
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA
313/761-4700 800/521-0600

Order N u m ber 9409675

A program m able routing controller su pp orting m u lti-m ode
routing and sw itch ing in d istributed real-tim e system s

Dolter, James William, Ph.D.

The University of Michigan, 1993

C opyright © 1993 by D olter , Jam es W illiam . A ll righ ts reserved.

U M I
300 N. ZeebRd.
Ann Arbor, MI 48106

A PROGRAM M ABLE ROUTING CONTROLLER
SUPPORTING MULTI-MODE ROUTING A N D

SW ITCHING IN DISTRIBUTED REAL-TIME SYSTEMS.

by

J am es W illiam D o lter

A dissertation subm itted in partia l fulfillment
of the requirements for the degree of

D octor of Philosophy
(C om puter Science and Engineering)

in The University of Michigan
1993

D octoral Com m ittee:
Professor Kang G. Shin, Chair
A ssistant Professor William P. Birmingham
Associate Professor Richard B. Brown
Professor Trevor N. Mudge
Associate Research Scientist Chinya V. Ravishankar

© Jam es William D olter 1993
All Rights Reserved

To Karen and my parents

ACKNOW LEDGEM ENTS

It is an impossible task to thank all those who have contributed in one form or another
to this dissertation. I would, however, like to take this opportunity to thank a few who
have provided me great support in this undertaking.

F irst, I would like to thank my advisor, Professor Kang G. Shin. W ithout Professor
Shin’s continuous and unconditional support I would not have been able to complete the
work presented here. Through his guidance I have gained invaluable expertise in approach
ing, analyzing, and solving the problems th a t every researcher hopes to find. I would also
like to thank the other members of my doctoral com m ittee, Professors William Birm ingham ,
Richard Brown, Trevor Mudge, and Chinya Ravishankar for their constructive input on this
dissertation. Thanks also needs to go to the Office of Naval Research, M artin M arietta , and
the N ational Science Foundation for providing the funds necessary for this endeavour.

I would also like to gratefully acknowledge:

• My wife Karen, for her love, support, and putting up with w hat appeared a t times to
be a snail’s pace a t completing this work.

• Parm esh R am anathan and Dilip K andlur, for many of the daily discussion/argum ents
(ask the neighbors a couple of offices down) th a t formed many of the earlier ideas
presented here.

• Professor John F. Meyer for instilling in me a great respect for the use of perform ability
modeling and SANS.

• S tu art Daniel for having the patience to work in detail on the existing PRC design
and to lerate w hat at times may seem like complete lunacy for the rigor th a t I impose
on the project.

• Dave Musliner for being a fellow hacker in many ways and a great sounding board.

• Jennifer Rexford and Ashish M ehra, for reading draft m aterial and providing an en
thusiastic audience for some of my preaching.

TABLE OF CONTENTS

D E D IC A T IO N .. ii

A C K N O W L E D G E M E N T S... iii

LIST OF TABLES .. vi

LIST OF FIGURES .. vii

LIST OF A PPEN D IC ES .. ix

C H A PTER S

1 IN T R O D U C T IO N .. 1
1.1 M o tiv a tio n .. 1
1.2 Research O b jec tiv es ... 2
1.3 Domain Clarification and A ssu m p tio n s ... 3
1.4 A Map of the D is s e r ta t io n ... 4

2 P R E L IM IN A R IE S .. 6
2.1 C-wrapped Hexagonal M e s h .. 6
2.2 Hexagonal A rchitecture for Real-Time Systems (H A R T S)................. 8
2.3 Network Processor (N P) .. 9

2.3.1 Functions supported by the N P ... 9
2.3.2 Proposed NP architecture and im p lem en ta tion 10

2.4 Com m unication T erm inology.. 13
2.4.1 Messages and Packets ... 14
2.4.2 Switching P a ra d ig m s .. 14
2.4.3 Routing M e th o d s ... 17

3 PROGRAM M ABLE ROUTING CONTROLLER... 20
3.1 A rchitectural Overview of the PRC and N I ... 20
3.2 Packet Routing E x a m p le ... 23

3.2.1 Packet Transmission .. 27
3.2.2 Packet C ut-Through and R ece p tio n ... 30

3.3 PRC Im p le m e n ta tio n ... 32
3.3.1 Media Access and Flow C o n tro l ... 32
3.3.2 Routing Algorithm S u p p o r t .. 38
3.3.3 E rror D e te c tio n .. 41
3.3.4 O perating System S u p p o r t .. 47

iv

3.3.5 Design Decisions R e v is ite d ... 49
3.4 Comparison to Related Commercial and Research D e v ic e s 51
3.5 Low-Level Simulation and Geometry R e s u l ts ... 57
3.6 Summary .. 58

4 DELIVERY TIM E D IST R IB U T IO N S ... 60
4.1 Problem Description .. 60
4.2 Message M o d e l 61
4.3 Terms and N o ta tio n ... 62
4.4 Network Model Derivation and Param eter Calculation 65
4.5 D istribution of Message Delivery T im e s ... 72
4.6 Numerical Examples and Simulation C o m p a r is o n 73
4.7 Discussion of R e s u l t s .. 75

5 TH E PO IN T-T O -PO IN T MESSAGE S IM U L A T O R ... 80
5.1 General Organization and S tru c tu re .. 81
5.2 Simulation Specification L anguage ... 83
5.3 Topology Generation and Support F u n c tio n s ... 87
5.4 Event M anagem ent and F l o w .. 94

5.4.1 Event q u e u e .. 94
5.4.2 Event hierarchy and s t r u c tu r e .. 95

5.5 Insights into Modeling Hardware ... 97
5.5.1 Bus behavior ... 97
5.5.2 Flow c o n tro l .. 98

5.6 D ata Collection S u p p o r t ... 98
5.7 Sum m ary .. 99

6 MULTI-M ODE ROUTING AND S W IT C H IN G .. 100
6.1 M otivation: Wormhole vs. V irtual C u t- th ro u g h 101
6.2 Experim ental R e s u l t s .. 106
6.3 D isc u s s io n .. 108

7 CONCLUSIONS AND FUTURE D IR E C T IO N S .. 116
7.1 Research C o n trib u tio n s ... 116
7.2 Future D ire c t io n s .. 117

A P P E N D I C E S ... 119

B I B L I O G R A P H Y .. 154

v

16
35

120
121
122
123
124
130
131
132
133
134
135
136
137

LIST OF TABLES

Basic Types of Store-and-Forward Networks . .
C ut-Through Bus C o m m a n d s
C ut-T hrough Device A rbitration Order
C ut-Through Bus Comm and E n c o d in g
C ut-Through M aster Device E n c o d in g
C ut-Through Addressed Slave Device Encoding
C ut-Through Bus Signal S u m m a ry
ALU Instruction E n co d in g
ALU Operand Selection C o d in g
Transfer In s tru c tio n s ..
Source and Destination O perand Coding
Flag M anipulation Instruction Encoding
W ait Instruction E n co d in g
Jum p and R eturn Instruction Encoding
Condition Code Selection C o d in g

vi

LIST OF FIGURES

Figure
1.1 Domain specific characteristics ... 3
2.1 A C-w rapped hexagonal mesh of edge size 4 (H 4) .. 7
2.2 Block diagram of a HARTS node.. 9
2.3 A block diagram of the N P... 11
2.4 Classification of routing a lg o ri th m s .. 18
3.1 Program m able Routing Controller a r c h i te c tu r e .. 22
3.2 PRC to NI functional coupling ... 23
3.3 Packet f o r m a t s .. 24
3.4 Com ponents used in common routing exam ple.. 25
3.5 Exam ple packet s t r u c t u r e ... 26
3.6 Pseudocode description of TFU o p e r a t io n .. 27
3.7 Binary tree priority arb iter example .. 34
3.8 CTBUS protocol p o lic ie s .. 36
3.9 The architecture of a PRC Receiver .. 39
3.10 Code example constant declarations .. 42
3.11 Code example - Header co llec tion ... 43
3.12 Code example - Route d e te rm in a tio n .. 44
3.13 Code example - Main d a ta lo o p ... 45
3.14 Code example - T ransm itter re s e rv a tio n .. 46
3.15 Parallel CRC Check Unit ... 46
3.16 Parallel CRC G enerator U n i t .. 47
4.1 Exam ple shapes in a H-m esh of dimension 5 .. 64
4.2 Network model around node i .. 66
4.3 Probability distribution of in a H-mesh of dimension 7................................... 75
4.4 Delivery tim e vs. P robability of successful delivery.. 76
4.5 FDs at 15% Peak Load (H-mesh dimension 7 .) .. 77
4.6 Fds at 30% Peak Load (H-mesh dimension 7 .) .. 78
4.7 Fjys a t 45% Peak Load (H-mesh dimension 7 .) .. 79
5.1 Organization of pp-mess-sim source t r e e ... 82
5.2 Exam ple of a sim ulation specifica tion .. 86
5.3 Net class d e f in it io n .. 88
5.4 C-wrapped hexagonal mesh class definition .. 89
5.5 W rapped square mesh class definition .. 90

vii

5.6 C-wrapped hexagonal mesh translate fu n c tio n ... 91
5.7 W rapped square mesh translate fu n c tio n ... 91
5.8 C-wrapped hexagonal mesh map f u n c t i o n .. 92
5.9 W rapped square mesh m ap function ... 93
5.10 Base Event class d efin ition ... 96
5.11 Message create event class d e f in i t io n .. 96
6.1 W ormhole switching latencies as a function of packet rate . (ca = 1.0) 103
6.2 Packet delivery latencies for a C-wrapped H -m esh with edge dimension e.

(c, = 1 . 0) ... 105
6.3 Delivery Latency Class I Traffic - 2 hops - II5 ... 110
6.4 Delivery Latency Class I Traffic - 3 hops - II5 ... 110
6.5 Delivery Latency Class I Traffic - 4 hops - II5 ... I l l
6.6 Delivery Latency Class II Traffic - 1 hop — IT5 ... I l l
6.7 Delivery Latency Class II Traffic - 2 hops - II5 ... 112
6.8 Delivery Latency Class II Traffic - 3 hops - II5 ... 112
6.9 Delivery Latency Class II Traffic - 4 hops — H5 ... 113
6.10 Comparison of Class I to Class II Traffic - Average hops — II5 113
6.11 Comparison of Class I to Class II Traffic - 2 hops - I i5 114
6.12 Comparison of Class I to Class II Traffic - 3 hops - H5 114
6.13 Comparison of Class I to Class II Traffic - 4 hops - II5 115
B .l P artia l structure of the address sequencing hardw are of the R X 126
B.2 Simplified sta te diagram for microsequencer c o n t r o l le r 126
B.3 Instruction sequence example # 1 ... 127
B.4 Instruction sequence example # 2 ... 128
B.5 Instruction sequence example # 3 ... 129

viii

LIST OF APPENDICES

A P P E N D IX
A PRC CTBUS IM PLEM ENTATION ... 119
B PRC RX IN T E R N A L S .. 125
C PRC M ICROASSEM BLER IN PU T G R A M M A R ... 138
D PRC BIT INTERLEAVED CRC IM PLEM ENTATION 146
E ANCHORED SHAPES to ANCHORED ROUTES P R O O F 148
F PP-M ESS-SIM IN PU T SPECIFICATION L A N G U A G E 151

ix

CHAPTER 1

INTRODUCTION

1.1 M otivation

As we approach the 21st century the once separate disciplines of parallel com puting

and distributed systems are now starting to exhibit significant overlap. Parallel com puting,

initially driven by the need for high-performance scientific com puting, traditionally has

resulted in highly regular interconnection networks and tightly-coupled processing elements.

In contrast, d istributed systems grew out of the need to share expensive resources such as

disk space, printers, and d a ta between possibly heterogeneous network-based machines. The

once clean separation between these two fields exists no more.

At the same time it is becoming commonplace to use digital com puters for such real

tim e applications as fly-by-w ire, industrial process control, com puter-in tegrated m anufac

turing, electric power d istribution/m onitoring, and medical life-support systems. The use

of com puters can increase productivity but the applications impose stringent tim ing and

dependability requirem ents on the com puter system. These requirements are a direct con

sequence of the fact th a t a disruption of service caused by a physical failure or inadequate

response tim e can result in a catastrophe.

The need for ultra-dependable com puters th a t can function in real-tim e has been recog

nized for some time and resulted in the initial developments of the Software Implemented

Fault-Tolerance (SIFT) computer[22] and the Fault-Tolerant M ultiprocessor (FTM P)[44].

This com m itm ent continued with the research and im plem entation of both the Fault-

Tolerant Processor(FTP)[43] and its incorporation into the Advanced Inform ation P ro

cessing Systems (AIPS). Most of the effort in these systems was focused on the placement

and the m anagem ent of redundancy in different forms to achieve the desired dependability.

Each of the above systems uses explicit redundancy in the physical interconnect between the

1

2

processing elements. These architectures could be summarized as ultra-dependable m ulti

processors or m ulti-com puters and form roughly the first or second generation of dependable

com puters.

Due mainly to their potential for high-performance and high-dependability w ith the

m ultiplicity of processors and internode routes, distributed systems with p o in t-to -p o in t

interconnection networks are na tu ra l candidate architectures for supporting em bedded real

tim e applications. The key to the success in using distributed systems for these applications

is the timely execution of com putational tasks which usually reside on different nodes and

com m unicate w ith one another to accomplish a common goal. Deadline guarantees for

these real-tim e tasks are not possible w ithout a carefully designed communication subsys

tem which supports the timely delivery of messages. In some cases it may be necessary to

provide specific hardw are support in the communication subsystem in order to satisfy these

guarantees. In addition to the potential for supporting ultra-dependable com puting, d istrib

uted systems based 011 a po in t-to -po in t interconnection networks also hold great promise

for delivering systems with some level of interm ediate dependability: something not as ex

pensive and complete as the ultra-dependable systems used in mission-critical applications

bu t more dependable than systems constructed using standard networking techniques and

commercially-available components.

1.2 Research Objectives

This dissertation investigates an area of the design space in which a homogeneous dis

tribu ted com puting system is constructed th a t has the potential for an interm ediate level

of dependability. The distinguishing features captured in this system are depicted by the

enclosing ellipse in Figure 1.1. M ost of these characteristics are “borrowed” from either the

parallel com puting domain, the distributed systems domain, or the ultra-dependable sys

tem s domain. The unifying feature not explicitly present in the three “paren t” domains is

the flexibility of the underlying communication support hardware which allows these other

features to co-exist while supporting the end goals.

One of the central themes of this dissertation is th a t if flexibility is provided in the

front-end routing hardw are, the m anagem ent of issues related to operating in this hybrid

domain are then possible. To th a t end, most of the results presented here focus on the

development and im plem entation of a programm able routing controller (PR C) th a t acts

3

Parallel C om puters Distributed S ystem s

distribution
topology (non-regular)

connectivity = 1

m edia
fine grain size

cost

topology (regular)
connectivity > 1

comm, support

distribution
media

protocol support cost

coarse grain size

PRC
DOMAINclock sync

real-time comm

predictability

f lexibil i ty

local redundancy

U ltra-dependable System s

Figure 1.1: Domain specific characteristics

both as a single sample in the design space and supports further exploration of the design

space. Specifically, this work

• Proposes an architecture and an im plem entation for a front-end program m able routing

controller th a t supports multiple routing and switching schemes.

• Analyzes the performance of one of the supported switching schemes for a hexagonal

mesh interconnection network based on the capabilities provided by the program m able

routing controller.

• Shows how the capability of supporting multiple routing and switching schemes sim

ultaneously offers potential for supporting a real-time com m unication subsystem .

1.3 Domain Clarification and Assumptions

This section highlights some of the im portant characteristics of the region of the design

space we are exploring. These domain characteristics either perta in to topological and ar

ch itectural com ponents of the system or relate to requirements of the applications to be

supported by the system. We discuss each of the domain characteristics th a t was selec

4

ted and a ttem p t to illum inate the insight th a t led to their selection. Our domain can be

effectively characterized in term s of topology and connectivity, transmission media , m es

sage/packet size , real-time support, fault-tolerance, and flexibility.

Connectivity refers to the num ber of adjacent neighbors of a node, which directly tran s

lates into the num ber of network ports th a t need to be provided into the interconnect fabric.

D istributed systems usually feature a low connectivity, providing only one or two network

ports. Parallel systems typically exhibit a higher degree of connectivity as a function of the

network topology. The desire to provide a system with enhanced dependability character

istics leads directly to the adoption of the topology, connectivity, and routing and switching

features of parallel com puters.

Transmission media refers to the technology used to implement the physical connections

between nodes and is characterized by several performability metrics, including propagation

delay, capacity, and reliability. D istribution relates to the length of the individual physical

links between nodes and directly affects the propagation delays and error characteristics.

M any of the real-tim e applications of which our system is intended to support have physical

distance constraints and external environm ental disturbances th a t tend to align themselves

w ith those of the distributed systems.

The desire to be able to in teroperate with existing distributed systems technology but

also have multiple internode routes and a communication system capable of timely deliv

ery of messages solidifies the remaining characteristics highlighted by Figure 1.1. Existing

d istributed systems use communication protocols th a t force m essage/packet sizes to be

considerably larger than those traditionally used in parallel com puters. Furtherm ore, most

existing parallel com puters provide no mechanism for making the protocols supported ex

tensible if providing any protocol at all. We are faced with the problem of having to deal

w ith the large packets of the distributed system domain along with the issues of routing

these packets between the multiple ports inherited from the parallel domain. Our answer

is a flexible routing controller th a t can intelligently handle these issues efficiently close to

the physical network.

1.4 A Map of the Dissertation

This dissertation unfolds into seven chapters and several appendixes.

C hapter 2 presents background m aterial th a t acts as a foundation for the remaining

5

chapters. The network topology and experim ental system for which the program m able

routing was conceived are described. In addition to the system level descriptions provided,

a brief tu to ria l on different routing and switching schemes is provided.

C hapter 3 presents the architecture and im plem entation of the program m able routing

controller and the network interface. In this chapter we will justify the design decisions in

light of our overall goals. It is the synergistic com bination of m any of the features present

in the program m able routing controller th a t make it stand out from previous work. After

the im plem entation is described, the design is com pared to several related systems.

The problem of deriving an analytical model for v irtual cut-through message passing in

a hexagonal mesh is addressed in C hapter 4. To accomplish this, the hexagonal mesh is

first characterized using a com binatorial analysis to determ ine the probability th a t a packet

will establish a cut-through at an interm ediate node. Given this param eter, the probability

distribution function for packet delivery times is derived. The delivery times obtained from

the model are then com pared w ith sim ulated results of an earlier version of the proposed

routing hardw are.

C hapter 5 presents the second generation sim ulator developed to explore design issues in

point-to-point d istributed systems. The task specification language and some of the design

issues handled to allow for accurate modeling of the program m able routing controller are

described.

C hapter 6 presents some of the most in teresting results derived in this dissertation:

significant advantages can be gained by simultaneously supporting m ultiple routing and

switching algorithm s. F irst, an analytic argum ent is presented for the mean value delivery

times in a hexagonal mesh using wormhole switching and com pared against delivery times

of virtual cut-through. The differences in the delivery times lead to the conclusion th a t

there may be situations in which one scheme is preferred over another. The work is then

extended to show th a t it is possible to carry multiple classes of traffic and capitalize on the

best features of both classes.

The dissertation concludes w ith C hapter 7, which summarizes the contributions and

presents a discussion of the m any directions th a t can be pursued w ith the results uncovered

thus far.

CHAPTER 2

PRELIMINARIES

M any of the design decisions incorporated into the research described in this dissertation

were influenced by the operating environment. This chapter presents a brief background on

the ta rg e t system (i.e., HARTS), as well as examining and classifying a num ber of routing

and switching schemes.

2.1 C-wrapped Hexagonal Mesh

One of the interconnection topologies th a t has received considerable atten tion throughout

this dissertation is the C-wrapped hexagonal mesh [6, 49].

D e f in it io n 1 A C-wrapped H-mesh o f edge size e, denoted by I i e, is comprised of N —

3e2 — 3e + 1 nodes, labeled from 0 to N — 1, such that each node s has six neighbors [5 + 1]^,

[5 T 3e — 1]^) T de — 2]yv? [■s T 3e2 — Sel^, [5 T 3e2 — 6e -f- 2]jv> and [s T 3e~ — 6e T 3]/v,

where [a]b denotes a mod b.

This topology can be visualized as an ordinary hexagonal mesh with links added to

the nodes on the periphery th a t wrap around to other nodes on the periphery to form a

homogeneous surface. For each mesh of edge size e the mesh of edge size e + 1 is formed by

adding a new hexagon of 6(e + 1) nodes around the existing nodes, relabeling the nodes,

and connecting the wraps according to the definition. Figure 2.1 shows an I{4 w ith the

wrap links shown in gray and labeled with the nodes to which they are connected. See

[6] for a more detailed discussion of some of the properties of the C-wrapped H -M esh and

comparisons with other existing topologies.

Several of the properties discussed in [6] are relevant to the development of this work.

F irst, the C-type wrapping results in a homogeneous network. Consequently, any node can

view itself as the center (labeled as node 0) of the mesh. This allows the physical interface

6

7

3 4 5 6 7

30 31 32 33 34

Figure 2.1: A C-wrapped hexagonal mesh of edge size 4 (H 4).

to the network to be independent of the network size. Second, in term s of routing messages

throughout the surface, the diam eter of an H c is e — 1. Third, there is a simple, transparen t

addressing scheme such th a t the shortest paths between any two nodes can be determ ined

by a 0 (1) algorithm given the address of the two nodes. (At each node on a shortest path

there are at most two different neighbors of the node to which the shortest path runs.)

Fourth, based on this addressing scheme it is possible to devise a simple routing algorithm

th a t can be efficiently supported in hardware. Last, since the to ta l num ber of nodes in an

/ /„ grows as a function of 0 (n 2), the incremental cost of expanding the network is low when

com pared to many other topologies.

The six neighbors of a node in a C-wrapped II-m esh can be thought of as being in the

directions d0, c/j, . . ., ri5. To send a message using the base routing algorithm presented

in [6], the source node calculates the shortest paths to the destination and encodes this

routing inform ation into three integers denoted by m 0, m i and m 2. These three integers

represent the num ber of hops from the source node to the destination node along the d0,

di and d2 directions, respectively. Before sending the packet to an appropriate neighbor,

interm ediate nodes update these values to indicate the remaining hops in each direction

to the destination. Hence, m 0 — m i = m 2 = 0 indicates th a t the packet has reached its

destination.

For exam ple, the (m 0, m l , m 2) triple for routing a message from node 2 to node 14 is

(1 ,1 ,0) (see Figure 2.1). This triple encodes all the shortest paths from node 2 to node 14,

i.e., node 14 can be reached by either going from node 2 to node 3 in the d0~direction and

then from node 3 to node 14 in the d i-d irection or by first going from node 2 to node 13 in

th e d i-d irection and then from node 13 to node 14 in the d0-direction. Note th a t in routing

this message from the source to the destination the “w rap” link was used transparenthj by

all nodes in the message’s path.

The C-wrapped mesh is the basis for the interconnection network of the HARTS dis

cussed in the next section.

2.2 Hexagonal Architecture for Real-Time Systems (HARTS)

HARTS is an experim ental testbed being designed and built to investigate various issues

in d istributed real-tim e com puting. The prim ary goal of HARTS is to allow low-level

arch itectural and OS issues such as message buffering, scheduling, and routing to be studied

in a setting th a t allows the researchers internal access to m any of the system param eters.

To m eet these goals, a hybrid system based on commercially-available processors and a

custom -designed communication interface is being developed. Up to three processor cards

are grouped together to form a cluster of Application Processors (A Ps). Each cluster then

serves as a multiprocessor node and is interconnected to other clusters or nodes using the

Network Processor (N P) to form a distributed system. The structure of a single node is

shown in Figure 2.2.

In addition to the APs and the NP, each node has an additional processor th a t functions

both as the VME bus system controller and as a network m onitor (NMON). All network

m onitors are interconnected via a separate LAN. The NMON serves several purposes in the

node architecture. F irst, it provides a necessary non-experim ental means of distributing

code and d a ta am ongst the nodes. This function is especially im portan t during the early

stages of development of the NP. Second, the NMON allows portions of the operating

system to be developed in parallel with the development of the NP. Third, the NMON

will be used to collect experim ental d a ta by m onitoring the APs and the NP with minimal

interference. Due to both multiprocessor and distributed aspects in the system , a wide

variety of architectural and OS effects on real-tim e issues can be easily investigated.

9

Cardcage Boundary

Mttanmum
S y stem C ontroller
N etw ork M onitor

M C68040
16 MB M emory
LANCE/SCSI

Application
P ro c e sso r

, ,
M C68040

4 MB Memory
LANCE/SCSI

Experim ental Netw ork
 P ro c e sso r_______

to netw ork

F ig u re 2 .2 : Block diagram of a HARTS node.

2.3 Network Processor (N P)

2.3 .1 F unctions su p p orted by th e N P

The support functions th a t the NP provides HARTS fall under three main categories:

com m unication protocol processing, low latency message transm ission, and direct support

for real-tim e communication. Each of these areas is covered briefly, followed by a present

ation of the proposed architecture.

The N P ’s main function will be to offload communication processing from the host

processor. When an AP needs to transm it a message, it will provide the corresponding NP

w ith inform ation about the intended message recipient and the location of the message data .

The NP should then execute the operations necessary to pass the message d a ta through

the various layers of protocol down to the physical layer where it can be transm itted .

In term s of the OSI reference model, the NP will be responsible for the functions from

the transpo rt layer down to the physical layer. At the transport level, the NP establishes

tran sp o rt connections dependent only on the source and destination nodes, w ithout concern

for the route to be used. It will also handle end -to -end error detection and handling. At

10

the network level, the NP will select prim ary and alternate routes for establishing virtual

circuits, form d a ta blocks and segments, and reassemble packets a t the destination node.

Depending on traffic conditions in the network and the message type, the NP will choose an

appropria te switching m ethod for the message as discussed in Section 2.4. D etection and

correction of errors will also be performed at this level. At the d a ta link level, the NP will

provide access to the network for the messages. It will perform framing and synchronization,

and packet sequencing.

Low communication latency is another key goal of the NP. This goal im pacts upon task

m igration and distribution, load sharing, and real-tim e com munication. Latency consider

ations extend from the application tasks on the system down to the hardw are com ponents.

It is im portan t to recognize th a t a significant portion of latency occurs in com m unication

processing; therefore achieving low latency communication is intim ately related to imple

m entation of communication protocols.

Timely delivery of messages requires a global tim e-base across the different nodes

in HARTS. The NP will provide hardware support for clock synchronization and tim e-

stam ping of messages th a t are the basis for the im plem entation of various real-tim e com

munication algorithm s. At the same time, operations such as checkpointing, tim eouts, and

deadline checking are made possible with the global tim e-base.

The NP will be required to implement buffer managem ent policies th a t maximize util

ization of buffer space, while guaranteeing the availability of buffers to the highest priority

messages. Similarly, if non-critical messages hold other resources th a t are needed by more

critical ones, it will be necessary to provide a means for preem ption of such resources for

use by the critical messages.

A nother im portan t function of the NP will be to m onitor the s ta te of the network in

term s of traffic load and component failures. The traffic load will affect the ability of the

NP to send real-tim e messages to other processors, while link failures will affect the system

reliability. It will also be possible for the NP to keep track of the processing load of its

host (or hosts), and use the inform ation for load balancing/sharing and task m igration

operations.

2 .3 .2 P rop osed N P arch itectu re and im p lem en ta tion

There are five m ajor components of the NP architecture: the main com munications

processor, which will be referred to as the interface m anager unit (IM U), the program m able

11

VAC068

VIC068

Network Processor VME Card Boundary
^ /

Buffer
Memory

4 M B- 16 MB
70 ns DRAM

V.

PRC
Buffer
Cache

' NlJ liur.,

IMU
Local

Memory

Interface Manager
Unit

Plug Replaceable
Processor Module

IMU
Interface

Logic
J G L 5 u c.

Programmable
Routing

Controller
&

Network
Interface

F ig u re 2.3: A block diagram of the NP.

routing controller (PR C), the network interface (NI), the buffer memory, and the application

processor interface (A PI), interconnected as shown in Figure 2.3.

The A PI transfers d a ta between the NP and the APs, while the PRC moves d a ta between

the NP and the network with the assistance of the NI. W ithin the NP, the IMU controls

the movement and processing of message data. The buffer memory acts as a staging area

for d a ta th a t is to be transm itted to, or received from, the network. Messages th a t need to

be tem porarily stored at the node due to unavailability of outgoing links are also stored in

the buffer memory. The PRC, in conjunction with the NI, im plem ents the physical layer

and d a ta link protocols for accessing the network and routing d a ta to neighboring nodes.

The rem ainder of this section briefly discusses each of the m ajor com ponents but defers the

detailed description of the PRC and NI to C hapter 3.

In te r f a c e M a n a g e r U n i t : The IMU will control the operation of the rest of the NP.

In particu lar, it will construct packets from the original messages and reassemble them at

the final destination, schedule messages with different levels of priority, decide on routing

strategies based on message priority levels and network load s ta te , m onitor the network

s ta te , perform error correction and message acknowledgment, and im plem ent various real-

12

tim e com m unication algorithm s. One of the unique features of the IMU is the processor

module. R ather than restrict this study to one particular processor architecture, the IMU

is designed w ith a generic interface to a plug-replaceable processor module. This approach

has many advantages when designing experiments th a t can be pursued w ith the NP. The

processor module will also have external connectors th a t allow address and d a ta traces to

be collected in real-time.

In addition to its own local memory, the IMU will also have access to the buffer memory.

To minimize the need of copying data , the buffer memory will in m ost instances serve as

the d a ta memory of the IMU. Hence, the buffer memory will be part of the address space

of the IMU. Also under im plem entation is the separation of the headers from the body

of the messages, because such a separation allows the expansion and contraction of the

headers independent of the location of the message body. This separation allows the NP to

reduce the broadcast an d /o r m ulti-cast latency when it is necessary to transm it copies of

the message simultaneously over the different links. These copies would contain the same

d a ta and differ only in the header information.

B u ffe r M e m o ry : The buffer memory subsystem consists of the RAM required for storing

messages and a m anagem ent unit. It will store messages th a t are waiting to be transm itted

to or from the current node, and may act as a tem porary storage area for messages routed

through the current node. The am ount of memory needed is being determ ined by the usage

pa tte rns of the application tasks and is not expected to be greater than a few megabytes.

The word size used for the buffer memory is 32 bits. W ith the current access speeds of

DRAMs at 70 ns, this gives a memory bandw idth as high as 457 M b/s. This bandw idth

appears to be sufficient for access by the PRC, the API, and the IMU, and for refresh cycles.

The buffer m anager arb itrates access to the buffer from the IMU, A PI, and the PRC. It

also handles the refresh of the buffer memory by periodically accessing rows in the DRAM.

The access priorities given to these different sources can be static , dynamic or random ,

depending on the buffer managem ent policy being adopted.

A p p lic a tio n P ro c e s s o r I n te r f a c e : The interface between the NP and the APs is through

a VM E bus. D ata copying between the AP and the NP will be done with the help of the

A PI, which will have a DMA interface to the VME bus. There are two ways of designing

this interface for d a ta transfer: mapping the NP data memory into the A Ps’ address space,

or copying d a ta from the A Ps’ memory to the NP data memory. It may appear th a t map-

13

ping the NP into the address space of the APs is efficient as it avoids the overhead of a

system call. However, this m apping requires dedicated memory m anagem ent hardw are and

kernel support for m apped address spaces, and also incurs the overhead of d a ta access over

the VM E bus. Depending on the size of typical messages, it may be more efficient to use

burst mode DMA transfer from the APs memory to the NP memory.

The APs will initiate d a ta transfer to the NP by writing to a control register in the

A PI. The A PI will then contend for the host VM E bus and the NP buffer memory. W hen

bo th resources are acquired, it will proceed to copy the message d a ta in burst mode directly

from the host to the NP buffers. Upon completion of the transfer, the IMU will be notified,

and the communication processing can begin. A similar sequence of operations will be

perform ed in the reverse order for the reception of messages.

This interface is being implemented using the Cypress VIC068/VAC068 VM E bus con

troller chip set. These devices provide a complete VME bus interface controller and arbiter,

support burst-m ode d a ta transfers, and m ap local bus addresses to VME bus addresses.

2.4 Communication Terminology

Up to this point HARTS and the NP have been presented w ithout precisely defin

ing the meaning of messages, packets, routing, switching, and other term s commonly used

when describing communication subsystems. In this section we discuss the com m unication

paradigm s and definitions th a t are identified to be relevant to the area of the design space

th a t is explored as well as how these paradigms differ as some of the param eters of the

design are varied. We will now present a set of definitions th a t closely follows the term ino

logy and framework outlined by Reed and Fujimoto [40]. It is also im portan t to recognize

the location of HARTS, including the PRC, within the entire spectrum of com m unication

architectures. This work investigates systems with a homogeneous point-to-point intercon

nection supporting coarse-grain parallel com putations, ra ther than trying to operate in the

domain of tightly-coupled multiprocessor networks. In term s of real systems this work is

located somewhere between the high performance hypercubes/k-ary n-cube machines and

the com putation environment th a t can be provided by the Open Software Foundation’s

D istibuted Com puting Environment (O SF/D C E);

14

2 .4 .1 M essages and P ackets

In this framework a message is a unit of inform ation th a t an entity, m ost commonly

a user task on an application processor, subm its to the communication subsystem for dis

semination to a set of entities located elsewhere in the system. The set of entities will be

referred to as the destinations of the message. The m ost common case is th a t the destin

ation set identifies a single entity, which corresponds to a task sending a simple message

to another task. At the other extrem e, the destination set can identify all entities present

in the system , in which case a message is being broadcast. The node in which the sending

entity resides will be called the source node, and the nodes th a t correspond to thoses in

which the destination entities reside will be called the destination nodes.

The communication subsystem , for efficiency reasons, may break the messages into a

num ber of smaller packets w ith their sizes usually chosen from a set of fixed sizes. If this

occurs, it becomes necessary to perform reassembly of the packets into the messages a t each

of the destination nodes. The PRC and the NI assume this to be the case and deal with

packets. The A PI, on the o ther hand, usually deals with messages. This does not imply

th a t parts of messages or packets are stored in contiguous memory in either the NI or the

APs.

The NP derives its ability to act as an ideal tool for an experim ental testbed by being

able to move in several dimensions of the design space. The key dimensions th a t define

its position are the switching and the routing paradigm s, buffer m anagem ent policies, and

flow control issues. The switching paradigm defines how the m essage/packet is physically

forwarded in the system. The routing paradigm determines paths th a t the m essages/packets

will traverse in order to reach the destination nodes. Buffer m anagem ent determines how

and where to store part or all of the m essages/packets if communication links are busy.

Flow control determines how the incoming traffic is controlled.

2.4 .2 S w itch ing P aradigm s

W hen observing the different switching paradigm s there are several characteristics th a t

allow identification of the differences between various techniques. F irst, the unit for which

resources are allocated will be called the allocation unit, and can vary from a single bit up

to multiple messages. Second, the overhead associated with making the routing decisions

th a t can be a ttribu ted to the switching technique will be identified as the routing overhead.

T hird , the policy by which the communication link bandw idth is allocated will be referred to

15

as the bandwidth allocation policy. The final param eter is the buffering complexity imposed

by the switching technique.

P o in t-to -p o in t interconnection networks can be loosely classified as either circuit-switched

or store-and-forward. The most common example of a circuit-switched network is the Plain

Old Telephone Service (PO TS) in which the switching mechanism is im plem ented via the

Public Switched Telephone Network (PSTN). W hen a call is placed, a circuit is created

between the source of the call and the desired destination. This circuit remains established

until either party decides to term inate the call. In term s of the distinguishing character

istics the allocation unit is of arb itrary length, since it is equal to the duration of the call

which is user-determ ined. The routing overhead is only incurred as the circuit is being

established. The telephone company provides a guarantee th a t the voice-grade line will be

able to carry signals from approxim ately 300Hz to 3300Hz; hence the bandw idth allocation

is static . Finally, there is no need to provide any support for buffering. A nother exam ple of *

this technique involving com puter d a ta is the circuit-switched d a ta networks based on the

X.21 protocols.

One of the common objections to circuit-switched networks is th a t since the bandw idth

is statically allocated using the peak signal rate , much of the network bandw idth is w asted if

the com m unication is sporadic in nature. Store-and-forward networks avoid this problem by

allocating the communication link to either a packet or a message. Store-and-forw ard net

works can be further subdivided to into those supporting datagram service, packet-switched

service, or virtual circuit service.

A comparison of these key characteristics is shown in Table 2.1. One of the m ain points

th a t can be noted from the table is th a t both packet-switched and datagram -based services

incur routing overhead on every hop th a t the packet m ust take to reach its destination.

V irtual circuits are an a ttem p t to combine the best points of bo th circuit-switched and

packet-switched techniques. The routing overheads are mainly incurred during the circuit

establishm ent, during which the route through the network for a particu lar message is

established. Subsequent packets are routed according to the circuit pa th th a t was previously

established. V irtual circuits are not w ithout their disadvantages. Since v irtual circuits

obtain their reduced routing overhead by storing sta te inform ation in the network, the

presence of node or link failures can be problematic.

Two more recently proposed variants on the above switching m ethods are virtual cut-

through switching and wormhole routing. V irtual cut-through switching, a variant on packet-

16

Store-and-forward type of service

D atagram Packet-Switched V irtual Circuit

Allocation Unit

Routing Overhead

Message

per Message

Packet

per Packet

Packet

once per Message

T a b le 2 .1 : Basic Types of Store-and-Forw ard Networks

switching, was first presented and its average perform ance analyzed in [26]. V irtual cut-

through switching reduces packet latency by im mediately forwarding the packet ou t of an

interm ediate node the mom ent the node’s outgoing link on the packet’s path is available,

even if the packet has not been received in its entirety. The determ ination of the outgoing

link can only be m ade when the destination of the packet is known, and this inform ation

is norm ally found in the header of the packet. Hence, v irtual cut-through can begin only

after the header of the packet has been received, and when the outgoing link is available.

Should the link be busy, the packet is buffered a t the node itself.

W ormhole routing, a variant on circuit switching, is similar to virtual cut-through

switching in th a t a packet is forwarded to the next node once the header is received and

the outgoing link is available. The difference lies in the way the packet is handled when the

packet is not able to cut th rough a node. W hereas v irtual cut-through buffers the packet

into the storage area of the node, wormhole routing buffers only a small portion of the

packet in an on-line buffer while signaling to the preceding node to stop transm ission of

the packet. All the com munication links from the source to the blocking node — the node

whose outgoing link is busy — continue to be reserved for use of the packet. Viewed from

a different perspective, wormhole routing is circuit-switching w ith the d a ta portion of the

packet being sent im m ediately after the circuit establishm ent inform ation. One benefit of

this, as compared to v irtual cut-through, is th a t links need not be reacquired once they have

been initially acquired when encountering a busy link. Thus, one can save the tim e needed

to buffer the packet into a blocking node, and retrieve it from the node’s buffer memory

when the associated outgoing link of the blocking node becomes free.

One problem th a t wormhole routing has, as a consequence of not relinquishing acquired

links when a packet is blocked, is the possibility of deadlock occurring in the network. Since

packets can hold a link while simultaneously requesting the use of o ther links, and circular

waits are possible in the network, conditions are satisfied for the possibility of deadlock.

17

Deadlock-free routing algorithm s have been discussed previously in [10] to get around this

problem and usually involve multiplexing multiple channels on the physical links and some

ordering constraint on how the links are assigned.

2.4 .3 R o u tin g M eth o d s

As mentioned earlier, routing is the process th a t selects the path (s) th a t a packet will

traverse when traveling from the source node to the destination node(s). W hen examining

the possible routing m ethods th a t are appropriate for the domain under study, techniques

can be used from both the loosely-coupled networks above and the tightly-coupled m ul

ticom puter networks below. Since both the IMU and the PRC are program m able devices,

it isn ’t necessary to focus on any particular algorithm a t the mom ent. However, it is im

po rtan t to ensure th a t the architecture can support a reasonable num ber of the possible

alternatives.

There are many properties th a t can be used to classify routing algorithm s [39, 47, 46,

23, 41]. Figure 2.4 shows a simplified collection of properties th a t will be considered for the

discussion of routing algorithm s.

Routing decisions can be either distributed, centralized, or directed (source-list) by the

source node. For distributed routing algorithm s, in which each interm ediate node along

the p a th participates, the am ount and source of inform ation required to make the routing

decisions is im portan t. Centralized and distributed algorithm s th a t depend on non-local

inform ation suffer from the need to either collect or disseminate the s ta te inform ation

throughout the network. This adds additional complexity and uses a portion of the available

network bandw idth. The inform ation type and quantity can vary from no inform ation to

complete global information with algorithm s using something in between these extrem es,

providing the most interesting results. For example, algorithm s using inform ation only

available a t the local node or inform ation available up to k-hops distan t from the node have

provided good perform ance w ithout unduly loading the network.

Routing algorithm s can also be classified as either static or adaptive. A routing scheme

is sta tic if the path traversed by the packet only depends on the source node and the

destination node. This path is not influenced by the presence of o ther packets or resource

conflicts. For an adaptive scheme, the path may be and usually is influenced by other

entities in the network. Static schemes have the desirable properties th a t they are usually

simple to implement and preserve the order of packets sent between nodes. U nfortunately,

Routing Algorithm Properties

Decision Place

Distributed Centralized Source
Node

Routing Strategy

Static Adaptive

Decision Time Performance Metric

Packet Session Number of
Hops

Delay Throughput

minimal
path

non-minimal
path

F ig u re 2.4: Classification of routing algorithm s

19

these advantages are gained a t the cost of higher packet latencies and the inability to deal

w ith any type of traffic congestion. A daptive schemes overcome some of these disadvantages

bu t a t the cost of algorithm complexity and can introduce problems of deadlock.

A nother characterization of routing algorithms is the performance m etric of the number

of hops the packet will traverse when being routed between a source-destination pair. These

algorithm s are usually characterized as either providing minimal or non-minimal routing.

For minimal routing, only routes which traverse a minimum num ber of hops for the partic

ular source-destination pair and topology are considered. In non-minimal routing, packets

may be routed around busy or broken links and this approach can improve perform ance and

tolerance to link and node failures. The greater flexibility offered by non-minimal routing

can be quite costly, especially if the introduction of packets th a t have been “m isrouted”

introduces the possibility of livelock.

Finally, when and how often the algorithm m ust be executed is another way of charac

terizing routing algorithm s. This is clearly dem onstrated when comparing virtual circuits

versus packet switching. For v irtual circuits, the routing algorithm need only be executed

a t each node during the establishm ent of the circuit through the network. All subsequent

packets will use the circuit identification registered by the first packet and will be routed

w ith practically no overhead. This is in contrast to packet switching, in which the routing

algorithm m ust be executed a t every node for each packet.

CHAPTER 3

PROGRAM M ABLE ROUTING CONTROLLER

This chapter presents the architecture and the im plem entation of the Program m able

Routing Controller (PR C). This device is a custom-designed application-specific IC (ASIC)

th a t has been developed using Cascade Design A utom ation’s EPO CH system and Cadence

Design System s’ Verilog-XL. The PRC combines the functionality of the previously-designed

Routing Controller [20] and Packet Controller [15] as well as exploiting the availability of the

AM79168 TAXIchip T ransm itters and the AM79169 TAXIchip Receivers[2, 1]. This design

greatly improves performance over its predecessors while preserving the experim ental flex

ibility and support for distributed real-time communication required for HARTS. Since the

design of the PRC and the Network Interface (NI) are closely-coupled and interdependent,

the architecture and interface requirements of the NI are also discussed in this chapter.

We open with a high-level description of the architecture and then illustrate the different

com ponents through several packet-routing scenarios. After having dem onstrated how the

PRC and NI in teroperate we show how the PRC deals with some of the fundam ental issues

th a t m ust be answered during the design of any communication subsystem . We conclude

by com paring our design with several other systems.

3.1 Architectural Overview of the PRC and NI

Interaction with the PRC is carried out through three distinct interfaces: the Page

Control Bus (PCBU S), the C ut-Through Bus (CTBU S), and the NP Bus (N PBU S). This

structu re can be seen in Figure 3.1. The PCBUS is a bidirectional 32-bit bus th a t provides

a communication path used by the IMU to control the PRC. This bus, with some addi

tional decoding logic, is then used to m ap the PRC into the IM U’s physical address space as

a m em ory-m apped I/O device. The CTBUS is an 8-bit bidirectional, time-division m ulti

20

21

plexed bus th a t facilitates com munication between the I/O devices of the Network Interface

(i.e., AMD TAXI T ransm itters and Receivers) and the internal components of the PRC.

A rb itra tion for a slot on the CTBUS is implemented on the PRC and supports a centralized

dem and assignment allocation policy thai-v? based on a binary priority tree. The NPBUS

interface stores d a ta in and retrieves d a ta from the buffer pool (or PRC cache) of the NP.

This interface is a m aster-only interface; all traffic through this interface is in itia ted by the

PRC.

M ost of the internal architecture of the PRC is organized around the concept of a

physical channel. The PRC has twelve such channels, each of which is dedicated to com

m unication over a particular unidirectional link. There are six “inbound” channels (one for

each receiver interfaced to the CTBUS), and six “ou tbound” channels (one for each tran s

m itte r interfaced to the CTBUS). Most of the components of the PRC can be classified as

providing support for either an inbound channel, an outbound channel, or an interface unit.

For exam ple, the six tran sm itte r fetch units in the lower center part of the PRC in Fig

ure 3.1 support d a ta transm ission on the six “ou tbound” channels. The Cyclic Redundancy

Code (CRC) check and CRC generator units are used for m anipulating the CRC values for

the “inbound” and “ou tbound” channels, respectively. The m icroprogram m ed receivers are

used to support both “inbound” and “outbound” channels. This support takes the form of

low-level route determ inations and reservations of transm itters in the NI for packets th a t

are a ttem pting to cut through the node. The receivers also perform the more m undane

tasks of byte-to-longword construction and control of the CRC check on packets destined

for the com munications subsystem residing at the P R C ’s node.

Like the PRC, the NI is organized around twelve physical channels. For each receiver

in the PRC the NI has a corresponding receiver th a t recovers d a ta from the physical in ter

connect and presents the d a ta in a parallel form to the CTBUS. This functional coupling

is depicted in Figure 3.2. “O utbound” transmission is supported by the NI w ith six tran s

m itters th a t take parallel d a ta from the CTBUS and perform the physical transm ission on

the interconnect. Under PRC control, the receivers of the NI can be configured to au to m at

ically forward incoming d a ta to either a set of NI transm itters, a PRC receiver, or both.

The NI transm itters in conjunction with the CTBUS protocol support a com mand channel

and d a ta channel in the forward direction and a command channel in the reverse direction.

The com m and channels are used to implement the low-level flow control between adjacent

nodes.

P a g e / Control
Bus
Unit

Inter-device
C om m unication

RAM

Event
Q u eu e

Network
Interface
R eceiver

M icroprogram m ed
R ece iver

RX

Cut
Through

Bus

R eservation
S ta tu s C onirol

fefPage S eq u en ce ,,
Control J C RC C heck

Network
Interface
Controllerime S tam p

Unit
CRC

G e n era to r
CT Bus
Arbiter

Transm itter
F etch Unit

TFU

Network
Interface

T ransm itte rCut
T hrough

Bus

PRC Device Boundary Network Interface Boundary

to
t o

F igure 3.1: Program m able Routing Controller architecture

23

Network Interface

PRC ASIC

CT RX2 PRC RX2 PRC RXi CTRX-i

CTTX2 C TTX 1

CT RX3 PRC RX3 PRC RXn CT RX0

CTTXq

Cut-through Bus

CTRX4 PRC RX4 PRC RX5 CTRX5

CTTX5

F ig u re 3 .2 : PRC to NI functional coupling

3.2 Packet Routing Example

R ather than simply listing each of the components and their respective functions we

will present the internal structu re and operation of the PRC by describing the activities

required to transm it a packet, receive a packet, and assist in establishing a cut-through.

T he block diagram presented in Figure 3.1 will be the focus of our discussion.

Before proceeding to the examples, the packet form at and other restrictions imposed

by the PRC need to be clarified. Figure 3.3 summarizes the three packet form ats th a t

the PRC uses. There are several im portant points to note in the different form ats. F irst,

tim e-stam ps are added by the transm itting and receiving P llC s. These tim e-stam ps can be

accum ulated to obtain the to ta l transm ission time of a message and are useful for distributed

inform ation services such as clock synchronization and reliable broadcast as described in

[38]. The accum ulation of tim e-stam ps and modification of the packet size in order to

accom m odate the tim e-stam ps is the responsibility of the IMU. Second, a portion of the

routing header is not covered by the CRC. This allows the PRCs along the path th a t the

packet traverses to modify the routing headers w ithout invalidating the CRC covering the

rest of the packet.

Packets th a t are transm itted and received by the PRC are stored in NP buffer memory in

24

(H Iwords) (D Iwords)

H eader [P a c k e t D a la

(a) Prior to Transm ission

(H Iwords) (D Iwords) (1 Iword) (1 byte) (1 Iword)

H eader | > * * * ' |
p n p l In te rleav ed !

| CRC 1

<•*-------- Portion of Packet Covered by CRC--------- ►

M— Portion of Routing Header NOT Covered by CRC

(U Iwords)

(b) T ransm itted on P hysical Links

(H Iwords) (D Iwords) (1 Iword) (1 Iword)

Routing
H eader Packet Data TX Time

Stam p
RX Time

Stam p

(c) A fter R eception

I I < 64

U < m in (H , 16)

F ig u r e 3 .3 : Packet form ats

25

N o d e 2
. - (C T R X i J A '

' T F L h ~jJ L ^ C T T X -i

N o d e 13

C T T X 4

C T RX4 P R C R X ^j

C T RXq | ^ -

C T T X q

F ig u re 3 .4 : Com ponents used in common routing example.

N o d e 14

P R C RX3 I

a linked page structure similar to the indirect M BUF cluster structures used by m any UNIX

com munication subsystems [32]. Furtherm ore, the pages referenced by these structures have

the following characteristics: the page size is 256 bytes, pages are longword aligned, and

pages m ust contain an integral num ber of longwords starting from an offset of 0 from the

base of the page. This structure , along with the offset indicating where to s ta rt the CRC

calculation is conveyed to the PRC by the IMU through a stream of page control tags

(PC X). Each PCX is a longword containing four d a ta fields: the unchecked length, a last

page flag, the page base address, and the length of d a ta within the page. The IMU manages

a separate stream of these PCX's for each of the outbound channels and a single stream for

the inbound channels.

T hroughout the remainder of this section we will expand the routing example presented

in Section 2.1 and describe the transm ission of a packet from the buffer memory on node

2 to node 14 (through the interm ediate node 13). This common example as depicted

in Figure 3.4 will allow us to explain packet transm ission a t node 2, the P R C ’s role in

supporting a cut-through a t node 13, and packet reception a t node 14. For our example,

the packet will consist of 75 longwords of d a ta occupying three partially-filled pages in the

buffer memory, as shown in Figure 3.5. Five of these longwords will make up the header of

the packet and are stored a t address 0X0C2200001. Only the first longword of the header

will not be covered by the packet CRC. The remainder of the packet is split into two blocks

of 25 and 45 longwords, stored a t addresses 0x0C225000 and 0x0C222000, respectively.

: T he PR C can only address 4M longw ords and is m apped into the buffer m em ory at base address
OxOCOOOOOO

0 x 0 C 2 2 0 0 0 0
MBUF

Page 0

i .

O x O C 2 2 5 Q O O
MBUF

25 LW
Page 1

1

0 x 0 0 2 2 2 0 0 0
MBUF

Page 2

F ig u r e 3 .5 : Exam ple packet structu re

27

t ransm it_w ord:
if(eopsig)

request_ctbus;
t ransm it_byte(eop);

if(m arks ig)
request_ctbus;
transm it_by te (rn a rk) ;

f o r (i = 3; i > 0; i - -)
request_ctbus;
transrnit_byte(i);

transm it_packet:
w h i le (t r a n s m i t t e r j e s e rv e d) ;
reserve_transm itter
eopsig = false;
w h i l e ((unchk > 0) & -leopsig)

eopsig = fetch_word(data, -■CRCENBL);
transmit_word;
unchk = unchk - 1;

w h i l e (-ieopsig)
eopsig = fetch_word(data, C IIC E N B L);
transm it_word;

fe tch_word(tirne-stam p, C R C E N B L);
t ransm it-w ord ;
fet ch_ wor d (C R C , - > C RC E N B L);
transm it_w ord;

F igu re 3 .6 : Pseudocode description of TFU operation

3.2.1 Packet Transm ission

Once the IMU has selected a packet for transm ission and verified th a t there is space in

the page control tag queue (PC T Q) for the appropriate channel, the IMU loads the P C T for

the packet into the channel’s PC TQ . If space allows, the IMU may load up to three more

PC T s for the successive pages of the packet. At this point responsibility for the transm ission

of the packet is taken over by the PRC, and the IMU m ust only provide a stream of PC Ts.

Requests for more PC Ts are conveyed through the P R C ’s in terrupt mechanism.

The PRC retrieves packet d a ta from the buffer memory via the NPBUS, stores it tem

porarily in the transmitter fetch units (TFU s), and then places it into the CT devices, one

byte a t a time. The TFU s, each of which is associated with a particular outbound channel

(and thus a single CTBUS transm itte r), control the process of packet transm ission.

W hen idle, each TFU constantly m onitors its PC TQ for the presence of a PC T . W hen

the T FU finds a P C T (as the result of the IMU loading the P C T through the PCBU S),

packet transm ission commences, following the algorithm described in Figure 3.6. This code,

28

while not complete, describes the general procedure for packet transm ission.

At the s ta rt of a packet, the TFU retrieves the unchecked length from the P C T at the

head of the PC TQ and stores it internally. Until this value has been decrem ented to 0,

the retrieved d a ta is excluded from the calculations of the CRC for the packet. This allows

packet headers to be altered by the PRC receivers w ithout affecting the error detection for

the rem ainder of the packet. Simultaneously, the TFU a ttem p ts to reserve its associated

tran sm itte r and issues a request to the NPBUS for the first longword of the packet. The

TFU checks the reservation sta tus of its associated transm itte r, and if the tran sm itte r is

currently unreserved, requests access to the CTBUS to reserve the transm itter.

Once the first longword of the packet has been retrieved from the buffer m em ory and

a reservation achieved for the appropriate transm itter, packet transm ission begins. The

TFU requests access to the CTBUS, and when this is granted, drives the CTBUS d a ta lines

with byte 3 (the high byte) of the longword in its local buffer. This word and its control

inform ation are latched by the previously reserved CTBUS transm itte r and transm itted to

the adjacent node.

The TFU now spins until the IR D A T A line2 of its CTBUS tran sm itte r re tu rns to

TRU E. W hen this is observed, the TFU again requests control of the CTBUS, placing the

next byte of d a ta on the CTBUS when this access is granted. This process continues until

the TFU has transm itted all four bytes of d a ta in its local register. In parallel w ith the

transm ission of the bytes associated with the current longword, the TFU prefetches up to

4 longwords. Hence, once the fourth byte of the current longword been transm itted , the

TFU should be able to immediately switch to transm itting the next longword.

The PRC design allows the page structure of a packet to be preserved during transm is

sion (to allow received packets to only partially fill their pages). This is done by tagging

the longword requested by the TFU with a flag indicating th a t the associated d a ta is the

last longword on a page. If this is the case, the TFU will transm it the CTBUS “m ark”

com mand. This m ark can then be used by downstream nodes to reconstruct the page struc

ture. This same tag when used in conjunction with the last page bit of the P C T is used to

detect when the TFU has reached the end of the current packet. In addition to the EOP

th a t m ust be sent when dealing with the end of packet condition, two additional longwords

are transm itted : the first is a tim e-stam p representing the tim e a t which the transm ission

of the packet was completed; the second (transm itted after the EO P) is a CRC for error

2 A line used to indicate the C T B U S transm itter’s w illingness to accept forward channel data . T h e
detailed sem antics are explained in the description of the C T B U S im plem entation .

29

detection.

R eturning to our example, packet transm ission begins when the P C T (0x02220005

(A ddr=0x0C 220000/Len=05/U nchk=l/Lastpage=false)) w ritten by the IMU at node 2

reaches the head of the PC TQ of T F U i. This causes TFU i to a ttem p t to reserve its CTBUS

tran sm itte r (CTBUS TX i connected to node 13) and also to retrieve the longword stored

a t 0x00220000. This first longword will not be included in the future CRC calculations

since the unchecked length counter is greater than zero. Once the reservation has been

achieved and the d a ta retreived, the TFU begins sending the d a ta over the CTBUS in one-

byte chunks. The first NPBUS access also decrements the unchecked length counter to 0;

hence, all fu ture longwords retrieved from the buffer memory will be included in the CRC

calculation.

A page fault is generated when the d a ta word at 0x00220004 is retrieved. This has

several effects: the P C T at the head of the PC TQ is shifted out, the page offset is restored

to 0, and the “m ark” code is sent before transm itting the next byte of data . This code

notifies the destination PRC th a t a page fault has occurred.

The value 0x00225019 (Addr=0x0C225000/Len=25/Unchk=0/Lastpage=False) now ap

pears at the head of the PC TQ , and the next memory access is to location 0x00225000. D ata

is retrieved and transm itted as before, and a page fault eventually occurs when 0x00225019

is accessed, bringing 0x0122202D (Addr=0x0C222000/Len=45/Unchk=0/Lastpage=True)

to the head of the PC TQ . W hen the page fault is generated at the end of this page,

however, the NPBUS interface logic will also log a TX EOP event, since the la stp a g e bit

is currently set. The retrieved longword is transm itted normally, but the TFU exits the

main d a ta transm ission loop. On the next d a ta request, the TFU sets its control lines to

indicate th a t it needs to read the tim e-stam p register. The tim e-stam p is latched in and

transm itted ; when this is finished, the TFU retrieves the CRC. The CRC is transm itted

across the links; the only difference is th a t this final longword is preceded by a EO P signal

ra th e r than a MARK signal. Once the final byte of the CRC is acknowledged, the TFU

accesses the CTBUS one final tim e and unreserves the transm itter. The PRC is designed

so th a t the tim e-stam p and CRC accesses do not reach the NPBUS interface; thus, the

inbound channels can use the NPBUS while these accesses are made.

30

3 .2 .2 Packet C ut-T hrough and R ecep tion

Packet reception by the PRC begins when d a ta is transferred from a CTBUS receiver to

the PRC receiver (PRC RX) associated with it. Each receiver is an 8-bit m icro-controller

intended to perform serveral functions: routing mode identification, route determ ination,

channel establishm ent, and packet reception.

Upon detecting the arrival of data , the receiver first allows each d a ta byte to be acknow

ledged until it has accum ulated enough of the routing header to determ ine how the packet

is being routed and the packet’s final destination. It then stops signalling its willingness

to accept d a ta (stalling the inbound channel) until a routing determ ination has been made

and the routing header is flushed by buffering at the local node an d /o r by retransm itting

it out through a CTBUS transm itter(s). Once the routing strategy for the packet has been

determ ined, the receiver m ust determ ine which resources are available for a packet of this

priority. If the IIX decides to forward the packet, it a ttem pts to reserve the appropria te C T

BUS transm itter(s). If this a ttem p t succeeds, the RX establishes the channel cut-through

and reconfigures the inbound channel to forward to the outgoing link.

If the packet is destined for the local node or the RX is unable to im m ediately forward

the packet, it is usually buffered in the local node. In order to support broadcast algorithm s

the design of the CTBUS and the RX allow the RX to simultaneously buffer and forward

a packet. In cases where local resources are scarce or a deadlock may be present, the RX

may even drop the packet entirely by acknowledging it and then simply losing the da ta

internally (i.e., neither buffering nor forwarding it). The sender a t a higher level in the

communication protocol stack will retransm it the packet after the corresponding tim eout

period elapses.

W hen a packet is stored at the local node, the d a ta is transferred from the PRC RXs

to the buffer memory via the NP interface of the PRC. Once an RX has accum ulated a

full longword, it places the d a ta in the 11X FIFO (access is arb itra ted by the same scheme

as the CTBUS). The bus connecting the PRC RXs to this FIFO is known as the RXBUS.

The CRC check is computed during this storage. At the end of the packet, as the receive

tim e-stam p is read out from the local clock and placed into the RX FIFO , a flag is set to

indicate the outcome of the CRC check. D ata is then retrieved from the FIFO by the NP

interface and stored in the buffer memory.

We retu rn once again to our packet reception example. The first event a t node 13,

indicating the begining of reception from the perspective of PRC RX4, is the availability

31

of d a ta in its inbound CTBUS interface. The PRC RX4 removes this d a ta and stores

it in an in ternal FIFO (after possible modification) and signals to the CTBUS receiver

its willingness to accept more data . This process then continues until the PRC RX4 has

accum ulated enough of the routing header to make a routing decision. In the case of the

algorithm presented by Chen ei al. [6], the first 4 bytes of d a ta are sufficient to determ ine

the packet’s type, its priority, and its destination. Based on this, the PRC RX 4 can then

choose how to handle the packet.

Since the current node (13) is not the final destination of the packet, the PRC RX4

determ ines th a t it should check the reservation sta tus of the CTBUS TX 0. If the transm itte r

is free, PRC RX4 simply reserves the transm itte r and transm its the d a ta in its internal FIFO

to node 14 via this transm itter. After all the d a ta buffered in the internal FIFO of PRC RX4

has been sent, the CTBUS receiver (CTBUS RX4) is configured to forward all received da ta

to CTBUS T X 0 w ithout in teracting further with the PRC RX 4.

On node 14, a similar process takes place. Since the packet is destined for this node,

PRC RX3 simply leaves the CTBUS receiver (CTBUS RX3) configured in this default mode

which is to transfer all received d a ta to PRC RX3. As d a ta is received from the CTBUS,

the PRC RX transfers it to the RXBUS interface for storage in the buffer memory. W hen

mark commands are received from the CTBUS, PRC RX3 can choose to convey them to

the NP interface as page faults and thus preserve the page structu re of the packet or ignore

them , thereby compressing the incoming packet into a minimal num ber of pages. After

receiving the EO P com mand, PRC RX3 instructs the RXBUS interface to store the receive

tim e-stam p in the RX FIFO , thereby reading out the CRC error flag and signaling an RX

EO P event.

32

3.3 PRC Implementation

There are many specific issues th a t need to be addressed when approaching the im

plem entation of airy communication subsystem [4, 52, 51, 16, 34, 24, 29, 7] These include

accessing shared resources, flow-control, error detection, and routing. This section discusses

how some of these issues were resolved in the im plem entation of the PRC.

3.3 .1 M ed ia A ccess and Flow Control

T he prim ary shared media in the PRC design is the CTBUS, an 8-bit wide Time-

Division M ultiplexed (TD M) bus th a t provides a gateway into the interconnection network.

The CTBUS and its associated protocol play a fundam ental role in supporting many of the

features provided by the PRC. The CTBUS is necessary for the im plem entation of multiple

switching techniques such as virtual cut-through and wormhole routing. It also provides the

prim itives necessary for low-level flow control and broadcast algorithm s [25]. Finally, since

the CTBUS is a critical resource, the arbitration m ethod emphasizes fairness and scales

well under varying loads.

The CTBUS interconnects 25 separate components: 6 CTBUS transm itters, 6 CTBUS

receivers, 6 PRC receivers, 6 PRC transm itter fetch units, and the Network Processor’s

IMU. Of these 25 devices 19 can act as “m aster” and can participate in arb itra ting for

control of the CTBUS (only CTBUS transm itters do not function as m asters). All of the

devices except the PRC transm itter fetch units and the IMU can also function as “slave”

devices on the CTBUS. The external CTBUS signals are functionally divided into five

groups: m aster, control, address, arb itration , and data. The m aster and address lines

identify both the device th a t has control of the bus (the m aster) and the selected slave

device(s) for the current bus cycle. The control lines are driven by the m aster device and

identify the current command.

B u s A rb itra tio n S ch em e

A rbitration for the CTBUS is based on a binary priority tree in which the different levels

of the tree are perm uted according to the sta te of a counter. This scheme is derived from

the work of Kovaleski et al. [28] and provides the basis for a dem and slot access m ethod.

This scheme was chosen for its “fairness” and scalable performance over varying loads.

Figure 3.7 shows an example in which we wish to construct an arbiter for eight m asters. In

33

this example a 3-bit counter is used to control the perm utation of the tree. This counter is

hooked up such th a t the least significant bit controls the nodes ju s t above the leaves, the

middle bit controls the nodes below the root, and the most significant bit controls the root

of the tree .3 The order in which access to the bus will be granted is the left-to-right order

of the leaves. For cycle 0, the priority order is 0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 w ith device 0 having the

highest priority. To obtain the order for cycle 1 we exchange the left and right children

of the tree used for cycle 0 and obtain a device ordering of 1 ,0 ,3 ,2 ,5 ,4 , 7,6. The device

orders for remaining cycles can be read off from the figures. One of the main advantages of

this type of arb itration scheme is th a t no device has higher priority than any other device

over the m ajor period4 of the priority cycle. For our simple 3-bit example device 0 has

higher priority than device 4 four times (Cycles 0,1,2,3) and it has lower priority four times

(Cycles 4,5,6,7). A nother advantage is th a t access to the bus scales well over a wide range

of bus activity. If a device does not wish to use the current-cycle access, then access will be

granted to devices of lower priority th a t need bus access. This means th a t in a PRC with

only a single channel active, the entire bandw idth of the CTBUS is a t its disposal.

The actual arb itration for the CTBUS is im plem ented by the PRC with arb itra tion for

the next bus cycle overlapped w ith the current cycle. A device which has been granted

m aster s ta tus may suspend the arb itration until it is finished with the bus. This allows for

short bursts of multiple bytes and can be used to speed up the flow-control handshaking

described below.

More specific details concerning the actual arb itration order or device addressing may

be found in Appendix A.

C o m m a n d s, F low C on tro l, and B road cast S u pp ort

In order to present the measures undertaken to provide hardw are support for broadcast

algorithm s and flow control, it is necessary to provide a brief overview of the commands

used in im plem enting the CTBUS protocol. The commands shown in Table 3.1 can be

categorized as supporting either device configuration or forward channel d a ta transm ission.

The configuration commands support communication with the Network Interface Controller,

resource m anagem ent, and CTBUS receivers. The forward channel commands provide for

3In the full C T B U S arbiter the bits are not a sim ple linear assignm ent to prevent m aster devices from
falling into a lockstep access pattern in which a particular m aster has an unfair advantage w hen accessing
the bus in a periodic fashion.

4 W here the major per iod would be 8 bus cycles for the exam ple and 32 cycles for the C T B U S m anaged
by the PR C .

34

H ig h est Priority

C ycle 0

L ow est Priority H ighest Priority

C ycle 1

Low est Priority

H ighest Priority

C ycle 2

L ow est Priority H ighest Priority

C y d e 3

Low est Priority

H ig h est Priority

C ycle 4

Low est Priority H ighest Priority

C ycle 5

Low est Priority

H ig h est Priority

C ycle 6

L ow est Priority H ighest Priority

C y d e 7

L ow est Priority

F ig u re 3 .7 : Binary tree priority arbiter example

35

C u t-T h ro u g h C o m m an d s
C o m m a n d C hannel Direction
N O O P (No O pera tion)
D T X (D a ta Transfer)
R E S V (T ran sm it te r Reservation Request)
F R E E (T ran sm it te r Free Request)
H O LD (T ran sm it te r Hold Request)
C IIK (T ran sm it te r Hold Check)
CFGO (Load C T B U S Receiver Address Reg 0)
C FG 1 (Load C T B U S Receiver Address Reg 1)
M A R K (B yte Marker)
E O P (E nd of Packet)

N /A
Forward
C onfigura tion
Configura tion & Forw ard
C onfigura tion
C onfiguration
C onfiguration
C onfiguration
Forward
Forward

T able 3.1: Cut-Through Bus Commands

transm ission of d a ta and d a ta delimiters.

Each device on the CTBUS th a t can function as a slave and respond to a forward channel

com m and has an Input Ready Data (IR D A T A) line th a t signals the device’s willingness to

accept d a ta on the forward channel. A m aster device uses the sta tus of the IR D A T A line

in deciding if it should a ttem p t to acquire the CTBUS and perform a transaction. This line

forms the basis of the CTBUS flow control mechanism.

The set of policies outlined in Figure 3.8 provides support for several of the prim it

ives necessary to satisfy the design goals of the PRC. F irst, the use of the IR D A T A line

im plem ents a tightly-coupled byte-level flow control mechanism th a t will prevent d a ta over

runs in both the Network Interface and the PRC. Second, making the multiple IR D A T A

lines available to the appropriate bus masters and using an address m apping th a t allows

the selection of multiple slave devices provides efficient hardw are support for broadcast al

gorithm s [25]. This feature is significant in th a t it allows a one-to-m any transaction in a

single bus cycle. Last, at the cost of providing the IR D A T A lines to the possible CTBUS

m asters, unnecessary traffic is greatly reduced when com pared to schemes in which the cur

rent CTBUS cycle would have to be canceled if all the devices addressed during the transfer

were not ready to accept the data.

S u p p ort for M u ltip le R o u tin g S tra teg ies

The primitives necessary to support multiple routing strategies are provided by making

the CTBUS transm itters “reservable” resources. Prior to using a forward d a ta channel,

bus m asters must have obtained a reservation by arb itrating for the CTBUS and issuing

36

No CTBUS m aster will a ttem p t a forward channel command unless all of the
IR D A T A lines of the selected CTBUS transm itters are true.

• W hen a CTBUS transm itte r is addressed as a slave and a forward channel com
m and has been issued the IR D A T A line for th a t transm itte r will become false
until the command is properly acknowledged (as explained below).

« Upon receiving forward channel data , a CTBUS receiver will arb itra te for the
CTBUS and forward the d a ta once all of the IR D A T A lines of the devices selec
ted by its internal address register are true. After the d a ta has been sucessfully
forwarded, the CTBUS receiver will indicated to its paired transm itter" to ac
knowledge the last forward channel command.

• upon receiving a reverse channel command indicating acknowledgement of the last
forward channel command , a CTBUS receiver will indicate to its paired tran sm it
te r th a t the transm itter may raise its IR D A T A line.

“T h e term paired t ransmi t t e r refers to the C T B U S transm itter that is connected to the sam e neigh
boring node as the receiver.

F ig u re 3 .8 : CTBUS protocol policies

a R E S V command. If the command is positively acknowledged during the bus cycle, then

a reservation has been granted and the bus m aster has sole control of the forward d a ta

channel. Once the bus m aster is finished with the forward channel and wishes to surrender

its reservation, it arb itrates for the CTBUS and issues a F R E E command. In addition to

releasing the CTBUS transm itter on the current node, the F R E E command is transm itted

down the forward channel providing a mechanism to dismantle any circuit th a t may have

been established.

The reservation status of all six CTBUS transm itters is m aintained by the P R C ’s Re

servation S tatus Unit. This unit performs the bookkeeping duties on behalf of the CTBUS

transm itte rs for the R E SV , FREE, CHECK, and HOLD CTBUS commands and issues

acknowledgments accordingly. The HOLD command guarantees the issuer the next pos

sible reservation on the target device5. After issuing this command the m aster m onitors

the CTBUS tran sm itte r’s reservation sta tus until the current reservation is surrendered.

At this point a CH ECK command is used to release the HOLD command and capture the

reservation.

W ith the R E S V and F R E E primitives alone we can easily support switching strategies

such as v irtual cut-through, circuit switching, packet switching, and wormhole routing. An

5It is assum ed, although riot strictly enforced, th at only the transm itter fetch units on behalf o f their
IM U will use the H O L D and C H E C K com m ands

37

example of how these commands are used to support virtual cut-through is presented in

Section 3.3.1. W hen operating in a circuit switching mode, F R E E com mands are only issued

when a circuit is to be dism antled, instead of a t the end of every packet as in systems using

other routing strategies. For virtual cut-through, packet switching and wormhole routing,

a reservation is obtained and then released for every packet.

The HOLD and CHECK com mands were added to allow the IMU to influence the

CTBUS reservation policy. These com mands can then be used sparingly to guarantee a

single high-priority channel by bounding the delay required to reserve a CTBUS transm itter.

P a c k e t T ra n sm is s io n E x a m p le o n th e C T B U S

In returning to our example, we describe the sequence of activities occurring on the

CTBUS. We begin a t node 2, where the packet transm ission begins, and then proceed to

node 13, which the packet cuts through. Finally, we look at node 14’s CTBUS as the packet

is received.

On node 2, TFU i (assigned to outbound channel # 1) arb itra tes for the CTBUS and

issues a R E S V command for the CTBUS transm itte r connected to node 13 (CTBU S T X j).

Once T FU i succeeds in obtaining a reservation on the transm itte r, it will issue a D T X bus

cycle and wait for the IR D A T A line to retu rn to true. This process will repeat until TFU i

reaches the last word of the first page, at which point it will inject a M A R K command

to delimit the page boundary6. Page two is transm itted in a similar m anner. At the end

of page three, the end of the packet is signaled w ith an EO F com m and7. Finally, TFU i

surrenders its reservation of the CTBUS TX i with a F R E E command.

On node 13, the CTBUS receiver (CTBUS RX4) is initially configured to transfer any

received d a ta to the PRC RX (PR C RX4). Thus, when the first byte of d a ta is received,

CTBUS RX,, simply transfers it to PRC RX4 by arb itrating for the CTBUS and using a

D T X transfer. After transferring the first byte to PRC RX4, CTBUS RX4 acknowledges this

byte using the reverse channel of CTBUS T X i. Meanwhile, PRC RX4 stores this first byte

internally and signals its willingness to accept the next byte of d a ta by raising its IR D A T A

line. During this time the CTBUS RX4 has received the second byte of d a ta and is waiting

for the IR D A T A line to go true. This process continues until the PRC RX4 has enough

of the header to reach a routing decision and reserve CTBUS T X 0, which is connected to

6Prior to transm itting the last word.
7T h e E O P supersedes the M A R K th at would regularly be transm itted .

38

node 14, w ith a R E S V com m and. PRC RX4 then forwards the portion of the header it used

to reach its decision out CTBUS T X 0. At this point, PRC RX 4 reconfigures CTBUS RX4

to autom atically forward the received d a ta to CTBUS T X 0. W hen the F R E E com mand

arrives from node 2, CTBUS 11X4 forwards the command to node 14 via CTBUS T X 0 and

reconfigures itself to its initial mode.

The activities on node 14 closely resemble those on node 13. Since the packet is

destined for node 14, PRC RX3 does not reserve an outbound channel and instead leaves

CTBUS RX 3 in its default configuration th a t forwards all d a ta to PRC RX3.

3.3 .2 R o u tin g A lg o r ith m Support

The flexibility required for efficient support of a wide variety of routing algorithm s was

achieved by having each of the P R C ’s six RXs designed around a m icroprogram m ed control

ler containing a 128-word control store. During system initialization, the IMU downloads

microcode to each PRC RX through the PCBUS. After the microcode downloads, each PRC

RX executes independently of bo th the IMU and other PRC RXs. The in ternal architecture

of an individual PRC RX is shown in Figure 3.9.

Local storage in the PRC RX is provided in the form of a small FIFO , six user-defined

flags, and a 16-byte register file. The main d a tapath includes a multi-function ALU, allowing

arithm etic and logical operations to be performed on incoming data. The FIFO allows the

PRC RX to store an incoming packet header after possible modification until a routing

determ ination has been made. D ata may exit the PRC RX through either the CTBUS unit

for retransm ission to an adjacent node, the RXBUS unit for storage in the buffer memory,

or both.

The operation of the PRC RX is controlled by the microsequencer, which decodes the

current instruction (retrieved from the control store) and then configures the rem ainder of

the d a tap a th to execute it. The microsequencer operates as a s tandard two-stage pipeline

and thus needs to stall to refill the instruction decoding unit in the case of jum p or subroutine

calls.

The instruction set contains instructions for general reg ister/constan t transfers, flag and

ALU operations, and control-flow instructions. All of these instructions have been tailored

to support com munications, with the goal of reducing both execution tim e and m icropro

gram size. For exam ple, the instructions th a t specify a destination register in either the

outbound CTBUS interface or the RX bus interface autom atically stall the microsequencer

C o n tro l Unit
2 READ/1 W R IT E R e g is te r File

C o n tro l S to re
128 W o rd s

2 0 b its

FIF O O R

HEADER FIFOTR A P1 thRF07 \

M ic ro s e q u e n c e r

p EOPHOLD f m MARKHOLD

p ABORTHOLD PH UFO f m UF1

UF2 PH UF3 PH UF4 PH UF5

RF04
R F 0 3

ABORT

MARK

EOF

^ DATAM EM BU 5Y

CTDATA

In b o u n d C T B U S
In te rface

ALU

O V E R F L O W k s C A R R Y

RX BU SY CT A C K

C T B U S Y

RXD2 CTA1
CTAOa c c u m u la to r

RXDO CTDO

R X BU S
In te rfa c e

O u tb o u n d C T B U S
In te rfa c e

C Oo

F ig u re 3 .9 : The architecture of a PRC Receiver

40

if the interface is busy w ith the last operation. This type of instruction greatly reduces both

the size and execution tim e of the microcode by eliminating the need to check the sta tus

of the interface prior to a ttem pting loads; the drawback is th a t routing algorithm s m ust be

w ritten in a m anner th a t won’t deadlock if the microsequencer stalls on a busy interface.

The W AIT instruction is one of the more extrem e examples of an instruction th a t has

been custom ized to support microcoded communication. In its simplest form the WAIT

instruction stalls the microsequencer until the selected condition becomes true. In its most

common use, the WAIT instruction stalls on one condition but also enables trap handlers

th a t allow the instruction execution to jum p to addresses specified by the TRAPO and

TRA P1 registers on alternate conditions. This provides a three-way branch th a t greatly

simplifies the im plem entation of several supported routing strategies. For example, one

usually waits for d a ta to arrive but needs to branch to an alternate routine if either an error

occurs or an EO P com mand is received.

In addition to the local registers in each PRC RX, the PRC RX has read /w rite access to a

256 byte inter-device communication RAM located within the PRC. This RAM is accessible

to all PRC RXs and is m apped into the PCBUS memory map. This RAM provides a way

for the PRC RXs or the IMU to convey inform ation to each other and therefore influence the

routing algorithm s dependent on either local sta te inform ation or packet header contents.

For more inform ation concerning the instruction encoding, tim ing, or syntax required

to use the accompanying micro-assembler see Appendix B.

P a ck et R o u tin g E xam p le u sin g th e P R C R X

We retu rn one last time to our example and examine the microcode th a t could be

executed by the PRC RX on node 13 to assist in establishing a cut-through from node 2

to node 14. In this code example we have assumed th a t the network is only routing virtual

cut-through messages which allows us to ignore the byte th a t identifies the packet type. We

have also assumed th a t the transm itte r required to establish the cut-through is unreserved

when describing the control flow.

Figure 3.10 shows the prolog code th a t most routing algorithm s need. These are constant

expressions usually used as the im m ediate operand of a load constant instruction when

configuring one of the external interfaces in the PRC RX. These expressions do not use any

space in the control store and are only for the benefit of the routing algorithm designer.

The details necessary to derive these constants can be found in Appendices A and B.

41

The code depicted in Figure 3.11 performs two functions. Lines 41-50 initialize the

default flag values and prepare for the collection of the routing header. Lines 58-80 actually

collect the first four bytes of the packet and store them in the local registers RF00 through

RF03. W hile this is taking place notice th a t each transfer from the CTDIN register triggers

the IR flag (Lines 60, 64, and 71). This is coupled to the byte-level flow control and allows

the PRC RX to control the CTBUS RX behavior. Also, notice th a t one of the offset values

is being updated (lines 72-74) on behalf of the transm itter sending the packet. Although

not being used in this code example, if the header FIFO is used to store the header is often

difficult to modify the header to reflect the direction the packet will be transm itted . Since

we are operating in a point-to-point network the receivers of the packet know w hat direction

the packet was received from and can update the header appropriately. The im portan t point

concerning Figure 3.11 is th a t on the reception of the last byte of the header the PRC RX

has not raised its IR line. This will allow the PRC RX to reconfigure the CTBUS RX.

3 .3 .3 Error D etec t io n

Any communication subsystem m ust deal with errors in transm itted and received pack

ets. As error correction usually incurs too much overhead in transm itted check bits, one of

the accepted means of error control and recovery is to detect errors with a cyclic redund

ancy code (CRC) and request retransm ission of erroneous packets. Calculating CRCs in

software, however, is a time-consuming and resource-intensive task. The processor must

access every part of a packet and compute the rem ainder, which takes several operations

for every word covered. By im plem enting these calculations in hardw are, however, they can

be made relatively transparent to the system. Consequently, this is the approach we have

taken in the PRC. The rest of this section describes the im plem entation and use of the CRC

generation and CRC check modules in the PRC.

T he conventional im plem entation of a CRC generator/checker is a linear feedback shift

register. The obvious advantage of this design is its simplicity — for an n-degree generator

polynom ial, all th a t is needed to implement CRC error detection is n flip-flops and several

exclusive-or gates. This im plem entation, however, depends upon being able to access the

d a ta serially. Thus, its use is generally limited to error detection over serial interconnects,

although designers have been known to convert parallel d a ta to serial form to run it through

a serial CRC register, and then to reconvert the d a ta to parallel [35].

A nother drawback to serial CRC generators and checkers is the tim e required to process

42

0
1
2
3
4
5
6
7
8
9

10
11
12
1 3
1 4
1 5
1 6
1 7
1 8
1 9
20
21
22
2 3
2 4
2 5
2 6
2 7
2 8
2 9
3 0
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
4 0

m i c r o p r o g r a m v c e x a m p l e ;
b e g i n

I d e n t i f y t h i s p r o g r a m a s b e l o n g i n g t o r e c e i v e r 1
r e c e i v e r 1 ;

C o n s t a n t D e c l a r a t i o n s f o r R X B U S I n t e r f a c e
c o n s t r x c m d . , s o p _ n _ c r c 0 x 3 6 ; #
c o n s t r x c m d . _ s o p _ w o _ c r c 0 x 2 6 ; #
c o n s t r x c m d . , d a t a _ w _ c r c 0 x 3 4 ; #
c o n s t r x c m d . _ d a t a _ w o _ c r c 0 x 2 4 ; #
c o n s t r x c m d . , m a r k _ w o _ c r c 0 x 2 5 ; #
c o n s t r x c m d . , m a r k _ w _ c r c 0 x 3 5 ; #
c o n s t r x c m d . _ f i n a l _ c r c 0 x 1 4 ; #
c o n s t r x c m d _ t i m e s t a m p 0 x 3 b ; #

C o n s t a n t s f o r c o n t r o l l i n g o u t b o u n d C T B U S i n t e r f a c e (l o a d e d i n t o C T C T L)
c o n s t c t c m d . . n o o p O x f ; # C T B U S N 0 0 P
c o n s t c t c m d . _ d t x 0 x 0 ; # C T B U S D T X (D a t a t r a n s f e r)
c o n s t c t c m d . . a b o r t 0 x 5 ; # C T B U S A B O R T (A b o r t p a c k e t a n d c i r c u i t)
c o n s t c t c m d . _ r e s v 0 x 7 ; # C T B U S R E S V (A t t e m p t C T T X r e s e r v a t i o n)
c o n s t c t c m d . . f r e e 0 x 3 ; # C T B U S F R E E (F r e e C T T X)
c o n s t c t c m d . - C f g O 0 x 8 ; # C T B U S C F G O (C T R X c o n f i g u r a t i o n c o m m a n d)
c o n s t c t c m d . . m a r k 0 x 1 ; # C T B U S M A R K (D a t a d e l i m i t e r)
c o n s t c t c m d . . e o p 0 x 2 ; # C T B U S E O P (E n d o f P a c k e t)

A d d r e s s f o r c o m m o n d e v i c e s
c o n s t c t a d d r _ c t r x O 0 x 4 1 ;
c o n s t c t a d d r _ c t r x l 0 x 4 2 ;
c o n s t c t a d d r _ c t r x 2 0 x 4 4 ;
c o n s t c t a d d r _ c t r x 3 0 x 4 8 ;
c o n s t c t a d d r _ c t r x 4 0 x 5 0 ;
c o n s t c t a d d r _ c t r x 5 0 x 6 0 ;
c o n s t c t a d d r _ c t t x 0 0 x 8 1 ;
c o n s t c t a d d r _ c t t x l 0 x 8 2 ;
c o n s t c t a d d r _ c t t x 2 0 x 8 4 ;
c o n s t c t a d d r _ c t t x 3 0 x 8 8 ;
c o n s t c t a d d r _ c t t x 4 0 x 9 0 ;
c o n s t c t a d d r _ c t t x 5 O x a O ;

F ig u re 3 .10 : Code example constant declarations

43

4 1 - i n i t :
4 2 - # C l e a r o u t u s e r f l a g s , s e t I R h i g h , c l e a r A B O R T , H O L D , E O P
4 3 - c l e a r a l l ;
4 4 -
4 5 - # L o a d t r a p h a n d l e r a d d r e s s e s
4 6 - l d c e o p _ h a n d l e r , t r a p O ;
4 7 - l d c a b o r t _ h a n d l e r , t r a p l ;
4 8 -
4 9 - # P r e p a r e r x b u s i n t e r f a c e f o r f i r s t p a r t o f d a t a
5 0 - l d c r x c m d _ s o p _ w o _ c r c , r x c t l ;
5 1 -
5 2 - # F o r t h i s e x a m p l e w e w i l l a s s u m e V C o f f s e t r o u t i n g w i t h t h e f o l l o w i n g
5 3 - # f o r m a t
5 4 - # { t y p e , x - o f f s e t , y - o f f s e t , z - o f f s e t }
5 5 - #
5 6 - # S i n c e w e a r e r e c e i v e r 1 w e n e e d t o u p d a t e (i n c r e m e n t) t h e y o f f s e t .
5 7 -
5 8 - # G e t m e s s a g e t y p e a n d s t o r e i n R F 0 0
5 9 - w a i t d a t a , t r a p l (a b o r t) ;
6 0 - x f e r c t d i n , r f 0 0 , g o i r ; # I R s e t t r u e t o a l l o w m o r e d a t a
6 1 -
6 2 - # G e t x - o f f s e t , s a v e z e r o / n o n - z e r o s t a t u s i n U F O , a n d s t o r e i n R F 0 1
6 3 - w a i t d a t a , t r a p l (a b o r t) ;
6 4 - x f e r c t d i n , r f 0 1 , g o i r ; # I R s e t t r u e t o a l l o w m o r e d a t a
6 5 - a l u r f 0 1 ;
6 6 - f l a g z e r o , f 0 ;
6 7 -
6 8 - # G e t y - o f f s e t , u p d a t e o f f s e t , s a v e z e r o / n o n - z e r o s t a t u s i n U F 1 ,
6 9 - # a n d s t o r e i n R F 0 2
7 0 - w a i t d a t a , t r a p l (a b o r t) ;
7 1 - x f e r c t d i n , r f 0 2 , g o i r ; # I R s e t t r u e t o a l l o w m o r e d a t a
7 2 - a l u r f 0 2 + 1 ;
7 3 - f l a g z e r o , f l ;
7 4 - x f e r a c c , r f 0 2 ;
7 5 -
7 6 - # G e t z - o f f s e t , s a v e z e r o / n o n - z e r o s t a t u s i n U F 2 , a n d s t o r e i n R F 0 3
7 7 - w a i t d a t a , t r a p l (a b o r t) ;
7 8 - x f e r c t d i n , r f 0 3 ; # N O T E / W A R N I N G : I R s t i l l p e n d i n g
7 9 - a l u r f 0 3 ;
8 0 - f l a g z e r o , f 2 ;
8 1 -

F ig u re 3 .11 : Code example - Header collection

44

8 2 - # E n o u g h o f t h e h e a d e r h a s b e e n c o l l e c t e d t o m a k e a r o u t e d e t e r m i n a t i o n
8 3 - c h e c k _ y :
8 4 - j u m p f l , c h e c k _ x ; # J u m p a r o u n d t h e - y t r a n s m i t t e r c h e c k
8 5 - l d c c t a d d r _ c t t x 4 , r f 0 4 ; # S a v e a d d r e s s f o r l a t e r r e c o n f i g u r a t i o n
8 6 - j u m p r s v s t a t 4 , c h e c k _ x ; # C h e c k t h e r e s e r v a t i o n s t a t o f T X 3
8 7 - j u m p t r u e , g r a b _ t r a n s m i t t e r ; # T r y t o a c t u a l l y r e s e r v e T X 3
88 -

8 9 - c h e c k _ x :
9 0 - j u m p f 0 , c h e c k _ z ; # J u m p a r o u n d t h e - x t r a n s m i t t e r c h e c k
9 1 - l d c c t a d d r _ c t t x 3 , r f 0 4 ; # S a v e a d d r e s s f o r l a t e r r e c o n f i g u r a t i o n
9 2 - j u m p r s v s t a t 3 , c h e c k _ z ; # C h e c k t h e r e s e r v a t i o n s t a t o f T X 2
9 3 - j u m p t r u e , g r a b _ t r a n s m i t t e r ; # T r y t o a c t u a l l y r e s e r v e T X 2
9 4 -
9 5 - c h e c k _ z :
9 6 - j u m p f 2 , b u f f e r _ p a c k e t ; # J u m p a r o u n d t h e - z t r a n s m i t t e r c h e c k
9 7 - l d c c t a d d r _ c t t x 5 , r f 0 4 ; # S a v e a d d r e s s f o r l a t e r r e c o n f i g u r a t i o n
9 8 - j u m p r s v s t a t 5 , b u f f e r _ p a c k e t ; # C h e c k t h e r e s e r v a t i o n s t a t o f T X 3
9 9 - j u m p t r u e , g r a b _ t r a n s m i t t e r ; # T r y t o a c t u a l l y r e s e r v e T X 3

100 -

101 -

1 0 2 - # W e e i t h e r l o s t t h e r e s e r v a t i o n o r t h e p a c k e t r e a l l y g o e s h e r e
1 0 3 - b u f f e r _ p a c k e t :
1 0 4 -
1 0 5 - # L o a d u p c o l l e c t e d h e a d e r i n t o r x i n t e r f a c e a n d t r i g g e r i t
1 0 6 - # H e r e w e h a v e a s s u m e d t h a t o n l y t h e f i r s t l o n g w o r d i s n o n - c r c d a t a
1 0 7 - #
1 0 8 - # A l s o t u r n o u r i n p u t r e a d y b a c k o n , a l l o w i n g C T R X t o d u m p d a t a i n t o u s
1 0 9 - x f e r r f 0 0 , r x d 3 , g o i r ;
1 1 0 - x f e r r f 0 1 , r x d 2 ;
1 1 1 - x f e r r f 0 2 , r x d l ;
1 1 2 - x f e r r f 0 3 , r x d 0 , g o r x b u s ;
1 1 3 -

F igu re 3 .12 : Code example - Route determ ination

a single ra-bit word of data. As noted in [3], it takes n clock pulses for a serial CRC

im plem entation to process a single word of data. By contrast, an n-bit parallel CRC

generator requires only a single cycle. There is thus a break-even point of n t s — tp (where

t s is the clock period for the serial im plementation and tp is the period of the parallel). For

this reason, and since d a ta is not always available in serial form, parallel CRC generators

have been studied by a number of researchers. Im plem entations have ranged from variations

on the software approach using a lookup table stored in ROM [31] to fully parallel encoders

[3, 37].

For the PRC, packet d a ta is only available in parallel form and a t d a ta rates such

th a t serial com putation is not feasible. This leads to the selection of a parallel CRC with

the obvious drawback of the num ber of gates required for an im plem entation. To rem

edy these problems we have proposed and implemented bit-interleaved CRC generator and

45

1 1 4 - #
1 1 5 - # M a i n D a t a l o o p : C o l l e c t 4 b y t e s (M a y b e 5 b y t e s i f t a g g e d w i t h E O P o r M A R K)
1 1 6 - # T h e k e y i s t h a t t h e E O P o r M A R K c o n d i t i o n i s h e l d u n t i l w e w a n t t o l o o k a t
1 1 7 - # i t a f t e r w e h a v e r e c e i v e d t h e d a t a b y t e s .
1 1 8 - d a t a _ l o o p :
1 1 9 - l d c r x c m d _ d a t a _ w _ c r c , r x c t l ; # A s s u m e d e f a u l t n o n - M A R K d a t a w i t h C R C
1 2 0 - w a i t d a t a , t r a p l (a b o r t) ; # W a i t o n b y t e 3
1 2 1 - x f e r c t d i n , r x d 3 , g o i r ; # X f e r b y t e 3 a n d s e t I R h i g h f o r n e x t b y t e
1 2 2 - w a i t d a t a , t r a p l (a b o r t) ; # W a i t o n b y t e 2
1 2 3 - x f e r c t d i n , r x d 2 , g o i r ; # X f e r b y t e 2 a n d s e t I R h i g h f o r n e x t b y t e
1 2 4 - w a i t d a t a , t r a p l (a b o r t) ; # W a i t o n b y t e 1
1 2 5 - x f e r c t d i n , r x d l , g o i r ; # X f e r b y t e 1 a n d s e t I R h i g h f o r n e x t b y t e .
1 2 6 - w a i t d a t a , t r a p O (e o p) , t r a p l (a b o r t) ; # W a i t o n b y t e 0 o r t r a p o n E O P
1 2 7 - # H a n d l e p o s s i b l e m a r k b y r e l o a d i n g c o n t r o l r e g .
1 2 8 - j u m p " m a r k , d O ;
1 2 9 - l d c r x c m d _ m a r k _ w _ c r c , r x c t l ;
1 3 0 -
1 3 1 - d O :
1 3 2 - x f e r c t d i n , r x d O , g o r x b u s , g o i r ; # F i r e o f f R X B U S i n t e r f a c e a n d s t a r t o v e r
1 3 3 - j u m p t r u e , d a t a _ l o o p ;
1 3 4 -
1 3 5 - e o p _ h a n d l e r :
1 3 6 - w a i t d a t a , t r a p l (a b o r t) ; # M a k e s u r e t h a t d a t a h a s a r r i v e d .
1 3 7 - l d c r x c m d _ f i n a l _ c r c , r x c t l ; # P r e p a r e f o r f i n a l C R C
1 3 8 - x f e r c t d i n , r x d O , g o r x b u s ;
1 3 9 - l d c r x c m d _ t i m e s t a m p , r x c t l , g o r x b u s ; # T i m e s t a m p p a c k e t a n d s i g n a l E O P
1 4 0 - j u m p t r u e , i n i t ;
1 4 1 -
1 4 2 -
1 4 3 - # I t i s n ’ t t o t a l l y c l e a r w h a t a c t i o n s t h a t a b o r t h a n d l e r s h o u l d d o t o i n f o r m
1 4 4 - # t h e u p p e r l a y e r s o f t h e c o m m u n i c a t i o n s u b - s y s t e m .
1 4 5 - a b o r t _ h a n d l e r :
1 4 6 - j u m p t r u e , i n i t ;
1 4 7 -

F ig u re 3 .13 : Code example - Main d a ta loop

CRC check units based on the CRC-CCITT polynomial. Theses units snoop the internal

TX BU S/RX BU S for d a ta th a t is transferred from /to the buffer memory and m aintain sep

a ra te 32 bit-interleaved CRCs for each of the outbound/inbound channels. (See Figures 3.1,

3.15 and 3.16.) The CRC check bits are generated in parallel, w ith even and odd bits being

covered by independent polynomials. This approach results in a 2.4 times reduction in

complexity and reduced the number of logic levels by 2 for bo th the CRC generator and

CRC check units as compared to a parallel CRC-32.

The equations used in the generator and check units may be found in Appendix D.

Inform ation concerning the error coverage for the bit interleaved approach can be found in

[13, 14].

46

1 4 8 - # T h e a d d r e s s o f C T T X t o t r y t o r e s e r v e i s p a s s e d i n R F 0 4
1 4 9 - g r a b _ t r a n s m i t t e r :
1 5 0 - x f e r r f 0 4 , c t a d d r O ;
1 5 1 - l d c c t c m d _ r e s v , c t c t l , g o c t b u s ;
1 5 2 - # T h i s j u m p w i l l s p i n u n t i l c y c l e i s c o m p l e t e
1 5 3 - j u m p ~ a c k , b u f f e r _ p a c k e t ;
1 5 4 -
1 5 5 - # W e g o t t h e t r a n s m i t t e r w e w a n t e d a n d n o w f o r w a r d t h e p a c k e t h e a d e r .
1 5 6 - l d c c t c m d _ d t x , c t c t l ;
1 5 7 - x f e r r f O O , c t d o u t , g o c t b u s ;
1 5 8 - x f e r r f O l , c t d o u t , g o c t b u s ;
1 5 9 - x f e r r f 0 2 , c t d o u t , g o c t b u s ;
1 6 0 - x f e r r f 0 3 , c t d o u t , g o c t b u s ;
1 6 1 -
1 6 2 - # R e c o n f i g u r e t h e C T R X t o u s e t h e r e s e r v e d t r a n s m i t t e r .
1 6 3 - x f e r r f 0 4 , c t d o u t ;
1 6 4 - l d c c t c m d _ c f g O , c t c t l ;
1 6 5 - l d c c t a d d r _ c t r x l , c t a d d r O ;
1 6 6 - l d c O x f f , c t a d d r l , g o c t b u s ;
1 6 7 - # T h e c l e a r a l l a t t h e b e g i n n i n g w i l l r e s e t o u r I R t o h i g h
1 6 8 - j u m p t r u e , i n i t ;
1 6 9 -
1 7 0 - e n d

F igu re 3.14 : Code example - T ransm itter reservation

ERRORZero
Detect

F igu re 3.15: Parallel CRC Check Unit

47

D(31:0)
Next
State
Logic

CRC(31:0)

F ig u re 3 .16 : Parallel CRC G enerator Unit

3 .3 .4 O p eratin g S y stem Support

The PRC interacts with, and supports, the operating system running on the IMU in

several ways. These include inbound and outbound page sequencing, in terrupt m anagem ent,

precise tim e-stam ping of packets, and the error detection as described previously. All of

this interaction, excepting d a ta writes and reads to the buffer memory, takes place using

the PCBUS, which is m apped into the IM U’s physical address space.

One of the key functions supported by the PRC is autom atic page sequencing on both

the outbound and inbound channels. As alluded to earlier, the IMU controls the page

sequencing by managing seven independent stream s of Page Control Tags (P C T s). For

the inbound packet stream s, the IMU loads PC Ts th a t describe the base location of each

page. For each page associated with an outbound message, the IMU loads a PC T into the

PRC. Each PC T contains inform ation about the base location of the page and the am ount

of d a ta on the page. In addition, PC Ts associated with outbound stream s contain a field

specifying how many longwords a t the beginning of each page should be excluded from the

CRC calculation. This allows the downstream PRC RXs to modify the lowest-level routing

headers w ithout affecting the packet’s CRC. Finally, outbound PC Ts have a flag th a t can

indicate th a t the page is the last of the packet.

The PC Ts for each outbound stream are stored in FIFOs th a t are part of the specific

TFU th a t manages transmission in the direction in which the stream s are associated. The

inbound stream s have a single FIFO such th a t each inbound channel takes the next available

PC T . In the current design the outbound FIFOs are 4 PC Ts deep and the inbound FIFO is

48

16 PC T s deep. The intention is to allow the different components of the PRC to be serviced

by the IMU in bursts. For example, in a single PCBUS read the IMU may determ ine the

capacity of all of the outbound PC T FIFOs and subsequently service all of them in a single

invocation of the PRC in terrup t service routine. Since the PRC is designed to support a

tightly-coupled flow-control scheme, the unavailability of a P C T for a particular channel

doesn’t cause the loss of a packet bu t ra ther idles transmission in the case of outbound

channels or eventually suspends acknowledgements for inbound channels.

W ith the possibility of having twelve active channels, the potential volume of in terrupts

requiring service can be quite large. The design of the PRC specifically addresses this

po ten tial problem. This support takes two forms: the event queue and the in terrup t masks

th a t determ ine which events generate in terrupts.

Inform ation is conveyed from the PRC to the IMU through the generation of events

on the PRC and eventual retrieval of the events by the IMU. An event may be any of the

following: a page fault, an end-of-packet signal (E O P), or a start-of-packet signal (SOP).

A page fault occurs when a channel reaches the end of a page. For an outbound channel

this is a function of the length field of the active PC T. For an inbound channel the page

faults can be a ttribu ted to two sources: the NPBUS interface because the current page has

been exhausted or the PRC RX managing th a t particular channel (i.e. The PRC RX has

conveyed the m ark command to the IMU). In either case the page fault for the inbound

channels indicates the channel and the length of d a ta in the current page. The EO P and

SOP events are associated with a particular channel and indicate the end or s ta r t of a

packet, respectively.

Events are logged by the PRC in an internal FIFO called the event queue. Due to

the first-in first-out nature of the queue, the events can be read out by the IMU via the

PCBUS in the order in which they occurred. The only events which are not recorded in

the event queue are page faults 011 outbound channels. The length inform ation on inbound

pages is conveyed back to the IMU through page fault events. These events contain enough

inform ation (i.e., the actual num ber of longwords used) to construct PC Ts th a t can be used

in subsequent outbound transm ission. An in terrup t of the IMU is triggered by any SOP

or EO P event, or by a channel needing more page addresses. The PRC incorporates an

in terrup t masking scheme th a t allows the IMU to individually mask in terrupts due to TX

SOPs, TX EO Ps, RX SOPs, and RX EOPs. In terrupts due to page requirem ents, however,

cannot be masked inside the PRC.

49

A nother feature specifically incorporated into the im plem entation of the PRC to support

OS functions is send tim e-stam ps and receive tim e-stam ps. The ability to accurately tim e

stam p messages close to the network hardw are and how this aids in synchronization of the

clocks in a distributed system is discussed in [38] and m otivated its inclusion in this work.

3 .3 .5 D esig n D ecision s R ev is ited

At m any points during the im plem entation of the PRC we were faced w ith design

decisions th a t shaped the final capabilities of the PRC. This subsection sheds some light on

a few of the key decisions and discusses how we arrived a t our solutions.

The interconnect structu re of the CTBUS was one of the first decisions th a t needed

to be evaulated. The choice was limited to either a cross bar w ith the TFU s, PRC RXs,

and CTBUS RXs requesting service, or the demand slot TDM scheme described earlier.

The former was eventually rejected due to the excesive num ber of I /O pins th a t would be

required for a parallel im plem entation. The demand slot arb itration m ethod was chosen

over o ther TDM arb itration techniques since it fairly distributes the bus bandw idth in times

of high utilization but allows idle cycles to be used in the event of unbalanced traffic.

The desire to minimize unnecessary traffic on the CTBUS m otivated several of the

design decisions revolving around interaction with the CTBUS. The first question was how

to m aintain the reservation sta tus. The inclusion of the reservation sta tus unit in the

PRC ra ther than the Network Interface Controller or the individual CTBUS transm itters

m aintaining their own status allowed both the TFU s and RXs to concurrently check the

s ta tu s of the CTBUS transm itters they are attem pting to reserve. This allows the units to

issue the R E S V command only after they know the unit has been previously freed. Several

o ther alternatives were considered, including requiring the units to continously issue R E S V

com mands until the device positively acknowledged the reservation a ttem p t or to snoop the

CTBUS for R E S V / F R E E commands. The former was rejected due to the overhead placed

on the CTBUS. The la tte r was rejected since its hardw are complexity is equivalent to the

current im plem ented unit.

Similar to the handling of reservation status, the availability of individual IR D A T A

lines was chosen over a scheme in which the device would positively or negatively acknow

ledge each d a ta transaction on the CTBUS.

The im plem entation of the page sequencing is another area where several different m eth

ods were evaluated. The current im plem entation requires th a t the IMU provides stream s of

50

PC T s. One would think th a t an obvious improvement would have the PRC actually fetch

the next P C T autom atically. This was not done for two reasons. F irst, this assumes th a t

the PRC has detailed knowledge of the d a ta structures used by the IMU. Second and most

im portan t, autom atic page following would prevent partial cut-throughs using the buffer

memory. W ith the current im plem entation, a packet can be resubm itted for transm ission

as soon as a single page has been received. If the source nodes are not able to provide da ta

fast enough, then the T FU will exhaust its page queue and simply wait for the next PC T.

The alternative approaches th a t follow the page structures autom atically would have to use

some form of page locking to indicate th a t the next page is available. This was deemed to

be too expensive to im plement for the am ount of traffic th a t would take advantage of this

capability.

The decision to support the stalling I/O operations in the RX was made after observing

the excessive num ber of WAIT instructions required to stay in synchronization with the

CTBUS and RXBUS interfaces. The cost of adding these features was minimal since the

microsequencer m ust already handle the W AIT, JUM P, and RETURN instructions.

51

3.4 Comparison to Related Commercial and Research Devices

In this section we compare the features of the PRC to those available in current research

and commercial devices. It is im portan t to note th a t none of the systems discussed were

designed for the particular region of design space th a t the PRC is ta rge ted , therefore making

direct comparisons difficult. This does not mean th a t we cannot learn from previous mis

takes or successes. Furtherm ore, it does not mean th a t future systems for these alternative

domains can’t in tegrate some of the features th a t we have chosen to incorporate.

The differences between the related systems and the PRC can be divided into several

dimensions. These include the decision to use centralized hardw are com ponents, the grain

size of the com putation tasks, and the level of support services provided. In term s of the

spectrum of possible designs, the communication subsystems th a t are intended to provide

support for a network of w orkstations tend to provide high-level services through a single

p o rt to the interconnect fabric. On the other end of the spectrum are the com munication

subsystem s targeted for today ’s tightly-coupled multiprocessors. Here the packets are short,

the num ber of connections to the interconnect fabric larger, the interconnect assumed to

be reliable, and the host processor required to interact quite closely with the hardw are.

The PRC is placed somewhere in between these two extremes; targeted for perform ing and

supporting experiments on fault-tolerant distributed real-tim e systems, the PRC needs to

support interm ediate performance communication with multiple ports into an interconnect

fabric.

In examining the systems described below we will focus on the following characteristics

when applicable:

• The operating domain originally envisioned.

• The interconnection topology or fabric.

• The num ber of network ports.

• The routing algorithm (s) supported.

• The switching methodology.

• The packet/m essage sizes supported.

• The assumed media characteristics.

52

• The physical interconnection cost issues.

• The type of operating system support.

Post Office (M a y f ly /F A IM -1) The Post Office (PO) of the Mayfly system [5, 17, 18]

(developed by H ewlett-Packard Laboratories) is a system whose architecture and function

ality m ost closely matches th a t of the PRC. The PO is a independent packet delivery

subsystem th a t has evolved from its original inception as the com m unication support for

Schlum berger’s FAIM-1 symbolic multiprocessor [19, 49, 50] to its current role. The end ta r

get environm ent for the system has changed from supporting an ultra-concurrent symbolic

m ultiprocessor for AI systems to the existing design goals of being a scalable general-purpose

parallel processing environment for modern program m ing languages. Surprisingly enough,

the PO architecture and supported functions have remained relatively constant even though

m ost of its surrounding components have radically changed.

The interconnection topology provided by the PO is a two-level processing surface based

on a regular hexagonal surface with a wrap structure using a tw isted torus. This wrap

s truc tu re is isomorphic to the C-wrapped structure being used for HARTS as described

earlier. This two-level structure is achieved by placing special three way switches on the

periphery of the lower level surface and connecting two adjacent surfaces. For exam ple,

consider the original II4 surface presented in Figure 2.1. Instead of directly connecting the

gray wrap links as originally described, insert a three-way switch so th a t a packet may either

take the wrap link or exit the surface. The exit links are then connected to an adjacent / / —4

surface. This hierarchical scheme doesn’t provide real benefits until the to ta l num ber of

nodes and surfaces are reasonably large. A I I7 surface containing 127 nodes has a diam eter

of six com pared against a two-level surface constructed from a series of II3 surfaces (a S-2

E-3 surface using Davis’s notation), which has a diam eter of five. The benefits are clearly

presented when comparing the difference in the diam eters of a E-140 to a series of E-10

surfaces (139 vs 89). This reduction is gained by having the routing algorithm s deal with

two sets of offsets; one for the base surface and one for the surface constructed by tessellating

the base surface.

The PO claims to support the dynamic selection of four types of routing algorithm s:

virtual cut-through, best path, no farther, and random. In reality, the PO doesn’t really

select one of these algorithms bu t sequences through these four sub-algorithm s as a single

routing/sw itching algorithm . Only the router modules associated w ith input ports perform

53

the virtual cut-through algorithm , which im plem ents the same policies as the best path

algorithm but a ttem pts to directly connect the input port to the ou tpu t port prior to

the entire packet arriving at the input port. If an inbound packet can not be handled

successfully by the virtual cut-through phase, then best path algorithm is a ttem pted . This

policy a ttem pts to transm it the packet out a po rt th a t will result in the most routing options

for the router in the next node. If th a t isn’t im mediately possible, best path attem p ts to

select a route th a t still preserves minimal path routing. Once a certain tim e threshold

for a particular packet is exceeded, the router modules switch from attem pting best path

routing to attem pting no farther routing by routing the message to a node which is the same

num ber of hops distant. Finally, after another tim e threshold is exceeded, the routers use

the random approach in which the packet goes out in any direction.

The PO uses a fixed packet size of 36 words and can carry a payload of 32 words. The

4 word header specifies the surface, the node within the surface, the original source, the

message id, the packet id, and the to ta l num ber of packets associated with the message.

The PO deals solely with packets, bu t the message id is used by its m anaging processor

(M P) and allows the received packets to be directly transferred to the appropriate locations

in the M P ’s memory.

Each PO has six 12 bit bidirectional buses used for com m unicating with the POs in

adjacent nodes and a 32 bit interface onto the M P ’s bus. A rbitration for the bus between two

POs is handled by one of the POs and is granted for the period of a packet w ith the option

of the receiving PO NACKing the packet at any time during the transfer. Retransm ission

for packets th a t are corrupted or refused due to lack of buffer space are handled directly by

the port controllers associated with each link.

The PO interface with the operating system and its m anaging processor (the M P) is

accomplished in several ways. F irst the PO can act both as a co-processor to the MP

an d /o r an instruction assist device. This allows efficient use of the M P ’s instruction set

(a HP Sterling 1.5 which is a 16 Mhz 32 bit im plem entation of H ew lett-Packard’s RISC

architecture) for loading the transm it and receive packet FIFO. The PO is designed to

operate in cither polled or in terrup t driven mode, thus allowing the OS to use the mode

th a t is appropriate for the current network load (or set of device drivers available).

There are many differences between some of the fundam ental decisions th a t the designers

of the PO made and those of the PRC. These include the fixed packet size, placement of

buffer space, the type of service expected from the MP, and resource allocation policies.

54

T he fixed packet size of the PO is acceptable for the MIMD m ulti-com puter which

the PO is designed to support. This fixed packet size is also necessary for the PO to

m ake guarantees th a t it will not deadlock on its internal packet buffers. Since the PRC is

intended to support a wide variety of communication protocols, many of which have a much

larger packet size, the PRC can not place such a restriction on the packet size and therefore

externally buffers transit packets. The PRC assumes th a t the external packet buffers are

large enough th a t higher level protocols can prevent deadlock due to buffer starvation.

The type of interaction and control required differs considerably between the PRC and

the PO. The PO operates as an autonom ous packet delivery subsystem with only the

in itia ting MP and receiving M P required to in teract with the PO. This also m eans th a t

the M P has no way of influencing the routes or resources being used. In contrast, the PRC

requires the IMU to schedule the packets for transm ission on each individual TFU (bo th for

injected packets and transit packets th a t could not cut-through). This allows the IMU and

PRC to adap t to changing network conditions and mission requirements. For exam ple, the

IMU has a t its disposal the packet scheduling policies for each of the TFU s, the reservation

release policies of the TFU s, and the inter-device communication RAM. This type of control

provides the necessary support for both fault-tolerant and real-tim e com munication.

There are several lessons th a t we can learn from the P.O design. F irst, the flexibility

gained from having multiple routing algorithm s (or phases of an algorithm) can be quite

im portan t. This can be seen from the evolution of the routing support originally proposed

for the FAIM /1 system and w hat was finally implemented in the PO for the Mayfly system.

Second, the OS interaction with the PO can be dealt with in many ways. The PO acts as

an autonom ous sub-system but requires the MP to calculate the checksum on the packets

subm itted . In contrast, the PRC requires the IMU to initiate packet transm ission in the

T FU s bu t does not require the IMU to scan the entire packet in order to accum ulate a CRC.

Last, it is easy to design a system th a t will give a large variance for the packet delivery

times. There are several examples of this in the PO. F irst, the PO does not im plem ent a

FIFO policy in selecting which packet will be selected for transm ission out of the packet

memory. Second, the PO has seven routers attem pting to gain access to an outbound port

in order to transm it a packet. Six of these are assigned to servicing ports th a t are receiving

packets and thus will a ttem p t a cut-through. This appears to lead to the situation in which

a node can have its packet delivery latency significantly influenced by cut-through traffic.

55

Torus R outing Chip The torus routing chip (TR C) is designed as a building block for

h igh-throughput, low latency message-passing concurrent com puters based on a byte-wide

parallel fc-ary n-cube interconnection network [9, 11]. The TRC im plem ents a provable

deadlock-free interconnection network by routing variable length messages using wormhole

switching on two virtual channels per physical link. The TRC is im plem ented using a 5x5

10 bit crossbar with five 5-way arb iter built into the crossbar switch, 5 input controllers th a t

make routing decisions, and 5 ou tpu t controllers th a t handle the flow control and physical

m ultiplexing onto the ou tpu t links.

A lthough the TRC is now quite dated, some of its contributing features can be found

in m any of the second generation parallel machines. Most notable is the efficient use of

wormhole routing th a t appeared in the Mesh Routing Chip (M RC) used in the Aintcx 2010

[42] and the theory behind constructing deadlock-free routing by defining an order in which

the packets use the available virtual channels[10].

W hen evaluating the TRC in the intended operating domain of the PRC the fixed

routing algorithm , lack of end-to-end error detection, and lack of operating system support

could be considered m ajor drawbacks. The beauty of the TRC is th a t it is small and simple.

M essage Driven Processor The Message-Driven Processor (M D P), like its predecessors

(T R C /N D F /A D C), is designed to be part of a m ulticom puter capable of supporting fine

grain, message passing, parallel com putation[12, 11, 36, 45]. W hat is novel about their

approach is th a t the processor th a t comprises the core of each node has been made network

aware. This has been accomplished by integrating a 36 bit (32 bits d a ta /4 bit tag) integer

processor, a memory controller, a 3-D mesh router, 4K SRAM, and a 1 MB DRAM control

ler all into a single VLSI device. This provide both the end user and the operating system

w ith low overhead mechanisms for com munication, synchronization, and translation.

As with many of the parallel machines, the physical proxim ity of the nodes allows for

synchronous parallel interconnect, and the media characteristics are assumed to be error

free. These assum ptions im m ediately allow the MDP to ignore the need for any end-to-end

error checking. Furtherm ore, the designers of the M DP have chosen to deemphasize any

notion of the interconnection topology and use a simple 3-D mesh with dimension order

routing w ith wormhole switching.

Messages are subm itted to the mesh router using the SEND and SENDE instructions

which enqueue either one or two words per instruction. There is no DMA support and

56

the SENDE instruction signals the end of the message under construction and initiates its

transm ission. For any tim e lost in constructing messages the M DP certainly compensates

w ith its hardw are support for the autom atic in terrupt and execution of a thread upon arrival

of a new message. This may occur on two separate message priority levels which further

enhances the M DP flexibility.

C ertain key characteristics of the MDP can be observed in portions of the PRC architec

tu re and im plem entation. The simple control interface in which the IMU subm its a single

page tag for a single page message serves the same purpose as the SEN D /SEN D E instruc

tions. The desire to minimize in terrupt overhead by allowing the packet to be collected

completely before dispatching the receive thread is a dual to the P R C ’s ability to filter out

in terrupting events until the end of packet is detected.

T he m ajor differences between the MDP and the PRC are mainly an artifact of the

intended operating domains. The router of the M DP is designed solely to support low

latency communication for the J-machine, and the intention is to hide any notion of the

network from the user. The PRC is designed to allow the operating system designer the

m axim um am ount of inform ation and control of the network so th a t a communication

subsystem capable of supporting distributed real-tim e applications can be constructed.

N e c ta r C A B We now move from comparisions of the PRC to routers supporting closely

coupled parallel com putation to more general network adaptors or communication control

lers. CM U’s Nectar p ro jec t’s design and im plem entation of the Comm unication Accelerator

Board (CAB) clearly identifies some of the im portan t features th a t a general purpose com

m unication system should efficiently support [8, 30, 33, 48]. Heterogeneity, scalability, low-

latency, and high-bandwidth communication were the stated goals of the N ectar project. To

achieve these goals they designed an efficient parallel crossbar interconnection network th a t

can be cascaded in multiple levels to support more nodes; hence satisfying the scalability,

low-latency, and high-bandw idth requirements. The designers’ answer to the heterogeneity

requirem ent was the CAB, a flexible and highly program m able network processor. Similar

to the PR C , the CAB had to balance the desire for flexibility against the need for fast basic

operations.

As w ith the HARTS Network Processor, the CAB architecture was divided into three

main function blocks: the host interface, the processing unit, and a network interface. For

purposes of comparison to the PRC we will only consider the functions supported by their

57

network interface.

The network interface is composed of two independent sections: a transm itte r and a

receiver. These two sections operate completely independently of one another and are

controlled as separate devices by the managing processor. Both the transm itte r and the

receiver have a private DMA channel th a t allows for unattended d a ta transm ission/reception

once set up by the processor. Physical connection to the network is performed by AMD

TAXI transm itters and receivers.

There are significant differences in some of the design decisions undertaken by the CAB

designers when compared against the P R C /N I combination. F irst, the CAB uses only

packet level flow control and claims th a t byte-level flow control would too greatly im pact

the peak performance. While this is true for the SRAM based CAB design, the fact th a t

the PRC is managing six TAXI device pairs and writing into DRAM invalidates this claim.

Also, routing in a crossbar can occur in a single cycle, which is not possible in the context of

more complicated routing/sw itching algorithm s for point-to-point networks th a t the PRC

is designed to explore. These requirem ents force the PRC to support byte-level flow control,

bu t its costs are partially am ortized by having up to 12 channels independently active.

The m ethod in which DMA is im plem ented also differs between the two designs. The

PRC preloads the page tags th a t identify where incoming d a ta will be received and then

has the IMU and vYPI interfaces of the NP construct the contiguous message images as

they are copied into the address space of the application processors. The CAB requires the

processor to respond to the incoming packet and set up the DMA prior to overrunning a

FIFO inside the receiver of the network interface. This allows for the possibility of directly

transferring the received d a ta into the host memory but places a significant response time

limit on the processor th a t can only be done for a limited num ber of incoming channels.

W ith the possibility of 6 packets arriving almost simultaneously, the PRC m ust take a more

au tom ated approach to the reception. The same type of differences exist on the transm itte r

side. Here the PRC loads a stream of page tags into the appropriate T F U ’s, where as the

CAB m ust set up the DMA for each contiguous block of data.

3.5 Low-Level Simulation and Geometry Results

The PRC design presented in this chapter has been completed and gate level simulations

performed. Designed in a 1.0/iin CMOS process, the PRC measures 14.005mm by 13.4mm.

58

T he PRC requires a to ta l of 180 pins, divided into four main groups. Power, ground, and

clock lines consume 15 pins, while the remainder are divided am ongst the PCBU S, the

CTBUS, and the NPBUS.

During the design of the PRC, we targeted for a CTBUS cycle period of no more than

50ns (20M Ifz). Timing analysis, however, has shown th a t this interface will be able to

function w ith a 30ns cycle (33MHz). This exceeds the 22.5 MHz cycle tim e if th e AMD

TAXIchips are run in synchrounous mode which currently is our mode of choice for the

NI. In the current design of the Network Processor, this speed is sufficient to sa tu ra te the

mem ory subsystem.

W ith an unloaded system, the PRC can begin transm ission of a packet w ithin 500ns of

the first page control tag being latched into the page queue. During this tim e, the PRC

retrieves the first word of the packet from the buffer memory, obtains a reservation of the

CTBUS transm itte r, and latches the first byte of the first word into th a t transm itte r.

In addition to the low-level hardware simulations we have developed an interm ediate

level event-driven sim ulator presented in C hapter 5 th a t allows us to model the entire point-

to-point network based on the operating characteristics of the PRC. The sim ulator is able

to capture activities with a granularity as small as a bus cycle, where necessary, in order to

provide accurate estim ates of the network performance.

3.6 Summary

T hroughout this chapter, the flexibility of the PRC has been emphasized as a key

desirable a ttribu te . W hy is this flexibility im portant? The flexibility of the PRC will

be crucial to experiments th a t vary routing strategies in order to determ ine which is the

“b es t” for a particular application or interface. The intelligence of the PRC receivers allow

complex routing decisions to be made at a level below th a t of the main processor of the

NP. The PRC even provides support for priority based decisions: if a particu lar channel

(for w hatever reason) needs to be reserved to high-priority traffic, low-priority traffic can

be prevented from cutting through.

One feature of the PRC design which has not been previously emphasized is how the

CTBUS protocol insulates the PRC from the physical im plem entation details of the N et

work Interface. For example, HARTS uses the AMD TAXI chip set to create the physical

links between nodes. These could easily be replaced w ith CTBUS-compatible parallel in ter

59

connect w ithout requiring modifications to either the PRC or the software. This separation

also serves to highlight the distinction the PRC provides between the routing algorithm and

switching scheme. The CTBUS protocol is used solely for controlling switching.

Several primitives were directly provided to support real-tim e com m unications. These

include the transparen t addition of send and receive tim e stam ps, which are useful for clock

synchronization and distributed agreement algorithm s. The ability to im plem ent channel

priorities allows the IMU to influence decisions made by the low-level routing strategies as

a function of high-level goals of the IMU.

The PRC provides the flexibility required for an experim ental system combined with the

perform ance of a hardw are im plem entation. Although the PRC is not designed to com pete

w ith commercial devices on raw performance, the insights gained from its design and use in

an experim ental environment can be used in the design of future com m unication subsystem s

th a t operate in its domain.

CHAPTER 4

DELIVERY TIME DISTRIBUTIO NS

4.1 Problem Description

This chapter derives an analytical model to evaluate the v irtual cut-through message-

passing scheme in a distributed com puting system based on a hexagonal mesh architecture

described in C hapter 2.

Since real-tim e applications normally require short response tim es, simple store-and-

forward message passing schemes may not always be suitable. Consequently, we look a t a

message passing scheme virtual cut-through as described earlier.

A lthough virtual cut-through was proposed almost a decade ago, it has not been im

plem ented in real systems until recently. Since custom ASICs have become economically

viable, several distributed systems are being designed and im plem ented th a t use v irtual

cut-through (or some variant thereof) as their basic message passing scheme. It is easy

to see th a t virtual cut-through will perform better than a conventional packet-switching

scheme in term s of packet delivery times. However, the actual im provem ent it offers over a

packet-switching scheme for packet deliveries has not yet been accurately evaluated.

K erm ani and Kleinrock carried out a mean value analysis of the perform ance of v irtual

cut-through for a general interconnection network [26]. However, a mean value analysis is

not adequate for real-tim e applications because worst-case com munication delays often play

an im portan t role in the design of real-time systems. For example, the mean value analysis

cannot answer questions like w hat is the probability of a successful delivery given a delay

or w hat is the delay bound such th a t the probability of a successful delivery is g reater than

a specified threshold.

The authors of [26] wanted to avoid any dependence on the interconnection topology in

their analysis. As a result, they assumed th a t the probability of a packet getting buffered

60

61

at an interm ediate node is a given param eter. Since one cannot get a reasonable estim ate

of the perform ance of v irtual cut-through w ithout an accurate estim ate of the probability

of buffering, the approach in [26] becomes useful only if we can accurately determ ine the

probability of buffering for a given interconnection topology. However, determ ining the

probability of buffering a t an interm ediate node for a given topology is not simple. This

is because each node in a d istributed system handles not only all packets generated at the

node but also all packets passing through the node (called transit packets). Consequently,

to evaluate the probability of buffering, we have to account for the fraction of packets

generated a t o ther nodes th a t pass through each given node.

In contrast to [26], we first derive the probability th a t a packet is destined for a particular

node by characterizing the hexagonal mesh topology. This probability of branching is then

used as a param eter in a queueing network to determ ine the throughput rates a t each node in

the mesh. After the throughput rates are found, the probability th a t a packet can establish

a cut-through a t an interm ediate node is derived. From these param eters we approxim ated

the probability distribution function of delivery times for a packet traversing a specified

num ber of hops. The im portance of this kind of analysis in a real-tim e system , as opposed

to a mean value analysis, is then illustrated through some numerical examples and com pared

w ith sim ulation results th a t are based on some of the relevant param eters in H A R T S .

The chapter is organized as follows. The term s and notation used are introduced in

Section 4.3. Analytical expressions for the branching probability and buffering probability

are derived in Section 4.4 and the probability distribution function of packet delivery times

is derived in Section 4.5. Numerical results from both the analytic model and simulations

are presented and com pared in Section 4.6. We conclude with Section 4.7.

4.2 M essage M odel

This section presents the derivation of the probability distribution of packet delivery

times in a C-wrapped If-m esh th a t implements v irtual cut-through. A queueing network

will be used to carry out this analysis.

To make the analysis trac tab le , we make the following assumptions:

A l : Poisson packet generation w ith rate XG at each node.

A 2: Exponentially-distributed packet lengths w ith mean 2.

62

A 3: The length of a packet is regenerated at each interm ediate node of its route independ

ently of its length a t other interm ediate nodes.

A 4 : Nodes have no preferential direction for communication.

A ssum ptions A1-A3 are consistent with Kermani and Kleinrock’s assum ptions in [26]. Al

though not completely accurate, it has been shown through empirical studies th a t these

assum ptions lead to a fairly accurate characterization of message arrivals. Assum ption A4

implies th a t all minimal length paths between a source and destination are equally used.

A4 does not imply uniform communication over all nodes of the mesh, but implies uniform

com m unication with nodes reachable in the same number of hops. So, let qk denote the

probability of a node communicating with a node which is k hops away. The definition of

qk will be used to derive some of the base param eters for the queueing network.

Due to the homogeneity of a C-wrapped Ii-m esh, any node can be considered as the ori

gin of the mesh and labeled 0. W ithout loss of generality, we can concentrate on evaluating

the d istribution of the packet delivery times for the packets generated a t node 0. In order to

determ ine the distribution of the delivery times it will be necessary to evaluate the transit

load handled by node 0. This transit load is a function of both the packet generation ra te

a t each node and the interconnection topology. A nother param eter necessary to determ ine

the d istribution of the delivery times is the probability th a t a transit packet (a t node 0) will

be buffered (a t node 0) as a result of not being able to establish a circuit to the neighboring

node. The derivation of the analytical expressions for the transit load and the probability

of buffering is presented in Section 4.4. The distribution for the packet delivery tim es is

then presented in Section 4.5.

4.3 Terms and N otation

In the following analysis let e be the dimension of the Ii-m esh and let [j]; denote j mod i.

Also let N = (0 , 1 , . . . ,3e(e — 1)} be the set of all nodes in the H-mesh.

D e f in it io n 2 A route from a source node, s £ N , to a destination node, d, £ N , is a

sequence n Qn x ■ ■ ■ n t ■ • ■ n k_y n k o f nodes, Hi £ N , V i £ { 0 ,1 , . . . , /c}7 such that (i) n 0 — s,

n k = d, and (ii) there exists a direct link in the H-mesh between n, and n ;+i, Vi £ {0, —

1}. The length of a route r is the number of components in the sequence and will be denoted

by len(r) .

63

D e f in it io n 3 A m inimal route from s G N to d 6 N is a route Ti from s to d such that

len(r i) < len(r f) for all routes r 2 from s to d.

D e fin it io n 4 A n anchored route is an ordered pair (n0 - - - n k , x) consisting of a route

n 0 ■ ■ -nk and x € N such that

1. k > 2,

2. n 0 ■ ■ -nk is a minimal route from n 0 to n k, and

3. 3 z, 1 < i < k — 1, such that n 8- = x.

x is called the anchor of (n0 • • -nk , x).

D e fin it io n 5 A shape s of length k, 2 < k < e — 1, is a sequence axa2 • ■ • • •ak_ iak,

O’i G {do, ■ ■ ■, d5}, such that

k 5 5

U {“i} € U U U {«.<%+.].}}
ini j =0 j= 0

= { {do}, {di}, {d2}, {c/3 }, {^4 }, {d$},

{do, d i} , {di, d2}, {d2, d3}, {d3, d4}, {d4, d5}, {d5, d0} } .

The length of shape s is denoted by £(s).

A shape is a route th a t a packet can traverse. The above definition of a shape is

m otivated by the fact th a t all minimal routes between any pair of nodes are formed by links

along one or two directions only [6]. For example, route A in Figure 4.1 corresponds to the

shape dididodx such th a t U-Lj {o,;} = {d0,d i} and route B corresponds to the shape d0d0d0

such th a t uf=1 {a*} = {d0}. A shape can represent routes between several different pairs of

com m unicating nodes. For example, routes A and C in Figure 4.1 correspond to the same

shape but represent routes between two different pairs of com municating nodes.

D e f in it io n 6 A n anchored shape p is an ordered pair (s , k), where s is a shape, and 1 <

k < £{s) — 1 marks a position within the shape. The length of an anchored shape (s , k) is

defined to be the length o f the associated shape s.

There exists a one-to-one correspondence between the set of all anchored shapes and the

set of all anchored routes w ith their anchor at 0. (In order to not detract from the m ain goal

of this chapter the proof th a t there is a one-to-one correspondence between these mappings

64

Route C

Route A

Route B

n,; =

F ig u re 4 .1 : Example shapes in a H-m esh of dimension 5.

has been given in Appendix E.) The mapping from an anchored shape (ax ■ ■ - a{ - ■ ■ ak,£) to

an anchored route (n0 ■ ■ • n k,0) is done as follows:

cwhm(rii+i,(i~^f) if 0 < i < i — 1

0 if i = l (4.1)

cwhm(ni_ i ,a i) i f f + 1 < i < A;

where ai = d[m+3]6 if a* = dm, 0 < m < 5. The m apping from an anchored route (n 0 • • • n*, 0)

to an anchored shape (ax ■ ■ ■at ■■■ak, t) is

a,- — cw hm ~ 1(ni_i ,r i i) 1 < i < k

I = argi<j<ifc-i(ni = 0). (4.2)

where arg i<j<k-i(nj = 0) refers to the value of j such th a t nj = 0. For example, consider

the anchored route (33 —> 47 —*■ 0 —> 1 —> 15, 0) obtained from route A in Figure 4.1. From

Definition 1, we know th a t cv^hm"1 (33,47) = dx, cw h m ~ 1 (47,0) = dx, cw h m ~ 1(0 ,1) = d0

and c w h m ~ l (\ , 15) = dx. Since 0 is the th ird node in the route a rg 1< <4(n ;- = 0) = 2.

65

It then follows from Equation 4.1 th a t the anchored shape corresponding to the anchored

route (33 -*■ 47 —> 0 —» 1 —► 15, 0) is (djcM o^i, 2).

Similarly, the anchored route (n 0n 1n 2n3n 4, 0) corresponding to the anchored shape

(d id idQdi, 2) can be obtained as follows. Since the second element in the anchored shape

is 2, n-2 = 0. Since = d4 and cw h m (0, d4) = 47, «x = 47. Proceeding further, we get

n 0 = 33 because cv)hm(47, d4) = 33, and n3 = 1 because cw h m (0 ,d o) = 1. Finally, n4 = 15

since cwhm{\,d. i) — 15. As expected, combining these results we get the anchored route

corresponding to the anchored shape (dididady,2) as (33 —» 47 —> 0 —> 1 —> 15, 0).

The minimal route corresponding to the anchored shape p is one of the possibly many

minimal routes between the source and the destination. The other minimal routes between

the source and the destination can be obtained by perm uting the com ponents of the shape

associated with p and applying a mapping function similar to the one above.

All of the routes associated with these perm utations will not necessarily go through

node 0. Only the fraction of the to ta l number of routes from the source to the destination

th a t pass through node 0 will influence the transit load a t node 0.

4 . 4 Network M odel Derivation and Parameter Calculation

The packet transm ission in the Ii-mesh can be modeled as a Jackson queueing network,

consisting of 3e(e — 1) + 1 service centers of the M /M /1 type. For each service center a

packet completing its service may go to either of its six im mediate neighbors or exit from the

system. Packets whose final destinations are im m ediate neighbors will not use the service

centers of their im m ediate neighbors and will exit the system at the current service center.

Packets whose final destination are not im m ediate neighbors travel to a neighboring service

center.

Let pbij denote the probability th a t a packet completing its service a t a node i will

be routed to neighboring node j . Using assum ption A 4 and the fact th a t the C-W rapped

II-Mesh is a homogeneous surface it is easily seen th a t all the pbtj have to be equivalent and

thus will be denoted by pb. Figure 4.2 shows a portion of the queuing network centered

around node i.

The rest of this section concentrates on deriving an expression for pb. Once given an

expression for this, we can derive the probability th a t a packet will establish a cut-through

when arriving a t a node in the Ii-m esh.

66

i+3e-1][i+3e-2

[i+3e-6e+3i+3e-6e+2]

1 ~ 6 p ,

F ig u re 4 .2 : Network model around node i.

C a lc u la t io n o f pb

The following symbols are used to identify the different packet arrival rates:

• AG : the ra te of generating packets at a node.

• Ag2+ : the ra te of generating packets at a node th a t are not destined for an im m ediate

neighbor.

• At : the ra te of transit packets arriving at a node.

• Ay2+ : the ra te of transit packets arriving a t a node th a t are not destined for an

im m ediate neighbor.

It is convenient to define a function th a t counts the to ta l num ber of d ^ s in the

shape associated with the anchored shape p, th a t is,

$ (d j ,p) = | {ak : ak — dj, ak is in the shape associated with anchored shape p } | .

67

Considering the anchored shape A from the previous example, 4>(d0 , (d id id0di, 2)) = 1

and $(d i , (d id id0di ,2)) = 3. This function is used to derive the tran sit load associated

w ith an anchored shape on node 0.

L e m m a 1 The contribution of an anchored shape p to the transit load o f node 0 is

Ag ■ Qk
L(p) =

where k = 221=o and M (p) =

M (p)

E jB=0 * M , p)

n ; =0 [* M ,p)!]

P ro o f : It follows from the definition of anchored shape and a simple com binatorial analysis

th a t the to ta l num ber of shortest routes between a source-destination pair is M(p) .

By the definition of qk, the ra te a t which a source sends packets to a destination is

Aq • qk- By 4, all routes between the source and the destination are equally used. Hence,

L (p) = ■
Lemma 1 allows us to calculate the transit load for a single route through node 0. In

order to calculate the to ta l transit loads \ T and AT2+, we will need to determ ine the to ta l

num ber of minimal routes passing through node 0 for all pairs of com m unicating nodes. To

determ ine this number we will partition the set of all anchored shapes into sets th a t can

be counted. Since there is a one-to-one correspondence between the anchored shapes and

anchored routes with their anchor at node 0, counting all anchored shapes is equivalent to

counting all pair of nodes th a t have a minimal route passing through node 0.
defPartition the set of all anchored shapes P into the sets Pmn = { p : 4>(dm,p) > 1 } for

0 < m < 5 and n = [m + I]6. Intuitively, each Pmn contains anchored shapes w ith one or

more dm and possibly some dn components.

L e m m a 2 The sets Pmn d= { p : § (d m,p) > l , p 6 P }, n = [m + 1]6, 0 < m < 5

partition P.

P r o o f : We will first show th a t sets Pmn cover the entire set P. For an anchored shape

p = (o ia 2 •ak,£), there are two cases to consider.

In the first case,

k

U {a*) = Ml}’ f°r some p G {0,1,2,3,4,5}.
2 - 1

From this fact we can conclude th a t p £

68

In the second case,

k

U {a,-} = {rfindpj+1].} , for some *! € { 0 ,1 ,2 ,3 ,4 ,5 } .
i = l

In this case, p £ Pi][il+1]6.

We will now show th a t the sets Pmn are disjoint. Suppose not. Then, 3 Pilj 1 and Pi2j 2,

ix i2, such th a t Piljl fl Pi2j2 ^ 0. Consider an anchored shape p £ Pilj l n Pi2j 2 w ith the

shape axa2 ■■-ak .

Case 1: j x — i2.
k k

p £ Piljl implies dil £ |J {a,-} and, p £ Pi2h implies |J {a,} £ {{d i2,d j2} , { d i2}}. Since by
i = 1 i ~ \

construction j x = [ix + 1]6 and j 2 = [i2 + 1]6, and by the case under consideration i2 = j x we

can conclude th a t i x / i2 and i x ^ j 2. B ut, £ {di3,d j2} and dil ^ {dz-2}, a contradiction.

Case 2: j x ^ i2.
k

p £ P{1j 1 and p £ Pi2j2 imply {d2l,d i2} C [J {o.j}. This would violate the definition of an
j =i

anchored shape since j x — [?’i + 1]6 ^ i2. ■

In order to calculate the to ta l transit load Ay we will need to further refine the partition

Pmn into the sets P„“6n = { p : p £ Pmn, $ (d m, p) = a , $ (d „ , p) = b }. The proof

th a t P ^bn is a refinement of Pmn is straightforw ard and thus om itted.

We are now in a position to derive Ay.

L e m m a 3 The total transit load at node 0 is given by

C— 1
Ay =: \ G ^ 6k(k — 1) • qk

k - 2

where \ G is the total rate of packet generation at a node, and qk is the probability o f a node

communicating with a node k hops away.

P r o o f : Since there is a one-to-one correspondence between the anchored shapes and all

minimal routes through node 0,

Ay = L(p), where P is the set of all anchored shapes
p£P

= l b 1 2 l (p)-
i=o peP[,+1]6

From the definitions of shapes and anchored shapes, the length of the shape associated with

the above anchored shape p lies between 2 and e — 1. From the definition of Pmn we know

69

th a t 4>(dm, p) > 1. It follows from these observations th a t

^ = E £ £ . (4 -3)
2 = 0 l < a < e - l v £ . P a b

2 < a + b < e - l »[» + l l f ,

Note th a t all of the anchored shapes p £ Pffn have length a + b. Furtherm ore, since each

shape associated w ith the anchored shapes of P ‘f n has only com ponents in the dm and

(a + b \
dn directions, there are I 1 shapes in Pf+n . Given each shape one can then derive

V a)
a + b — 1 anchored shapes. Therefore

pat
[' +1]«

a + b ,
(a + b - 1)

a ! • 6 !

E?=o (a + b - 1), p e P£i+1] . (4.4)
” n?=0 M d . m

Combining Equations (4.3) and (4.4) with Lemma 1, we get

5

At = X}] E AG • qa+b ■ (a + 6 — 1). (4-5)
2 = 0 1 < a < c — 1

2 < a - \ - b < e - 1

Since Equation (4.5) depends only on (a + 6), we can substitu te k for a + b to obtain

5 e — 1

A T — E E ^G ' rP ' ~ 1) • &
2=0 k—2

e — 1 5

= X] XI ^ ~ ^
Jb = 2 2=0

e — 1

- E - !) ' (lk- ■
k = 2

L e m m a 4 The transit load at node 0 for packets not bound for an immediate neighbor is

given by

e — 1

AT2+ — \ q 6h(h ~ 2) • (?*•
k=3

P r o o f : The proof of this lem m a follows closely th a t of Lem ma 3 w ith the additional

restriction th a t node 0 cannot be in the last position for the anchored shapes being counted.

Having node 0 in the last position of a anchored shape corresponds to having the anchored

70

shape term inate in an im m ediate neighbor. This is exactly the traffic th a t we are try ing to

elim inate.

Since there is a one-to-one correspondence between the anchored shapes and all minimal

routes through node 0,

\ r2+ = ^ L ((s , k)) , where P is the set of all anchored shapes
(s, fc)6P

k j i l e n (s) — 1

5

= E E £((».*))■
1 = 0 (. . .) e p , | . + , i r

k ^ £ l c n (s) — 1

In contrast to Lemma 3, the lengths of shape s associated with the above restricted

anchored shape (s ,k) lies between 3 and e - 1. From the definition of Pmn we know th a t

$ (d m, (s ,k)) > 1. It follows from these observations th a t

AX2+ = ^ L((s ,k)) . (4.6)
i = 0 I < a < e - 1 (s , k) € P a,h ,

3 < a + 6 < e —1 ' f‘ + 1 le
k ^ l e n (s) — 3

N ote th a t all of the anchored shapes (s, k) G P ^ n have length a + b. Furtherm ore, since each

shape s associated w ith the anchored shapes of P ^ n has only com ponents in the dm and

(a,+ b \
dn directions, there are I 1 shapes in P “in- Given each shape one can then derive

\ a J
a + b — 2 anchored shapes. The number of anchored shapes generated from each shape

differs by 1 from Lemma 3 since we cannot use the last position in the shape. Therefore

following th a t same steps as in Lemma 3 we arrive at

5

AT2+ = ^ G ' (la+b ' (a P b — 2)
i = 0 l < a < c - l

3 < a + 6 < e - l

= V ! y ■ Qk ■ (k - 2) ■ k
2 = 0 k ~ 3

e — 1 5

= X ! X ~ 2) ■ ^
k = 2 z = 0

e — l

— 6Ag '22 k (k — 2) • qk- ■
k = 3

T h e o re m 1 The branching probability, pb, between adjacent service centers in the model is

6 V 6 - E

71

P r o o f : p h can be derived as the ratio of traffic bound for im m ediate neighbors to all traffic

leaving a service center.

1 A(J2+ -f-
kb 6 Aq + Xt

Using the results of Lemmas 3 and 4 along with

AG2+ = AG(1 — 6</i)
e — 1

^ 6 k - q k = 1
k = l

the theorem follows after some algebraic m anipulation. ■

It should be noted th a t ph only depends on qk and the topology.

L e m m a 5 The throughput at each service center is 6 • AG • Y l t =1 k 2 ■ qk .

P r o o f : Jackson’s theorem[27] states th a t the to ta l throughput T; at service center i is

given by the solution to the set of traffic flow equations

3 e (e — 1)

Ti = Ag + £ P b ' Tk , i = 0 , . . . , 3 e (e - 1).
&=o

By assum ption A4 and the homogeneous natu re of the C-wrapped H-mesh all T, are equal.

Therefore-,

Ti = 7 —7 ;— , f = 0 , . . . , 3e(e — 1).
1 - 6p b

Substitu ting pb from Theorem 1 the lem m a im mediately follows. ■

T h e o re m 2 The probability of a packet cutting-through an intermediate node is

P c = 1 - (^ G j 2 k 2 '

where I is the mean length or service time for packets.

P r o o f : A packet can establish a cut-through a t an interm ediate node only if there are 110

packets being serviced or waiting for service a t th a t node. Using Lemma 5 and Jackson’s

theorem th a t the probability of having zero packets at any node is 1 — p where p is the

traffic intensity, p in term s of the throughput and service rate p. is given as follows:

T T ■ 1 (e_1 \
, = - = ^ - = (A 0 p , - * J

and hence the theorem follows.

72

4.5 Distribution of M essage Delivery Times

In a v irtual cut-through message passing scheme, the delay th a t a packet incurs a t a

node depends on whether the packet is able to establish a cut-through at th a t node. If

the packet establishes a cut-through, the delay incurred is negligible and assumed to be 0.

O therw ise, the packet incurs both waiting and service tim e delays. Furtherm ore, since a

packet cannot establish a cut-through unless there are no other packets waiting for service

a t th a t node, the FCFS queueing discipline is preserved a t each node. From Jackson’s

theorem we know th a t the queueing network described in Section 4.4 has a product form

solution. Therefore, each service center behaves as an M /M /1 queueing system.

The delivery tim e for a packet traveling n hops, denoted by D n, can be expressed as

D„ — Yq + A n_ 1?

where Y0 (X n_i) is a random variable th a t represents the to ta l tim e spent by a packet a t the

source node (n — 1 interm ediate nodes). Also let be a random variable th a t represents

the to ta l tim e spent by a packet buffered in an interm ediate node.

Therefore,

P[D n < t] = P[Yo + X n_! < t]
74“ 1

= ^ 2 P[Y0 + X n_i < t | buffered a t m int. nodes] • Pfbuffered a t m int. nodes]
in—0
n — 1 in

= ^ 2 ^ A ' ^[buffered at m int. nodes].
m—0 k~0

Note the P[%2T=o - A corresponds to an Erlang distribution with param eters n{ 1 — p)

and m + 1, i.e., ERL(/Lt(l — p) , m + 1). This allows us to derive the probability density

function of D n as:

f o j t) =
m — 0 y Til J

Using the result

ml

and in tegrating /d „ (0 from 0 to t we get the delivery tim e distribution as

* , (< > = * f f " - 1) (» - , .
m= 0 \ m I m -

73

{ m \ e - M 1 - P > ™ I m \ k \ ■ t m ~ k |

j [Mi - p)]m+1 M i - P) h [k) [Mi - P) f j '

4.6 Numerical Examples and Simulation Comparison

In this section, param eters derived from the actual H A R T S routing hardw are are used

to evaluate the probability distribution function for delivery times discussed in the previous

section. Also presented is a comparison of the analytic results against a low-level functional

sim ulation of the routing hardw are of H A R T S .

In contrast to the analytical model, the sim ulator makes very few simplifying assum p

tions in modeling the behavior of virtual cut-through in H A R T S . The sim ulator accurately

models the delivery of each message by em ulating the tim ing of the routing hardw are [2 1]

along the route of a packet at the microcode level. Also captured are the in ternal bus ac

cess overheads th a t the packets experience if they are unable to cut-through an interm ediate

node. For example, when a transit packet arrives at an interm ediate node, the following

sequence of tim ed events are set into action. F irst, the receiver for th a t particular direction

waits for the packet header to become available to a ttem p t a routing decision. For the case

of the Ii-m esh any incoming packet may have either arrived a t its final destination or could

be transm itted in one of possibly three directions. Second, the receiver schedules an access

to an internal bus to reserve the first choice for a direction to transm it the packet. If the

tran sm itte r for this direction is free, the packet will cut-through this node w ith only the

slight delay of waiting for the header and the single sta tus query of the transm itte r. If

the first a ttem p t to reserve the transm itter was unsuccessful, an a ttem p t a t an alternate

tran sm itte r is made, if applicable. If both of these a ttem pts are unsuccessful, the packet is

queued a t this node for la ter transm ission. Third, the receiver schedules events to signal the

completion of the packet a t this node. This may involve either unreserving a transm itte r

if the packet successfully cut-through or informing the module th a t simulates the handling

of buffered messages. This detailed tim ing and tracking of messages allows different mes

sage scheduling, access protocols, and memory m anagem ent strategies to be investigated.

However, for the results presented in this section only a First-Com e First-Serve single queue

with unlimited memory was used.

In addition to the exponentially distributed packet lengths, the sim ulator can also use

a discrete distribution of packet lengths where the user specifies the num ber of different

types of messages, their lengths, and the probability of each type of message. Similar to

74

the analytic model, packet arrivals are assumed to follow a Poisson arrival process.

For the examples presented in this section the following param eters were used. (Note

th a t choice of these param eters is arb itrary and will not in general change our conclusions

draw n in this section.) The dimension of the mesh was 7 resulting in 127 nodes in the

system . The probability of a node communicating with a specific node k hops away was

assum ed to be inversely proportional to the number of hops, i.e., qk = — The mean
36 k

packet length for the analytic model was assumed to be 185.6 bytes. The distribution of

packet lengths for the simulation were 64, 128, 512 bytes, each with probability 0.3, 0.5,

0.2, respectively. The results for three different packet generation rates are obtained. These

correspond to 15%, 30%, 45% of the peak packet generation ra te th a t can be supported by

the routing hardw are. Currently, the peak packet generation rate th a t can be supported

by the routing hardw are is 4 MBytes per second. All the distributions either generated or

collected were for messages having their destination 5 hops from their source node.

Figure 4.3 shows a plot of the probability distribution function of the delivery times of

a message traveling 5 hops in a H-mesh of dimension 7. The three curves in the figure show

the variation in the probability distribution function with respect to the assumed message

generation ra te XG a t each node. As would be expected, the delivery tim e distributions

shift to the right as the load on the network is increased.

Figure 4.4 shows the inverse of the probability distribution functions in Figure 4.3.

The inverse of the distribution function is useful to determ ine design param eters like delay

bounds. For instance, one can select a delay bound such th a t the probability of a message

being delivered within th a t bound is greater than a specified threshold. This would provide

a probabilistic measure on the guarantees th a t can be provided in a real-tim e system during

its operation.

Figures 4.5, 4.6, and 4.7 com pare the analytic model against a low-level functional

sim ulation of the routing hardw are in H A R T S . The results show th a t the analytic model

predicts, w ith a reasonable accuracy, the delivery times for the loads shown. The jum ps

in the sim ulation results are due to the discrete distribution of the message length. It is

found th a t a t higher loads (greater than 65% of the peak load) the differences between the

sim ulation and the model can be significant. Reasons for these differences are currently

being investigated. Also note, the analytic model overestim ates the actual delivery times

and therefore the model produces a pessimistic result. The slight discrepancy a t small

delivery times between the model and the simulation result from the model not taking into

75

c 1 0O
=J

0.9

a>
E

0.8
0)>
"aj
Q 0.7

& ' ^ y

0.6

0.5

0.4

0.3

0.2

0.1

0.0
1.2 1.8 3.0 3.60.0 0.6 2.4 4.2

Time (ms)

Figure 4.3: Probability distribution of D 5 in a Ii-m esh of dimension 7.

account the overheads of processing the message headers.

4.7 Discussion of Results

The main contribution of this chapter is the derivation of the probability of cut-through

for a C-wrapped H -m esh th a t has virtual cut-through switching capabilities. The tech

niques used in here can be extended to other interconnection topologies like hypercubes or

rectangular meshes because the techniques depend only on ability to determ ine the fraction

of minimal routes between a pair of nodes passing through a given node. In a liypercube or

a rectangular mesh we can easily determine the required fraction of minimal routes between

a pair of nodes th a t pass through a given node.

The distribution functions derived are useful in the design of real-tim e systems w ith hard

deadlines. They provide a probabilistic measure on the guarantees th a t can be provided for

message exchanges during the operation of a real-tim e system.

Tim
e

(m
s)

76

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0
0.4 0.70.0 0.1 0.2 0.3 0.5 0.6 0.8 0.9 1.0

Probability of Delivery

Figure 4 .4 : Delivery tim e vs. Probability of successful delivery.

De
liv

er
y

tim
e

di
st

ri
bu

tio
n

77

1 . 0

0.9

0 . 8

0.7

0 . 6

0.5

0.4

0.3

0 . 2

0 .1

0 . 0
0 . 0 0.4 0 . 8 1 . 2 1 . 6 2 . 0

Time (ms)

Figure 4.5: FDs a t 15% Peak Load (H-mesh dimension 7.)

De
liv

er
y

tim
e

di
st

ri
bu

tio
n

78

1 . 0

0.9

0 . 8

0.7

0 . 6

0.5

0.4

0.3

0 . 2

0 .1

0 . 0
0 . 8 1 . 2 1.60.0 0.4 2.0 2.4

Time (ms)

Figure 4 .6 : FDs a t 30% Peak Load (H-mesh dimension 7.)

De
liv

er
y

tim
e

di
st

ri
bu

tio
n

79

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1 - /.

0.0
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

Time (ms)

Figure 4.7: FDs a t 45% Peak Load (H-mesh dimension 7.)

CHAPTER 5

THE PO INT-TO -POINT MESSAGE SIMULATOR

This chapter discusses the design rationale and im plem entation insights gained during

the development of the Point-to-Point Message Simulator. The long-term high-level goal of

this effort was to develop a simulation environment for investigating issues related to sup

porting real-tim e communication systems interconnected by point-to-point interconnection

networks. The short-term goal was to create a sim ulator th a t could be used to size some

of the internal components of the PRC when operating in realistic conditions. Finally, the

im m ediate goals were to provide the tools needed to perform the m ulti-m ode routing and

switching experiments described in C hapter 6 .

The long-term goal of this work was m otivated by the observation th a t many researchers

working on different topics related to communication using point-to-point networks seemed

to be constantly writing their own private simulators to show the one feature they were

interested in exposing. These simulators usually only provided support for exam ining one

free variable w ith the remaining param eters being implicitly fixed. This constant duplication

of effort resulted in a great am ount of wasted manpower and, in the case of inexperienced

program m ers, often produced results of questionable integrity.

The ideal solution would be to provide the researcher with a set of building blocks th a t

can be composed using a high-level language or graphical editor to construct a custom

sim ulator. These types of tools are commercially available for modeling LANs and signal

processing systems but, unfortunately, at least for the features th a t we were interested in

investigating, do not provide sufficient modeling detail.

On the other end of the spectrum , an obvious avenue th a t can be exploited is the existing

gate level simulation tools. W ith sufficient encapsulation of the base com ponents, one would

think th a t this could be a viable alternative. For small systems this can be an alternative

partially due to the built-in support some of the gate level sim ulators provide. For exam ple,

80

81

the negative exponential tim e delays th a t Cadence Verilog supports can prove to be quite

useful. The problem in sim ulating point-to-point systems is th a t they require replication of

the individual nodes, which quickly makes this approach im practical1.

O ur solution to this problem of balancing the lack of modeling detail against the com pu

ta tio n overheads imposed by the replication necessary in simulating point-to-point networks

is to provide a base set of primitives and a structure for combining these primitives. The idea

is th a t the user can model in detail the components of interest to him and hopefully reuse

previously designed components necessary to form the complete system under simulation.

The results of this work are the “Point-to-Point Message Sim ulator” (pp-mess-sim) th a t

has the following features:

• Supports C-wrapped hexagonal mesh, wrapped square mesh, and binary hypercube.

• A ccurately models the behavior of the low-level routing hardw are (based on the PRC

architecture).

• Supports multiple routing strategies.

• Provides a tex tual specification language for mapping tasks onto the topology being

sim ulated, thus allowing the end user to easily configure the message workload.

• Provides a structured framework for making extensions.

W hat should be of interest to those not interested in the PRC is the m ethods and

structures th a t we use to achieve the specific capabilities mentioned above and how easily

pp-mess-sim can be re-targeted for different topologies, routing hardw are, and communica

tion patterns.

5.1 General Organization and Structure

Figure 5.1 shows the directory structure of the pp-mess-sim source code tree. This

figure also quite accurately depicts the functional separation th a t was identified, and the

interfaces th a t needed to be developed between the different com ponents of pp-mess-sim.

These functional separations can be classified into a set of C + + classes supporting: the

different network topologies (the n e t directory), the workload run on the sim ulated sys

tem (the w ork load directory), the parsing and storage of the run specification (the spec

: A Verilog sim ulation of the PR C in isolation currently requires at least 400M B of sw ap and 48 M B of
m ain m em ory.

82

pp-mess-sim

doc testssrc

spec workloadgeneric imu-prc-ni lib net

randomeventq fifos miscmaps

F ig u r e 5 .1 : Organization of pp-mess-sim source tree

directory), or the im plem entation of the particular routing hardw are of interest (currently

the im u -p rc -n i directory). The interaction between classes in these different functional

areas is through a well-defined set of member functions such th a t the im pact of adding new

interconnection topologies and routing hardware is minimized to one area.

There are five fundam ental classes th a t need to be briefly introduced before the re

m ainder of pp-mess-sim can be explored. These are Net, Node, Task, Message, and Event.

The Net class serves as the base class for the classes CWHMesh, SQMesh, and HyperCube.

Each of these derived classes implements the specific details of address translation and

m apping for its particular topology. All of the other classes requiring inform ation on. the

current topology must use the appropriate member functions of these derived classes.

The Node class implements the router/node-specific functions, and is dynam ically al

located according to the size of the network under sim ulation and referenced through the

derived net classes. This class and the subclasses stored within it can be easily changed to

model different hardware or software.

The Task class implements the behavior of the workload im parted on the system for

the duration of the simulation. Each instantiation of a Task has certain properties th a t are

either explicitly or implicitly specified in the simulation specification. Once instan tia ted ,

the Task is assigned to a node much like its counterparts in a s tandard operating system .

The Message class is used ju s t as an object to pass and possibly subdivide. This is the

case for the PRC model in which the messages are actually subdivided into bytes th a t are

individually simulated.

83

The Event class serves as a base class for all of the different types of events th a t im

plement the behavior of the system under simulation. This class contains pure virtual

functions, thus requiring the support of a certain minimal set of operations in the derived

classes.

5.2 Simulation Specification Language

P art of the flexibility and power of pp-mess-sim is derived from the language used to

specify the param eters for each simulation run. This language, coupled with the built-in

prim itives, has enough expressive power to concisely construct a series of workloads th a t

exhibit a wide range of com munication patterns and resource usage. This is prim arily

accomplished by allowing the user to assign tasks with specific behavioral characteristics

on a node-by-node basis if necessary to generate the desired workload. For the m ost part,

these assignments can be performed implicitly by allowing the default rules to resolve the

tasks assigned to each node.

The behavior of each communication task is characterized by eight param eters:

• the generation process

• the length process

• the maxim um packet length

• the minimum packet length

• the ta rge t selection process

• the default routing algorithm

• the to ta l num ber of packets

The generation process is used to generate the packet inter-arrival times in base unit of

bus cycles and may be selected from a wide range of the standard random processes used

in sim ulation. This process is guaranteed to have its own assigned random num ber stream

th a t does not overlap with any o thers’ during the lifetime of the simulation.

The length process is used to generate the length of a newly-generated packet in long-

words. This process may be also selected from either negativeexpntl or lengthdiscrete random

processes. The negativeexpntl provides the standard negative exponential d istribution on

84

packet lengths used commonly in analytical models. The m aximum and minimum length

param eters can be used to clip the lengths produced by this process negativeexpntl to pre

vent unrealistically small or large packets. The lengthdiscrete process allows the user to

individually specify the probability of a discrete num ber of packet lengths. These processes,

like the generation processes are guaranteed to have independent random num ber stream s.

The ta rge t selection process selects the node th a t is the recipient for each generated

packet. The user can currently choose from either NodeUniform or HopUniform. W hen

Nodellniform is selected, each node, excluding the originating node, is equally likely to be

selected as the recipient. If HopUniform is selected, the user specifies the probability of the

packet traveling x hops. Once it is determined th a t the packet is traveling x hops, then all

nodes x hops d istan t are equally likely to be selected as the recipient of the packet.

The default routing algorithm determines the routing algorithm and switching m ethod

ology th a t will be used to deliver the packet to the recipient. Users can currently choose

from virtual cut-through, wormhole, packet switching, or source-list. The first th ree choices

use a minimal path approach in selecting the route as the packet traverses the network

and use their respective switching method. As currently im plem ented, source-list utilizes

a user-specified route and a virtual cut-through switching m ethod to deliver the packet.

The selection of a routing algorithm th a t the underlying hardw are doesn’t support is con

sidered a specification error and aborts the simulation run during the initialization of the

instan tia tion of the task in error.

The last key param eter describing a ta sk ’s behavior is the to ta l num ber of packets

th a t need to be generated. This is actually the minimum num ber of packets the task will

generate. A task will continue generating packets until all tasks in the sim ulation have

satisfied their respective specification of the to ta l num ber of packets. This approach allows

the d a ta collections routines to detect when they should shut down in order to prevent

falsely collecting d a ta as the network is “draining o u t” a t the end of the sim ulation run.

In addition to the param eters describing the behavioral characteristics, the user m ust

select the type of d a ta collection th a t needs to be performed with respect to the packet

being generated by the task. Currently, there are several different levels of detail, w ith the

simplest collecting the mean, variance, min, max, and confidence intervals of packet delay.

More complex d a ta collection schemes are currently being investigated to explore posible

correlation effects such as those observed during higher loads in the previous chapter.

The aggregate behavior of a node is specified by the num ber and different types of tasks

85

th a t are assigned to it. This can be accomplished either by a default specification, an

override for a particular node num ber, or by a nam ed node specification.

It is easier to explain the process of fully resolving an input specification to a complete

sim ulation specification through an example. Figure 5.2 shows a simple yet functionally

com plete specification file th a t we will use to illustrate both the simplicity and the power

of the specification language.

There are three m ajor blocks th a t the user m ust provide: the topology selection, the

default node, and the default task.

The first is the topology selection block. For our example lines 0-4 select a C-wrapped

hexagonal mesh with 31 nodes (edge size 4).

The next block th a t m ust be provided is a default node specification. This is shown on

lines 4-8 and directs pp-mess-sim to instan tia te each node such th a t there are a to ta l of 4

tasks, two of which will have the characteristics of the named task “task_rt_real” unless a

specification of higher precedence for th a t node exists. The remaining tasks (two in this

case) required to bring the to ta l number of tasks up to the to tal specified num ber (line 6)

will have the characteristics of the default task.

Lines 15-24 and lines 26-37 are two examples of task specification blocks. The first

describes the behavior of the default task th a t is created as a last resort in order to satisfy

the to ta l num ber of tasks needed on a particular node. In this example, the default task

generates packets with an inter-arrival tim e using a negative exponential with a mean of

3368 bus cycles. The packets will have a 3 in 10 chance of being 8 longwords, a 1 in 2 chance

of being 24 longwords, and a 1 in 5 chance of being 8 8 longwords. Each node of the other

36 nodes will be equally likely to receive the packets generated. The packets will be routed

using m inim al-path routing and virtual cut-through. The user will be guaranteed th a t the

task will generate a t least 1000 packets of which the first 250 will not be considered for da ta

collection. The renew line specifies th a t the random number stream s allocated to this task

should grab blocks of 1000 samples at a tim e from the m aster random num ber stream . The

second task specification is an example of a nam ed task which can be selected as shown in

fines 7 and 12.

Lines 10-13 dem onstrate the use of a node override in which the task mix assigned to

node 3 is individually specified.

The general block (fines 39-47) is used for general param eters such as ou tpu t file names

and random num ber seeds. A lthough not explicitly required, it usually has to be provided

86

0 - t o p o l o g y b e g i n
1 - s e l e c t c w h m ;
2 - s i z e 4 ;
3 - e n d
4 -
5 - n o d e d e f a u l t b e g i n
6 - t a s k s 4 ;
7 - s e l e c t t a s k t a s k _ r t _ r e a l 2 ;
8 - e n d
9 -

1 0 - n o d e 3 b e g i n
1 1 - t a s k s 2 ;
1 2 - s e l e c t t a s k t a s k _ r t _ r e a l 1 ;
1 3 - e n d
1 4 -
1 5 - t a s k d e f a u l t b e g i n
1 6 - a r r i v a l N e g a t i v e E x p n t l (3 3 6 8 . 4 2 1 0 5 3) ;
1 7 - l e n g t h L e n g t h D i s c r e t e (0 . 3 , 8 , 0 . 5 , 2 4 , 0 . 2 , 8 8) ;
1 8 - t a r g e t N o d e l l n i f o r m () ;
1 9 - r o u t i n g v c () ;
2 0 - h i s t o r y s i m p l e ;
2 1 - p a c k e t s 1 0 0 0 ;
2 2 - d r o p 2 5 0 ;
2 3 - r e n e w 1 0 0 0 ;
2 4 - e n d
2 5 -
2 6 - t a s k t a s k _ r t _ r e a l b e g i n
2 7 - a r r i v a l N e g a t i v e E x p n t l (1 6 0 0 0 . 0 0 0 0 0) ;
2 8 - l e n g t h W e g a t i v e E x p n t l (8 . 0) ;
2 9 - t a r g e t N o d e l l n i f o r m () ;
3 0 - r o u t i n g w o r m h o l e O ;
3 1 - h i s t o r y c o m p l e x ;
3 2 - p a c k e t s 5 0 0 ;
3 3 - d r o p 1 0 0 ;
3 4 - r e n e w 5 0 0 ;
3 5 - m a x 8 ;
3 6 - m i n 8 ;
3 7 - e n d
3 8 -
3 9 - g e n e r a l b e g i n
4 0 - r a n d o m s e e d 1 3 5 3 6 2 5 0 8 4 ;
4 1 - t i m e o u t 6 4 0 ;
4 2 - o p t i o n r e s o u r c e s t r u e ;
4 3 - o u t p u t s i m p l e _ e x a m p l e . o u t ;
4 4 - e r r o r s s i m p l e _ e x a m p l e . e r r ;
4 5 - r e s u l t s s i m p l e _ e x a m p l e . r e s u l t s ;
4 6 - d e b u g s i m p l e _ e x a m p l e . d e b u g ;
4 7 - e n d

F ig u re 5.2: Example of a simulation specification

87

since it is the only way the seed for the m aster random num ber stream can be specified.

The gram m ar describing the complete language is given in Appendix F.

5.3 Topology Generation and Support Functions

The Net class and its derived topology-specific classes play a key role in enabling

pp-mess-sim to function as a reusable software tool. Much of this power is a result of

being able to identify a small set of functions and param eters th a t allow the external in

terfaces to the topology support routines to be identical for all of the topologies th a t are

im plem ented. The user is then forced to utilize only these functions when accessing topology

specific inform ation in their im plem entation of the routing hardw are and routing/sw itching

algorithm s.

There are several assum ptions made in creating a representation scheme for the gen

eric interconnection topology th a t pp-mess-sim provides. F irst, nodes m ust be able to be

assigned an unique integer label th a t is handled by pp-mess-sim as the typedef Nodeld.

Second, all references to adjacent nodes can be made in term s of an integer (typedef Direction

in pp-m ess-sim) th a t ranges from 0 to some maximum value th a t can be dependent on the

topology under simulation. Given these two typedefs the user is then provided three func

tions for maneuvering within the topology and a function th a t returns a reference to a Node

based on a Nodeld. The basic structu re of this scheme is shown in Figure 5.3.

T he expressiveness of this generic approach will be shown by briefly studying these

basic functions in term s of the im plem entation of the support for the C-W rapped hexagonal

mesh and the w rapped square mesh. These are shown in Figures 5.4, 5.6, and 5.8 for the

C-W rapped hexagonal mesh and Figures 5.5, 5.7, and 5.9 for the w rapped square mesh.

The Net class doesn’t force any particular addressing/storage m ethod for the nodes but

only requires th a t the derived class resolve the node() and operator[] m ethods since they

are defined as pure virtual functions in the base class. Moving the im plem entation of the

storage policy of nodes into the derived classes is done to allow for more efficient policies

dependent on the topology. For all of the topologies implemented thus far this has been

accomplished as an array of pointers to dynamic instantiations of the nodes in the system.

The nodeQ and operator[] methods then just index off of this pointer as shown on lines 19

and 21 of Figure 5.4 for the hexagonal mesh and lines 17 and 19 ofFigure 5.5 for the square

mesh.

88

00 - c la s s N et
01 - {
02 - p u b lic :
03 - S im SpecP tr sim_spec;
04 - D im ension edge_dim ension;
05 - D irection m ax.d irection;
06 - u n s ig n e d in t totaL nodes;
07 - u n s ig n e d in t diam eter;
08 - M T A C G *rootacg;
09 - T ask ldT askP trA V L M ap tasks;
10 - u n s ig n e d in t generating_tasks;
11 - u n s ig n e d in t liolding_tasks;
12 - u n s ig n e d in t delivered;
13 - M essageldM essagePtrA V L M ap messages;
14 - E ventQ eventq;
15 - N et(S im SpecPtr);
16 - v ir t u a l ~ N e t () ;
17 - v ir t u a l N ode& node(N odeld) = 0;
18 - v ir t u a l N odefc o p e r a to r [|(N odeld) = 0;
19 - v ir t u a l N odeld neighbor(N odeld , D irection) = 0;
20 - v ir t u a l N odeld translate(N odeld , OHsetVec) = 0
21 - v ir t u a l O ffsetVec m ap(N odeld , N odeld) = 0;
22 - v ir t u a l v o id error (c o n s t ch a r *);
23 - 1;

F ig u r e 5.3: Net class definition

The derived topology classes are allowed to define private d a ta structures and m ethods

in order to support the neighbor(), t ran s la teQ , or m ap () m ethods if necessary. For the

CW H M esh the dir_v[] is defined to assist the neighborQ and t ran s la teQ m ethods. In the

case of the IIA mesh shown in Figure 2.1 the dir_v[] of Figure 5.4 would be initialized to

{1,11,10,36,26,27} when the network is instantiated.

The neighborQ m ethod is used to obtain the Nodeld of an adjacent node for a given

Direction and the current Nodeld. The user can then utilize this function to im plem ent the

tran sp o rt of inform ation from one node to another. In both of the cases of the CW HM esh

class and SQMesh class it is relatively straightforw ard to implement as shown on lines 23-31

in Figure 5.4 and lines 21-46 in Figure 5.5.

Both the m ap Q and t ran s la teQ functions m anipulate d a ta of the types Nodeld and

OffsetVec. The d a ta type OffsetVec is ju st a max_direction element vector representing

the num ber of hops in each direction some entity should take. The m ap Q functions then

provides a m ethod in which the OffsetVec can be produced given source and destination

nodes. The t rans la teQ functions provide the inverse operation of the m ap Q functions. These

topology support functions have proven to be quite adequate and have successfully insulated

the im plem entation of tne PRC-specific portions of pp-mess-sim from the knowledge of the

89

00 - c la ss CWHMesh : p u b lic Net
0 1 - {
02 - p u b lic :
03 - N odePtr *nodes; / / A rra y Used to index in s ta n t ia ted nodes
04 -
05 - CW IIM esh(SimSpecPtr);
06 - v i r tu a l ~CW HM esh();
07 - v i r tu a l Node& node(Nodeld);
08 - v i r tu a l Node& o p e ra to r [|(Nodeld);
09 - v i r tu a l Nodeld neighbor(Nodeld , Direction);
10 - v i r tu a l Nodeld translate^ Nodeld , OffsetVec);
11 - v i r tu a l OffsetVec map(Nodeld , Nodeld);
12 - v i r tu a l v o id error (c o n s t ch a r*);
13 - p r iv a te :
14 - u n s ig n e d s h o r t dir_v[6];
1 5 - } ;
16 -
17 - in l in e CW HM esh::~CW HM esli () {}
18 -
19 - in l in e Node& CW IIM esh::node(Nodeld n) { r e tu r n *(nodes[n]); }
2 0 -
21 - in l in e Nodefc C W H M esh::operator[](Nodeld n) { r e tu r n *(nodes[n]);}
2 2 -
23 - in l in e Nodeld CW IlM esh::neighbor(Nodeld n , Direction d)
24 - {
25 - i f (d < max_direction)
26 - r e tu r n (n + dir_v[d]) % totaLnodes;
27 - e lse {
2 8 - e r r o r (" I l l e g a l n e i g h b o r m a p p i n g r e q u e s t e d ") ;
29 - r e tu r n 0;
30 - }
31 - }
32 -

F ig u re 5 .4 : C-wrapped hexagonal mesh class definition

interconnection topology or its im plem entation.

00 -

01 -

02 -

0 3 -
0 4 -
0 5 -
0 6 -
0 7 -
0 8 -
0 9 -
10 -

11 -

12 -

1 3 -
1 4 -
1 5 -
1 6 -
1 7 -
1 8 -
1 9 -
20 -

21 -

22 -

2 3 -
2 4 -
2 5 -
2 6 -
2 7 -
2 8 -
2 9 -
3 0 -
3 1 -
3 2 -
3 3 -
3 4 -
3 5 -
3 6 -
3 7 -
3 8 -
3 9 -
4 0 -
4 1 -
4 2 -
4 3 -
4 4 -
4 5 -
4 6 -

90

c lass SQMesh : p u b lic Net
{
p u b lic :

N odePtr *nodes; / / A rra y Used to index in s ta n t ia ted nodes

SQMeshf SimSpecPtr);
v i r tu a l ~SQM esh();
v i r tu a l Node& node(Nodeld);
v i r tu a l Node& o p e ra to r[](Nodeld);
v i r tu a l Nodeld neighbor(Nodeld , Direction);
v i r tu a l Nodeld translate(Nodeld , OffsetVec);
v i r tu a l OffsetVec map(Nodeld , Nodeld);
v i r tu a l v o id error(c o n s t ch a r*);

};

in l in e SQMesh::~SQMesh () {}

in lin e Node& SQMesh::node(Nodeld n) { r e tu r n *(nodes[n]); }

in l in e Node& SQ M esh::operator[](Nodeld n) { r e tu r n *(nodes[n]);}

in lin e Nodeld SQMesh::neighbor(Nodeld n , Direction d)
{

s w itc h (d) {
case 0:

r e tu r n
(n-f-l)%edge_dimension + (n/edge_dimension)*edge_dimension;

b reak ;
case 1:

r e tu r n
(n+edge_dimension) % totaLnodes;

b re a k ;
ca se 2:

r e tu r n
(n+edge_dimension-l)%edge_dimension -|- (n/edge_dimension)*edge_dimension;

b reak ;
case 3 :

r e tu r n
(n+edge_dimension * (edge_dimension-l)) % totaLnodes;

b re a k ;
d e fa u lt: / / Big error t im e What should we do now!

e r r o r (" I l l e g a l n e i g h b o r m a p p i n g r e q u e s t e d ") ;
r e tu r n 0;
b reak ;

}

Figure 5.5: W rapped square mesh class definition

91

00 - Nodeld CWHMesh: :translate(Nodeld src , OffsetVec offset)
01 - {
02 -

03 - Nodeld dest = src;
04 -
05 - for (unsigned int i = 0 ; i < max.direction ; i+ +) {
06 - dest + = offsetfi] * dir_v[i];
07 - }
08 -
09 - dest % = totaLnodes;
10 - return dest;
11 -

12 - }

F ig u re 5 .6 : C-wrapped hexagonal mesh transla te function

00 - Nodeld SQM esh::translate(Nodeld src , OffsetVec offset)
0 1 - {
02 - int src_row = src / edge.dimension;
03 - int src.col = src % edge.dimension;
04 -
05 - int delta_row = mod(src_row + offset[0] - offset[2], edge_dimension);
06 - int delta_col = mod(src_col + offsetfl] - offset[3], edge.dimension);
07 -
08 - return edge.dimension * delta_row -(- delta_col;
09 - }

Figure 5.7: W rapped square mesh translate function

00 -

01 -

02 -

0 3 -
0 4 -
0 5 -
0 6 -
0 7 -
0 8 -
0 9 -
10 -

11 -

12 -

1 3 -
1 4 -
1 5 -
1 6 -
1 7 -
1 8 -
1 9 -
20 -

21 -

22 -

2 3 -
2 4 -
2 5 -
2 6 -
2 7 -
2 8 -
2 9 -
3 0 -
3 1 -
3 2 -
3 3 -
3 4 -
3 5 -
3 6 -
3 7 -
3 8 -
3 9 -
4 0 -
4 1 -
4 2 -
4 3 -
4 4 -
4 5 -
4 6 -
4 7 -
4 8 -
4 9 -
5 0 -
5 1 -
5 2 -
5 3 -
5 4 -

92

OffsetVec CWHMesh::map(Nodeld src, Nodeld dest)
{ ,

in t N = int(to taljnodes);
in t E = int(edge_dimension);
OffsetVec retval(max_direction,0);
in t k = mod(dest - src, N);

i f (k < E) {
retval[0] = k;

}
e lse {

i f (k > N - E)
retval[3] = N - k;

e lse {
in t t = mod((k - E), (3 * E - 2));
in t r = (k - E) / (3 * E - 2);

i f (t < E + r - 1) {
/* des t in a t ion is in the lower p a r t of I i-m esh centered a t source */
i f (t < r) {

retval[3] = r - t ;
retval[4] = E - r - 1 ;

}
else {

i f (t > E - 1) {
retval[0] = t - E + 1;
retval[5] = E - r - 1;

}
else {

retval[5] = t - r;
retval[4] = E - t - 1;

}
}

}
else {

/* des t in a t ion is in the upper p a r t o f H-mesh centered a t source * /
i f (t < 2 * E - 2) {

retval[3] = 2 * E - t - 2 ;
retval[2] = r + 1;

}
else {

i f (t > 2 * E + r - 1) {
retval[0] = t - 2 * E - r + l;
retvalfl] = r + 1;

}
else {

retval[2] = 2 * E + r - t - l;
retvalfl] = t + 2 - 2 * E ;

}
}

}
}

}
r e tu r n retval;

}

F ig u re 5.8: C-wrapped hexagonal mesh m ap function

93

00 -
01 -

02 -

0 3 -
0 4 -
0 5 -
0 6 -
0 7 -
0 8 -
0 9 -
10 -

11 -

12 -

1 3 -
1 4 -
1 5 -
1 6 -
1 7 -
1 8 -
1 9 -
20 -

21 -

22 -

2 3 -
2 4 -
2 5 -
2 6 -
2 7 -

OffsetVec SQMesh::map(Nodeld src, Nodeld dest)
{

OffsetVec retval(max_direction,0);

src % = totaLnodes;
dest % = totaLnodes;

int s r c _ r o w = s r c / e d g e _ d i m e n s i o n ;
int s r c _ c o l = s r c % e d g e _ d i m e n s i o n ;

int d e s t _ r o w = d e s t / e d g e _ d i m e n s i o n ;
int d e s L c o l = d e s t % e d g e _ d i m e n s i o n ;

int d e l t a _ r o w = d e s t _ r o w - s r c j o w ;
int d e l t a _ c o l = d e s L c o l - s r c _ c o l ;

if (d e l t a _ r o w)
r e t v a l [2] = - d e l t a _ r o w ;

e l s e
r e t v a l [0] = d e l t a _ r o w ;

if (d e l t a . c o l)
r e t v a l [3] = - d e l t a . c o l ;

e l s e
r e t v a l [l] = d e l t a - c o l ;

return r e t v a l ;
}

F ig u re 5 .9 : W rapped square mesh m ap function

94

5.4 Event Management and Flow

5 .4 .1 E ven t queue

Two of the m ajor problems th a t needed to be overcome during the development of

pp-mess-sim were the representation of time and the efficient m anagem ent of the queue of

pending events. The im portance of both of these problems is amplified by the fact th a t we

have both high-level and detailed low-level activity being modeled. In the case of the PRC

model, the transm ission of each byte of a message can generate up to 6 - 8 events per node.

In order to accurately size some of the components of the PRC it was decided early in

the development of pp-mess-sim th a t a t a minimum it had to be able to accurately resolve

an individual bus cycle on the CTBUS. Given our target speed of a 40ns C'TBUS cycle, if

an unsigned long int (32 bits) were to be used to represent time this would only allow a

sim ulation of approxim ately 3-4 minutes of elapsed time. This was deemed to be too short

and a two-level scheme was adopted in which global time is represented as an u n s ig n e d

lo n g lo n g (64 bits) and the delta time m easurements represented as a unsigned long. This

two-level scheme was chosen over a scheme in which all tim e intervals are represented as an

unsigned long long since the operations on long long integer d a ta types are open coded on

m ost of the 32 bit processor architectures on which pp-mess-sim was expected to execute.

It was also noticed during the course of debugging the im plem entation of the PRC-

specific modules th a t a few of characteristics of the events being processed should influence

the im plem entation of the event queue manangernent routines. F irst, there was a significant

num ber of events being processed th a t were being subm itted w ith a delta tim e of zero time

units (a m ature event). Second, as an artifact of how some of the low-level bus arbiters

were being implem ented, there were a fair number of events being canceled and removed

from the event queue. These observations led us to partition the event queue into two parts

and to support a lazy delete mechanism for canceling events th a t are located in the event

queue.

Taking all of the above factors into consideration resulted in the im plem entation of the

event queue as a container class of pointers to the base event class th a t has the following

characteristics:

• Global tim e is represented as a unsigned long long (glb_time).

• Events are subm itted to the event queue managem ent class with a delta tim e field

represented as an unsigned long and are only allowed to use half of the available

95

resolution of th a t field.

• A priority heap keyed on an unsigned long is used for the non-m ature event list.

• A FIFO is used for the m ature event list.

• Events subm itted with a non-zero delta tim e are stored in the priority heap with a

key th a t is equal to the subm itted delta tim e plus the key of the last item removed

from the priority heap.

• W hen an event is removed global tim e is advanced by the difference between the key of

previous item removed from the priority heap and the key of the item being currently

removed.

• If a t any tim e the key of the last item removed exceeds half of the resolution of the

delta tim e d a ta type, all keys within the priority heap are adjusted by sub tracting the

value of the last key removed from the priority heap. This is usually accomplished

by removing all items and placing them in the m ature event FIFO while adjusting

the delta tim e field. The FIFO is then em ptied back into the priority heap. After

repacking the priority heap the key of the last item removed is set to zero.

5 .4 .2 E vent hierarchy and stru ctu re

All events in pp-mess-sim are implemented as classes derived from the Event class shown

in Figure 5.10. W hat is im portan t about this structu re is th a t all derived events m ust

im plem ent the handlerQ and the m traceQ functions. This s tructu re also allows both main

event handler and hardw are units to cause the execution of the code associated with the

events with no knowledge of w hat the event actually does, i.e., the dispatch of the event is

handled by the C + + virtual function mechanism.

The events derived from the base class store supplem ental inform ation so th a t they can

be executed in isolation. For example, Figure 5.11 shows the event th a t is responsible for

message generation. W hen the handler for this event is executed, it needs to determ ine

w hat node and task was responsible for its creation. Hence, a pointer to task and node are

stored locally.

Like all discrete event sim ulators, most of the effort in modeling the system is spent

in writing and debugging the event flow, pp-mess-sim has a crude built-in message trace

capability to assist in debugging. This feature is im plem ented by requiring all events to

96

c la ss Event
{
public:

delta_time delta; / / T im e fro m curren t t im e to even t occurance
glb_time e_time; / / Global t im e even t occurs (S e t on dequeue.)
EventLoc loc; / / E v e n t Location (Indica tes ow nersh ip)
bool cancel; / / E v e n t has been canceled.
unsigned long id; / / Unique Iden tif ier
N etP tr net; / / N etw o rk that even t is taking p lace in.

Event (N etP tr , delta_time);
virtual ~E vent () ;
virtual void cancel_evenl();
virtual void error (const char *);
virtual bool m trace() = 0;
virtual void handler() = 0;

private:
sta tic unsigned long last_id; / / Id A lloca tor

};

ty p ed ef Event* EventPtr;

F ig u re 5 .10: Base Event class definition

c la ss M essCreateEvent : p u b lic Event
{
p u b lic :

T askP tr task;
N odePtr node;
M essCreateEvent (N etP tr , NodePtr, TaskPtr , delta_time);
v i r tu a l ~M essCreateEvent ();
v i r tu a l bool m trace();
v i r tu a l v o id handler();
s ta t ic vo id* o p e r a to r new(size_t);
s ta t ic v o id o p e r a to r d e le te (void*);

};

ty p e d e f M essCreateEvent* M essCreateEventPtr;

F ig u re 5 .11: Message create event class definition

97

im plem ent a m trac e () member function th a t returns a boolean. There is a global associative

m ap stored in the network under simulation th a t contains the identifiers of messages th a t

should be traced. It is the responsiblility of the m trac e () function to re tu rn true if it is an

event th a t is related to a message identifier th a t exists in the global m ap. For events th a t

have no relationship to particular messages, the m trac e () function is ju s t an inline for a

“re tu rn false .” W hat is surprising is th a t the consistent availability of such a function can

reduce the debugging time by orders of m agnitude.

5.5 Insights into Modeling Hardware

D uring the construction of the classes th a t model the low-level behavior of the PRC,

several techniques for modeling different types of components were developed th a t were

not im m ediately intuitive. These problems usually centered around modeling the different

types of asynchronous behavior present in the PRC. We describe below the techniques th a t

we used for modeling the bus arbiters, the bus interfaces, and the im plem entation of the

flow control behavior.

5 .5 .1 B us behavior

The problem th a t we were im mediately faced w ith when modeling the bus units was

when to consider the transaction complete. Tightly-coupled to this problem is how to model

the actual bus arb itration algorithm . Our technique solves both of these problems in an

efficient manner.

Each bus th a t operates in an asynchronous mode has three m ajor types of event classes

defined: an arb itration event, a cycle event, and a complete event. Consider the following

scenario, where an event handler for the interface has been triggered due to the availability

of data . The proper behavior is to arb itra te for a shared bus, and once becoming m aster

of the bus to write d a ta to a slave unit across the bus. The event handler dealing w ith this

d a ta accomplishes this by first creating a complete event th a t will be used to indicate to

the interface unit th a t the future bus cycle is complete. The initial handler then creates

a cycle event th a t describes the nature of the future bus cycle such as the destinations of

the transfer and of the data. One of the fields of the cycle event is a pointer to a complete

event. This pointer is set to the complete event th a t the handler previously created. The

handler then calls a “subm it” member function for the class th a t actually models the bus

98

arbiter. This subm it function stores the cycle event internally and creates an arb itra te

event if one is not already pending for the next possible a rb itra tion time. The handler

for the a rb itra te event will then retrieve the appropriate cycle event, as determ ined by the

a rb itra tion algorithm , th a t was previously stored, execute its handler, and then if possible,

execute the handler for the complete event. Finally, if there are remaining cycle events still

stored, a new arb itra te event is created and placed in the global event queue.

T here are two advantages to this approach. F irst, buses th a t are inactive will produce

no events. Second, the arb itra tion algorithm s and tim ing behavior are located in a single

event handler and can be easily modified.

5 . 5 . 2 F l o w c o n t r o l

Flow control for the PRC is physically coupled to the s ta te of certain signals. W hen the

IR D A T A line from a CTBUS transm itter is true, then the device th a t has the transm itte r

reserved can arb itra te for the bus and write forward channel data . The simple approach

would be to schedule an event every bus cycle th a t would check the sta tus of the IR D A T A

and take the appropriate action. The problem with this approach is th a t the num ber of

events scheduled becomes excessively large very quickly. Efficiently modeling this type of

interaction can be quite challenging.

Our solution is based on a technique used in the im plem entation of m any windowing

system s. Each unit th a t has a signal th a t other devices may be asynchronously basing their

event flow on has a FIFO in which the other devices may enqueue a “wakeup” event. The

class th a t controls the signal th a t others are watching will remove all the events in the FIFO

and enqueue them w ith a delta tim e of zero in the event queue any tim e the s ta te of the line

changes. The other devices may then use the wakeup event to perform the actions based

on the new sta te of the line.

In the PRC this technique was used for both the byte-level flow control and the T F U ’s

decision on w hether to a ttem p t a reservation of the CTBUS transm itter.

5.6 D ata Collection Support

Originally, d a ta collection was handled in pp-mess-sim as part of the message receive

event handler. This ju s t stored the collected d a ta into the Task object th a t generated the

message th a t had triggered the event. This approach was sufficient for the results presented

99

in the next chapter.

More recently, we have restructured the d a ta collection facilities to simplify the addition

of custom collection m ethods. These changes center around the creation and m aintenance of

a MessHistory list. As a message is routed through the network and passes through different

hardw are com ponents, these components have the option of attaching an inform ation record

to the message history list. Currently the following type of records are m aintained:

• Enter

• Cut

• Inject

• Buffered

• Tail

Each of these inform ation history records also contains the node id and a global tim estam p

indicating where and when the record was added. This new structu re allows the message

receive event handler a t the destination node to call a user provided routine th a t processes

the list and ex tracts the metrics of interest to the end user. For example, the correlation

between routing/sw itching decisions in adjacent nodes can be investigated by looking the

the Cut and Buffered records in the MessHistory list.

5.7 Summary

In this chapter, we have presented the design rationale and provided a glimpse a t the

im plem entation of the point-to-point message sim ulator. There are several unique features

about this tool th a t can be easily exploited. F irst, its ability to capture both the high-level

and, when necessary, low-level details of the system provide an opportunity to understand

some of the low-level interaction effects not previously investigated. Second, the interfaces

are designed such th a t models for different routing hardw are can be developed and com pared

within a common environm ent. Third, the generic topology approach provides unique

opportunities for investigating how sensitive different routing hardw are is to the topology

specific features.

Although a relatively complex system (2 MB of sources), increm ental modification is

quite trac tab le as proven by some of the more recent enhancem ents being a ttem p ted by

other researchers w ithin our lab.

CHAPTER 6

MULTI-MODE ROUTING AND SW ITCHING

This chapter consolidates the results of the three previous chapters to form ulate one of

the first experim ents th a t fully exploits the flexibility of the PRC. A lthough the results from

the experim ents presented here are relatively clear, the entire series of experiments suggested

by our findings is much more than we could hope to accomplish in this dissertation.

This chapter investigates how multiple classes of traffic using different switching m ethods

and routing algorithm s interact w ith one another. We call the ability to support multiple

classes of traffic, each possibly with their own switching m ethod, m ulti-m ode routing and

switching.

After m otivating with a simple analytical argum ent why there might be great po ten

tial in pursuing a scheme supporting multi-mode routing and switching, we form ulate an

experim ent to answer the following cpiestions:

• Does the presence of a low percentage of traffic using m inim al-path routing with

wormhole switching adversely affect the behavior of the traffic being routed using

m inim al-path routing w ith v irtual cut-through switching in a C-wrapped hexagonal

mesh?

• Is the wormhole traffic in the above scenario unstable in the presence of the virtual

cut-through traffic?

But why are these questions im portan t in the first place? The ability to support multiple

classes of traffic simultaneously with minimal interference can play a fundam ental role

in forming the basis upon which a communication subsystem capable of supporting real

tim e com munication can be constructed. For example, associate one class of packets with

background traffic (non real-tim e) and the other class of traffic with message requiring

real-tim e delivery. This example is not th a t unrealistic because in m ost d istributed real

1 0 0

1 0 1

tim e systems the actual percentage of traffic actually requiring hard deadlines is small. The

control surface of the airplane requires consistent and timely updates, in contrast to internal

cabin tem peratu re display where “best effort” will suffice.

The usefulness of supporting multiple classes of traffic does not have to be cast only

in term s of real-tim e communication in order to still hold m erit. We can look a t the com

m unication support provided in the common w orkstation. One class can support standard

socket-based communication while the other to carries “out-of-band” data . The point is th a t

the different classes will have different characteristics as a function of routing and switching

schemes used to support the classes and each of these can be individually exploited.

These two questions are investigated within the assumed operating environm ent provided

by pp-mess-sim. The choice of using virtual cut-through switching and wormhole switching

for the two traffic classes in this experiment was modivated by both practical issues and

issues of fairness. The m inim al-path routing algorithms for both wormhole switching and

virtual cut-through switching were the most tested of all the routing and switching com

binations im plem ented in pp-mess-sim. This choice also allowed the same routing algorithm

to be used for both classes of traffic and only have the switching scheme be different. The

availability of the analytical models for each of the traffic classes in isolation also influenced

the design of experiments.

6.1 Motivation: Wormhole vs. Virtual Cut-through

In this section we derive an approxim ation for the expected packet latency using minimal-

p a th routing and wormhole swithing in a C-wrapped hexagonal mesh. This is com pared

against the expected packet latency using m inim al-path routing and virtual cut-through

switching to conclude th a t the network load and number of hops the packet needs to travel

determ ines the switching scheme th a t minimizes the packet latency. These comparisons are

m ade in isolation; th a t is, they don’t account for the presence of the other class of traffic.

We will use the following notation which parallels C hapter 4:

Ag packet ra te generated by each node into the network

(k)k (average) node distance measured in hops

qk probability of a packet destination being located k hops away

a ratio of header length to the entire packet length

tm service tim e for a packet in a channel

1 0 2

T wh packet latency using wormhole switching

T c packet latency using cut-through switching

pw probability of a packet being required to wait for a channel

cs a constant representing the link arbitration/scheduling mechanism used

when a w orm hole-switched message encounters a busy link.

We can directly use the result from Theorem 2 from C hapter 4 which gives us:

e — 1

Pw X(; k;; 'y ''j k • Qh
k = 1

The average latency of a packet using m inim al-path routing and wormhole switching in

the C-wrapped H -m esh, T wh, may then be approxim ated by:

Theorem 3

T wh = (1 + A (1 ~ (6.1)
1 — Xa t m

Proof: There are three com ponents in the packet latency. The first is the transm ission

tim e of the packet header a t each node. C ut-through a t each node does not save tim e in

header transm ission, because the header m ust be received in full before the node can select

the outgoing transm ission link. The second component is the waiting time a t each node

due to blocking. The final component is the packet transm ission time.

The average packet delay per node, Td, due to waiting for the current link occupant to

complete its in-progress transm ission and possibly other waiting packets is cspwT w where

cs is a constant representing the link arbitration/scheduling mechanism used. The minimum

of cs, which equals 0.5, occurs when the blocked packet is scheduled to be transm itted next.

The header transm ission time is given by k a t m and the packet body transm ission tim e by

(1 — a) tm . Hence, we get

T wh = kTd + (1 — ot)trn + ~katrn

— Cskpw ' l wh T 1 T rr(A. 1))
_ (1 + a(k — l)) fm

1 - cskpw
(1 + a(k — l)) fm

1 - csk XG tm E U A: 2 • qk

Using the fact th a t ■ qk = k, we get

7jl (1 + <x(k- 1)) - t m _
J- wh — 2

1 — if k Xatm

103

0.35

0 .3 - E7

0 .2 5 - E5

o 0 . 2 -c
0 E4

- 0 .1 5 -
XLO
CO

0.1 -

E30 .0 5 -

0 50000 100000 150000 200000 250000 300000
P ack e t G eneration R ate (per S ec)

F igu re 6.1: Wormhole switching latencies as a function of packet rate . (cs = 1.0)

We can make a few' observations concerning the latency of packets th a t use wormhole

switching from the above equation. From the denom inator we see th a t as the packet genera

tion ra te increases from zero, the routing time increases gradually a t first, and then rapidly.

W hen the packet rate approaches the value which makes the denom inator zero, the latency

becomes infinite. This value XGtmax is the maximum packet ra te the network can support

for wormhole switching, and is given by:

\ 6
/ ' G , m a j r — 2 *

&

We also see th a t the latency increases rapidly with the average hop distance k. This

agrees intuitively with the observation th a t the longer the hop distance of a packet is, the

more likely it is to block other packets. This is because packet d a ta is not removed from

the network when the packet is not able to cut through a node in wormhole switching. This

means th a t for a wormhole switching scheme, the placement of tasks and the m inim ization

of task separation is of prime im portance. The latency is also sensitive to cs (a function of

the resource scheduling policy), although its effects are less than those of k.

Fig. 6.1 shows the packet latencies for H-meshes of dimensions 3, 5, 7 and 9, assuming

an average packet length of 128 bytes, a four-byte routing header, a link bandw idth of

16.6 M Bytes/sec, and cs = 1.0. Each destination is equally probable. W hen the packet

104

generation is low (near zero), the latencies for the different H -m eshes are similar, bu t as

the generation ra te increases, the larger mesh (e = 7) quickly reaches link satu ra tion , while

the latency for the smallest mesh (e = 3) increases ra ther slowly. The maximum packet

generation ra te for the smaller H-meshes is higher due to the fact th a t the average packet

distance is larger.

The packet latencies for virtual cut-through switching have been analyzed in [26], and

given below:

T c = - (k - 1)(1 - p) (l - a) tm .
1 - p

It is instructive to compare the packet latencies for the two forms of switching as a

function of channel load. The graphs of the latencies for different dimensions of H -m esh

are shown in Fig. 6.2. Again, we have assumed a packet size of 128 bytes with a four byte

routing header, a link bandw idth of 16.6 M Bytes/sec, and cs = 1.0.

One can see th a t for low traffic, the latencies of both m ethods are almost identical. This

is because at low traffic, the probability of blocking is very small, and therefore packets are

not likely to be blocked a t interm ediate nodes. The latency is then determ ined mainly by

link transm ission time. For higher dimensions of the II-m esh, wormhole switching is not

feasible for traffic load beyond a certain threshold. This threshold depends on the average

num ber of hops for a packet. For a 3-dimensional H-m esh the packet distance is short

enough1 th a t the maximum traffic is limited by the bandw idth of the com m unication links

themselves.

For low traffic loads, wormhole switching actually takes less tim e to deliver packets on

average, while the opposite is true for high loads. The break-even point of traffic load also

decreases as the size of the mesh increases. This is due to the average packet distance

increasing with the size of the mesh. As pointed out earlier, the longer the packet, the more

likely it is for wormhole switching to cause network congestion, resulting in higher average

packet latencies. This also causes the maximum traffic load th a t can be supported by

wormhole switching to decrease with t he size of the mesh. For H-m eshes of edge dimensions

less than 5, wormhole switching always gives a lower latency than virtual cut-through. For

an II-m esh of edge dimension 5, however, the break-even traffic load is 0.55. By the tim e

the edge dimension reaches 7, the break-even point has dropped to 0 .2 2 . Consequently,

depending on the traffic load and average packet distance, one switching m ethod m ight be

chosen in preference to the other.

: The communication diameter of a 3-dimensional II-m esh is only 2.

Pa
ck

et
 L

at
en

cy

(m
s)

Pa

ck
et

 L
at

en
cy

(m

s)

105

0.1 0.1

0.09 -j 0.09 H
o.oa0.08
0.07-0.07

0.050.05 H
VCJS 0.04-j

n 0.03Q .
0.02-j

0.04 H VC,
0.03
0.02 WH

0.01 H0 .0 1 ^ WH

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Traffic Load Traffic Load

(a) e = 3 (b)

0.1 0.1

0.09^ 0.09

0.08 H 0.08 H WH
0.07 ̂ 0.07-
0.06
0.05

VC
0.04-
0.03- VC
0.02 0.02

WH
0.01 H o.oi

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Traffic Load Traffic Load

(c) (d) e = 7

F i g u r e 6 .2 : Packet delivery latencies for a C-wrapped H -m esh w ith edge dimension
e. (cs = 1 .0)

106

6.2 Experimental Results

In the previous section we were able to conclude from the simplified models th a t one

sw itching/routing scheme m ight be preferable to another as a function of the to ta l network

load and individual characteristics of the packet to be transm itted . U nfortunately these

models do not provide much insight into how the real life issues such as the effects of flow

control, routing algorithm processing tim e, and how multiple routing/sw itching m ethods

in teract w ith one another to change of overall behavior of the system.

To answer the two questions originally posed at the beginning of this chapter we per

formed a series of simulations of the IM U-PRC-NI triple on II3, II4 , and II5 meshes using

pp-m ess-sim . This simulations allows us to capture the real life factors and gain some con

fidence in the utility provided by having a flexible router. In the interest of brevity we will

only present the results from the simulations on II5 and note th a t the same observations

and conclusions can be made concerning the d a ta not shown.

The following experim ental setup was used:

• Class I traffic

— M inim al-path routing with v irtual cut-through switching.

— Inter-arrival process N egativeExpntlQ .

— Packet length LengthD iscrete w ith P[l = 8 longwords] = 0.3, P[l = 24 longwords] =

0.5, and P[l = 8 8 longwords] = 0.2.

• Class II traffic

— Minimal-path. routing with wormhole switching.

— Inter-arrival process N egativeE xpntl().

— Packet length Fixed a t 8 longwords.

• Param eters for inter-arrival processes are set as follows:

1. Select percent peak link load as the prim ary param eter.

2. Select percentage of traffic th a t should be Class II.

3. Solve for the two generation rates as a function of the two param eters above.

• W ormhole tim eout set a t 640 bus cyles (discussed below)

107

The characteristics of the traffic generated by the task specification th a t corresponds to

the class I traffic is intended to act as the higher percentage “background” traffic which is

then mixed w ith the m inim al-path wormhole traffic. The task specification th a t corresponds

to the class II is used to generate the low percentage of wormhole traffic injected into the

nework. Both classes use a negative exponential interarrival process with their rates adjusted

to achieve the desired mix of traffic.

One of the weaknesses in the current design of the PRC was uncovered during the sim

ulations performed for this experim ent. As currently im plem ented, the PRC only provides

a single v irtual channel across each physical link. For virtual cut-through switching this

doesn’t pose a problem since the packet is always allowed to make forward progress by buf

fering at an interm ediate node. Wormhole switching does present problems once the load

exceeds a certain threshold. We have two solutions to this problem. F irst, the PRC RX can

im plem ent a tim eout on the period of time th a t a packet is willing to wait for a transm itte r,

after which the packet is buffered a t the interm ediate node and resubm itted. Second and

more long term (future work), the PRC im plem entation can be modified to support more

than a single v irtual channel per physical link. We delay the discussion of this alternative

to C hapter 7.

The results of this experim ent are presented in three series of graphs at the end of this

chapter. The first, examines the delivery latency of the class I traffic as the mix of class I

and class II is varied. This first series is presented to answer the first question posed. The

second series of graphs looks a t the observered latency of the class II traffic as traffic is

varied. This series is intended to address the second question. The last series superimposes

some of the results of the first two series and allows to draw some conclusions th a t are

discussed later.

Figures 6.3 through 6.5 show the delivery latencies of class I traffic (v irtual cut-through)

traveling 2, 3 or 4 hops in the mesh. Each separate curve is for a different percentage of

class I versus class II traffic mix. Note th a t the curves remain tighly coupled as the class

II traffic is varied from 5% to 30% of the to ta l traffic being injected into the network. The

conclusions th a t we can draw from these figures is th a t the class I traffic is not adversely

affected by the class II traffic even as a function of the to tal num ber of hops the packets

are required to travel. If this were not the case we would expect the delivery tim e to vary

significantly as the percentage of the class II was increased.

Figures 6 . 6 through 6.9 show the delivery latencies of class II traffic (wormhole) traveling

108

1, 2, 3 or 4 hops in the mesh. Each separate curve is for a different percentage of class I

versus class II traffic mix. Here again the curves do not significantly diverge from one

another allowing use to conclude th a t the the class II traffic is not adversely affected by the

increase in overall percentage class II traffic.

Figures 6.10 through 6.13 compares the delivery latencies of class I and class II traffic

for the average num ber of hops and individually for 2, 3, or 4 hops. The top three curves in

each figure represent the class I traffic for three different percentages of class I/class II traffic

mixes. The lower three curves refer to the class II traffic for those same three traffic mixes.

The key point of this series is th a t the relative benefits th a t one can gain by operating in

one class or the other is not lost as the class II traffic percentage is varied in this range. If

this were not true the two sets of curves should not m aintain their relative differences from

one another or worse yet actually cross.

6.3 Discussion

We opened this chapter by posing the two questions:

• Does the presence of a low percentage of traffic using minimal pa th routing with

wormhole switching adversely affect the behavior of traffic being routed using minimal

path routing with virtual cut-through switching in a C-wrapped hexagonal rnesh?

• Is the wormhole traffic in the above scenario unstable in the presence of the virtual

cut-through traffic?

Before pursuing the answers to these questions we developed a simple model of the

latency of messages delivery via m inim al-path routing in a C-wrapped hexagonal th a t uses

wormhole switching. W hen com pared against the delivery latency of messages using virtual

cut-through switching we saw th a t there was no clear winner all of the time. This fact

m otivated further studies into how a system capable of supporting m ultiple classes of mes

sage traffic might behave. For the experim ental system described earlier in this dissertation

this type of routing and switching interaction would not be possible w ithout the flexibility

provided by the PRC.

W ith the results of the simulations we were able to conclude th a t the answer to both of

the questions is “no.”

Were the answer “yes” to either question the cost of providing the support necessary for

m ulti-m ode routing and switching would require careful justification. The “no” answers only

109

partially vindicate m ulti-m ode routing and switching since this experim ent only exam ined a

single pair of routing-sw ithing com bination. The good news is th a t for a scheme th a t d idn’t

specifically try to isolate the different classes of traffic from one another the interactions

effects were not high. This is a very encouraging result since the PRC was easily able to

support the functions required for this experiment.

It is also interesting to postu late on the reasons why the two types of traffic in the

experim ent d idn’t in teract in a significant way. One avenue of thought is th a t it m ight be due

to the fact th a t wormhole and v irtual cut-through switching effectively uses different types

of resources. V irtual cut-through use memory buffers on interm ediate nodes in contrast to

wormhole which stores its d a ta in the actual network. A logical question th a t im mediately

follows is how specific are these experim ental results to the w orm hole/virtual cut-through

switching pair. In the experim ents performed thus far all the network resources have been

available to all the classes of traffic. A series of experiments th a t is currently being pursued

investigates different schemes in which the PRC can be used to isolated the different classes

of traffic from one another. For example, a certain am ount of bandw idth could be allocated

to each class or in the case of the newer versions of the PRC certain classes of traffic can

have a preferences for certain v irtual channels. Here again, the flexibility of the PRC allows

these types of issues to be explored.

The answers to our questions so far open up a whole new frontier of experim ents con

cerning routing algorithm s and switching m ethods th a t can be investigated. For example

in the current experim ents, once created the packets always use the same routing/sw itching

scheme to be delivered to the destination. W hat if we allow routing packets using virtual

cut-through switching initially and then change to wormhole as the packet approaches the

destination? This might provide improved performance since wormhole packets perform

quite well over a small number of hops when compared to v irtual cut-through packets. But

when should we change switching m ethods? These type of functions the PRC can easily

provide.

W hat we are claiming is th a t having the flexibility to support multiple routing and

switching schemes provides the system designer with the tools necessary to construct sys

tem s capable of supporting a wide variety of characteristics. The experim ents presented

in this chapter take a first step at showing th a t this type of flexibility requires further

experim ents.

D
el

iv
er

y
Ti

m
e

(B
us

C

yc
le

s)

D
el

iv
er

y
Ti

m
e

(B
us

C

yc
le

s)

1 1 0

1800.0
• — # 0 5 % C la ss ll P ack e ts
■ 10% C la ss II P ack e ts
♦ — ♦ 15% C la ss II P ack e ts
A — A 20% C la ss II P ack e ts

: 25% C la s s II P ack e ts
V — ~V30% C la s s II P ack e ts

1600.0

1400.0

1200.0

1000.0

800.0
0.10 0.15 0.20 0.25 0.30 0.35 0.40

Percent Peak Link Load

F ig u re 6 .3 : Delivery Latency Class I Traffic - 2 hops - II5

2500.0
>05% C la ss II P ack e ts
1 10% C la ss II P ack e ts
► 15% C la ss II P ack e ts
i2Q% C la s s II P ack e ts

25% C la ss II P ack e ts
f 30% C la ss II P ack e ts2000.0

1500.0

1000.0

500.00 ■ 1 ' 1 ' 1 ' 1 ■ 1 ■----------------

0.10 0.15 0.20 0.25 0.30 0.35 0.40
P ercent Peak Link Load

F ig u re 6 .4 : Delivery Latency Class I Traffic - 3 hops - H5

I l l

w
_CD
O>»
O

t onm
CD
E
i-
£•
CD>
0)
Q

2500.0
——#05% Class II Packets
H ■ 10% Class II Packets
♦— ♦ 15% Class II Packets
Jk— A20% Class II Packets

25% Class II Packets
T— V30% Class II Packets

2000.0

1500.0

1000.0
0.10 0.15 0.20 0.25 0.30

Percent Peak Link Load
0.35 0.40

F igure 6.5: Delivery Latency Class I Traffic - 4 hops - I I 5

w

£
O
w3m
CD
E
I-
&
CD>
"a)
Q

600.0

500.0

400.0

300.0

200.0
0.10

195% Class I Packets
3 90% Class I Packets
► 85% Class I Packets
1̂ 80% Class I Packets
75% Class I Packets

770% Class I Packets

0.15 0.20 0.25 0.30
Percent Peak Link Load

0.35 0.40

Figure 6 .6 : Delivery Latency Class II Traffic - 1 hop - II5

1 1 2

800.0
9 — 9 9 5 % C la s s I P ack e ts
■ ■ 90% C la s s i P ack e ts
A— ^ 0 5 % C la ss I P ack e ts
A — A 80% C l a s s ! P ack e ts

75% C la ss I P ack e ts
V — V 7 0 % C la ss I P ack e ts

700.0

600.0

500.0

a> 400.0

300.0

200.0
0.30.10 0.15 0.20 0.25 0.35 0.40

Percent Peak Link Load

F ig u re 6 .7 : Delivery Latency Class II Traffic - 2 hops - II5

1000.0
■ 995% C la s s I P ack e ts
-■ 9 0 % C la ss I P ack e ts
-A 85% C la s s I P ack e ts
A 80% C la s s I P ack e ts

75% C la s s I P ack e ts
-V 70% C la ss I P ack e ts800.0

600.0

400.0

200.0 >—
0.10 0.15 0.20 0.25 0.30 0.35 0.40

Percent P eak Link Load

Figure 6.8: Delivery Latency Class II Traffic - 3 hops - H5

D
el

iv
er

y
Ti

me

(B
us

C

yc
le

s)

D
el

iv
er

y
Ti

m
e

(B
us

C

yc
le

s)

113

1200.0
• — © 9 5 % C la ss I P acke ts
■ ■ 90% C la s s I P ack e ts
♦ — ♦ 85% C la s s I P ack e ts
A — A 8 0 % C la ss I P ack e ts

75% C la s s I P ack e ts
♦ — ▼ 70% C la s s I P ack e ts

1000.0

800.0

600.0

400.0

2 0 0 .0 L -
0.10 0.20 0.250.15 0.30 0.35 0.40

Percent Peak Link Load

F igu re 6.9: Delivery Latency Class II Traffic - 4 hops - II5

1400.0 © — © C la ss I P ack e ts w/ 05% C lass II P ackets
H— H C lass I P ack e ts w / 15% C lass II P ack e ts
♦ — ♦ C la s s I P ack e ts w/ 25% C lass II P ackets
A — A C lass III P ack e ts w) 95% C lass I P ack e ts

C lass III P ack e ts w / 85% C lass I P acke ts
V — V C la s s II P ack e ts w/ 75% C lass I P ack e ts

1200.0

1000.0

800.0

600.0

400.0

200.0

0.0
0.10 0.15 0.20 0.25 0.30

Percent Peak Link Load
0.35 0.40

Figure 6.10: Comparison of Class I to Class II Traffic - Average hops - H5

114

w
■®o>.
O
M3m
0)
E
P

S
0
D

1200.0
0— © C la s s i P ack e ts w/ 05% C lass II P ack e ts
■ ■ C lass I P ack e ts w / 15% C lass II P ack e ts
♦ — - ♦ C la s s II P ack e ts w/ 25% C la ss II P ack e ts
A — A C Ia ss HI P ack e ts w/ 95% C lass I P ack e ts

C lass III P ack e ts w / 85% C lass I P ack e ts
T — T C Ia s s III P ack e ts w/ 75% C lass I P ack e ts

1000.0

800.0

600.0

400.0

200.0
0.10 0.15 0.20 0.25 0.30

Percent P eak Link Load
0.35 0.40

F ig u re 6 .11 : Comparison of Class I to Class II Traffic - 2 hops - II5

w

0
w3m
q
E
P

1
0)
O

1400.0 0 — © C la ss I P ack e ts w / 05% C lass II P ack e ts
B — B C lass I P ack e ts w / 15% C lass II P ack e ts
♦ — - ♦ C la s s I P ack e ts w/ 25% C lass II P ack e ts
A — A C lass II P ack e ts w / 95% C lass I P ack e ts

C lass II P ack e ts w / 85% C lass I P ack e ts
¥ — ▼ C lass II P ack e ts w/ 75% C lass I P ack e ts

1200.0

1000.0

800.0

600.0

400.0

200.0

0.0
0.10 0.15 0.20 0.25 0.30

Percent P eak Link Load
0.35 0.40

Figure 6.12: Comparison of Class I to Class II Traffic - 3 hops - II5

D
el

iv
er

y
Ti

m
e

(B
us

C

yc
le

s)

115

1500.0
• — # C l a s s i P a c k e ts w/ 05% C lass II P ack e ts
■ - B C lass I P ack e ts w / 15% C la ss II P ack e ts
♦ — ♦ C la s s I P ack e ts w / 25% C la ss II P ack e ts
A — A C Ia s s II P ack e ts w / 95% C la ss I P a c k e t^

C lass II P ack e ts w / 85% C la ss I P a c k ^ fe
▼— ▼ C lass II P ack e ts w/ 75% C lass I Ra^k^ts

1000.0

500.0

0.00 , 1 , 1 , 1 , 1 , 1 ,----------

0.10 0 .15 0.20 0.25 0.30 0 .35 0.40
Percent Peak Link Load

Figure 6.13: Com parison of Class I to Class II Traffic - 4 hops - H5

CH APTER 7

CONCLUSIONS A ND FUTURE DIRECTIONS

In this chapter we review the contributions of this dissertation, and allude to the possible

extensions and future research for the work presented.

7.1 Research Contributions

The recurring theme throughout this dissertation has been th a t flexibility in low-level

routing hardw are is a feature th a t the designer should prom ote. This is especially true for

systems where the domain in which the routing hardw are is operating may not have been

fully characterized. This is certainly the case for the PRC, which is intended to operate

somewhere in between parallel machines and networked com puters, a region not previously

investigated.

The PRC architecture offers several key contributions to the field. F irst, in no other

architecture/design has the separation of the routing algorithm s and switching schemes

been m ade so explicit. This separation has many advantages over the more trad itional

schemes. Second, the identification of features im portant in reducing the overhead required

to support real-time communication and their tradeoffs is key to understanding how future

systems should be built. Last, the PRC itself can serve as a tool for investigating the hybrid

dom ain of parallel com puting and distributed systems. The P R C ’s ability to further explore

this new domain will make a lasting im pact in the field of d istributed systems design.

The main contribution of the models developed in C hapter 4 is th a t the approach in

obtaining the probability of cut-through can be extended to other partially connected point-

to-point networks. It provides a more rigorous basis for justifying w hat previously had been

derived intuitively.

The contributions of pp-m ess-sim fall into three areas: the identification of the classes

116

117

th a t enable topology independent modeling of routing hardw are, the use of task and node

specifications to easily generate custom communication workloads, and a reusable software

tool in which plug-replaceable modules for different router hardw are can be developed. The

im pact of the la tte r could be long lasting and greatly reduce the work required by others.

C hapter 6 provides evidence of the utility of both pp-m ess-sim and the flexibility provided

by the PRC. This initial set of experim ents clearly dem onstrates th a t the ability to dy

nam ically vary the switching scheme independent of the routing algorithm deserves more

investigation. The fact th a t the delivery performance was stable in the presence of other

traffic is a significant finding.

7.2 Future Directions

We are currently working on three semi-independent research projects th a t are direct

consequences of the work presented here: the enhancem ent of the PRC architecture to

support 2 virtual channels per physical link, the addition of a v irtual hardw are rou ter to

pp-m ess-sim , and the development of different variants of m ulti-m ode routing and switching.

The need for having two virtual channels per link was quite clearly dem onstrated while

debugging the wormhole switching scheme during the development of pp-m ess-sim . The

addition of two virtual channels per physical link does not significantly alter the current

architecture of the PRC. Both the PRC RX and TFU modules were modified during the

last m ajor design revisions to support the additional channels. For exam ple, if you carefully

examine the different transm itters for which the PRX RX can check the reservation sta tus

of, you will notice th a t there are twelve such possibilities. Until now the to ta l size of the

PRC was such th a t we have been able to avoid having to perform any m anual intervention

during the placement and route phases of compiling the PRC. This may no longer be true

as we include six more TFU s and RXs.

The desire to develop a generic hardw are router module for pp-m ess-sim is m otivated

on several fronts. F irst, there are some effects of cut-through routing th a t can partially

invalidate a t higher loads some of assum ptions necessary to make the models trac tab le.

A router in which we don’t have the overhead of byte-level flow-control would allow the

cut-through effects to be measured. Second, it would allow the tradeoffs between on-chip

memory and off-chip buffering to be evaluated in term s of the different routing and switching

com binations.

118

The investigation of the different variants of multi-m ode routing and switching is a direct

result of ju st recently being enabled by the availability of pp-m ess-sim and high perform ance

w orkstations on which we can run pp-m ess-sim .

In addition to the research efforts already being pursued there are several issues con

cerning the representativeness of the existing analytic models and extensions of the models

beg for investigation. These questions center around w hat interactions are being lost in the

models of the switching m ethods and how to capture the changes in switching and routing

behavior.

A PPE N D IX A

PRC CTBUS IMPLEMENTATION

1 2 0

C ut-T hrough Bus Device A rbitration Order
Priority Cycle Highest Device ID Priority Order Lowest

0 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 14 15 16 17 18
1 0 2 1 4 3 6 5 8 7 1 0 9 1 2 1 1 14 13 16 15 18 17
2 1 2 0 5 6 3 4 9 1 0 7 8 13 14 1 1 1 2 17 18 15 16
3 2 1 0 6 5 4 3 1 0 9 8 7 14 13 1 2 1 1 18 17 16 15
4 3 4 5 6 0 1 2 1 1 1 2 13 14 7 8 9 1 0 15 16 17 18
5 4 3 6 5 0 2 1 1 2 1 1 14 13 8 7 1 0 9 16 15 18 17
6 5 6 3 4 1 2 0 13 14 1 1 1 2 9 1 0 7 8 17 18 15 16
7 6 5 4 3 2 1 0 14 13 1 2 1 1 1 0 9 8 7 18 17 16 15
8 7 8 9 1 0 1 1 1 2 13 14 0 1 2 3 4 5 6 15 16 17 18
9 8 7 1 0 9 1 2 1 1 14 13 0 2 1 4 3 6 5 16 15 18 17

1 0 9 1 0 7 8 13 14 1 1 1 2 1 2 0 5 6 3 4 17 18 15 16
1 1 1 0 9 8 7 14 13 1 2 1 1 2 1 0 6 5 4 3 18 17 16 15
1 2 1 1 1 2 13 14 7 8 9 1 0 3 4 5 6 0 1 2 15 16 17 18
13 1 2 1 1 14 13 8 7 1 0 9 4 3 6 5 0 2 1 16 15 18 17
14 13 14 1 1 1 2 9 1 0 7 8 5 6 3 4 1 2 0 17 18 15 16
15 14 13 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0 18 17 16 15
16 15 16 17 18 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 14
17 16 15 18 17 0 2 1 4 3 6 5 8 7 1 0 9 1 2 1 1 14 13
18 17 18 15 16 1 2 0 5 6 3 4 9 1 0 7 8 13 14 1 1 1 2

19 18 17 16 15 2 1 0 6 5 4 3 1 0 9 8 7 14 13 1 2 1 1

2 0 15 16 17 18 3 4 5 6 0 1 2 1 1 1 2 13 14 7 8 9 1 0

2 1 16 15 18 17 4 3 6 5 0 2 1 1 2 1 1 14 13 8 7 1 0 9
2 2 17 18 15 16 5 6 3 4 1 2 0 13 14 1 1 1 2 9 1 0 7 8

23 18 17 16 15 6 5 4 3 2 1 0 14 13 1 2 1 1 1 0 9 8 7
24 15 16 17 18 7 8 9 1 0 1 1 1 2 13 14 0 1 2 3 4 5 6

25 16 15 18 17 8 7 1 0 9 1 2 1 1 14 13 0 2 1 4 3 6 5
26 17 18 15 16 9 1 0 7 8 13 14 1 1 1 2 1 2 0 5 6 3 4
27 18 17 16 15 1 0 9 8 7 14 13 1 2 1 1 2 1 0 6 5 4 3
28 15 16 17 18 1 1 1 2 13 14 7 8 9 1 0 3 4 5 6 0 1 2

29 16 15 18 17 1 2 1 1 14 13 8 7 1 0 9 4 3 6 5 0 2 1

30 17 18 15 16 13 14 1 1 1 2 9 1 0 7 8 5 6 3 4 1 2 0

31 18 17 16 15 14 13 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

T ab le A . l : C ut-Through Device A rbitration Order

1 2 1

C ut-T hrough Bus Com m and Encoding

External Internal

CTCTL[3:0] CTCTL[3:0] Comm and

0 0 0 0 1 1 1 1 NOOP (No O peration)

0 0 0 1 1 1 1 0 DTX (D ata Transfer)

0 0 1 0 1 1 0 1 DACK (D ata Positive Acknowledgement)

0 0 1 1 1 1 0 0 DNACK (D ata Negative Acknowledgement)

0 1 0 0 1 0 1 1 DRTRY (D ata Transfer R etry)

0 1 0 1 1 0 1 0 RESV (T ransm itter Reservation Request)

0 1 1 0 1 0 0 1 FR EE (T ransm itter Free Request)

0 1 1 1 1 0 0 0 HOLD (T ransm itter Hold Request)

1 0 0 0 0 1 1 1 GTIK (Transm iiter Hold Check)

1 0 0 1 0 1 1 0 CFGO (Load TAXI Receiver Reg 0)

1 0 1 0 0 1 0 1 C F G l (Load TAXI Receiver Reg 1)

1 0 1 1 0 1 0 0 C FG 2 (Load TAXI Receiver Reg 2)

1 1 0 0 0 0 1 1 CFG3 (Load TAXI Receiver Reg 3)

1 1 0 1 0 0 1 0 CFG4 (Load TAXI Receiver Reg 4)

1 1 1 0 0 0 0 1 MARK (Byte M arker)

1 1 1 1 0 0 0 0 EO P (End of Packet)

T a b le A . 2 : C ut-Through Bus Comm and Encoding

1 2 2

C ut-T hrough M aster Device Encoding

External Internal Internal Internal

MST[2:0] TAXIGRNT[5:0] RXGRNT[5:0] TFUGRNT[5:0] Device Name

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 TAXI RX 0

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 TAXI RXi

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 TAXI RX 2

C 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 TAXI RX 3

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 TAXI RX 4

1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 TAXI RX 5

1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 6 PRC RX 0

1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 7 PRC RXj

1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 8 PRC RX 2

1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 9 PRC RX 3

1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 PRC R X 4

1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 PR C RX 5

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 PRC TFUo

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 13 PRC T FU i

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 14 PRC T F U 2

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 15 PRC T F U 3

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 16 PRC T F U 4

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 17 PRC TFUs

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 IMU

Table A .3: C ut-Through M aster Device Encoding

123

C ut-Through Addressed Slave Device Encoding

External External Internal Internal

CTMST[2:0] CTADDR[7:0] CTMST[4:0] CTADDR[7:0] Device

X X X 1 X X X X X X 1 X X X 0 X X X X X X 0 TAXI T X 0

X X X 1 X X X X X 1 X X X X 0 X X X X X 0 X TAXI TX,

X X X 1 X X X X 1 X X X X X 0 X X X X 0 X X TAXI T X 2

X X X 1 X X X 1 X X X X X X 0 X X X 0 X X X TAXI TX 3

X X X 1 X X 1 X X X X X X X 0 X X 0 X X X X TAXI T X 4

X X X 1 X 1 X X X X X X X X 0 X 0 X X X X X TAXI T X 5

0 0 0 X 1 X X X X X X 1 1 1 X 0 X X X X X X PRC RX 0

0 0 1 X 1 X X X X X X 1 1 0 X 0 X X X X X X PRC RXj

0 1 0 X 1 X X X X X X 1 0 1 X 0 X X X X X X PRC RX 2

0 1 1 X 1 X X X X X X 1 0 0 X 0 X X X X X X PRC RX 3

1 0 0 X 1 X X X X X X 0 1 1 X 0 X X </■ X X X PRC RX 4

1 0 1 X 1 X X X X X X 0 1 0 X 0 X X X X X X PRC RX 5

1 1 1 X 1 X X X X X 1 0 0 0 X 0 X X X X X 0 TAXI RX 0

1 1 1 X 1 X X X X 1 X 0 0 0 X 0 X X X X 0 X TAXI RXi

1 1 1 X 1 X X X 1 X X 0 0 0 X 0 X X X 0 X X TAXI RX ,

1 1 1 X 1 X X 1 X X X 0 0 0 X 0 X X 0 X X X TAXI RX3

1 1 1 X 1 X 1 X X X X 0 0 0 X 0 X 0 X X X X TAXI RX 4

1 1 1 X 1 1 X X X X X 0 0 0 X 0 0 X X X X X TAXI RX 5

Table A .4: C ut-Through Addressed Slave Device Encoding

124

C ut-T hrough Bus Signal Summary

Pins Type Signal Names Description

6 Input CTREQ[5:0] TAXI Receiver Bus Request Lines

0 CTREQ[11:0] PRC Receiver Bus Request Lines

0 CTREQ[17:12] PRC TFU Request Lines

1 Input CTREQ[18] IMU Request Line

3 O utpu t CTMST[2:0] Bus M aster G rant S tatus

1 Input CTEX T Bus Cycle Extend

1 BiDir CTD STRB D ata Strobe

1 BiDir CTACK Comm and Ack

4 BiDir CTCTL[3:0] Comm and Sub-Bus

8 BiDir CTADDR[7:0] Slave Address Sub-Bus

8 BiDir CTDATA[7:0] D ata Sub-Bus

T a b le A .5: C ut-Through Bus Signal Summary

125

A PPEN D IX B

PRC RX INTERNALS

This appendix provides in depth inform ation concerning the im plem entation of the PRC

RX module. This currently consists of the instruction encodings, sample instruction tim ing

diagram s, and some general figures used in the design of the RX.

126

OUT IN
INCR

I
PCINC

D Q
LATCH LATCH

EN
CLK UPC LINKENCLK

PBUS

S E L JJP C

D q :
DFF

^ CLK

„ CLR -

C LRJJPC

Control Store
128 Words

20 bits

MIRENCLK <—

MIRB
CLK1 > ■ EN

MIR

F ig u re B . l : P artia l structu re of the address sequencing hardw are of the RX

preactive 1dow nload preactive2

blocked active

Figure B .2: Simplified s ta te diagram for microsequencer controller

* n n n r L _ x i _ _ n _ j ~ L _ n _ ^ L _ r L _ n
phi2 n n n r t n n n n _ _ n _ _ n _ n

P C
' i

M i
« *

M I h-4 |
- i i “ t k+3](

« i i+4 I
MAR

r ~ r ■*’ i t i,! It i+3 i " 8 " I k+1 » «
! ' “ 1 “ i

i+ 4 |

Ml R E N _ n _ n n n _ n n n n n
MIRA j| Instruction (i) jj In s tru c to r (i+1) In struction (i+ 2) j| Instruction (i+ 3) I In struc tion (k) | Instruc tion (k + 1) f In stru c tio n (k + 2) I In stru c tio n (k + 3) i
MIRB f r instruction {i) jj”In stru c tio n (i+1) | Instruction (i+2) Instruction £ i+3) i 1 In stru c tio n (k) jj In s tru c tio n £ k+1) Instruc tion (k+2) I Instruc tion (k+ 3) J|)

ADD JU M P /L IN K X FE R JU M P/L IN K IDLE A D D RET FLA G R E T ID LE

P C S E L I Increment 1 Increment | Increment jj Increment | L oad jj Increment 1 Increment V Increment
It

MI Increment I Unk ! Increment

s ta te | A ctive | A ctive jj A ctive jj Active | A c tiv e t-°ad I Active I ActiveJk---------------------------- 1 A ctive | A ctive | L oad J

Jump condition false jump condition true Return condition false Return condition true

F ig u re B .3 : Instruction sequence example # 1

127

■«n n n n n n rL__n__n__n_n
phi2 n ..n_ n n __n_ n n n

PC i i+1 ;i i+2 i i+2 ; i+2 | i+3 I1 M I i+4 : * i i m i
MAR (i

" i ; i+2 1 i+2 I i+3 1 1+4 I :4 . k i “ j -a -)
MIREN n n n0 B n n n

MIRA I Instruction { i) l Instruction (i+ 1) ^ Instruction (i+ 2) Instruction (i+ 3) I Instruction { k) I Instruction (k + 1) 1

MIRB (L in stru ctio n (i) | In struction (i+1) ., Instruction { i+1) | In struction i+1) In s tru c tio n (i+2)] In s tru c tio n (i+3 ^ Instruction t i+ 3)) In s tru c tio n (i + 3)
y
X In stru c tio n (k) jj| In s tru c tio n (k+1) |

FLAG W A IT A D D W A IT /T R A P IDLE ADD FLAG

PCSEL II Increment g Increment I Pass I Pass j| Increment | Increment I p““ I Loac Increment || Increment jj Increment

state (A ctive | Active j| A ctive | A c tiv e i A c tiv e | Active s A ctive | Active H L oad | A c tiv e | A C iv e)

Wait condition become true Trap condition becom es true

F ig u re B .4 : Instruction sequence example # 2

phil n n n n n rL_n. n
phi2

PC 1 i+1 i+2 i+2 i+2 i+4 i+5 i+5 r~̂ ~nr k+1 I

MIHEN n n J"L FL
instruction (i) In stru c tio n (i+1) In s tru c tio n (i+ 2) I In stru c tio n (i+3) Instruction (i+4) Instruction (k)

Instruc tion (i)

LDC

Instruction (i+1) I In stru c tio n { i+1) I Instruction (i+1) I Instruction (i+2) I Instruction { i+3) I Instruc tion { i+ 4) I Instruction (i+4) I Instruction (i+4) I In stru c tio n (k)
X FEH (C T)

Increment Increment Increment Load Increment I Increment too

T P ”— —:—— r —
I Aclhre I Active

C T B U SY

Figure B.5: Instruction sequence example # 3

ALU Operations

M (1 9) M (1 8) M (1 7) M (1 6) M (1 5) M (1 4) M (1 3) M (1 2) M (l l) M (1 0) M (9) M (8) M (7) M (6) M (S) M (4) M (3) M (2) M (l) M (0)

1 1 0
C a r r y

C o n t r o l A Port Select B Port Select ALU Function Control

C arry Control

M (16) M (1 5) ALU Carry Input

0 0 False (0)

0 1 C arry Flag

1 0 Zero Flag

1 1 True (1)

ALU Function Encodings

M (4) = 0 M (4) = 1J A r i t h m e t i c O p e r a t i o n s

M (3) M (2) M (l) M (0)
Logic c a r r y i n = 0 c a r r y i n = 1

F u n c t i o n s (n o c a r r y) (w i th c a r r y)

0 0 0 0 A A minus 1 A

0 0 0 1 AB AB minus 1 AB

0 0 1 0 A + B AB minus 1 AB

0 0 1 1 1 minus 1 (2’s comp) zero

0 1 0 0 A + B A plus (A + B) A plus (A + B) plus 1

0 1 0 1 B AB plus (A + B) AB plus (A + B) plus 1

0 1 1 0 A © B A minus B minus 1 A minus B

0 1 1 1 A + B A + B (A + B) plus 1

1 0 0 . 0 AB A plus (A + B) A plus (A + B) plus 1

1 0 0 1 A © B A plus B A plus B plus 1

1 0 1 0 B AB plus (A + B) AB plus (A + B) plus 1

1 0 1 1 A + B (A + B) (A + B) plus 1

I 1 0 0 0 A plus A A plus A plus 1

1 1 0 1 AB AB plus A AB plus A plus 1

1 1 1 0 AB AB plus A AB plus A plus 1

1 1 1 1 A A A plus 1

T ab le B . l : ALU Instruction Encoding

ALU Port A Select

M (9) M (8) M (7) M (6) M (5) Device Selected

0 0 0 0 0 Reg 0 (RFOO)

0 0 0 0 1 Reg 1 (RF01)

0 0 0 1 0 Reg 2 (RF02)

0 0 0 1 1 Reg 3 (RF03)

0 0 1 0 0 Reg 4 (RF04)

0 0 1 0 1 Reg 5 (RF05)

0 0 1 1 0 Reg 6 (RF06)

0 0 1 1 1 Reg 7 (RF07)

0 1 0 0 0 Reg 8 (RF08)

0 1 0 0 1 Reg 9 (RF09)

0 1 0 1 0 Reg 10 (RF10)

0 1 0 1 1 Reg 11 (R F ll)

0 1 1 0 0 Reg 12 (RF12)

0 1 1 0 1 Reg 13 (R.F13)

0 1 1 1 0 Trap Reg 0 (TRAPO)

0 1 1 1 1 Trap Reg 1 (T R A P l)

1 1 0 1 CTBus D ata (CTDATA)

1 1 0 0 1 Memory D ata Reg (MDR)

1 1 0 1 1 Header Fifo (FIFO)

1 1 1 1 0 Accumlator (ACC)

ALU Port B Select

M (1 3) M (1 2) M (l l) M (1 0) Device Selected

0 0 0 0 Reg 0 (RFOO)

0 0 0 1 Reg 1 (RF01)

0 0 1 0 Reg 2 (RF02)

0 0 1 1 Reg 3 (RF03)

0 1 0 0 Reg 4 (RF04)

0 1 0 1 Reg 5 (RF05)

0 1 1 0 Reg 6 (RF06)

0 1 1 1 Reg 7 (RF07)

1 0 0 0 Reg 8 (RF08)

1 0 0 1 Reg 9 (RF09)

1 0 1 0 Reg 10 (RF10)

1 0 1 1 Reg 11 (R F ll)

1 1 0 0 Reg 12 (RF12)

1 1 0 1 Reg 13 (RF13)

1 1 1 0 Trap Reg 0 (TRAPO)

1 1 1 1 Trap Reg 1 (T R A P l)

T ab le B .2 : ALU Operand Selection Coding

Load Constant

M f 19) M (1 8) M (1 7) M (1 6) M (1 5) M (1 4) M (1 3) M(12) M (l l) M (1 0) M (9) M (8) M (7) M (6) M (S) M (4) M (3) M (2) M (l) M (0)

1 0 1 RX CT Destination Select Im m ediate D ata IR

0

1

Do not trigger RXBUS interface

Trigger RXBUS interface

0

1

Do not trigger CTBUS interface

Trigger CTBUS interface

Do not Set CTBUS IR

Set CTBUS IR

0

1

Transfer O peration

M (1 9) M (1 8) M (1 7) M (16) M (1 5) M (1 4) M (1 3) M (1 2) M (l l) M (1 0) M (9) M (8) M (7) M (6) M (5) M (4) M (3) M (2) M (l) M (0)

1 0 0 RX CT Destination Select Source Select X X X X IR

0

1

Do not trigger RXBUS interface

Trigger RXBUS interface

0

1

Do not trigger CTBUS interface

Trigger CTBUS interface

Do not Set CTBUS IR

Set CTBUS IR

0

1

Table B .3: Transfer Instructions

S o u r c e S e le c t F ie ld

M (9) M (8) M (7) M (6) M (5) D e v ic e S e le c ted

0 0 0 0 0 R e g 0 (RFOO)

0 0 0 0 1 R e g 1 (R F 0 1)

0 0 0 X 0 R e g 2 (R F 0 2)

0 0 0 1 R e g 3 (R F 0 3)

0 0 1 0 0 R e g 4 (R F 0 4)

0 0 1 0 1 R e g 5 (R F 0 5)

0 0 1 1 0 R e g 6 (R F 0 6)

0 0 1 1 1 R e g 7 (R F 0 7)

0 1 0 0 0 R e g 8 (R F 0 8)

0 1 0 0 1 R e g 9 (R F 0 9)

0 1 0 1 0 R e g 10 (R F 1 0)

0 1 0 1 1 R e g 11 (R F l l)

0 1 1 0 0 R e g 12 (R F 1 2)

0 1 1 0 1 R e g 13 (R F 1 3)

0 1 1 1 0 T r a p R e g 0 (T R A P O)

0 1 1 1 1 T r a p R e g 1 (T R A P l)

1 1 0 1 C T B u s D a t a (C T D A T A)

1 1 0 0 1 M e m o r y D a t a R e g (M D R)

1 1 0 1 1 H e a d e r F i fo (F I F O)

1 1 1 1 0 A c c u m l a t o r (A C C)

D e s t in a t i o n S e le c t F ie ld

M (14) M (1 3) M (1 2) M (l l) M (1 0) D e v ic e S e le c te d

0 0 0 0 0 R e g 0 (RFOO)

0 0 0 0 1 R e g 1 (R F 0 1)

0 0 0 1 0 R e g 2 (R F 0 2)

0 0 0 1 R e g 3 (R F 0 3)

0 0 0 0 R e g 4 (R F 0 4)

0 0 1 0 1 R e g 5 (R F 0 5)

0 0 1 0 R e g 6 (R F 0 6)

0 0 1 1 R e g 7 (R F 0 7)

0 1 0 0 0 R e g 8 (R F 0 8)

0 1 0 0 1 R e g 9 (R F 0 9)

0 0 1 0 R e g 10 (R F 1 0)

0 1 0 1 R e g 11 (R F l l)

0 1 0 0 R e g 12 (R F 1 2)
0 1 0 1 R e g 13 (R F 1 3)

0 1 1 1 0 T r a p R e g 0 (T R A P O)

0 1 1 1 1 T r a p R e g 1 (T R A P l)

1 0 0 0 0 R X D a t a R e g 0 (R X D O)

1 0 0 0 1 R X D a t a R e g 1 (R X D l)

1 0 0 1 0 R X D a t a R e g 2 (R X D 2)

1 0 0 1 1 R X D a t a R e g 3 (R X D 3)

1 0 1 0 0 R X C o n t r o l R e g (R X C T L)

1 0 1 0 1 C T B U S D a t a R e g 0 (C T D O)

0 1 1 0 C T B U S A d d r e s s R e g (C T A D D R O)

1 0 1 1 1 C T B U S A d d r e s s R e g (C T A D D R 1)

1 1 0 0 0 C T B U S C o n t r o l R e g (C T C T L)

1 1 0 0 1 M e m o r y D a t a R e g (M D R)
1 1 0 1 0 M e m o r y A d d r e s s R e g (M A R)

1 1 0 1 1 H e a d e r F i fo (F I F O)

Table B .4: Source and D estination Operand Coding

Set Flag O peration

M (1 9) M (I 8) M (1 7) M (1 6) M (1 S) M (1 4) M (1 3) M (1 2) M (l l) M (1 0) M (9) M (8) M (7) M (6) M (S) M (4) M (3) M (2) M (l) M (0)

1 1 1 D a t a Sele c t X X Flag Mask

Flag Select Mask

M (1 2) M (l l) M (1 0) M (9) M(B) M (7) M (6) M (5) M (4) M (3) M (2) M (l) M (0) Flag Modified

X X X X X X X X X X X X 1 User Flag 0

X X X X X X X X X X X 1 X User Flag 1

X X X X X X X X X X 1 X X User Flag 2

X X X X X X X X X 1 X X X User Flag 3

X X X X X X X X 1 X X X X User Flag 4

X X X X X X X 1 X X X X X User Flag 5

X X X X X X 1 X X X X X X Eophold Flag

X X X X X 1 X X X X X X X Markhold Flag

X X X X 1 X X X X X X X X A borthold Flag

X X X 1 X X X X X X X X X Set IR (Set always)

X X 1 X X X X X X X X X X Clear Mark (Clear always)

X 1 X X X X X X X X X X X Clear Eop (Clear always)

1 X X X X X X X X X X X X Clear A bort (Clear always)

D ata Select

M (1 6) M (1 5) Flag Input

0 0 False (0)

0 1 Carry Flag

1 0 Zero Flag

1 1 True (1)

T a b le B .5 : Flag M anipulation Instruction Encoding

W ait Operation

M (1 9) M (1 8) M (1 7) M (1 6) M (1 S) M (1 4) M (1 3) M (1 2) M (l l) M (1 0) M (9) M (8) M (7) M (6) M (5) M (4) M (3) M (2) M (l) M (0)

Mark Condition Select Trap 0 Mask
'rap 1

Mask

Link

Enb

0

1

Do not fall through on MARK

Fall through on MARK

Do not store re tu rn Link

Store retu rn Link

0

1

Trap 0 Select Mask

M (8) M (7) M (6) M(5) M (4) Trap Condition

X X X X 1 CT Interface Busy

X X X 1 X RX Interface Busy

X X 1 X X Mark Flag

X 1 X X X Eop Flag

1 X X X X A bort Flag

Trap 1 Select Mask

M(3) M(2) M (l) Trap Condition

X X 1 M ark Flag

X 1 X Eop Flag

1 X X A bort Flag

T ab le B .6 : Wait Instruction Encoding

Jum p Operation

M (1 9) M (1 8) M (1 7) M (1 6) M (1 5) M (1 4) M (1 3) M (1 2) M (l l) M (1 0) M (9) M (8) M (7) M (6) M (5) M (4) M (3) M (2) M (l) M (0)

Condition Select Target Address
Link

Enb

Do not store retu rn Link

Store retu rn Link

0

1

R eturn Operation

M (1 9) M (1 8) M (1 7) M (1 6) M (1 5) M (1 4) M(13) M(12) M (l l) M (1 0) M (9) M (8) M (7) M (6) M (5) M (4) M (3) M (2) M (l) M (0)

1 0 1 Condition Select X X X X X X X X 0

Table B .7: Jum p and R eturn Instruction Encoding

C o n d i t i o n Se lec t P a r t I

M (1 6) M (1 5) M (1 4) M (1 3) M(12) M (l l) M (1 0) M (9) C o n d i t i o n S e le c ted

X X 0 0 0 0 0 0 R e s v S t a t 0

X X 0 0 0 0 0 1 R e s v S t a t 1

X X 0 0 0 0 0 R esv S t a t 2

X X 0 0 0 0 1 1 R e s v S t a t 3

X X 0 0 0 1 0 0 R e s v S t a t 4
X X 0 0 0 1 0 1 R esv S t a t 5

X X 0 0 0 1 1 0 R e s v S t a t 6
X X 0 0 0 1 1 1 R e s v S t a t 7

X X 0 0 0 0 0 R e s v S t a t 8

X X 0 0 1 0 0 1 R e s v S ta t 9

X X 0 0 1 0 1 0 R e s v S t a t 10
X X 0 0 1 0 1 1 R e s v S t a t 11

X X 0 0 1 1 0 0 T i m e r Bit

X X 0 0 1 1 0 1 A b o r t

X X 0 0 1 1 1 0 A b o r t h o l d

X X 0 0 1 1 1 1 R a n d o m Bit
X X 0 1 0 0 0 0 U se r F l a g 0

X X 0 1 0 0 0 1 U se r F l a g 1

X X 0 1 0 0 1 0 U se r F l a g 2

X X 0 1 0 0 1 1 U se r F l a g 3

X X 0 1 0 1 0 0 U se r F l a g 4

X X 0 1 0 1 0 1 U se r F l a g 5

X X 0 1 0 1 1 0 H e a d e r F I F O O R

X X 0 1 0 1 1 1 M a r k F lag
X X 0 1 1 0 0 0 E o p F la g

X X 0 1 1 0 0 1 D a t a F la g

X X 0 1 1 0 1 0 A ck F la g

X X 0 1 1 0 1 1 R X I n t e r f a c e B u s y
X X 0 1 1 1 0 0 C T I n t e r f a c e B u s y

X X 0 1 1 1 0 1 M a r k h o ld F la g

X X 0 1 1 1 1 0 E o p h o l d F la g

0 0 0 1 1 1 1 1 False

0 1 0 1 1 1 1 1 C a r r y F la g

1 0 0 1 1 1 1 1 Zero F la g

1 1 0 1 1 1 1 1 T r u e

C o n d i t i o n S e le c t P a r t I I

M(16) M (1 5) M (1 4) M (1 3) M (1 2) M (l l) M(10) M (9) C o n d i t i o n S e le c ted

X X 1 0 0 0 0 0 R e s v S t a t 0

X X 1 0 0 0 0 1 R e s v S t a t 1

X X 0 0 0 1 0 R e s v S t a t 2
X X 0 0 0 1 R e s v S t a t 3

X X 1 0 0 0 0 R e s v S t a t 4
X X 1 0 0 0 1 R e s v S t a t 5
X X 1 0 0 1 1 0 R e s v S t a t 6
X X 0 0 1 1 R e s v S t a t 7
X X 1 0 1 0 0 0 R e s v S t a t 8

X X 1 0 0 0 1 R e s v S t a t 9
X X 1 0 1 0 1 0 R e s v S t a t 10
X X 1 0 1 0 1 1 R e s v S t a t 11
X X 1 0 1 1 0 0 T i m e r Bit
X X 1 0 1 1 0 1 A b o r t

X X 1 0 1 1 0 A b o r t h o l d
X X 1 0 1 1 1 1 R a n d o m Bi t
X X 1 1 0 0 0 0 U se r F l a g 0

X X 1 1 0 0 0 1 U se r F l a g 1
X X 1 1 1 1 0 U se r F l a g 2
X X 1 1 c 0 1 1 U se r F l a g 3
X X 1 1 0 1 0 0 U s e r F l a g 4
X X 1 1 0 1 0 1 U se r F l a g 5

- X 1 1 0 1 1 0 H e a d e r F I F O O R
X X 1 1 0 1 1 1 M a r k F la g

X X 1 1 1 0 0 0 E o p F la g

X X 1 1 1 0 0 1 D a t a F la g
X X 1 1 1 0 1 0 Ack F la g
X X 1 1 1 0 1 1 R X I n t e r f a c e B u s y
X X 1 1 1 1 0 0 C T I n t e r f a c e B u s y
X X 1 1 1 1 0 1 M a r k h o l d F la g
X X 1 1 1 1 1 0 E o p h o l d F la g
0 0 1 1 1 1 1 1 False
0 1 1 1 1 1 1 1 C a r r y F la g

1 0 1 1 1 1 1 1 Zero F la g

1 1 1 1 1 1 1 1 T r u e

CO

Table B.8: Condition Code Selection Coding

138

A PPE N D IX C

PRC M ICROASSEMBLER IN P U T G RAM M AR

This appendix lists the gram m er accepted by the PRC microassembler used for created

the microcode images downloaded to each individual PRX RX during system initialization.

This BNF gram m ar was constructed from the parser gram m ar and lexical analyzer spe

cification files. All non-term inals are bracketed by (/) and alternatives are separated by |.

T he lexical analyzer is configured to be case insensative. This notation my cause a little

confusion since | is also used in the bitwise OR operations in the alu instruction.

(program) —> microprogram (identifier) ; (body)

(body) —> begin (s ta tem en tJist) end

(const_l) —» const (identifier) (int)

(s ta tem en tJist) —> (s ta tem en tJist) (statem ent) | (statem ent)

(statem ent) —>
(recv_decl) ; |
(const _1) ; |
(orgin) ; |
(instruct Jine) ; |
(label) (instructJine) ;

(int) —»• (decint) | (octint) | (hexint)

(decint) -+ (nzdigit) | (decint) (digit)

(octint) —>■ 0 (octdigit) —> (octint) (octdigit)

(hexint) —>■ Ox (hexdigit) —>• (hexint) (hexdigit)

(octdigit) —> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

(digit) (octdigit) | 8 | 9

(hexdigit) —> (digit) | a | b | c | d | e | f

139

(alpha) —►
a |b|c|d|e|f|g|
h|i|j|k|l|m |n|
o|p |q |r|s|t|u |
v |w |x |y |z

(identifier) —►
(alpha) |
(identifier) (alpha) |
(identifier) (digit)

(label) —► (identifier) :

(orgin) —> a d d re s s (int)

(recv_decl) —> receiver (int)

(instruct Jine) —>
(noopJnstruct) |
(a lu Jnstruc t) |
(ldcJixstruct) |
(x ferin struc t) |
(w a itin s tru c t) |
(ju m p in s tru c t) |
(re tin s tru c t) |
(se tin stru c t)

(n o o p in stru c t) —> noop

(a lu in s tru c t) —>
alu (mux_select) , (alu_a) , (alu_b) , operation (int) |
alu (alu_op)

(mux_select) —» false | carry | zero | true

(alu_op) —>
(alu_a) + (alu_b) |
(alu_a) + (alu_b) + 1 |
(alu_a) - (alu_b) - 1 |
(alu_a) - (alu_b) |
(alu_a) |
(alu_a) + 1 |
(alu_a) - 1 |
A (alu_a) |
(alu_a) | (alu_b) |
(alu_a) | A (alu_b) |
A (alu_a) | (alu_b) |
(alu_a) & (alu_b) |

(alu_a) & A (alu_b) |
A (alu_a) & (alu_b) |
(alu_a) ex o r (alu_b) |
(alu_a) ex n o r (aluJb) |

141

(alu_a)—►
ctdata |
mdr |
fifo |
trapO |
trap l |
rfOO |
rfOl |
rf02 j
rf03 j
rf04 |
rfD5 |
rf06 |
rf07 |
rft>8 |
rf09 j
rflO j
r f l l j
rf!2 j
rfl.3

(alu_b)—>
trapO |
trap l |
rfOO |
rfOl j
rf02 j
rf03 |
rft)4 j
rfD5 |
rf06 j
rf07 j
rf08 j
rf09 |
rflO j
r f l l |
rfL2 j
rfl3

(ld c in s tru c t) —►
ldc (int) , (dest) (goop) |
ldc (identifier) , (dest) (gi

(goop) ->•
, go rxb u s|
, go rxbus , go ctbus |
, go ctbus |
, go ctbus , go rxbus |
€

(dest) —>
t r a p O |
t r a p l |
c tdO |
c t a d d r O |
c t a d d r l |
c t c t l |
f ifo |
rx d O |
r x d l |
r x d 2 j
r x d 3 j
r x c t l |
rfOO |
r fO l j
rfl)2 |
r f0 3 |
rfD4 |
r f0 5 |
rfD6 j
r f0 7 j
rfl)8 j
rft)9 j
r f lO |
r f l l j
r f l 2 j
r f l 3 |
m d r |
m a r

143

(source) —►
c t d a t a |
a c c |
m d r |
f ifo |
t r a p O |
t r a p l |
rfOO |
r fO l j
r f0 2 j
r f0 3 j
rft)4 j
r f0 5 j
r f0 6 j
r f0 7 j
rfD8 j
r f0 9 j
r f lO j
r f l l j
rfL2 |
r f l 3

(x ferJnstruct) —> x f e r (source) , (dest) (goop)

(w a itin s tru c t) —> w a i t (polarity) (condition) (mark_handler) (trapO Jiandler)
(trap lJ ian d le r) (link_control)

polarity

(m arkJiandler) —> , m a r k | c

(trapO Jiandler) —> , t r a p O ((trapO_conds)) | c

(trap lJ ian d le r) —> , t r a p l ((trapl_conds)) | e

(trapO_conds) —> (trapO_conds) , (trapO_cond) | (trapO_cond)

(trapO_cond) —> A c t b u s y | A r x b u s y | m a r k | d a t a | e o p

(trapl_conds) —> (trapl_conds) , (trapl_cond) | (trapl_cond)

(trapl_cond) —̂ a b o r t | m a r k | e o p

144

(condition) —>
m a r k |
e o p |
d a t a |
a b o r t |
a c k |
r x b u s y |
c t b u s y |
m a r k h o l d |
e o p h o l d |
a b o r t h o l d |
ft) |
f l j
n j
f3 |
f4 j
f 5 j
f6 |
r sv s ta tO O |
r s v s t a t O l |
r s v s t a t 0 2 |
r s v s t a t 0 3 |
r s v s t a t 0 4 |
r s v s t a t 0 5 |
r s v s t a t 0 6 j
r s v s t a t 0 7 |
r s v s t a t 0 8 j
r s v s t a t 0 9 |
r s v s t a t l O |
r s v s t a t l l |
r a n d o m |
t i m e r |
f a l s e |
c a r r y |
z e r o |
t r u e

(jum p_instruct) j m p (polarity) (condition) , (identifier) (link.control)

(re tin s tru c t) —» r e t (polarity) (condition)

(link.control) —> , lin k — c

(set .instruct) —>
s e t (validJlags) |
c l e a r (valid.flags) |
f la g (mux-select) , (valid_flags)

145

(validJlags) —»• (valid_flags) , (validJlag) | (validJlag)

(validJlag) —►
fO |
f l |
£2 |
f3 j
f4 j
f5 |
f6 j
e o p h o l d |
m a r k h o l d |
a b o r t h o l d |
a l l

146

A PPEN D IX D

PRC BIT INTERLEAVED CRC IM PLEM ENTATION

The standard CRC-CCITT polynomial

G (X) = X 16 + X 12 + X 5 + l (D .l)

was used to generate the next s ta te equations assuming sixteen bits are clocked a t one time.

This results in the following equations th a t were used in im plem enting the CRC generator

and check units. These equations where then feed into the m ulti-input multi-level logic

m inim ization program to produce the final units.

Qo(t + 1) li M o 8,16,22,24)© ^ (6 ,8 ,1 4 ,2 2 ,3 0)
0 (0 0 (0

Qx(t -f 1) = E « . 9,17,23,25)0 ^ (7 ,9 ,1 5 ,2 3 ,3 1)
< 3 (0 O (t)

Qi{t + 1) = E p . 10,18, 24, 26) © ^ (4 , 6 ,12, 20,28)
0 (0 0 (0

Q:i{t + 1) = E < 3 ' 11,19, 25, 27) 0 ^ (5 ,7 ,1 3 ,2 1 ,2 9)
0 (0 0 (0

+ 1) = E d . 12,20,26,28)0 ^ (2 , 4, 10,18,26)
0 (0 0 (0

Qs{t + 1) = E (5’ 13,21,27,29)0 5^(3 ,5 ,11,19,27)
0 (0 o (0

Q&{t + 1) = B 6 > 14,22,28,30)0 5^(0 ,2 ,8 ,16 ,24)
0 (0 0 (0

Qi{t + 1) = B * .
15,23, 29, 31) © 5 ^ (1 , 3, 9,17, 25)

0 (0 0 (0

+ 1) = E (8 . 16,24,30)0 5^(0 .6 ,14 ,22)
0 (0 0 (0

Qg(/ + 1)

Ow

II 17,25,31)0 5^(1 ,7 ,15 , 23)
0 (0 o (0

Qio{t + 1) = E < ° .
0 (0

8,10,16,18,22,24,26)0 5^ (4 ,6 ,8 ,12 ,14
0 (0

Q u it +

Ql2(t +

Ql3(t +

Ql4(t +

$ is((+

Qie(t +

Q n(t +

Ql8(t +

Ql9(t +

Q2a(t +

Q2l(t +

Q22(i +

Q23(t +

Q24{i +

Q25(i +

Q2e(i +

Q27(t + ■

Q28(t +

Q29(t +

Q3a{i +

Q3l(t +

147

5 ^(1 , 9,11,17,19,23,25,27)© ^ (5 ,7 ,9 ,1 3 ,1 5 ,2 1 , 23,31)
0 (0 D (t)

y) (2 , 10,12,18,20, 24, 26, 28) © V (2 , 4, 6,10,12,18, 20,28)
0(0 0(0

] T (3 ,11,13,19, 21, 25, 27, 29)©]T (3 , 5, 7,11,13,19,21,29)
0 (0 D (t)

]T (4 , 12,14, 20, 22, 26, 28, 30) ©]T (0 , 2,4, 8,10,16,18, 26)
<2(0 D(t)

J] (5, 13,15, 21, 23, 27, 29, 31) ©]T (1 , 3, 5, 9,11,17,19, 27)
0 (0 -c(0

' y (6 , 14,16, 22, 24, 28, 30) © V (0, 2, 6 , 8,14,16, 24)
0(0 o(0
]T (7 , 15,17, 23, 25, 29, 31) © ^ (i , 3, 7, 9, 15,17, 25)
0(0 o(i)

V (8 , 16,18,24,26,30)© Y "(0 , 4, 6,12,14,22)
0(0 o(0
]T(9, 17,19,25,27,31)© 5^(1,5,7,13,15,23)
0(0 o(0
5^(10,18,20,26,28)© 5^(2 ,4 ,10,12,20)
0(0 0 (1)

5^(11,19, 21, 27, 29)© 5 ^ (3 , 5,11,13,21)
0(0 o(0
y ' ' (12, 20, 22, 28, 30) © V "'(0,2,8,10,18)
0(0 o(0

, 23, 29, 31) © 5 ^ (1> 3, 9,11,19)
0(0 0(0
5 ^(0 , 8,14,16,30)© 5^(0,14,16,22,30)
0(0 0(0
5^(1,9,15,17,31)© 5^(1,15,17,23,31)
0(0 o(0
5^(2,10,16,18) © 51(12.14, 20,28)
0(0 o(0
5^(3,11,17,19) © 5^(13,15,21, 29)
0(0 o(0
5^(4 ,12 ,18 , 2 0) © 5©(10,12,18, 26)
0(0 0(0
5^(5,13,19,21)© 5^(11,13,19,27)
0(0 o(0
5^(6 ,14 , 20, 22) © 5^(8 ,10 ,16 , 24)
0(0 o(0
V (7 , 15,21,23)© 5^(9,11,17,25)
0(0 o(0

148

A PPEN D IX E

ANCHO RED SHAPES to ANCHORED ROUTES PROOF

D e fin it io n 7 A pseudo-shape corresponding to the route n 0 ■ ■ ■ n k is the sequence a^ - ■ • a t- • • - ak

of directions such that aL = cwhrn(n ,_ \ , n t) for 1 < i < k.

Note th a t a shape is a pseudo-shape with constraints on the permissible directions (to form

minimal routes). Define an operator 0 between two directions in {d0, d x,. . . d5} as follows.

[d[i+i]c, if j
< (7) if i

= [* + 2] 6 and i £ { 0 , . . . 5}

d{ 0 dj — < 0 if j = [i 0 3] 6 and i £ { 0 ,. . .5} •

, d[i+s]6 if j - [i 0 4] 6 and i £ { 0 , . . . 5}

The 0 operator is undefined between two directions d,- and dj such th a t j = i or j = [i 0 1] 6

or j — [i 0 5]6. Intuitively, traveling first along direction cf and then along dj equivalent to

traveling a single step along direction di@dj if <i;0 dj is well-defined. For instance, traveling

along d0 and then along d2 is equivalent to a single step along d\.

O b s e rv a tio n 1 A route n 0 - - - n k can be transformed to any other route with

k' < k using the following procedure:

1. Transform n 0 • ■ -nk to the pseudo-shape ax • • -ak .

2. Transform the a^ ■ ■ -ak to by ■ • ■ bj,./ by a finite number o f applications o f the following

operations:

(a) Replace a component a,- with a component a,-/ f ai.

(b) Replace any two components a,i anda,j, i f j , b y a ^ a j , where a ;0 aj is well-defined.

(c) Permute the components of u , ak.

3. Transform the pseudo-shape £q • ■ • b y to the route m 0 • ■ • m ^ i .

149

Note th a t operation (2a) does not “preserve the source-destination node pair” . This obser

vation can be formally sta ted as follows. Let ax ■ ■ - ak be the pseudo-shape associated with

the route n 0 • • -n k . Let ■ ■ -bk be a pseudo-shape obtained from aj • • -ak by a single ap

plication of (2a). Also let m 0 ■ ■ - m k be the route associated with the pseudo-shape 6 0 • • -bk .

Then by “preserving the source-destination pair” we mean fq • • ■ bk is such th a t m 0 = n 0 im

plies m k = n k . W ith this definition of preserving the source-destination pair we can conclude

th a t the operations (2b) and (2c) preserve the source-destination node pairs. O peration

(2 b) is the only operation th a t reduces the length of a pseudo-shape and the corresponding

route.

L e m m a 6 A route n 0 ■ ■ ■ n k is a minimal route iff the associated pseudo-shape is a shape.

P ro o f : We will first prove th a t the pseudo-shape of a minimal route is a shape.

Suppose not. Then there exist components a { and a ,j in the pseudo-shape such th a t

we can apply operation (2b) to reduce the length of the pseudo-shape. The route associ

ated w ith this reduced pseudo-shape will be shorter than the assumed minimal route. A

contradiction.

Now consider the reverse direction of the lemma, i.e., the route associated w ith a shape

is minimal.

Suppose not. Then there exists a minimal route between the same source-destination

pair whose pseudo-shape is shorter than the given shape. Therefore we should be able to

reduce our given shape to the pseudo-shape of the minimal route using operations th a t

preserve the source-destination pair. But this cannot happen since no operation of type

(2b) can be applied to this shape. Thus our initial assum ption the route associated with

our shape is not minimal is false. B

T h e o re m 4 There is a one-to-one correspondence between anchored shapes and anchored

routes anchored at node 0.

P ro o f : We first show th a t Equation (4.2) transform s anchored shapes to anchored routes at

node 0. Consider the anchored shape (s,£). C onstruct the pair (r, 0) using Equation (4.2).

We show th a t (r, 0) satisfies the three necessary properties of an anchored route.

1. Since s has a length of a t least 2, the corresponding route r has a length a t least 3.

2. Follows from Lemma 6 th a t r is a minimal route.

150

3. Follows directly from the construction th a t node 0 is contained in the route r.

We now show th a t Equation (4.1) transform s anchored routes a t node 0 to anchored

shapes. Consider the anchored route (r , 0) anchored a t 0 . C onstruct the pair (a j • • -ak ,£)

using Equation (4.1). By Lemma 6 , ax • ■ ■ak will be a shape since the route r is m inim al by

definition. £ is bounded by construction between 1 and k — 1 as required by the definition

of an anchored shape. ■

151

A PPE N D IX F

PP-M ESS-SIM IN PU T SPECIFICATION LANGUAGE

This appendix lists a pseudo BNF gram m ar for the language used to specific the simula

tion param ters for a pp-mess-sim run. This BNF gram m ar was constructed from the parser

gram m ar and lexical analyzer specification files. All non-term inals are bracketed by (/) and

alternatives are separated by |. The lexical analyzer is configured to be case insensative.

(specification) —> (specJists)

(specJists) —> (specJists) (spec) | (spec)

spec —>
topology begin (topoJist) end |
node (ident) begin (nodeJist) end |
node (int) begin (nodeJist) end |
task (ident) begin (taskJis t) end |
general begin (genJist) end

(topoJist) —>■ (topoJist) (topoJine) | (topoJine)

(nodeJist) —> (nodeJist) (nodeJine) | (nodeJine)

(task Jis t) —»• (task Jis t) (taskJine) | (taskJine)

(genJist) —> (genJist) (genJine) | (genJine)

(genJine) —>•
output (pathnam e) ; |
random seed (int) ; |
random size (int) ; |
option (switch) true ; |
option (switch) false ;

(switch) —»
flex I bison I

152

tasks | nodes | prime |
toplevel | messgen | m essrecv |
npbus | ctbus | rxbus | txbus | pcbus |
rx | tfu | ni | imu |
npinterface | pcinterface | taxitx | taxirx |
cut | header | drop) trace | arbitrate |
spec | topology | m em stats | resources | postnode

(param Jist) —>■ (param Jist) (param) | (param)

(param) -> (int) | (double) | e

(taskJine) —>
arrival (a_process) ; |
length (Lprocess) ; |
target (Lprocess) ; |
routing (r_algorithm) ; |
history (h-select) ; |
cutoff (int) ; |
messages (int) ; |
drop (int) ; |
max (int) ; |
min (int) ; |
rngcycle (int) ; |
renew (int) ;

(a_process) —>
binomial (i_d_parms) |
erlang (d_d_parms) |
geom etric (d_parms) |
hyperGeom etric (d_d_parms) |
negativeexpntl (d_parms) |
normal (d_d_parms) |
lognormal (d_d_parms) |
poisson (d_parms) |
discreteuniform (iJ .parm s) |
uniform (d_d_parms) |
weibull (d_d_parms) |
lengthdiscrete (kLparm s)

(Lprocess) —>
negativeexpntl (d_parms) |
lengthdiscrete (ld_parms)

(Lprocess) —>
nodeuniform () |
hopuniform ((d J is t)) (d_parms)

153

(i_d_parms) —»■ ((int) , (double))

(d_d_parms) —> ((double) , (double))

(d_parms) —> ((double))

(iJLparms) —> ((int) , (int))

(ld_parms) ((d iJist))

(d iJ is t) —»■ (d iJist) , (di_single) | (di_single)

(di_single) —> (double) , (int)

(dJis t) —> (d J is t) , (double) | (double)

(h_select) —»■ n o n e | la te n c y | c o r re la t io n

(nodeJine) —>■
ta s k s (int) ; |
s e le c t ta s k (ident) (int) ; |
s e le c t n o d e (ident) ;

(topoJine) —»
se le c t c w h m ; |
s e le c t s q m e s h ; |
s e le c t h y p e rc u b e ; |
s e le c t k a ry c u b e ; |
s ize (int) ; |
d im e n s io n (int) ;

(int) —> (decint) | (octint) | (hexint)

(decint) —> (nzdigit) | (decint) (digit)

(octint) —> 0 (octdigit) —>■ (octint) (octdigit)

(hexint) —> Ox (hexdigit) —> (hexint) (hexdigit)

(octdigit) —> 0 | 1 [2 | 3 I 4 | 5 | 6 | 7

(digit) —> (octdigit) | 8 | 9

(hexdigit) —> (digit) | a [b | c | d | e | f

(alpha) —>•
a |b |c |d |e |f |g |
h |i |j |k |l |m |n |
o |p |q |r |s | t |u |
v |w |x |y |z

(identifier) —>
(alpha) |
(identifier) (alpha) |
(identifier) (digit)

BIBLIOGRAPHY

[1] Am79168/Am79169-275 TAXI-275 Transmitter/Receiver Transparent Asynchronous
Transmitter/Receiver Interface, Advanced Micro Devices, 15765-b-0 edition.

[2] Am 79168/Am79169 IA X1tm-275 'Technical Manual, Advanced Micro Devices, ban-
0 .1 m -l/9 3 /0 17490a edition.

[3] G. A lbertengo and R. Sisto, “Parallel crc generation,” IE E E Micro , pp. 63-71, O ctober
1990.

[4] T. Anderson, II. Levy, B. Bershad, and E. Lazowska, “The interaction of architec
tu re and operating system design,” in Proc. I n t ’I Conf. on Architectural Support for
Programming Languages and Operating Systems, pp. 108-120, April 1991.

[5] H. C arr, J. Evans, R. Kessler, L. Stoller, and M. Swanson, “Mayfly system softw are,”
Technical Report IIPL-SAL-89-25, Hewlett Packard Company, April 1989. Available
in RTCL library.

[6] M.-S. Chen, K. G. Shin, and D. D. K andlur, “Addressing, routing and broadcasting in
hexagonal mesh m ultiprocessors,” IE E E Trans. Computers, vol. 39, no. 1, pp. 10-18,
January 1990.

[7] D. D. Clark and D. L. Tenncnhouse, “A rchitectural considerations for a new generation
of communication protocols,” in Proc. o f A C M SIGCOM M , pp. 200-208, September
1990.

[8] E. C. Cooper, P. A. Steenkiste, R. D. Ransom, and B. D. Zill, “Protocol im plem entation
on the N ectar communication processor,” in Proceedings of the S IG C O M M Symposium,
pp. 135-144. ACM, September 1990.

[9] W. J. Dally and C. L. Seitz, “The torus routing chip,” Journal of Distributed Comput
ing, vol. 1, no. 3, pp. 187-196, 1986.

[10] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in m ultiprocessor in ter
connection networks,” IE E E Trans. Computers, vol. C-36, no. 5, pp. 547-553, May
1987.

[11] W. Dally, V L SI and P A R A L L E L CO M PU TATIO N, chapter Network and Processor
A rchitecture for Message-Driven Com puters, pp. 140-222, Morgan Kaufm ann Publish
ers, Inc., 1990.

154

155

12] W. Dally, A. Chien, S. Fiske, W. Horwat, J. Keen, P. N uth, J. Larivee, and B. Totty,
“Message-driven processor architecture version 1 1 ,” M IT C oncurrent VLSI Architec
tu re Memo 14, M IT, August 1988.

13] S. W. Daniel, “Improving distributed system communications through hardw are sup
p o rt,” Prelim , 1992.

14] S. W . Daniel and J. W. Dolter, “E rror-burst detection with bit-interleaved crcs,” In
preparation, 1993.

15] S. W . Daniel, “A packet control for HARTS: An experiem ental d istributed real-tim e
system ,” Real-Time Com puting Laboratory Techinal Report RTCL-TR-1-91, Real-
Time Com puting Laboratory, 1301 Beal Ave, Ann A rbor, MI 48109-2122, 1991.

16] B. Davie, “The architecture and im plem entation of a high-speed host interface,” IE E E
Journal on Selected Areas in Communications , vol. 11, no. 2, pp. 228-239, February
1993.

17] A. Davis, R,. Hodgson, B. Schediwy, and K. Stevens, “Mayfly system hardw are,” Tech
nical Report IIPL-SAL-89-23, H ew lett-Packard Company, April 1989.

18] A. L. Davis, “Mayfly: A general-purpose, scalable, parallel processing architecture,”
Lisp and Symbolic Computation, vol. 5, no. 1/2, pp. 7 -47, May 1992.

19] A. Davis and S. Rovison, “The architecture of the fahri-1: Symbolic multiprocessing
system ,” in Proc. I n t ’I Joint Conf. on Artificial Intelligence, pp. 32 -38, Los Angeles,
A ugust 1985.

20] J. W. Dolter, P. R am anathan , and K. G. Shin, “A microprogram m ablc VLSI routing
controller for HARTS,” Technical Report CSE-TR-12-89, Dept, of Electrical Engineer
ing and Com puter Science, University of Michigan, Ann A rbor, 1989.

21] J. W. Dolter, P. R am anathan , and K. G. Shin, “A m icroprogram m able VLSI routing
controller for HARTS,” in International Conference on Computer Design: V L S I in
Computers, pp. 160-163, October 1989.

22] J. Goldberg, M. W. Green, W. II. K autz, K. N. Levitt, P. M. M elliar-Smitli, R. L.
Schwartz, and C. B. Weinstock, “Development and analysis of the software imple
m ented fault-tolerance (sift) com puter,” C ontractor R eport 172146, NASA Langley
Research Center, February 1984.

23] J. M. Gordon, Efficient Schemes for Massively Fault-Tolerant Parallel Communication,
PhD thesis, The Unversity of Michigan, 1990.

24] Z. Haas, “A communication architecture for high-speed networking,” in IE E E IN-
FOCOM, pp. 433-441, June 1990.

25] D. D. K andlur and K. G. Shin, “Reliable broadcast algorithm s for HARTS,” A C M
Trans. Computer Systems, vol. 9, no. 4, pp. 374-398, November 1991.

26] P. Kermani and L. Kleinrock, “V irtual cut-through: A new com puter com munication
switching technique,” Computer Networks, vol. 3, no. 4, pp. 267-286, Septem ber 1979.

156

[27] L. Kleinrock, Queueing systems, volume I: Theory, John Wiley & Sons, 1975.

[28] A. Kovaleski, S. Ratheal, and F. Lombardi, “An architecture and interconnection
scheme for time-sliced buses in real-time processing,” Proc. Real-Time System s S ym
posium, pp. 20-27, 1986.

[29] A. K rishnakum ar and K. Sabnani, “VLSI im plem entations of com m unication protocols
- a survey,” IE E E Journal on Selected Areas in Communications, vol. 7, no. 7, pp.
1082-1090, September 1989.

[30] II. Kung, 11. Sansom, S. Schlick, P. Steenkiste, M. Arnould, F . J . Bitz, F. C hristianson,
E. C. Cooper, 0 . Mcnzilcioglu, D. Ombres, and B. Zill, “Network-based m ulticom
puters: An emerging parallel architecture,” in Supercomputing 91, pp. 664-673. IEEE,
ACM, New York, NY, USA, November 1991.

[31] II. Lee, “Cyclic code redundancy,” Digital Design, vol. 11, no. 7, pp. 77-85, July 1981.

[32] S. J. LefFler, M. K. McKusick, M. J. Karels, and J. S. Q uarterm an, The Design and
Implementation o f the f .J B S D Unix Operating System, Com puter Science, Addison
Wesley, May 1989. ISBN 0-201-06196-1.

[33] O. Menzilcioglu and S. Schlick, “Nectar CAB: A high-speed network processor,” in
Proc. I n t ’l Conf. on Distributed Computing Systems, pp. 508-515, May 1991.

[34] R. Metcalfe, “C om puter/netw ork interface design: Lessons from A rpanet and E ther
ne t,” IE E E Journal on Selected Areas in Communications, vol. 11, no. 2, pp. 173-180,
February 1993.

[35] E. Miller, “High-speed cyclic redundancy check generation and verification,” IB M Tech
nical Disclosure Bulletin, vol. 21, no. 8 , pp. 3065-3066, January 1979.

[36] M. Noakes, D. Wallach, and W. Dally, “The J-machine m ulticom puter: An architec
tu ra l evaluation,” in Proc. I n t ’l Symposium on Computer Architecture, pp. 224-235,
1993.

[37] A. Pandeya and T. Cass, “Parallel crc lets many lines use one circuit,” Computer
Design, vol. 14, no. 9, pp. 87-91, September 1975.

[38] P. R am anathan , D. D. K andlur, and K. G. Shin, “Hardware assisted software clock
synchronization for homogeneous distributed system s,” IE E E Trans. Computers, vol.
C-39, no. 4, pp. 514-524, April 1990.

[39] D. A. Reed and R. M. Fujim oto, Multicomputer Networks: Message-Based Parallel
Processing, M. I. T . Press, Cambridge, M assachusetts, 1987.

[40] D. A. Reed and D. C. Grunwald, “The performance of m ulticom puter interconnection
netw orks,” IE E E Computer, vol. 20, no. 6 , pp. 63-73, June 1987.

[41] J. Rexford and Iv. G. Shin, “Shortest-path routing in homogeneous point-to-point
netowrks with virtual cut-through switching,” Com puter Science and Engineering
Techinal Report CSE-TR-146-92, University of Michigan, November 1992.

[42] C. L. Seitz, VLSI and P A R A L L E L CO M PU TATIO N, chapter Concurrent A rchitec
tures, pp. 1-84, Morgan Kaufm ann Publishers, Inc., 1990.

157

[43] T. B. Smith, “Fault to lerant processor concepts and operation,” C ontracto r Report
CSPL-P-1727, Charles S tark D raper Laboratory, May 1983.

[44] T. B. Smith and J. H. Lala, “Development and evaluation of a fault-tolerant m ulti
processor (FT M P) com puter volume I FT M P principles of operation,” C ontractor
R eport 166071, NASA Langley Research Center, May 1985.

[45] E. Spertus, S. Goldstein, K. Schauser, T. von Eicken, D. Culler, and W. Dally, “Evalu
ation of mechanisms for fine-grained parallel program s in the J-m achine and the CM -5,”
in Proc. I n t ’l Symposium on Computer Architecture, pp. 302-313, 1993.

[46] J. D. Spragins, J. II. Hamm ond, and K. Pawlikowski, Telecommunications Protocols
and Design, Addison-Wesley Publishing Company, 1991.

[47] W. Stallings, Data and Computer Communications , Macmillan Publishing Company,
New York, second edition, 1988.

[48] P. Steenkiste, “Analyzing communication latency using the nectar com munication pro
cessor,” in Proc. of A C M SIGCOM M , pp. 199-209. ACM, ACM, New York, NY, USA,
A ugust 1992.

[49] K. S. Stevens, “The communication framework for a distributed ensemble arch itecture,”
AI Technical Report 47, Schlumberger Research Laboratory, February 1986.

[50] K. S. Stevens, S. V. Robison, and A. L. Davis, “The Post Office — Com m unication
support for distributed ensemble architectures,” in Proc. I n t ’l Conf. on Distributed
Computing System s , pp. 160-166, 1986.

[51] L. Svobodova, “Implementing osi system s,” IE E E Journal on Selected Areas in Com
munications, vol. 7, no. 7, pp. 1115-1129, September 1989.

[52] C. A. Thekkath and II. M. Levy, “Limits to low-latency com munication on high-speed
networks,” A C M Trans. Computer Systems, vol. 11, no. 2, pp. 179-203, May 1993.

