on S to n e ’s model were also presented in [102, 9, 106, 94, 50].

In cases where com puta tion and communication costs arc no t incurred sequentially, e.g.,

in parallel ra th e r th a n serial p rogram s, S tone’s model is not easily applicable since com m u

nication costs and com puta tion costs are no longer additive. It m ay be more practical to

find m inim um com m unication cost mappings w ithout considering com puta t ion costs, and

hence, Model 5 is used. Models of this category often include considerations of som e under

lying processor architecture . T h e problem becomes th a t of m apping an undirected graph

of m odules in to an undirected graph of processors so as to minimize the com m unication

overhead. T h e overhead is typically defined as some m ism atch between the edges of the

processor graph and the edges of th e task graph. As Fox [38] observed in a survey of p a ra l

lel applications, 76% of real parallel program s can be considered as synchronous or loosely

synchronous. T he program s would be executed on a m u lticom puter by regular d a t a decom

position with one m odule per processor and approxim ate ly an equal am o u n t of com pu ta t ion

per module. Also, as a result of global or pairwise synchronizations between m odules, the

execution would proceed mostly in a lock step m anner. Therefore, th e problem is reduced

to m app ing modules to minimize communication overhead. Results based on th is type of

models include those presented in [7, 9, 62, 75, 74].

O th e r work on task m apping th a t uses models not easily classified includes [57, 78, 79,

21, 34]. A model which considers the tradeoff between processor and m em ory allocation is

9

used in [89].

Uncertainty in Task Behavior

M ost work in the task m apping l i te ra tu re has assumed th e availability of an exact task

g raph . However, m ost compilers arc not able to generate such a task graph since th e task

graph itself m ay even be underivable before the program runs. However, the effectiveness

of m app ing algorithm s m ay no t be guaranteed in the presence of uncerta in inform ation on

task behavior. Only a few researchers have addressed this issue. In [80], a model was used

to allow probabilistic branching, whereas in [100] the worst-casc perform ance of several

heuristic approaches were analyzed.

1.3 Research Objective and General Methodology

O ur goal is to optimize the perform ance of m ulticom puters by im proving the perfor

m ance of exchanging messages am ong com puting nodes. Especially, we will focus on s i tu

ations where there are a large num ber of messages sent concurrently am ong nodes. This

goal is achieved by exploiting com m unication locality th rough (i) on-line traffic flow-control

mechanisms during the task execution, and, (ii) module m apping prior to the execution

assum ing the sufficient task behavior information is given.

For on-line flow control, ou r main focus is on low-complexity, d istributed schemes which

do no t require any e x t ra field in the default message fo rm at, and can be im plemented on

existing routers w ithout incurring noticeable run-tim e overhead. We first s tudy th e effects

of combining routing algorithm s with message scheduling policies in a binary hypercube

network with large-buffer switching m ethods such as (store-and-forw ard) message switching

and v ir tual cu t- th rough . In mesh networks equipped with v irtual channels and wormhole

switching, we s tudy the effects of combining message-scheduling policies with time-division

multiplexing m ethods. Perform ances of different com binations are evaluated by simulations.

O ur task -m app ing approach takes into account th e underlying flow-control mechanisms

in a m ulticom puter . We use a model which can be classified as Model 5 defined in [85]

and consider only the com m unication perform ance of a task . However, unlike m ost p re

vious work, the cost function itself is not our final objective. T h e quality of m appings is

eventually determ ined by perform ance m easurem ents th rough simulating m odule com m u

nications during task executions. A cost function is selected only if m appings optimized

10

with rospcct to it can consistently improve th e run t im e perform ance. T h e effect of inac

cura te task-behavior inform ation is also considered. In the case of b inary hypercubes, we

also investigate the problem of m apping com m unicating subcubes, which is a generalized

version of th e task m apping problem. Both empirical m ethods and m a them atica l analyses

are adop ted in our study.

1.4 A Map of the Dissertation

T he overall organization of this dissertation is shown in Fig. 1.3.

Congestion Control

Task MappingMow Control

Hypcrcubc Mesh Hypcrcubc Mesh Subcubc Mapping
(Chap.2) (Chap.3) (Chap.4) (Chap.5) (Chap.6)

F ig u r e 1.3: Organization of th e d issertation.

In C h ap te r 2, we propose and evaluate low-complexity, low-overhead schemes for dis

tr ibu ted message scheduling and routing in binary hypercube m ulticom puters equipped

with a hardw are com m unication ad a p te r a t each node. We com paratively evaluate the p e r

formance of different scheduling routing combinations for several switching m ethods, such

as message switching, circuit switching and virtual cu t- th rough , su pported by a com m u

nication ad a p te r a t each node. (V ir tua l channel networks with wormhole switching have

very different characteris tics and are thus covered in C h ap te r 3.) T h e evaluation results

have indicated th a t a com bination of carefully-chosen, low-complexity d is tr ibu ted message

scheduling and adap tive rou ting can offer close to op tim al perform ance in m ost s ituations.

In case of heavy trans ien t traffic, a low-complexity partia lly -adap tive rou ting scheme, when

combined w ith an ap p rop ria te message-scheduling policy, can ou tperfo rm a fully-adaptive

rou ting scheme.

In C h a p te r 3, we propose and evaluate several low-complexity, low-overhead flow con

trol mechanisms for a mesh m ulticom puter network equipped with virtual channels. In

such a netw ork, virtual-channel flow control is accomplished a t th ree levels: message r o u t

11

ing, message sequencing, and flit multiplexing. Under the fixed-path e-cube rou ting in mesh

m ulticom puters , we evaluate th e perform ance of several on-line message scheduling and flit

multip lexing m ethods. In the presence of concurrent inter-node com m unication traffic, we

found th a t unless proper flow-control mechanisms are employed, adding m ore com m unica

tion resources, such as links and buffers, can actually degrade the network perform ance. A

good message-sequencing policy combined with p roper flit multiplexing is shown to improve

perfo rm ance by more th an 30% .

In C h ap te rs 2 and 3, we discuss on-line flow-control mechanisms. From C h ap te rs 4 to

6, we address the issues of exploiting com m unication locality before the ac tua l execution

th rough ta sk m apping. In C h ap te r 4, the problem of m apping task modules into a b inary hy

percube m ulticom puter is investigated. A concept of indirect op tim ization is in troduced and

a function, called com m unication bandwidth, is proposed as the optim iza tion cost function.

T h e m appings obtained from optimizing this function arc shown to significantly improve

th e ac tua l com m unication perform ance (i.e., m akespan) over random m appings. We also

ex tend our s tu d y to include the case of uncertain task behaviors resulting from link failures

and ad ap tiv e message rou ting algorithms.

In C h ap te r 5, we address th e task m apping problem in a v irtual-channcl network as

defined in C h ap te r 3. T h e system under consideration is a m esh-connected com pu te r with

wormhole switching and v irtual channels. In such a system , it is difficult to define and

evalua te a meaningful perform ance objective when one has to consider m any messages being

t ran sm it te d concurrently. Therefore, an app rox im a te cost function m ust be chosen so th a t

when a m odule m apping is optimized with respect to the function, the ac tua l perform ance

of the m apping is also optimized. Several cost functions are tested using the simulated

annealing optim iza tion process. T h e m appings found th rough optimizing each cost function

are then fed into a flit-level s im ula tor to evaluate their ac tua l performance. One particu la r

cost function, J j | / 3, is found to be very effective. Given approx im ate ly the sam e am o u n t

of com puting t im e in each case, m appings optimized with the function ou tperfo rm these

found th rough optimizing o th e r cost functions. Also, an optim iza tion process using this cost

function can continually im prove the perform ance as the given com puting t im e increases.

In C h ap te r 6, we s tudy th e problem of m apping concurren tly-com m unica ting subcubes

within a hypercube m ulticom pu te r so as to minimize in ter-subcube com m unication traffic.

T h e com m unication between subcubes is determ ined by a rou ting algorithm which in tu rn

depends on th e schemes proposed in [86, 18]. O ur objective is to minimize the to ta l in te r

12

subcube com m unication bandw id th required. This function was shown in [107, 109] to be

a good indication of th e quality of mappings for concurren tly-com m unica ting modules.

We derive some im p o r tan t m athem atica l properties of subcube m appings. M ethods

are proposed to modify existing optim ization algorithm s for finding op tim al m appings. A

subset of all possible m appings, called paralle.1 m appings, arc found to possess some desirable

properties . For some special case, op tim al parallel m appings are also proved to be optimal

am ong all m appings. We also evaluate several heuristic algorithm s via simulations and show

th a t , in m ost sub-optim al m appings found, parallel m appings still ou tperfo rm non-parallel

ones.

C h ap te r 7 concludes this dissertation with a su m m ary of contributions and possible

directions to extend our research.

CHAPTER 2

COMBINED ROUTING AND SCHEDULING OF

CONCURRENT COMMUNICATION TRAFFIC IN

HYPERCUBE MULTICOMPUTERS

2.1 Introduction

As pointed o u t in [25], th e critical com ponent of a m ulticom puter is its interconnection

network. M any algorithm s are communication ra th e r than processing limited. Some linc-

gra in concurren t p rogram s execute as few as ten instructions in response to a message [2d].

To execute such program s efficiently, the com m unication network m ust be able to handle

heavy concurren t traffic.

M essage or traffic rou ting in m ulticom puter interconnection networks has received con

siderable a t ten t io n [66, 93, 68, 42, 46, 103]. Most of the existing work has assum ed in ter

node com m unication traffic to be composed of a set of steady, independent flows. Network

th ro u g h p u t or m ean message latency over a certain period of tim e is often used as a per

form ance measure. This type of perform ance evaluation reflects more of the “s tead y -s ta te”

behavior of a network. However, in the task level — where a com puta tion task is decom

posed in to a set of com m unicating modules — in term odule traffic, and hence in terprocessor

com m unication when the modules are assigned to different processors, tends to be bursty.

A large num ber of messages are often generated within a sho rt span of time. F u r th e r

m ore, delivering each of these messages m ay not be m utually independent. For instance,

an algorithm m ay not continue its execution until th e partia l results are collected from, or

exchanged am ong, th e par tic ipa ting modules. Fig. 2.1 shows a m ulticom pu ter w ith four

processors connected as a two-dimensional hypercube, or a Q>- Suppose a t t im e T — 0,

th e m odule assigned to processor 00 sends its par tia l results to all th e o ther modules on

processors 01, 10 and 11. T h e modules need to receive these partia l results to com plete

13

14

their execution. Fig. 2.2 shows the space-time diagram of this set of concurren t messages in

a (s tore-and-forw ard) message-switching network. Here message 00 —► 01 is given priority

over message 00 —► 11 when b o th are contending for link 0*, or th e link between nodes 00

and 01. Obviously, the tim e when message 00 —» 11 reaches its destination plays a m ajo r

role in determ ining the overall completion tim e of th e task.

oo

Link *1

L l n k l *

F i g u r e 2 .1 : An example Q 2-

00 to 01

Link 1*

m ik M p in

F i g u r e 2 .2 : An example dem onstra t ing th e definition of m akespan.

15

We define a com m unication m iss io n , or mission for short , to be a set of messages to

be exchanged am ong th e nodes such th a t the completion of delivery of these messages

as a whole is crucial to the completion of the whole task . T h e makespan of a mission

denotes th e t im e span since th e arrival1 of the first message until th e last message reaches

its destination . (A formal definition of makespan will be given in Section 2.2.) Note th a t in

th e above example, if message 00 —► 11 is given priority over message 00 —* 01 in Fig. 2.2

instead , then th e makespan of the mission consisting of th ree messages will be reduced.

In th e execution of parallel algorithm s, such as parallel state-space-search [92, 4], parallel

sorting [104] and parallel Fourier-Transform [29], their com m unication behavior in a m ulti

com pute r network can often be characterized as a series of com m unication missions. In the

case of missions containing heavy concurrent traffic, the network m ay become congested and

tu rn into a bottleneck of execution efficiency. We will thus address the problem of message

routing and scheduling in s i tuations where there may be heavy concurrent com m unication

traffic in th e system, i.e., there exists a high possibility of contention for use of netw ork re

sources. O ur goal is to improve com m unication efficiency by im plem enting low-complexity,

d is tr ibu ted message scheduling and routing in a d is tr ibu ted-m em ory system equipped with

a com m unication ad a p te r like S P ID E R [31] a t each node.

S P ID E R (Scalable Point-to-point Interface DrivER) is a front-end hardw are a d a p te r th a t

provides scalable com m unication su p p o r t for po in t-to-point d is tr ibu ted systems. T h e micro-

p rogram m abili ty of S P ID E R enables a system to im plem ent different topologies, routing

a lgorithm s, and switching m ethods. We will focus on the case where S P ID E R is configured

to work in k -ary n-cubes in general, and binary rc-cubes in particu lar . Large-bufTer message

switching and virtual cu t- th rough as well as circuit switching will be considered for the

hypercube topology. Wormhole switching is found to be more suitable for high-radix low-

dimension hypercube networks (such as meshes) with multiple v irtual channels, and is

covered in C h ap te r 3.

T he work described here differs from others in several ways: (1) it stresses th e im por

tan ce of combining low-complexity adaptive routing with message scheduling as opposed to

complex, fully-adaptive routing; (2) it zooms on the case of burs ty traffic where a netw ork is

congested with concurrent com m unication traffic; and (3) it deals w ith the trans ien t (ra th e r

th an s teady-s ta te) performance of a network.

This chap te r is organized as follows. Necessary no ta t ion and definitions are in troduced

M lere th e arr ival o f a m essage m eans it is ready to be sent out o f the source node.

16

in Section 2.2. In Section 2.3, th e proposed scheduling policies and rou ting a lgorithm s are

described. Section 2.4 deals w ith the perform ance evaluation of various scheduling-routing

com binations. This ch ap te r concludes with Section 2.5.

2.2 Notation and Definitions

T h e following n o ta t ion will be used in this chapter.

• m,: message i of length £*, 0 < i < M .

• M : th e num ber of messages arrive in [0, AT].

• [t,t-\- AT]: a m ission t im e fram e or time window during which messages of a mission

arrive. W ith o u t loss of generality, we will assum e i = 0 from now on.

• t f: th e arrival t im e of to,-, i.e., th e time when to,- is ready to be sent.

• t-: th e completion tim e of m ,, i.e., the time when m* reaches its destination .

For a set of M messages {m ,, 0 < i < M } , each with arrival t im e and completion

tim e t,-, th e makespan o f this set, t, is defined as m ax {<•} — min {<“}. Given this set,
0 < i < Af 0 <»< M

of messages to be exchanged am ong the nodes of a Q n , we w ant to minimize this s e t ’s

makespan and hence maximize link utilization of th e network. Depending on th e system

im plem entation , we m ay achieve this goal with various com binations of message scheduling

and routing.

A network with a mission arrival can be viewed as a physical system with a certain

am oun t of injected energy , i.e., th e to ta l com m unication bandw id th required for th e mission.

i is essentially th e tim e span required to dissipate the injected energy. Given th e same

mission, different message scheduling-routing combinations will afTect th e way th e energy

is dissipated in th e system , th u s resulting in different i values. For example, in Fig. 2.3,

the remaining bandw id th of a mission is plotted against t im e for th e hypercube under

two different message scheduling policies. A lthough the initial ban d w id th is th e same,

th e rates o f bandw id th decrease are different. M easuring the network perform ance using

this approach is analogous to evaluating the trans ien t response of an electronic com ponent

to s tep-function inputs . Similar to the case with an electronic com ponent, as we shall

d em o n s tra te la te r , a network th a t performs well under this t rans ien t condition will perform

well for m ost of th e t im e under a s teady-s ta te condition.

17

100000

■a
5 80000■o
s43
| 60000

B
c£ 40000

20000

0
0 100 200 300 400 500 600 700 800 900 1000

Time

F i g u r e 2 .3 : T h e remaining bandw idth against tim e under two different message
scheduling policies.

2.3 The Proposed Message Routing and Scheduling Schemes

In this section we will describe several message scheduling policies and an adaptive

rou ting algorithm th a t can be implemented with the aid of a SPIDER-like com m unication

ad ap te r . Note th a t in the presence of concurrent com m unication traffic, th e system m ust

use a traffic control mechanism th a t is efficient and doesn ’t cause excessive overhead. T h e

schemes in troduced here d o n ’t modify the underlying message form at, and can all be imple

m ented with minimal hardw are , or, as in SPID E R , with a simple m icroprogram . Also, they

d o n ’t need additional inform ation on the task behavior except for the one already available

in each message and each node.

2.3 .1 Schedu ling

We will evaluate the perform ance of several d is tr ibu ted message scheduling policies,

while focusing on non-preem ptive, low-complexity policies which utilize th e existing message

fo rm at. Each message has a length field as well as a destination field. T h e routing controller

on a node can use the inform ation in these two fields to determ ine which message to be sent

first over each link of th e node. T h e only m ajo r overhead comes from th e im plem entation

of a priority queue for each link, which can be implemented on a SPIDER-like ad a p te r

or by gate-level logic circuit. T he tim e overhead can be ignored since in a SPIDER-like

ad a p te r , message queueing and communication can be done in parallel for non-preem ptive

18

scheduling.

In th e default, F IF O , policy, no length or destination inform ation is used, and the

m essage a t the front of a F IF O queue will be tran sm it te d over a link. Also, in any of

th e following priority scheduling policies, a tie is broken by th e F IF O principle. W ith

th e shortest-f irst (SF), and longest-first (LF) policies, messages in the queue of a link are

a rranged according to their lengths. W hen a message arrives and th e outgoing link it

requests is busy, it is entered into a priority queue. SF gives a shorte r message higher

priority, while LF awards higher priority to a longer message. T h e nearest-first (N F) and

farthest-firs t (F F) policies take the destination field of a message and calculate th e H am m ing

d istance of the curren t node to the destination of th e message. Entries in the priority queue

arc a rranged in the order of increasing (as in N F) or decreasing (as in F F) H am m ing

distances.

T h e remaining bandwidth (R B) of a message on a node is defined as the p ro d u c t of the

length of the message and the remaining H am m ing distance to its destination. T h e Smallest-

R B -F irs t (S R B F) policy gives higher priority to smaller RB messages. T h e Largest-RB-

First (L R B F) policy gives priority to larger RB messages. Im plem enting these two policies

induces a slightly more overhead th an the o ther policies due to a multiplication operation

required before each message is entered into a queue. Again, with a SPIDER-like ad ap te r ,

this overhead can be ignored since queueing and routing can be done in parallel.

Note t h a t all of the above scheduling policies can be combined with the Earliest Due-

Date (E D D) scheduling of message transmissions. W ith EDD scheduling, s ta rva tion can be

avoided when a certain type of messages arrives continually. For example, w ith th e LRBF

policy, short messages may be blocked indefinitely if long messages arrive continually. This

can be remedied by giving earlier arrivals higher priority.

T h e effectiveness of a scheduling policy can be m easured by com paring its perform ance

to th a t of op tim al schedules. An optim al schedule is ob tained by assum ing th a t the following

p aram ete rs are known a priori: t f , £it and the p a th each message is rou ted th rough . Thus,

we have a classical scheduling problem in this case. For example, when message switching is

used, by trea t in g each link as a “processor” , and each message as a “jo b ” , th e op tim iza tion

problem is essentially a special case of the job-shop scheduling problem [41], which is NP-

hard . For o th e r switching m ethods such as circuit switching and v irtual cu t- th ro u g h , there

are no known equivalent scheduling problems, bu t their com puta t ional complexity is also

N P -hard . A branch-and-bound algorithm [13] is used to find optim al schedules. At each

19

node in th e search tree , we calculate an es tim ated bound to decide which node to be

expanded next. The efficiency of the algorithm depends on the accuracy of the es tim ated

bounds. In [108], we developed a lgorithm s and equations to be used for com puting bounds

which arc then used for finding op tim al schedules for message switching, circuit switching,

and virtual cu t- th rough .

2 .3 .2 R o u tin g

One m a jo r draw back of th e e-cube routing algorithm is th a t the p a th chosen between

a pair of processors is fixed regardless of the network traffic condition. W hen a certain

link leading tow ard the destination of a message is busy, the e-cube algorithm simply holds

th e message and waits until th e link becomes free, even if there can be an a lte rna tive

free p a th . In s i tua tions where intcrproccssor com m unication traffic is light, this m ay not

cause any serious perform ance degradation . However, under heavy traffic, it can become a

m a jo r perform ance bottleneck. W ith d is tr ibu ted adaptive routing, a processor can select an

a l te rna t ive (free) link to rou te a message when the originally-selected link is busy. By doing

th is , it is possible th a t link utilization and network efficiency can be greatly enhanced.

T here arc num erous adap tive rou ting algorithm s proposed for hypercubcs [42]. Each

scheme has its own advantages and disadvantages. More complex routing algorithm s such

as the DFS (D cpth-F irs t-Search) routing algorithm [18] require e x t ra fields in each message

to avoid livelock and achieve th e backtracking capability. T h e m ajo r advan tage of such

a lgorithm s is th a t all possible p a th s between source and destination nodes will be explored.

However, their disadvantages include the overhead for s toring inform ation on de touring and

backtracking, and more complex routing controllers. Furtherm ore , the inform ation stored

in a message can become out-of-date before it reaches the destination . For example, a t a

certain in term edia te node, the rou ting algorithm may find all links th a t lead the message

closer to its destination are busy, and hence decide to take a de tour, i.e., a non-shortes t pa th .

B u t when th e message is rou ted via a detour, one of the sho rtes t p a th s m ay become available.

This can result in a waste of netw ork bandw id th , and hence degrade the perform ance. Also,

unpredic tab le p a th lengths in this rou ting algorithm can result in inaccuracies in calculating

the RB o f a message, and therefore reduce the effectiveness of bandw idth-sensitive message

scheduling policies such as S R B F and LRBF.

On the o ther hand , if we res tr ic t the rou ting algorithm to th e shortes t p a th s only, albeit

the full connectivity of the network is not explored, the above shortcom ings can be avoided.

20

Besides, in a network equipped with SPIDER-like adap te rs , v irtually no additional overhead

is added to the default e-cube rou ting algorithm , since no modification needs to be done on

the original message form at, and the rou ting controller can be easily p rog ram m ed with low-

complexity code. Also, it is easy to have it work in tandem with any message scheduling

policies since the length of each p a th is predictable. Characteris tics of this d is tr ibu ted

routing algorithm , called the Progressive Adaptive (PA) algorithm , arc described as follows.

• As in e-cube routing, PA tries to rou te messages from the lowest dimension to the

highest dimension based on the results of exclusivc-ORing the source and destination

addresses.

• W hen the link corresponding to the lowest dimension is busy, the next, lowest d im en

sion is tes ted , and so on, until a free link is found to rou te the message. If no link

leading the message closer to its destination is available, the message is blocked and

entered into a queue.

• Only one message queue is maintained on each node. All blocked messages are entered

into the queue. Their o rder in the queue is determ ined by the underlying scheduling

policy. W hen a link becomes free, the message closest to the head of th e queue th a t

can use the link to move closer to its destination is routed th rough this link.

T h e perform ance of the PA algorithm will be com pared with DFS routing and a cen

tralized path-selection (C P S) algorithm . As in the case of finding optim al schedules, the

C PS algorithm opera tes on the premise th a t accura te message lengths are known a p r io r i ,

and assigns pa th s to messages to balance the traffic in the network. W ith concurren t com

m unication traffic, Vs are usually dom inated by the m ost heavily-loaded fink. T h e problem

of selecting a pa th in order to minimize i is equivalent to minimizing th e m axim um fink

load, and can thus be formulated as a mini-max optim ization problem. This is a special

case of Decision Problem 1 in [66], which was shown to be N P-hard . However, the true

op tim al solutions may not be meaningful since i is eventually determ ined by scheduling

messages. Therefore, our goal is to find sufficiently good solutions th a t , when combined

with th e b ranch-and-bound scheduling algorithm , can achieve near-optim al performance.

T h e C PS algorithm used is based on the simulated annealing m ethod [72] and is described

in [108].

21

2.4 Performance Evaluation

W hen the num ber of messages being sent concurrently in to a network becomes larger,

their in teractions m ake the network behavior too complicated to predict and analyze. This

calls for simulations to assess th e perform ance of various scheduling-routing combinations.

O ur simulation model is sum m arized as follows:

• We assum e processors — including their rou ting controllers — as well as com m unica

tion links to be fault-free.

• Each com m unication link is half-duplex, i.e., a t any in s tan t of time, only one message

can be sent in cither direction of a link.

• As was supported in S P ID E R , the routing controller on each processor can send or

receive multiple messages a t the sam e time, provided th a t th e links needed are no t in

use. Also, incoming message buffering/queueing and outgoing message transm ission

a re done in parallel for all switching m ethods.

• For circuit switching, th e “call signal” for establishing a circuit is t r a n sm it te d out-of-

band , and do esn ’t interfere with th e existing com m unication traffic.

• A T is relatively small, i.e., the com m unication traffic is highly concurrent. As a result,

we assum e th ere can be a t m ost one message sent from node i to node j , i ^ j , within

A T . If there are more th an one message, they will be combined in to a long message.

We use C oncurren t Com m unica tion Probability (C C P) to denote th e probability th a t

one processor sends a message to ano ther processor in a mission. A higher value of

C C P m eans heavier traffic. In the uniform ly-distributed traffic p a t te rn , is generated

by the following routine:

for i := 0 to M — 1

for j := 0 to M — 1

if i ^ j and r a n d 1 < C C P then f, := rand2;

else t i := 0;

In the above pseudo code, ra n d 1 is a uniform ly-distributed random n u m b er in the

interval [0,1], and ra n d 2 is a norm ally-d istribu ted random num ber with /r = 10 and

22

a — 5 and tru n ca ted to 0 when negative values are generated . In th e hot-spot traffic

p a t te rn , the rou tine is similar except th a t th e traffic is directed only to a given num ber

o f ho t spots in a hypercube.

• In all of the presented d a ta , we set A T = 0. T he results w ith A T > 0 were found to

be similar with th e case of A T = 0 combined with lower C C P values.

• Each d a t a po int is ob ta ined by averaging the results of 10,000 itera tions . Deviation

from the mean values is found to be reasonablly small (< 2%).

• T h e hypercube dimension used is 4. Results of this problem size are found to be

typical am ong all tes ted sizes and arc therefore selected for presentation .

2.4 .1 Schedu ling

Table 2.1 shows typical evaluation results of various scheduling polices. T h e d a t a shown

is ob ta ined with C C P = 0.95 for uniform ly-distributed traffic, i.e., a highly-congested condi

tion. I t is obvious t h a t L R B F, with perform ance very close to the op tim al schedules (O P T) ,

ou tperfo rm s th e o th e r policies.

MS CS V C T

O P T 193.1 193.7 193.0

FIFO 231.1 229.0 218.5

LF 216.8 221.4 202.5

SF 240.5 233.7 221.4

F F 199.9 217.3 208.7

NF 244.4 232.7 219.5

LRBF 195.8 208.2 195.3

SRB F 250.1 231.5 226.6

T a b l e 2 .1 : Perform ance of scheduling policies under the e-cube routing algorithm .

O ur simulation results in evaluating the various scheduling policies are sum m arized as

follows:

• SF , NF, S llB F are all worse th an F IFO under all th ree switching m ethods, i.e., m es

sage switching (M S), circuit switching (CS), and virtual cu t- th rough (V C T) . T y p i

23

cally, S R B F has the worst perform ance am ong all the scheduling policies considered.

I t should be noted , however, th a t this is no t th e case with wormhole switching. As

we will show in C h ap te r 3, SF, N F and S R B F ou tperfo rm LF, F F and L R B F in a

v irtual-channel network with wormhole switching.

• F F has th e perform ance characteristics closest to LR B F. In m ost s i tuations F F o u t

perform s LF, especially when the variance of message length is small. In message

and circuit switching, F F generally ou tperform s LF, m eaning th a t th e distances to

destinations have more pronounced effects. It is found th a t only under v ir tual cut-

th rough , LF has perform ance closer to L R B F when th e variance of message length

is large. B ut as a gets smaller, it gradually becomes closer to , and eventually gets

ou tperfo rm ed by, F F .

• U nder circuit switching, th e perform ance differences are smaller for all d is tr ibu ted

scheduling policies. T he difference between th e best and th e worst are only « 25

t im e units. Since messages never get buffered under circuit switching, d is tr ibu ted

scheduling policies can only determ ine the order of sending messages a t the source.

It is expected th a t a d is tr ibu ted scheduling policy is less effective th an a centralized

policy in this case.

• U nder v irtual cu t- th rough , messages are buffered only when a cu t- th rough a t te m p t

fails, so th e effects of d is tr ibu ted scheduling policies lie between those of message

switching and circuit switching. However, given the sam e scheduling policy, v irtual

cu t- th rough has consistently shown the best perform ance am ong the th ree switching

m ethods . It is also in teresting to note th a t as shown in Table 2.1, in case of heavy

concurren t traffic, with a b e t te r scheduling policy such as LR B F, message switching

can approach th e perform ance of virtual cu t- th rough .

• In all th ree switching m ethods, network perform ance generally gets b e t te r if message

lengths are closer to uniform, i.e., a is small.

In Figs. 2.4 to 2.6, the perform ance of L R B F scheduling is com pared with the optimal

schedules and F IF O scheduling under various C C P values for uniform ly-distributed traffic.

Figs. 2.7 to 2.9 show th e comparison for a num ber of hot spots w ith C C P = 0.8. Under

message switching, for C C P > 0.3, and in m ost cases of ho t-spo t traffic, L R B F improves

significantly over F IFO and produces schedules whose m akespans are within 10% of th e op-

24

2 4 0

21 5

S 190
C l.

i 165
S ,4 0

115

— A O P T
• — o L R B F

• O R F O

0.0 0.2 0 .4 0.6 0.8 1.0
C C P

F i g u r e 2 .4 : Uniformly d is tr ibu ted traffic, message switching.

2 4 0 - 1 1 1 1 -

2 1 5 - i

190 - . o - ’*

165 -
. O ’ ’ ’

.- ■ » .•*
-

140 — -

115 - -

9 0 - A y *
f _ / 0 ------- 0

O P T
L R B F

-

6 5

4 0

X o oef x
* ’ \ 1 1

F IF O
1

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0
C C P

Figure 2.5: Uniformly distributed traffic, circuit switching.

25

2 4 0

2 1 5

§ 190

I 165
£

1 40

115

A A O P T
o --------- o L R B F
O O F IF O

4 0
1.00.6 0.80.0 0.2 0 .4

C C P

F i g u r e 2 .6 : Uniformly d is tr ibu ted traffic, v irtual cu t- th rough .

190

165

§
s 140■a
£

115

9 0

6 5

4 0
0 2 4 6 8 10 12

H o t S p o t

1T 1 1

. o - - ’
. . . o

O*' ,0 '"
.-o^ •

-

S . * '
. . o ' s ' s '

' .<sr‘>

A -------A O P Ttr 0 ----- 0 L R B F

1 1
O o

1 1
F IF O

Figure 2.7: Hot-spot traffic, message switching.

26

190

165
..-O

■tc'

115

A A O P T
0 --------- 0 L R B F _
O O F IF O

4 0
126 8 102 40

H o t S p o t

F i g u r e 2 .8 : H o l-sp o t traffic, circuit switching.

190

165

| 140■a
2

115

9 0

6 5

4 0
0 2 4 6 8 10 12

H o t S p o t

Figure 2.9: Hot-spot traffic, virtual cut-through.

"T \ 1 1 f

-
...e...........° “

"

.Or"’ ,0-----------✓

..•° ■*'
—

A -------A OPT
o ------o LRBF _

P ':~ oo FIFO
1 1 1 1

27

tim al schedules. Its perform ance is only slightly degraded under very light traffic, where all

d is tr ibu ted scheduling policies become less effective and degenerate into F IF O scheduling.

P erfo rm ance of L R B F under v irtual cu t- th rough is very similar to th e case under message

switching, which is predic table since under heavy concurrent traffic, v irtual cu t- th rough es

sentially degenerates into message switching. In circuit switching, all d is tr ibu ted scheduling

policies are less effective th an in o th e r switching since messages are never buffered and are

scheduled only a t th e source nodes. Nevertheless, L R B F can still approach within 12% of

op tim al schedules for C C P > 0.5. T h e only case where LR B F does no t improve significantly

over F IF O is under circuit switching and ho t-spo t traffic.

2 .4 .2 R o u tin g

T h e perfo rm ance of PA routing combined with th e LRBF scheduling is com pared against

th e DFS rou ting working with the LR B F scheduling, the e-cube rou ting algorithm with

F IF O message schedules (E Q -F IF O), and the C PS centralized p a th selection algorithm

with op tim al message schedules (C P S -O P T) . T he results are p lo tted in Figs. 2.10 to 2.12,

for un iform ly-distributed traffic, and Figs. 2.13 to 2.15 for ho t-spot traffic w ith C C P = 0.8.

O ur simulation results indicate t h a t under all th ree switching m ethods, P A -L R B F sig

nificantly improves over the e-cube rou ting in all cases and ou tperform s D F S -L ItB F in cases

o f heavy concurren t traffic. In m ost s i tuations, it also approaches th e perform ance of CPS-

O P T closely within 12% in the message switching case, and in cases of circuit switching

and v irtual cu t- th ro u g h , within 7%.

It is only under light traffic condition (C C P < 0.4) or a very small num ber of ho t spots

(< 4) th a t th e DFS routing has an advan tage over the PA routing. It can approach CPS-

O P T under very light uniform ly-distributed traffic, and ou tperfo rm C P S -O P T in case of a

very small num ber of hot spots. However, under heavy traffic, the DFS algorithm does not

fare much b e t te r th a n the e-cube routing , especially under message switching. T h is indicates

t h a t de touring and backtracking in the DFS algorithm have negative effects on network

perform ance when th e network is heavily congested. Besides, with th e unpredic tab ili ty

of p a th lengths of th e DFS routing , LR B F scheduling becomes less effective and nearly

degenera tes in to F IF O scheduling.

T h e DFS algorithm performs significantly b e t te r under circuit switching or v irtual cut-

th rough th an in the case of message switching. In fact, v irtual cu t- th rough with th e DFS

rou ting essentially degenerates into circuit-switching in our simulations. W ith bo th of

28

2 2 5

2 . 175

125

■ -------■ FQ-FTFO
A -------- A C P S -O P T
0 ---- o PA-LRBF
O • i • ■ • • o D F S -L R B F

0.0 0 .4 0.60.2 0.8 1.0
C C P

F i g u r e 2 .1 0 : Uniformly d is tr ibu ted traffic, message switching.

2 2 5 -

8 . 175 -

■3
S

125 -

7 5 -

25

■*

' ■ ■ E Q -F IF O
y M 4 ---------A C P S -O P T

o O P A -L R B F
,________ , o •)•••.O D F ^ -L R B F

0.0 0.2 0 .4 0.6 0.8 1.0
C C P

Figure 2.11: Uniformly distributed traffic, circuit switching.

29

2 2 5 - -
*

/
I 175 - * o - ' ' ~IA /
| .*•
1

■ • ’. T r

. " ' ■ -------- ■ E Q -F IF O
7 5 ~ , M A ------- A C P S -O P T

0 --------0 P A -L R B FJ r / . I Q - , - 0 D F ^ -L R B F

0 .0 0 .2 0 .4 0 .6 0 .8 1 .0
C C P

F i g u r e 2 .1 2 : Uniformly d is tr ibu ted traffic, v irtual cu t- th rough .

*■ .-0 .~:X-

■ • ’. T r
■ ------- ■ E Q -F IF O
A A C P S -O P T
0 --------- 0 P A -L R B F

y - - ^ ' ,__________ , Q ' | - 0 D F lj-L R B F

0 .2 0 .4 0 .6 0 .8 1.
C C P

8■a
2

170

120

7 0

20

1 1 1 1 1

✓ . . - oV
-.\

•\
I

______1_

• - . A -

.-* * y •

, - y ■ - E Q -F I F O -

*-■ ' , . 0 0 • -
- A C P S -O P T

■ — 0 P A -L R B F

° 1 \ 1 °
j - o D F J j-L R B F

0 2 4 6 8 i o i :
H o t S p o t

Figure 2.13: Hot-spot traffic, message switching.

30

170

Ui01•as

— ■ E Q -F T F O
— A C P S -O P T
• — 0 P A -L R B F
• ■• 0 D F S -L R B FA- ' . 3

126 8 102 40
H o t S p o t

F i g u r e 2 .1 4 : Hot-spot traffic, circuit switching.

170

C

S.\Ao
120

.w
■ ------- ■ I iQ -F lF O
A A C P S -O P T
O -------- 0 P A -L R B F
o • • ■• ■• O D F S -L R B F

10 1284 60
H o t S p o t

Figure 2.15: Hot-spot traffic, virtual cut-through.

31

these switching m ethods , the DFS algorithm cither successfully rou tes a message to the

destina tion , or blocks the message a t the source. Therefore, there is no bandw id th w aste in

detou ring and backtracking. While in the case of message switching where a message can

be blocked a t any node in the network, tak ing a detour and blocking a message a t a node

fa r th e r from its destination can degrade the performance. However, in implementing the

DFS algorithm with circuit switching or virtual cu t- th rough , the inform ation on detouring

and backtracking m ust be stored in the header used for establishing the pa th to avoid

livelock. This can become a m ajo r overhead for large networks.

From th e above results, one can conclude th a t , to improve network efficiency under

heavy concurren t traffic, sh o rtes t-pa th adaptive rou ting combined with the LR B F message

scheduling policy can approach the perform ance of near-optim al centralized rou ting and

scheduling. Also, it is a more cost-effective alternative than a high-complexity fully-adaptivc

rou ting algorithm such as the D FS routing.

2 .4 .3 S tea d y -S ta te Perform ance

Here we com pare the perform ance of scheduling and routing mechanisms under s teady-

s ta te traffic arrivals. Message arrivals a t each node arc assumed to follow a Poisson process.

T h e mean latency of messages over a period of 20,000 units of tim e is p lo tted versus the

mean message inter-arrival times. W hen scheduling messages, the ages of messages are also

taken into account and combined with either F IFO or LR B F scheduling policies. T h a t is,

“o lder” messages a re given higher priority to minimize the mean message latency and avoid

s ta rva tion on continual message arrivals.

In Figs. 2.16 to 2.18, the performance of PA-LRBF, D FS -L R B F and E Q -F IF O arc

com pared . Centralized schemes such as C P S -O P T are not included because their high

co m p u ta t io n cost makes them unsuitable for “on-line” applications in which message arrivals

a re continual. T h e s tead y -s ta te results indicate th a t a scheme th a t performs well in t rans ien t

conditions also performs well in a s teady-s ta te situation. Also, as in th e transien t case, the

D FS algorithm ou tperfo rm s th e PA algorithm only under light traffic conditions.

2 50

200
S'
C
3
3
§ 150
s

100

50
2 0 4 0 6 0 8 0 100 120

In lc r -a r r iv a l T im e

F ig u r e 2 .1 6 : Steady- s t a t e perform ance under message switching.

, n
• V A -------- A E Q -F IF O

0 -------- 0 P A -L R B F
'-X oo D F S -L R B F

\ A
* ' . i

\ 0 \

w
-^A.^ ' A -------

2 5 0

A A E Q -F IF O
O -------- 0 P A -L R B F
oo D F S -L R B F200

150

100

5 0
100 1206 0 8 020 4 0

In te r -a r r iv a l T im e

Figure 2.17: Steady-state performance under circuit switching.

33

2 5 0

A A F Q -F 1 F O
O --------- O P A -I .R B F
O O D F S -L R B F200

150

100

8 0 100 1206 04 0
In te r -a r r iv a l T im e

F i g u r e 2 .1 8 : S te a d y -s ta te perform ance under v irtual cu t-th rough .

CHAPTER 3

SEQUENCING OF CONCURRENT COMMUNICATION

TRAFFIC IN A MESH MULTICOMPUTER WITH

VIRTUAL CHANNELS

3.1 Introduction

T h e use of v irtual channels multiplexed over each physical channel was in troduced as a

m echanism to accomplish deadlock-freedom by placing routing restrictions a t in te rm edia te

nodes [2d]. V irtual channels were also found to improve the network th ro u g h p u t via the

increased sharing of each physical channel and the resulting reduction of message block

ing [27]. T h a t is, when there arc multiple virtual channels per physical channel, messages

of these v ir tual channels are allowed to time-multiplexed over the physical channel, thus

blocking less num ber of messages (waiting for the physical channel to be available).

P ipelined-com m unication mechanisms, such as wormhole switching [2d], o p e ra te based

on the principle t h a t th e overall message latency can be reduced by pipelining th e t r a n s

mission of each message when the message m ust traverse multiple in term edia te nodes. A

message is broken up into small flow-control digits o r f l i ts , each of which serves as th e basic

un it o f com m unication. T h e tim e taken for one flit to cross a physical channel is called the

f l i t t ime. H eader flits contain ing routing inform ation establish a p a th th rough th e network

from the source to destination . Transmission of d a t a flits is then pipelined th rough the

p a th immediately following th e header. A time-space diagram for wormhole switching is

given in Fig. 3.1. Wormhole routing also has the advantage of requiring only a small on-line

buffer space per node. While the pipelined n a tu re of wormhole switching serves to reduce

delivery latency, it m ay also p ro p ag a te the effects of such bottlenecks as blocked flits and

heavily-loaded physical channels. It is therefore im p o r tan t to devise a m eans of efficient

allocation and m anagem ent of network bandw idth .

31

35

7

- >

,datalP

F i g u r e 3 .1 : A time-space diagram of wormhole switching.

T h e netw ork under consideration employs wormhole switching. Each pair of ad jacent

nodes a re connected by a pair o f uni-directional physical links/channels . A fixed nu m b er of

uni-directional v irtual channels are time-multiplexed into each physical channel. T hough

m ost of ou r discussion m ay apply to general networks, we will focus primarily on th e mesh

netw ork topology, which has been widely used in eva lua ting the perform ance of virtual-

channel networks [25, 26]. Especially, this chap te r builds on the work by Dally [27] and

G au g h an [42], where wormhole switching was found to significantly reduce message latency

if it is combined with ap p ro p r ia te flow control schemes. We extend their work by focusing

on bandw id th allocation th rough message scheduling and flit multiplexing.

In the previous re la ted work [27, 42], com m unication traffic in a m u lticom pute r network

is often modeled as a num ber o f m utually- independent, s teady flows. However, this type

of com m unication traffic does no t always represent th e real-world s i tuation well, because

netw ork com m unication tends to be bursty. Message arrival1 times are often clustered in a

sho rt period, which can tem porarily s a tu ra te th e network. Also, these messages m ay not be

independen t, and their delivery time as a whole is crucial to the overall perform ance. This

tendency is exemplified by such algorithm s as parallel sorting [104] and parallel Fourier-

T ransform [29].

In this chap te r, we define a com m unication m iss io n , o r mission for sho rt , to be a set

of messages to be exchanged am ong th e task modules which have already been assigned to

’ H e r e t h e arrival o f a m e s s a g e m e a n s t h a t i t is g e n e r a t e d and r e a d y t o b e s e n t o u t o f t h e s o u r c e n o d e .

36

processing nodes in the network. During the execution of a parallel p rog ram , inter-node

com m unication behaviors can be viewed as several independent com m unication missions.

In addition to the usual mean latency, the m akespan of a mission will also be used for

perform ance evaluation. T h e makespan of a mission is defined as th e m axim um latency of

all messages in th e mission, i.e., the t im e span from the arrival o f th e first message until all

th e messages reach their destination.

As pointed o u t in [27], the m ost costly resource in an interconnection network is physical

channel b andw id th , and the second m ost costly resource is buffer space. As shown in

th e following example, w ithou t proper message scheduling and flit multiplexing, increasing

resources, such as physical a n d /o r virtual channels, docs not always improve perform ance,

and m ay even degrade performance.

In Figs. 3 .2(a) and (b), two messages A (light shaded) and B (da rk shaded), each of

length A flits, are sent over a physical channel to th e same destination . We assum e th a t

one flit can be sent th rough th e physical channel in a unit time. In Fig. 3 .2(a), there is

only one virtual channel per physical channel, and message A is given priority over message

B. In Fig. 3 .2(b), there are 2 v irtual channels per physical channel, and hence, message

transm issions are time-multiplexed over a physical channel. In this case, message B arrives

a t th e sam e m om ent as in Fig. 3 .2(a), bu t message A reaches its destination la te r by 3 unit

time. So, in th is example, adding one more v irtual channel per physical channel actually

degrades th e performance.

i—

<*> (b)
F i g u r e 3 .2 : Wormhole rou ting with (a) single virtual channel (b) two virtual channels.

37

T he m ain in tent of this chap te r is to (i) explore ways of sequencing messages and flits

so as to b e t te r utilize network resources, and (ii) improve th e overall netw ork perform ance

when m ore network resources are added. Especially, we will focus on the case when a

subs tan tia l num ber of messages can be t ran sm it ted th rough the network concurrently.

T he ch ap te r is organized as follows. Basic term s and concepts necessary for ou r dis

cussion are defined in Section 3.2. We formulate and analyze th e problem in Section 3.3.

S imulation results are presented and discussed in Section 3.4.

3.2 Preliminaries

A k -ary n-cubc consists o f k n nodes arranged in an n-dimensional grid. Each node is

connected to its Cartes ian neighbors in the grid. For example, a 4-ary 2-cube is shown in

Fig. 3.3.

F i g u r e 3 .3 : A 4-ary 2-cube.

A 2-dimensional k x k flat mesh is a subgraph of fc-ary 2-cube, is no t a regular g raph ,

and has less edges th an the corresponding k -ary 2-cubes (no w rap links a t its b oundary

nodes). For convenience, we will call a A:-ary 2-cube a wrapped m e sh , or a w-mesh for short.

Likewise, we will call a 2-dimensional flat mesh an f-m esh . Since an f-mesh is a subgraph

of w-mesh with the sam e num ber of nodes, a w-mesh can also be m ad e to function as an

f-mesh by not using its w rap links.

Flow control in a virtual-channel network is performed a t th ree levels: message ro u t

38

ing, message scheduling, and flit multiplexing. Each of these can be im plem ented with a

variety of a lgorithm s, b u t we will consider only low-complexity, low-overhead flow-control

m echanism s to deal with concurrent traffic in the network.

R o u t i n g : Selection of a p a th for each message. A message is rou ted to its destination

via a fixed, shortes t pa th . Issues related to fault-tolerance are not considered, or physical

and v irtual channels are assum ed to be fault-free. In f-meshes, e-cube routing is used. T he

address of each node is expressed in term s of X and Y coordinates. A message is ro u ted first

in the X -d irec tion until th e Y coordinate of the node m atches th a t of its destination node.

It is then rou ted in the y -d irec t io n . In w-meshcs, a modified version of e-cube rou ting is

im plemented to utilize the e x t r a communication links so t h a t each message is rou ted via

a shortes t pa th . Deadlock-freedom is ensured by using the scheme proposed in [24]. T h a t

is, the v ir tual channels corresponding to each uni-directional physical channel are divided

into high and low channels. R outing restrictions are then imposed such th a t e i ther a high

channel or a low channel, b u t not bo th , is allocated to each given message. T h e w-meshes

need a t least two virtual channels per physical channel to achieve deadlock-freedom.

M e s s a g e S c h e d u l in g : D eterm ining which message is allowed to access a free virtual

channel in case of contention. W hen the num ber of messages to access a physical channel

a t the sam e tim e is larger th an the num ber of available v irtual channels, some of these

messages have to be queued. So, we need to determ ine which messages are allowed to

access the v irtual channels, and which messages to be queued. We will consider the F IFO

policy (as default) , the Largest Rem ain ing Bandwidth F irst (L R B F) policy, and th e Sm allest

R em ain ing Bandwidth F irst (S R B F) policy. T h e remaining bandwidth o f a message is

defined as th e p roduc t of message length and th e distance from th e curren t node to its

destination . Note th a t , if all messages are of th e same length , L R B F becomes farthest-firs t,

and S R B F becomes nearest-first. Since we are dealing with concurrent traffic, an age-based

policy such as deadline scheduling used in [27] is not meaningful and hence no t considered.

S R B F and LR B F can be easily implemented by using a priority queue instead of an F IFO

queue. In case of non-uniform message lengths, a length field in the header flit o f a message

is added.

F l i t M u l t i p l e x i n g : Determ ining the way messages are time-multiplexed over a physical

channel. W hen there are multiple virtual channels per physical channel, the messages alio-

39

catcd to these virtual channels arc multiplexed over the physical channel. Flit multiplexing

determ ines the order for these flits from different virtual channels to access th e physical

channel.

In th e default, R ou n d -R o b in (R R), multiplexing, virtual channels tak e tu rn s in accessing

th e physical channel w ithou t using any network or message inform ation. R R multiplexing

w ithou t any modification will henceforth be called stric t RR. Like message scheduling, flit

m ultiplexing can be priority-based. T he simplest priority-based multiplexing is called the

greedy policy.’ Under the greedy policy, if a v irtual channel had successfully sent a flit in

th e previous cycle, it will be given the highest priority again to access the physical channel

in th e next cycle. O therwise, th e access right is ro ta ted to th e next v irtual channel.

More complex multiplexing can also be built based on a m essage’s rem aining ban d w id th

requirem ent. T he Largest R em ain ing Bandwidth Preferred (L R B P) multiplexing m ethod

aw ards priority to the virtual channel containing a message of larger rem aining ban d w id th

requirement.. By co n tra s t , th e Sm allest R em ain ing Bandwidth Preferred (S R B P) m ulti

plexing m ethod gives priority to the one of smaller remaining bandw id th requirem ent. As

pointed ou t in [27], these multiplexing m ethods can all be im plemented with com binational

logic which opera tes on the conten ts of the s ta tu s register associated with each virtual ch a n

nel. T h e added hardw are cost should not be a concern if the num ber of v irtual channels is

no t too excessive.

If each virtual channel is allocated a fixed physical bandw id th regardless of w he the r the

v irtual channel is in use or no t, this can lead to a subs tan tia l w aste of physical bandw id th .

D emand-drivcn(T)D) allocation can be used to rectify this problem. W ith DD allocation,

v ir tual channels will contend for use of a physical channel only if they have flits to send.

DD allocation can be easily implemented by adding low-complexity com binational circuit

to any multiplexing m ethod.

W ith C T S (Clear- To-Send) lookahead , v irtual channels only contend for use of a physical

channel if each of them has a flit to send an d the receiving node has room for it. T h is can

fu r the r reduce the w aste of physical bandw idth . W hen CTS lookahead is im plem ented , the

receiving-end of each virtual channel m ust send a s ta tu s bit back to th e sending-end. These

signals can be sent via sepa ra te wires [24], which requires e x t ra hardw are . Or they can be

sent over th e physical channel in the opposite direction, which can result in a non-negligible

b an d w id th overhead.

40

3.3 Formulation and Analysis

In this section, we discuss the tradeoffs am ong different message-scheduling policies and

flit-multiplexing m ethods under th e following assum ptions.

• A physical channel takes one unit of time to t ran sm it a single flit. A unit of t im e will

also be called a physical-channel cycle.

• T here is a single-flit buffer associated with each virtual channel.

• A message arriving a t its destination is consumed w ithou t waiting.

• T here arc an even num ber of v irtual channels associated with each physical channel

in a w-mcsh.

• For simplicity, the t im e window of message arrivals, A T , is assum ed to be 0.

T he following no ta tion will be used in our discussion.

• dij\ the length of the shortes t pa th from node i to j .

• hij: the H am m ing distance from node i to j , ob tained by sum m ing the difference of

addresses in each dimension. Note th a t in w-meshes h {j > dij, while in f-meshes they

are equal.

• kij'. the m axim um num ber of messages t h a t share a physical channel in the p a th from

node i to j .

• the length of m i; in num ber of flits.

• m-ij: the message to be sent from node i to j .

• v : the num ber of virtual channels per physical channel.

T h e latency of m,-j, denoted as , is the tim e span from a m essage’s arrival to acceptance

of the last flit of th e message by its destination. We will use t to represent the m ean latency

of a mission. Given A T = 0, the m akespan , denoted as t , of a com m unication mission is

th e m axim um latency of all messages in the mission. We will evaluate th e perform ance of

a network with bo th the m ean mission latency and m akespan. Formally, we have

t i j = t - j + (1 / r i j W i j - 1).

41

T he first te rm , , denotes the t im e span between the arrival of m (J a t the source node i and

the arrival of its header flit a t the destination node j . is composed of two com ponents:

accum ulated queueing delay t and accum ulated head flit-multiplexing delay t*-. t ^ is the

sum of queueing times a t all nodes in the pa th waiting for an available v irtual channel, is

the sum of times m tJ ’s header flit waits a t all nodes on its p a th for use of physical channels.

T he second te rm , - 1), represents th e tim e required for all o ther flits o f m i; to

arrive a t node j , which is determ ined by and the transmission ra te , r,; , of th e pipeline

set up for rriij. D epending on th e flit-multiplexing m ethod used, r i; m ay change with tim e

during a mission.

M essage Schedu ling

Given a com m unication mission and fixed v, tq will be afTectcd by th e underlying

message-scheduling policy. Under the LR B F policy, messages requiring larger bandw id ths

are given priority. Since those messages fa r th e r away from their destinations arc more

likely to have larger t1 's, by minimizing their <?,s, we may minimize the variance of m es

sage latencies. Similarly, the second term of is larger for longer messages. By giving

these messages higher priority in using virtual channels, the balancing efTect of smaller t q's

and hence smaller l° 's can also minimize the variance of message latencies. However, in

wormhole switching, a blocked message does no t release resources already allocated to it.

A message fa r th e r away from its destination is more likely to be blocked and m ay therefore

result in m ore resources being held. Also, a longer message can hold up resources in the

p a th for a longer time, thus blocking more of th e o ther messages. U nder the S R B F policy,

messages requiring smaller bandw id ths are given higher priority. This heuristic is proposed

based on th e conjecture th a t if these messages are delivered to their destinations quickly

then there will be less num ber of messages contending for com m unication resources and the

overall concurren t com m unication traffic can be reduced. T hus , th e remaining messages

m ay be sent th rough th e network encountering less contention.

One can easily observe th a t th e effect of message-scheduling policies will be m ore p ro

nounced with a small num ber of v irtual channels. If v is large, then m ost of the contending

messages will be allocated virtual channels, thus making th e effect of message-scheduling

policies less pronounced.

42

F l i t M u l t i p l e x i n g

Generally, P decreases with the increase of v. However, under s tric t R R multiplexing

w ithou t DD allocation or CTS lookahead, r ^ = 1/w Vr,y. So, l / r); increases w ith v and tx

m ay increase because a flit m ay need to wait more cycles for use of the physical channel.

T h a t is, there is a tradeoff between P and r , j , and also between P and t x , when m ore virtual

channels arc added. Usually when v is increased to a certain point, the im provem ent in

reducing P reaches a p la teau , and adding more v irtual channels only increases message

latency.

In case of s tr ic t R R, a large portion of physical bandw idth can be wasted on idle

v irtual channels. W ith DD allocation (denoted as D D -R R), is bounded below by

m a x { l / u , l / k i j } . In the w orst case, = l / v and latency is the sam e as in th e case of

s tr ic t RR. B ut, if a t any in s tan t there are less th an v messages contending for a physical

channel, then 110 physical channel will be allocated 1o any idle v irtual channel. Messages

can be tran sm it te d a t a ra te > 1/u. W hen o ther multiplexing m ethods are used, r i; is not

a co n s tan t , and hence, it is no t easy to predict the performance.

Even with DD allocation, physical bandw id th can still be wasted if the corresponding

inpu t bulfer is not ready to receive a new flit. W ith CTS lookahead, a virtual channel will

no t contend for a physical channel unless it has a flit ready to be sent and the receiving

end has room for accepting it. For a given multiplexing m ethod , (r , ; |with neither DD nor

C T S) < (r,j |with D D) < (r 0 | with DD and CTS).

A n o th e r advan tage of CTS is deadlock-freedom. In priority-based flit multiplexing, a

deadlock m ay occur if the m ethod is not carefully implemented. For example, in Fig. 3.4,

each physical channel has two virtual channels. All messages are routed to the same direction

on node 2. Messages A and B have established pipelines from node 0 to node 2, and node

1 to node 2, respectively. So on node 2, the two messages have occupied bo th of th e o u tp u t

buffers in th e direction which all messages need to be routed to. Suppose message C arrives

a t node 0 la te r th a n A, and occupies the o ther v irtual channel, and the same s ituation

occurs on node 1 when message I) arrives af te r B. If C is given priority over A, then C will

access th e physical channel between node 0 and 2. Similarly, D also has a higher priority

th an B, and monopolizes the physical channel between node 1 and 2. B ut on node 2, bo th of

th e o u tp u t buffers are occupied by A and B, and they cannot be preem pted since wormhole

switching is used. Therefore, C and 1) will be queued a t node 2 indefinitely waiting for

free o u tp u t buffers, while A and B cannot access the physical channels which they need to

43

finish sending their remaining flits and release the o u tp u t buffers on node 2 t h a t C and D

are waiting for. So, a deadlock follows.

A

B

C

D

node 0

node 1

i

node 2
F i g u r e 3 .4 : An exam ple deadlock caused by priority-based flit multiplexing.

If C TS lookahead is used in th e above example, then one can avoid th e deadlock. Since

C and D will no t be allowed to contend for physical channels, A and B will be able to

continue sending their rem aining flits. In this chap te r , we will always evaluate L R B P and

S R B P flit multiplexing with CTS lookahead to avoid deadlock.

W - and F- m esh es

W hen com pared to an f-mesh with the same num ber of nodes, a w-mesh has the a d

vantages of m ore physical channels and smaller com m unication d iam eter. Also, its regular

connectivity m ay lead to b e t te r com m unication load balancing, especially in the case of

uniform ly-distributed traffic.

However, one main draw back of w-meshes is th e po tential deadlock resulting from the

addition of w rap links. To ensure deadlock-freedom, virtual channels running over each

physical channel must be divided into two halves. W hen messages are sent between a pair

of nodes between which the H am m ing distance is < A/2 in a A-ary 2-cube, only v / 2 v irtual

44

channels are available. If th e o ther u /2 v irtual channels are no t in use, they are left idle

and the ir ban d w id th wasted. T hus , there exists a tradeoff between these two topologies.

D epending on traffic density and d istribution, one can ou tperfo rm th e o ther. O ur simulation

results in the n ex t section d em o n s tra te this t rad e o ff

3.4 Simulation Results

U nder th e following assum ptions, we developed a p rogram t h a t simulates th e flit-level

com m unication behavior o f v irtual-channel networks.

• Transferr ing a flit between two nodes via a physical channel takes one unit of time.

• A t any in s tan t o f tim e, all flits th a t have been allocated channels are transferred

synchronously in a single physical channel cycle.

• Each v ir tual channel is assigned a single-flit buffer.

In th e discussion th a t follows, th e te rm configuration is used to represent a combination

of som e message-scheduling policy with a flit-multiplexing m ethod . T h e simulation results

p resented here were obta ined using the following param eters :

• Both w- and f- meshes a re of size 16 x 16.

• Unless s ta ted otherw ise, all messages are 20 flits long. Traffic is un iform ly-distributed.

For a given mission, the probability th a t node i may send a message to node j is fixed.

T h e C oncurren t C om m unica tion Probability (C C P) th a t node i sends a message to

node j is 0.01. In a 16 x 16 network, the to ta l num ber of concurren t messages during

a mission is « 0.01 • (162 — l) 2. Results on inputs with variable message lengths

and o th e r traffic p a t te rn s are not presented. General t rends of th e results from these

a lte rna tive inpu ts do not deviate significantly from the d a t a shown.

• Each d a t a point is ob ta ined by averaging results from 10,000 i tera tions. Deviation

from th e m ean values is found to be < 5%.

Table 3.1 shows th e m akespan (<) and the mean latency (t) of w- and f- meshes with

the F IF O message-scheduling policy and s tric t R R flit multiplexing. Clearly, with s tric t

RR, w-meshes no t only perform worse th an f-meshes with the sam e v, bu t also worse than

f-meshes with v / 2 v ir tual channels. T hus , addition of physical and v irtual channels in

w-meshes ac tua lly degrades th e perform ance if s tric t R R is used.

45

i i

V w-mesh f-mesh w-mesh f-mesh

1 n / a 801 n / a 280

2 1389 652 470 228

4 1090 546 345 209

6 945 508 305 223

8 812 502 305 251

12 707 533 341 304

16 688 629 377 414

T a b l e 3 .1 : Perform ance of w-meshes and f-meshes with s tr ic t R R flit multiplexing

Table 3.2 shows the case of D D allocation. Obviously, DD allocation greatly improves

th e perform ance, particularly in th e case of w-meshes with larger v ’s. In a certain s i tua

tion, i and t are reduced by m ore th an 50%. W ith f-meshes, DD also m akes a monotonic

im provem ent of i with th e increase of v. Note th a t with D D -RR , w-meshes s ta r t to have

smaller m akespans th an f-meshes with the sam e num ber of v irtual channels when v > 8.

Nevertheless, in the case where bo th types of network have equal num ber of nodes, we have

to take in to account th a t w-meshes have more physical channels. In a network of 16 X 16

nodes, a w-mesh has 1024 uni-directional physical channels while an f-mesh has only 960.

Considering this, w-meshes still have poorer physical channel u tilization, even with v > 12.

From the results in Tables 3.1 and 3.2, we conclude t h a t physical bandw id th is used much

m ore efficiently with D D -R R th a n strict RR. Since DD allocation can be im plem ented with

m inim um hardw are overhead over any configuration, all configurations will be evaluated

with DD allocation. D D -R R with F IFO will be used as our “defau lt” configuration. T he

d a t a in Table 3.2 will be used as the reference for o th e r configurations. T h e m akespan and

th e m ean latency of each configuration are p lo tted versus v.

Fig. 3.5 shows the comparison of th e L ltB F and SR B F message-scheduling policies with

F IF O in w- and f- meshes. D D -R R multiplexing is assum ed in all th ree configurations.

In w-meshes, SRB F shows a significant im provem ent (> 30%) over F IF O for v = 2. T he

m arg in of im provem ent decreases with larger v's, which drops below 10% when v > 8, and

reduces to near 0% after v > 12. T he sharp drop after v > 6 can be a t t r ib u te d to the

fact t h a t , when v > 6, adding virtual channels improves F IF O , and makes the effect of

46

t t

V w-mesh f-mesh w-mesh f-mesh

1 n / a 801 n / a 280

2 889 616 316 216

4 635 507 200 188

6 516 457 162 189

8 401 432 147 198

12 310 418 144 216

16 290 410 151 229

T a b l e 3 .2 : Perform ance of w-meshes and f-meshes with D D-RR.

m essage scheduling less significant. On the o ther hand , L R B F does no t m ake any notab le

im provem ent over F IF O . Only when v = 2 it shows ss 8% im provem ent.

In f-meshes, S R B F shows 10% to 17% im provem ents over F IF O for v — 1 and v = 2, and

quickly d rops to th e sam e with F IFO when v > 6, while L R B F is only m arginally effective

when u = 1 (« 7% im provem ent) and is virtually the sam e with F IF O for any v > 4.

Fig. 3.6 com pares th e mean latency, i, of th e three message-scheduling policies. In

w-meshes, S R B F reduced the m ean latency by m ore th an 30% for v = 2 b u t th e margin

reduces gradually down to less th an 10% when v = 6 and la te r drops to near 0% af te r v > 8.

Similarly, in f-meshes, S R B F is effective for a small num ber of v irtual channels(u = 1 and

v = 2), reducing t by a t least 12%. B ut it performs virtually th e sam e as F IF O for v > 4.

In bo th topologies, L R B F makes v irtually no im provem ent over F IF O in te rm s of i a t any

value of v and is n o t shown in the plot.

Figs. 3.7 and 3.8 show how the three message-scheduling policies perform when com

bined with the greedy flit-multiplexing m ethod . T he d a ta of L R B F-G is o m itted since its

perfo rm ance is very close to F IFO -G .

In w-meshes, greedy multiplexing clearly reduces i in all th ree configurations for 2 <

v < 6 by almost 30% when v = 2. However, when v > 6, greedy multiplexing degrades

their perform ance. This is due to th e n a tu re of greedy multiplexing th a t aw ards access of

physical channels to th e sam e v irtual channel t h a t succeeded in sending its message last

t ime. This can be beneficial in reducing the m akespan of a mission when v is small, bu t

works aga inst the case with a large num ber of virtual channels since th e time-m ultiplexing

47

o o FIFO (w-mesh)
A A LRBF (w-mcsh)
□□ SRBF (w-mesh)

- • FIFO (f-mesh)
a A LRBF(f-mcsh)

SRBF (f-mesh)

F i g u r e 3 .5 : M akespan comparison.

_ 350.0
8
U
u
"S' 300.0
5
3

| 250.0

200.0

150.0

100.0

1

<?

1 - 1 1

- \ O - - o H F O (w-mesh) -
\ □••• S R B F (w-mesh)

\ ' • - - • F IF O (f-mesh)
— \ ■••• - ■ S R B F (f-mesh)

* ' 5 . \ _____ _ _____
. V - . \

- -----
" 'ta. ' s

■•a.r:

i-

,t .e _ _______. - a —■ 0 : n --------------- D--------

1 1 1
12 16

Figure 3.6: Mean latency comparison.

48

| 850.0
u
I

1 7500
s

650.0

550.0

450.0

350.0

250.0
0 4 8 12 16

Figure 3 .7 : M akespan comparison.

 q 1---------------- 1---------------- 1
\ o ------ o FIFO (w-mesh)

^ \ O ------o FIFO-G (w-mesh)
\ □□ SRBF-G (w-mesh)
\ ^ • -------• FIFO (f-mesh)

4 \ \ '■ ♦ -------♦ FIFO-G (f-mesh)
■ ■ SRBF-G (f-mesh)\ v \ \

t
\ \

'■s.

.....

350.0

"Sf 300.05

5! 250.0

200.0

150.0

\ <* \
". V ' \

W - \

O O FIFO (w-mesh)
o o FIFO-G (w-mesh)
P D SRBF-G (w-mesh)
 • ------• HFO (f-mesh)
 ♦ ------♦ FIFO-G (f-mesh)
■■ SRBF-G (f-mesh)

.....

100.0
12 16

Figure 3.8: Mean latency comparison.

49

effect is reduced. In f-meshes, greedy multiplexing is not effective in im proving perform ance

over R R multiplexing. It actually results in larger t 's for all th ree configurations in m ost

cases.

In te rm s of i, greedy multiplexing improves S R B F significantly for v < 4 and v > 12 in

w-meshes. In f-meshes, it is also quite effective in reducing t's when v > 8 w ith all three

message-scheduling policies, showing nearly 12% reduction of i. T hus, as characterized by a

typical increase of i and decrease of t when v is large, greedy multiplexing tends to increase

th e variance of message latencies. Also, note th a t SRB F-G , L R B F-G and F IFO -G perform

alm ost the sam e with larger v's, dem onstra t ing th a t the effect of flit multiplexing takes over

message scheduling.

C TS lookahead can effectively minimize the waste of physical channel cycles, b u t its

higher im plem entation cost m ay not be justifiable if the margin of im provem ent is small.

In [42], it is shown th a t with pipelined circuit-switching, CTS is not very effective. As for

wormhole switching, it was shown in [27] th a t in a network with 32-bit flits and v = 15,

w ithou t adding e x t ra wires for the lookahead signals, an additional 12.5% traffic overhead

is required to im plement C TS lookahead. Therefore, CTS lookahead should provide a t least

12.5% im provem ent to justify its im plem entation overhead.

T h e effects of adding CTS lookahead on the th ree message-scheduling policies are plotted

in Figs. 3.9 and 3.10. C TS lookahead is very effective in w-meshes, reducing t over the

corresponding non-C TS lookahead version for 10% to 30% when 2 < v < 12, and I for

a t least 15% when 2 < v < 8. CTS lookahead is less effective in f-meshes, however. T he

g rea tes t im provem ent (« 10%) in I over non-C TS versions occurred when v = 4. T he

im provem ent m argin gradually decreases down to 0% when v is increased to 16. It reduces

I by a t m ost 10% when v = 2 and v = 4. T he effect of combining greedy multiplexing with

C T S lookahead is no t significant in te rm s of i. Nevertheless, greedy multiplexing is still

effective in reducing i for large v's, in bo th w-meshes and f-meshes.

T h e effects of SR B P and LR B P multiplexing (with CTS lookahead to avoid deadlocks)

are p lo tted in Figs. 3.11 to 3.14. In w-meshes, as compared to the corresponding config

ura tions with C TS lookahead only, th e S R B P version fur ther reduces t by « 10% when

4 < v < 8. B u t the margin of im provem ent gradually decreases when v reaches 12, and

ac tually has worse perform ance for larger v's. In f-meshes, S R B P multiplexing improves

only slightly the CTS-only version. T h e m axim um margin of im provem ent occurs a t v = 4.

50

850.0
...... 5 1 1 -------------- 1 ----
- \ 0 ----- 0 FIFO (w-mesh)

i

750.0

^ \ 0 ----- 0 FIFO-CTS (w-mesh)
\ \ AA LRBF-CTS (w-mesh)

650.0

■\ ^ '. □□ sRBF-ClS(w-mesh)
r i A-x \ • FIFO(f-mcsh)

- \ \ s ♦ ----- ♦ FIFO-CTS (f-mesh)

550.0

• - 1 . \ \ \ A A LRBF-CTS (f-mesh)
\ ■■ SRBF-CTS (f-mesh) _

450.0

15
•-."Nr-'S. \

350.0

, fv*** * %4W**. r«’v>V-.rvi -■*—

250.0

' t o * . —
i i —250.0 ---------------------- 1-----------------------1-----------------------1----------------------

0 4 8 12 16
V

F i g u r e 3 .9 : M akespan comparison.

350.0

6*

S
300.0 -

5: 250.0

200.0 -

150.0 -

100.0

--------------1----------------- 1-----------------1----------------T"
o o FIFO (w-mesh)

^ o o HFO-CTS (w-mesh)
'. U □ S R B F -C rS (w-mesh)

f '■ • • FIFO (f-mesh)
\ x ♦ ♦ FIFO-CTS (f-mesh)
’» <$ \ ■ ■ SRBI-'-CTS (f-mesh)

* V ' \

'■n's.

■ • • Q - . ---------

_________ I___________ I___________ I__________ L.
4 8 12 16

Figure 3.10: Mean latency comparison.

51

850.0

750.0

650.0

550.0

450.0

350.0

250.0

■q------- 1-------------r
\ o ------ o F IF O (w -m esh)

^ \ o o F IF O -S R B P (w -m esh)
\ \ A A L R B F -S R B P (w -m esh)
\ j \ □ □ SR B F -S R B P (w -m esh)

4 \ \ ' x • ------ • F IF O (f-m c sh)
\ V ® ♦ - — ♦ F IF O -S R B P (f-m esh)

\ V \ \ \ A A L R B F-SR B P(f-m csh)
■ \ ■■ SR B F -S R B P (f-m esh)
■ h '.V ’v . ■.

\ \ V \

'• tc^=rfS« «
% . "

v :-.

* " C T • . « V t « v * « M - » V 7. \ # r r r / i

_________ I___________I _L_________ T
4 8 12 16

F i g u r e 3 .1 1 : M akespan comparison.

350.0 1 1 1.... .. ” 1 1

300.0 — \ o ----- o FIFO (w -m esh)
* \ o ----- o FIFO -SR B P (w -m esh)
•x \ • ----- • F IFO (f-m esh)

250.0 _ ; \ ♦ ----- ♦ F IFO -SR B P (f-m esh)
. »
*. \ \
» V \ \ ___ • —

200.0
i V • ■ ^

— # ’ V fe) • "

\ v
150.0

100.0

r - T .

, ----------------- * ---------------

• - o ----- -
- -------

V

Figure 3.12: Mean latency comparison.

52

S

850.0

750.0

650.0

550.0

450.0

350.0

250.0

* 1) ' I 1
- \ O ----- o F IF O (w -m esh) -

1 \ o ----- o F IFO -L R B P (w -m esh)
\

- *>\ \
\1

A A L R B F -L R B P (w -m esh) _
□ □ S R B F -L R B P (w -m esh)

1 « . \ • ----- • F IFO (f-m esh)

■ w *
♦ ----- ♦ F IFO -L R B P (f-m esh) _

t - A v A A L R B F-L R B P(f-m csh)

- * n
■ ■ S R B F -L R B P (f-m esh)

\
15\

- ■ % » « ^ | . -------------- ~9t~
A ' ■*■.

1
" ■ 'G ------

0 4 8 12 16
V

F i g u r e 3 .1 3 : M akespan comparison.

_ 350.0
8 O >> o
1? 300.0
5
3

| 250.0

200.0

150.0

100.0

-i--------------------r

<?
\ ----------------- o ----- o H F O (w -m esh)
\ o ----- o H F O -L R B P (w -m esh)
\ • ------ • F IFO (f-m esh)

\ ♦ ------ ♦ F IF O -L R B P (f-m esh)

V ' _______
V . v ___•;v <s.

 ♦ --------------------*----------------------
■©.

’V _____
e —

~ _o_

I__________I__________I__________L_
4 8 12 16

Figure 3.14: Mean latency comparison.

53

SR B P m ultiplexing is extrem ely effective in reducing t. As can be seen in Fig. 3.12,

for 2 < v < 32, this multiplexing m ethod reduces I significantly for F IF O , and clearly

ou tperfo rm s th e CTS-only co u n te rp a r t for larger u’s, i.e., v > 4 in w-meshes and v > 4 in

f-meshes. T h e perform ance in t of L R B F and S R B F policies with SR B P multiplexing is very

close to F IF O -S R B P and hence is no t p lo tted . L R B P multiplexing is less effective overall

th an S R B P: it has virtually no im provem ent in i over the CTS-only co u n te rp art . B u t it

still reduces t effectively when v > 8 for bo th w- and f- meshes, though not to the ex ten t

of S R B P multiplexing. From th e d a t a shown above for SR B P and LR B P multiplexing, one

can conclude t h a t they are quite effective in reducing the variance of message latencies,

though the m akespan is sacrificed som ew hat for large v's.

We also ran sim ulations for the general case th a t message length is no t uniform. Results

are found to be consistent with the uniform mcssage-lcngth case, and bandw idth-sensitive

message scheduling and flit-multiplexing m ethods are found to be m ore effective when the

variance of message length is increased.

T h e simulation results in this ch ap te r are sum m arized as follows.

• S R B F message scheduling ou tperfo rm s LR B F in alm ost all situations. This is su r

prising since in C h ap te r 2, LR B F scheduling is shown to be much more effective than

S R B F in a network with largc-bufler switching m ethods like storc-and-forw ard and

v irtual cu t- th rough . We can thus conclude th a t in a wormhole-switched network,

resource m anagem en t should be quite different from large-buffer switching networks.

• D em and-driven allocation and C T S lookahead are very effective in reducing the waste

of physical bandw id th , especially when the num ber of virtual channels is large.

• If reducing the m ean latency is the main goal, then priority-based multiplexing is m ost

effective. Especially, in th e case of f-meshes with a large num ber of virtual channels,

no o ther message-scheduling policy or flit-multiplexing m ethods can stop the trend of

increasing Ps with larger w’s. W ith SRB P multiplexing, i is also reduced when v is

small. Greedy multiplexing can be used as a quick-and-dirty a l te rna tive to reduce t,

bu t it is much less effective and may degrade i when v is large.

• W hen v — 1 or v = 2, f-meshes should be considered a b e t te r topology th an w-meshes.

For th e case v = 2, f-meshes ou tperfo rm s w-meshes in bo th t and t with less resources.

Moreover, w-meshes cannot function with v = 1 unless they are used as f-meshes.

54

• Reducing the m akespan o f a mission does no t necessarily reduce t, and vice versa. N et

work configurations should be evaluated carefully with bo th measures before m aking

any conclusion on their performance.

CHAPTER 4

MAPPING OF COMMUNICATING TASK MODULES IN

HYPERCUBE MULTICOMPUTERS WITH POSSIBLE

LINK FAILURES

4.1 Introduction

While th e abundance of nodes in a hypercube m ulticom puter allows for executing tasks

th a t require a large num ber of nodes, inter-node com m unication is still a m a jo r bo ttleneck in

achieving the overall speedup [25, 66, 42]. To achieve com m unication efficiency, during the

ta sk execution, cfTorts m ust be m ade to improve traffic flow-control m echanisms as we have

done in C h ap te rs 2 and 3. T hese mechanisms are basically concerned with on-line, system-

level im plem entation . C om m unica tion efficiency m ust also be improved on a per- task basis

by exploiting the com m unication locality am ong task modules before the execution.

To m ap task modules for an “o p tim a l” perform ance, the run-tim e behavior of these

modules m ust be known a priori to some ex tent. However, as s ta ted in the H alting P ro b

lem [76] in com puting theory, there is no way to predict th e exact run- tim e behavior of a

program before it is actually executed. In case of d is tr ibu ted co m p u ta t io n , it is also very

difficult to predict the tim ing of communication events before a set of task modules are

actually executed. As shown in the survey by N orm an and T hanisch [85], th e problem

of m odule m apping has been addressed by num erous researchers [57, 78, 79, 77, 21, 34],

using a wide range of models and solution m ethods. In th e g raph-m app ing approach (e.g.,

[55, 98]) th e t im ing aspects o f module communication are ignored, and a simple objective

function is proposed for op tim iza tion . It is generally difficult to relate this objective to

any of well-known perform ance m easures, such as task execution time. By co n tra s t , any

more com plicated approach (e.g., [79, 21]) requires a subs tan tia l am o u n t of knowledge of

th e run - tim e behavior of task modules, which m ay not be available unless th e task is tes ted

55

56

tho roughly beforehand.

O ur p r im ary goal here is to optimize communication performance. We use a relatively

simple cost function and verify (with simulations) th a t optimizing this function actually

leads to b e t te r com m unication performance, especially for m apping concurrently com m uni

ca ting task modules. Focusing on com m unication perform ance differentiates our work from

o th e r s ’ re la ted to more generic aspects of task m apping. Taking a com m unication-oriented

approach to th e task m apping problem is hardly a limitation, m any researchers [25, 66, 42]

agree in ter-node communication is of the u tm o s t im portance to the perform ance of any

m ulticom pu te r system.

This ch ap te r is organized as follows. In Section 4.2, we present the basic system model

and assum ptions used. O ur problem is also formally s ta ted there . In Section 4.3, th e NP-

hardness of minimizing th e proposed cost function is s ta ted first in order to justify the use

of heuristic algorithm s. Several heuristics arc then used to find good subop tim al solutions.

T hese heuristics are tested extensively for various inputs to assess the perform ance of the

m appings ob ta ined from them . We then sim ulate these algorithm s to verify th e actual

perform ance of the m appings found by minimizing the proposed cost function. T h e effects

of inaccuracy in describing the task behavior are also discussed there. Section 4.4 deals with

th e case where an a l te rna tive fau lt-to lerant routing algorithm is used. Some rem arks are

given in Section 4.5 ab o u t the effects o f combining the m apping stra teg ies with flow-control

m echanisms discussed in C h ap te r 2.

4.2 Preliminaries

T h e com m unication volume between each pair of modules is expressed as the to ta l

length of messages exchanged between them . Inter-m odule com m unications are assum ed to

be accomplished via message passing. A message is rou ted from the source to the destination

via a fault-free shortest pa th under circuit or message switching. W hen there is no faulty

link, it simply degenerates into th e e-cube routing algorithm. Since we are considering the

case with heavy concurrent traffic, as we have shown in C h ap te r 2, v irtual cu t- th rough

degenerates into message switching and will not be discussed here.

Since m ost existing hypercubes do not support a per-node m ulti-p rogram m ing environ

m ent, it is assum ed th a t a t m ost one module is m apped to a node, i.e., th e m apping between

nodes and modules is one-to-one. For a task with M modules such th a t 2n_1 < M < 2" for

57

som e integer n, one can add some “d u m m y ” modules and m ake it a task w ith 2" modules.

So, we will henceforth assum e M = 2n where n is th e dimension of the ta rg e t hypercube to

execute th e task , and thus, the m apping of modules into nodes is one-to-one and onto.

For a network of nodes, we define a com m unication event between modules (C E B M)

as an instance th a t a module needs to send a message to an o th e r module, while defining

a com m unica tion event between nodes (C E B N) as an instance of a node needing to send

a message to some o ther node. In circuit switching, these two are indistinguishable. In

message switching, however, a single C EB M can become several CEBNs. For exam ple , when

a pair of m odules reside in two different nodes which are two hops ap a r t , in circuit switching

a C E B M from one module to th e o ther is ju s t a C EBN from one node to the o th e r node.

For message switching, however, this C EB M becomes two CEBNs: one from the source to

th e in term edia te node, and th e o ther from th e in term edia te node to th e destination . We

said th e re is an outstanding C E B N if a message is to be sent by a node. An o u ts tan d in g

C EB N is said to be processed if it is sent from the source node to a neighboring destination

node. An o u ts tan d in g C EBN m ay not be processed im m ediately due to th e limited link

resources available. A CEBN is said to be blocked if it is not processed immediately.

T he perform ance of a m app ing is eventually m easured a t th e execution t im e by its

com m unica tion m akespan , or makespan for short , which is the tim e span from th e th e first

C E B N becoming o u ts tan d in g to all CEBNs being processed. As an i llustra tive example,

in Fig. 1 1 we have a simple network of A nodes with 3 C EB M s. T he s ta tu s of each link

during th e execution under bo th circuit and message switching is shown in this figure. Note

t h a t th e com puta t ion tim e needed is invariant am ong different m appings, since a t m ost

one m odule is m apped to each node. Therefore, in this case, com m unication m akespan is

th e m ain source of difference in the completion tim e of a task . However, com m unication

m akespan canno t be easily described as a m athem atica l function, and its value depends on

th e tim ing of com m unication events, which even for the sam e m apping , can change from one

execution to th e next due to th e complex interactions am ong ta sk modules a n d /o r processor

nodes. Hence it is im practica l to use a direct op tim iza tion m ethod . However, as we shall

see, for concurrently com m unicating task modules, minimizing the proposed cost function

generally leads to m inimization of makespan.

T h e com m unication cost in executing a set of task modules is defined as the sum of tim e

units during which links are kept busy with the messages am ong these modules. In o ther

words, it is a m easure of the to ta l com m unication resources used by an instance of task

58

nod* 0 nod* 1 nod* 2 nod* 3

O nnk *1 O link #2 ^ link #3 ^

tim *

nod* 0 to nod* 3

nod* 1 to node 3

nod* 0 to nod* 2

CIRCUIT SWITCHING

link #1

link #2

link #3

M ESSAGE SWITCHING

link #1

link #2

link #3

F igure 4.1: An example demonstrating the definition of makespan.

59

execution m easured in tim e units. Suppose c(h) is the num ber of tim e units links are kept

busy with a unit-length message sent over a p a th of h hops. T he sum of t im e units t h a t links

a re kept busy for re lated purposes o ther th an message transm ission — such as establishing a

connection — is assum ed to be negligible. For message-switched hypercubes, c(/i) = hc(1),

b u t this relation may no t be accu ra te for circuit-switched hypercubes. However, if the “call

reques t” signal to hunt for a free pa th occupies each link only for a very sho rt time, then

this expression would be a good approxim ation even for circuit-switched hypercubes. By

defining c (l) as a unit of com m unication bandw id th (i.e., th e link usage by one unit-length

message traversing one link), the com m unication bandw id th resulting from executing a

task under a m apping T becomes: k(T) = ^ iV j, where Vi is the to ta l length of messages
1 < * < X

t raversing over i links, and x is the m axim al pa th length in the hypercube, (x = n if only

shortes t p a th s arc considered.) One can easily see th a t costC0m(r) oc &(r).

In bo th type of switching, communication bandw id th is proportional to the to ta l link

occupation tim e, two com m unicating modules placed far a p a r t will require m ore com m unica

tion resources, and there is a higher possibility th a t some o th e r instances of com m unication

will be blocked a n d /o r delayed, which can in tu rn lead to an increase of com m unication

m akespan. Therefore, we can predict th a t reduction of com m unication bandw id th is crucial

to concurrently com m unicating tasks. W hen in troducing th e notion of com m unication cost

and com m unication b andw id th , we deliberately avoided the low-level t im ing details. We

only consider th e to ta l message length to be sent/received between a pair of task modules

during th e whole mission tim e, thus allowing for optimizing a simple cost function th a t can

be trans la ted into a com binatorial optimization problem.

T he following no ta tion will be used th roughou t this chapter:

• D (n i ,n , j) : the d istance (i.e., the length of a shortes t p a th) between node n, and

n j , and is dependent upon the rou ting algorithm used. For now, we will assum e

D(n,-, Uj) — D (n j ,n i) . (T h e case where Z)(n,-,n;) can be different from Z)(n; , n ,) will

be discussed in Section 4.4.) Before m apping a module , D (n it n j)'s a re assum ed given.

Note th a t the d is tance between a pair of nodes m ay be g rea ter th an their H am m ing

d is tance and depends on the num ber of faulty links and the rou ting algorithm used.

• n: th e dimension of the ta rg e t hypercube.

• U: an M X M com m unication volume m atr ix , where f7tJ is the communication volume

from m, to m , during th e task execution, and M is the num ber of task modules. As

60

m entioned earlier, we will assum e M = 2n unless specified otherwise. N ote t h a t

Ua = 0 Vi, since a m odule does not send messages to itself.

4.3 Optimization Heuristics and Performance Evaluation

A lthough the cost function we proposed is simple in n a tu re , optimizing it is an N P -h ard

problem. Its N P-hardness can be proved by restr ic ting to the fault-free hypercube em b ed

ding problem discussed in [71]. Therefore, there exists no known polynom ial-tim e algorithm

to find an optim al m apping . Note th a t minimizing m akespan , ra th e r th an com m unication

ban d w id th itself, is our u l t im a te goal. As we shall see, good heuristic algorithm s will suffice

in m ost s ituations. As shown in [107], an optimal solution th a t minimizes com m unication

b an d w id th is usually com puta tionally expensive, and m ay only improve slightly over fast

a lgorithm s in term s of minimizing m akespan, our ac tua l objective.

O ne simple greedy heuristic which has been tes ted to work well in fault-free cases [107]

is given below. Consider each task as a weighted g raph with vertices representing modules

and edge weights representing com m unication volumes. For any two nodes x and y under

th e e-cubc routing, D (x , y) = D (y , x) . Therefore, it is sufficient to use an undirected

g raph with Uij -f f/;i- as th e weight on the edge connecting m, and m ; . We w ant to find a

H am ilton ian cycle in this task g raph with as high a to ta l edge-weight as possible, and then

em bed this cycle into a H am ilton ian cycle in the hypercube. A H am ilton ian cycle in a fault-

free hypercube can be easily found with Gray-code enum eration . In an injured hypercube

with faulty links, however, there m ay no t be any H am iltonian cycle available for em bedding.

So, we define a weighted relaxed (W R) Hamiltonian cycle in an injured hypercube (w ith no

disconnected node) as a relaxed version of H amiltonian cycle, such th a t two nodes x and y

can be linked in the cycle via a virtual edge which m ay be a p a th from x to y th ro u g h some

in te rm ed ia te nodes. T he weight on each virtual edge of the cycle is the num ber of physical

edges on it. T h e greedy algorithm em beds the Hamiltonian cycle in the task g raph with the

m axim um weight (found by a greedy approach) in to th e m inim um -weight W R H am iltonian

cycle in the injured hypercube (also found via a greedy approach) .

Tw o o th e r (m ore complex) heuristic algorithm s are also im plem ented and tes ted : a

b o t to m -u p approach algorithm based on the one proposed in [55], and a top-dow n a p

proach proposed in [35]. Both of these algorithms are modified to handle cases with broken

links. A th ird non-determ inistic approach using th e sim ulated annealing m ethod [72] is

61

also im plem ented and tes ted , where 2-opting [2] is used as the p e r tu rb function. To com

pare th e quality of th e m appings found by these algorithm s with respect to com m unication

b an d w id th , we sim ulated these algorithm s using inpu t tasks with random ly generated com

m unication volumes am ong their modules.

Each algorithm was executed for 10,000 random ly-generated tasks where f / . / s arc cha r

acterized by a norm ally-d is tr ibu ted random variable with mean p. and variance a 2. C h an g

ing th e value of p is found to have little cfTect on the relative perform ance of m appings

found with different a lgorithm s as long as the ra tio <r/p remains constan t . It is also found

th a t , as a / p approaches zero, th e difference in com m unication bandw id th between random

m appings and those m appings found with the above three algorithm s gets smaller, while

th e difference gets larger as cr/p increases. This is consistent with the fact t h a t when all

Uij's a re identical, all m appings will lead to an identical com m unication b an d w id th , and

all m appings algorithm s will perform identically. For each d a t a point, deviation from the

m ean value is found to be reasonably small (< 3%).

6500

6000

| 5500
S03

I---
5000

A ------A rand
O -------O A1
♦ ♦ A 2
x ------- X A 3

4500

4000
0 4 6 108

L ink Failures

F i g u r e 4 .2 : Perform ance of various algorithms.

For th e input tasks used to obta in the p lots in Fig. 4.2, [/,•/s are characterized with

p = 20 and a = 15; the horizontal axis depicts the num ber of faulty links while the

vertical axis represents com m unication bandw id th . In this figure, “A l ” represents the

greedy algorithm , while “A2” represents the com m unication bandw id th achieved w ith either

top-dow n or b o t to m -u p a lgorithm s, whichever yields smaller com m unication b andw id th .

T his is to enhance th e readability of the plots since the perform ance of the top-dow n and

62

b o t to m -u p algorithm s tu rn s o u t to be very close to each other.

It can be seen from the above result th a t the greedy approach performs surprisingly

well. Complex (i.e., top-down and b o ttom -up) approaches ou tperfo rm the simple greedy

approach only by a small m argin . Furtherm ore , as the num ber of faulty links increases,

th e gap between th e two curves gets narrower. This can be explained by th e fact th a t

b o th th e top-dow n and b o t to m -u p approaches are best suited for fault-free (thus regular)

hypercubes. For hypercubes with faulty links, the interconnection s tru c tu re is no longer

sym m etr ic or regular. In such a case, the partit ion ing mechanism in the top-down approach

and th e combining mechanism in the bo tto m -u p approach m ust use less accu ra te heuristic

decisions, hence degrading th e performance.

T h e sim ulated annealing approach (“A3”), on the o th e r hand , has shown more consistent

perform ances. Its advantages over o ther algorithms become more pronounced as th e cube

size and the num ber of link failures increase. Therefore, we can conclude th a t this approach

is m ore ad ap tab le to irregular s tructures .

In Table 4.1, we show the relative timings of various algorithm s used. T h e a lgorithm s are

tes ted on a D E C 5000 w orksta tion running Ultrix operating system . T hough we have only

shown th e perform ance d a t a for problem size of n = 4 , M = 16, th e relative performances

of different a lgorithm s are found to be consistent a t least up to the problem size of n =

8, M = 256.

C PU Tim e

Size Greedy Top-Down B ottom -U p S-Annealing

n — 3, M = 8 .057 4.2 7.8 125.2

n = 4, M = 16 .178 15.3 28.3 433.6

n = 5 , M = 32 1.215 172.4 297.6 2537.1

T a b l e 4 .1 : T im ing comparisons for various algorithms.

To d em o n s tra te why minimizing the proposed cost function, i.e., com m unication b and

w idth , can be effective, we also need to compare the m akespans of those m appings found

with different algorithm s. O ur simulation model for this purpose is described below.

T i m in g : A tim e unit is selected as the tim e required to send a unit-length message over a

com m unication link between a pair of nodes.

R o u t i n g a l g o r i t h m a n d m e c h a n i s m :

63

• Link failures a re detected before task mappings and execution. Each message is routed

th ro u g h a fault-free sho rtes t p a th determined prior to the execution of this task . We

assum e there are no additional link failures during the execution of this task .

• U nder message switching, th e rou ting mechanism a t an in te rm ed ia te node on a pa th

will tak e a certain am o u n t of tim e to forward a message from one link to th e next.

We assum e this tim e to be relatively small and absorbed in to th e length of the corre

sponding message.

• As in C h ap te r 2, th e hypercube is equipped with a com m unication a d a p te r like S PI

D E R [31] a t each node. T h e rou ting controller can send or receive m ultiple messages

from different links a t the sam e time. Also, incoming bufTcring/queucing and outgoing

message transm ission are done in parallel for all switching m ethods .

• Each com m unication link is half-duplex, i.e., a t any in s tan t of time, only one message

can be sent in e ither direction of a link.

• T h e propagation delay on a com m unication pa th is assumed to be negligible.

Task communication behavior:

• A T , given for each task , denotes th e time window in which the C E B M s arrive. The

arrival times of C E B M s are uniformly d istributed in [0, A T]. Hence, for a set of task

modules, a larger A T represents the communication being less intense, while a smaller

A T represents the com m unication traffic being highly concurrent.

• L m, g denotes the m axim um message length. T h e com m unication volume between

each pair of modules is random ly grouped into messages o f lengths within [1, L m, g].

M essage scheduling and queueing: If a link is busy when it is to be used for t ran sm it t in g

an incoming message, the message is s tored in a F IFO queue a t th e source end of the link.

W hen m ore th an one message requests the use of the sam e link a t a time, one of them is

random ly chosen to use th e fink. This selection procedure is repea ted until all requests are

honored.

T h e goal of our simulation is to comparatively evaluate the perform ance of different

m appings under the same execution environm ent, bu t not to com pare th e perform ance of

different system im plem entations. So, th e simulation results should not be used to determ ine

th e relative perform ance of different switching m ethods or rou ting algorithm s.

T h e m appings found are fed in to an event-driven sim ulator similar to the one used in

C h ap te r 2 to evaluate their perform ance in a close to real-world environm ent. T h e results

64

are p lo tted in Fig. 4.3 for message switching systems. In p u t tasks used here are th e same

as those used for Fig. 4.2. We set L mgg G [1,5], and A T — 100. Results for circuit-switched

hypercubes are found to be similar in m ost s i tua tions and thus are no t presented .

T h e effects of changing A T under the sam e m appings for a given task are shown in

Table 4.2 for message switching w ithou t link failures. T h e results are found to be similar to

those under circuit switching. For the cases of n — 4, M = 16 and n = 5, M = 32, changing

A T in the range [10,300] does no t have any significant im pact on the relative perform ance

of m appings found with different heuristics. T he m appings found with all of th e above

heuristics have shown substan tia l im provem ents over random m appings V A T G [10,300].

This is because the network gets sa tu ra te d with messages when A T = 300.

n = 3 , M = 8 n = 4, M = 16 n = 5, M = 32

A T rand A1 A2 A3 rand A1 A2 A3 rand A1 A2 A3

10 220 176 176 173 767 652 635 616 2456 2007 1994 1924

25 220 176 175 173 767 653 636 616 2469 2011 1995 1928

50 221 177 177 175 769 655 636 617 2474 2026 2005 1940

100 222 182 178 176 770 655 637 618 2475 2028 2013 1949

200 308 306 305 302 772 657 639 620 2476 2037 2025 1961

300 311 308 305 303 775 661 642 622 2478 2048 2031 1993

T a b l e 4 .2 : Effects of changing A T under message switching.

In case of n = 3 , M = 8, the network becomes less congested a t A T ~ 160 and the

differences of m akespans am ong different m apping a lgorithm s s ta r t to diminish. So, we

can conclude t h a t minimizing com m unication bandw id th yields a peak im provem ent when

th e task modules are com m unication-bound and th e com m unication netw ork m ay become

highly congested during the execution of this task . For n = 4, M = 16, th e A T value which

results in small perform ance differences is approxim ate ly 750, while for n = 5 , M = 32 it is

a b o u t 2 ,250 . However, when A T is relatively small and the network is no t near s a tu ra t io n ,

th e difference in message queue length can be m ade smaller by using the m appings obta ined

from th e m inim ization of com m unication bandw id th . D epending on system im plem entation ,

the perform ance of a node may also be influenced by the length of message queue it has to

m ain ta in .

T h e effects of changing L msg are more subtle th an changing A T . Generally, shorter

65

message lengths result in b e t te r perform ances in circuit-switched hypercubes, while for

message-switched hypercubes, changing the message length does not affect system perfor

m ance no tab ly if th e overall com m unication bandw id th is fixed.

O ur simulation results have indicated th a t different switching techniques do no t m a t te r

much to system perform ance for highly concurrently com m unicating tasks . C ircuit switch

ing and v irtual cu t- th rough is found to have only a slightly b e t te r perform ance th an message

switching for the sam e m appings. However, as m entioned earlier, th e actual perform ance

will depend on system im plem entation , and thus, the simulation results should not be used

to com pare the effectiveness of the two switching m ethods.

W hen th e num ber of faulty links grows within our preset range (i.e., less th a n one th ird

of all links), m akespan also increases. For smaller hypercubes, such as n = 3, in troducing

even one m ore faulty link can m ake a significant difference in perform ance. This effect gets

more pronounced when th e num ber of link failures becomes larger, as one can see in Fig. 4.3.

As th e cube size increases, there will be more fault-free links, hence m aking lesser im pacts

of a single link failure on system performance.

T h ough the proposed m appings s t ra teg y requires only minimal in form ation of run-tim e

task behaviors, we still need th e com m unication m a tr ix to m ap a task . It is obvious th a t

unless th e task has been fully tested and each message length is exactly calculated , the

entries in the com m unication m atr ix cannot be absolutely accura te . To study th e effects of

an inaccu ra te com m unication m atr ix , we repeated th e simulation for eva luating m akespan

while in troducing uncertain ties in the com m unication m atrix . In Fig. 4.4, the in p u t tasks

are essentially the sam e as those in Fig. 4.3, b u t there is a m axim um of 20% erro r in each

Uij, i.e., during an instance of ac tua l ta sk execution, th e to ta l length of messages exchanged

between m,- and ntj is Uij ± 0 .2Uij. From Fig. 4.4, one can see th a t inaccuracies in Uij's

affect com m unication perform ance, especially when th e cube size and num ber o f link failures

are large. However, when the num ber of link failures is less th a n one s ix th of all links, the

overall perform ances of various m appings algorithm s are still qu ite close to those in the case

with exact Uij's.

4.4 An Alternative Routing Algorithm

T h u s far, we have assumed th a t the hypercube is im plem ented with a rou ting algorithm

which routes messages from the source to the destination via fixed, shortes t p a th s deter-

66

1000

A A rand
O ------- o A1
♦ ♦ A 2
X------- x A3

900

800

700

600
82 4 6 100
L ink Failures

F i g u r e 4 .3 : Perform ance of m appings under message switching.

1000

A A rand
o ------- o A1
♦ ♦ A 2
X------- x A3

900

800

700

600
82 4 6 100
L in k Failures

F i g u r e 4 .4 : Perform ance of m appings under inaccura te task inform ation.

67

m ined before th e execution of each task. However, there are several practical problems with

th is assum ption . For instance, all faulty links m ust be known before th e ta sk execution,

which m ay n o t always be possible. Also, if additional link failures occur la ter , th e execution

of th e task m ay become unsuccessful.

To overcome these problems, we m ust use a rou ting algorithm th a t is m ore adaptive

to system changes. For instance, the DFS algorithm proposed in [18] is an adap tive fault-

to le ran t rou ting algorithm which uses only a limited am oun t of global link s ta tu s in fo rm a

tion. U nder this algorithm , th e system does not require a priori link s ta tu s inform ation,

and com m unications can be completed even if some unexpected link failures occur d u r

ing task execution as long as all nodes involved remain connected. However, due to the

adap tive n a tu re of the DFS algorithm , it is difficult to predict the length of the path

used for rou ting a message during task execution, especially in the presence of link fail

ures. So, D (x , y) cannot be accurate ly calculated, thus m aking it difficult to decide the

com m unication bandw id th of a m apping. Furtherm ore , under some adap tive rou ting algo

r i thm like the DFS algorithm , due to the lack of global link s ta tu s inform ation, the length

of th e p a th chosen for com m unication from node x to node y may not be the sam e as

th e one chosen for th a t from y to x. For example, suppose we have a 3-cube with three

broken links, 00*, 0 * 0 , and *01. Then the length of path chosen under the DFS algo

r i thm from 000 to 111 is 3. B u t the pa th chosen to rou te messages from 111 to 000 is

111 —>-110 —+001 —+101 —>001 ->110 —>010 —>011 —>001 —>000, which has a length of 9. T he

rou ting algorithm s with this n a tu re are said to be asym m etric . In m ost cases, a routing

a lgorithm becomes asym m etric only in the presence of faulty com ponents .

Based on the above observations, one m ay ju m p to a conclusion t h a t there is no way

to minimize the com m unication bandw idth of an m apping , and hence it will be impossible

to improve com m unication efficiency by appropriately placing task modules. However, as

o u r simulation results show below, use of the proposed cost function, even by m apping

ta sk modules to th e nodes as if there were no faulty links, can still significantly improve

com m unication perform ance over random m appings when the num ber of faulty links is

w ithin a certain range.

T hree m apping strategies are com pared in our simulation. T he first is the usual random

m apping . T h e second is to apply the greedy algorithm to the hypercube w ithout knowing

which links are faulty. T he th ird assumes perfect knowledge of link failures and how each

m essage will be rou ted during the execution. This s tra tegy is an unrealistic, ideal case,

68

which gives an upper bound of perform ance im provem ent with com m unication bandw id th ,

whereas th e second s t ra teg y provides a lower bound . In real applications, depending on the

knowledge available during th e task m apping phase, the perform ance should lie somewhere

between these two extremes.

8000 A A rand
o ------- o S I
♦♦ S2

•5
| 7000
•o
9CQ

6000

5000

4000
82 4 6 100
L ink Failures

F i g u r e 4 .5 : C om m unication bandw id th under the D FS algorithm .

Fig. 4.5 shows the com m unication bandw id th of the m appings under the D FS algorithm

for th e sam e set of inpu t tasks as in Fig. 4.2. “S I ” represents th e m appings found with no

knowledge of faulty links, while “S2” represents those found with com plete knowledge of

faulty links and the routing p a th s of all messages. It can be easily seen th a t under th e DFS

algorithm , th e overall com m unication bandw id th is higher th an the rou ting algorithm used

before. Nevertheless, the m appings “S I ” still generate smaller com m unication bandw id th

th an random m appings, though the im provem ent becomes insignificant as th e num ber of

faulty links increases. T h e sam e set of inpu t tasks used in Fig. 4.3 are employed again for

event-driven simulations, except th a t the DFS algorithm is used here. Since th e D FS algo

ri thm is designed based on th e opera ting principles of message switching, we only sim ulate

th e hypercubes implemented with this switching m ethod .

T h e m easured m akespans of these m appings are p lo tted in Fig. 4.6. It is found th a t ,

w ithou t knowledge of faulty links, mappings “S I” still improves over random m appings with

a m argin of a t least 10% when the num ber of faulty links is more th an one eighth of the

to ta l links. This m argin increases as th e num ber of faulty links increases, b u t s ta r t s to level

off when the percentage of faulty links approaches 33%. T he m appings “S2” show even

69

larger im provem ents and improve over random m appings with a steadily increasing m argin

as th e num ber of link failures increases.

1100

1000

900

800

700

600

500

A A rand
O ------- O S I
♦♦ S2

400

300

200
2 4 8 100 6

L in k Failures

F i g u r e 4 .6 : Perform ance of m appings under th e D FS algorithm .

By com paring Fig. 4.6 with Fig. 4.3, one can see th a t , though th e D FS algorithm

results in an overall higher com m unication b andw id th , it results in smaller m akcspans

when the num ber of faulty links is relatively small. This is due to the fact th a t th e DFS

algorithm chooses com m unication p a th s in a m ore “spread o u t” fashion and causes less

congestion th an th e shortes t fixed-path algorithm used before. T h is advan tage diminishes

af te r the num ber of faulty links grows beyond one fifth of all links. W hen th e percentage

of faulty links reaches 25%, th e DFS algorithm begins to yield larger m akespans than

th e shortes t p a th routing. This is because p a th s available between nodes are becoming

fewer, so messages cannot be spread o u t to m ore p a th s under th e DFS algorithm . Also,

since the D FS algorithm does not always rou te messages th rough a sh o r tes t p a th , the

g rea te r com m unication bandw id th overhead of th e DFS algorithm s ta r t s to have dom inan t

effects. N ote, however, th a t im plem entation details will be crucial in ac tua l applications

and these simulation results should not be used to judge th e relative m erits of different

rou ting a lgorithm s.

4.5 Remarks

Re
m

ai
ni

ng

ba
nd

w
ith

70

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

\
\
\
\

■ \
\
\
\

 rand-FIFO
\ a rand-LRBF
\ \ A3-FIFO

\ s A3-LRBF
" \ 5

\ a
\
\

- \ ^

\ Y,
X \ '

■A •• '

 ̂ V\
X

•• \
\ X \

\ •• \
\ ' X

• . X •• X
• . X •• \
\ x •. \

\ V
•. S X
•. \ x

• X \ '
\ X •. '

\ X
• X N\ X \ x

\ \ x
' \

X •. N
X \ V

s *.V .< •.
s ’ •

S

100 200 300 400 500 600
Time

Figure 4.7: Plot of remaining bandwidth versus time.

71

In C h ap te r 2, we have shown th a t by employing ap prop ria te message scheduling poli

cies, the perform ance of a b inary hypercube under concurrent com m unication traffic can be

greatly improved. Here we will d em o n s tra te t h a t by applying these run- tim e flow-control

m echanisms, th e com m unication perform ance of m appings optimized with respect to com

m unication bandw id th can be fu r the r improved.

In Fig. 4.7, we d em o n s tra te the effect of applying a message scheduling policy on the

perform ance of a m apping. T h e perform ance m easurem ents arc shown for a typical input

task used in previous simulatios for th e case n = 4 , M = 16 and A T = 0, and th e ne t

work coonsidcrcd here is fault-free. T h e remaining bandwidth during executions is plotted

aga inst tim e for random m apping and th e m apping optimized with respect to com m unica

tion bandw id th using th e simulated annealing m ethod (“A 3”). T h e m appings arc executed

on system s with the F IF O message scheduling policy and the L R B F policy defined in C h ap

ter 2. “L R B F ” denotes th e message scheduling policy which gives a higher priority to the

message with the largest remaining bandw id th .

I t is obvious t h a t th e message scheduling policy can fu r ther improve th e perform ance of

m appings. N ote th a t given a m apping , different flow-control m echanisms result in different

ra te of “energy” (rcm aining b an dw id th) dissipation. B e t te r flow-control not only results in

a higher ra te , bu t also a more linear behavior in the curve, and hence more pred ic tab le task

com m unication response time. On th e o ther hand , an optimized m apping leads to lower

“initial energy” , and reduces th e tim e needed to dissipate it. Note th a t th e m apping s tra teg y

can work a lm ost independently of the flow-control mechanisms. And their im provem ents

on th e perform ance can be additive. T h e result also confirms th a t , th e am o u n t of initial

com m nuication bandw id th is a good indication of the quality of mappings.

CHAPTER 5

MAPPING CONCURRENTLY COMMUNICATING

MODULES ONTO MESH MULTICOMPUTERS

EQUIPPED WITH VIRTUAL CHANNELS

5.1 Introduction

T h e a u th o r of [85] provided a thorough survey on models and techniques used for

m ap p in g task modules in m u lticom puter systems. A m ong the various models, the graph-

theo re t ic model has been widely used [55, 98, 9d]. In this type of model, a set o f com

m unica ting task modules is modeled as a task graph , and th e in terconnecting topology

of processor nodes is modeled as a processor graph. An objective function is chosen for

o p tim iza tion when the task g raph is em bedded into th e processor graph.

Using the g raph-theore tic model, the m apping problem is conceptually equivalent to a

com binatoria l op tim iza tion problem, and there are a wide range of existing optim iza tion

a lgorithm s [13] to solve it. However, since graph-theore tic formulation often oversimpli

fies th e real-world s ituation , th e objective function may not reflect any true perform ance

m easure. As a result, finding an “op t im a l” m apping with respect to the objective function

m ay be meaningless. Here we basically adop t the graph-theore tic model, bu t ou r approach

differs from th e previous work as follows.

1. We focus on optimizing th e com m unication performance, par ticu larly th e concurren t

com m unication efficiency, of a m apping into a v irtual-channel network.

2. Instead of using an ab s t ra c t objective function, we adop t a realistic perform ance

objective as the goal of optimization.

3. T h e unavoidable inaccuracies in predic ting run-tim e task behaviors are taken into

account.

72

73

T h e netw ork under consideration employs wormhole switching. Each pair of ad jacen t

nodes are connected by a pair of unidirectional physical links/channels . A fixed num ber of

uni-directional v irtual channels are time-multiplexed over each physical channel. T hough

m ost o f our discussion m ay apply to general networks, we will focus primarily on th e mesh

netw ork topology, especially k -ary 2-cubcs which have been widely used in eva luating the

perform ance of v irtual-channel networks [25, 26].

A set of task modules are said to be com m unicating concurrently if they send messages

to one ano ther within a short span of time. A network under concurrent traffic arrivals is

analogous to a physical system with a certain am oun t o f injected energy , i.e., the to ta l com

m unication bandw id th . T he t im e span required to dissipate th e injected energy indicates

the capability of the network to handle t ransien t loads which is similar to the trans ien t

response of an electronic com ponent to a stcp-function input. Given the sam e am o u n t of

initial bandw id th , i.e., initial energy, various flow-control m echanisms result in different

rates o f energy dissipation, and hence different time needed to dissipate all th e energy. As

shown in Fig. 5.1, th e remaining bandwidth is plotted against t im e for two different flow-

control mechanisms. Obviously, th e time required to dissipate all the energy also depends

upon the am o u n t of the initial energy. Therefore, if the com m unicating modules in the

network can be m apped so th a t the initial energy is minimized, i.e., com m unication locality

is m axim ized, then th e perform ance can also be optimized.

100000

5
» 80000 •a
9
| 60000

8a. 40000

20000

0
0 100 200 300 400 500 600 700 800 900 1000

Time

F i g u r e 5 .1 : T he remaining bandw idth versus tim e under two different message
scheduling policies.

In C h ap te r 3, we have addressed the problem of run-tim e concurrent traffic flow-control.

74

Here we will discuss the issues of m apping concurrently com m unicating m odules into a

mesh m ulticom puter before run-tim e, so th a t a t run-tim e, the com m unication perform ance

can be optimized. Particularly , we will focus on th e case where a substan t ia l num ber

of messages can be t ran sm it te d th rough the network simultaneously, and th u s m ay cause

serious traffic congestion. As pointed ou t in [25], m ost algorithm s are com m unication ra th e r

th a n processing limited. Fine-grain parallel program s can execute less than ten instructions

in response to an in ter-processor com m unication event. To execute such p rogram s efficiently,

th e com m unication network m ust be able to allow a large fraction of the nodes to t ran sm it

messages simultaneously.

T h e delivery of these concurren tly - transm it ted messages may not be m utually indepen

dent. T h e arrivals of all messages a t their destination as a whole arc often im p o r tan t for

continuing th e task execution. For example, in the execution of parallel a lgorithm s, such as

parallel state-space-search [92, 4], parallel sorting [104] and parallel Fourier-Transform [29],

a t certain stages, modules on each node m ust receive partia l results contained in the m es

sages from o ther nodes to continue. Therefore, in addition to the usual la tency m easu re

m en t, th e makespan of a set of concurrently-sent messages will also be used for perform ance

evaluation. T h e m akespan of a set o f messages is defined as the tim e span from the arrival

1 of th e first message until all the messages reach their destination.

O u r objective is to m ap modules into the host m u lticom puter to minimize m akespans

and latencies of those concurrently-sent messages. As we will show la ter , due to the complex

in teractions am ong messages in a v irtual channel network, a direct op tim iza tion approach

to th e objective is extrem ely difficult. We will adop t an indirect approach by optimizing a

simplified cost function, which can also lead to optimized perform ance with respect to the

real objective. Several cost functions are proposed and then evaluated using simulations.

This chap te r is organized as follows. Basic term s and concepts necessary for our discus

sion are defined in Section 5.2. Simulation results are presented and discussed in Section 5.3.

5.2 Preliminaries

A A:-ary n-cube consists of k n nodes arranged in an n-dimensional grid. Each node

is connected to its C artes ian neighbors in the grid. A 2-dimensional k x k flat mesh is a

subgraph of a fc-ary 2 -cube, is not a regular g raph , and has less edges th an th e corresponding

1 H e r e t h e arrival o f a m e s s a g e m e a n s i t is r e a d y t o b e s e n t o u t o f t h e s o u r c e n o d e .

75

k-ary 2 -cubes (no w rap links a t its bou n d ary nodes). For convenience, we will call a fc-ary

2-cube a wrapped m e s h , or a w-mesh for short. Likewise, we will call a 2 -dimensional flat

m esh an f -mesh . Since an f-mesh is a subgraph of w-mesh with the sam e n u m b er of nodes,

a w-mesh can also be m ade to function as an f-mesh by no t using its w rap links.

Flow control in a v irtual-channel netw ork is perform ed a t th ree levels: rou ting algo

r i thm s, message-scheduling policies, and flit-multiplexing m ethods . Each of these can be

im plem ented with a variety of algorithms.

R o u t i n g A l g o r i t h m s : Selection of p a th s for messages. We consider only non-adap tive

routing . A message is rou ted to its destination via a fixed, shortes t p a th . Issues related to

fau lt- to lerancc are no t considered, or physical and v ir tual channels are assum ed to be fault-

free. In f-meshes, e-cube rou ting is used. T he address o f each node is expressed in te rm s of X

and Y coordinates. A message is rou ted first in the A -dircction until the Y coo rd ina te o f the

node m atches t h a t of its destination node. It is then routed in the K-direction. In w-mcshes,

a modified version of e-cube routing is im plemented to utilize the e x t r a com m unication links

so t h a t each message is routed via a sh o rtes t p a th . Deadlock-freedom is ensured by using the

scheme proposed in [24], T h a t is, the v irtual channels corresponding to each uni-directional

physical channel are divided in to high and low channels. R outing restr ic tions are then

imposed such th a t e ither a high channel or a low channel, b u t not bo th , is allocated to each

given message. T h e w-meshes need a t least two v irtual channels per physical channel to

achieve deadlock-freedom.

M e s s a g e - S c h e d u l i n g P o l i c ie s : D eterm ining which message is allowed to access a free

v ir tua l channel in case of contention. W hen the nu m b er of messages to access a physical

channel a t th e sam e tim e is larger th a n th e num ber of available v ir tual channels, some of

these messages have to be queued. So, we need to determ ine which messages a re allowed

to access th e v irtual channels, and which messages to be queued. W hen evalua ting cost

functions, we will mainly use th e F IF O policy as a default, b u t o ther scheduling policies

will also be tes ted when necessary.

F l i t - M u l t i p l e x i n g M e t h o d s : Determ ining th e way messages are tim e-m ultip lexed over

a physical channel. W hen th e re are multiple virtual channels per physical channel, the

messages allocated to these virtual channels are multiplexed over th e physical channel. Flit

multip lexing determ ines th e order for these flits from different v ir tual channels to access

76

the physical channel. In th e round-robin (R R) multiplexing, v ir tual channels tak e tu rns

in accessing th e physical channel w ithou t using any network or message inform ation . R R

multiplexing w ithou t any modification will henceforth be called strict RR. Demand-driven

(DD) allocation can be used to rectify the problem of w asted physical b an d w id th in strict

RR. W ith DD allocation, v ir tua l channels will contend for use of a physical channel only if

they have flits to send. F u rtherm ore , with C T S (Clear-To-Send) lookahead, v ir tual channels

only contend for use of a physical channel if each of them has a flit to send and th e receiving

node has room for it. This can fu r the r reduce the w aste of physical b andw id th . Like message

sequencing, flit multiplexing can also be priority-based, as discussed in C h ap te r 3.

We sum m arize the n o ta t ion used in our discussion as follows.

• a ’ : th e address of th e source node of message m,.

• af: th e address of th e destination node of m

• C xy: the m axim um num ber of messages th a t share a physical channel from node x to

y-

• d (x , y) : the length of th e shortes t p a th from node x to y.

• Fxy : th e m axim um num ber of flits th a t share a physical channel from node x to y.

• £,•: th e length of m, in num ber of flits.

• Li', th e set of physical channels in the pa th of mi.

• m {: a message in P.

• P: th e set of messages to be sent concurrently am ong modules.

• | P |: th e num ber of messages in P.

• th e arrival t im e of m ,.

• t°: the tim e span from the m om ent when p, is ready to be sent till its header flit

arrives a t th e destination .

• tf: the accum ulated queueing delay of m , ’s header flit from the source to th e d es t ina

tion.

• t?: th e accum ulated multiplexing delay of m , ’s header flit from th e source to the

destination.

77

• fj: th e la tency of m,.

• i\\ th e es tim ated latency of m;.

• A 7 ’: th e size of th e time window where messages in P arrive.

• v : th e num ber of virtual channels per physical channel.

• < x , y > : a physical channel from node x to y.

O u r discussion will be based on the following assum ptions.

1. All m appings are one-to-one, i.e., each processor can a t m ost be assigned one module.

2. A ccura te values of V s (message lengths in flits) are given. T h e effects of inaccura te

V s W'H be addressed later.

3. A physical channel takes one unit of time to t ran sm it a single flit. A un it of time is

also called a physical-channel cycle.

T h ere is a single-flit buffer associated with each virtual channel.

5. A message arriving a t its destination is consumed w ithou t waiting.

6 . T here arc an even num ber of virtual channels associated with each physical channel

in a w-mesh.

Problem Statement: Given a set of modules and a set P o f messages to be sent

am ong them , we w ant to m ap these modules into th e network so th a t the m akespan and

average la tency to deliver all th e messages in P a re minimized.

To select a m apping ou t of a large num ber of possible m appings, there m ust be a

certain function to determ ine th e quality of mapping. T he m ost obvious choice is using the

perfo rm ance objective itself. In our case, the average latency of messages in a set P can be

expressed as

£ < ! / | c | ,
m,CP

and their m akespan can be expressed as

m a x(f,a + <{).
m.6 / 3

78

In these equa tions, t\ can be expressed as

l j = < ? + (1 /r ,•) (£ , • - 1).

T h e first te rm , /?, denotes the time span between the arrival o f m, a t th e source node and

th e arrival o f its header flit at th e destination node. t f is composed of two com ponents: the

accum ulated queueing delay t f and the accum ulated header flit multiplexing delay t f . tf is

th e sum of queueing times a t all nodes in the pa th waiting for an available v irtual channel.

t f is th e sum of times m, ’s header flit waits a t the o u tp u t buffers of nodes on its p a th for use

of physical channels. T he second te rm , (1 / r ,■)(£,• — 1), represents the tim e required for all

o ther flits o f m, to arrive a t the destination , which is determ ined by f, and th e transm ission

ra te , r , , o f the pipeline set up for m ,. Depending on th e flit-multiplexing m ethod used and

network condition, r, may change with time during the transmission of m t . Also, given a set

of messages and fixed v, If will be affected by the underlying message-sequencing scheme.

Therefore, even when the exact values of £,-’s are given, it is still very difficult to predic t t['s.

Consider the simplest case of f-meshes using strict R R multiplexing w ithou t DD allocation

or C T S lookahead. We have r, = l / v Vi, hence only t f needs to be calculated.

• Suppose v > Cxy V x , y , i-P-, no messages will be blocked, then t f = 0, and t f = t f .

However, If € [0, v*d,(af ,af)] , and as v and d (a f , a f) become larger, it is m ore difficult

to pred ic t i f ’s.

• W hen the num ber of concurrent messages is large and blocking is inevitable, tf is no

longer 0 , and the value of t f is even less predictable.

W ith DD allocation or C T S lookahead, r, is no longer a constan t. It becomes even more

complex in th e case of w-meshes with parti t ion ing of virtual channels for deadlock-avoidance.

We therefore conclude th a t a direct optimization on th e perform ance objective itself is not

practical. We need to come up with a certain simplified function th a t , when m appings are

optimized w ith respect to it, th e resulting perform ance is also optimized. In this chap te r,

we will investigate low-complexity cost functions whose com puta tional complexities are of

th e o rder 0(| P |).

A message m, £ P is characterized by its source and destination modules, £t , and

Of these param ete rs , the message arrival time, t f , is th e most difficult to ob ta in accurate ly

beforehand, since t f will be affected by the precedence relationship am ong modules, and

is intrinsically hard for a compiler or loader to analyze before ac tua l execution. Even if

79

th e modules can be test-executed , message arrival times can still vary am ong executions

of th e sam e set of modules due to m inor variations in the environm ent, such as clock-

frequency drift. Besides, in troducing time-rela ted param ete rs into the op tim iza tion process

can fu r th e r com plicate th e problem by adding the scheduling aspect into th e picture . Since

we are m ostly interested in dealing with concurrently-com m unicating modules, A T should

be relatively small. We therefore propose cost functions which ignore A T and assum e

t f = 0, Vm, G P ■ Nevertheless, as we will show in our simulations, m appings optimized

with a properly-chosen cost function still perform well when A T is large. Besides, th e issues

o f message scheduling can be handled a t run-tim e and, as we will d em o n s tra te , can fu rther

improve th e perform ance of a m apping.

T h e following cost functions will be evaluated:

• f i m. m akespan estim ate . T he es tim ated value of t[, denoted by t[, is com puted by

z - f m in { u , m ax C xy}(i i - 1),
< r , y > 6 A .

where z is th e es tim ated t im e required for the header flit of m, to reach its destination ,

z is com puted as r a n d o m Q * J2<x,y>eh, ^*y» where r a n d o m () is a random num ber

uniformly d is tr ibu ted in (0 ,1) . T he estim ated makespan is com puted by tak ing the

m axim um of t-’s. Since r, assumes the lowest possible value, this will be a pessimistic

es tim ate .

• f 2: average latency es tim ate . Similar to _/), except th a t the average value of t] ’s is

com puted .

• y3: sum of length-d is tance p roduc t, i.e., the to ta l physical bandw id th required by the

messages in P. Formally, it can be expressed as ai)- T h |S cost' function

is shown to be quite effective in large-buffer, non-multiplexing networks in C h ap te r A.

However, in a v irtual channel network with wormhole switching, a p a r t from physical

b an d w id th , the usage of buffer resource is also a m a jo r factor in netw ork performance.

• / 4: m ax C i y , the m axim um num ber of packets to go th rough a physical channel,
0 < r , y < M

i.e., m axim um congestion.

• h'- ^ 2 C xy, the sum of congestion on all physical channels.
0 <x , y < A /

• / 6: m ax{ Y ' F xy}, th e m axim um num ber of flits to go th rough a physical channelrn, £ P <i,y >€L,
on the pa th s of all m, G P.

80

• f 7: ^ { ^ 2 Fxy}- Similar to / 6 but. a sum m ation is taken instead. Note t h a t f 7
m,£P <x,y>€L,

is different from f 3. In f 7, a flit can be counted several times if the physical channel

it goes th ro u g h are shared by a num ber of pa ths .

• «/*5 | y*3 • fb constrained by f 3, i.e., a m apping is considered b e t te r only if it has smaller

values of f 5 and f 3.

• /? I h'- h constra ined by f 3.

It is obvious t h a t finding t ru e optim al m appings with respect to each of the above cost

functions is N P -h ard [41], i.e., th e re are no known polynomial t im e algorithm s. Also, finding

op tim a l m appings with respect to them is not very meaningful since the cost functions

themselves arc no t the ac tua l perform ance objective. Therefore, our goal is to ob ta in good

sub-optim al m appings with respect to a cost function with a reasonable com puting time,

and th e m appings will perform well a t run-tim e and show significant im provem ents over

random m appings. We will ad o p t the s im ulating annealing m ethod [72] for this purpose.

T h e advantages of using this m ethod include:

• C o m p u ta t io n times can be easily controlled by se tt ing a few p aram ete rs , such as the

initial tem p e ra tu re , freezing point, etc. Hence it is possible to evaluate cost functions

by sub jecting them to approxim ate ly the sam e am o u n t of com puting time.

• T h e perform ance of m appings m ay be continually improved with additional com puting

time.

• Possible parallelized im plem entation .

T h e term ination of a sim ulated annealing process is generally decided by the following

param ete rs : th e initial tem p era tu re , the freezing point, the tem p e ra tu re u p d a t in g function,

and th e exit cr ite ria a t each tem p era tu re . For each tested cost function, we carefully select

these p aram ete rs so th a t for a given inpu t traffic p a t te rn and traffic density, th e op tim ization

process will te rm in a te in approxim ate ly the sam e num ber of trials, n r , regardless of th e cost

function used. A trial is defined to be an instance of random ly choosing tw o modules and

exchanging their positions, followed by the evaluation of the cost function. On a Sun IPX

w orksta tion , th e compiled C p rogram requires approxim ate ly 20 seconds of C P U tim e for

500 trials. For each given n T , only those inpu ts th a t the optim iza tion process te rm inates

af te r nT ± 10% trials a re used. T he resulting m appings are collected and their average

81

perform ance is calculated. Note th a t we do not artificially force a s im ulated annealing

process to s top. Ins tead , we choose the p aram eters carefully and discard inputs which can

lead to early or la te te rm inations when using any of the cost functions. By doing th is , we

can ensure th e fairness when com paring the effectiveness of cost functions.

5.3 Performance Evaluation

T h e m appings optimized with respect to the various proposed cost functions are fed

into th e network simulation p rogram we used in C h ap te r 3. Recall t h a t we developed the

s im ula to r under th e following assum ptions:

• Transferring a flit between two nodes via a physical channel takes one unit of time.

• A t any in s tan t o f time, all flits th a t have been allocated channels are transferred

synchronously in a single physical channel cycle.

• Each virtual channel is assigned a single-flit bufTer.

T h e simulation results presented here were obtained using the following param eters :

• F IF O is the default message-scheduling policy. T he default flit-multiplexing m ethod

is R R with DD allocation.

• Unless s ta ted otherwise, all messages are 20 flits long.

• T here will be a t m ost one message from one module to the o ther.

• Both w- and f- meshes are of size 16 x 16. Since perform ance trends are mostly

similar for f-meshes and w-meshes for the same P , unless s ta ted otherwise, only the

d a t a ob ta ined with w-meshes are p lo tted .

• T h e num ber of com m unicating modules is fixed a t 256, i.e., th e sam e as the num ber

of nodes in th e network.

• T h e default num ber of virtual channels is v = 4.

• T h e C oncurren t Com m unica tion Probability (C C P) th a t node i sends a message to

node j in the uniform traffic p a t te rn is 0.01. In a 16 X 16 netw ork, the to ta l num ber

of concurrent messages during a mission is « 0 . 0 1 • (16"’ — 1)J .

82

• Unless s ta ted otherwise, th e traffic p a t te rn is uniform. In ho t-spo t traffic, 5 ho t spots

in the netw ork are random ly chosen, with C C P = 0.5 between any node and each of

th e hot spots .

• T h e default value of A T is 0.

• T he modules are first random ly m apped .

• Each d a ta po int is ob ta ined by averaging results from 10,000 m appings. Deviation

from the m ean values is found to be reasonably small (< 5%).

In Figs. 5.2 and 5.3, the m akespans of average la tency of m appings optimized with

different cost functions after « 500 trials, (i.e., tit = 500), are com pared for different values

o f v. T he perform ance o f f \ and / 2 arc found to be very close to th a t o f / 4 and / 6, and hence

are not shown. f x and f 2 are only found to be effective in th e case of f-meshes with large

u ’s and small C C P values. T h is can be a t t r ib u ted to th e fact t h a t only in these situations

m akespan and la tency es t im ates are more accurate .

From the results shown, it is obvious th a t /V, / 5 | / 3 and f? | / 3 perform b e t te r th a n the

o th e r cost functions in this case. M appings optimized with these functions are also more

resilient to the change o f n ’s. On the o ther hand , m appings optimized with som e functions

(e.g., f A and / 6) perform well w ith small u ’s bu t become worse with larger u ’s. In th e case

of / 4, m appings optimized w ith it improve over the random m appings when v < 6 , bu t

ac tua lly perform worse than random m appings when v gets larger. A similar behavior can

also be observed from m appings optimized with the o th e r m ini-max type cost function, / 6,

th ough to a less pronounced degree.

In Figs. 5.4 and 5.5, the perform ance of mappings optimized with th e various cost

functions under uniform ly-distributed traffic are evaluated with variable n T ’s. T h e num ber

of v irtual channels is fixed a t v = 4. A good cost function should d em o n s tra te a more

pred ic tab le behavior, i.e., b e t te r perform ance m easurem ents and less fluctua tions when n T

is increased. Note th a t for each p lo tted curve, n r = 0 corresponds to random mappings.

A m ong th e cost functions investigated , / i , /•>, f \ and / 6 all d em o n s tra te highly unpredic tab le

behaviors with increasing n T . W ith more com puting effort, m appings optim ized with these

cost functions can often worsen performance. This phenom enon is especially prom inen t with

th e makespan m easurem ent. On the o ther hand , / 3, /V, and those re la ted functions like

/ s I fa a n d f i | y*3 , all have m ore predictable performance, a t least up to a much larger n T

th a n o ther cost functions. In m akespan m easurem ents, / 3 shows continual im provem ent of

M
ak

es
pa

n 900.0

800.0 o o rand

700.0 x x f6

 ♦ --------♦ f5lf3
 • ------- • 17113

600.0

500.0

400.0

V . Y *
V.

$ > . ' S i -
• V

300.0

200.0
0 4 8 12 16

v

F i g u r e 5 .2 : M akespan comparison of m appings optimized with various cost functions.

Av
g

la
te

nc
y

84

350.0

300.0

o o rand

250.0

 ♦ -------- ♦ f5lf3
 • --------• 17113

200.0

150.0

100.0
0 4 8 12 16

F ig u r e 5 .3: Average latency comparison of m appings optimized with various cost
functions.

85

700.0

-O

600.0

A

"•i*.
500.0

400.0

300.0
1000 2000 3000 4000 50000

0 - • — 0 fl
A -------- A f2
A ■■•A f3

f4
■ - f5
X- -- - X f6
o •** ..-O a
♦ ■- f5lf3
• - ■ - • J7lf3

Number of trials

F i g u r e 5 .4 : M akespan comparison of m appings optimized with various cost functions,
uniform traffic.

> 200.0 •B-

■-

150.0

100.0
50002000 3000 400010000

O - ■ - o fl
A- -- -A f2
A . . . ■••A f3

* — □ f4
■ - f5
X- -- - X f6
o o n
♦ •- f5lf3
• - n i n

Number of trials

Figure 5.5: Average latency comparison of mappings optimized with various cost
functions, uniform traffic.

86

m appings up to n, = 3000, and / 5 | / 3 can improve up to n T = 4000. While f 7 | / 3 is found

to improve m appings continually up to n T = 10,000. For average latency m easurem ent,

there are less fluctuations for all cost functions. However, m appings optimized with m ost

cost functions stop m aking noticeable im provem ent after n T > 1000. Only / 7, / 5 | / 3 and

/V | ^ 3 show continual im provem ent for n T > 1 0 0 0 , while f 7 \ f 3 shows im provem ent even

when n r > 8000.

Figs. 5.6 and 5.7 com pare the perform ance of m appings optimized with various cost

functions under ho t-spo t traffic. For m akespan m easurem ent, alm ost each cost function

becomes less predic table under ho t-spot traffic. Except / 5 | / 3 and f 7 | / 3, m appings

optimized with all o th e r functions cease to improve after n T > 500. / 5 | / 3 s t a r t s to

show fluctuations after n r > 4000. On the o ther hand , f 7 | / 3 still shows predic table

im provem ents after n T > 5000.

From the above results, we can conclude th a t mappings optimized with respect to f 7 | / 3

have th e m ost predic table im provem ent under various traffic pa t te rn s . T hus , we will focus

on evaluating this par ticu la r function.

Given the same P , the efTect of increasing A T is shown in Figs. 5.8 and 5.9. M appings

arc optimized with f 7 | / 3 a f te r 5,000 trials. It is obvious th a t m appings optimized with

h | fa still improve over random m appings with significant margins for large A T ’s. It is

found th a t even with A T — 250, the margin of im provem ent is still more th an 20% for

bo th m akespans and average latency m easurem ents. Note th a t , for random m appings, the

m akespan decreases monotonically with increasing A T up to 180, showing th a t even when

messages in P arrive in such a large time window, the network is still s a tu ra te d . On the

o th e r hand , for m appings optimized with f 7 | / 3, the network becomes less congested when

A T > 120 and m akespan tilts upward slightly with increasing A T ’s.

In Figs. 5.10 and 5.11, we again evaluate the perform ance of m appings optimized with

f 7 1 / 3) b u t assum ing £,■’s given can be inaccurate to a certain degree. Here the op tim iza tion

process still “sees” each message length as 20 flits long. B ut during simulations, for a given

e, 0 < e < 1, the ac tua l length of m, can be in [20 - 20e, 20 + 20e], In Fig. 5.10, we

can observe th a t when e < 25%, the m akespans of m appings are gradually improved with

increasing n T ’s. W hen e = 50% and e = 75%, the perform ance becomes less predic table

when n r < 3000, b u t stabilized after n T > 3000. For average latency m easurem ent in

Fig. 5.11, th e re are less fluctuations in all th ree curves. In any case, the m appings optimized

with f 7 | / 3 still improve significantly over random m appings, i.e., nT = 0 .

87

700.0

600.0

500.0

400 .0

300.0
2000 3000 50000 1000 4000

o - • - 0 f l
A - -- - A f2
A ••• -••A f3

— □ f4
■ - f5
X- -■ - X f6
0 ..■O 17
♦ — f5lf3
• - 17lf3

N um ber o f trials

F i g u r e 5 .6 : M akespan comparison of m appings optimized with various cost functions,
ho t-spo t traffic.

225.0

tf<

175.0

125.0

75.0
3000 50002000 40000 1000

o - • — 0 f l
A - -- - A 12
A ... ■•■A 13

f4
■ - f5
X- -■ - X f6
0 . .•0 17
♦ f5lf3
• - 17113

N um ber o f trials

Figure 5.7: Average latency comparison of mappings optimized with various cost
functions, hot-spot traffic.

88

I
| 600 .0

S
O ------ o rand
• ----- • f7lf3

500.0

400 .0

300.0

200.0
60 100 120 140 160 180 2000 20 40 80

D ella T

F i g u r e 5 .8 : M akespan of m appings optimized with /V | / 3 versus varying A T .

250 .0

F 200.0

o ------ o rand
• ----- • H ID

150.0

100.0

50.0

0.0
100 120 140 160 180 200600 4 0 80

D elta T

Figure 5.9: Average latency of mappings optimized with | / 3 versus varying A T .

89

■■■■ 1 — 1 1 1

V \ o ----- o C=25%
\

\ \ A --------A c=50%

\ \ A A c=75%

S.

o - .

'•A--

1 1 i i
0 1000 2000 3000 4000 5000

N um ber o f trials

F i g u r e 5 .1 0 : M akespan of m appings optimized with f 7 | / 3 using inaccurate V s .

Uco

<

140.0

90.0

- ... r i H — 1

<
• i 0 - • - O e=25%

•»

■\

A - - - A c=50%
A ••• ••A e=75%

• \
■\
\ V

“ - .

' • j v 1
;

i
:

1 1 i .. . J
1000 2000 3000 400 0 5000

N um ber o f trials

Figure 5.11: Average latency of mappings optimized with f 7 | f 3 using inaccurate £,-’s.

90

„ 700.0
§
e-
-9
S 600.0

500.0

400.0

300.0

200.0
0 1000 2000 3000 400 0 5000

N um ber o f trials

F i g u r e 5 .1 2 : M akespan of m appings optimized with /■? \ fa under different flow-
control s trategics.

g 200.0
I
<

150.0

100.0

50.0
0 1000 2000 3000 4 000 5000

N um ber o f trials

Figure 5.13: Average latency of mappings optimized with f 7 | fa under different flow-
control strategies.

o ------- o IHO-RR
A A SR B F-R R
• ----- • SR B I:-SR B P

- o -

\
- \

1 1 1 I

o ------ o FIFO -R R
\

\
\

%
X

h
x

- -O--------

A A S R B F-R R
• ----- • SR B F-SR B P

-

\ ‘*A- - ■A-.. . , “ - "i
\

\
- V - -

......A
*1;

1 1

1 1

91

In C h ap te r 3, we have shown th a t by employing ap propria te message-scheduling poli

cies and flit-multiplexing m ethods , the perform ance of a virtual-channel netw ork under

concurren t com m unication traffic can be greatly improved. Here we will d em o n s tra te th a t

by applying these run-tim e flow-control mechanisms, th e perform ance of m appings which

are already optimized with f 7 | / 3, can be improved fur ther. In Figs. 5.12 and 5.13, the

perform ance m easurem ents are shown for m appings optimized with f 7 \ f 3 when executed

on system s with various message-scheduling and flit-multiplexing com binations. “S R B F ”

denotes th e message-scheduling policy which gives a higher priority to th e message with

th e smallest rem aining bandw id th . “S R B P ” denotes the flit-multiplexing m ethod giving a

higher priority to the sam e type of messages as in SRB F. These two schemes arc shown

in C h a p te r 3 to perform particu larly well. Also, to prevent deadlock, CTS lookahead is

im plem ented with S R B P multiplexing.

T hese flow-control m echanisms can still improve the perform ance of m appings signifi

cantly. T hough using S R B F scheduling alone can in troduce some perform ance fluctuations

when tit is increased, it can still improve m akespans by a t least 1 2 % and average la tency by

a t least 10%. T h e combination of S R B F and S R B P can fu r ther improve the perform ance,

especially the average latency. Also note th a t , when these flow-control m echanisms are

used, th e margin of im provem ent with increasing n ^ ’s is narrowed. For example, m appings

found with n r = 5000 still ou tperfo rm n r = 1000, b u t when com pared with the case using

only F IF O -R R , th e m argin is g reatly reduced. This shows th a t by using proper run-tim e

flow controls, we m ay save some com puting efTort on finding optimized mappings.

In Figs. 5.14 and 5.15, we show the eiTect of applying the m apping optim iza tion process

and flow-control mechanisms on th e perform ance of one set of com m unicating modules

under uniform and ho t-spo t traffic, respectively. T h e m apping is optimized with f 7 | f 3 and

n T — 5000. It can be observed th a t given a m apping , different flow-control m echanisms

will result in different ra tes of “energy” (rem aining ban d w id th) dissipation. B e t te r flow-

control no t only results in a higher ra te , bu t also a more linear behavior, and hence, a more

pred ic tab le ta sk com m unication response time. F u rtherm ore , in th e presence of ho t-spot

traffic, a good flit-multiplexing m ethod like SRB P can reduce m akespan dram atica lly by

reducing th e tim e th e system spends in n o n -sa tu ra te regions, as shown in Fig. 5.15.

On the o ther hand , the m app ing optim ization process leads to lower “initial energy” ,

and reduces the tim e needed to dissipate it. Note th a t it can work independently of the

flow-control m echanisms, and their im provem ents on th e perform ance can be additive. It

Re
m

ai
ni

ng

ba
nd

 w
ith

92

100000

90000

80000

70000

60000

50000

40000

30000

20000

10000

0

A

i — r

i
w
\\

i_ V\
w

\ \
1 ■*

- w

\ u
\ \ - \

\ \ \ \
ft \ •• \

- A \ \ \
\\ \ • '
\\ \ \ \•.t
n

V\ \ \ \
w \ \ \
\ ' \ \
■. \ \ \

 rand-FIFO-RR
 rand-SRBF-RR
 rand-SRBF-SRBP
 f7lf3-FIFO-RR
 17lf3-SRBF-RR
 17lf3-SRBF-SRBP

* \

\ • \
\ \ \ ••
v \ \ \
\ '•> \ '• '
•• A \ \ N\ \ \ \ \ V

\ - N \
W n n ' v ■'•••I l...

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Time

Figure 5.14: Plot of remaining bandwidth versus time, uniform traffic.

Re
m

ai
ni

ng

ba
nd

w
ith

93

100000

90000

80000

70000

60000

50000

40000

30000

20000

10000

A

o

i — i i i i i i— i i i i i— r

\\
•\\ \
W

w
\ v
\ \

V V

t

\
u
V

\ \
\ \

\ \
\ '-\

\ -\

\ \ \ -V
W \ \ \

w •• \

\ } \
\ 'A

\
A

 rand-FIFO-RR
 rand-SRBF-RR
 rand-SRBF-SRBP
 17lf3-FIFO-RR
 f7lf3-SRBF-RR
 17lf3-SRBF-SRBP

\ A V \

V'* \
\ A \ x

•. -A \ •. •
\ \ \ \

'• ' \

_L
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

Time

Figure 5.15: Plot of remaining bandwidth versus time, hot-spot traffic.

94

is also in teresting to note t h a t the am oun t of initial bandw id th is a good indication of the

quality of m appings, especially when A T is small. In m ost of ou r inputs used here, when

A 7 1 < 70, a m apping with a smaller initial bandw id th alm ost always has a b e t te r m akespan

and average latency m easurem ents . However, in m ost cases, given the sam e com puting

time, m app ing optimized w ith / 3 actually has a higher initial bandw id th th a n / 7 I /3 . T he

reason for this is th a t using / 3 alone, the simulated annealing process can be “t r a p p e d ” in

a local op tim a l much m ore quickly than using f 7 | / 3.

CHAPTER 6

MAPPING COMMUNICATING SUBCUBES IN A

HYPERCUBE MULTICOMPUTER

6.1 Introduction

Subcube allocation — the problem of finding a subcube in a large ta rg e t hypercube

— has been studied extensively [17, 33, 3, 69, 97] under th e assum ption t h a t incoming

subcube requests arc independent. T he commonly-used objective of subcube allocation is

to minimize hypercube fragm entation.

In certain applications, it m ay be necessary to cluster task modules into small groups,

and each group is assigned to a subcube so as to minimize the distance of in tra -g roup (or

in tra -subcube) com m unications. For example, in fau lt-to leran t applications where (appli

ca tion) task modules are replicated, the partia l results ob ta ined by replicas of a module

can be sent to o th e r modules only after they are voted on. Also, the execution of replicas

needs to be synchronized for th e synchronous voting of their results. (Asynchronous voting

is known to be very hard due to the unpredictability of replica completion times [99].) Effi

cient com m unications am ong th e replicas of each module are therefore crucial to the overall

system performance.

T here can still be inter-group (or in ter-subcube) com m unications, which m ay become

a m a jo r perform ance bottleneck if these com m unicating m odules /subcubes are no t care

fully placed within th e hypercube. For example, the em bedding of T M R modules in to the

hypercube, as discussed in [70], requires each T M R to be em bedded into a 2 -dimensional

subcube , Q 2. So, a task composed of com m unicating modules is em bedded in to a set of com

m unicating Q 2's. If a pair of Q 2's com m unicate frequently with each o ther b u t are placed

far a p a r t , then a large am oun t of in ter-subcube com m unication will result, which m ay in

tu rn degrade in tra -subcube com m unication perform ance, as bo th inter- and in tra - subcube

95

96

com m unications use th e same network. We will in this chap te r consider th e problem of

m app ing com m unicating m odules /subcubes in a hypercube by minimizing in ter-subcube

com m unication traffic.

T h e chap te r is organized as follows. Section 6 . 2 in troduces basic n o ta t io n and assum p

tions, formally defines the objective function for subcube allocation, and s ta te s th e o p t i

m ization problem. In Section 6.3, we first discuss the special case of uniform subcube sizes,

and derive some m athem atica l properties of the objective function. M ethods are in troduced

to modify existing optim iza tion algorithm s to solve the problem. A special class of m a p

pings, called parallel m appings , are found to be useful because of their unique properties.

Also, it is proved t h a t for some special cases, only parallel m appings need to be considered

when one wants to find an optim al m apping. Thus, th e op tim iza tion problem is greatly

simplified. T h e general case of non-uniform subcube sizes is then discussed. Section 6.4

deals with sub-optim al m appings found with various heuristic algorithm s. T h rough simu

lations, we show th a t when only sub-optim al m appings are considered, parallel m appings

ou tperfo rm non-parallel ones for m ost of the time.

6.2 Definitions, Assumptions, and Problem Statement

An n-dimensional hypercube, Q n , consists of 2" nodes which are connected in th e form

of a Boolean cube network. Each node is assigned a unique n-bit address, and two nodes are

ad jacen t if and only if their addresses differ in exactly one bit position. We will henceforth

use lower-case Greek letters to denote subcube addresses. Let E be a te rn a ry symbol set

{0 ,1 , + }, where * represents d o n ’t care. Since each node in a Q n is represented by n address

bits, every subcube of the Q n can be uniquely represented by a sequence of n te rn a ry

symbols in E , called the address of th e corresponding subcube.

T h e H am m ing distance between two subcubes a = aofli.-.a,,-! and /? = b0b1...bn^\ of a

Q n is defined as
n — 1

I I (a , P) - ^ 2 h(ai,bi) ,
i = 0

where / i (a , ,) = 1 if € {0,1} A a* 7 ̂ h) , and / i (a , , 6 ,) = 0 otherwise. For example,

11(00*, * 1 1) = 1 , and / / (0 0 *, 1 1 *) = 2 .

We will assum e the sizes of each com m unicating subcubes are known a pr ior i, and

com m unication events am ong those subcubes occur within a small t ime window [107, 109],

i.e., messages are sent almost concurrently. A weighted task graph G will be used to represent

97

th e com m unication behavior am ong the subcubes within the t im e window. G — (V , E) ,

where V is the set of vertices each denoting a subcube, and E = {(u,, u; , u>tJ)} th e set

o f weighted, directed edges from u, to Vj, where denotes the weight on the edge, and

represents the length of th e message from to Vj.

We will first discuss a simple case where all subcubes are of the sam e dimension, using

th e subcube com m unication model defined for uniform-size subcubes as in [8 6 , 18]. Given

(v i ,Vj ,Wij) , v>ij > 0 , suppose </>, = a na,n_ 1...ai is the subcube address which v, is m apped

to , and <f>j = 6 j is th e subcube address Vj is m apped to. We define an instance

of subcube com m unication as each node in </>,■ sends a message of length W{j to ano ther

node in <pj. For now, we are dealing only with uniform-sized subcubes of dimension d,

so th e num ber of messages sent is 2d in each instance of com m unication. T hese messages

arc rou ted by the algorithm E q - s u b c u b e - r o u t e proposed in [8 6], where a 1-to-l m apping

function is found between source and destination nodes, and th e message between each

source-dcstination pair is rou ted through a shortes t path . Also, all messages in an instance

of subcubc com m unication are routed through edge-disjoint pa ths . From [18], th e sum of

lengths of these p a th s is given by T(<f>i,<j>j) = M(</>,-, </>;)2 d, where is defined as

M(<f>i,<t>j) = E ,n=i m (a . A) , where

1 if a, = bi *

0 if a, = 6 ,

1 / 2 otherwise.

Therefore , we define the bandwidth of such an instance of subcube com m unication to be

<)>))■

In C h ap te rs 4 and 5, we have shown th a t for concurrently-com m unicating m odules, the

to ta l ban d w id th of a m apping is a good indicator of run-tim e performance. A m apping

with a smaller to ta l ban d w id th alm ost always has b e t te r run-tim e perform ance, regardless

of th e underlying switching m ethods. We will henceforth use the total bandwidth, denoted

by $, as ou r objective function. A formal definition is given below.

Given G and a ta rg e t hypercube of dimension n > log(2 d | V |), i.e., it is large enough

to accept all subcubes in V , ou r goal is to find a m apping of these subcubes in to th e ta rge t

hypercube so th a t the to ta l communication bandw idth of all communication instances is

minimized. Formally, a m apping problem is described by a th ree tup le (G , d , n), and we

98

w ant to minimize

$ = H WiiT {(t>i i (i>i)i
v,,Vj£V

where </>, and <f j arc th e addresses of subcubes u, and u; m ap p ed to , respectively.

Before delving into details, we sum m arize the symbols used in this chap te r as follows.

• d.\ the dimension of uniform-sized subcubes.

• D: the vector containing the dimensions of com m unicating subcubcs when the ir sizes

are non-uniform.

• G — (V , E) : the task graph.

• (G ,d , n) o r (G , D , n): a m apping problem under consideration.

• I I (a , (3): the H am m ing distance between two addresses a and (3.

• n: the dimension of the ta rg e t hypercube.

• Q n : a hypercube of dimension n.

• T (a , l 3): th e to ta l lengths of the pa ths taken by messages rou ted from subcube address

a to /? following the rou ting scheme in [8 6].

• Vi,Vj". vertices € V of G. Each denotes a subcube.

• (Vi ,Vj ,Wjj): a weighted edge from vt to , which is an element £ IC of G.

• | V |: the num ber of elements in V.

• a , (3: subcube addresses.

• | a |: dimension of a subcube address a .

• the addresses of subcubes th a t t/, and Vj m apped to.

• the to ta l bandw id th of a mapping.

6.3 Mathematical Properties

In this section we derive some m athem atica l properties which are im p o r ta n t when finding

op tim a l subcube mappings. We will first discuss the special case th a t all com m unicating

subcubes are of dimension d.

99

6.3.1 U n iform -S ize S u b cu b es

As in [18], we define th e f ront ie r subcube of a tow ards /?, denoted by cra^ p = cncn_ i . . .c 0

such t h a t c, = bt if a* = * A 6 , € {0 ,1} , and c; = a, o therwise. For example, if a = 00 * *

and f3 = 1 * 1 + then a a^ p = 001*. cra^ p contains all the nodes in a which are closest to /?,

i.e., th e H am m ing d is tance of each node in this subcube of a to /? is exactly

Subcubes a and fi are said to be parallel with each o ther , denoted as a || /?, if | cra^ p \= d

= | a | = | j3 |. Note t h a t in the degenerate case, all Qo's (individual nodes) are parallel with

one an o th e r . It follows th a t if a || /?, T ap = 2dII (a , /3) . U nder a parallel mapping all

com m unica ting subcubes arc m apped to subcubc addresses parallel w ith one ano ther . In a

parallel m apping , th e expression for $ can be rew ritten as

v,,v}e v

Therefore, if we only consider parallel m appings, minimizing the to ta l ban d w id th is equiv

alent to minimizing

v, , v , ev

Note th a t if all subcubcs arc parallel, we can ignore the “d o n ’t cares” , in subcube addresses

when ca lculating their H am m ing distances. T he optim ization problem for (G , d , n) is then

reduced to finding op tim al m appings for ((7 ,0 , n - d). This is ju s t th e op tim iza tion problem

we t rea ted in [107].

Parallel m appings also have th e advan tage th a t , even with th e simplest (fixed-order) e-

cube rou ting algorithm , all in ter-subcube messages are rou ted th rough links t h a t are never

used for in tra -subcube messages. For example, in Fig. 6 .1(a), with e-cube routing , all in te r

subcube messages are rou ted th ro u g h links of the form ab* o r *ab, a ,b € {0 , 1 }, bu t never

th rough links a *b which are used only for in tra -subcube messages. B ut in th e non-parallel

m app ing shown in Fig. 6 . 1 (b) , when bo th t>0’s send messages to t>3 ’s, fixed-order routing

will e i ther rou te a message th rough the link between th e nodes which vQ's are m apped to,

or th e link between the nodes which v3's are m apped to. This s i tua tion can only be avoided

by in troducing a m ore complex rou ting algorithm .

N ote t h a t for arb itra ry , b u t no t necessarily parallel a and f3, given th e frontier subcube

o a_ p , each of a and j3 can be par ti t ioned in to parallel subcubes of th e sam e size as o’a _ (3. So

the co m p u ta t io n of T (a , / 3) can be broken down into th e evaluation of T ’s between parallel

subcubes of dimension | o a^ p \ within a and (5. If | a u_p |= 0, then th e evaluation of

100

110 111

100 101

010 0 1 1

001000

(b)

' 0 v 0

F i g u r e 6 .1 : Two example mappings.

101

T degenerates in to the case of evaluating the H am m ing distances between m any pairs of

individual nodes in a and (3. As an illustrative example, consider several Q 2 s in a Q 4 as

shown in Fig. 6.2. T h e two subcube addresses 01** and 00** are parallel, and e01** 00** = 2.

As for th e two addresses 00** and *1*1, e00** * 1* 1 = 1 , and T^OO**, *1*1) can be expressed

as T (00 * 1 , 0 1 * 1) + T (00 * 0 ,11 * 1) or T (00 * 1 ,1 1 * 1) + T (00 * 0 , 0 1 * 1) . As for 00 * * and

* * 0 0 , e 0 0 * * '* * 00 = 0 , so jT (00 * *, * * 0 0) can only be expressed as in th e definition of T , i.e.,

the sum of H am m ing distances between individual nodes in these two subcubes.

1110 1111

1100 1011

0110 0111

0100 0101

00110010

1010 1011

0001

1000 1001

F i g u r e 6 .2 : An exam ple Q 4.

As a result, all m appings for the problem (G, d, n) can be expressed as parallel m appings

for (G d~* , / , n) , / < /* , where G d~s is some graph construc ted from G (to be explained

below), and f* is th e dimension of the greatest com m on fron t ie r (G C V) subcube , which

can be calculated by counting the num ber of com m on positions in which *’s ap p ea r in all

subcube addresses. For example, we have a problem of (G, 2 ,d) with G given in Fig. 6.3,

and we have a non-parallel m apping v0 —► 0 * *0 , v l —* * 1 * 1 , v2 —► * 0 * 1 and v3 —+ 1 * *0 .

T h en th is m apping can be expressed as parallel m appings of either 16 Q 0's or 8 Q i ’s, which

are smaller or equal to the size of the G C F subcube of th e th ree Q 2 ’s. G d~1 is ju s t 2d~1

disjoint copies of G:

• V d~f = {viir | Vf € V, 0 < x < 2d~f)

• E d~f = { (v iiX, v jiX,Wij) | (v i iVj iWij) £ E , 0 < x < 2d~f }.

F i g u r e 6 .3 : An exam ple G.

Therefore, if the value of / is known and if an optimal parallel m apping for (G d~*, f , n)

is an op tim al m apping for (G , d , n), then the op tim ization algorithm for (G , 0 ,n) can be

applied to solve (G , d , n). However, in general, the value of / in an optim al m apping of

(G , d , n) is no t known, so we have to consider th e w orst case of / = 0 and co ns truc t G d~°,

which will be denoted as G d for simplicity.

Note t h a t any m apping for (G ,d . ,n) can be expressed as some m apping for (G d, 0 ,n) ,

b u t th e converse is not true . In o ther words, the set containing all m appings for (G , d , n) is

a subset of th e set containing all m appings for (G d, 0 ,n) . Therefore, if we find an optim al

m apping for (G d, 0 , n) , it could be useless since it may not be a valid m app ing for (G , d ,n) ,

i.e., copies of certain u, are no t m apped into a Q d. For example, let us consider (G , 1,3)

with G given in Fig. 6.3 and its corresponding G 1 is ju s t two identical G ’s. Fig. 6 A shows

an optim al m apping for (G 1, !) ^) , b u t this m apping is not valid for (G , 1 ,3) since copies of

v0 a re no t m apped in to a Q \.

I t is possible to avoid this problem by modifying G d in to G dx . We will add som e e x t ra

edges to E d, which are of the form {(vi r , u,-(r+i), J Q | 0 < x < 2d - 1}, and if d > 1, an o th e r

edge {(u,(r+2j_ i) , vix, X)} is added. A' is some sufficiently large num ber and its ap p ro p r ia te

value is calculated by the m ethod below.

W hen these edges are added , $ of any m apping for (G * , 0 , n) should be the value of $

o f some m ap p in g for (G d, 0 ,n) plus M such th a t M > | V | 2 dX . T h e value A' is chosen so

t h a t an o p tim a l m apping found will always m ap all copies of u, into a Q d, <E V . And if

M > | V | 2dX 4- X , th e m app ing can never be optimal and is no t valid for (G , d, n). So, we

m ust have

| V | 2 dA + X + $ (o /4 (G d, 0 , n)) > | V | X 2 d + * { w s t (G ,d , n)) ,

103

110 111

100 101

010 011

000 001

F i g u r e 6 .4 : A m apping for (G * ,0 ,3) .

where o p t(G d, 0 , n) denotes th e op tim al m apping for (G d, 0 ,n) and w s t (G ,d , n) th e worst

m app ing for (G , d , n). So we m u st have X > $ (w s t (G , d ,n)) — <&(opl(Gd,0 , n)) . We can

su b s t i tu te any upper-bound for $ (w s t (G , d , n)) and any lower-bound for $ (o p t (G d, 0, n))

to ob ta in th e value of X needed.

For example, to prevent an optim ization algorithm from finding an invalid m app ing as

in Fig. 6.4, we construc t G x as in Fig. 6.5. An upper-bound of $ (w s t (G , 1 .3)) is calculated

by assum ing the worst possible case th a t any pair of v, and Vj are m apped 3 hops away

from each o ther , which is the fa r th es t distance in a Q 3. A lower-bound of $ (o p < (G ',0 ,3))

is ca lculated by assum ing any pair of and Vj a re m apped ad jacent to each o ther . So

X > 3 * 2(3 + 2 + 1) - 1 * 2(3 + 2 + 1) = 24.

T herefore th e optim ization algorithm for (G , 0, n) can find an optim al m ap p in g for

(G , d , n) by construc ting G dx and apply the algorithm to (G x , 0 ,n) . Since the op tim iza tion

problem is N P -h ard [107], the com puta tion cost is much higher th an th e case of finding an

op tim a l parallel m apping , where only the problem (G \ 0 , n - d) needs to be considered. In

w h a t follows, we will show th a t for some special cases of G, an op tim al parallel m apping is

indeed optim al. Therefore, th e op tim ization process can be greatly simplified.

We define a sub-mapping of a m apping for (G , d, n) as a set of node addresses in a

Q n which collectively contain a m apping for (G ,0 ,n) . Each m apping for (G , d , n) can

be partitioned in to 2d such sub-m appings, and the node addresses which the copies of u,

m apped to m ust form a Q d to m ake the m apping valid for (G , d , n). Note th a t we can

104

X

o.o

2

V, V, V.2,01,0 1,1

F i g u r e 6 .5 : An example G lx .

p ar ti t io n a parallel m apping such th a t each of these 2d sub-m appings lies w ithin a Q n-d,

and each sub-m apping is a m apping for (G , 0 , n — d). F u rtherm ore , an op tim a l parallel

m app ing for (G , d, n) can be par ti t ioned in to 2d sub-m appings, each of which is an optimal

m app ing for (G , 0 , n — d). B u t this is no t t ru e in the case of non-parallel m appings. For

exam ple , in Fig. 6 .6(a) we have an optim al parallel m apping for (G , 1 ,3) and in Fig. 6.6(b)

a non-parallel m apping , w ith G again given in Fig. 6.3. A par ti t ion of each of the m appings

is highlighted by the shaded nodes. In th e parallel m apping, each sub-m apping lies within

a Q 2 and is an op tim al m app ing for (G , 0 ,2) . In the non-parallel m apping , sub-m appings

are no t m appings for (G , 0 ,2) .

T h e following proposition is s ta ted w ithou t giving the proof, which is trivial.

P r o p o s i t i o n 1 For a problem (G , d , n), i f there exists a m apping better than an optimal

parallel mapping, then the m apping can be partitioned into sub-mappings an d there m ust be

a sub-mapping whose $ is sm aller than that o f o p t (G ,0 ,n — d), the optimal m apping fo r

(G , 0, n — d).

We will show th a t , if G is a star-like g raph , i.e., all edges in G directed in to or o u t from

ju s t one vertex, then there is no such sub-m apping.

To facilita te the proof, let us first consider an example problem (G , 1 ,3) w ith G given

in Fig. 6.3. T h e m apping in Fig. 6.6(a) is an optim al parallel m app ing for this problem . To

fu r ther improve th e m apping , we need to have a m apping consisting of sub-m appings some

of which have a smaller $ th a n any sub-m apping of the op tim al parallel m apping . Since

each of th e sub-m appings shown in Fig. 6 .6(a) is optimal in ((7 ,0 ,2) , a b e t te r sub-m apping

105

(a)

110 111

100 101

011010

001000

(b)

110 111

100 101

011010

001000

Figure 6.6: Two mappings for (G , 1,3).

106

m ust be some m apping in (G ,0 ,3) . T he only way to find a m apping for (G , 0 ,3) which has

a smaller $ th an an optim al m apping for (G , 0 ,2) is to utilize the dimension not used in

m appings for (G , 0 ,2) . Hence we have in Fig. 6.7 an optim al m apping for (G ',0 ,3) . This

m apping is p roduced from re-m apping v3 in node 101 which is 2 hops away from 000, to

node 010 which is only 1 hop away from v0, hence reducing $ from 7 to 6. However, this

forces v0 in node 010 to be re located to node 101. This leads to a m apping which is not

valid for (G , 1 ,3) , since th e two nodes v0 now m apped to canno t form a Q j. On th e o ther

hand , if v2 in node 001 is exchanged w ith v0 in node 010, th e resulting m apping shown in

Fig. 6 .6(b) is valid for (G , 1 ,3), bu t the sub-m apping docs no t have a smaller $. T h e same

holds if we exchange Uj in node 110 with v0 in node 010. Therefore, th e op tim al parallel

m apping in Fig. 6 .6(a) is also a t ru e op tim al m apping for (G , 1 ,3).

111110

100 101

011010

001

F i g u r e 6 .7 : A sub-m apping which cannot be p a r t of a valid m apping for (G , 1 ,3) .

L e m m a 1 I f G is a star, an optim al parallel mapping fo r a problem (G , d , n) m u st also be

optimal among all mappings.

Proof: An optim al parallel m apping can be considered as 2d copies of th e op tim al

m app ing of th e problem (G , 0 ,n - d), each denoted as o p t (G ,0 ,n — d), and th e 2d nodes

t h a t a given ti; m apped to form a Q d. T he $ value of this m apping can be expressed as

2d$oPn-d. where $oPn- _d is the $ value of o p t (G ,0 ,n - d). Suppose there is a non-parallel

m apping with a smaller $. This m apping can also be parti t ioned in to 2d copies of sub

m appings. T here m ust exist a t least one sub-m apping whose $ is smaller th a n *̂oPn-d- T °

107

satisfy this condition, this sub-m apping m ust be some m apping for (G , 0, m) , n — d < m < n.

W ith o u t loss of generality, let us assum e v0 to be th e central vertex of th e s ta r in G and

is always m apped to the address 0n~d*d. In the optim al parallel m apping , consider th e sub

m app ing in *n~d0d where v0 is m apped to 0n . Since G is a s ta r , th e value of $ is determ ined

only by the distance of n,’s to v0. If there is a m apping for (G ,0 , m) w ith a smaller $ th an

opt(G , 0 , n — d), then some u,-’s in opt(G , 0, n - d) m ust be re -m apped to th e subcube 0n~d*d.

These addresses n. ’s originally m apped to and 0" m ust form a Q d\ o therw ise th e copies of v0

c anno t be re m apped into a Q d. However, if the original addresses which these u. ’s m apped

to can form a Q d, then re-m apping these v^s into 0n~d*d canno t lower $. O therwise, the

original sub-m apping cannot be op tim al in (G , 0 , n - d). A contradiction . □

We arc still unable to prove the general case of a rb i t ra ry task graphs. However, in enu

m era tions for m any low-dimensional cases, we could no t find b e t te r non-parallel m appings

th an op tim al parallel m appings. It is our conjecture th a t optima] parallel m appings are

indeed optim al.

6 .3 .2 N on -un iform Size S u b cub es

In Section 6.3.1, we have discussed the m apping problem based on the assum ption th a t

all com m unica ting subcubes are of the sam e size. Here we will consider the general case

where subcube sizes need not be uniform.

For (n,, Vj, Wjj), W{j > 0, suppose a is the address to which n, is m ap p ed , and (3 is the a d

dress vj is m apped to. We generalize th e definition of an instance of subcube com m unication

as follows.

• If | a |< | f3 |, then an instance of com m unication from a to (3 consists of instances

such th a t a com m unicates with each distinct Q |a | contained in (3.

• If | a |> | j3 |, then an instance of com m unication from a to (3 consists o f instances

such th a t each distinct Q\p\ in a com m unicates with f3.

For exam ple , in a Q 4, an instance of com m unication from a = 00*0 to (3 = 0**1 consists

o f an instance of com m unication from 00 * 0 to 00 * 1, and an instance from 00 * 0 to 01 * 1.

O r if we par ti t ion 0 * * 1 in an o th e r way, it consists of instances from 00 * 0 to 0 * 01 and to

0 * 1 1 . On the o ther hand , an instance from (3 to a consists of similar instances as above

while messages are sent in opposite directions. For a rb it ra ry a and (3, T (a ,(3) = T (@ ,a)

108

= M (a , (3)2maxO“M0l)! where M (a ,(3) is defined as before in Section 6.2. One can observe

th a t how th e larger subcubc is partitioned docs not affect th e value of T (a , (3) o r T (f3 ,a) .

Now, we can describe the subcube m apping problem with a th ree-tup le (G , D , n) , where

P = [d0, d j , r/jv̂ i—i] is a vector specifying the dimensions of subcubes for v0, tq , , U|v|-i €

V .

Here we define a || (3 if | crQ_ ^ |= m in(| a | , | (3 |), i.e., the frontier subcube is ju s t

th e smaller o f the two. This is consistent with the uniform-size case, where two addresses

are parallel if th e frontier subcube is cither of the subcubes. In the degenera te case, an

individual node address is parallel to any o ther subcube addresses. A parallel m apping is

th e one th a t all subcubes are m apped to addresses parallel to one ano ther . So if /* is the

dimension of the G C F subcube in a parallel m apping , /* = dmin, i.e., the smallest d, € D .

W hile in a non-parallel m apping , /* < dmin.

O ne im p o r tan t p roperty of parallel m appings in the uniform-size case is th a t to find

an op tim al parallel m apping for (G,rf, n), we only need to find an optim al m apping for

(G , 0 , n - d) . For the case of non-uniform subcubc sizes, we need to make some modification.

A parallel m apping for (G , D , n) can be expressed as a parallel m apping for (G ', d min, n),

where G ' is construc ted from G by partit ion ing each subcube into one or more

Formally, we have V ' = {ulT | vt 6 V ,0 < i < 2 d,~dm,n}. For each (u,-, v,) e E , if dj > </,,

then

{(i Vjx> Wij) i (Vj(x + 1)i)i •• ■ 1 O’in — 1 p ^ i j) | 0 ^ X < 2 ̂, k 2 1 } C A ,

else if dj < di, then

{(ui r ,u jj. , ie1j) , (n 1(j.+1),u j r ,u i0) , . . . , (w l(r+l._ 1),n ;j .,in,;) | 0 < x < 2d' - d""n\ k = 2d,~dj} C E 1.

For example, suppose G is given as in Fig. 6.3, a m apping for (G , [1 ,2 ,2 ,1] ,4) is shown in

Fig. 6.8, which can be expressed as a m apping for (G ', 1 ,4) with G ' in Fig. 6.9. However, the

set of parallel m appings for (G ', n) m ay contain some m appings which are not valid

for (G , D ,n) . For example, Figs. 6.10(a) and (b) are bo th valid m appings for (G ', 1 ,4) , bu t

only th e one in Fig. 6.10(a) is valid for (G , [1, 2 ,2 ,1] , 4). So if we apply the op tim ization

a lgorithm to find an op tim al parallel m apping for (G ', dmin, n) , which is equivalent to finding

an op tim al m apping for (G ' , 0 , n - d min), the m apping may not be valid for (G , D , n). T he

rem edy for this is to adop t the m ethod in Section 6.3.1 to modify th e task graph. By adding

e x t r a edges in G ' with sufficiently large weights, we can force copies of any given x, to be

m ap p ed in to a Q di.

109

F i g u r e 6 .8 : A m apping for (G , [1 ,2 ,2 , l] , ' l) .

2,0

Figure 6.9: A G' constructed from G.

110

(a)

(b)

Figure 6.10: Example mappings for non-uniform subcube sizes.

I l l

For finding an optim al m apping , no t necessarily a parallel one, a similar m ethod can be

used. A problem (G , D , n) is t rea ted as (G*"” n,0 , n), where G'x""” is construc ted from G'

defined above by following th e modifications m entioned in Section 6.3.1.

Similar to L em m a 1, we have the following lem m a for certain special cases of th e non-

uniform size problem.

L e m m a 2 I f G is a s tar where v0 is the central vertex, and d0 = then an optimal

parallel m apping fo r a problem (G , D , n) m ust also be optimal am ong all mappings.

Proof: Suppose we have an optimal parallel m apping for (G , D , n). It can be parti t ioned

into 2dm,n sub-m appings each of which is a m apping for (G ' , 0 , n - dmin), where G' is con

s t ru c ted from th e above rules by parti t ion ing subcubes into <?dm,n ’s. Since d0 = dmin, G' is

still a s ta r . T h e proof follows th e same argum ent as in the proof of L em m a 1. □

6.4 Heuristic Mapping Strategies

In Section 6.3, we have discussed the m athem atica l properties of subcube m appings,

and discussed a s tra teg y to find an optimal m apping using a modified version of existing

o p tim iza tion algorithm s developed for a simpler m apping problem. However, the complexity

o f these op tim iza tion algorithm s remains exponential, and hence for large problem sizes, we

need som e heuristic a lgorithm s to find good sub-optim al mappings.

We have shown th a t an optim al parallel m apping is also op tim al am ong all m appings

for certa in special cases, and it is our conjecture th a t op tim al m appings is indeed optimal.

However, th is does not imply th a t all parallel m appings are b e t te r th an non-parallel m ap

pings. Therefore, two im p o r tan t questions arise: W hen we use a heuristic algorithm to find

a good sub-optim al parallel m apping , will this sub-optim al parallel m apping be worse than

m ost non-parallel mappings? Do we need to consider all possible m appings, and not ju s t

parallel m appings when looking for a good sub-optim al mapping?

In th is section, we investigate several heuristic m ethods, and com pare the perform ance

of parallel and non-parallel m appings found with each heuristic. We also confirm th a t op

tim iza tion of m appings with respect to $ improves several e th e r perform ance p aram eters

as well. We will focus on th e discussion of the case of uniform-size com m unicating sub

cubes, since we have shown th a t m apping variable-size subcubes can always be reduced to

a uniform-size subcube m apping problem.

112

6 .4 .1 F ixed -S ize T arget H yp ercu b es

We first s tudy th e case where the ta rg e t hypercube dimension is fixed a t n.

T h e sim ulated annealing m eth o d [72] is shown to be an effective algorithm for finding

nea r-op tim al solutions to N P -h a rd task-m apping problems [35, 108]. In [108], we inves

tiga ted a s im ulated annealing m ethod optim ization process for finding good sub-optim al

m appings for th e problem (G , 0, n). T h e im plem entation of th e simulated annealing m ethod

here is based on param ete rs selected with a similar criterion as in [35]. We set th e initial

temperature T 0 = 30, the new temperature Tncw = 0.95T , where T is the tem p e ra tu re in

th e last i tera tion . T h e freezing point is set so t h a t a move increasing th e ob jective func

tion by a unit value has an acceptab le probability of 2-31. T he p e r tu rb function is given

by perform ing random 2-opt exchanges [2] on th e original m apping . Since each instance

o f 2-opt exchange takes approx im ate ly the sam e am o u n t of com puting time, th e expected

com puting tim e of an optim iza tion process can be normalized and expressed as the average

num ber of exchanges perform ed. Given the above p aram ete rs , the op tim iza tion process is

found to te rm in a te af te r 3000 ± 500 exchanges on 90% of inpu ts used in producing th e d a ta

p resented here.

§•6
>< - O ' -

7.5

o- - -o rand
a a sn-p
x x sn-np

6.5

6.0
0.2 0.4 0.60.0

CCP

F i g u r e 6 .1 1 : Average d iam eter versus CCP.

In Table 6.1, we com pare th e perform ance of parallel m appings (sn-p) and non-parallel

m appings (sn-np) found w ith the simulated annealing m ethod . For sn-p m appings, the

initial m apping is a random parallel m apping, and only exchanges am ong parallel subcubes

are allowed. For sn-np m appings, only non-parallel m appings are considered. T h e inpu ts are

113

I
4
■g
G60 5.5
><

5.3

- o rand
••a sn-p
- x sn-np

4.9

4.7

4.5
0.2 0.4 0.8 1.00.0 0.6

CCP

F ig u r e 6 .1 2 : Average node distance versus CCP.

8 30
1 28

-
3 60
><

2.2

2.4

A * '

2.0

1.8

— o rand
 a sn-p
— x sn-np

1.6

1.4

1.2

1.0
1.00.80.2 0.4 0.60.0

CCP

Figure 6.13: Average subcube distance versus CCP.

114

generated with | V |= 25, prob(u)ij > 0) = C C P (C oncurren t C om m unica tion Probabili ty) ,

i.e., the probability th a t u, com m unicates with Vj in the t im e window considered. u \ ; is set

to 20 when ietJ > 0, and each subcube is o f dimension d = 3. Each d a t a po int is ob tained

by averaging results from 10,000 i terations. Deviation from the m ean values is found to be

reasonably small (< 3%).

C C P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

rand

sn-p

sn-np

13472

8624

9552

25952

19072

21344

37888

30608

34016

49280

41216

45536

61056

52880

58464

72640

63968

70480

82368

76224

81432

96752

89344

95856

T a b le 6 .1 : $ of m appings found by various strategies.

It is obvious th a t bo th sn-p and sn-np m appings improve over random m appings signif

icantly when C C P is small, sn-p mappings have more th an 15% im provem ent over random

m appings when C C P < 0.6. Also, sn-p m appings ou tperfo rm sn-np m appings consistently

(> 10%) for all C C P values. This is even more prom inent when C C P > 0.5, where the

margin between sn-np and random mappings narrows down.

W hen in . / s are constan t as in our simulations, the op tim ization of $ can also improve

several im p o r tan t perform ance param eters of a m apping. T he com m unication d iam eter

of a m apping is the largest H am m ing distance between two nodes belonging to a pair of

com m unicating subcubes. T h e average com m unication distance is the average Ham m ing

distance of all pair of nodes involved in in ter-subcube com m unications. T h e average subcube

distance is the average H am m ing distance of all com m unicating subcubes. In Figs. 6.11 to

6.13, we show the three perform ance p aram eters p lo tted against C C P for th e m appings

found. Obviously, sn-p m appings outperform random and sn-np m appings in all cases,

except in the case of average subcube distance, where sn-np has a lower value for various

C C P values. This shows t h a t non-parallel m appings are b e t te r only in minimizing the

H am m ing distance between subcubes, not necessarily between nodes.

6 .4 .2 S tra teg ies for U ncon stra in ed -S ize Target H yp ercu b es

We now assum e the ta rg e t hypercube size to be unconstra ined for m apping subcubes.

As shown in Section 6.3, $ {o p t(G , d, n + 1)) < $ (o p t (G ,d ,n)) , so given some task

graphs, one m ay obtain b e t te r mappings for a larger ta rg e t hypercube. Since processor

115

nodes are often ab u n d a n t in m odern d is tr ibu ted-m em ory system s, the num ber of nodes

used for em bedding a task should not be a m ajo r limiting factor. A m app ing which needs a

larger ta rg e t hypercube b u t dem onstra tes b e t te r com m unication perform ance m ay actually

be more a t trac t iv e . D eterm ining the size of the smallest ta rg e t hypercube needed for an

optim al m apping is also a hard problem even when G ’s are restr ic ted to trees, as shown

in [114]. We will investigate a fast heuristic which finds a spanning tree of each connected

com ponent of G and em bed the tree into a ta rg e t hypercube. T he basic idea is to t ry to find

a m axim al spanning tree such th a t the sum of weights on the tree edges is maximized, and

then th e tree is isomorphically embedded into a ta rg e t hypercube of ap p ro p r ia te size, so

th a t these heavily-com municating subcubes are m apped ad jacen t to ano ther . F inding th e

m in im a l spanning tree of G is easily solved in polynomial t im e [13], b u t finding a m axim al

one is itself N P-hard .

In the “d f” heuristic, G is visited in a depth-first m anner . On a vertex u,, the edge

leading to an unvisited vertex vj with the largest value of Wij + inJt is added to the tree.

In df-p, neighboring nodes in the tree is m apped only to parallel subcubes of H am m ing

distance one to each o ther , while non-parallel subcubes of H am m ing distance one to each

o ther are allowed in df-np. Intuitively, allocating two non-parallel subcubes is easier than

locating two parallel ones. So a possible advantage of m apping non-parallel subcubcs is to

reduce the size of the ta rg e t hypcrcube needed for a m apping , and possibly smaller 4>’s. In

the “b f” heuristic, G is visited in a breadth-firs t m anner . A vertex is first picked so th a t

th e sum of weights on all outgoing and incoming edges is the largest. T h e process is then

repeated for each of the unvisited vertices connected to this vertex , and so on, until all

vertices in G a re covered.

In Table 6.2, we com pare th e perform ance of m appings found by different heuristics. T he

inputs used are the sam e as those used in ob taining the d a t a in Table 6.1. T h e minimal

ta rg e t hypercube dimension required is 8. Table 6.3 shows th e average dimension of the

ta rg e t hypercube required for the corresponding m appings in Table 6.2.

In bo th bf and df, the non-parallel mappings all result in worse perform ance, although

th e ta rg e t hypercube sizes are reduced slightly over parallel m appings, bf-p m appings have

ab o u t the sam e perform ance as df-p when C C P < 0.5, and only slightly improve over df-p

for higher C C P values. However, the bf approaches result in a large increase of required

ta rg e t hypercube size. I t is interesting to note th a t the df approach ac tually needs a smaller

ta rg e t hypercube as C C P increases. This is because as C C P gets larger, G has a higher

116

probabili ty to become H am ilton ian , and its spanning tree becomes “n arrow er” with lower

vertex degrees. For th e bf approaches, the trend is reversed and larger ta rg e t hypercubes

are needed for larger C C P values. Note th a t no m a t te r which heuristic is used, th e ac tua l

num ber of nodes occupied is still th e same. T he difference is in th e size of th e ta rg e t

hypercube th a t becomes fragm ented . A heuristic requiring a larger ta rg e t hypercube will

lead to fragm enta tion of a larger hypercube.

C C P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

df-p

df-np

bf-p

bf-np

8240

8292

8112

8128

21344

21731

21456

21497

34240

34923

35440

35513

46272

47073

46704

46915

58320

59820

57808

58039

70400

72183

68096

69011

82992

84143

79184

81121

95584

98829

91056

93746

T a b l e 6 .2 : $ of m appings found by different heuristics.

C C P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

df-p 9.1 8.5 8.2 8.1 8.0 8.0 8.0 8.0

df-np 8.9 8.3 8.1 8.0 8.0 8.0 8.0 8.0

bf-p 9.1 10.0 11.3 12.7 13.8 15.0 15.0 15.0

bf-np 9.0 9.8 10.4 11.1 11.9 12.8 13.5 14.2

T a b l e 6 .3 : Average size of required ta rg e t hypercubes for various heuristics.

CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Summary

In this d issertation, we have addressed several im p o rtan t issues in im proving th e p er

form ance of m ulticom puter networks in th e presence of concurrent com m unication traffic.

T h e proposed strategics have been shown to significantly improve com m unication perfor

m ance during task execution. In C hap ters 2 and 3, we focused on flow-control mechanisms

to improve com m unication perform ance during the task execution. On th e o th e r hand , in

C h ap te rs A to 6, we addressed the issues of m apping task modules on to th e ta rg e t network

before executing the task .

C h ap te r 2 dealt with optimizing the perform ance of interprocessor-com m unication in

a hypercube m ulticom puter equipped with SPIDER-like ad ap te rs under concurren t traffic.

B ranch-and-bound algorithm s were developed to find optim al schedules for various sw itch

ing m ethods under th e non-adap tive e-cube routing algorithm . T hough com puta tionally

expensive, these op tim al schedules serve to m easure the effectiveness of various scheduling

policies. A centralized pa th selection algorithm based on the simulated annealing m ethod

was also developed and serves as a reference for evaluating d is tr ibu ted rou ting algorithm s.

Several d is tr ibu ted message scheduling policies under the e-cube routing algorithm were

exam ined for systems with message switching, circuit switching, and virtual cu t- th rough .

In our simulations, the Largest Remaining Bandw idth F irst (L R B F) scheduling policy was

found to be very effective. It could approach the perform ance of op tim al schedules in m any

situations. Being a d is tr ibu ted scheduling policy, it was also m ore practical and c o m p u ta

tionally much less expensive th an centralized approaches.

A low-cornplexity adap tive routing algorithm , called the Progressive A dap tive (PA)

a lgorithm , was also evaluated. W hen combined with the L R B F scheduling policy, this

117

118

rou ting algorithm was found to be very effective in improving perform ance over the e-cube

algorithm . It ou tperfo rm ed th e more complex DFS rou ting under heavy traffic conditions,

an d could closely m a tch th e perform ance of centralized, near-optim al approaches.

Though we evaluated netw ork perform ance under t rans ien t com m unication loads, it was

shown th a t an im provem ent in t rans ien t perform ance alm ost always offered b e t te r s teady-

s ta te performance.

In C h ap te r 3, we evaluated the perform ance of several message-scheduling policies and

flit-multiplexing m ethods in a mesh network with wormhole switching and v irtual channels.

We focused on w-meshes (fc-ary 2-cubes) and f-meshes (k x k meshes) w ith e-cube routing

sub jec t to concurren t traffic. We mainly dealt with Iow-complexity flow control m echa

nisms. Simulations were perform ed for th ree message-scheduling policies, F IF O , S R B F and

L R B F , and their com binations with flit-multiplexing m ethods such as dem and-driven (D D)

allocation, C T S lookahead, and priority-based multiplexing.

We used two perform ance m easures in evaluating these configurations: th e m akcspan

of a com m unication mission, and t, the mean latency. It was found th a t DD allocation

and CTS lookahead are bo th essential to minimize th e waste of physical bandw id th . W ith

a small am o u n t of e x t ra hardw are , S R B F message scheduling and th e S R B P flit m ulti

plexing can improve network perform ance significantly. Also, w-meshes, though with more

com m unication resources, m ay perform worse than f-meshes in certain situations.

Using a simple ob jective function, wo formulated and solved th e problem of m apping a

ta sk which is composed of m ultiple in teracting modules into a b inary hypercube in C h ap

te r 4. T h e goal was to optim ize task com m unication perform ance, m easured in com m uni

cation m akespan . Due to th e difficulties in optimizing this ob jective directly, a function

called com m unication bandw id th is proposed. By minimizing this function, we could find

assignm ents with th e op tim al com m unication perform ance using heuristic com binatorial

techniques. Several heuristics t h a t find mappings by minimizing com m unication bandw id th

are im plem ented and com paratively evaluated. T h e m appings found with these a lgorithm s

are also evaluated with sim ulations to assess their perform ance during task execution. It

has been shown th a t for com m unication-bound tasks, they m ake significant im provem ents

over ran d o m assignm ents with respect to an ac tua l com m unication perform ance m easure,

i.e., th e com m unication m akespan. We also analyzed the case where an a lte rna tive rou ting

algorithm like DFS rou ting is used. O ur task m apping s tra tegy is again shown to work well

in this case.

119

In C h ap te r 5, we have addressed the problem of m apping concurren tly concurrently-

com m unica ting modules into a mesh m ulticom puter with wormhole switching and virtual

channels. Our objective is to optimize the makespan and average la tency of these messages

exchange am ong modules. It has been shown th a t a direct op tim iza tion to the perform ance

objective itself is not practical. We investigated several simplified cost functions for the

sim ula ted annealing m ethod . T h e effectiveness of these proposed cost functions are com

pared by using a flit-level simulation program to access the ac tua l run- tim e perform ance of

th e m appings optimized with each cost function when approxim ate ly th e sam e am o u n t of

com pu ting tim e is given. The cost function /V | / 3, has been found to be quite effective.

M appings optimized with it have been shown to be consistently ou tperfo rm th e o thers .

Also perform ance of m appings can be continually improved with th e increase in com puting

time. We also showed th a t the run-tim e perform ance of optimized m appings can be fur ther

improved when on-line fiow-control mechanisms are implemented.

We addressed the problem of m apping a set. of com m unicating subcubcs in a hypcrcube

by minimizing in ter-subcubc com m unication traffic in C h ap te r 6. T h e com m unication model

we used was based on the one proposed in [86, 18] for rou ting messages between subcubcs

of the sam e size. O u r objective was to minimize the to ta l in ter-subcube com m unication

bandw id th .

We first considered the case where all subcube sizes were identical. Several im p o r tan t

m a th em atica l p roperties of th is type of mappings were derived. M ethods were proposed to

modify existing a lgorithm s to find an optim al m apping. Parallel m appings were found to

have certain desirable properties, and required less com puta tion cost to find. It was also

shown th a t for some special cases op tim al parallel m appings were indeed op tim al am ong

all m appings. We then generalized our discussion to include com m unications am ong non-

uniform size subcubes.

We la te r showed by sim ulations t h a t in heuristic algorithm s such as s im ulated annealing

m ethods and o th e r fast heuristics, parallel m appings still ou tperfo rm ed non-parallel m a p

pings in m ost cases. Also, in ou r simulations, optimizing th e proposed objective function

also lead to im provem ents in several o ther perform ance param eters .

7.2 Contributions

T h e main contribu tions of this dissertation are sum m arized as follows.

120

• We proposed practical on-line and off-line strategies to reduce traffic congestion u n

der concurren t traffic arrivals. Most of the proposed strategies can be readily imple

m ented using simple hardw are circuits or low-complexity software code on existing

m ulticom putcrs . In b inary hypercubes equipped with large-buffer switching m ethods ,

we have studied th e effects of combining routing algorithm s with message-scheduling

policies. In the p as t , researchers had mostly focused on complex routing a lgorithm s

w ithou t considering the im portance of on-line message scheduling. In mesh networks

with wormhole switching and virtual channels, we showed th a t good on-line message-

scheduling policies and flit-multiplexing m ethods could greatly enhance netw ork p e r

formance. Also, a new source of deadlock was found in our s tudy of priority-based

flit-multiplexing m ethods.

• W hen com m unicating task modules are to be m apped on to a d is tr ibu ted /pa ra l le l

system , the underlying flow-control mechanisms were taken into account for our o p t i

mization problem. We emphasized the im portance of choosing effective cost functions

ra th e r th an the op tim iza tion algorithm s themselves. W ith proper choices of cost func

tions, ta sk-m apping s trategies and flow-control mechanisms were found to be able to

work in tandem .

• We studied the problem of m apping com m unicating subcubes into a binary hyper-

cube. Properties of this type of m apping were investigated and m apping s trategics

were proposed. Previous research on subcube m apping has been mostly focused on

independent subcubes w ithou t considering in ter-subcube com m unication.

7.3 Future Work

T here are several research topics related to this dissertation work th a t w a rran t fu r the r

investigation. F irs t, in C hap te rs 3 and 5, we only considered networks of which virtual-

channel buffers were one flit long. W hen the buffer size is increased, how th e network

perform ance will be affected is an in teresting issue. A lthough this has been addressed to

som e degree in [27], the au th o r used a simplified model which ignored the overhead of

en tering or retrieving flits in larger buffers. For a more rigorous study, it is necessary to

construc t a more complex simulation p rogram tak ing this overhead into account.

Also, we only considered mesh networks implemented with the non-adaptive e-cube

routing a lgorithm . It should be interesting to investigate th e problem in th e contex t of

121

adap tive rou ting a lgorithm s such as those proposed in [32, 44]. We have shown t h a t the

S R B F message-scheduling policy and the SRB P flit-multiplexing m ethod to be very effective

when the e - c u b e algorithm is used. However, when ano ther rou ting a lgorithm is used

instead , th e resulting perform ance characteristics are still unknown.

In C h ap te r 4, we only focused on low-complexity cost functions. It m ay be possible to

propose a m ore complex cost function which requires more co m puta t ion a t each tria l, b u t

can reach a good m apping with less num ber of trials. Also, we only used th e simulated

annealing m e th o d to evaluate these cost functions. T he possibility of using o th e r m ethods

like genetic a lgorithm s should also be studied.

In C h ap te r 6, we showed t h a t when the task g rap h is a s ta r , an optim al parallel m apping

is also op tim a l am ong all m appings. It is our conjecture t h a t this is also tru e for general

task graphs. A p roof of this conjecture can greatly simplify th e op tim iza tion problem.

Finally, in ou r sim ulations, th e com m unication p a t te rn s used were m ostly random ly

generated . It will be in teresting to evaluate th e various schemes using ac tua l p rogram

traces.

BIBLIOGRAPHY

[1] A. Agarwal, “Limits on interconnection network perform ance,” IE E E Trans, on Par
allel and Distributed S y s te m s , vol. 2, no. 4, pp. 398-412, O ctober 1991.

[2] A. V. Aho, J . E. H opcroft, and J. D. Ullman, Data Structures and A lgorithm s,
Addison-Wesley, 1983.

[3] A. Al-Dhclaan and B. Bose, “A new stra tegy for processor allocation in an n-cubc
m ultiprocessor,” in Proc. Intl. Phoenix Conf. Coinput. C om m un., pp. 114-118, March
1989.

[4] S. Anderson and M. C. C hen, “Parallel b rancli-and-bound algorithm s on th e hyper-
cube ,” in Ilypercube Multiprocessors, pp. 309-317, 1987.

[5] II. G. B ad r and S. P o d a r , “An optim al sh o r tes t-p a th rou ting policy for netw ork com
puters with regular m esh-connected topologies,” I E E E Trans, on Computers, vol. 38,
no. 10, pp. 1362-1370, O ctober 1989.

[6] J . B ax ter and J. P ate l , “T h e LAST algorithm: A heuristic based s ta tic task allocation
algo ri thm ,” in Proc. o f the In terna tiona l Conference on Parallel Processing, pp. 217-
222 ,1989 .

[7] F. B erm an and L. Snyder, “On m apping parallel algorithm s into parallel architec
tu re s ,” Journa l o f Parallel and Distributed Computing, vol. 4, no. 5, pp. 439-458,
1987.

[8] P. B erm an , L. G ravano, G. P ifarre, and J . Sanz, “A daptive deadlock- and livelock-
free rou ting with all m inimal p a th s in to rus networks,” in Sym posium on Parallel
Algorithm s and Architectures, pp. 3 12, Ju n e 1992.

[9] S. Bokhari, “A sho rtes t tree algorithm for op tim al assignm ents across space and tim e
in a d is tr ibu ted co m p u te r sys tem ,” IE E E Trans, on Software Engineering, vol. 7, no.
6, pp. 583-589 ,1981 .

[10] Iv. Bolding, S.-C. C heung, S.-E. Choi, C. Ebeling, S. l lassoun , T . A. Ngo, and 11. Wille,
“T h e C haos rou te r chip: Design and im plem entation of an adap tive ro u te r ,” in Proc.
o f the In terna tiona l Conference on VLSI, 1993.

[11] K. Bolding and L. Snyder, “Mesh and torus chaotic rou ting ,” in Proc. B r o w n /M I T
Conference on Advanced Research in V L S I and Parallel System s, pp. 333-347, 1992.

122

123

[12] R. B o p p an a and S. C halasani, “A comparison of adaptive wormhole rou ting algo
r i th m s,” in Proc. In terna tiona l Sym posium on C om puter Architecture, pp. 351-360,
1993.

[13] G. B rassard and P. Bratley, Algorithmics: Theory and Practice, Prentice-Hall, 1988.

[14] J. B runo , E. C. J r . , and R. Sethi, “Scheduling independent tasks to reduce mean
finishing t im e ,” Journa l o f the A C M , vol. 17, no. 7, pp. 382-387, 1974.

[15] S.-G. C hang, “Fair in tegra tion of rou ting and flow control in com m unication n e t
works,” I E E E Trans, on Com m unications, vol. 40, no. 4, pp. 821-834, April 1992.

[16] M. S. Chen, Distributed R outing and Task Allocation in M ulticom puter S y s te m s , PhD
thesis, T h e University of Michigan, 1988.

[17] M. S. Chen and K. G. Shin, “Processor allocation in an n-cubc m ultiprocessor using
gray codes,” I E E E Trans, on Computers, vol. C-36, no. 12, pp. 1396-1407, December
1987.

[18] M. S. Chen and K. G. Shin, “Depth-first search approach for fau lt- to leran t rou ting in
hypercube m ulticom puters ,” I E E E Trans, on Parallel and Distributed Sys tem s, vol.
1, no. 2, pp. 152-159, April 1990.

[19] N. Chen and C. Liu, “On a class of scheduling a lgorithm s for m ultiprocessor com puting
system s,” in Lecture Notes in C om puter Science, Springer, 1975.

[20] A. A. Chien and J. II. Kim, “P lanar-adap tive routing: Low-cost adap tive networks
for m ultiprocessors,” in Proc. In ternational S ym posium on C om puter Architecture,
pp. 268-277, M ay 1992.

[21] W . W . Chu, L. J . Holloway, M. T . Lan, and K. Efe, “Task allocation in d is tr ibu ted
d a t a processing,” Computer, pp. 57-69, November 1980.

[22] R. C ypher and L. G ravano, “Adaptive, deadlock-free packet rou ting in m ulticom puter
networks using v irtual channels ,” in Proc. o f the In terna tiona l Conference on Parallel
Processing, pp. I l l—204—III—211, August 1992.

[23] W . Dally and H. Aoki, “Deadlock-free adaptive rou ting in m u lticom pute r networks
using v irtual channels,” I E E E Trans, on Parallel and Distributed Sys tem s, vol. 4, no.
4, pp. 466-475, April 1993.

[24] W. J . Dally, “Deadlock-free message routing in m ultiprocessor in terconnection n e t
works,” IE E E Trans, on Computers, vol. C-36, no. 5, pp. 547-553, M ay 1987.

[25] W . J. Dally, “Perform ance analysis of A:-ary n-cube interconnection netw orks,” IE E E
Trans, on Computers, vol. 39, no. 6, pp. 775-785, June 1990.

[26] W . J . Dally, “Express cubes: Improving th e perform ance of A:-ary n-cube in terconnec
tion netw orks,” IE E E Trans, on Computers, vol. 40, no. 9, pp. 1016-1023, Septem ber
1991.

[27] W . J. Dally, “V irtual-channel flow control,” I E E E Trans, on Parallel and Distributed
Sys tem s, vol. 3, no. 2, pp. 194 205, March 1992.

124

[28] W . J. Dally, J . A. S. Fiske, J . S. Keen, R. A. Lethin, M. D. Noakes, P. R. N u th ,
R. E. Davison, and G. A. Fyler, “T he message-driven processor: A m u lticom pute r
processing node with efficient m echanisms,” IE E E Micro , vol. 12, no. 2, pp. 23-39 ,
April 1992.

[29] L. D esba t and D. T ry s tram , “Im plem enting th e discrete Fourier Transform on a hy
percube vector-parallel co m p u te r ,” in Proc. o f the 4th Distributed M em o ry Com puting
Conference, pp . 407-410, M arch 1989.

[30] D. Dolev, E. Upfal, and M. W arm u th , “T he parallel complexity of scheduling with
precedence co ns tra in ts ,” Journal o f Parallel and Distributed C om puting , vol. 3, no. 4,
pp. 553-576, 1986.

[31] J . W . Dolter, S. Daniel, A. M ehra , J . Rexford, W .-C . Feng, and K. G. Shin, “S PID E R :
Flexible and efficient com m unication support for po in t- to-poin t d is tr ibu ted sys tem s,”
in Proc. o f the l j - t h I n t ’l Conf. Distributed Com puting System s, pp. 574-580, Ju n e
1994.

[32] J. D u a to , “Deadlock-free adap tive rou ting a lgorithm s for m ulticom puters : Evaluation
of a new a lgo ri thm ,” in Proc. o f the I E E E S ym posium on Parallel a nd Distributed
Processing, pp. 840-847, 1991.

[33] S. D u t t and J. P. Hayes, “On allocating subcubes in a hypercube m ultiprocessor,” in
Proc. o f the Third Conf. on Ilypercube C oncurrent C om puters a n d Applications, pp.
801-810, J a n u a ry 1988.

[34] K. Efe, “Heuristic models of task assignm ent scheduling in d is tr ibu ted sys tem s,” IE E E
Computer, vol. 15, no. 6, pp. 50-56, June 1982.

[35] F. Ercal, J . R am an u jam , and P. Sadayappan , “Task allocation onto a hypercube by re
cursive m in-cut b iparti t ion ing ,” in Proc. o f the Third Conf. on Ilypercube C oncurrent
Com puters a n d Applications, pp. 210-221, J a n u a ry 1988.

[36] S. Felperin, L. G ravano, G. P irarre , and J. Sanz, “Fully-adaptive routing: Packet
switching perform ance and wormhole a lgorithm s,” in Supercomputing, pp. 654-663,
November 1991.

[37] S. Felperin, L. Gravano, G. P irarre , and J. Sanz, “R outing techniques for massively
parallel com m unication ,” Proceedings o f the IE E E , vol. 79, no. 4, pp. 488-503, April
1991.

[38] G. Fox, “Parallel com puting comes of age,” Concur. Pract. Exp., vol. 1, no. 1, pp.
63-103, 1989.

[39] II. G abow , “Scheduling U E T system s on two uniform processors and length two
pipelines,” S I A M J. C om pu t ., vol. 17, no. 4, pp. 810-811, 1988.

[40] M. G arey and D. Johnson , “Complexity results for m ultiprocessor scheduling with
resource co ns tra in ts ,” S I A M J. Comput., vol. 4, no. 4, pp. 396-411, 1975.

[41] M. R. Garey and D. S. Johnson , Computers and Intractability, W . II. F reem an and
Co., 1979.

125

[42] P. T . G aughan and S. Yalamanchili, “A daptive rou ting protocols for hypercube in
terconnection netw orks,” IE E E C om puter M agazine, vol. 26, no. 2, pp. 12-23, May
1993.

[43] P. T . G aughan and S. Yalamanchili, “Analytical models of bandw id th allocation in
pipelined k-ary n-cubes,” Technical R eport T R -G IT /C S R L -9 3 /0 3 , School of Electrical
Engineering, Georgia In s t i tu te of Technology, 1993.

[44] C. J . Glass and L. M. Ni, “T he tu rn model for adaptive ro u ting ,” in Proc. o f the 19th
In terna tiona l Sym posium on C om puter Architecture , pp. 278-287, M ay 1992.

[45] J. M. G ordon, Efficient schemes fo r massively fault-tolerant parallel com m unications,
P h D thesis, T he University of Michigan, 1990.

[46] J. M. Gordon and Q. F. S to u t , “Ilypercube message rou ting in the presence of fau lts ,”
in Proc. o f the Third Conf. on Ilypercube Concurrent C om puters and Applications,
pp. 318-327, J an u a ry 1988.

[47] R. G ra h am , “Bounds on multiprocessing tim ing anom alies,” S I A M J. Appl. Math.,
vol. 17, no. 2, pp. 416-429, 1969.

[48] A. Greenberg , “Deflection routing in hypercube netw orks,” IE E E Trans, on C o m m u
nications, vol. 40, no. 6, pp. 1070-1081, 1992.

[49] D. G reenberg and S. B h a t t , “Routing multiple pa th s in hypcrcubes,” in Sym posium
on Parallel A lgorithm s and Architectures, pp. 45-54 , Ju ly 1990.

[50] D. Gusfield, “P a ram etr ic combinatorial com puting and a problem of p rogram module
d is tr ibu tion ,” Journal o f the A C M , vol. 30, no. 3, pp. 551-563, 1983.

[51] D. Helmbold and E. M ayr, “Tw o processor scheduling is in N C ,” S I A M J. Comput.,
vol. 16, no. 4, pp. 747-759, 1987.

[52] M. H erbo rd t , C. Weems, and J. C o rbe tt , “Message passing a lgorithm s for an SIMD
to rus with coteries,” in Sym posium on Parallel A lgorithm s and Architectures, pp.
11-20, July 1990.

[53] C .-T . l lo and S. L. Johnson , “Distributed routing a lgorithm s for broadcasting and
personalized com m unications in hypercubes,” in Proc. o f the 1986 In terna tiona l C on
ference on Parallel Processing, pp. 640-648, August 1986.

[54] C .-T . Ho and S. L. Johnson , “Algorithms for m atr ix transposit ion on boolean n-cube
configured ensemble arch itectu res ,” in Proc. o f the 1987 In ternational Conference on
Parallel Processing, pp. 621-629, 1987.

[55] S. lloriike, “A task m apping m ethod for a hypercube by combining subcubes ,” in
Proc. o f the Fifth Distributed M em ory Com puting Conference, pp. 909-914, April
1990.

[56] T .-W . Hou, S. Tsai, and L. Tseng, “A daptive and fau lt- to leran t rou ting algorithm s
for high perform ance 2D torus interconnection netw ork ,” Com puters Math. Applic.,
vol. 23, no. 1, pp. 3 15, 1992.

126

[57] C. E. Houstis, “Allocation of real-time applications to d is tr ibu ted sys tem s,” in Proc.
o f the 1987 I n t ’l Conf. on Parallel Processing, pp. 863-866, A ugust 1987.

[58] T . Hu, “Parallel sequencing and assembly line problem s,” Oper. Research, vol. 9, pp.
841-848, 1961.

[59] J .- J . Hwang, Y.-C. Chow, F. Anger, and C.-Y. Lee, “Scheduling precedence graphs
in systems with interprocessor com m unication t im es,” S I A M J. Comput., vol. 18, no.
2, pp. 244-257, 1989.

[60] C. R. Jesshope, P. R. Miller, and J. T . Yantchev, “High perform ance com m unica
tions in processor netw orks,” in Proc. o f the In terna tiona l Sym posium on C om puter
Architecture, pp. 150-157, M ay 1989.

[61] S. L. Johnson, “Com m unica tion efficient basic linear algebra co m pu ta t ions on hy
percube arch itectu res ,” Journa l o f Parallel and Distributed Computing, vol. 4, pp.
133-172, 1987.

[62] S. Johnsson, “C om m unica tion in network arch itectu res ,” in V L S I and Parallel C o m
putation, pp. 223-378, M organ K aufm ann, 1990.

[63] E. C. J r . , M. Garey, and D. Johnson , “An application of bin-packing to m ultiprocessor
scheduling,” S I A M J. Com put., vol. 7, no. 1, pp. 1-17, 1978.

[64] II. Jung , L. Kirousis, and P. Spirakis, “Lower bounds and efficient algorithm s for
m ultiprocessor scheduling of dags with com m unication delays,” in Proc. o f the A C M
Sym posium on Parallel A lgorithm s and Architectures, pp. 254-264, 1989.

[65] D. K afura and V. Shen, “Task scheduling on a m ultiprocessor system with indepen
dent memories,” S I A M J. Comput., vol. 6, no. 3, pp. 568-597, 1989.

[66] D. D. K andlu r and K. G. Shin, “Traffic rou ting for m u lticom pu te r networks with
v irtual cu t- th rough capability,” IE E E Trans, on Computers, vol. 41, no. 10, pp. 1257—
1270, O ctober 1992.

[67] M. K aufm ann , “An alm ost-optim al algorithm for the assembly line scheduling p rob
lem,” I E E E Trans, on Computers, vol. 23, no. 11, pp. 1169-1174, November 1974.

[68] C. K. Kim and D. A. Reed, “A daptive packet rou ting in a hypercube ,” in Proc. o f
the Third Conf. on Ilypercube Concurrent Com puters and Applications, pp . 625-630,
J an u a ry 1988.

[69] J. Kim, C. R. Das, and W . Lin, “A top-down processor allocation scheme for hyper
cube com pu ters ,” I E E E Trans, on Parallel and Distributed Sys tem s, vol. 2, pp. 20-30,
Jan u a ry 1991.

[70] D. L. Kiskis and K. G. Shin, “Em bedding trip le-m odular redundancy into a hypercube
a rch itec tu re ,” in Proc. o f the Third Conf. on Ilypercube Concurrent C om puters and
Applications, pp. 337-345, Jan u a ry 1988.

[71] D. W . K rum m e, K. N. V enkataram an , and G. Cybenko, “ Ilypercube em bedding is
N P-com plete ,” in Proc. o f the First Conf. on Ilypercube Concurrent C om puters and
Applications, pp. 148-157, A ugust 1985.

127

[72] P. J . M. Laarhoven and E. 11. L. A arts , Simulated Annealing: Theory and Applica tions,
D. Reidel Publishing Com pany, 1987.

[73] C.-Y. Lee, J .- J . Hwang, Y.-C. Chow, and F. Anger, “M ultiprocessor scheduling with
intcrprocessor com m unication delays,” Oper. Res. Lett., vol. 7, no. 3, pp. 141-145,
1988.

[74] S. Lee and J. Aggarwal, “A m apping s tra tegy for parallel com puting ,” I E E E Trans,
on Computers, vol. 36, no. 4, pp. 433-442, April 1987.

[75] F. Leighton, Introduction to Parallel A lgorithm s and Architectures, M organ K auf
m ann , 1992.

[76] H. R. Lewis and C. II. P apad im itr iou , E lem ents o f the Theory o f C omputation,
Prcntice-Hall, 1981.

[77] J . Lindbcrg and S. Yalamanchili, “S ta tic program assignm ent in circuit switched
m ultiprocessors,” in Proc. 6 -th Distributed M em ory C om puting Conference, pp . 244-
247, April 1991.

[78] V. M. Lo, “Task assignm ent to minimize completion t im e ,” in Proc. o f the Fifth I n t ’l
Conf. on Distributed C om puter System s, pp. 329-336, May 1985.

[79] V. M. Lo, “Tem poral com m unication graphs: A new graph theore tic model for m a p
ping and scheduling in d is tr ibu ted m em ory system s,” in Proc. 6 - th Distributed M e m
ory Com puting Conference, pp. 248-252, April 1991.

[80] D. M ait in and G. E str in , “Experim ents on models of com pu ta t ion and sys tem s,”
I E E E Trans, on Elect. Com put., vol. 16, no. 1, pp. 59-69, 1967.

[81] J. J . M etzner, “Message scheduling for efficient d a ta com m unication under varying
channel conditions,” IE E E Trans, on C om m unications, vol. 32, no. 1, pp. 48-55,
J an u a ry 1984.

[82] D. M itra and It. Cieslak, “Randomized parallel com m unications,” in Proc. o f the 1986
In terna tiona l Conference on Parallel Processing, pp. 224-230, A ugust 1986.

[83] J. Ngai and C. Seitz, “A framework for adaptive routing in m ulticom puter ne tw orks,”
in Sym posium on Parallel A lgorithm s and Architectures, pp. 1-9, Ju n e 1989.

[84] M. D. Noakes, D. A. Wallach, and W . J. Dally, “T he J-M achine m ulticom puter : An
arch itectu ra l evaluation,” in Proc. In ternational Sym posium on C om puter Architec
ture, pp. 224-235, 1993.

[85] M. G. N orm an , “Models of machines and com puta tion for m apping in m u ltico m p u t
ers ,” A C M C om puting Surveys, vol. 25, no. 3, pp. 263-302, Sep tem ber 1993.

[86] S. P ad m an ab h a n and C. B aru, “R outing between subcubes in a hypercube ,” in Proc.
o f the 6th Distributed M em ory Com puting Conference, pp. 295 298, April 1991.

[87] C. 11. P apad im itr iou and M. Yannakakis, “Towards an arch itec tu re -independen t an a l
ysis o f parallel a lgorithm s,” S I A M J. Comput., vol. 19, no. 2, pp. 322-328, 1990.

128

[88] Y. P a rk , V. Cherkassky, and G. Lee, “ATM cell scheduling for b ro ad b an d switching
system s by neural netw orks,” in Proc. I n t ’l Workshop Application Neural Networks
to Telecommunications, pp. 112-118, 1993.

[89] V. G. J . Peris, M. S. Squillante, and V. K. Naik, “Analysis of th e im pact of m em
ory in d is tr ibu ted parallel processing system s,” in A C M Sigm etrics Conference on
M easurem ent a nd Modeling o f Com puter System s, pp. 5 -18, M ay 1994.

[90] M. Perte l , “A critique of adap tive rou ting ,” Technical R eport CS-TR-92-06, California
In s t i tu te of Technology, 1992.

[91] D. P r i tch a rd , C. Askew, D. C arpen te r , I. Glendinning, A. Hey, and D. Nicole, “P ra c
tical parallelism using t ran sp u te r a r ray s ,” in Parallel Architectures and Languages,
Springer-Verlag, 1987. Lecture Notes in C om puter Science.

[92] M. J . Quinn, “Im plem enting best-first b ranch-and-bound algorithm s on hypercubc
m ulticom pu te rs ,” in Ilypercube Multiprocessors, pp. 318-326, 1987.

[93] S. R aghupathy , M. R. Leuze, and S. R. Schach, “Message routing schemes in a hy
percube m achine,” in Proc. o f the Third Conf. on Ilypercube Concurrent Computers
and Applications, pp. 640-646, Jan u a ry 1988.

[94] G. Rao, H. Stone, and T . Hu, “Assignment of tasks in a d is tr ibu ted processor system
with limited m em ory,” I E E E Trans, on Computer'-, vol. 28, no. 4, pp. 291-298, April
1979.

[95] V. R ayw ard-Sm ith , “U E T scheduling with unit interprocessor com m unication delays,”
Disc. Appl. Math., vol. 18, no. 1, pp. 55-71, 1987.

[96] C. L. Seitz, “T h e cosmic cube,” C A C M , vol. 28, pp. 22-23, J an u a ry 1985.

[97] D. D. S h a rm a and D. K. P rad h an , “A novel approach for subcubes allocation in
hypercube m ultiprocessors,” in Proc. o f the Fourth I E E E Intl. Sym posium on Parallel
and Distributed Processing, pp. 336-345, 1992.

[98] C. Shen and W . Tsai, “A graph m atch ing approach to op tim al task assignm ent in dis
t r ib u ted com puting system using a m inim ax criterion,” IE E E Trans, on Computers,
vol. c-34, no. 3, pp. 197-203, March 1985.

[99] K. G. Shin and J. W . Dolter, “An a lternative m ajo ri ty voting m ethod for real-time
com pu ting system s,” IE E E Trans, on Reliability, vol. 38, no. 1, pp. 58-64, April 1989.

[100] B. Shirazi, M. W ang, and G. P a th ac , “Analysis and evaluation of heuristic m ethods
for s ta t ic ta sk scheduling,” Journal o f Parallel and Distributed Computing, vol. 10,
no. 3, pp. 222-232, 1990.

[101] H. Stone, “M ultiprocessor scheduling with th e aid of network flow algorithm s,” IE E E
Trans, on Software Engineering, vol. 3, no. 1, pp. 85-93, Jan u a ry 1977.

[102] II. Stone, “P rogram assignment in th ree processor systems and tr icu tse t par ti t ion ing
of g rap h s ,” Technical R eport ECE-CS-77-7, University of M assachusetts , 1977.

129

103] Q. S to u t and B. W agar, “ Intensive hypercube co m m u n ica t io n -p rearran g ed com m uni
cation in link-bound m achines,” Journa l o f Parallel and Distributed C om puting, vol.
10, no. 2, pp. 167-181, 1990.

104] T . Tang, “Parallel sorting on the hypercube concurren t processor,” in Proc. o f the 5th
Distributed M em o ry C om puting Conference, pp. 237-240, April 1990.

105] R. T hurim ella and Y. Yesha, “A scheduling principle for precedence g raphs with com
m unication delay,” in Proc. o f the In terna tiona l Conference on Parallel Processing,
pp. I l l—229—III—236, A ugust 1992.

106] D. Towslcy, “Allocating program s containing branches and loops within a m ultiple
processor sy s tem ,” IE E E Trans, on Software Engineering, vol. 12, no. 10, pp. 1018-
1024, O ctober 1986.

107] B.-R. Tsai and K. G. Shin, “C om m unica tion-orien ted assignment of task m odules in
hypercube m ulticom pute rs ,” in Proc. 12-th I n t ’l Conf. on Distributed Com put. Syst. ,
pp. 38-45, Ju n e 1992.

108] B.-R. Tsai and K. G. Shin, “Combined routing and scheduling of concurren t co m m u
nication traffic in hypercube m ulticom putcrs ,” subm itted to publication, 1993.

109] B.-R. Tsai and K. G. Shin, “M apping concurrent com m unicating m odules to mesh
m ulticom puters equipped with virtual channels,” subm itted to publication , 1994.

110] L. Valiant, “Universal schemes for parallel com m unication ,” in Proc. o f the 13th A C M
Sym posium o f Theory o f Computing, pp. 263-277, M ay 1981.

111] L. Valiant, “A scheme for fast parallel com m unication ,” S I A M J. C om put., vol. 11,
no. 2, pp. 350-361, 1982.

112] S. Vassilopoulos and P. P apantoni-K azakos, “A transm ission scheduling a lgorithm for
mixed traffic: High and low priority,” in Proc. I E E E IN F O C O M , pp. 2251-2259 ,1992 .

113] B. W agar and Q. F. S to u t , “Passing messages in link-bound hypcrcubes,” in Ilypercube
Multiprocessors, M. H eath , editor, pp. 251-257, SIAM, 1987.

114] A. W agner and D. G. Corneil, “E m bedding trees in a hypercube is N P -c o m p le te ,”
S I A M J. Com put., vol. 19, no. 4, pp. 570-590, 1990.

115] E. Williams, “Assigning processes to processors in d is tr ibu ted system s,” in Proc. o f
the IE E E Conference on Parallel Processing, pp. 404-406, 1983.

116] T .-K . Woo, “A decentralized scheduling algorithm for d is tr ibu ted sys tem s ,” in Proc.
I E E E S O U T H E A S T C O N , pp. 205-208, 1991.

