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CHAPTER 1

INTRODUCTION

1.1 M otivation

As we approach the 21st century the once separate disciplines of parallel com puting 

and distributed systems are now starting  to  exhibit significant overlap. Parallel com puting, 

initially driven by the need for high-performance scientific com puting, traditionally  has 

resulted in highly regular interconnection networks and tightly-coupled processing elements. 

In contrast, d istributed systems grew out of the need to  share expensive resources such as 

disk space, printers, and d a ta  between possibly heterogeneous network-based machines. The 

once clean separation between these two fields exists no more.

At the same time it is becoming commonplace to  use digital com puters for such real

tim e applications as fly-by-w ire, industrial process control, com puter-in tegrated  m anufac

turing, electric power d istribution/m onitoring, and medical life-support systems. The use 

of com puters can increase productivity but the applications impose stringent tim ing and 

dependability requirem ents on the com puter system. These requirements are a direct con

sequence of the fact th a t a disruption of service caused by a physical failure or inadequate 

response tim e can result in a catastrophe.

The need for ultra-dependable com puters th a t can function in real-tim e has been recog

nized for some time and resulted in the initial developments of the Software Implemented 

Fault-Tolerance (SIFT) computer[22] and the Fault-Tolerant M ultiprocessor (FTM P)[44]. 

This com m itm ent continued with the research and im plem entation of both  the Fault- 

Tolerant Processor(FTP)[43] and its incorporation into the Advanced Inform ation P ro

cessing Systems (AIPS). Most of the effort in these systems was focused on the placement 

and the m anagem ent of redundancy in different forms to achieve the desired dependability. 

Each of the above systems uses explicit redundancy in the physical interconnect between the

1
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processing elements. These architectures could be summarized as ultra-dependable m ulti

processors or m ulti-com puters and form roughly the first or second generation of dependable 

com puters.

Due mainly to  their potential for high-performance and high-dependability w ith the 

m ultiplicity of processors and internode routes, distributed systems with p o in t-to -p o in t 

interconnection networks are na tu ra l candidate architectures for supporting em bedded real

tim e applications. The key to  the success in using distributed systems for these applications 

is the timely execution of com putational tasks which usually reside on different nodes and 

com m unicate w ith one another to  accomplish a common goal. Deadline guarantees for 

these real-tim e tasks are not possible w ithout a carefully designed communication subsys

tem  which supports the timely delivery of messages. In some cases it may be necessary to  

provide specific hardw are support in the communication subsystem in order to  satisfy these 

guarantees. In addition to  the potential for supporting ultra-dependable com puting, d istrib

uted systems based 011 a po in t-to -po in t interconnection networks also hold great promise 

for delivering systems with some level of interm ediate dependability: something not as ex

pensive and complete as the ultra-dependable systems used in mission-critical applications 

bu t more dependable than  systems constructed using standard  networking techniques and 

commercially-available components.

1.2 Research Objectives

This dissertation investigates an area of the design space in which a homogeneous dis

tribu ted  com puting system is constructed th a t has the potential for an interm ediate level 

of dependability. The distinguishing features captured in this system are depicted by the 

enclosing ellipse in Figure 1.1. M ost of these characteristics are “borrowed” from either the 

parallel com puting domain, the distributed systems domain, or the ultra-dependable sys

tem s domain. The unifying feature not explicitly present in the three “paren t” domains is 

the  flexibility of the underlying communication support hardware which allows these other 

features to  co-exist while supporting the end goals.

One of the central themes of this dissertation is th a t if flexibility is provided in the 

front-end routing hardw are, the m anagem ent of issues related to operating in this hybrid 

domain are then possible. To th a t end, most of the results presented here focus on the 

development and im plem entation of a programm able routing controller (PR C ) th a t acts
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Figure 1.1: Domain specific characteristics

both  as a single sample in the design space and supports further exploration of the  design 

space. Specifically, this work

• Proposes an architecture and an im plem entation for a front-end program m able routing 

controller th a t supports multiple routing and switching schemes.

• Analyzes the performance of one of the supported switching schemes for a  hexagonal 

mesh interconnection network based on the capabilities provided by the program m able 

routing controller.

• Shows how the capability of supporting multiple routing and switching schemes sim

ultaneously offers potential for supporting a real-time com m unication subsystem .

1.3 Domain Clarification and Assumptions

This section highlights some of the im portant characteristics of the region of the design 

space we are exploring. These domain characteristics either perta in  to  topological and ar

ch itectural com ponents of the system or relate to  requirements of the  applications to  be 

supported  by the system. We discuss each of the domain characteristics th a t was selec
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ted and a ttem p t to  illum inate the insight th a t led to  their selection. Our domain can be 

effectively characterized in term s of topology and connectivity, transmission media , m es

sage/packet size , real-time support, fault-tolerance, and flexibility.

Connectivity refers to the num ber of adjacent neighbors of a node, which directly tran s

lates into the num ber of network ports th a t need to  be provided into the interconnect fabric. 

D istributed systems usually feature a low connectivity, providing only one or two network 

ports. Parallel systems typically exhibit a higher degree of connectivity as a function of the 

network topology. The desire to  provide a system with enhanced dependability character

istics leads directly to  the adoption of the topology, connectivity, and routing and switching 

features of parallel com puters.

Transmission media refers to  the technology used to  implement the physical connections 

between nodes and is characterized by several performability metrics, including propagation 

delay, capacity, and reliability. D istribution relates to  the length of the individual physical 

links between nodes and directly affects the propagation delays and error characteristics. 

M any of the real-tim e applications of which our system is intended to  support have physical 

distance constraints and external environm ental disturbances th a t tend to  align themselves 

w ith those of the distributed systems.

The desire to  be able to  in teroperate with existing distributed systems technology but 

also have multiple internode routes and a communication system capable of timely deliv

ery of messages solidifies the remaining characteristics highlighted by Figure 1.1. Existing 

d istributed systems use communication protocols th a t force m essage/packet sizes to  be 

considerably larger than  those traditionally used in parallel com puters. Furtherm ore, most 

existing parallel com puters provide no mechanism for making the protocols supported  ex

tensible if providing any protocol at all. We are faced with the problem of having to  deal 

w ith the large packets of the distributed system domain along with the issues of routing 

these packets between the multiple ports inherited from the parallel domain. Our answer 

is a flexible routing controller th a t can intelligently handle these issues efficiently close to  

the physical network.

1.4 A Map of the Dissertation

This dissertation unfolds into seven chapters and several appendixes.

C hapter 2 presents background m aterial th a t acts as a foundation for the remaining
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chapters. The network topology and experim ental system for which the  program m able 

routing was conceived are described. In addition to  the system level descriptions provided, 

a brief tu to ria l on different routing and switching schemes is provided.

C hapter 3 presents the architecture and im plem entation of the program m able routing 

controller and the network interface. In this chapter we will justify  the design decisions in 

light of our overall goals. It is the  synergistic com bination of m any of the features present 

in the program m able routing controller th a t make it stand  out from previous work. After 

the im plem entation is described, the design is com pared to  several related systems.

The problem of deriving an analytical model for v irtual cut-through message passing in 

a hexagonal mesh is addressed in C hapter 4. To accomplish this, the hexagonal mesh is 

first characterized using a com binatorial analysis to  determ ine the probability th a t a packet 

will establish a cut-through at an interm ediate node. Given this param eter, the probability 

distribution function for packet delivery times is derived. The delivery times obtained from 

the model are then com pared w ith sim ulated results of an earlier version of the proposed 

routing hardw are.

C hapter 5 presents the second generation sim ulator developed to  explore design issues in 

point-to-point d istributed systems. The task specification language and some of the design 

issues handled to  allow for accurate modeling of the program m able routing controller are 

described.

C hapter 6 presents some of the most in teresting results derived in this dissertation: 

significant advantages can be gained by simultaneously supporting m ultiple routing and 

switching algorithm s. F irst, an analytic argum ent is presented for the  mean value delivery 

times in a hexagonal mesh using wormhole switching and com pared against delivery times 

of virtual cut-through. The differences in the delivery times lead to  the conclusion th a t 

there may be situations in which one scheme is preferred over another. The work is then 

extended to  show th a t it is possible to  carry multiple classes of traffic and capitalize on the 

best features of both classes.

The dissertation concludes w ith C hapter 7, which summarizes the contributions and 

presents a discussion of the m any directions th a t can be pursued w ith the  results uncovered 

thus far.



CHAPTER 2

PRELIMINARIES

M any of the design decisions incorporated into the research described in this dissertation 

were influenced by the operating environment. This chapter presents a brief background on 

the ta rg e t system (i.e., HARTS), as well as examining and classifying a num ber of routing 

and switching schemes.

2.1 C-wrapped Hexagonal Mesh

One of the interconnection topologies th a t has received considerable atten tion  throughout 

this dissertation is the C-wrapped hexagonal mesh [6, 49].

D e f in it io n  1 A C-wrapped H-mesh o f edge size e, denoted by I i e, is comprised of N  — 

3e2 — 3e +  1 nodes, labeled from 0 to N  — 1, such that each node s has six neighbors [5  +  1]^, 

[5  T  3e — 1]^) T de — 2]yv? [■s T  3e2 — Sel^,  [5  T 3e2 — 6e -f- 2]jv> and  [s T 3e~ — 6e T  3]/v, 

where [a]b denotes a mod b.

This topology can be visualized as an ordinary hexagonal mesh with links added to  

the nodes on the periphery th a t wrap around to  other nodes on the periphery to  form a 

homogeneous surface. For each mesh of edge size e the mesh of edge size e +  1 is formed by 

adding a  new hexagon of 6(e +  1) nodes around the existing nodes, relabeling the nodes, 

and connecting the wraps according to  the definition. Figure 2.1 shows an I{4 w ith the 

wrap links shown in gray and labeled with the nodes to  which they are connected. See 

[6] for a more detailed discussion of some of the properties of the C-wrapped H -M esh and 

comparisons with other existing topologies.

Several of the properties discussed in [6] are relevant to  the development of this work. 

F irst, the  C-type wrapping results in a homogeneous network. Consequently, any node can 

view itself as the center (labeled as node 0) of the mesh. This allows the physical interface

6
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Figure 2.1: A C-wrapped hexagonal mesh of edge size 4 (H 4).

to  the network to  be independent of the network size. Second, in term s of routing messages 

throughout the surface, the diam eter of an H c is e — 1. Third, there is a simple, transparen t 

addressing scheme such th a t the shortest paths between any two nodes can be determ ined 

by a 0 (1 )  algorithm  given the address of the two nodes. (At each node on a shortest path  

there are at most two different neighbors of the node to  which the shortest path  runs.) 

Fourth, based on this addressing scheme it is possible to devise a simple routing algorithm  

th a t can be efficiently supported in hardware. Last, since the to ta l num ber of nodes in an 

/ /„  grows as a function of 0 ( n 2), the incremental cost of expanding the network is low when 

com pared to  many other topologies.

The six neighbors of a node in a C-wrapped II-m esh can be thought of as being in the 

directions d0, c/j, . . ., ri5. To send a message using the base routing algorithm  presented 

in [6], the source node calculates the shortest paths to  the destination and encodes this 

routing inform ation into three integers denoted by m 0, m i and m 2. These three integers 

represent the num ber of hops from the source node to  the destination node along the d0, 

di and d2 directions, respectively. Before sending the packet to  an appropriate neighbor, 

interm ediate nodes update these values to  indicate the remaining hops in each direction 

to  the destination. Hence, m 0 — m i  =  m 2 =  0 indicates th a t the packet has reached its 

destination.



For exam ple, the (m 0, m l , m 2) triple for routing a message from node 2 to  node 14 is 

(1 ,1 ,0 )  (see Figure 2.1). This triple encodes all the shortest paths from node 2 to  node 14, 

i.e., node 14 can be reached by either going from node 2 to node 3 in the d0~direction and 

then  from node 3 to  node 14 in the d i-d irection  or by first going from node 2 to  node 13 in 

th e  d i-d irection  and then from node 13 to  node 14 in the d0-direction. Note th a t in routing 

this message from the source to  the destination the “w rap” link was used transparenthj by 

all nodes in the message’s path.

The C-wrapped mesh is the basis for the interconnection network of the HARTS dis

cussed in the next section.

2.2 Hexagonal Architecture for Real-Time Systems (HARTS)

HARTS is an experim ental testbed  being designed and built to investigate various issues 

in d istributed real-tim e com puting. The prim ary goal of HARTS is to  allow low-level 

arch itectural and OS issues such as message buffering, scheduling, and routing to  be studied 

in a setting th a t allows the researchers internal access to  m any of the system param eters. 

To m eet these goals, a hybrid system  based on commercially-available processors and a 

custom -designed communication interface is being developed. Up to  three processor cards 

are grouped together to  form a cluster of Application Processors (A Ps). Each cluster then 

serves as a multiprocessor node and is interconnected to  other clusters or nodes using the 

Network Processor (N P) to form a distributed system. The structure of a single node is 

shown in Figure 2.2.

In addition to  the  APs and the  NP, each node has an additional processor th a t functions 

both  as the VME bus system controller and as a network m onitor (NMON). All network 

m onitors are interconnected via a  separate LAN. The NMON serves several purposes in the 

node architecture. F irst, it provides a necessary non-experim ental means of distributing 

code and d a ta  am ongst the nodes. This function is especially im portan t during the early 

stages of development of the NP. Second, the NMON allows portions of the operating 

system  to  be developed in parallel with the development of the NP. Third, the NMON 

will be used to  collect experim ental d a ta  by m onitoring the APs and the NP with minimal 

interference. Due to  both multiprocessor and distributed aspects in the system , a wide 

variety of architectural and OS effects on real-tim e issues can be easily investigated.
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2.3 Network Processor (N P)

2.3 .1  F unctions su p p orted  by th e  N P

The support functions th a t the NP provides HARTS fall under three main categories: 

com m unication protocol processing, low latency message transm ission, and direct support 

for real-tim e communication. Each of these areas is covered briefly, followed by a present

ation of the proposed architecture.

The N P ’s main function will be to  offload communication processing from the host 

processor. When an AP needs to  transm it a message, it will provide the corresponding NP 

w ith inform ation about the intended message recipient and the location of the message data . 

The NP should then execute the operations necessary to pass the message d a ta  through 

the various layers of protocol down to  the physical layer where it can be transm itted . 

In term s of the OSI reference model, the NP will be responsible for the functions from 

the transpo rt layer down to  the physical layer. At the transport level, the NP establishes 

tran sp o rt connections dependent only on the source and destination nodes, w ithout concern 

for the route to  be used. It will also handle end -to -end  error detection and handling. At
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the network level, the NP will select prim ary and alternate  routes for establishing virtual 

circuits, form d a ta  blocks and segments, and reassemble packets a t the destination node. 

Depending on traffic conditions in the network and the message type, the  NP will choose an 

appropria te  switching m ethod for the message as discussed in Section 2.4. D etection and 

correction of errors will also be performed at this level. At the d a ta  link level, the NP will 

provide access to the network for the messages. It will perform framing and synchronization, 

and packet sequencing.

Low communication latency is another key goal of the NP. This goal im pacts upon task 

m igration and distribution, load sharing, and real-tim e com munication. Latency consider

ations extend from the application tasks on the system down to the hardw are com ponents. 

It is im portan t to  recognize th a t a significant portion of latency occurs in com m unication 

processing; therefore achieving low latency communication is intim ately related to  imple

m entation of communication protocols.

Timely delivery of messages requires a global tim e-base across the different nodes 

in HARTS. The NP will provide hardware support for clock synchronization and tim e- 

stam ping of messages th a t are the basis for the im plem entation of various real-tim e com

munication algorithm s. At the same time, operations such as checkpointing, tim eouts, and 

deadline checking are made possible with the global tim e-base.

The NP will be required to implement buffer managem ent policies th a t maximize util

ization of buffer space, while guaranteeing the availability of buffers to  the highest priority 

messages. Similarly, if non-critical messages hold other resources th a t are needed by more 

critical ones, it will be necessary to  provide a means for preem ption of such resources for 

use by the critical messages.

A nother im portan t function of the NP will be to m onitor the s ta te  of the network in 

term s of traffic load and component failures. The traffic load will affect the ability of the 

NP to  send real-tim e messages to  other processors, while link failures will affect the system 

reliability. It will also be possible for the NP to keep track of the processing load of its 

host (or hosts), and use the inform ation for load balancing/sharing and task  m igration 

operations.

2 .3 .2  P rop osed  N P  arch itectu re and im p lem en ta tion

There are five m ajor components of the NP architecture: the main com munications 

processor, which will be referred to as the interface m anager unit (IM U), the program m able
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routing controller (PR C ), the network interface (NI), the buffer memory, and the application 

processor interface (A PI), interconnected as shown in Figure 2.3.

The A PI transfers d a ta  between the NP and the APs, while the PRC moves d a ta  between 

the  NP and the network with the assistance of the NI. W ithin the NP, the  IMU controls 

the movement and processing of message data. The buffer memory acts as a staging area 

for d a ta  th a t is to  be transm itted  to, or received from, the network. Messages th a t need to 

be tem porarily stored at the node due to unavailability of outgoing links are also stored in 

the buffer memory. The PRC, in conjunction with the NI, im plem ents the physical layer 

and d a ta  link protocols for accessing the network and routing d a ta  to  neighboring nodes. 

The rem ainder of this section briefly discusses each of the m ajor com ponents but defers the 

detailed description of the PRC and NI to  C hapter 3.

In te r f a c e  M a n a g e r  U n i t : The IMU will control the operation of the rest of the NP.

In particu lar, it will construct packets from the original messages and reassemble them  at 

the final destination, schedule messages with different levels of priority, decide on routing 

strategies based on message priority levels and network load s ta te , m onitor the  network 

s ta te , perform  error correction and message acknowledgment, and im plem ent various real-
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tim e com m unication algorithm s. One of the unique features of the IMU is the processor 

module. R ather than  restrict this study to  one particular processor architecture, the IMU 

is designed w ith a generic interface to  a plug-replaceable processor module. This approach 

has many advantages when designing experiments th a t can be pursued w ith the  NP. The 

processor module will also have external connectors th a t allow address and d a ta  traces to 

be collected in real-time.

In addition to its own local memory, the IMU will also have access to  the buffer memory. 

To minimize the need of copying data , the buffer memory will in m ost instances serve as 

the d a ta  memory of the IMU. Hence, the buffer memory will be part of the address space 

of the IMU. Also under im plem entation is the separation of the  headers from the body 

of the messages, because such a separation allows the expansion and contraction of the 

headers independent of the location of the message body. This separation allows the NP to 

reduce the broadcast an d /o r m ulti-cast latency when it is necessary to  transm it copies of 

the message simultaneously over the different links. These copies would contain the same 

d a ta  and differ only in the header information.

B u ffe r  M e m o ry : The buffer memory subsystem consists of the RAM required for storing

messages and a m anagem ent unit. It will store messages th a t are waiting to  be transm itted  

to  or from the current node, and may act as a tem porary storage area for messages routed 

through the current node. The am ount of memory needed is being determ ined by the usage 

pa tte rns of the application tasks and is not expected to  be greater than  a few megabytes.

The word size used for the buffer memory is 32 bits. W ith the  current access speeds of 

DRAMs at 70 ns, this gives a memory bandw idth as high as 457 M b/s. This bandw idth 

appears to  be sufficient for access by the PRC, the API, and the IMU, and for refresh cycles.

The buffer m anager arb itrates access to  the buffer from the IMU, A PI, and the PRC. It 

also handles the refresh of the buffer memory by periodically accessing rows in the DRAM. 

The access priorities given to these different sources can be static , dynamic or random , 

depending on the buffer managem ent policy being adopted.

A p p lic a tio n  P ro c e s s o r  I n te r f a c e : The interface between the NP and the APs is through

a VM E bus. D ata  copying between the AP and the NP will be done with the help of the 

A PI, which will have a DMA interface to  the VME bus. There are two ways of designing 

this interface for d a ta  transfer: mapping the NP data  memory into the A Ps’ address space, 

or copying d a ta  from the A Ps’ memory to  the NP data  memory. It may appear th a t map-
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ping the  NP into the address space of the APs is efficient as it avoids the overhead of a 

system  call. However, this m apping requires dedicated memory m anagem ent hardw are and 

kernel support for m apped address spaces, and also incurs the overhead of d a ta  access over 

the VM E bus. Depending on the size of typical messages, it may be more efficient to  use 

burst mode DMA transfer from the APs memory to  the NP memory.

The APs will initiate d a ta  transfer to  the NP by writing to  a control register in the 

A PI. The A PI will then contend for the host VM E bus and the NP buffer memory. W hen 

bo th  resources are acquired, it will proceed to  copy the message d a ta  in burst mode directly 

from the host to  the NP buffers. Upon completion of the transfer, the IMU will be notified, 

and the communication processing can begin. A similar sequence of operations will be 

perform ed in the reverse order for the reception of messages.

This interface is being implemented using the Cypress VIC068/VAC068 VM E bus con

troller chip set. These devices provide a complete VME bus interface controller and arbiter, 

support burst-m ode d a ta  transfers, and m ap local bus addresses to  VME bus addresses.

2.4 Communication Terminology

Up to  this point HARTS and the NP have been presented w ithout precisely defin

ing the meaning of messages, packets, routing, switching, and other term s commonly used 

when describing communication subsystems. In this section we discuss the com m unication 

paradigm s and definitions th a t are identified to  be relevant to  the area of the design space 

th a t is explored as well as how these paradigms differ as some of the param eters of the 

design are varied. We will now present a set of definitions th a t closely follows the term ino

logy and framework outlined by Reed and Fujimoto [40]. It is also im portan t to  recognize 

the  location of HARTS, including the PRC, within the entire spectrum  of com m unication 

architectures. This work investigates systems with a homogeneous point-to-point intercon

nection supporting coarse-grain parallel com putations, ra ther than  trying to  operate in the 

domain of tightly-coupled multiprocessor networks. In term s of real systems this work is 

located somewhere between the high performance hypercubes/k-ary n-cube machines and 

the com putation environment th a t can be provided by the Open Software Foundation’s 

D istibuted Com puting Environment (O SF/D C E );
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2 .4 .1  M essages and P ackets

In this framework a message is a unit of inform ation th a t an entity, m ost commonly 

a user task  on an application processor, subm its to  the communication subsystem for dis

semination to  a set of entities located elsewhere in the system. The set of entities will be 

referred to  as the destinations  of the message. The m ost common case is th a t the destin

ation set identifies a single entity, which corresponds to  a task sending a simple message 

to  another task. At the other extrem e, the destination set can identify all entities present 

in the system , in which case a  message is being broadcast. The node in which the sending 

entity  resides will be called the source node, and the nodes th a t correspond to  thoses in 

which the destination entities reside will be called the destination nodes.

The communication subsystem , for efficiency reasons, may break the messages into a 

num ber of smaller packets w ith their sizes usually chosen from a set of fixed sizes. If this 

occurs, it becomes necessary to perform reassembly of the packets into the messages a t each 

of the destination nodes. The PRC and the NI assume this to  be the case and deal with 

packets. The A PI, on the o ther hand, usually deals with messages. This does not imply 

th a t parts  of messages or packets are stored in contiguous memory in either the NI or the 

APs.

The NP derives its ability to  act as an ideal tool for an experim ental testbed  by being 

able to  move in several dimensions of the design space. The key dimensions th a t define 

its position are the switching and the routing paradigm s, buffer m anagem ent policies, and 

flow control issues. The switching paradigm  defines how the m essage/packet is physically 

forwarded in the system. The routing paradigm  determines paths th a t the m essages/packets 

will traverse in order to  reach the  destination nodes. Buffer m anagem ent determines how 

and where to  store part or all of the m essages/packets if communication links are busy. 

Flow control determines how the  incoming traffic is controlled.

2.4 .2  S w itch ing P aradigm s

W hen observing the  different switching paradigm s there are several characteristics th a t 

allow identification of the differences between various techniques. F irst, the unit for which 

resources are allocated will be called the allocation unit, and can vary from a single bit up 

to  multiple messages. Second, the overhead associated with making the routing decisions 

th a t can be a ttribu ted  to the switching technique will be identified as the routing overhead. 

T hird , the policy by which the communication link bandw idth is allocated will be referred to
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as the bandwidth allocation policy. The final param eter is the buffering complexity imposed 

by the switching technique.

P o in t-to -p o in t interconnection networks can be loosely classified as either circuit-switched 

or store-and-forward. The most common example of a circuit-switched network is the  Plain 

Old Telephone Service (PO TS) in which the switching mechanism is im plem ented via the 

Public Switched Telephone Network (PSTN ). W hen a call is placed, a circuit is created 

between the source of the call and the desired destination. This circuit remains established 

until either party  decides to  term inate the call. In term s of the distinguishing character

istics the allocation unit is of arb itrary  length, since it is equal to  the duration of the call 

which is user-determ ined. The routing overhead is only incurred as the circuit is being 

established. The telephone company provides a guarantee th a t the voice-grade line will be 

able to  carry signals from approxim ately 300Hz to 3300Hz; hence the bandw idth allocation 

is static . Finally, there is no need to provide any support for buffering. A nother exam ple of * 

this technique involving com puter d a ta  is the circuit-switched d a ta  networks based on the 

X.21 protocols.

One of the common objections to circuit-switched networks is th a t since the  bandw idth 

is statically allocated using the peak signal rate , much of the network bandw idth is w asted if 

the com m unication is sporadic in nature. Store-and-forward networks avoid this problem by 

allocating the communication link to  either a packet or a message. Store-and-forw ard net

works can be further subdivided to  into those supporting datagram service, packet-switched 

service, or virtual circuit service.

A comparison of these key characteristics is shown in Table 2.1. One of the m ain points 

th a t can be noted from the table is th a t both packet-switched and datagram -based services 

incur routing overhead on every hop th a t the packet m ust take to  reach its destination. 

V irtual circuits are an a ttem p t to  combine the best points of bo th  circuit-switched and 

packet-switched techniques. The routing overheads are mainly incurred during the  circuit 

establishm ent, during which the route through the network for a particu lar message is 

established. Subsequent packets are routed according to the circuit pa th  th a t was previously 

established. V irtual circuits are not w ithout their disadvantages. Since v irtual circuits 

obtain  their reduced routing overhead by storing sta te  inform ation in the network, the 

presence of node or link failures can be problematic.

Two more recently proposed variants on the above switching m ethods are virtual cut- 

through switching  and wormhole routing. V irtual cut-through switching, a variant on packet-
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switching, was first presented and its average perform ance analyzed in [26]. V irtual cut- 

through switching reduces packet latency by im mediately forwarding the packet ou t of an 

interm ediate node the mom ent the node’s outgoing link on the packet’s path  is available, 

even if the packet has not been received in its entirety. The determ ination of the outgoing 

link can only be m ade when the  destination of the packet is known, and this inform ation 

is norm ally found in the  header of the packet. Hence, v irtual cut-through can begin only 

after the header of the packet has been received, and when the outgoing link is available. 

Should the link be busy, the packet is buffered a t the node itself.

W ormhole routing, a variant on circuit switching, is similar to  virtual cut-through 

switching in th a t a packet is forwarded to  the next node once the header is received and 

the outgoing link is available. The difference lies in the way the packet is handled when the 

packet is not able to  cut th rough a node. W hereas v irtual cut-through buffers the packet 

into the storage area of the  node, wormhole routing buffers only a small portion of the 

packet in an on-line buffer while signaling to the preceding node to  stop transm ission of 

the packet. All the com munication links from the source to  the blocking node — the  node 

whose outgoing link is busy — continue to  be reserved for use of the packet. Viewed from 

a different perspective, wormhole routing is circuit-switching w ith the  d a ta  portion of the 

packet being sent im m ediately after the circuit establishm ent inform ation. One benefit of 

this, as compared to  v irtual cut-through, is th a t links need not be reacquired once they have 

been initially acquired when encountering a busy link. Thus, one can save the tim e needed 

to  buffer the packet into a blocking node, and retrieve it from the node’s buffer memory 

when the associated outgoing link of the blocking node becomes free.

One problem th a t wormhole routing has, as a consequence of not relinquishing acquired 

links when a packet is blocked, is the possibility of deadlock occurring in the network. Since 

packets can hold a link while simultaneously requesting the use of o ther links, and circular 

waits are possible in the network, conditions are satisfied for the possibility of deadlock.
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Deadlock-free routing algorithm s have been discussed previously in [10] to  get around this 

problem  and usually involve multiplexing multiple channels on the physical links and some 

ordering constraint on how the links are assigned.

2.4 .3  R o u tin g  M eth o d s

As mentioned earlier, routing is the process th a t selects the  path (s) th a t a packet will 

traverse when traveling from the source node to  the destination node(s). W hen examining 

the possible routing m ethods th a t are appropriate for the domain under study, techniques 

can be used from both the loosely-coupled networks above and the tightly-coupled m ul

ticom puter networks below. Since both the IMU and the PRC are program m able devices, 

it isn ’t necessary to  focus on any particular algorithm  a t the mom ent. However, it is im

po rtan t to  ensure th a t the architecture can support a reasonable num ber of the possible 

alternatives.

There are many properties th a t can be used to classify routing algorithm s [39, 47, 46, 

23, 41]. Figure 2.4 shows a simplified collection of properties th a t will be considered for the 

discussion of routing algorithm s.

Routing decisions can be either distributed, centralized, or directed (source-list) by the 

source node. For distributed routing algorithm s, in which each interm ediate node along 

the p a th  participates, the am ount and source of inform ation required to  make the routing 

decisions is im portan t. Centralized and distributed algorithm s th a t depend on non-local 

inform ation suffer from the need to  either collect or disseminate the s ta te  inform ation 

throughout the network. This adds additional complexity and uses a portion of the available 

network bandw idth. The inform ation type and quantity can vary from no inform ation to 

complete global information with algorithm s using something in between these extrem es, 

providing the most interesting results. For example, algorithm s using inform ation only 

available a t the local node or inform ation available up to k-hops distan t from the node have 

provided good perform ance w ithout unduly loading the network.

Routing algorithm s can also be classified as either static or adaptive. A routing scheme 

is sta tic  if the path  traversed by the packet only depends on the source node and the 

destination node. This path is not influenced by the presence of o ther packets or resource 

conflicts. For an adaptive scheme, the path  may be and usually is influenced by other 

entities in the network. Static schemes have the desirable properties th a t they are usually 

simple to  implement and preserve the order of packets sent between nodes. U nfortunately,
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these advantages are gained a t the cost of higher packet latencies and the inability to deal 

w ith any type of traffic congestion. A daptive schemes overcome some of these disadvantages 

bu t a t the cost of algorithm  complexity and can introduce problems of deadlock.

A nother characterization of routing algorithms is the performance m etric of the number 

of hops the packet will traverse when being routed between a source-destination pair. These 

algorithm s are usually characterized as either providing minimal or non-minimal routing. 

For minimal routing, only routes which traverse a minimum num ber of hops for the  partic

ular source-destination pair and topology are considered. In non-minimal routing, packets 

may be routed around busy or broken links and this approach can improve perform ance and 

tolerance to  link and node failures. The greater flexibility offered by non-minimal routing 

can be quite costly, especially if the introduction of packets th a t have been “m isrouted” 

introduces the possibility of livelock.

Finally, when and how often the algorithm m ust be executed is another way of charac

terizing routing algorithm s. This is clearly dem onstrated when comparing virtual circuits 

versus packet switching. For v irtual circuits, the routing algorithm  need only be executed 

a t each node during the establishm ent of the circuit through the network. All subsequent 

packets will use the circuit identification registered by the first packet and will be routed 

w ith practically no overhead. This is in contrast to  packet switching, in which the routing 

algorithm  m ust be executed a t every node for each packet.



CHAPTER 3

PROGRAM M ABLE ROUTING CONTROLLER

This chapter presents the architecture and the im plem entation of the Program m able 

Routing Controller (PR C ). This device is a custom-designed application-specific IC (ASIC) 

th a t has been developed using Cascade Design A utom ation’s EPO CH  system and Cadence 

Design System s’ Verilog-XL. The PRC combines the functionality of the previously-designed 

Routing Controller [20] and Packet Controller [15] as well as exploiting the availability of the 

AM79168 TAXIchip T ransm itters and the AM79169 TAXIchip Receivers[2, 1]. This design 

greatly improves performance over its predecessors while preserving the experim ental flex

ibility and support for distributed real-time communication required for HARTS. Since the 

design of the PRC and the Network Interface (NI) are closely-coupled and interdependent, 

the architecture and interface requirements of the NI are also discussed in this chapter.

We open with a high-level description of the architecture and then illustrate the different 

com ponents through several packet-routing scenarios. After having dem onstrated how the 

PRC and NI in teroperate we show how the PRC deals with some of the fundam ental issues 

th a t m ust be answered during the design of any communication subsystem . We conclude 

by com paring our design with several other systems.

3.1 Architectural Overview of the PRC and NI

Interaction with the PRC is carried out through three distinct interfaces: the  Page 

Control Bus (PCBU S), the C ut-Through Bus (CTBU S), and the NP Bus (N PBU S). This 

structu re  can be seen in Figure 3.1. The PCBUS is a bidirectional 32-bit bus th a t provides 

a communication path  used by the IMU to control the PRC. This bus, with some addi

tional decoding logic, is then used to m ap the PRC into the IM U’s physical address space as 

a m em ory-m apped I/O  device. The CTBUS is an 8-bit bidirectional, time-division m ulti

20
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plexed bus th a t facilitates com munication between the I/O  devices of the Network Interface 

(i.e., AMD TAXI T ransm itters and Receivers) and the internal components of the PRC. 

A rb itra tion  for a slot on the CTBUS is implemented on the PRC and supports a centralized 

dem and assignment allocation policy thai-v? based on a binary priority tree. The NPBUS 

interface stores d a ta  in and retrieves d a ta  from the buffer pool (or PRC cache) of the NP. 

This interface is a m aster-only interface; all traffic through this interface is in itia ted  by the 

PRC.

M ost of the internal architecture of the PRC is organized around the concept of a 

physical channel. The PRC has twelve such channels, each of which is dedicated to  com

m unication over a particular unidirectional link. There are six “inbound” channels (one for 

each receiver interfaced to  the CTBUS), and six “ou tbound” channels (one for each tran s

m itte r interfaced to  the CTBUS). Most of the components of the PRC can be classified as 

providing support for either an inbound channel, an outbound channel, or an interface unit. 

For exam ple, the six tran sm itte r fetch units in the lower center part of the PRC in Fig

ure 3.1 support d a ta  transm ission on the six “ou tbound” channels. The Cyclic Redundancy 

Code (CRC) check and CRC generator units are used for m anipulating the CRC values for 

the “inbound” and “ou tbound” channels, respectively. The m icroprogram m ed receivers are 

used to  support both “inbound” and “outbound” channels. This support takes the form of 

low-level route determ inations and reservations of transm itters in the NI for packets th a t 

are a ttem pting  to  cut through the node. The receivers also perform the more m undane 

tasks of byte-to-longword construction and control of the CRC check on packets destined 

for the com munications subsystem  residing at the P R C ’s node.

Like the PRC, the NI is organized around twelve physical channels. For each receiver 

in the PRC the NI has a corresponding receiver th a t recovers d a ta  from the physical in ter

connect and presents the d a ta  in a parallel form to the CTBUS. This functional coupling 

is depicted in Figure 3.2. “O utbound” transmission is supported by the NI w ith six tran s

m itters th a t take parallel d a ta  from the CTBUS and perform the physical transm ission on 

the  interconnect. Under PRC control, the receivers of the NI can be configured to  au to m at

ically forward incoming d a ta  to  either a set of NI transm itters, a PRC receiver, or both. 

The NI transm itters in conjunction with the CTBUS protocol support a com mand channel 

and d a ta  channel in the forward direction and a command channel in the reverse direction. 

The com m and channels are used to  implement the low-level flow control between adjacent 

nodes.
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F ig u re  3 .2 : PRC to NI functional coupling

3.2 Packet Routing Example

R ather than  simply listing each of the components and their respective functions we 

will present the internal structu re and operation of the PRC by describing the activities 

required to  transm it a packet, receive a packet, and assist in establishing a  cut-through. 

T he block diagram  presented in Figure 3.1 will be the focus of our discussion.

Before proceeding to  the examples, the packet form at and other restrictions imposed 

by the  PRC need to  be clarified. Figure 3.3 summarizes the three packet form ats th a t 

the PRC uses. There are several im portant points to  note in the different form ats. F irst, 

tim e-stam ps are added by the transm itting  and receiving P llC s. These tim e-stam ps can be 

accum ulated to  obtain the to ta l transm ission time of a message and are useful for distributed 

inform ation services such as clock synchronization and reliable broadcast as described in 

[38]. The accum ulation of tim e-stam ps and modification of the packet size in order to  

accom m odate the tim e-stam ps is the responsibility of the IMU. Second, a portion of the 

routing header is not covered by the CRC. This allows the PRCs along the path  th a t the 

packet traverses to  modify the routing headers w ithout invalidating the CRC covering the 

rest of the packet.

Packets th a t are transm itted  and received by the PRC are stored in NP buffer memory in
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F ig u r e  3 .3 : Packet form ats
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F ig u re  3 .4 : Com ponents used in common routing example.

N o d e  14

P R C  RX3 I

a  linked page structure similar to  the indirect M BUF cluster structures used by m any UNIX 

com munication subsystems [32]. Furtherm ore, the pages referenced by these structures have 

the  following characteristics: the page size is 256 bytes, pages are longword aligned, and 

pages m ust contain an integral num ber of longwords starting  from an offset of 0 from the 

base of the page. This structure , along with the offset indicating where to  s ta rt the  CRC 

calculation is conveyed to  the PRC by the IMU through a stream  of page control tags 

(PC X ). Each PCX is a longword containing four d a ta  fields: the unchecked length, a  last 

page flag, the page base address, and the length of d a ta  within the page. The IMU manages 

a separate stream  of these PCX's for each of the outbound channels and a single stream  for 

the  inbound channels.

T hroughout the remainder of this section we will expand the routing example presented 

in Section 2.1 and describe the transm ission of a packet from the buffer memory on node 

2 to  node 14 (through the interm ediate node 13). This common example as depicted 

in Figure 3.4 will allow us to  explain packet transm ission a t node 2, the P R C ’s role in 

supporting a cut-through a t node 13, and packet reception a t node 14. For our example, 

the  packet will consist of 75 longwords of d a ta  occupying three partially-filled pages in the 

buffer memory, as shown in Figure 3.5. Five of these longwords will make up the header of 

the packet and are stored a t address 0X0C2200001. Only the first longword of the header 

will not be covered by the packet CRC. The remainder of the packet is split into two blocks 

of 25 and 45 longwords, stored a t addresses 0x0C225000 and 0x0C222000, respectively.

: T he PR C  can only address 4M longw ords and is m apped into the buffer m em ory at base address 
OxOCOOOOOO
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F ig u r e  3 .5 : Exam ple packet structu re
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t ransm it_w ord:
if(eopsig)

request_ctbus;
t ransm it_byte(eop);

if(m arks ig )
request_ctbus; 
transm it_by  te ( rn a rk ) ; 

f o r  (i =  3; i >  0; i - -)
request_ctbus;
transrnit_byte(i);

transm it_packet:
w h i le ( t r a n s m i t t e r j e s e rv e d ) ;  
reserve_transm itter  
eopsig =  false;
w h i l e  ((unchk >  0) & -leopsig)

eopsig =  fetch_word(data, -■CRCENBL); 
transmit_word; 
unchk =  unchk - 1; 

w h i l e  (-ieopsig)
eopsig =  fetch_word(data, C IIC E N B L ); 
transm it_word; 

fe tch_word(tirne-stam p, C R C E N B L ); 
t ransm it-w ord ;
fet ch_ wor d (C R C , - >  C RC E N B L ); 
transm it_w ord;

F igu re  3 .6 : Pseudocode description of TFU  operation

3.2.1 Packet Transm ission

Once the IMU has selected a packet for transm ission and verified th a t there is space in 

the page control tag queue (PC T Q ) for the appropriate channel, the IMU loads the P C T  for 

the packet into the channel’s PC TQ . If space allows, the IMU may load up to  three more 

PC T s for the successive pages of the packet. At this point responsibility for the transm ission 

of the packet is taken over by the PRC, and the IMU m ust only provide a stream  of PC Ts. 

Requests for more PC Ts are conveyed through the P R C ’s in terrupt mechanism.

The PRC retrieves packet d a ta  from the buffer memory via the NPBUS, stores it tem 

porarily in the transmitter fetch units (TFU s), and then places it into the CT devices, one 

byte a t a time. The TFU s, each of which is associated with a particular outbound channel 

(and thus a single CTBUS transm itte r), control the process of packet transm ission.

W hen idle, each TFU  constantly m onitors its PC TQ  for the presence of a PC T . W hen 

the T FU  finds a P C T  (as the result of the IMU loading the P C T  through the PCBU S), 

packet transm ission commences, following the algorithm  described in Figure 3.6. This code,
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while not complete, describes the general procedure for packet transm ission.

At the s ta rt of a packet, the TFU  retrieves the unchecked length from the P C T  at the 

head of the PC TQ  and stores it internally. Until this value has been decrem ented to  0, 

the retrieved d a ta  is excluded from the calculations of the CRC for the packet. This allows 

packet headers to  be altered by the PRC receivers w ithout affecting the error detection for 

the rem ainder of the packet. Simultaneously, the TFU  a ttem p ts  to  reserve its associated 

tran sm itte r and issues a request to  the NPBUS for the first longword of the packet. The 

TFU  checks the reservation sta tus of its associated transm itte r, and if the tran sm itte r is 

currently unreserved, requests access to  the CTBUS to reserve the transm itter.

Once the first longword of the packet has been retrieved from the buffer m em ory and 

a reservation achieved for the appropriate transm itter, packet transm ission begins. The 

TFU  requests access to  the CTBUS, and when this is granted, drives the CTBUS d a ta  lines 

with byte 3 (the high byte) of the longword in its local buffer. This word and its control 

inform ation are latched by the previously reserved CTBUS transm itte r and transm itted  to  

the adjacent node.

The TFU  now spins until the IR D A T A  line2 of its CTBUS tran sm itte r re tu rns to  

TRU E. W hen this is observed, the TFU  again requests control of the CTBUS, placing the 

next byte of d a ta  on the CTBUS when this access is granted. This process continues until 

the TFU  has transm itted  all four bytes of d a ta  in its local register. In parallel w ith the 

transm ission of the bytes associated with the current longword, the TFU  prefetches up to  

4 longwords. Hence, once the fourth byte of the current longword been transm itted , the 

TFU  should be able to  immediately switch to  transm itting  the next longword.

The PRC design allows the page structure of a packet to  be preserved during transm is

sion (to  allow received packets to  only partially fill their pages). This is done by tagging 

the longword requested by the TFU  with a flag indicating th a t the associated d a ta  is the 

last longword on a page. If this is the case, the TFU  will transm it the CTBUS “m ark” 

com mand. This m ark can then be used by downstream nodes to  reconstruct the page struc

ture. This same tag  when used in conjunction with the last page bit of the P C T  is used to 

detect when the TFU  has reached the end of the current packet. In addition to  the  EOP 

th a t m ust be sent when dealing with the end of packet condition, two additional longwords 

are transm itted : the first is a tim e-stam p representing the tim e a t which the transm ission 

of the packet was completed; the second (transm itted  after the EO P) is a CRC for error

2 A  line used to indicate the C T B U S  transm itter’s w illingness to  accept forward channel data . T h e  
detailed  sem antics are explained in the description of the C T B U S im plem entation .
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detection.

R eturning to  our example, packet transm ission begins when the P C T  (0x02220005  

(A ddr=0x0C 220000/Len=05/U nchk=l/Lastpage=false)) w ritten  by the IMU at node 2 

reaches the head of the PC TQ  of T F U i. This causes TFU i to  a ttem p t to reserve its CTBUS 

tran sm itte r (CTBUS TX i connected to  node 13) and also to retrieve the longword stored 

a t 0x00220000. This first longword will not be included in the future CRC calculations 

since the unchecked length counter is greater than  zero. Once the reservation has been 

achieved and the d a ta  retreived, the TFU begins sending the d a ta  over the CTBUS in one- 

byte chunks. The first NPBUS access also decrements the unchecked length counter to  0; 

hence, all fu ture longwords retrieved from the buffer memory will be included in the CRC 

calculation.

A page fault is generated when the d a ta  word at 0x00220004 is retrieved. This has 

several effects: the P C T  at the head of the PC TQ  is shifted out, the page offset is restored 

to  0, and the “m ark” code is sent before transm itting  the next byte of data . This code 

notifies the  destination PRC th a t a page fault has occurred.

The value 0x00225019 (Addr=0x0C225000/Len=25/Unchk=0/Lastpage=False) now ap

pears at the head of the PC TQ , and the next memory access is to  location 0x00225000. D ata 

is retrieved and transm itted  as before, and a page fault eventually occurs when 0x00225019  

is accessed, bringing 0x0122202D (Addr=0x0C222000/Len=45/Unchk=0/Lastpage=True ) 

to  the head of the PC TQ . W hen the page fault is generated at the end of this page, 

however, the NPBUS interface logic will also log a TX EOP event, since the la stp a g e  bit 

is currently set. The retrieved longword is transm itted  normally, but the TFU  exits the 

main d a ta  transm ission loop. On the next d a ta  request, the TFU  sets its control lines to 

indicate th a t it needs to  read the tim e-stam p register. The tim e-stam p is latched in and 

transm itted ; when this is finished, the TFU  retrieves the CRC. The CRC is transm itted  

across the links; the only difference is th a t this final longword is preceded by a EO P signal 

ra th e r than  a MARK signal. Once the final byte of the CRC is acknowledged, the TFU  

accesses the CTBUS one final tim e and unreserves the transm itter. The PRC is designed 

so th a t the tim e-stam p and CRC accesses do not reach the NPBUS interface; thus, the 

inbound channels can use the NPBUS while these accesses are made.
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3 .2 .2  Packet C ut-T hrough  and R ecep tion

Packet reception by the PRC begins when d a ta  is transferred from a CTBUS receiver to 

the PRC receiver (PRC RX) associated with it. Each receiver is an 8-bit m icro-controller 

intended to  perform serveral functions: routing mode identification, route determ ination, 

channel establishm ent, and packet reception.

Upon detecting the arrival of data , the receiver first allows each d a ta  byte to be acknow

ledged until it has accum ulated enough of the routing header to  determ ine how the packet 

is being routed and the packet’s final destination. It then stops signalling its willingness 

to  accept d a ta  (stalling the inbound channel) until a routing determ ination has been made 

and the routing header is flushed by buffering at the local node an d /o r by retransm itting  

it out through a CTBUS transm itter(s). Once the routing strategy for the packet has been 

determ ined, the receiver m ust determ ine which resources are available for a packet of this 

priority. If the IIX decides to  forward the packet, it a ttem pts to  reserve the appropria te C T 

BUS transm itter(s). If this a ttem p t succeeds, the RX establishes the channel cut-through 

and reconfigures the inbound channel to forward to the outgoing link.

If the packet is destined for the local node or the RX is unable to  im m ediately forward 

the packet, it is usually buffered in the local node. In order to support broadcast algorithm s 

the  design of the CTBUS and the RX allow the RX to  simultaneously buffer and forward 

a packet. In cases where local resources are scarce or a deadlock may be present, the RX 

may even drop the packet entirely by acknowledging it and then simply losing the da ta  

internally (i.e., neither buffering nor forwarding it). The sender a t a higher level in the 

communication protocol stack will retransm it the packet after the corresponding tim eout 

period elapses.

W hen a packet is stored at the local node, the d a ta  is transferred from the PRC RXs 

to  the buffer memory via the NP interface of the PRC. Once an RX has accum ulated a 

full longword, it places the d a ta  in the 11X FIFO (access is arb itra ted  by the same scheme 

as the CTBUS). The bus connecting the PRC RXs to this FIFO is known as the RXBUS. 

The CRC check is computed during this storage. At the end of the packet, as the receive 

tim e-stam p is read out from the local clock and placed into the RX FIFO , a flag is set to 

indicate the outcome of the CRC check. D ata  is then retrieved from the FIFO  by the NP 

interface and stored in the buffer memory.

We retu rn  once again to  our packet reception example. The first event a t node 13, 

indicating the begining of reception from the perspective of PRC RX4, is the availability
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of d a ta  in its inbound CTBUS interface. The PRC RX4 removes this d a ta  and stores 

it in an in ternal FIFO  (after possible modification) and signals to  the CTBUS receiver 

its willingness to  accept more data . This process then continues until the PRC RX4 has 

accum ulated enough of the routing header to  make a routing decision. In the case of the 

algorithm  presented by Chen ei al. [6], the first 4 bytes of d a ta  are sufficient to  determ ine 

the packet’s type, its priority, and its destination. Based on this, the PRC RX 4 can then 

choose how to handle the packet.

Since the current node (13) is not the final destination of the packet, the PRC RX4 

determ ines th a t it should check the reservation sta tus of the CTBUS TX 0. If the transm itte r 

is free, PRC RX4 simply reserves the transm itte r and transm its the d a ta  in its internal FIFO 

to  node 14 via this transm itter. After all the d a ta  buffered in the internal FIFO of PRC RX4 

has been sent, the CTBUS receiver (CTBUS RX4) is configured to  forward all received da ta  

to  CTBUS T X 0 w ithout in teracting further with the PRC RX 4.

On node 14, a similar process takes place. Since the packet is destined for this node, 

PRC RX3 simply leaves the CTBUS receiver (CTBUS RX3) configured in this default mode 

which is to  transfer all received d a ta  to  PRC RX3. As d a ta  is received from the CTBUS, 

the PRC RX transfers it to  the RXBUS interface for storage in the buffer memory. W hen 

mark  commands are received from the CTBUS, PRC RX3 can choose to  convey them  to 

the  NP interface as page faults and thus preserve the page structu re of the packet or ignore 

them , thereby compressing the incoming packet into a minimal num ber of pages. After 

receiving the EO P com mand, PRC RX3 instructs the RXBUS interface to  store the receive 

tim e-stam p in the RX FIFO , thereby reading out the CRC error flag and signaling an RX 

EO P event.
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3.3 PRC Implementation

There are many specific issues th a t need to  be addressed when approaching the  im 

plem entation of airy communication subsystem [4, 52, 51, 16, 34, 24, 29, 7] These include 

accessing shared resources, flow-control, error detection, and routing. This section discusses 

how some of these issues were resolved in the im plem entation of the PRC.

3.3 .1  M ed ia  A ccess  and Flow Control

T he prim ary shared media in the PRC design is the CTBUS, an 8-bit wide Time- 

Division M ultiplexed (TD M ) bus th a t provides a gateway into the interconnection network. 

The CTBUS and its associated protocol play a fundam ental role in supporting many of the 

features provided by the  PRC. The CTBUS is necessary for the im plem entation of multiple 

switching techniques such as virtual cut-through and wormhole routing. It also provides the 

prim itives necessary for low-level flow control and broadcast algorithm s [25]. Finally, since 

the CTBUS is a critical resource, the arbitration m ethod emphasizes fairness and scales 

well under varying loads.

The CTBUS interconnects 25 separate components: 6 CTBUS transm itters, 6 CTBUS 

receivers, 6 PRC receivers, 6 PRC transm itter fetch units, and the Network Processor’s 

IMU. Of these 25 devices 19 can act as “m aster” and can participate in arb itra ting  for 

control of the CTBUS (only CTBUS transm itters do not function as m asters). All of the 

devices except the PRC transm itter fetch units and the IMU can also function as “slave” 

devices on the CTBUS. The external CTBUS signals are functionally divided into five 

groups: m aster, control, address, arb itration , and data. The m aster and address lines 

identify both  the device th a t has control of the bus (the m aster) and the selected slave 

device(s) for the current bus cycle. The control lines are driven by the m aster device and 

identify the current command.

B u s A rb itra tio n  S ch em e

A rbitration  for the CTBUS is based on a binary priority tree in which the different levels 

of the tree are perm uted according to  the sta te  of a counter. This scheme is derived from 

the work of Kovaleski et al. [28] and provides the basis for a dem and slot access m ethod. 

This scheme was chosen for its “fairness” and scalable performance over varying loads. 

Figure 3.7 shows an example in which we wish to construct an arbiter for eight m asters. In
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this example a 3-bit counter is used to  control the perm utation  of the tree. This counter is 

hooked up such th a t the least significant bit controls the nodes ju s t above the  leaves, the 

middle bit controls the nodes below the root, and the most significant bit controls the root 

of the tree .3 The order in which access to  the bus will be granted is the left-to-right order 

of the leaves. For cycle 0, the priority order is 0 ,1 ,2 ,3 ,4 ,5 ,6 ,7  w ith device 0 having the 

highest priority. To obtain  the order for cycle 1 we exchange the left and right children 

of the tree used for cycle 0 and obtain a device ordering of 1 ,0 ,3 ,2 ,5 ,4 , 7,6. The device 

orders for remaining cycles can be read off from the figures. One of the main advantages of 

this type of arb itration  scheme is th a t no device has higher priority than  any other device 

over the m ajor period4 of the priority cycle. For our simple 3-bit example device 0 has 

higher priority than device 4 four times (Cycles 0,1,2,3) and it has lower priority four times 

(Cycles 4,5,6,7). A nother advantage is th a t access to  the bus scales well over a wide range 

of bus activity. If a device does not wish to  use the current-cycle access, then access will be 

granted to  devices of lower priority th a t need bus access. This means th a t in a PRC with 

only a single channel active, the entire bandw idth of the CTBUS is a t its disposal.

The actual arb itration  for the CTBUS is im plem ented by the PRC with arb itra tion  for 

the  next bus cycle overlapped w ith the current cycle. A device which has been granted 

m aster s ta tus may suspend the arb itration  until it is finished with the bus. This allows for 

short bursts of multiple bytes and can be used to  speed up the flow-control handshaking 

described below.

More specific details concerning the actual arb itration  order or device addressing may 

be found in Appendix A.

C o m m a n d s, F low  C on tro l, and  B road cast S u pp ort

In order to present the measures undertaken to  provide hardw are support for broadcast 

algorithm s and flow control, it is necessary to  provide a brief overview of the commands 

used in im plem enting the CTBUS protocol. The commands shown in Table 3.1 can be 

categorized as supporting either device configuration or forward channel d a ta  transm ission. 

The configuration commands support communication with the Network Interface Controller, 

resource m anagem ent, and CTBUS receivers. The forward channel commands provide for

3In the full C T B U S arbiter the bits are not a sim ple linear assignm ent to  prevent m aster devices from  
falling into a lockstep  access pattern in which a particular m aster has an unfair advantage w hen accessing  
the bus in a periodic fashion.

4 W here the major  per iod  would be 8 bus cycles for the exam ple and 32 cycles for the C T B U S  m anaged  
by the PR C .
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H ig h est Priority

C ycle 0

L ow est Priority H ighest Priority

C ycle 1

Low est Priority

H ighest Priority

C ycle 2

L ow est Priority H ighest Priority

C y d e  3

Low est Priority

H ig h est Priority

C ycle 4

Low est Priority H ighest Priority

C ycle 5

Low est Priority

H ig h est Priority

C ycle 6

L ow est Priority H ighest Priority

C y d e  7

L ow est Priority

F ig u re  3 .7 : Binary tree priority arbiter example
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C u t-T h ro u g h  C o m m an d s
C o m m a n d C hannel Direction
N O O P  (No O pera tion)
D T X  (D a ta  Transfer)
R E S V  (T ran sm it te r  Reservation Request)  
F R E E  (T ran sm it te r  Free Request)
H O LD  (T ran sm it te r  Hold Request)
C IIK  (T ran sm it te r  Hold Check)
CFGO (Load C T B U S Receiver Address Reg 0) 
C FG 1 (Load C T B U S Receiver Address Reg 1) 
M A R K  (B yte  Marker)
E O P  (E nd  of Packet)

N /A
Forward
C onfigura tion
Configura tion  & Forw ard
C onfigura tion
C onfiguration
C onfiguration
C onfiguration
Forward
Forward

T able 3.1: Cut-Through Bus Commands

transm ission of d a ta  and d a ta  delimiters.

Each device on the CTBUS th a t can function as a slave and respond to  a forward channel 

com m and has an Input Ready Data (IR D A T A ) line th a t signals the device’s willingness to 

accept d a ta  on the forward channel. A m aster device uses the sta tus of the IR D A T A  line 

in deciding if it should a ttem p t to  acquire the CTBUS and perform  a  transaction. This line 

forms the basis of the CTBUS flow control mechanism.

The set of policies outlined in Figure 3.8 provides support for several of the prim it

ives necessary to  satisfy the design goals of the PRC. F irst, the use of the IR D A T A  line 

im plem ents a tightly-coupled byte-level flow control mechanism th a t will prevent d a ta  over

runs in both the Network Interface and the PRC. Second, making the multiple IR D A T A  

lines available to  the appropriate bus masters and using an address m apping th a t allows 

the selection of multiple slave devices provides efficient hardw are support for broadcast al

gorithm s [25]. This feature is significant in th a t it allows a one-to-m any transaction  in a 

single bus cycle. Last, at the cost of providing the IR D A T A  lines to  the possible CTBUS 

m asters, unnecessary traffic is greatly reduced when com pared to  schemes in which the cur

rent CTBUS cycle would have to  be canceled if all the devices addressed during the transfer 

were not ready to  accept the data.

S u p p ort for M u ltip le  R o u tin g  S tra teg ies

The primitives necessary to support multiple routing strategies are provided by making 

the  CTBUS transm itters “reservable” resources. Prior to  using a forward d a ta  channel, 

bus m asters must have obtained a reservation by arb itrating  for the CTBUS and issuing
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No CTBUS m aster will a ttem p t a forward channel command unless all of the 
IR D A T A  lines of the selected CTBUS transm itters are true.

• W hen a CTBUS transm itte r is addressed as a slave and a forward channel com
m and has been issued the IR D A T A  line for th a t transm itte r will become false 
until the command is properly acknowledged (as explained below).

« Upon receiving forward channel data , a CTBUS receiver will arb itra te  for the 
CTBUS and forward the d a ta  once all of the IR D A T A  lines of the devices selec
ted by its internal address register are true. After the d a ta  has been sucessfully 
forwarded, the CTBUS receiver will indicated to  its paired transm itter"  to  ac
knowledge the last forward channel command.

• upon receiving a reverse channel command indicating acknowledgement of the last 
forward channel command , a CTBUS receiver will indicate to  its paired tran sm it
te r th a t the transm itter may raise its IR D A T A  line.

“T h e term  paired t ransmi t t e r  refers to the C T B U S transm itter that is connected  to  the sam e neigh
boring node as the receiver.

F ig u re  3 .8 : CTBUS protocol policies

a R E S V  command. If the command is positively acknowledged during the bus cycle, then 

a reservation has been granted and the bus m aster has sole control of the forward d a ta  

channel. Once the bus m aster is finished with the forward channel and wishes to  surrender 

its reservation, it arb itrates for the CTBUS and issues a F R E E  command. In addition to 

releasing the CTBUS transm itter on the current node, the F R E E  command is transm itted  

down the forward channel providing a mechanism to  dismantle any circuit th a t may have 

been established.

The reservation status of all six CTBUS transm itters is m aintained by the P R C ’s Re

servation S tatus Unit. This unit performs the bookkeeping duties on behalf of the CTBUS 

transm itte rs  for the R E SV , FREE, CHECK, and HOLD  CTBUS commands and issues 

acknowledgments accordingly. The HOLD  command guarantees the issuer the  next pos

sible reservation on the target device5. After issuing this command the m aster m onitors 

the  CTBUS tran sm itte r’s reservation sta tus until the current reservation is surrendered. 

At this point a CH ECK  command is used to release the HOLD  command and capture the 

reservation.

W ith the R E S V  and F R E E  primitives alone we can easily support switching strategies 

such as v irtual cut-through, circuit switching, packet switching, and wormhole routing. An

5It is assum ed, although riot strictly  enforced, th at only the transm itter fetch units on behalf o f their 
IM U will use the H O L D  and C H E C K  com m ands



37

example of how these commands are used to  support virtual cut-through is presented in 

Section 3.3.1. W hen operating in a circuit switching mode, F R E E  com mands are only issued 

when a circuit is to be dism antled, instead of a t the end of every packet as in systems using 

other routing strategies. For virtual cut-through, packet switching and wormhole routing, 

a reservation is obtained and then released for every packet.

The HOLD  and CHECK  com mands were added to allow the IMU to  influence the 

CTBUS reservation policy. These com mands can then be used sparingly to  guarantee a 

single high-priority channel by bounding the delay required to  reserve a CTBUS transm itter.

P a c k e t  T ra n sm is s io n  E x a m p le  o n  th e  C T B U S

In returning to  our example, we describe the sequence of activities occurring on the 

CTBUS. We begin a t node 2, where the packet transm ission begins, and then proceed to 

node 13, which the packet cuts through. Finally, we look at node 14’s CTBUS as the  packet 

is received.

On node 2, TFU i (assigned to  outbound channel # 1 )  arb itra tes for the CTBUS and 

issues a R E S V  command for the CTBUS transm itte r connected to  node 13 (CTBU S T X j). 

Once T FU i succeeds in obtaining a reservation on the transm itte r, it will issue a D T X  bus 

cycle and wait for the IR D A T A  line to  retu rn  to  true. This process will repeat until TFU i 

reaches the last word of the first page, at which point it will inject a M A R K  command 

to  delimit the page boundary6. Page two is transm itted  in a similar m anner. At the end 

of page three, the end of the packet is signaled w ith an EO F  com m and7. Finally, TFU i 

surrenders its reservation of the CTBUS TX i with a F R E E  command.

On node 13, the CTBUS receiver (CTBUS RX4) is initially configured to  transfer any 

received d a ta  to  the PRC RX (PR C  RX4). Thus, when the first byte of d a ta  is received, 

CTBUS RX,, simply transfers it to PRC RX4 by arb itrating  for the CTBUS and using a 

D T X  transfer. After transferring the first byte to  PRC RX4, CTBUS RX4 acknowledges this 

byte using the reverse channel of CTBUS T X i. Meanwhile, PRC RX4 stores this first byte 

internally and signals its willingness to accept the next byte of d a ta  by raising its IR D A T A  

line. During this time the CTBUS RX4 has received the second byte of d a ta  and is waiting 

for the IR D A T A  line to  go true. This process continues until the PRC RX4 has enough 

of the header to reach a routing decision and reserve CTBUS T X 0, which is connected to

6Prior to transm itting the last word.
7T h e E O P  supersedes the M A R K  th at would regularly be transm itted .
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node 14, w ith a R E S V  com m and. PRC RX4 then forwards the portion of the header it used 

to  reach its decision out CTBUS T X 0. At this point, PRC RX 4 reconfigures CTBUS RX4 

to  autom atically  forward the received d a ta  to  CTBUS T X 0. W hen the F R E E  com mand 

arrives from node 2, CTBUS 11X4 forwards the command to  node 14 via CTBUS T X 0 and 

reconfigures itself to its initial mode.

The activities on node 14 closely resemble those on node 13. Since the  packet is 

destined for node 14, PRC RX3 does not reserve an outbound channel and instead leaves 

CTBUS RX 3 in its default configuration th a t forwards all d a ta  to  PRC RX3.

3.3 .2  R o u tin g  A lg o r ith m  Support

The flexibility required for efficient support of a wide variety of routing algorithm s was 

achieved by having each of the P R C ’s six RXs designed around a m icroprogram m ed control

ler containing a 128-word control store. During system initialization, the IMU downloads 

microcode to  each PRC RX through the PCBUS. After the microcode downloads, each PRC 

RX executes independently of bo th  the IMU and other PRC RXs. The in ternal architecture 

of an individual PRC RX is shown in Figure 3.9.

Local storage in the PRC RX is provided in the form of a small FIFO , six user-defined 

flags, and a 16-byte register file. The main d a tapath  includes a multi-function ALU, allowing 

arithm etic and logical operations to  be performed on incoming data. The FIFO  allows the 

PRC RX to store an incoming packet header after possible modification until a routing 

determ ination has been made. D ata  may exit the PRC RX through either the CTBUS unit 

for retransm ission to  an adjacent node, the RXBUS unit for storage in the buffer memory, 

or both.

The operation of the PRC RX is controlled by the microsequencer, which decodes the 

current instruction (retrieved from the control store) and then configures the rem ainder of 

the d a tap a th  to  execute it. The microsequencer operates as a s tandard  two-stage pipeline 

and thus needs to  stall to  refill the instruction decoding unit in the case of jum p or subroutine 

calls.

The instruction set contains instructions for general reg ister/constan t transfers, flag and 

ALU operations, and control-flow instructions. All of these instructions have been tailored 

to  support com munications, with the goal of reducing both execution tim e and m icropro

gram  size. For exam ple, the instructions th a t specify a destination register in either the 

outbound CTBUS interface or the RX bus interface autom atically stall the microsequencer
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if the interface is busy w ith the last operation. This type of instruction greatly reduces both 

the size and execution tim e of the microcode by eliminating the need to  check the sta tus 

of the interface prior to  a ttem pting  loads; the drawback is th a t routing algorithm s m ust be 

w ritten  in a m anner th a t won’t deadlock if the microsequencer stalls on a  busy interface.

The W AIT instruction is one of the more extrem e examples of an instruction th a t has 

been custom ized to  support microcoded communication. In its simplest form the WAIT 

instruction stalls the microsequencer until the selected condition becomes true. In its most 

common use, the WAIT instruction stalls on one condition but also enables trap  handlers 

th a t allow the  instruction execution to  jum p to  addresses specified by the TRAPO and 

TRA P1 registers on alternate  conditions. This provides a three-way branch th a t greatly 

simplifies the im plem entation of several supported routing strategies. For example, one 

usually waits for d a ta  to  arrive but needs to  branch to  an alternate  routine if either an error 

occurs or an EO P  com mand is received.

In addition to  the local registers in each PRC RX, the PRC RX has read /w rite  access to  a 

256 byte inter-device communication RAM located within the PRC. This RAM is accessible 

to  all PRC RXs and is m apped into the PCBUS memory map. This RAM provides a way 

for the PRC RXs or the IMU to convey inform ation to each other and therefore influence the 

routing algorithm s dependent on either local sta te  inform ation or packet header contents.

For more inform ation concerning the instruction encoding, tim ing, or syntax required 

to  use the accompanying micro-assembler see Appendix B.

P a ck et R o u tin g  E xam p le  u sin g  th e  P R C  R X

We retu rn  one last time to  our example and examine the microcode th a t could be 

executed by the PRC RX on node 13 to  assist in establishing a cut-through from node 2 

to  node 14. In this code example we have assumed th a t the network is only routing virtual 

cut-through messages which allows us to  ignore the byte th a t identifies the packet type. We 

have also assumed th a t the transm itte r required to  establish the cut-through is unreserved 

when describing the control flow.

Figure 3.10 shows the prolog code th a t most routing algorithm s need. These are constant 

expressions usually used as the im m ediate operand of a load constant instruction when 

configuring one of the external interfaces in the PRC RX. These expressions do not use any 

space in the control store and are only for the benefit of the routing algorithm  designer. 

The details necessary to  derive these constants can be found in Appendices A and B.
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The code depicted in Figure 3.11 performs two functions. Lines 41-50 initialize the 

default flag values and prepare for the collection of the routing header. Lines 58-80 actually 

collect the first four bytes of the  packet and store them  in the local registers RF00 through 

RF03. W hile this is taking place notice th a t each transfer from the CTDIN register triggers 

the  IR flag (Lines 60, 64, and 71). This is coupled to  the byte-level flow control and allows 

the PRC RX to  control the CTBUS RX behavior. Also, notice th a t one of the offset values 

is being updated (lines 72-74) on behalf of the transm itter sending the packet. Although 

not being used in this code example, if the header FIFO is used to  store the header is often 

difficult to  modify the header to  reflect the direction the packet will be transm itted . Since 

we are operating in a point-to-point network the receivers of the packet know w hat direction 

the packet was received from and can update the header appropriately. The im portan t point 

concerning Figure 3.11 is th a t on the reception of the last byte of the header the PRC RX 

has not raised its IR line. This will allow the PRC RX to  reconfigure the CTBUS RX.

3 .3 .3  Error D etec t io n

Any communication subsystem  m ust deal with errors in transm itted  and received pack

ets. As error correction usually incurs too much overhead in transm itted  check bits, one of 

the accepted means of error control and recovery is to detect errors with a cyclic redund

ancy code (CRC) and request retransm ission of erroneous packets. Calculating CRCs in 

software, however, is a time-consuming and resource-intensive task. The processor must 

access every part of a packet and compute the rem ainder, which takes several operations 

for every word covered. By im plem enting these calculations in hardw are, however, they can 

be made relatively transparent to  the system. Consequently, this is the approach we have 

taken in the PRC. The rest of this section describes the im plem entation and use of the CRC 

generation and CRC check modules in the PRC.

T he conventional im plem entation of a CRC generator/checker is a  linear feedback shift 

register. The obvious advantage of this design is its simplicity — for an n-degree generator 

polynom ial, all th a t is needed to  implement CRC error detection is n  flip-flops and several 

exclusive-or gates. This im plem entation, however, depends upon being able to  access the 

d a ta  serially. Thus, its use is generally limited to error detection over serial interconnects, 

although designers have been known to  convert parallel d a ta  to serial form to run it through 

a serial CRC register, and then to  reconvert the d a ta  to  parallel [35].

A nother drawback to  serial CRC generators and checkers is the tim e required to  process
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m i c r o p r o g r a m  v c e x a m p l e ;  
b e g i n

#  I d e n t i f y  t h i s  p r o g r a m  a s  b e l o n g i n g  t o  r e c e i v e r  1  
r e c e i v e r  1 ;

#  C o n s t a n t  D e c l a r a t i o n s  f o r  R X B U S  I n t e r f a c e
c o n s t r x c m d . , s o p _ n _ c r c 0 x 3 6 ; #
c o n s t r x c m d . _ s o p _ w o _ c r c 0 x 2 6 ; #
c o n s t r x c m d . , d a t a _ w _ c r c 0 x 3 4 ; #
c o n s t r x c m d . _ d a t a _ w o _ c r c 0 x 2 4 ; #
c o n s t r x c m d . , m a r k _ w o _ c r c 0 x 2 5 ; #
c o n s t r x c m d . , m a r k _ w _ c r c 0 x 3 5 ; #
c o n s t r x c m d . _ f  i n a l _ c r c 0 x 1 4 ; #
c o n s t r x c m d _ t i m e s t a m p 0 x 3 b ; #

#  C o n s t a n t s  f o r  c o n t r o l l i n g  o u t b o u n d  C T B U S  i n t e r f a c e  ( l o a d e d  i n t o  C T C T L )
c o n s t c t c m d . . n o o p O x f ; # C T B U S N 0 0 P
c o n s t c t c m d . _ d t x 0 x 0 ; # C T B U S D T X ( D a t a  t r a n s f e r )
c o n s t c t c m d . . a b o r t 0 x 5 ; # C T B U S A B O R T ( A b o r t  p a c k e t  a n d  c i r c u i t )
c o n s t c t c m d . _ r e s v 0 x 7 ; # C T B U S R E S V ( A t t e m p t  C T T X  r e s e r v a t i o n )
c o n s t c t c m d . . f r e e 0 x 3 ; # C T B U S F R E E ( F r e e  C T T X )
c o n s t c t c m d . - C f g O 0 x 8 ; # C T B U S C F G O ( C T R X  c o n f i g u r a t i o n  c o m m a n d )
c o n s t c t c m d . . m a r k 0 x 1 ; # C T B U S M A R K ( D a t a  d e l i m i t e r )
c o n s t c t c m d . . e o p 0 x 2 ; # C T B U S E O P ( E n d  o f  P a c k e t )

#  A d d r e s s  f o r  c o m m o n  d e v i c e s  
c o n s t  c t a d d r _ c t r x O  0 x 4 1 ;  
c o n s t  c t a d d r _ c t r x l  0 x 4 2 ;  
c o n s t  c t a d d r _ c t r x 2  0 x 4 4 ;  
c o n s t  c t a d d r _ c t r x 3  0 x 4 8 ;  
c o n s t  c t a d d r _ c t r x 4  0 x 5 0 ;  
c o n s t  c t a d d r _ c t r x 5  0 x 6 0 ;  
c o n s t  c t a d d r _ c t t x 0  0 x 8 1 ;  
c o n s t  c t a d d r _ c t t x l  0 x 8 2 ;  
c o n s t  c t a d d r _ c t t x 2  0 x 8 4 ;  
c o n s t  c t a d d r _ c t t x 3  0 x 8 8 ;  
c o n s t  c t a d d r _ c t t x 4  0 x 9 0 ;  
c o n s t  c t a d d r _ c t t x 5  O x a O ;

F ig u re  3 .10 : Code example constant declarations
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4 1  -  i n i t :
4 2  -  #  C l e a r  o u t  u s e r  f l a g s ,  s e t  I R  h i g h ,  c l e a r  A B O R T ,  H O L D ,  E O P
4 3  -  c l e a r  a l l ;
4 4  -
4 5  -  #  L o a d  t r a p  h a n d l e r  a d d r e s s e s
4 6  -  l d c  e o p _ h a n d l e r ,  t r a p O ;
4 7  -  l d c  a b o r t _ h a n d l e r ,  t r a p l ;
4 8  -
4 9  -  #  P r e p a r e  r x b u s  i n t e r f a c e  f o r  f i r s t  p a r t  o f  d a t a
5 0  -  l d c  r x c m d _ s o p _ w o _ c r c , r x c t l ;
5 1  -
5 2  -  #  F o r  t h i s  e x a m p l e  w e  w i l l  a s s u m e  V C  o f f s e t  r o u t i n g  w i t h  t h e  f o l l o w i n g
5 3  -  #  f o r m a t
5 4  -  #  { t y p e , x - o f f s e t , y - o f f s e t , z - o f f s e t }
5 5  -  #
5 6  -  #  S i n c e  w e  a r e  r e c e i v e r  1  w e  n e e d  t o  u p d a t e  ( i n c r e m e n t )  t h e  y  o f f s e t .
5 7  -
5 8  -  #  G e t  m e s s a g e  t y p e  a n d  s t o r e  i n  R F 0 0
5 9  -  w a i t  d a t a , t r a p l ( a b o r t ) ;
6 0  -  x f e r  c t d i n , r f 0 0 , g o  i r ;  #  I R  s e t  t r u e  t o  a l l o w  m o r e  d a t a
6 1  -
6 2  -  #  G e t  x - o f f s e t ,  s a v e  z e r o / n o n - z e r o  s t a t u s  i n  U F O ,  a n d  s t o r e  i n  R F 0 1
6 3  -  w a i t  d a t a , t r a p l ( a b o r t ) ;
6 4  -  x f e r  c t d i n , r f 0 1 , g o  i r ;  #  I R  s e t  t r u e  t o  a l l o w  m o r e  d a t a
6 5  -  a l u  r f 0 1 ;
6 6  -  f l a g  z e r o , f 0 ;
6 7  -
6 8  -  #  G e t  y - o f f s e t ,  u p d a t e  o f f s e t ,  s a v e  z e r o / n o n - z e r o  s t a t u s  i n  U F 1 ,
6 9  -  #  a n d  s t o r e  i n  R F 0 2
7 0  -  w a i t  d a t a , t r a p l ( a b o r t ) ;
7 1  -  x f e r  c t d i n , r f 0 2 , g o  i r ;  #  I R  s e t  t r u e  t o  a l l o w  m o r e  d a t a
7 2  -  a l u  r f 0 2 + 1 ;
7 3  -  f l a g  z e r o , f l ;
7 4  -  x f e r  a c c , r f 0 2 ;
7 5  -
7 6  -  #  G e t  z - o f f s e t ,  s a v e  z e r o / n o n - z e r o  s t a t u s  i n  U F 2 ,  a n d  s t o r e  i n  R F 0 3
7 7  -  w a i t  d a t a , t r a p l ( a b o r t ) ;
7 8  -  x f e r  c t d i n , r f 0 3 ;  #  N O T E / W A R N I N G :  I R  s t i l l  p e n d i n g
7 9  -  a l u  r f 0 3 ;
8 0  -  f l a g  z e r o , f 2 ;
8 1  -

F ig u re  3 .11 : Code example -  Header collection
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8 2  -  #  E n o u g h  o f  t h e  h e a d e r  h a s  b e e n  c o l l e c t e d  t o  m a k e  a  r o u t e  d e t e r m i n a t i o n
8 3  -  c h e c k _ y :
8 4  -  j u m p  f l , c h e c k _ x ;  #  J u m p  a r o u n d  t h e  - y  t r a n s m i t t e r  c h e c k
8 5  -  l d c  c t a d d r _ c t t x 4 ,  r f 0 4 ;  #  S a v e  a d d r e s s  f o r  l a t e r  r e c o n f i g u r a t i o n
8 6  -  j u m p  r s v s t a t 4 , c h e c k _ x ;  #  C h e c k  t h e  r e s e r v a t i o n  s t a t  o f  T X 3
8 7  -  j u m p  t r u e , g r a b _ t r a n s m i t t e r ;  #  T r y  t o  a c t u a l l y  r e s e r v e  T X 3
88  -

8 9  -  c h e c k _ x :
9 0  -  j u m p  f 0 , c h e c k _ z ;  #  J u m p  a r o u n d  t h e  - x  t r a n s m i t t e r  c h e c k
9 1  -  l d c  c t a d d r _ c t t x 3 ,  r f 0 4 ;  #  S a v e  a d d r e s s  f o r  l a t e r  r e c o n f i g u r a t i o n
9 2  -  j u m p  r s v s t a t 3 , c h e c k _ z ;  #  C h e c k  t h e  r e s e r v a t i o n  s t a t  o f  T X 2
9 3  -  j u m p  t r u e , g r a b _ t r a n s m i t t e r ;  #  T r y  t o  a c t u a l l y  r e s e r v e  T X 2
9 4  -
9 5  -  c h e c k _ z :
9 6  -  j u m p  f 2 , b u f f e r _ p a c k e t ; #  J u m p  a r o u n d  t h e  - z  t r a n s m i t t e r  c h e c k
9 7  -  l d c  c t a d d r _ c t t x 5 ,  r f 0 4 ;  # S a v e  a d d r e s s  f o r  l a t e r  r e c o n f i g u r a t i o n
9 8  -  j u m p  r s v s t a t 5 , b u f f e r _ p a c k e t ; #  C h e c k  t h e  r e s e r v a t i o n  s t a t  o f  T X 3
9 9  -  j u m p  t r u e , g r a b _ t r a n s m i t t e r ; #  T r y  t o  a c t u a l l y  r e s e r v e  T X 3

100  -

101  -

1 0 2  -  #  W e  e i t h e r  l o s t  t h e  r e s e r v a t i o n  o r  t h e  p a c k e t  r e a l l y  g o e s  h e r e
1 0 3  -  b u f f e r _ p a c k e t :
1 0 4  -
1 0 5  -  #  L o a d  u p  c o l l e c t e d  h e a d e r  i n t o  r x  i n t e r f a c e  a n d  t r i g g e r  i t
1 0 6  -  #  H e r e  w e  h a v e  a s s u m e d  t h a t  o n l y  t h e  f i r s t  l o n g  w o r d  i s  n o n - c r c  d a t a
1 0 7  -  #
1 0 8  -  #  A l s o  t u r n  o u r  i n p u t  r e a d y  b a c k  o n ,  a l l o w i n g  C T R X  t o  d u m p  d a t a  i n t o  u s
1 0 9  -  x f e r  r f 0 0 , r x d 3 ,  g o  i r ;
1 1 0  -  x f e r  r f 0 1 , r x d 2 ;
1 1 1  -  x f e r  r f 0 2 , r x d l ;
1 1 2  -  x f e r  r f 0 3 , r x d 0 ,  g o  r x b u s ;
1 1 3  -

F igu re  3 .12 : Code example -  Route determ ination

a single ra-bit word of data. As noted in [3], it takes n  clock pulses for a  serial CRC 

im plem entation to  process a single word of data. By contrast, an n-bit parallel CRC 

generator requires only a single cycle. There is thus a break-even point of n t s — tp (where 

t s is the  clock period for the serial im plementation and tp is the period of the parallel). For 

this reason, and since d a ta  is not always available in serial form, parallel CRC generators 

have been studied by a number of researchers. Im plem entations have ranged from variations 

on the software approach using a  lookup table stored in ROM [31] to  fully parallel encoders 

[3, 37].

For the PRC, packet d a ta  is only available in parallel form and a t d a ta  rates such 

th a t serial com putation is not feasible. This leads to  the selection of a parallel CRC with 

the  obvious drawback of the num ber of gates required for an im plem entation. To rem 

edy these problems we have proposed and implemented bit-interleaved CRC generator and
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1 1 4  -  #
1 1 5  -  #  M a i n  D a t a  l o o p :  C o l l e c t  4  b y t e s  ( M a y b e  5  b y t e s  i f  t a g g e d  w i t h  E O P  o r  M A R K )
1 1 6  -  #  T h e  k e y  i s  t h a t  t h e  E O P  o r  M A R K  c o n d i t i o n  i s  h e l d  u n t i l  w e  w a n t  t o  l o o k  a t
1 1 7  -  #  i t  a f t e r  w e  h a v e  r e c e i v e d  t h e  d a t a  b y t e s .
1 1 8  -  d a t a _ l o o p :
1 1 9  -  l d c  r x c m d _ d a t a _ w _ c r c , r x c t l ;  #  A s s u m e  d e f a u l t  n o n - M A R K  d a t a  w i t h  C R C
1 2 0  -  w a i t  d a t a ,  t r a p l ( a b o r t ) ;  # W a i t  o n  b y t e  3
1 2 1  -  x f e r  c t d i n ,  r x d 3 ,  g o  i r ;  #  X f e r  b y t e  3  a n d  s e t  I R  h i g h  f o r  n e x t  b y t e
1 2 2  -  w a i t  d a t a ,  t r a p l ( a b o r t ) ;  #  W a i t  o n  b y t e  2
1 2 3  -  x f e r  c t d i n ,  r x d 2 ,  g o  i r ;  #  X f e r  b y t e  2  a n d  s e t  I R  h i g h  f o r  n e x t  b y t e
1 2 4  -  w a i t  d a t a ,  t r a p l ( a b o r t ) ; #  W a i t  o n  b y t e  1
1 2 5  -  x f e r  c t d i n ,  r x d l ,  g o  i r ;  #  X f e r  b y t e  1  a n d  s e t  I R  h i g h  f o r  n e x t  b y t e .
1 2 6  -  w a i t  d a t a ,  t r a p O ( e o p )  ,  t r a p l ( a b o r t ) ;  #  W a i t  o n  b y t e  0  o r  t r a p  o n  E O P
1 2 7  -  #  H a n d l e  p o s s i b l e  m a r k  b y  r e l o a d i n g  c o n t r o l  r e g .
1 2 8  -  j u m p  " m a r k ,  d O ;
1 2 9  -  l d c  r x c m d _ m a r k _ w _ c r c , r x c t l ;
1 3 0  -
1 3 1  -  d O :
1 3 2  -  x f e r  c t d i n ,  r x d O ,  g o  r x b u s ,  g o  i r ;  #  F i r e  o f f  R X B U S  i n t e r f a c e  a n d  s t a r t  o v e r
1 3 3  -  j u m p  t r u e ,  d a t a _ l o o p ;
1 3 4  -
1 3 5  -  e o p _ h a n d l e r :
1 3 6  -  w a i t  d a t a ,  t r a p l ( a b o r t ) ; #  M a k e  s u r e  t h a t  d a t a  h a s  a r r i v e d .
1 3 7  -  l d c  r x c m d _ f i n a l _ c r c ,  r x c t l ;  #  P r e p a r e  f o r  f i n a l  C R C
1 3 8  -  x f e r  c t d i n ,  r x d O ,  g o  r x b u s ;
1 3 9  -  l d c  r x c m d _ t i m e s t a m p ,  r x c t l ,  g o  r x b u s ;  #  T i m e s t a m p  p a c k e t  a n d  s i g n a l  E O P
1 4 0  -  j u m p  t r u e ,  i n i t ;
1 4 1  -
1 4 2  -
1 4 3  -  #  I t  i s n ’ t  t o t a l l y  c l e a r  w h a t  a c t i o n s  t h a t  a b o r t  h a n d l e r  s h o u l d  d o  t o  i n f o r m
1 4 4  -  #  t h e  u p p e r  l a y e r s  o f  t h e  c o m m u n i c a t i o n  s u b - s y s t e m .
1 4 5  -  a b o r t _ h a n d l e r :
1 4 6  -  j u m p  t r u e ,  i n i t ;
1 4 7  -

F ig u re  3 .13 : Code example -  Main d a ta  loop

CRC check units based on the CRC-CCITT polynomial. Theses units snoop the internal 

TX BU S/RX BU S for d a ta  th a t is transferred from /to  the buffer memory and m aintain sep

a ra te  32 bit-interleaved CRCs for each of the outbound/inbound channels. (See Figures 3.1, 

3.15 and 3.16.) The CRC check bits are generated in parallel, w ith even and odd bits being 

covered by independent polynomials. This approach results in a 2.4 times reduction in 

complexity and reduced the number of logic levels by 2 for bo th  the CRC generator and 

CRC check units as compared to  a parallel CRC-32.

The equations used in the generator and check units may be found in Appendix D. 

Inform ation concerning the error coverage for the bit interleaved approach can be found in 

[13, 14].
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1 4 8  -  #  T h e  a d d r e s s  o f  C T T X  t o  t r y  t o  r e s e r v e  i s  p a s s e d  i n  R F 0 4
1 4 9  -  g r a b _ t r a n s m i t t e r :
1 5 0  -  x f e r  r f 0 4 ,  c t a d d r O ;
1 5 1  -  l d c  c t c m d _ r e s v ,  c t c t l ,  g o  c t b u s ;
1 5 2  -  #  T h i s  j u m p  w i l l  s p i n  u n t i l  c y c l e  i s  c o m p l e t e
1 5 3  -  j u m p  ~ a c k , b u f f e r _ p a c k e t ;
1 5 4  -
1 5 5  -  #  W e  g o t  t h e  t r a n s m i t t e r  w e  w a n t e d  a n d  n o w  f o r w a r d  t h e  p a c k e t  h e a d e r .
1 5 6  -  l d c  c t c m d _ d t x ,  c t c t l ;
1 5 7  -  x f e r  r f O O ,  c t d o u t ,  g o  c t b u s ;
1 5 8  -  x f e r  r f O l ,  c t d o u t ,  g o  c t b u s ;
1 5 9  -  x f e r  r f 0 2 ,  c t d o u t ,  g o  c t b u s ;
1 6 0  -  x f e r  r f 0 3 ,  c t d o u t ,  g o  c t b u s ;
1 6 1  -
1 6 2  -  #  R e c o n f i g u r e  t h e  C T R X  t o  u s e  t h e  r e s e r v e d  t r a n s m i t t e r .
1 6 3  -  x f e r  r f 0 4 ,  c t d o u t ;
1 6 4  -  l d c  c t c m d _ c f g O ,  c t c t l ;
1 6 5  -  l d c  c t a d d r _ c t r x l ,  c t a d d r O ;
1 6 6  -  l d c  O x f f ,  c t a d d r l , g o  c t b u s ;
1 6 7  -  #  T h e  c l e a r  a l l  a t  t h e  b e g i n n i n g  w i l l  r e s e t  o u r  I R  t o  h i g h
1 6 8  -  j u m p  t r u e , i n i t ;
1 6 9  -
1 7 0  -  e n d

F igu re  3.14 : Code example -  T ransm itter reservation

ERRORZero
Detect

F igu re  3.15: Parallel CRC Check Unit
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D(31:0)
Next
State
Logic

CRC(31:0)

F ig u re  3 .16 : Parallel CRC G enerator Unit

3 .3 .4  O p eratin g  S y stem  Support

The PRC interacts with, and supports, the operating system  running on the IMU in 

several ways. These include inbound and outbound page sequencing, in terrupt m anagem ent, 

precise tim e-stam ping of packets, and the error detection as described previously. All of 

this interaction, excepting d a ta  writes and reads to  the buffer memory, takes place using 

the  PCBUS, which is m apped into the IM U’s physical address space.

One of the key functions supported by the PRC is autom atic page sequencing on both 

the outbound and inbound channels. As alluded to  earlier, the IMU controls the page 

sequencing by managing seven independent stream s of Page Control Tags (P C T s). For 

the inbound packet stream s, the IMU loads PC Ts th a t describe the base location of each 

page. For each page associated with an outbound message, the IMU loads a PC T  into the 

PRC. Each PC T  contains inform ation about the base location of the page and the am ount 

of d a ta  on the page. In addition, PC Ts associated with outbound stream s contain a  field 

specifying how many longwords a t the beginning of each page should be excluded from the 

CRC calculation. This allows the  downstream  PRC RXs to  modify the lowest-level routing 

headers w ithout affecting the packet’s CRC. Finally, outbound PC Ts have a flag th a t can 

indicate th a t the page is the last of the packet.

The PC Ts for each outbound stream  are stored in FIFOs th a t are part of the specific 

TFU  th a t manages transmission in the direction in which the stream s are associated. The 

inbound stream s have a single FIFO  such th a t each inbound channel takes the next available 

PC T . In the current design the outbound FIFOs are 4 PC Ts deep and the inbound FIFO  is
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16 PC T s deep. The intention is to  allow the different components of the PRC to  be serviced 

by the  IMU in bursts. For example, in a single PCBUS read the IMU may determ ine the 

capacity of all of the outbound PC T  FIFOs and subsequently service all of them  in a single 

invocation of the PRC in terrup t service routine. Since the PRC is designed to  support a 

tightly-coupled flow-control scheme, the unavailability of a P C T  for a particular channel 

doesn’t cause the loss of a packet bu t ra ther idles transmission in the case of outbound 

channels or eventually suspends acknowledgements for inbound channels.

W ith  the possibility of having twelve active channels, the potential volume of in terrupts 

requiring service can be quite large. The design of the PRC specifically addresses this 

po ten tial problem. This support takes two forms: the event queue and the in terrup t masks 

th a t determ ine which events generate in terrupts.

Inform ation is conveyed from the PRC to  the IMU through the generation of events 

on the PRC and eventual retrieval of the events by the IMU. An event may be any of the 

following: a page fault, an end-of-packet signal (E O P), or a start-of-packet signal (SOP). 

A page fault occurs when a channel reaches the end of a page. For an outbound channel 

this is a function of the length field of the active PC T. For an inbound channel the page 

faults can be a ttribu ted  to two sources: the NPBUS interface because the current page has 

been exhausted or the PRC RX managing th a t particular channel (i.e. The PRC RX has 

conveyed the m ark command to  the IMU). In either case the page fault for the inbound 

channels indicates the channel and the length of d a ta  in the current page. The EO P and 

SOP events are associated with a particular channel and indicate the end or s ta r t of a 

packet, respectively.

Events are logged by the PRC in an internal FIFO called the event queue. Due to 

the first-in first-out nature of the queue, the events can be read out by the IMU via the 

PCBUS in the order in which they occurred. The only events which are not recorded in 

the event queue are page faults 011 outbound channels. The length inform ation on inbound 

pages is conveyed back to  the IMU through page fault events. These events contain enough 

inform ation (i.e., the actual num ber of longwords used) to construct PC Ts th a t can be used 

in subsequent outbound transm ission. An in terrup t of the IMU is triggered by any SOP 

or EO P event, or by a channel needing more page addresses. The PRC incorporates an 

in terrup t masking scheme th a t allows the IMU to  individually mask in terrupts due to  TX 

SOPs, TX  EO Ps, RX SOPs, and RX EOPs. In terrupts due to  page requirem ents, however, 

cannot be masked inside the PRC.
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A nother feature specifically incorporated into the im plem entation of the PRC to  support 

OS functions is send tim e-stam ps and receive tim e-stam ps. The ability to  accurately tim e

stam p messages close to  the network hardw are and how this aids in synchronization of the 

clocks in a distributed system  is discussed in [38] and m otivated its inclusion in this work.

3 .3 .5  D esig n  D ecision s R ev is ited

At m any points during the  im plem entation of the PRC we were faced w ith design 

decisions th a t shaped the final capabilities of the PRC. This subsection sheds some light on 

a few of the key decisions and discusses how we arrived a t our solutions.

The interconnect structu re of the CTBUS was one of the first decisions th a t needed 

to  be evaulated. The choice was limited to either a cross bar w ith the TFU s, PRC RXs, 

and CTBUS RXs requesting service, or the demand slot TDM  scheme described earlier. 

The former was eventually rejected due to  the excesive num ber of I /O  pins th a t would be 

required for a parallel im plem entation. The demand slot arb itration  m ethod was chosen 

over o ther TDM arb itration  techniques since it fairly distributes the bus bandw idth in times 

of high utilization but allows idle cycles to be used in the event of unbalanced traffic.

The desire to  minimize unnecessary traffic on the CTBUS m otivated several of the 

design decisions revolving around interaction with the CTBUS. The first question was how 

to  m aintain the reservation sta tus. The inclusion of the reservation sta tus unit in the 

PRC ra ther than  the Network Interface Controller or the individual CTBUS transm itters  

m aintaining their own status allowed both  the TFU s and RXs to  concurrently check the 

s ta tu s  of the CTBUS transm itters they are attem pting  to  reserve. This allows the units to 

issue the R E S V  command only after they know the unit has been previously freed. Several 

o ther alternatives were considered, including requiring the units to  continously issue R E S V  

com mands until the device positively acknowledged the reservation a ttem p t or to  snoop the 

CTBUS for R E S V / F R E E  commands. The former was rejected due to  the overhead placed 

on the CTBUS. The la tte r was rejected since its hardw are complexity is equivalent to  the 

current im plem ented unit.

Similar to  the handling of reservation status, the availability of individual IR D A T A  

lines was chosen over a scheme in which the device would positively or negatively acknow

ledge each d a ta  transaction on the CTBUS.

The im plem entation of the page sequencing is another area where several different m eth

ods were evaluated. The current im plem entation requires th a t the IMU provides stream s of
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PC T s. One would think th a t an obvious improvement would have the PRC actually fetch 

the  next P C T  autom atically. This was not done for two reasons. F irst, this assumes th a t 

the  PRC has detailed knowledge of the d a ta  structures used by the IMU. Second and most 

im portan t, autom atic page following would prevent partial cut-throughs using the buffer 

memory. W ith  the current im plem entation, a packet can be resubm itted for transm ission 

as soon as a single page has been received. If the source nodes are not able to  provide da ta  

fast enough, then the T FU  will exhaust its page queue and simply wait for the next PC T. 

The alternative approaches th a t follow the page structures autom atically would have to use 

some form of page locking to  indicate th a t the next page is available. This was deemed to  

be too expensive to  im plement for the am ount of traffic th a t would take advantage of this 

capability.

The decision to  support the stalling I/O  operations in the RX was made after observing 

the excessive num ber of WAIT instructions required to stay in synchronization with the 

CTBUS and RXBUS interfaces. The cost of adding these features was minimal since the 

microsequencer m ust already handle the W AIT, JUM P, and RETURN instructions.
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3.4 Comparison to Related Commercial and Research Devices

In this section we compare the features of the PRC to those available in current research 

and commercial devices. It is im portan t to note th a t none of the systems discussed were 

designed for the  particular region of design space th a t the  PRC is ta rge ted , therefore making 

direct comparisons difficult. This does not mean th a t we cannot learn from previous mis

takes or successes. Furtherm ore, it does not mean th a t future systems for these alternative 

domains can’t in tegrate some of the features th a t we have chosen to  incorporate.

The differences between the related systems and the PRC can be divided into several 

dimensions. These include the decision to  use centralized hardw are com ponents, the grain 

size of the com putation tasks, and the level of support services provided. In term s of the 

spectrum  of possible designs, the communication subsystems th a t are intended to  provide 

support for a network of w orkstations tend to  provide high-level services through a single 

p o rt to  the interconnect fabric. On the other end of the spectrum  are the com munication 

subsystem s targeted  for today ’s tightly-coupled multiprocessors. Here the packets are short, 

the num ber of connections to the interconnect fabric larger, the interconnect assumed to 

be reliable, and the host processor required to  interact quite closely with the hardw are. 

The PRC is placed somewhere in between these two extremes; targeted  for perform ing and 

supporting experiments on fault-tolerant distributed real-tim e systems, the PRC needs to 

support interm ediate performance communication with multiple ports into an interconnect 

fabric.

In examining the systems described below we will focus on the following characteristics 

when applicable:

• The operating domain originally envisioned.

• The interconnection topology or fabric.

•  The num ber of network ports.

• The routing algorithm (s) supported.

• The switching methodology.

• The packet/m essage sizes supported.

• The assumed media characteristics.
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• The physical interconnection cost issues.

• The type of operating system  support.

Post Office (M a y f ly /F A IM -1 )  The Post Office (PO ) of the Mayfly system [5, 17, 18] 

(developed by H ewlett-Packard Laboratories) is a system whose architecture and function

ality m ost closely matches th a t of the PRC. The PO is a independent packet delivery 

subsystem  th a t has evolved from its original inception as the com m unication support for 

Schlum berger’s FAIM-1 symbolic multiprocessor [19, 49, 50] to  its current role. The end ta r 

get environm ent for the system has changed from supporting an ultra-concurrent symbolic 

m ultiprocessor for AI systems to the existing design goals of being a scalable general-purpose 

parallel processing environment for modern program m ing languages. Surprisingly enough, 

the PO architecture and supported functions have remained relatively constant even though 

m ost of its surrounding components have radically changed.

The interconnection topology provided by the PO is a two-level processing surface based 

on a regular hexagonal surface with a wrap structure using a tw isted torus. This wrap 

s truc tu re  is isomorphic to the C-wrapped structure being used for HARTS as described 

earlier. This two-level structure is achieved by placing special three way switches on the 

periphery of the lower level surface and connecting two adjacent surfaces. For exam ple, 

consider the original II4 surface presented in Figure 2.1. Instead of directly connecting the 

gray wrap links as originally described, insert a three-way switch so th a t a packet may either 

take the wrap link or exit the surface. The exit links are then connected to  an adjacent / /  —4 

surface. This hierarchical scheme doesn’t provide real benefits until the to ta l num ber of 

nodes and surfaces are reasonably large. A I I7 surface containing 127 nodes has a diam eter 

of six com pared against a two-level surface constructed from a series of II3 surfaces (a  S-2 

E-3 surface using Davis’s notation), which has a diam eter of five. The benefits are clearly 

presented when comparing the difference in the diam eters of a  E-140 to a series of E-10 

surfaces (139 vs 89). This reduction is gained by having the routing algorithm s deal with 

two sets of offsets; one for the base surface and one for the surface constructed by tessellating 

the  base surface.

The PO claims to  support the dynamic selection of four types of routing algorithm s: 

virtual cut-through, best path, no farther, and random. In reality, the PO doesn’t really 

select one of these algorithms bu t sequences through these four sub-algorithm s as a  single 

routing/sw itching algorithm . Only the router modules associated w ith input ports perform
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the virtual cut-through algorithm , which im plem ents the same policies as the best path 

algorithm  but a ttem pts to  directly connect the input port to  the ou tpu t port prior to 

the entire packet arriving at the  input port. If an inbound packet can not be handled 

successfully by the virtual cut-through phase, then best path algorithm  is a ttem pted . This 

policy a ttem pts to  transm it the packet out a po rt th a t will result in the most routing options 

for the router in the next node. If th a t isn’t im mediately possible, best path attem p ts  to 

select a route th a t still preserves minimal path  routing. Once a certain tim e threshold 

for a particular packet is exceeded, the router modules switch from attem pting  best path 

routing to  attem pting  no farther routing by routing the message to  a node which is the same 

num ber of hops distant. Finally, after another tim e threshold is exceeded, the routers use 

the random approach in which the packet goes out in any direction.

The PO uses a fixed packet size of 36 words and can carry a payload of 32 words. The 

4 word header specifies the surface, the node within the surface, the original source, the 

message id, the packet id, and the to ta l num ber of packets associated with the message. 

The PO deals solely with packets, bu t the message id is used by its m anaging processor 

(M P) and allows the received packets to be directly transferred to  the appropriate locations 

in the M P ’s memory.

Each PO has six 12 bit bidirectional buses used for com m unicating with the POs in 

adjacent nodes and a 32 bit interface onto the M P ’s bus. A rbitration for the bus between two 

POs is handled by one of the POs and is granted for the period of a packet w ith the option 

of the receiving PO NACKing the  packet at any time during the transfer. Retransm ission 

for packets th a t are corrupted or refused due to  lack of buffer space are handled directly by 

the port controllers associated with each link.

The PO interface with the operating system and its m anaging processor (the M P) is 

accomplished in several ways. F irst the PO can act both as a co-processor to  the MP 

an d /o r an instruction assist device. This allows efficient use of the M P ’s instruction set 

(a  HP Sterling 1.5 which is a 16 Mhz 32 bit im plem entation of H ew lett-Packard’s RISC 

architecture) for loading the transm it and receive packet FIFO. The PO is designed to 

operate in cither polled or in terrup t driven mode, thus allowing the OS to use the mode 

th a t is appropriate for the current network load (or set of device drivers available).

There are many differences between some of the fundam ental decisions th a t the designers 

of the PO made and those of the PRC. These include the fixed packet size, placement of 

buffer space, the type of service expected from the MP, and resource allocation policies.
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T he fixed packet size of the  PO is acceptable for the MIMD m ulti-com puter which 

the  PO is designed to  support. This fixed packet size is also necessary for the  PO to 

m ake guarantees th a t it will not deadlock on its internal packet buffers. Since the  PRC is 

intended to  support a  wide variety of communication protocols, many of which have a  much 

larger packet size, the PRC can not place such a restriction on the packet size and therefore 

externally buffers transit packets. The PRC assumes th a t the external packet buffers are 

large enough th a t higher level protocols can prevent deadlock due to  buffer starvation.

The type of interaction and control required differs considerably between the PRC and 

the  PO. The PO operates as an autonom ous packet delivery subsystem  with only the 

in itia ting  MP and receiving M P required to  in teract with the PO. This also m eans th a t 

the M P has no way of influencing the routes or resources being used. In contrast, the PRC 

requires the IMU to  schedule the packets for transm ission on each individual TFU  (bo th  for 

injected packets and transit packets th a t could not cut-through). This allows the IMU and 

PRC to  adap t to  changing network conditions and mission requirements. For exam ple, the 

IMU has a t its disposal the packet scheduling policies for each of the TFU s, the reservation 

release policies of the TFU s, and the inter-device communication RAM. This type of control 

provides the necessary support for both  fault-tolerant and real-tim e com munication.

There are several lessons th a t we can learn from the P.O design. F irst, the flexibility 

gained from having multiple routing algorithm s (or phases of an algorithm ) can be quite 

im portan t. This can be seen from the evolution of the routing support originally proposed 

for the FAIM /1 system and w hat was finally implemented in the PO for the Mayfly system. 

Second, the OS interaction with the PO can be dealt with in many ways. The PO acts as 

an autonom ous sub-system but requires the MP to calculate the checksum on the packets 

subm itted . In contrast, the PRC requires the IMU to  initiate packet transm ission in the 

T FU s bu t does not require the IMU to scan the entire packet in order to  accum ulate a CRC. 

Last, it is easy to design a system  th a t will give a large variance for the packet delivery 

times. There are several examples of this in the PO. F irst, the PO does not im plem ent a 

FIFO  policy in selecting which packet will be selected for transm ission out of the  packet 

memory. Second, the PO has seven routers attem pting  to  gain access to an outbound port 

in order to  transm it a packet. Six of these are assigned to  servicing ports th a t are receiving 

packets and thus will a ttem p t a cut-through. This appears to  lead to  the situation in which 

a node can have its packet delivery latency significantly influenced by cut-through traffic.
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Torus R outing Chip The torus routing chip (TR C ) is designed as a building block for 

h igh-throughput, low latency message-passing concurrent com puters based on a byte-wide 

parallel fc-ary n-cube interconnection network [9, 11]. The TRC im plem ents a provable 

deadlock-free interconnection network by routing variable length messages using wormhole 

switching on two virtual channels per physical link. The TRC is im plem ented using a 5x5 

10 bit crossbar with five 5-way arb iter built into the crossbar switch, 5 input controllers th a t 

make routing decisions, and 5 ou tpu t controllers th a t handle the flow control and physical 

m ultiplexing onto the ou tpu t links.

A lthough the TRC is now quite dated, some of its contributing features can be found 

in m any of the second generation parallel machines. Most notable is the efficient use of 

wormhole routing th a t appeared in the Mesh Routing Chip (M RC) used in the Aintcx 2010 

[42] and the theory behind constructing deadlock-free routing by defining an order in which 

the packets use the available virtual channels[10].

W hen evaluating the TRC in the intended operating domain of the PRC the fixed 

routing algorithm , lack of end-to-end error detection, and lack of operating system  support 

could be considered m ajor drawbacks. The beauty of the TRC is th a t it is small and simple.

M essage Driven Processor The Message-Driven Processor (M D P), like its predecessors 

(T R C /N D F /A D C ), is designed to be part of a m ulticom puter capable of supporting fine 

grain, message passing, parallel com putation[12, 11, 36, 45]. W hat is novel about their 

approach is th a t the processor th a t comprises the core of each node has been made network 

aware. This has been accomplished by integrating a 36 bit (32 bits d a ta /4  bit tag) integer 

processor, a memory controller, a  3-D mesh router, 4K SRAM, and a 1 MB DRAM control

ler all into a single VLSI device. This provide both the end user and the operating system 

w ith low overhead mechanisms for com munication, synchronization, and translation.

As with many of the parallel machines, the physical proxim ity of the nodes allows for 

synchronous parallel interconnect, and the media characteristics are assumed to  be error 

free. These assum ptions im m ediately allow the MDP to ignore the need for any end-to-end 

error checking. Furtherm ore, the designers of the M DP have chosen to deemphasize any 

notion of the interconnection topology and use a simple 3-D mesh with dimension order 

routing w ith wormhole switching.

Messages are subm itted  to  the mesh router using the SEND and SENDE instructions 

which enqueue either one or two words per instruction. There is no DMA support and
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the SENDE instruction signals the end of the message under construction and initiates its 

transm ission. For any tim e lost in constructing messages the M DP certainly compensates 

w ith its hardw are support for the autom atic in terrupt and execution of a thread  upon arrival 

of a new message. This may occur on two separate message priority levels which further 

enhances the M DP flexibility.

C ertain key characteristics of the MDP can be observed in portions of the PRC architec

tu re  and im plem entation. The simple control interface in which the IMU subm its a single 

page tag  for a single page message serves the same purpose as the SEN D /SEN D E instruc

tions. The desire to  minimize in terrupt overhead by allowing the packet to  be collected 

completely before dispatching the receive thread is a dual to  the P R C ’s ability to  filter out 

in terrupting  events until the end of packet is detected.

T he m ajor differences between the MDP and the PRC are mainly an artifact of the 

intended operating domains. The router of the M DP is designed solely to  support low 

latency communication for the J-machine, and the intention is to  hide any notion of the 

network from the user. The PRC is designed to  allow the operating system designer the 

m axim um  am ount of inform ation and control of the network so th a t a communication 

subsystem  capable of supporting distributed real-tim e applications can be constructed.

N e c ta r  C A B  We now move from comparisions of the PRC to  routers supporting closely 

coupled parallel com putation to  more general network adaptors or communication control

lers. CM U’s Nectar p ro jec t’s design and im plem entation of the Comm unication Accelerator 

Board (CAB) clearly identifies some of the im portan t features th a t a general purpose com

m unication system should efficiently support [8, 30, 33, 48]. Heterogeneity, scalability, low- 

latency, and high-bandwidth communication were the stated  goals of the N ectar project. To 

achieve these goals they designed an efficient parallel crossbar interconnection network th a t 

can be cascaded in multiple levels to  support more nodes; hence satisfying the scalability, 

low-latency, and high-bandw idth requirements. The designers’ answer to  the heterogeneity 

requirem ent was the CAB, a flexible and highly program m able network processor. Similar 

to  the PR C , the CAB had to balance the desire for flexibility against the need for fast basic 

operations.

As w ith the HARTS Network Processor, the CAB architecture was divided into three 

main function blocks: the host interface, the processing unit, and a network interface. For 

purposes of comparison to  the PRC we will only consider the functions supported by their
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network interface.

The network interface is composed of two independent sections: a transm itte r and a 

receiver. These two sections operate completely independently of one another and are 

controlled as separate devices by the managing processor. Both the transm itte r and the 

receiver have a private DMA channel th a t allows for unattended d a ta  transm ission/reception 

once set up by the processor. Physical connection to the network is performed by AMD 

TAXI transm itters and receivers.

There are significant differences in some of the design decisions undertaken by the CAB 

designers when compared against the P R C /N I combination. F irst, the CAB uses only 

packet level flow control and claims th a t byte-level flow control would too greatly im pact 

the  peak performance. While this is true for the SRAM based CAB design, the fact th a t 

the PRC is managing six TAXI device pairs and writing into DRAM invalidates this claim. 

Also, routing in a crossbar can occur in a single cycle, which is not possible in the context of 

more complicated routing/sw itching algorithm s for point-to-point networks th a t the PRC 

is designed to  explore. These requirem ents force the PRC to support byte-level flow control, 

bu t its costs are partially am ortized by having up to 12 channels independently active.

The m ethod in which DMA is im plem ented also differs between the two designs. The 

PRC preloads the page tags th a t identify where incoming d a ta  will be received and then 

has the IMU and vYPI interfaces of the NP construct the contiguous message images as 

they are copied into the address space of the application processors. The CAB requires the 

processor to  respond to  the incoming packet and set up the DMA prior to  overrunning a 

FIFO  inside the receiver of the network interface. This allows for the possibility of directly 

transferring the received d a ta  into the host memory but places a significant response time 

limit on the processor th a t can only be done for a limited num ber of incoming channels. 

W ith  the possibility of 6 packets arriving almost simultaneously, the PRC m ust take a more 

au tom ated  approach to  the reception. The same type of differences exist on the transm itte r 

side. Here the PRC loads a stream  of page tags into the appropriate T F U ’s, where as the 

CAB m ust set up the DMA for each contiguous block of data.

3.5 Low-Level Simulation and Geometry Results

The PRC design presented in this chapter has been completed and gate level simulations 

performed. Designed in a 1.0/iin CMOS process, the PRC measures 14.005mm by 13.4mm.
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T he PRC requires a to ta l of 180 pins, divided into four main groups. Power, ground, and 

clock lines consume 15 pins, while the remainder are divided am ongst the PCBU S, the 

CTBUS, and the NPBUS.

During the design of the PRC, we targeted for a CTBUS cycle period of no more than  

50ns (20M Ifz). Timing analysis, however, has shown th a t this interface will be able to 

function w ith a 30ns cycle (33MHz). This exceeds the 22.5 MHz cycle tim e if th e  AMD 

TAXIchips are run in synchrounous mode which currently is our mode of choice for the 

NI. In the current design of the Network Processor, this speed is sufficient to  sa tu ra te  the 

mem ory subsystem.

W ith an unloaded system, the PRC can begin transm ission of a packet w ithin 500ns of 

the  first page control tag  being latched into the page queue. During this tim e, the PRC 

retrieves the first word of the packet from the buffer memory, obtains a reservation of the 

CTBUS transm itte r, and latches the first byte of the first word into th a t transm itte r.

In addition to  the low-level hardware simulations we have developed an interm ediate 

level event-driven sim ulator presented in C hapter 5 th a t allows us to  model the entire point- 

to-point network based on the operating characteristics of the PRC. The sim ulator is able 

to  capture activities with a granularity as small as a bus cycle, where necessary, in order to  

provide accurate estim ates of the  network performance.

3.6 Summary

T hroughout this chapter, the  flexibility of the PRC has been emphasized as a key 

desirable a ttribu te . W hy is this flexibility im portant? The flexibility of the  PRC will 

be crucial to  experiments th a t vary routing strategies in order to  determ ine which is the 

“b es t” for a particular application or interface. The intelligence of the PRC receivers allow 

complex routing decisions to  be made at a level below th a t of the main processor of the 

NP. The PRC even provides support for priority based decisions: if a particu lar channel 

(for w hatever reason) needs to be reserved to  high-priority traffic, low-priority traffic can 

be prevented from cutting through.

One feature of the PRC design which has not been previously emphasized is how the 

CTBUS protocol insulates the PRC from the physical im plem entation details of the N et

work Interface. For example, HARTS uses the AMD TAXI chip set to  create the  physical 

links between nodes. These could easily be replaced w ith CTBUS-compatible parallel in ter
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connect w ithout requiring modifications to  either the PRC or the software. This separation 

also serves to  highlight the distinction the PRC provides between the routing algorithm  and 

switching scheme. The CTBUS protocol is used solely for controlling switching.

Several primitives were directly provided to  support real-tim e com m unications. These 

include the transparen t addition of send and receive tim e stam ps, which are useful for clock 

synchronization and distributed agreement algorithm s. The ability to  im plem ent channel 

priorities allows the IMU to  influence decisions made by the low-level routing strategies as 

a  function of high-level goals of the IMU.

The PRC provides the flexibility required for an experim ental system combined with the 

perform ance of a hardw are im plem entation. Although the PRC is not designed to  com pete 

w ith commercial devices on raw performance, the insights gained from its design and use in 

an experim ental environment can be used in the design of future com m unication subsystem s 

th a t operate in its domain.



CHAPTER 4

DELIVERY TIME DISTRIBUTIO NS

4.1 Problem  Description

This chapter derives an analytical model to  evaluate the v irtual cut-through message- 

passing scheme in a distributed com puting system based on a hexagonal mesh architecture 

described in C hapter 2.

Since real-tim e applications normally require short response tim es, simple store-and- 

forward message passing schemes may not always be suitable. Consequently, we look a t a 

message passing scheme virtual cut-through as described earlier.

A lthough virtual cut-through was proposed almost a decade ago, it has not been im

plem ented in real systems until recently. Since custom ASICs have become economically 

viable, several distributed systems are being designed and im plem ented th a t use v irtual 

cut-through (or some variant thereof) as their basic message passing scheme. It is easy 

to  see th a t virtual cut-through will perform better than  a conventional packet-switching 

scheme in term s of packet delivery times. However, the actual im provem ent it offers over a 

packet-switching scheme for packet deliveries has not yet been accurately evaluated.

K erm ani and Kleinrock carried out a mean value analysis of the perform ance of v irtual 

cut-through for a general interconnection network [26]. However, a mean value analysis is 

not adequate for real-tim e applications because worst-case com munication delays often play 

an im portan t role in the design of real-time systems. For example, the mean value analysis 

cannot answer questions like w hat is the probability of a successful delivery given a  delay 

or w hat is the delay bound such th a t the probability of a successful delivery is g reater than  

a specified threshold.

The authors of [26] wanted to avoid any dependence on the interconnection topology in 

their analysis. As a result, they assumed th a t the probability of a packet getting  buffered

60
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at an interm ediate node is a  given param eter. Since one cannot get a reasonable estim ate 

of the perform ance of v irtual cut-through w ithout an accurate estim ate of the  probability 

of buffering, the approach in [26] becomes useful only if we can accurately determ ine the 

probability of buffering for a given interconnection topology. However, determ ining the 

probability of buffering a t an interm ediate node for a given topology is not simple. This 

is because each node in a d istributed system handles not only all packets generated at the 

node but also all packets passing through the node (called transit packets). Consequently, 

to  evaluate the  probability of buffering, we have to  account for the fraction of packets 

generated a t o ther nodes th a t pass through each given node.

In contrast to  [26], we first derive the probability th a t a packet is destined for a particular 

node by characterizing the hexagonal mesh topology. This probability of  branching is then 

used as a param eter in a queueing network to  determ ine the throughput rates a t each node in 

the mesh. After the throughput rates are found, the probability th a t a packet can establish 

a cut-through a t an interm ediate node is derived. From these param eters we approxim ated 

the probability distribution function of delivery times for a packet traversing a specified 

num ber of hops. The im portance of this kind of analysis in a real-tim e system , as opposed 

to  a mean value analysis, is then illustrated through some numerical examples and com pared 

w ith sim ulation results th a t are based on some of the relevant param eters in H A R T S .

The chapter is organized as follows. The term s and notation used are introduced in 

Section 4.3. Analytical expressions for the branching probability and buffering probability 

are derived in Section 4.4 and the probability distribution function of packet delivery times 

is derived in Section 4.5. Numerical results from both  the analytic model and simulations 

are presented and com pared in Section 4.6. We conclude with Section 4.7.

4.2 M essage M odel

This section presents the derivation of the probability distribution of packet delivery 

times in a C-wrapped If-m esh th a t implements v irtual cut-through. A queueing network 

will be used to  carry out this analysis.

To make the analysis trac tab le , we make the following assumptions:

A l :  Poisson packet generation w ith rate  XG at each node.

A 2: Exponentially-distributed packet lengths w ith mean 2.
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A 3: The length of a packet is regenerated at each interm ediate node of its route independ

ently of its length a t other interm ediate nodes.

A 4 : Nodes have no preferential direction for communication.

A ssum ptions A1-A3 are consistent with Kermani and Kleinrock’s assum ptions in [26]. Al

though not completely accurate, it has been shown through empirical studies th a t these 

assum ptions lead to  a fairly accurate characterization of message arrivals. Assum ption A4 

implies th a t all minimal length paths between a source and destination are equally used. 

A4 does not imply uniform communication over all nodes of the mesh, but implies uniform 

com m unication with nodes reachable in the same number of hops. So, let qk denote the 

probability of a node communicating with a node which is k hops away. The definition of 

qk will be used to  derive some of the base param eters for the queueing network.

Due to  the homogeneity of a C-wrapped Ii-m esh, any node can be considered as the ori

gin of the mesh and labeled 0. W ithout loss of generality, we can concentrate on evaluating 

the  d istribution of the packet delivery times for the packets generated a t node 0. In order to  

determ ine the distribution of the  delivery times it will be necessary to evaluate the transit 

load handled by node 0. This transit load is a function of both  the packet generation ra te  

a t each node and the interconnection topology. A nother param eter necessary to  determ ine 

the d istribution of the delivery times is the probability th a t a transit packet (a t node 0) will 

be buffered (a t node 0) as a result of not being able to  establish a circuit to  the neighboring 

node. The derivation of the analytical expressions for the transit load and the probability 

of buffering is presented in Section 4.4. The distribution for the packet delivery tim es is 

then presented in Section 4.5.

4.3 Terms and N otation

In the following analysis let e be the dimension of the Ii-m esh and let [j]; denote j  mod i. 

Also let N  =  ( 0 , 1 , . . . ,3e(e — 1)} be the set of all nodes in the H-mesh.

D e f in it io n  2 A route from a source node, s £ N , to a destination node, d, £ N ,  is a 

sequence n Qn x ■ ■ ■ n t ■ • ■ n k_y n k o f  nodes, Hi £ N , V i £ { 0 ,1 , . . . ,  /c}7 such that (i) n 0 — s, 

n k =  d, and (ii) there exists a direct link in the H-mesh between n, and  n ;+i, Vi £ {0, —

1}. The length of a route r is the number of components in the sequence and will be denoted 

by len(r) .
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D e f in it io n  3 A  m inimal route from s G N  to d 6 N  is a route Ti from s to d such that 

len(r i)  < len(r f)  for all routes r 2 from s to d.

D e fin it io n  4 A n  anchored route is an ordered pair (n0 - - - n k , x ) consisting of  a route 

n 0 ■ ■ -nk and x  € N  such that

1. k  > 2,

2. n 0 ■ ■ -nk is a minimal route from n 0 to n k, and

3. 3 z, 1 < i < k — 1, such that n 8- =  x.

x is called the anchor of (n0 • • -nk , x).

D e fin it io n  5 A  shape s of length k, 2 < k < e — 1, is a sequence axa2 • ■ • • •ak_ iak,

O’i G {do, ■ ■ ■, d5}, such that

k  5  5

U {“i} € U U U {«.<%+.].}}
ini j =0 j= 0

=  { {do}, {di}, {d2}, {c/3 }, {^4 }, {d$},

{do, d i} , {di, d2}, {d2, d3}, {d3, d4}, {d4, d5}, {d5, d0} } .

The length of  shape s is denoted by £(s).

A  shape is a route th a t a packet can traverse. The above definition of a shape is 

m otivated by the fact th a t all minimal routes between any pair of nodes are formed by links 

along one or two directions only [6]. For example, route A in Figure 4.1 corresponds to  the 

shape dididodx such th a t U-Lj {o,;} =  {d0,d i}  and route B corresponds to  the shape d0d0d0 

such th a t uf=1 {a*} =  {d0}. A shape can represent routes between several different pairs of 

com m unicating nodes. For example, routes A and C in Figure 4.1 correspond to  the same 

shape but represent routes between two different pairs of com municating nodes.

D e f in it io n  6 A n  anchored shape p is an ordered pair (s , k ), where s is a shape, and  1 < 

k <  £{s) — 1 marks a position within the shape. The length of  an anchored shape (s , k ) is 

defined to be the length o f  the associated shape s.

There exists a one-to-one correspondence between the set of all anchored shapes and the 

set of all anchored routes w ith their anchor at 0. (In order to  not detract from the m ain goal 

of this chapter the proof th a t there is a one-to-one correspondence between these mappings
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Route C

Route A

Route B

n,; =

F ig u re  4 .1 : Example shapes in a H-m esh of dimension 5.

has been given in Appendix E.) The mapping from an anchored shape (ax ■ ■ - a{ - ■ ■ ak,£) to 

an anchored route (n0 ■ ■ • n k,0)  is done as follows:

cwhm(rii+i,(i~^f) if 0 < i < i  — 1

0 if i = l  (4.1)

cwhm(ni_ i ,a i)  i f f  +  1 < i < A;

where ai =  d[m+3]6 if a* =  dm, 0 <  m  < 5. The m apping from an anchored route (n 0 • • • n*, 0) 

to  an anchored shape (ax ■ ■ ■at ■■■ak, t )  is

a,- — cw hm ~ 1(ni_i ,r i i ) 1 < i < k

I =  argi<j<ifc-i(ni =  0). (4.2)

where arg i<j<k-i(nj = 0) refers to  the value of j  such th a t nj =  0. For example, consider 

the anchored route (33 —> 47 —*■ 0 —> 1 —> 15, 0) obtained from route A in Figure 4.1. From 

Definition 1, we know th a t cv^hm"1 (33,47)  =  dx, cw h m ~ 1 (47,0) =  dx, cw h m ~ 1(0 ,1 ) =  d0 

and c w h m ~ l ( \ ,  15) =  dx. Since 0 is the th ird  node in the route a rg 1< <4(n ;- =  0) =  2.
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It then follows from Equation 4.1 th a t the anchored shape corresponding to  the anchored 

route (33 -*■ 47 —> 0 —» 1 —► 15, 0) is (djcM o^i, 2).

Similarly, the anchored route (n 0n 1n 2n3n 4, 0) corresponding to the anchored shape 

(d id idQdi,  2) can be obtained as follows. Since the second element in the  anchored shape 

is 2, n-2 =  0. Since =  d4 and cw h m (0, d4) =  47, «x =  47. Proceeding further, we get 

n 0 =  33 because cv)hm(47, d4) =  33, and n3 =  1 because cw h m (0 ,d o) =  1. Finally, n4 =  15 

since cwhm{\,d. i )  — 15. As expected, combining these results we get the  anchored route 

corresponding to the anchored shape (dididady,2)  as (33 —» 47 —> 0 —> 1 —> 15, 0).

The minimal route corresponding to  the anchored shape p is one of the possibly many 

minimal routes between the source and the destination. The other minimal routes between 

the source and the destination can be obtained by perm uting the com ponents of the shape 

associated with p and applying a  mapping function similar to  the one above.

All of the routes associated with these perm utations will not necessarily go through 

node 0. Only the fraction of the to ta l number of routes from the source to  the destination 

th a t pass through node 0 will influence the transit load a t node 0.

4 . 4  Network M odel Derivation and Parameter Calculation

The packet transm ission in the Ii-mesh can be modeled as a Jackson queueing network, 

consisting of 3e(e — 1) +  1 service centers of the M /M /1  type. For each service center a 

packet completing its service may go to  either of its six im mediate neighbors or exit from the 

system. Packets whose final destinations are im m ediate neighbors will not use the service 

centers of their im m ediate neighbors and will exit the system at the current service center. 

Packets whose final destination are not im m ediate neighbors travel to  a neighboring service 

center.

Let pbij denote the probability th a t a packet completing its service a t a  node i will 

be routed to  neighboring node j .  Using assum ption A 4 and the fact th a t the C-W rapped 

II-Mesh is a homogeneous surface it is easily seen th a t all the pbtj have to  be equivalent and 

thus will be denoted by pb. Figure 4.2 shows a portion of the queuing network centered 

around node i.

The rest of this section concentrates on deriving an expression for pb. Once given an 

expression for this, we can derive the probability th a t a packet will establish a cut-through 

when arriving a t a  node in the Ii-m esh.
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i+3e-1 ][ i+3e-2

[ i+3e-6e+3i+3e-6e+2 ]

1  ~ 6 p ,

F ig u re  4 .2 : Network model around node i.

C a lc u la t io n  o f  pb

The following symbols are used to  identify the different packet arrival rates:

• AG : the ra te  of generating packets at a node.

• Ag2+ : the ra te  of generating packets at a node th a t are not destined for an im m ediate 

neighbor.

• At : the ra te  of transit packets arriving at a node.

• Ay2+ : the ra te  of transit packets arriving a t a node th a t are not destined for an 

im m ediate neighbor.

It is convenient to  define a function th a t counts the to ta l num ber of d ^ s  in the

shape associated with the anchored shape p, th a t is,

$ ( d j ,p )  =  | {ak : ak — dj, ak is in the shape associated with anchored shape p } | .
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Considering the anchored shape A from the previous example, 4>(d0 , (d id id0di,  2)) =  1 

and $(d i  , (d id id0di ,2))  =  3. This function is used to  derive the tran sit load associated 

w ith an anchored shape on node 0.

L e m m a  1 The contribution of  an anchored shape p to the transit load o f  node 0 is

Ag ■ Qk
L(p)  =

where k =  221=o and M (p )  =

M (p)

E jB=0 * M , p )

n ; =0 [* M ,p )!]

P ro o f :  It follows from the definition of anchored shape and a simple com binatorial analysis 

th a t the to ta l num ber of shortest routes between a source-destination pair is M(p) .

By the definition of qk, the ra te  a t which a source sends packets to  a destination is 

Aq • qk- By 4, all routes between the source and the destination are equally used. Hence,

L (p) = ■
Lemma 1 allows us to calculate the transit load for a single route through node 0. In 

order to  calculate the to ta l transit loads \ T and AT2+, we will need to  determ ine the to ta l 

num ber of minimal routes passing through node 0 for all pairs of com m unicating nodes. To 

determ ine this number we will partition  the set of all anchored shapes into sets th a t can 

be counted. Since there is a  one-to-one correspondence between the anchored shapes and 

anchored routes with their anchor at node 0, counting all anchored shapes is equivalent to  

counting all pair of nodes th a t have a minimal route passing through node 0.
defPartition  the set of all anchored shapes P  into the sets Pmn =  { p : 4>(dm,p ) > 1 } for 

0 < m  < 5 and n =  [m +  I]6. Intuitively, each Pmn contains anchored shapes w ith one or 

more dm and possibly some dn components.

L e m m a  2 The sets Pmn d= { p : § ( d m,p)  >  l , p  6 P  }, n = [m + 1]6, 0 < m  < 5

partition P.

P r o o f : We will first show th a t sets Pmn cover the entire set P.  For an anchored shape

p = (o ia 2 •ak,£), there are two cases to consider.

In the first case,

k

U {a*) = Ml}’ f°r some p G {0,1,2,3,4,5}.
2 - 1

From this fact we can conclude th a t p £
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In the second case,

k

U  {a,-} =  {rfindpj+1].} , for some *! € { 0 ,1 ,2 ,3 ,4 ,5 } .
i = l

In this case, p £ Pi][il+1]6.

We will now show th a t the sets Pmn are disjoint. Suppose not. Then, 3 Pilj 1 and Pi2j 2, 

ix i2, such th a t Piljl fl Pi2j2 ^  0. Consider an anchored shape p  £ Pilj l n  Pi2j 2 w ith the 

shape axa2 ■■-ak .

Case 1: j x — i2.
k k

p  £ Piljl implies dil £ |J {a,-} and, p £ Pi2h implies |J {a,} £ {{d i2,d j2} , { d i2}}.  Since by
i = 1 i ~ \

construction j x =  [ix +  1]6 and j 2 = [i2 +  1]6, and by the case under consideration i2 = j x we 

can conclude th a t i x /  i2 and i x ^  j 2. B ut, £  {di3,d j2} and dil ^  {dz-2}, a contradiction. 

Case 2: j x ^  i2.
k

p  £ P{1j 1 and p £ Pi2j2 imply {d2l,d i2} C [ J  {o.j}. This would violate the definition of an
j =i

anchored shape since j x — [?’i +  1]6 ^  i2. ■

In order to  calculate the to ta l transit load Ay we will need to  further refine the partition  

Pmn into the sets P„“6n =  { p : p £ Pmn, $ (d m, p) =  a , $ (d „ , p) =  b }. The proof 

th a t P ^bn is a refinement of Pmn is straightforw ard and thus om itted.

We are now in a position to  derive Ay.

L e m m a  3 The total transit load at node 0 is given by

C— 1
Ay =: \ G ^  6k(k  — 1) • qk

k - 2

where \ G is the total rate of packet generation at a node, and qk is the probability o f  a node 

communicating with a node k hops away.

P r o o f : Since there is a one-to-one correspondence between the anchored shapes and all

minimal routes through node 0,

Ay =  L(p),  where P  is the set of all anchored shapes
p£P

= l b  1 2  l (p )-
i=o  peP[,+1]6

From the definitions of shapes and anchored shapes, the length of the shape associated with 

the  above anchored shape p lies between 2 and e — 1. From the definition of Pmn we know
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th a t 4>(dm, p ) >  1. It follows from these observations th a t

^  =  E  £  £  . (4 -3 )
2 =  0  l < a < e - l  v £ . P a b

2 < a + b < e - l  »[» +  l l f ,

Note th a t all of the anchored shapes p  £ Pffn have length a +  b. Furtherm ore, since each 

shape associated w ith the anchored shapes of P ‘f n has only com ponents in the dm and

(  a + b \
dn directions, there are I 1 shapes in Pf+n . Given each shape one can then derive

V a )  
a + b — 1 anchored shapes. Therefore

pat 
*[*' +1]«

a + b ,
(a + b -  1)

a ! • 6 !

E?=o (a +  b -  1), p e  P£i+1] . (4.4)
”  n?=0 M d . m

Combining Equations (4.3) and (4.4) with Lemma 1, we get

5

At =  X} ] E  AG • qa+b ■ (a +  6 — 1). (4-5)
2 =  0  1 <  a  <  c  — 1

2 < a - \ - b < e -  1

Since Equation (4.5) depends only on (a + 6), we can substitu te  k  for a + b to obtain

5 e — 1

A T — E  E  ^G ' rP  ' ~  1) • &
2=0 k—2 

e — 1 5

= X] XI ^  ~ ^
Jb = 2 2=0 

e — 1

-  E  -  ! )  ' (lk- ■
k = 2

L e m m a  4  The transit load at node 0 for  packets not bound for  an immediate neighbor is 

given by

e — 1

AT2+ — \ q 6h(h ~  2) • (?*•
k=3

P r o o f :  The proof of this lem m a follows closely th a t of Lem ma 3 w ith the  additional

restriction th a t node 0 cannot be in the last position for the anchored shapes being counted. 

Having node 0 in the last position of a anchored shape corresponds to  having the  anchored
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shape term inate  in an im m ediate neighbor. This is exactly the traffic th a t we are try ing to  

elim inate.

Since there is a one-to-one correspondence between the anchored shapes and all minimal 

routes through node 0,

\ r2+ =  ^  L ( ( s , k ) ) ,  where P  is the set of all anchored shapes
(s, fc)6P

k j i l e n ( s ) — 1 

5

= E  E  £((».*))■
1 = 0  ( . . . ) e p , | . + , i r

k ^ £ l c n ( s )  — 1

In contrast to  Lemma 3, the lengths of shape s associated with the above restricted  

anchored shape ( s ,k )  lies between 3 and e -  1. From the definition of Pmn we know th a t 

$ (d m, ( s ,k ) )  > 1. It follows from these observations th a t

AX2+ =  ^  L((s ,k ) ) .  (4.6)
i  =  0 I < a < e - 1  ( s , k ) € P a,h ,

3 < a  +  6 < e —1 ' f‘ +  1 le
k ^ l e n ( s )  — 3

N ote th a t all of the anchored shapes (s, k) G P ^ n have length a + b. Furtherm ore, since each 

shape s associated w ith the anchored shapes of P ^ n has only com ponents in the dm and

(  a,+ b \
dn directions, there are I 1 shapes in P “in- Given each shape one can then derive

\  a J
a + b — 2 anchored shapes. The number of anchored shapes generated from each shape 

differs by 1 from Lemma 3 since we cannot use the last position in the shape. Therefore 

following th a t same steps as in Lemma 3 we arrive at

5

AT2+ =  ^ G ' (la+b ' (a P  b — 2)
i  =  0 l < a < c - l

3 < a + 6 < e - l

=  V ! y ■ Qk ■ (k -  2) ■ k
2 = 0  k ~ 3 

e — 1 5

=  X ! X  ~ 2) ■ ^
k  =  2 z =  0 

e — l

— 6Ag '22 k (k  — 2) • qk- ■
k = 3

T h e o re m  1 The branching probability, pb, between adjacent service centers in the model is

6 V 6 - E
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P r o o f : p h can be derived as the  ratio  of traffic bound for im m ediate neighbors to  all traffic 

leaving a service center.

1 A(J2+ -f- 
kb 6 Aq +  Xt

Using the results of Lemmas 3 and 4 along with

AG2+ =  AG(1 — 6</i)
e — 1

^ 6  k - q k =  1
k = l

the theorem  follows after some algebraic m anipulation. ■

It should be noted th a t ph only depends on qk and the topology.

L e m m a  5 The throughput at each service center is 6 • AG • Y l t =1 k 2 ■ qk .

P r o o f :  Jackson’s theorem[27] states th a t the to ta l throughput T; at service center i is

given by the solution to  the set of traffic flow equations

3 e ( e  — 1)

Ti = Ag +  £  P b ' Tk , i  = 0 , . . . , 3 e ( e - 1).
&=o

By assum ption A4 and the homogeneous natu re of the C-wrapped H-mesh all T, are equal. 

Therefore-,

Ti =  7 —7 ;— , f =  0 , . . . ,  3e(e — 1).
1 -  6p b

Substitu ting  pb from Theorem  1 the lem m a im mediately follows. ■

T h e o re m  2 The probability of  a packet cutting-through an intermediate node is

P c  =  1 -  ( ^ G j 2 k 2  ' 

where I  is the mean length or service time for  packets.

P r o o f : A packet can establish a cut-through a t an interm ediate node only if there are 110 

packets being serviced or waiting for service a t th a t node. Using Lemma 5 and Jackson’s 

theorem  th a t the probability of having zero packets at any node is 1 — p where p is the 

traffic intensity, p in term s of the throughput and service rate  p. is given as follows:

T  T  ■ 1 (  e_1 \
, =  -  =  ^ - = ( A 0 p , - * J

and hence the theorem  follows.
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4.5 Distribution of M essage Delivery Times

In a  v irtual cut-through message passing scheme, the delay th a t a packet incurs a t a 

node depends on whether the packet is able to  establish a cut-through at th a t node. If 

the  packet establishes a cut-through, the delay incurred is negligible and assumed to  be 0. 

O therw ise, the packet incurs both waiting and service tim e delays. Furtherm ore, since a 

packet cannot establish a cut-through unless there are no other packets waiting for service 

a t th a t node, the FCFS queueing discipline is preserved a t each node. From Jackson’s 

theorem  we know th a t the queueing network described in Section 4.4 has a product form 

solution. Therefore, each service center behaves as an M /M /1  queueing system.

The delivery tim e for a packet traveling n hops, denoted by D n, can be expressed as

D„ — Yq +  A n_ 1?

where Y0 ( X n_i)  is a random  variable th a t represents the to ta l tim e spent by a packet a t the 

source node (n  — 1 interm ediate nodes). Also let be a random  variable th a t represents 

the  to ta l tim e spent by a packet buffered in an interm ediate node.

Therefore,

P[D n < t] = P[Yo + X n_! < t]
74“ 1

=  ^ 2  P[Y0 +  X n_i < t | buffered a t m  int. nodes] • Pfbuffered a t m  int. nodes]
in—0
n — 1 in

= ^ 2  ^  A ' ^[buffered at m  int. nodes].
m—0 k~0

Note the P[%2T=o -  A corresponds to  an Erlang distribution with param eters n{ 1 — p)

and m  +  1, i.e., ERL(/Lt(l — p ) , m  +  1). This allows us to  derive the probability density 

function of D n as:

f o j t )  =
m — 0 y Til J

Using the result

ml

and in tegrating  /d „ (0  from 0 to  t we get the delivery tim e distribution as

* , ( < >  =  * f  f " - 1 ) ( » - , .
m= 0 \  m  I m -
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{  m \  e - M 1 -  P >  ™ I  m  \  k \  ■ t m ~ k |

j  [Mi -  p)]m+1 M i  -  P )  h  [  k  )  [Mi -  P ) f  j  '

4.6 Numerical Examples and Simulation Comparison

In this section, param eters derived from the actual H A R T S  routing hardw are are used 

to  evaluate the probability distribution function for delivery times discussed in the previous 

section. Also presented is a comparison of the analytic results against a low-level functional 

sim ulation of the routing hardw are of H A R T S .

In contrast to  the analytical model, the sim ulator makes very few simplifying assum p

tions in modeling the behavior of virtual cut-through in H A R T S . The sim ulator accurately 

models the delivery of each message by em ulating the tim ing of the routing hardw are [2 1 ] 

along the  route of a packet at the microcode level. Also captured are the in ternal bus ac

cess overheads th a t the packets experience if they are unable to  cut-through an interm ediate 

node. For example, when a transit packet arrives at an interm ediate node, the  following 

sequence of tim ed events are set into action. F irst, the receiver for th a t particular direction 

waits for the packet header to become available to  a ttem p t a routing decision. For the case 

of the Ii-m esh any incoming packet may have either arrived a t its final destination or could 

be transm itted  in one of possibly three directions. Second, the receiver schedules an access 

to  an internal bus to  reserve the first choice for a direction to  transm it the packet. If the 

tran sm itte r for this direction is free, the packet will cut-through this node w ith only the 

slight delay of waiting for the header and the single sta tus query of the transm itte r. If 

the first a ttem p t to  reserve the transm itter was unsuccessful, an a ttem p t a t an alternate  

tran sm itte r is made, if applicable. If both of these a ttem pts are unsuccessful, the packet is 

queued a t this node for la ter transm ission. Third, the receiver schedules events to  signal the 

completion of the packet a t this node. This may involve either unreserving a transm itte r 

if the packet successfully cut-through or informing the module th a t simulates the handling 

of buffered messages. This detailed tim ing and tracking of messages allows different mes

sage scheduling, access protocols, and memory m anagem ent strategies to  be investigated. 

However, for the results presented in this section only a First-Com e First-Serve single queue 

with unlimited memory was used.

In addition to  the exponentially distributed packet lengths, the sim ulator can also use 

a discrete distribution of packet lengths where the user specifies the num ber of different 

types of messages, their lengths, and the probability of each type of message. Similar to
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the analytic model, packet arrivals are assumed to  follow a Poisson arrival process.

For the  examples presented in this section the following param eters were used. (Note

th a t choice of these param eters is arb itrary  and will not in general change our conclusions

draw n in this section.) The dimension of the mesh was 7 resulting in 127 nodes in the

system . The probability of a node communicating with a specific node k hops away was

assum ed to  be inversely proportional to  the number of hops, i.e., qk = — The  mean
36 k

packet length for the analytic model was assumed to  be 185.6 bytes. The distribution of 

packet lengths for the simulation were 64, 128, 512 bytes, each with probability 0.3, 0.5, 

0.2, respectively. The results for three different packet generation rates are obtained. These 

correspond to  15%, 30%, 45% of the peak packet generation ra te  th a t can be supported  by 

the routing hardw are. Currently, the peak packet generation rate  th a t can be supported 

by the routing hardw are is 4 MBytes per second. All the distributions either generated or 

collected were for messages having their destination 5 hops from their source node.

Figure 4.3 shows a plot of the probability distribution function of the delivery times of 

a message traveling 5 hops in a H-mesh of dimension 7. The three curves in the figure show 

the variation in the probability distribution function with respect to  the assumed message 

generation ra te  XG a t each node. As would be expected, the delivery tim e distributions 

shift to  the right as the load on the network is increased.

Figure 4.4 shows the inverse of the probability distribution functions in Figure 4.3. 

The inverse of the distribution function is useful to  determ ine design param eters like delay 

bounds. For instance, one can select a delay bound such th a t the probability of a message 

being delivered within th a t bound is greater than  a specified threshold. This would provide 

a  probabilistic measure on the guarantees th a t can be provided in a real-tim e system  during 

its operation.

Figures 4.5, 4.6, and 4.7 com pare the analytic model against a low-level functional 

sim ulation of the routing hardw are in H A R T S . The results show th a t the analytic model 

predicts, w ith a reasonable accuracy, the delivery times for the loads shown. The jum ps 

in the sim ulation results are due to  the discrete distribution of the message length. It is 

found th a t a t higher loads (greater than 65% of the peak load) the differences between the 

sim ulation and the model can be significant. Reasons for these differences are currently 

being investigated. Also note, the analytic model overestim ates the actual delivery times 

and therefore the model produces a pessimistic result. The slight discrepancy a t small 

delivery times between the model and the simulation result from the model not taking into
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Figure 4.3: Probability distribution of D 5 in a Ii-m esh of dimension 7. 

account the overheads of processing the message headers.

4.7 Discussion of Results

The main contribution of this chapter is the derivation of the  probability of cut-through 

for a C-wrapped H -m esh th a t has virtual cut-through switching capabilities. The tech

niques used in here can be extended to  other interconnection topologies like hypercubes or 

rectangular meshes because the techniques depend only on ability to  determ ine the fraction 

of minimal routes between a pair of nodes passing through a given node. In a liypercube or 

a rectangular mesh we can easily determine the required fraction of minimal routes between 

a pair of nodes th a t pass through a given node.

The distribution functions derived are useful in the design of real-tim e systems w ith hard 

deadlines. They provide a probabilistic measure on the guarantees th a t can be provided for 

message exchanges during the operation of a real-tim e system.
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Figure 4.5: FDs a t 15% Peak Load (H-mesh dimension 7.)
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Figure 4 .6 : FDs a t 30% Peak Load (H-mesh dimension 7.)
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CHAPTER 5

THE PO INT-TO -POINT MESSAGE SIMULATOR

This chapter discusses the design rationale and im plem entation insights gained during 

the development of the Point-to-Point Message Simulator. The long-term  high-level goal of 

this effort was to  develop a simulation environment for investigating issues related to  sup

porting real-tim e communication systems interconnected by point-to-point interconnection 

networks. The short-term  goal was to create a sim ulator th a t could be used to  size some 

of the internal components of the PRC when operating in realistic conditions. Finally, the 

im m ediate goals were to  provide the tools needed to  perform the m ulti-m ode routing and 

switching experiments described in C hapter 6 .

The long-term  goal of this work was m otivated by the observation th a t many researchers 

working on different topics related to  communication using point-to-point networks seemed 

to  be constantly  writing their own private simulators to  show the one feature they were 

interested in exposing. These simulators usually only provided support for exam ining one 

free variable w ith the remaining param eters being implicitly fixed. This constant duplication 

of effort resulted in a great am ount of wasted manpower and, in the case of inexperienced 

program m ers, often produced results of questionable integrity.

The ideal solution would be to  provide the researcher with a set of building blocks th a t 

can be composed using a high-level language or graphical editor to  construct a custom  

sim ulator. These types of tools are commercially available for modeling LANs and signal 

processing systems but, unfortunately, at least for the features th a t we were interested in 

investigating, do not provide sufficient modeling detail.

On the other end of the spectrum , an obvious avenue th a t can be exploited is the existing 

gate level simulation tools. W ith sufficient encapsulation of the base com ponents, one would 

think th a t this could be a viable alternative. For small systems this can be an alternative 

partially  due to  the built-in support some of the gate level sim ulators provide. For exam ple,

80
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the negative exponential tim e delays th a t Cadence Verilog supports can prove to  be quite 

useful. The problem in sim ulating point-to-point systems is th a t they require replication of 

the  individual nodes, which quickly makes this approach im practical1.

O ur solution to  this problem of balancing the lack of modeling detail against the com pu

ta tio n  overheads imposed by the replication necessary in simulating point-to-point networks 

is to  provide a base set of primitives and a structure for combining these primitives. The idea 

is th a t the user can model in detail the components of interest to  him and hopefully reuse 

previously designed components necessary to  form the complete system under simulation.

The results of this work are the “Point-to-Point Message Sim ulator” (pp-mess-sim) th a t 

has the following features:

• Supports C-wrapped hexagonal mesh, wrapped square mesh, and binary hypercube.

• A ccurately models the behavior of the low-level routing hardw are (based on the  PRC 

architecture).

• Supports multiple routing strategies.

• Provides a tex tual specification language for mapping tasks onto the topology being 

sim ulated, thus allowing the end user to  easily configure the message workload.

• Provides a structured  framework for making extensions.

W hat should be of interest to  those not interested in the PRC is the m ethods and 

structures th a t we use to  achieve the specific capabilities mentioned above and how easily 

pp-mess-sim can be re-targeted for different topologies, routing hardw are, and communica

tion patterns.

5.1 General Organization and Structure

Figure 5.1 shows the directory structure of the pp-mess-sim source code tree. This 

figure also quite accurately depicts the functional separation th a t was identified, and the 

interfaces th a t needed to  be developed between the different com ponents of pp-mess-sim. 

These functional separations can be classified into a set of C + +  classes supporting: the 

different network topologies (the n e t directory), the workload run on the sim ulated sys

tem  (the w ork load  directory), the parsing and storage of the run specification (the spec

: A Verilog sim ulation of the PR C  in isolation currently requires at least 400M B  of sw ap and 48 M B of 
m ain m em ory.
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pp-mess-sim

doc testssrc

spec workloadgeneric imu-prc-ni lib net

randomeventq fifos miscmaps

F ig u r e  5 .1 :  Organization of pp-mess-sim source tree

directory), or the im plem entation of the particular routing hardw are of interest (currently 

the im u -p rc -n i directory). The interaction between classes in these different functional 

areas is through a well-defined set of member functions such th a t the im pact of adding new 

interconnection topologies and routing hardware is minimized to  one area.

There are five fundam ental classes th a t need to  be briefly introduced before the  re

m ainder of pp-mess-sim can be explored. These are Net, Node, Task, Message, and Event.

The Net class serves as the base class for the classes CWHMesh, SQMesh, and HyperCube. 

Each of these derived classes implements the specific details of address translation  and 

m apping for its particular topology. All of the other classes requiring inform ation on. the 

current topology must use the appropriate member functions of these derived classes.

The Node class implements the router/node-specific functions, and is dynam ically al

located according to  the size of the network under sim ulation and referenced through the 

derived net classes. This class and the subclasses stored within it can be easily changed to  

model different hardware or software.

The Task class implements the behavior of the workload im parted  on the system  for 

the  duration of the simulation. Each instantiation of a Task has certain properties th a t are 

either explicitly or implicitly specified in the simulation specification. Once instan tia ted , 

the Task is assigned to a node much like its counterparts in a s tandard  operating system .

The Message class is used ju s t as an object to  pass and possibly subdivide. This is the 

case for the PRC model in which the messages are actually subdivided into bytes th a t are 

individually simulated.
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The Event class serves as a base class for all of the different types of events th a t im

plement the behavior of the system under simulation. This class contains pure virtual 

functions, thus requiring the support of a certain minimal set of operations in the derived 

classes.

5.2 Simulation Specification Language

P art of the flexibility and power of pp-mess-sim is derived from the language used to 

specify the param eters for each simulation run. This language, coupled with the  built-in 

prim itives, has enough expressive power to  concisely construct a series of workloads th a t 

exhibit a wide range of com munication patterns and resource usage. This is prim arily 

accomplished by allowing the user to  assign tasks with specific behavioral characteristics 

on a node-by-node basis if necessary to  generate the desired workload. For the m ost part, 

these assignments can be performed implicitly by allowing the default rules to  resolve the 

tasks assigned to  each node.

The behavior of each communication task is characterized by eight param eters:

• the generation process

• the length process

• the maxim um  packet length

• the minimum packet length

• the ta rge t selection process

• the default routing algorithm

• the to ta l num ber of packets

The generation process is used to  generate the packet inter-arrival times in base unit of 

bus cycles and may be selected from a wide range of the standard  random  processes used 

in sim ulation. This process is guaranteed to  have its own assigned random  num ber stream  

th a t does not overlap with any o thers’ during the lifetime of the simulation.

The length process is used to  generate the length of a newly-generated packet in long- 

words. This process may be also selected from either negativeexpntl or lengthdiscrete random  

processes. The negativeexpntl provides the standard  negative exponential d istribution on
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packet lengths used commonly in analytical models. The m aximum and minimum length 

param eters can be used to clip the lengths produced by this process negativeexpntl to  pre

vent unrealistically small or large packets. The lengthdiscrete process allows the user to 

individually specify the probability of a discrete num ber of packet lengths. These processes, 

like the generation processes are guaranteed to  have independent random  num ber stream s.

The ta rge t selection process selects the node th a t is the recipient for each generated 

packet. The user can currently choose from either NodeUniform or HopUniform. W hen 

Nodellniform is selected, each node, excluding the originating node, is equally likely to  be 

selected as the recipient. If HopUniform is selected, the user specifies the probability of the 

packet traveling x hops. Once it is determined th a t the packet is traveling x hops, then all 

nodes x hops d istan t are equally likely to be selected as the recipient of the packet.

The default routing algorithm  determines the routing algorithm  and switching m ethod

ology th a t will be used to deliver the packet to the recipient. Users can currently choose 

from virtual cut-through, wormhole, packet switching, or source-list. The first th ree choices 

use a minimal path  approach in selecting the route as the packet traverses the network 

and use their respective switching method. As currently im plem ented, source-list utilizes 

a  user-specified route and a virtual cut-through switching m ethod to  deliver the packet. 

The selection of a routing algorithm  th a t the underlying hardw are doesn’t support is con

sidered a specification error and aborts the simulation run during the initialization of the 

instan tia tion  of the task in error.

The last key param eter describing a ta sk ’s behavior is the to ta l num ber of packets 

th a t need to  be generated. This is actually the minimum num ber of packets the task  will 

generate. A task  will continue generating packets until all tasks in the sim ulation have 

satisfied their respective specification of the to ta l num ber of packets. This approach allows 

the d a ta  collections routines to detect when they should shut down in order to  prevent 

falsely collecting d a ta  as the network is “draining o u t” a t the end of the sim ulation run.

In addition to the param eters describing the behavioral characteristics, the  user m ust 

select the type of d a ta  collection th a t needs to  be performed with respect to  the packet 

being generated by the task. Currently, there are several different levels of detail, w ith the 

simplest collecting the mean, variance, min, max, and confidence intervals of packet delay. 

More complex d a ta  collection schemes are currently being investigated to  explore posible 

correlation effects such as those observed during higher loads in the previous chapter.

The aggregate behavior of a node is specified by the num ber and different types of tasks
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th a t are assigned to  it. This can be accomplished either by a default specification, an 

override for a particular node num ber, or by a nam ed node specification.

It is easier to  explain the process of fully resolving an input specification to  a complete 

sim ulation specification through an example. Figure 5.2 shows a simple yet functionally 

com plete specification file th a t we will use to  illustrate both  the simplicity and the power 

of the  specification language.

There are three m ajor blocks th a t the user m ust provide: the topology selection, the 

default node, and the default task.

The first is the topology selection block. For our example lines 0-4 select a C-wrapped 

hexagonal mesh with 31 nodes (edge size 4).

The next block th a t m ust be provided is a default node specification. This is shown on 

lines 4-8  and directs pp-mess-sim to  instan tia te  each node such th a t there are a to ta l of 4 

tasks, two of which will have the characteristics of the named task  “task_rt_real” unless a 

specification of higher precedence for th a t node exists. The remaining tasks (two in this 

case) required to  bring the to ta l number of tasks up to  the to tal specified num ber (line 6 ) 

will have the characteristics of the default task.

Lines 15-24 and lines 26-37 are two examples of task specification blocks. The first 

describes the behavior of the default task th a t is created as a last resort in order to  satisfy 

the  to ta l num ber of tasks needed on a particular node. In this example, the default task 

generates packets with an inter-arrival tim e using a negative exponential with a mean of 

3368 bus cycles. The packets will have a 3 in 10 chance of being 8  longwords, a 1 in 2 chance 

of being 24 longwords, and a 1 in 5 chance of being 8 8  longwords. Each node of the other 

36 nodes will be equally likely to  receive the packets generated. The packets will be routed 

using m inim al-path routing and virtual cut-through. The user will be guaranteed th a t the 

task  will generate a t least 1000 packets of which the first 250 will not be considered for da ta  

collection. The renew line specifies th a t the random  number stream s allocated to  this task 

should grab blocks of 1000 samples at a tim e from the m aster random num ber stream . The 

second task  specification is an example of a nam ed task which can be selected as shown in 

fines 7 and 12.

Lines 10-13 dem onstrate the use of a node override in which the task  mix assigned to 

node 3 is individually specified.

The general block (fines 39-47) is used for general param eters such as ou tpu t file names 

and random  num ber seeds. A lthough not explicitly required, it usually has to  be provided
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0  -  t o p o l o g y  b e g i n
1  -  s e l e c t  c w h m ;
2  -  s i z e  4 ;
3  -  e n d
4  -
5  -  n o d e  d e f a u l t  b e g i n
6  -  t a s k s  4 ;
7  -  s e l e c t  t a s k  t a s k _ r t _ r e a l  2 ;
8  -  e n d
9  -

1 0  -  n o d e  3  b e g i n
1 1  -  t a s k s  2 ;
1 2  -  s e l e c t  t a s k  t a s k _ r t _ r e a l  1 ;
1 3  -  e n d
1 4  -
1 5  -  t a s k  d e f a u l t  b e g i n
1 6  -  a r r i v a l  N e g a t i v e E x p n t l ( 3 3 6 8 . 4 2 1 0 5 3 ) ;
1 7  -  l e n g t h  L e n g t h D i s c r e t e ( 0 . 3 , 8 , 0 . 5 , 2 4 , 0 . 2 , 8 8 ) ;
1 8  -  t a r g e t  N o d e l l n i f  o r m ( )  ;
1 9  -  r o u t i n g  v c ( ) ;
2 0  -  h i s t o r y  s i m p l e ;
2 1  -  p a c k e t s  1 0 0 0 ;
2 2  -  d r o p  2 5 0 ;
2 3  -  r e n e w  1 0 0 0 ;
2 4  -  e n d
2 5  -
2 6  -  t a s k  t a s k _ r t _ r e a l  b e g i n
2 7  -  a r r i v a l  N e g a t i v e E x p n t l ( 1 6 0 0 0 . 0 0 0 0 0 ) ;
2 8  -  l e n g t h  W e g a t i v e E x p n t l ( 8 . 0 ) ;
2 9  -  t a r g e t  N o d e l l n i f  o r m ( ) ;
3 0  -  r o u t i n g  w o r m h o l e O ;
3 1  -  h i s t o r y  c o m p l e x ;
3 2  -  p a c k e t s  5 0 0 ;
3 3  -  d r o p  1 0 0 ;
3 4  -  r e n e w  5 0 0 ;
3 5  -  m a x  8 ;
3 6  -  m i n  8 ;
3 7  -  e n d
3 8  -
3 9  -  g e n e r a l  b e g i n
4 0  -  r a n d o m  s e e d  1 3 5 3 6 2 5 0 8 4 ;
4 1  -  t i m e o u t  6 4 0 ;
4 2  -  o p t i o n  r e s o u r c e s  t r u e ;
4 3  -  o u t p u t  s i m p l e _ e x a m p l e . o u t ;
4 4  -  e r r o r s  s i m p l e _ e x a m p l e . e r r ;
4 5  -  r e s u l t s  s i m p l e _ e x a m p l e . r e s u l t s ;
4 6  -  d e b u g  s i m p l e _ e x a m p l e . d e b u g ;
4 7  -  e n d

F ig u re  5.2: Example of a simulation specification
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since it is the only way the seed for the m aster random  num ber stream  can be specified.

The gram m ar describing the  complete language is given in Appendix F.

5.3 Topology Generation and Support Functions

The Net class and its derived topology-specific classes play a key role in enabling 

pp-mess-sim to  function as a reusable software tool. Much of this power is a result of 

being able to  identify a small set of functions and param eters th a t allow the external in

terfaces to  the topology support routines to  be identical for all of the topologies th a t are 

im plem ented. The user is then forced to  utilize only these functions when accessing topology 

specific inform ation in their im plem entation of the routing hardw are and routing/sw itching 

algorithm s.

There are several assum ptions made in creating a representation scheme for the gen

eric interconnection topology th a t pp-mess-sim provides. F irst, nodes m ust be able to  be 

assigned an unique integer label th a t is handled by pp-mess-sim as the typedef Nodeld. 

Second, all references to  adjacent nodes can be made in term s of an integer ( typedef Direction 

in pp-m ess-sim ) th a t ranges from 0 to  some maximum value th a t can be dependent on the 

topology under simulation. Given these two typedefs the user is then provided three func

tions for maneuvering within the topology and a function th a t returns a reference to  a Node 

based on a Nodeld. The basic structu re of this scheme is shown in Figure 5.3.

T he expressiveness of this generic approach will be shown by briefly studying these 

basic functions in term s of the im plem entation of the support for the C-W rapped hexagonal 

mesh and the w rapped square mesh. These are shown in Figures 5.4, 5.6, and 5.8 for the 

C-W rapped hexagonal mesh and Figures 5.5, 5.7, and 5.9 for the w rapped square mesh.

The Net class doesn’t force any particular addressing/storage m ethod for the nodes but 

only requires th a t the derived class resolve the node() and operator[] m ethods since they 

are defined as pure virtual functions in the base class. Moving the im plem entation of the 

storage policy of nodes into the derived classes is done to  allow for more efficient policies 

dependent on the topology. For all of the topologies implemented thus far this has been 

accomplished as an array of pointers to  dynamic instantiations of the nodes in the system. 

The nodeQ  and operator[] methods then just index off of this pointer as shown on lines 19 

and 21 of Figure 5.4 for the hexagonal mesh and lines 17 and 19 ofFigure 5.5 for the square 

mesh.
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00 - c la s s  N et
01 - {
02 - p u b lic :
03 - S im SpecP tr sim_spec;
04  - D im ension edge_dim ension;
05 - D irection m ax.d irection;
06 - u n s ig n e d  in t  totaL nodes;
07 - u n s ig n e d  in t  diam eter;
08 - M T A C G  *rootacg;
09  - T ask ldT askP trA V L M ap tasks;
10 - u n s ig n e d  in t  generating_tasks;
11 - u n s ig n e d  in t  liolding_tasks;
12 - u n s ig n e d  in t  delivered;
13 - M essageldM essagePtrA V L M ap messages;
14 - E ventQ  eventq;
15 - N et( S im SpecPtr );
16 - v ir t u a l  ~ N e t ( )  ;
17 - v ir t u a l  N ode&  node( N odeld  ) =  0;
18 - v ir t u a l  N odefc o p e r a to r [ |(  N odeld  ) =  0;
19 - v ir t u a l  N odeld  neighbor( N odeld  , D irection ) =  0;
20 - v ir t u a l  N odeld  translate( N odeld  , OHsetVec ) =  0
21 - v ir t u a l  O ffsetVec m ap( N odeld  , N odeld  ) =  0;
22 - v ir t u a l  v o id  error ( c o n s t  ch a r *  );
23 - 1;

F ig u r e  5.3: Net class definition

The derived topology classes are allowed to define private d a ta  structures and m ethods 

in order to  support the neighbor(), t ran s la teQ , or m ap ()  m ethods if necessary. For the 

CW H M esh the dir_v[] is defined to assist the neighborQ and t ran s la teQ  m ethods. In the 

case of the IIA mesh shown in Figure 2.1 the dir_v[] of Figure 5.4 would be initialized to 

{1,11,10,36,26,27} when the network is instantiated.

The neighborQ m ethod is used to  obtain the Nodeld of an adjacent node for a given 

Direction and the current Nodeld. The user can then utilize this function to  im plem ent the 

tran sp o rt of inform ation from one node to another. In both  of the cases of the CW HM esh 

class and SQMesh class it is relatively straightforw ard to  implement as shown on lines 23-31 

in Figure 5.4 and lines 21-46 in Figure 5.5.

Both the m ap Q  and t ran s la teQ  functions m anipulate d a ta  of the types Nodeld and 

OffsetVec. The d a ta  type OffsetVec is ju st a max_direction element vector representing 

the  num ber of hops in each direction some entity should take. The m ap Q  functions then 

provides a m ethod in which the  OffsetVec can be produced given source and destination 

nodes. The t rans la teQ  functions provide the inverse operation of the m ap Q  functions. These 

topology support functions have proven to  be quite adequate and have successfully insulated 

the  im plem entation of tne PRC-specific portions of pp-mess-sim from the knowledge of the
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00 -  c la ss  CWHMesh : p u b lic  Net
0 1  - {
02 -  p u b lic :
03 -  N odePtr *nodes; / /  A rra y  Used to  index in s ta n t ia ted  nodes
04 -
05 -  CW IIM esh( SimSpecPtr );
06 -  v i r tu a l  ~CW HM esh();
07 -  v i r tu a l  Node& node( Nodeld );
08 -  v i r tu a l  Node& o p e ra to r [ |(  Nodeld );
09 -  v i r tu a l  Nodeld neighbor( Nodeld , Direction );
10 -  v i r tu a l  Nodeld translate^ Nodeld , OffsetVec );
11 -  v i r tu a l  OffsetVec map( Nodeld , Nodeld );
12 -  v i r tu a l  v o id  error ( c o n s t ch a r*  );
13 -  p r iv a te :
14 -  u n s ig n e d  s h o r t  dir_v[6];
1 5  -  } ;
16 -
17 -  in l in e  CW HM esh::~CW HM esli () {}
18 -
19 -  in l in e  Node& CW IIM esh::node( Nodeld n ) { r e tu r n  *(nodes[n]); }
2 0  -
21 -  in l in e  Nodefc C W H M esh::operator[]( Nodeld n ) { r e tu r n  *(nodes[n]);}
2 2  -
23 -  in l in e  Nodeld CW IlM esh::neighbor( Nodeld n , Direction d )
24 -  {
25 -  i f  ( d < max_direction )
26 -  r e tu r n  (n +  dir_v[d]) % totaLnodes;
27 -  e lse  {
2 8  -  e r r o r ( " I l l e g a l  n e i g h b o r  m a p p i n g  r e q u e s t e d " ) ;
29 -  r e tu r n  0;
30 -  }
31 -  }
32 -

F ig u re  5 .4 : C-wrapped hexagonal mesh class definition

interconnection topology or its im plem entation.
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c lass  SQMesh : p u b lic  Net 
{
p u b lic :

N odePtr *nodes; / /  A rra y  Used to index in s ta n t ia ted  nodes

SQMeshf SimSpecPtr ); 
v i r tu a l  ~SQM esh(); 
v i r tu a l  Node& node( Nodeld ); 
v i r tu a l  Node& o p e ra to r[](  Nodeld ); 
v i r tu a l  Nodeld neighbor( Nodeld , Direction ); 
v i r tu a l  Nodeld translate( Nodeld , OffsetVec ); 
v i r tu a l  OffsetVec map( Nodeld , Nodeld ); 
v i r tu a l  v o id  error( c o n s t ch a r*  );

};

in l in e  SQMesh::~SQMesh () {}

in lin e  Node& SQMesh::node( Nodeld n ) { r e tu r n  *(nodes[n]); }

in l in e  Node& SQ M esh::operator[]( Nodeld n ) { r e tu r n  *(nodes[n]);}

in lin e  Nodeld SQMesh::neighbor( Nodeld n , Direction d )
{

s w itc h  ( d ) { 
case  0: 

r e tu r n
(n-f-l)%edge_dimension +  (n/edge_dimension)*edge_dimension; 

b reak ; 
case  1: 

r e tu r n
(n+edge_dimension) % totaLnodes; 

b re a k ; 
ca se  2: 

r e tu r n
(n+edge_dimension-l)%edge_dimension -|- (n/edge_dimension)*edge_dimension; 

b reak ; 
case  3 :  

r e tu r n
(n+edge_dimension * (edge_dimension-l)) % totaLnodes; 

b re a k ;
d e fa u lt:  / /  Big  error t im e   What should we do now!

e r r o r ( " I l l e g a l  n e i g h b o r  m a p p i n g  r e q u e s t e d " ) ;
r e tu r n  0;
b reak ;

}

Figure 5.5: W rapped square mesh class definition
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00 -  Nodeld CWHMesh: :translate( Nodeld src , OffsetVec offset )
01 -  {
02  -

03 -  Nodeld dest =  src;
04 -
05 -  for ( unsigned int i =  0  ; i <  max.direction ; i+ +  ) {
06 -  dest + =  offsetfi] * dir_v[i];
07 -  }
08 -
09 -  dest % = totaLnodes;
10 -  return dest;
11  -

12 -  }

F ig u re  5 .6 : C-wrapped hexagonal mesh transla te  function

00 -  Nodeld SQM esh::translate( Nodeld src , OffsetVec offset )
0 1  - {
02 -  int src_row =  src /  edge.dimension;
03 -  int src.col =  src % edge.dimension;
04 -
05 -  int delta_row =  mod(src_row +  offset[0] - offset[2], edge_dimension);
06 -  int delta_col =  mod(src_col +  offsetfl] - offset[3], edge.dimension);
07 -
08 -  return edge.dimension * delta_row -(- delta_col;
09 -  }

Figure 5.7: W rapped square mesh translate  function
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OffsetVec CWHMesh::map( Nodeld src, Nodeld dest )
{ ,

in t  N =  int(to taljnodes); 
in t  E =  int(edge_dimension);
OffsetVec retval(max_direction,0); 
in t  k =  mod(dest - src, N);

i f  (k <  E) {
retval[0] =  k;

}
e lse  { 

i f  (k > N - E ) 
retval[3] =  N - k; 

e lse  {
in t  t =  mod((k - E), (3 * E - 2)); 
in t  r =  (k - E) /  (3 * E - 2);

i f  (t <  E +  r - 1) {
/*  des t in a t ion  is in the lower p a r t  of I i-m esh  centered a t  source  */ 
i f ( t  < r )  {

retval[3] =  r - t ; 
retval[4] =  E - r - 1 ;

}
else  { 

i f  (t >  E - 1) {
retval[0] =  t - E +  1; 
retval[5] =  E - r - 1;

}
else  {

retval[5] =  t - r; 
retval[4] =  E - t - 1;

}
}

}
else  {

/*  des t in a t ion  is in the upper p a r t  o f  H-mesh centered a t  source  * / 
i f  (t <  2 * E - 2) {

retval[3] =  2 * E - t - 2 ;  
retval[2] =  r +  1;

}
else  {

i f  (t >  2 * E +  r - 1) {
retval[0] =  t -  2 * E - r  +  l; 
retvalfl] =  r +  1;

}
else  {

retval[2] =  2 * E  +  r -  t -  l; 
retvalfl] =  t +  2 -  2 * E ;

}
}

}
}

}
r e tu r n  retval;

}

F ig u re  5.8: C-wrapped hexagonal mesh m ap function
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OffsetVec SQMesh::map( Nodeld src, Nodeld dest ) 
{

OffsetVec retval(max_direction,0);

src % = totaLnodes; 
dest % = totaLnodes;

int s r c _ r o w  =  s r c  /  e d g e _ d i m e n s i o n ;  
int s r c _ c o l  =  s r c  %  e d g e _ d i m e n s i o n ;

int d e s t _ r o w  =  d e s t  /  e d g e _ d i m e n s i o n ;  
int d e s L c o l  =  d e s t  %  e d g e _ d i m e n s i o n ;

int d e l t a _ r o w  =  d e s t _ r o w  -  s r c j o w  ; 
int d e l t a _ c o l  =  d e s L c o l  -  s r c _ c o l  ;

if  (  d e l t a _ r o w  )
r e t v a l [ 2 ]  =  -  d e l t a _ r o w ;  

e l s e
r e t v a l [ 0 ]  =  d e l t a _ r o w ;

if  (  d e l t a . c o l  )
r e t v a l [ 3 ]  =  -  d e l t a . c o l ;  

e l s e
r e t v a l [ l ]  =  d e l t a - c o l ;  

return r e t v a l ;
}

F ig u re  5 .9 : W rapped square mesh m ap function



94

5.4 Event Management and Flow

5 .4 .1  E ven t queue

Two of the m ajor problems th a t needed to  be overcome during the development of 

pp-mess-sim were the representation of time and the efficient m anagem ent of the  queue of 

pending events. The im portance of both of these problems is amplified by the fact th a t we 

have both  high-level and detailed low-level activity being modeled. In the case of the PRC 

model, the transm ission of each byte of a message can generate up to  6 - 8  events per node.

In order to accurately size some of the components of the PRC it was decided early in 

the development of pp-mess-sim th a t a t a minimum it had to be able to accurately resolve 

an individual bus cycle on the CTBUS. Given our target speed of a 40ns C'TBUS cycle, if 

an unsigned long int (32 bits) were to  be used to represent time this would only allow a 

sim ulation of approxim ately 3-4 minutes of elapsed time. This was deemed to  be too short 

and a  two-level scheme was adopted in which global time is represented as an u n s ig n e d  

lo n g  lo n g  (64 bits) and the delta  time m easurements represented as a unsigned long. This 

two-level scheme was chosen over a scheme in which all tim e intervals are represented as an 

unsigned long long since the operations on long long integer d a ta  types are open coded on 

m ost of the 32 bit processor architectures on which pp-mess-sim was expected to  execute.

It was also noticed during the course of debugging the im plem entation of the PRC- 

specific modules th a t a few of characteristics of the events being processed should influence 

the  im plem entation of the event queue manangernent routines. F irst, there was a significant 

num ber of events being processed th a t were being subm itted w ith a delta tim e of zero time 

units (a m ature event). Second, as an artifact of how some of the low-level bus arbiters 

were being implem ented, there were a fair number of events being canceled and removed 

from the event queue. These observations led us to  partition the event queue into two parts 

and to  support a lazy delete mechanism for canceling events th a t are located in the event 

queue.

Taking all of the above factors into consideration resulted in the im plem entation of the 

event queue as a container class of pointers to  the base event class th a t has the  following 

characteristics:

• Global tim e is represented as a unsigned long long (glb_time).

• Events are subm itted to  the event queue managem ent class with a delta tim e field 

represented as an unsigned long and are only allowed to  use half of the available
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resolution of th a t field.

• A priority heap keyed on an unsigned long is used for the non-m ature event list.

• A FIFO  is used for the m ature event list.

• Events subm itted  with a non-zero delta tim e are stored in the  priority heap with a 

key th a t is equal to  the subm itted  delta tim e plus the key of the last item  removed 

from the priority heap.

• W hen an event is removed global tim e is advanced by the difference between the key of 

previous item removed from the priority heap and the key of the item  being currently 

removed.

• If a t any tim e the key of the last item removed exceeds half of the resolution of the 

delta tim e d a ta  type, all keys within the priority heap are adjusted by sub tracting  the 

value of the last key removed from the priority heap. This is usually accomplished 

by removing all items and placing them  in the m ature event FIFO  while adjusting 

the delta tim e field. The FIFO is then em ptied back into the priority heap. After 

repacking the priority heap the key of the last item  removed is set to  zero.

5 .4 .2  E vent hierarchy and stru ctu re

All events in pp-mess-sim are implemented as classes derived from the Event class shown 

in Figure 5.10. W hat is im portan t about this structu re is th a t all derived events m ust 

im plem ent the handlerQ  and the m traceQ  functions. This s tructu re also allows both  main 

event handler and hardw are units to cause the execution of the code associated with the 

events with no knowledge of w hat the event actually does, i.e., the dispatch of the event is 

handled by the C + +  virtual function mechanism.

The events derived from the base class store supplem ental inform ation so th a t they can 

be executed in isolation. For example, Figure 5.11 shows the event th a t is responsible for 

message generation. W hen the handler for this event is executed, it needs to  determ ine 

w hat node and task  was responsible for its creation. Hence, a pointer to  task  and node are 

stored locally.

Like all discrete event sim ulators, most of the effort in modeling the system is spent 

in writing and debugging the event flow, pp-mess-sim has a crude built-in message trace 

capability to assist in debugging. This feature is im plem ented by requiring all events to
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c la ss  Event 
{
public:

delta_time delta; / /  T im e  fro m  curren t t im e  to even t  occurance 
glb_time e_time; / /  Global t im e  even t  occurs (S e t on dequeue.)
EventLoc loc; / /  E v e n t  Location (Indica tes  ow nersh ip)  
bool cancel; / /  E v e n t  has been canceled.  
unsigned  long id; / /  Unique Iden tif ier  
N etP tr net; / /  N etw o rk  that even t  is taking p lace in.

Event ( N etP tr , delta_time ); 
virtual ~E vent () ; 
virtual void cancel_evenl(); 
virtual void error ( const char *); 
virtual bool m trace() =  0; 
virtual void handler() =  0; 

private:
sta tic  unsigned long last_id; / /  Id  A lloca tor

};

ty p ed ef Event* EventPtr;

F ig u re  5 .10: Base Event class definition

c la ss  M essCreateEvent : p u b lic  Event 
{
p u b lic :

T askP tr task;
N odePtr node;
M essCreateEvent ( N etP tr , NodePtr, TaskPtr , delta_time );
v i r tu a l  ~M essCreateEvent ();
v i r tu a l  bool m trace();
v i r tu a l  v o id  handler();
s ta t ic  vo id*  o p e r a to r  new(size_t);
s ta t ic  v o id  o p e r a to r  d e le te (  void* );

};

ty p e d e f  M essCreateEvent* M essCreateEventPtr;

F ig u re  5 .11: Message create event class definition
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im plem ent a  m trac e ( )  member function th a t returns a boolean. There is a  global associative 

m ap stored in the network under simulation th a t contains the identifiers of messages th a t 

should be traced. It is the responsiblility of the m trac e ()  function to  re tu rn  true  if it is an 

event th a t is related to  a message identifier th a t exists in the global m ap. For events th a t 

have no relationship to  particular messages, the m trac e ()  function is ju s t an inline for a 

“re tu rn  false .” W hat is surprising is th a t the consistent availability of such a function can 

reduce the debugging time by orders of m agnitude.

5.5 Insights into Modeling Hardware

D uring the construction of the classes th a t model the low-level behavior of the PRC, 

several techniques for modeling different types of components were developed th a t were 

not im m ediately intuitive. These problems usually centered around modeling the different 

types of asynchronous behavior present in the PRC. We describe below the techniques th a t 

we used for modeling the bus arbiters, the bus interfaces, and the im plem entation of the 

flow control behavior.

5 .5 .1  B us behavior

The problem th a t we were im mediately faced w ith when modeling the bus units was 

when to  consider the transaction complete. Tightly-coupled to  this problem is how to model 

the actual bus arb itration  algorithm . Our technique solves both  of these problems in an 

efficient manner.

Each bus th a t operates in an asynchronous mode has three m ajor types of event classes 

defined: an arb itration  event, a cycle event, and a complete event. Consider the following 

scenario, where an event handler for the interface has been triggered due to  the availability 

of data . The proper behavior is to  arb itra te  for a shared bus, and once becoming m aster 

of the bus to  write d a ta  to a slave unit across the bus. The event handler dealing w ith this 

d a ta  accomplishes this by first creating a complete event th a t will be used to  indicate to 

the interface unit th a t the future bus cycle is complete. The initial handler then creates 

a cycle event th a t describes the nature of the future bus cycle such as the destinations of 

the transfer and of the data. One of the fields of the cycle event is a pointer to a complete 

event. This pointer is set to the complete event th a t the handler previously created. The 

handler then calls a “subm it” member function for the class th a t actually models the bus
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arbiter. This subm it function stores the cycle event internally and creates an arb itra te  

event if one is not already pending for the next possible a rb itra tion  time. The handler 

for the a rb itra te  event will then retrieve the appropriate cycle event, as determ ined by the 

a rb itra tion  algorithm , th a t was previously stored, execute its handler, and then if possible, 

execute the handler for the complete event. Finally, if there are remaining cycle events still 

stored, a new arb itra te  event is created and placed in the global event queue.

T here are two advantages to  this approach. F irst, buses th a t are inactive will produce 

no events. Second, the arb itra tion  algorithm s and tim ing behavior are located in a single 

event handler and can be easily modified.

5 . 5 . 2  F l o w  c o n t r o l

Flow control for the PRC is physically coupled to  the s ta te  of certain signals. W hen the 

IR D A T A  line from a CTBUS transm itter is true, then the device th a t has the transm itte r 

reserved can arb itra te  for the bus and write forward channel data . The simple approach 

would be to  schedule an event every bus cycle th a t would check the sta tus of the IR D A T A  

and take the appropriate action. The problem with this approach is th a t the num ber of 

events scheduled becomes excessively large very quickly. Efficiently modeling this type of 

interaction can be quite challenging.

Our solution is based on a technique used in the im plem entation of m any windowing 

system s. Each unit th a t has a signal th a t other devices may be asynchronously basing their 

event flow on has a FIFO  in which the other devices may enqueue a “wakeup” event. The 

class th a t controls the signal th a t others are watching will remove all the events in the FIFO 

and enqueue them  w ith a delta tim e of zero in the event queue any tim e the s ta te  of the line 

changes. The other devices may then use the wakeup event to  perform the actions based 

on the  new sta te  of the line.

In the PRC this technique was used for both  the byte-level flow control and the T F U ’s 

decision on w hether to  a ttem p t a reservation of the CTBUS transm itter.

5.6 D ata Collection Support

Originally, d a ta  collection was handled in pp-mess-sim as part of the message receive 

event handler. This ju s t stored the collected d a ta  into the Task object th a t generated the 

message th a t had triggered the event. This approach was sufficient for the results presented
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in the  next chapter.

More recently, we have restructured  the d a ta  collection facilities to  simplify the addition 

of custom  collection m ethods. These changes center around the creation and m aintenance of 

a MessHistory list. As a message is routed through the network and passes through different 

hardw are com ponents, these components have the option of attaching an inform ation record 

to  the message history list. Currently the following type of records are m aintained:

• Enter

• Cut

• Inject

• Buffered

• Tail

Each of these inform ation history records also contains the node id and a global tim estam p 

indicating where and when the record was added. This new structu re  allows the message 

receive event handler a t the destination node to  call a user provided routine th a t processes 

the list and ex tracts the metrics of interest to  the end user. For example, the correlation 

between routing/sw itching decisions in adjacent nodes can be investigated by looking the 

the Cut and Buffered records in the MessHistory list.

5.7 Summary

In this chapter, we have presented the design rationale and provided a  glimpse a t the 

im plem entation of the point-to-point message sim ulator. There are several unique features 

about this tool th a t can be easily exploited. F irst, its ability to  capture both  the high-level 

and, when necessary, low-level details of the system provide an opportunity  to  understand 

some of the low-level interaction effects not previously investigated. Second, the interfaces 

are designed such th a t models for different routing hardw are can be developed and com pared 

within a common environm ent. Third, the generic topology approach provides unique 

opportunities for investigating how sensitive different routing hardw are is to  the topology 

specific features.

Although a relatively complex system (2 MB of sources), increm ental modification is 

quite trac tab le  as proven by some of the more recent enhancem ents being a ttem p ted  by 

other researchers w ithin our lab.



CHAPTER 6

MULTI-MODE ROUTING AND  SW ITCHING

This chapter consolidates the results of the three previous chapters to  form ulate one of 

the first experim ents th a t fully exploits the flexibility of the PRC. A lthough the results from 

the experim ents presented here are relatively clear, the entire series of experiments suggested 

by our findings is much more than  we could hope to accomplish in this dissertation.

This chapter investigates how multiple classes of traffic using different switching m ethods 

and routing algorithm s interact w ith one another. We call the ability to  support multiple 

classes of traffic, each possibly with their own switching m ethod, m ulti-m ode routing and 

switching.

After m otivating with a simple analytical argum ent why there might be great po ten

tial in pursuing a scheme supporting multi-mode routing and switching, we form ulate an 

experim ent to  answer the following cpiestions:

• Does the presence of a low percentage of traffic using m inim al-path routing with 

wormhole switching adversely affect the behavior of the traffic being routed using 

m inim al-path routing w ith v irtual cut-through switching in a C-wrapped hexagonal 

mesh?

• Is the  wormhole traffic in the above scenario unstable in the presence of the virtual 

cut-through traffic?

But why are these questions im portan t in the first place? The ability to  support multiple 

classes of traffic simultaneously with minimal interference can play a fundam ental role 

in forming the basis upon which a communication subsystem capable of supporting real

tim e com munication can be constructed. For example, associate one class of packets with 

background traffic (non real-tim e) and the other class of traffic with message requiring 

real-tim e delivery. This example is not th a t unrealistic because in m ost d istributed real

1 0 0
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tim e systems the actual percentage of traffic actually requiring hard deadlines is small. The 

control surface of the airplane requires consistent and timely updates, in contrast to  internal 

cabin tem peratu re display where “best effort” will suffice.

The usefulness of supporting multiple classes of traffic does not have to  be cast only 

in term s of real-tim e communication in order to still hold m erit. We can look a t the  com

m unication support provided in the common w orkstation. One class can support standard  

socket-based communication while the other to  carries “out-of-band” data . The point is th a t 

the different classes will have different characteristics as a function of routing and switching 

schemes used to  support the classes and each of these can be individually exploited.

These two questions are investigated within the assumed operating environm ent provided 

by pp-mess-sim. The choice of using virtual cut-through switching and wormhole switching 

for the two traffic classes in this experiment was modivated by both  practical issues and 

issues of fairness. The m inim al-path routing algorithms for both wormhole switching and 

virtual cut-through switching were the most tested of all the routing and switching com

binations im plem ented in pp-mess-sim. This choice also allowed the same routing algorithm  

to be used for both classes of traffic and only have the switching scheme be different. The 

availability of the analytical models for each of the traffic classes in isolation also influenced 

the design of experiments.

6.1 Motivation: Wormhole vs. Virtual Cut-through

In this section we derive an approxim ation for the expected packet latency using minimal- 

p a th  routing and wormhole swithing in a C-wrapped hexagonal mesh. This is com pared 

against the expected packet latency using m inim al-path routing and virtual cut-through 

switching to  conclude th a t the network load and number of hops the packet needs to  travel 

determ ines the switching scheme th a t minimizes the packet latency. These comparisons are 

m ade in isolation; th a t is, they don’t account for the presence of the other class of traffic.

We will use the following notation which parallels C hapter 4:

Ag packet ra te  generated by each node into the network

(k)k  (average) node distance measured in hops

qk probability of a packet destination being located k hops away

a  ratio  of header length to  the entire packet length

tm service tim e for a packet in a channel



1 0 2

T wh packet latency using wormhole switching

T c packet latency using cut-through switching

pw probability of a packet being required to  wait for a channel

cs a  constant representing the link arbitration/scheduling mechanism used

when a w orm hole-switched message encounters a busy link.

We can directly use the result from Theorem 2 from C hapter 4 which gives us:

e — 1

Pw   X( ; k;; 'y ''j k  • Qh
k =  1

The average latency of a packet using m inim al-path routing and wormhole switching in 

the C-wrapped H -m esh, T wh, may then be approxim ated by:

Theorem  3

T wh =  ( 1 + A ( 1 ~  (6.1)
1  — Xa t m

Proof: There are three com ponents in the packet latency. The first is the transm ission 

tim e of the packet header a t each node. C ut-through a t each node does not save tim e in 

header transm ission, because the header m ust be received in full before the node can select 

the  outgoing transm ission link. The second component is the waiting time a t each node 

due to  blocking. The final component is the packet transm ission time.

The average packet delay per node, Td, due to  waiting for the current link occupant to 

complete its in-progress transm ission and possibly other waiting packets is cspwT w where 

cs is a constant representing the link arbitration/scheduling mechanism used. The minimum 

of cs, which equals 0.5, occurs when the blocked packet is scheduled to  be transm itted  next. 

The header transm ission time is given by k a t m and the packet body transm ission tim e by 

(1 — a ) tm . Hence, we get

T wh =  kTd +  ( 1  — ot)trn +  ~katrn

— Cskpw ' l  wh T 1 T rr(A. 1))
_  (1 +  a(k  — l ) ) fm 

1 -  cskpw 
(1 +  a(k  — l) ) fm

1 -  csk XG tm E U  A: 2 • qk 

Using the fact th a t ■ qk = k,  we get

7jl   ( 1  +  <x(k-  1 ) ) - t m _
J- wh —  2

1 — if k Xatm
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F igu re  6.1: Wormhole switching latencies as a function of packet rate . (cs =  1.0)

We can make a few' observations concerning the latency of packets th a t use wormhole 

switching from the above equation. From the denom inator we see th a t as the packet genera

tion ra te  increases from zero, the routing time increases gradually a t first, and then  rapidly. 

W hen the packet rate  approaches the value which makes the denom inator zero, the  latency 

becomes infinite. This value XGtmax is the maximum packet ra te  the network can support 

for wormhole switching, and is given by:

\ 6
/ ' G , m a j r  —  2 *

&

We also see th a t the latency increases rapidly with the average hop distance k. This 

agrees intuitively with the observation th a t the longer the hop distance of a  packet is, the 

more likely it is to  block other packets. This is because packet d a ta  is not removed from 

the network when the packet is not able to  cut through a node in wormhole switching. This 

means th a t for a wormhole switching scheme, the placement of tasks and the m inim ization 

of task  separation is of prime im portance. The latency is also sensitive to  cs (a  function of 

the resource scheduling policy), although its effects are less than  those of k.

Fig. 6.1 shows the packet latencies for H-meshes of dimensions 3, 5, 7 and 9, assuming 

an average packet length of 128 bytes, a four-byte routing header, a link bandw idth  of 

16.6 M Bytes/sec, and cs =  1.0. Each destination is equally probable. W hen the  packet
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generation is low (near zero), the latencies for the different H -m eshes are similar, bu t as 

the generation ra te  increases, the larger mesh (e =  7) quickly reaches link satu ra tion , while 

the  latency for the smallest mesh (e =  3) increases ra ther slowly. The maximum packet 

generation ra te  for the smaller H-meshes is higher due to  the fact th a t the average packet 

distance is larger.

The packet latencies for virtual cut-through switching have been analyzed in [26], and 

given below:

T c = -  (k  -  1)(1 -  p ) ( l  -  a ) tm .
1 -  p

It is instructive to  compare the packet latencies for the two forms of switching as a 

function of channel load. The graphs of the latencies for different dimensions of H -m esh 

are shown in Fig. 6.2. Again, we have assumed a packet size of 128 bytes with a four byte 

routing header, a link bandw idth of 16.6 M Bytes/sec, and cs =  1.0.

One can see th a t for low traffic, the latencies of both  m ethods are almost identical. This 

is because at low traffic, the probability of blocking is very small, and therefore packets are 

not likely to  be blocked a t interm ediate nodes. The latency is then determ ined mainly by 

link transm ission time. For higher dimensions of the II-m esh, wormhole switching is not 

feasible for traffic load beyond a  certain threshold. This threshold depends on the average 

num ber of hops for a packet. For a 3-dimensional H-m esh the packet distance is short 

enough1 th a t the maximum traffic is limited by the bandw idth of the com m unication links 

themselves.

For low traffic loads, wormhole switching actually takes less tim e to  deliver packets on 

average, while the opposite is true for high loads. The break-even point of traffic load also 

decreases as the size of the mesh increases. This is due to  the average packet distance 

increasing with the size of the mesh. As pointed out earlier, the longer the packet, the more 

likely it is for wormhole switching to  cause network congestion, resulting in higher average 

packet latencies. This also causes the maximum traffic load th a t can be supported  by 

wormhole switching to  decrease with t he size of the mesh. For H-m eshes of edge dimensions 

less than  5, wormhole switching always gives a lower latency than  virtual cut-through. For 

an II-m esh of edge dimension 5, however, the break-even traffic load is 0.55. By the tim e 

the edge dimension reaches 7, the break-even point has dropped to  0 .2 2 . Consequently, 

depending on the traffic load and average packet distance, one switching m ethod m ight be 

chosen in preference to the other.

: The communication diameter of a 3-dimensional II-m esh is only 2.
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F i g u r e  6 .2 :  Packet delivery latencies for a C-wrapped H -m esh w ith edge dimension 
e. (cs = 1 .0 )
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6.2 Experimental Results

In the previous section we were able to  conclude from the simplified models th a t one 

sw itching/routing scheme m ight be preferable to  another as a function of the to ta l network 

load and individual characteristics of the packet to  be transm itted . U nfortunately these 

models do not provide much insight into how the real life issues such as the effects of flow 

control, routing algorithm  processing tim e, and how multiple routing/sw itching m ethods 

in teract w ith one another to  change of overall behavior of the system.

To answer the two questions originally posed at the beginning of this chapter we per

formed a series of simulations of the IM U-PRC-NI triple on II3, II4 , and II5 meshes using 

pp-m ess-sim . This simulations allows us to  capture the real life factors and gain some con

fidence in the utility provided by having a flexible router. In the interest of brevity we will 

only present the results from the simulations on II5 and note th a t the same observations 

and conclusions can be made concerning the d a ta  not shown.

The following experim ental setup was used:

• Class I traffic

— M inim al-path routing with v irtual cut-through switching.

— Inter-arrival process N egativeExpntlQ .

— Packet length LengthD iscrete w ith P[l =  8  longwords] =  0.3, P[l =  24 longwords] =  

0.5, and P[l =  8 8  longwords] =  0.2.

•  Class II traffic

— Minimal-path. routing with wormhole switching.

— Inter-arrival process N egativeE xpntl().

— Packet length Fixed a t 8  longwords.

• Param eters for inter-arrival processes are set as follows:

1. Select percent peak link load as the prim ary param eter.

2. Select percentage of traffic th a t should be Class II.

3. Solve for the two generation rates as a function of the two param eters above.

• W ormhole tim eout set a t 640 bus cyles (discussed below)
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The characteristics of the traffic generated by the task specification th a t corresponds to 

the class I traffic is intended to  act as the higher percentage “background” traffic which is 

then  mixed w ith the m inim al-path wormhole traffic. The task  specification th a t corresponds 

to  the  class II is used to  generate the low percentage of wormhole traffic injected into the 

nework. Both classes use a negative exponential interarrival process with their rates adjusted 

to  achieve the desired mix of traffic.

One of the weaknesses in the current design of the PRC was uncovered during the sim

ulations performed for this experim ent. As currently im plem ented, the PRC only provides 

a  single v irtual channel across each physical link. For virtual cut-through switching this 

doesn’t pose a problem since the packet is always allowed to  make forward progress by buf

fering at an interm ediate node. Wormhole switching does present problems once the load 

exceeds a certain threshold. We have two solutions to this problem. F irst, the PRC RX can 

im plem ent a tim eout on the period of time th a t a packet is willing to  wait for a transm itte r, 

after which the packet is buffered a t the interm ediate node and resubm itted. Second and 

more long term  (future work), the PRC im plem entation can be modified to  support more 

than  a single v irtual channel per physical link. We delay the discussion of this alternative 

to  C hapter 7.

The results of this experim ent are presented in three series of graphs at the end of this 

chapter. The first, examines the delivery latency of the class I traffic as the mix of class I 

and class II is varied. This first series is presented to answer the first question posed. The 

second series of graphs looks a t the observered latency of the class II traffic as traffic is 

varied. This series is intended to  address the second question. The last series superimposes 

some of the results of the first two series and allows to draw some conclusions th a t are 

discussed later.

Figures 6.3 through 6.5 show the delivery latencies of class I traffic (v irtual cut-through) 

traveling 2, 3 or 4 hops in the mesh. Each separate curve is for a different percentage of 

class I versus class II traffic mix. Note th a t the curves remain tighly coupled as the class 

II traffic is varied from 5% to 30% of the to ta l traffic being injected into the network. The 

conclusions th a t we can draw from these figures is th a t the class I traffic is not adversely 

affected by the class II traffic even as a function of the to tal num ber of hops the packets 

are required to  travel. If this were not the case we would expect the delivery tim e to  vary 

significantly as the percentage of the class II was increased.

Figures 6 . 6  through 6.9 show the delivery latencies of class II traffic (wormhole) traveling
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1, 2, 3 or 4 hops in the mesh. Each separate curve is for a different percentage of class I 

versus class II traffic mix. Here again the curves do not significantly diverge from one 

another allowing use to  conclude th a t the the class II traffic is not adversely affected by the 

increase in overall percentage class II traffic.

Figures 6.10 through 6.13 compares the delivery latencies of class I and class II traffic 

for the average num ber of hops and individually for 2, 3, or 4 hops. The top three curves in 

each figure represent the class I traffic for three different percentages of class I/class II traffic 

mixes. The lower three curves refer to  the class II traffic for those same three traffic mixes. 

The key point of this series is th a t the relative benefits th a t one can gain by operating in 

one class or the other is not lost as the class II traffic percentage is varied in this range. If 

this were not true  the two sets of curves should not m aintain their relative differences from 

one another or worse yet actually cross.

6.3 Discussion

We opened this chapter by posing the two questions:

• Does the presence of a low percentage of traffic using minimal pa th  routing with 

wormhole switching adversely affect the behavior of traffic being routed using minimal 

path  routing with virtual cut-through switching in a C-wrapped hexagonal rnesh?

• Is the wormhole traffic in the above scenario unstable in the presence of the virtual 

cut-through traffic?

Before pursuing the answers to  these questions we developed a simple model of the 

latency of messages delivery via m inim al-path routing in a C-wrapped hexagonal th a t uses 

wormhole switching. W hen com pared against the delivery latency of messages using virtual 

cut-through switching we saw th a t there was no clear winner all of the time. This fact 

m otivated further studies into how a system capable of supporting m ultiple classes of mes

sage traffic might behave. For the experim ental system described earlier in this dissertation 

this type of routing and switching interaction would not be possible w ithout the flexibility 

provided by the PRC.

W ith the results of the simulations we were able to  conclude th a t the answer to  both  of 

the questions is “no.”

Were the answer “yes” to  either question the cost of providing the support necessary for 

m ulti-m ode routing and switching would require careful justification. The “no” answers only
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partially  vindicate m ulti-m ode routing and switching since this experim ent only exam ined a 

single pair of routing-sw ithing com bination. The good news is th a t for a scheme th a t d idn’t 

specifically try  to  isolate the different classes of traffic from one another the interactions 

effects were not high. This is a very encouraging result since the PRC was easily able to 

support the functions required for this experiment.

It is also interesting to  postu late on the reasons why the two types of traffic in the 

experim ent d idn’t in teract in a significant way. One avenue of thought is th a t it m ight be due 

to  the  fact th a t wormhole and v irtual cut-through switching effectively uses different types 

of resources. V irtual cut-through use memory buffers on interm ediate nodes in contrast to  

wormhole which stores its d a ta  in the actual network. A logical question th a t im mediately 

follows is how specific are these experim ental results to the w orm hole/virtual cut-through 

switching pair. In the experim ents performed thus far all the network resources have been 

available to  all the classes of traffic. A series of experiments th a t is currently being pursued 

investigates different schemes in which the PRC can be used to  isolated the different classes 

of traffic from one another. For example, a certain am ount of bandw idth could be allocated 

to  each class or in the case of the  newer versions of the PRC certain classes of traffic can 

have a preferences for certain v irtual channels. Here again, the flexibility of the PRC allows 

these types of issues to  be explored.

The answers to  our questions so far open up a whole new frontier of experim ents con

cerning routing algorithm s and switching m ethods th a t can be investigated. For example 

in the  current experim ents, once created the packets always use the same routing/sw itching 

scheme to  be delivered to  the destination. W hat if we allow routing packets using virtual 

cut-through switching initially and then change to  wormhole as the packet approaches the 

destination? This might provide improved performance since wormhole packets perform 

quite well over a  small number of hops when compared to  v irtual cut-through packets. But 

when should we change switching m ethods? These type of functions the PRC can easily 

provide.

W hat we are claiming is th a t having the flexibility to  support multiple routing and 

switching schemes provides the system designer with the tools necessary to  construct sys

tem s capable of supporting a wide variety of characteristics. The experim ents presented 

in this chapter take a first step at showing th a t this type of flexibility requires further 

experim ents.
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CH APTER 7

CONCLUSIONS A ND  FUTURE DIRECTIONS

In this chapter we review the contributions of this dissertation, and allude to  the  possible 

extensions and future research for the work presented.

7.1 Research Contributions

The recurring theme throughout this dissertation has been th a t flexibility in low-level 

routing hardw are is a feature th a t the designer should prom ote. This is especially true  for 

systems where the domain in which the  routing hardw are is operating may not have been 

fully characterized. This is certainly the case for the PRC, which is intended to  operate 

somewhere in between parallel machines and networked com puters, a region not previously 

investigated.

The PRC architecture offers several key contributions to  the field. F irst, in no other 

architecture/design has the separation of the routing algorithm s and switching schemes 

been m ade so explicit. This separation has many advantages over the more trad itional 

schemes. Second, the identification of features im portant in reducing the overhead required 

to  support real-time communication and their tradeoffs is key to  understanding how future 

systems should be built. Last, the PRC itself can serve as a tool for investigating the  hybrid 

dom ain of parallel com puting and distributed systems. The P R C ’s ability to  further explore 

this new domain will make a lasting im pact in the field of d istributed systems design.

The main contribution of the models developed in C hapter 4 is th a t the approach in 

obtaining the probability of cut-through can be extended to  other partially  connected point- 

to-point networks. It provides a more rigorous basis for justifying w hat previously had been 

derived intuitively.

The contributions of pp-m ess-sim  fall into three areas: the identification of the classes
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th a t enable topology independent modeling of routing hardw are, the  use of task  and node 

specifications to  easily generate custom communication workloads, and a reusable software 

tool in which plug-replaceable modules for different router hardw are can be developed. The 

im pact of the la tte r  could be long lasting and greatly reduce the work required by others.

C hapter 6  provides evidence of the utility of both pp-m ess-sim  and the flexibility provided 

by the  PRC. This initial set of experim ents clearly dem onstrates th a t the  ability to  dy

nam ically vary the switching scheme independent of the routing algorithm  deserves more 

investigation. The fact th a t the delivery performance was stable in the presence of other 

traffic is a significant finding.

7.2 Future Directions

We are currently working on three semi-independent research projects th a t are direct 

consequences of the work presented here: the enhancem ent of the PRC architecture to 

support 2  virtual channels per physical link, the addition of a v irtual hardw are rou ter to 

pp-m ess-sim , and the development of different variants of m ulti-m ode routing and switching.

The need for having two virtual channels per link was quite clearly dem onstrated  while 

debugging the wormhole switching scheme during the development of pp-m ess-sim . The 

addition of two virtual channels per physical link does not significantly alter the current 

architecture of the PRC. Both the PRC RX and TFU  modules were modified during the 

last m ajor design revisions to  support the additional channels. For exam ple, if you carefully 

examine the different transm itters  for which the PRX RX can check the  reservation sta tus 

of, you will notice th a t there are twelve such possibilities. Until now the to ta l size of the 

PRC was such th a t we have been able to  avoid having to  perform any m anual intervention 

during the placement and route phases of compiling the PRC. This may no longer be true 

as we include six more TFU s and RXs.

The desire to  develop a generic hardw are router module for pp-m ess-sim  is m otivated 

on several fronts. F irst, there are some effects of cut-through routing th a t can partially 

invalidate a t higher loads some of assum ptions necessary to make the models trac tab le. 

A router in which we don’t have the overhead of byte-level flow-control would allow the 

cut-through effects to be measured. Second, it would allow the tradeoffs between on-chip 

memory and off-chip buffering to be evaluated in term s of the different routing and switching 

com binations.
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The investigation of the different variants of multi-m ode routing and switching is a direct 

result of ju st recently being enabled by the availability of pp-m ess-sim  and high perform ance 

w orkstations on which we can run pp-m ess-sim .

In addition to  the research efforts already being pursued there are several issues con

cerning the representativeness of the existing analytic models and extensions of the models 

beg for investigation. These questions center around w hat interactions are being lost in the 

models of the switching m ethods and how to capture the changes in switching and routing 

behavior.



A PPE N D IX  A  

PRC CTBUS IMPLEMENTATION



1 2 0

C ut-T hrough Bus Device A rbitration Order
Priority  Cycle Highest Device ID Priority  Order Lowest

0 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 14 15 16 17 18
1 0 2 1 4 3 6 5 8 7 1 0 9 1 2 1 1 14 13 16 15 18 17
2 1 2 0 5 6 3 4 9 1 0 7 8 13 14 1 1 1 2 17 18 15 16
3 2 1 0 6 5 4 3 1 0 9 8 7 14 13 1 2 1 1 18 17 16 15
4 3 4 5 6 0 1 2 1 1 1 2 13 14 7 8 9 1 0 15 16 17 18
5 4 3 6 5 0 2 1 1 2 1 1 14 13 8 7 1 0 9 16 15 18 17
6 5 6 3 4 1 2 0 13 14 1 1 1 2 9 1 0 7 8 17 18 15 16
7 6 5 4 3 2 1 0 14 13 1 2 1 1 1 0 9 8 7 18 17 16 15
8 7 8 9 1 0 1 1 1 2 13 14 0 1 2 3 4 5 6 15 16 17 18
9 8 7 1 0 9 1 2 1 1 14 13 0 2 1 4 3 6 5 16 15 18 17

1 0 9 1 0 7 8 13 14 1 1 1 2 1 2 0 5 6 3 4 17 18 15 16
1 1 1 0 9 8 7 14 13 1 2 1 1 2 1 0 6 5 4 3 18 17 16 15
1 2 1 1 1 2 13 14 7 8 9 1 0 3 4 5 6 0 1 2 15 16 17 18
13 1 2 1 1 14 13 8 7 1 0 9 4 3 6 5 0 2 1 16 15 18 17
14 13 14 1 1 1 2 9 1 0 7 8 5 6 3 4 1 2 0 17 18 15 16
15 14 13 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0 18 17 16 15
16 15 16 17 18 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 13 14
17 16 15 18 17 0 2 1 4 3 6 5 8 7 1 0 9 1 2 1 1 14 13
18 17 18 15 16 1 2 0 5 6 3 4 9 1 0 7 8 13 14 1 1 1 2

19 18 17 16 15 2 1 0 6 5 4 3 1 0 9 8 7 14 13 1 2 1 1

2 0 15 16 17 18 3 4 5 6 0 1 2 1 1 1 2 13 14 7 8 9 1 0

2 1 16 15 18 17 4 3 6 5 0 2 1 1 2 1 1 14 13 8 7 1 0 9
2 2 17 18 15 16 5 6 3 4 1 2 0 13 14 1 1 1 2 9 1 0 7 8

23 18 17 16 15 6 5 4 3 2 1 0 14 13 1 2 1 1 1 0 9 8 7
24 15 16 17 18 7 8 9 1 0 1 1 1 2 13 14 0 1 2 3 4 5 6

25 16 15 18 17 8 7 1 0 9 1 2 1 1 14 13 0 2 1 4 3 6 5
26 17 18 15 16 9 1 0 7 8 13 14 1 1 1 2 1 2 0 5 6 3 4
27 18 17 16 15 1 0 9 8 7 14 13 1 2 1 1 2 1 0 6 5 4 3
28 15 16 17 18 1 1 1 2 13 14 7 8 9 1 0 3 4 5 6 0 1 2

29 16 15 18 17 1 2 1 1 14 13 8 7 1 0 9 4 3 6 5 0 2 1

30 17 18 15 16 13 14 1 1 1 2 9 1 0 7 8 5 6 3 4 1 2 0

31 18 17 16 15 14 13 1 2 1 1 1 0 9 8 7 6 5 4 3 2 1 0

T ab le  A . l :  C ut-Through Device A rbitration Order



1 2 1

C ut-T hrough Bus Com m and Encoding

External Internal

CTCTL[3:0] CTCTL[3:0] Comm and

0 0 0 0 1 1 1 1 NOOP (No O peration)

0 0 0 1 1 1 1 0 DTX (D ata  Transfer)

0 0 1 0 1 1 0 1 DACK (D ata  Positive Acknowledgement)

0 0 1 1 1 1 0 0 DNACK (D ata  Negative Acknowledgement)

0 1 0 0 1 0 1 1 DRTRY (D ata  Transfer R etry)

0 1 0 1 1 0 1 0 RESV (T ransm itter Reservation Request)

0 1 1 0 1 0 0 1 FR EE (T ransm itter Free Request)

0 1 1 1 1 0 0 0 HOLD (T ransm itter Hold Request)

1 0 0 0 0  1 1 1 GTIK (Transm iiter Hold Check)

1 0 0 1 0  1 1 0 CFGO (Load TAXI Receiver Reg 0)

1 0 1 0 0  1 0 1 C F G l (Load TAXI Receiver Reg 1)

1 0 1 1 0  1 0 0 C FG 2  (Load TAXI Receiver Reg 2)

1 1 0 0 0  0 1 1 CFG3 (Load TAXI Receiver Reg 3)

1 1 0 1 0  0 1 0 CFG4 (Load TAXI Receiver Reg 4)

1 1 1 0 0  0 0 1 MARK (Byte M arker)

1 1 1 1 0  0 0 0 EO P (End of Packet)

T a b le  A . 2 : C ut-Through Bus Comm and Encoding



1 2 2

C ut-T hrough M aster Device Encoding

External Internal Internal Internal

MST[2:0] TAXIGRNT[5:0] RXGRNT[5:0] TFUGRNT[5:0] Device Name

0  0  0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 TAXI RX 0

0  0  1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 TAXI RXi

0  1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 TAXI RX 2

C 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 TAXI RX 3

1 0  0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 TAXI RX 4

1 0  1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 TAXI RX 5

1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 6 PRC RX 0

1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 7 PRC RXj

1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 8 PRC RX 2

1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 9 PRC RX 3

1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 PRC R X 4

1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 PR C  RX 5

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 PRC TFUo

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 13 PRC T FU i

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 14 PRC T F U 2

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 15 PRC T F U 3

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 16 PRC T F U 4

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 17 PRC TFUs

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 IMU

Table A .3: C ut-Through M aster Device Encoding
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C ut-Through Addressed Slave Device Encoding

External External Internal Internal

CTMST[2:0] CTADDR[7:0] CTMST[4:0] CTADDR[7:0] Device

X  X X 1 X X X X X X 1 X X X 0 X X X X X X 0 TAXI T X 0

X X X 1 X X X X X 1 X X X X 0 X X X X X 0 X TAXI TX,

X  X X 1 X X X X 1 X X X X X 0 X X X X 0 X X TAXI T X 2

X  X X 1 X X X 1 X X X X X X 0 X X X 0 X X X TAXI TX 3

X  X X 1 X X 1 X X X X X X X 0 X X 0 X X X X TAXI T X 4

X  X X 1 X 1 X X X X X X X X 0 X 0 X X X X X TAXI T X 5

0  0 0 X 1 X X X X X X 1 1 1 X 0 X X X X X X PRC RX 0

0  0 1 X 1 X X X X X X 1 1 0 X 0 X X X X X X PRC RXj

0  1 0 X 1 X X X X X X 1 0 1 X 0 X X X X X X PRC RX 2

0  1 1 X 1 X X X X X X 1 0 0 X 0 X X X X X X PRC RX 3

1 0 0 X 1 X X X X X X 0 1 1 X 0 X X </■ X X X PRC RX 4

1 0 1 X 1 X X X X X X 0 1 0 X 0 X X X X X X PRC RX 5

1 1 1 X 1 X X X X X 1 0 0 0 X 0 X X X X X 0 TAXI RX 0

1 1 1 X 1 X X X X 1 X 0 0 0 X 0 X X X X 0 X TAXI RXi

1 1 1 X 1 X X X 1 X X 0 0 0 X 0 X X X 0 X X TAXI RX ,

1 1 1 X 1 X X 1 X X X 0 0 0 X 0 X X 0 X X X TAXI RX3

1 1 1 X 1 X 1 X X X X 0 0 0 X 0 X 0 X X X X TAXI RX 4

1 1 1 X 1 1 X X X X X 0 0 0 X 0 0 X X X X X TAXI RX 5

Table A .4: C ut-Through Addressed Slave Device Encoding
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C ut-T hrough Bus Signal Summary

Pins Type Signal Names Description

6 Input CTREQ[5:0] TAXI Receiver Bus Request Lines

0 CTREQ[11:0] PRC Receiver Bus Request Lines

0 CTREQ[17:12] PRC TFU  Request Lines

1 Input CTREQ[18] IMU Request Line

3 O utpu t CTMST[2:0] Bus M aster G rant S tatus

1 Input CTEX T Bus Cycle Extend

1 BiDir CTD STRB D ata  Strobe

1 BiDir CTACK Comm and Ack

4 BiDir CTCTL[3:0] Comm and Sub-Bus

8 BiDir CTADDR[7:0] Slave Address Sub-Bus

8 BiDir CTDATA[7:0] D ata  Sub-Bus

T a b le  A .5: C ut-Through Bus Signal Summary
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A PPEN D IX  B 

PRC RX INTERNALS

This appendix provides in depth inform ation concerning the im plem entation of the  PRC 

RX module. This currently consists of the instruction encodings, sample instruction tim ing 

diagram s, and some general figures used in the design of the RX.
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OUT IN 
INCR

I
PCINC

D Q 
LATCH LATCH 

EN
CLK UPC LINKENCLK

PBUS

S E L JJP C

D q :
DFF

^  CLK

„ CLR -

C LRJJPC

Control Store
128 Words

20 bits

MIRENCLK <—

MIRB
CLK1 > ■  EN

MIR

F ig u re  B . l :  P artia l structu re  of the address sequencing hardw are of the RX

preactive 1dow nload preactive2

blocked active

Figure B .2: Simplified s ta te  diagram  for microsequencer controller



* n  n  n  r L _ x i _ _ n _ j ~ L _ n _ ^ L _ r L _ n
phi2 n n n r t n n n n _ _ n _ _ n _ n

P C
' i

M  i
«  *

M  I h-4 |
-  i i “  t k+3 ](

«  i i+4 I
MAR

r ~  r ■*’ i t i,! It i+3 i " 8  " I k+1 »  «
! ' “  1 “  i

i+ 4  |

Ml R E N _ n _ n n n _ n  n n  n n
MIRA j| Instruction ( i )  jj In s tru c to r ( i+1 ) In struction  (i+ 2) j| Instruction  ( i+ 3 ) I  In struc tion ( k ) |  Instruc tion  ( k + 1 ) f In stru c tio n  ( k + 2) I In stru c tio n  ( k + 3 ) i
MIRB f r instruction  {i ) jj”In stru c tio n  ( i+1 ) | Instruction  (i+2 ) Instruction  £ i+3 ) i 1 In stru c tio n  (k ) jj In s tru c tio n  £ k+1 ) Instruc tion  ( k+2 ) I Instruc tion  (k+ 3  ) J| )

ADD JU M P /L IN K X FE R JU M P/L IN K IDLE A D D RET FLA G R E T ID LE

P C S E L I Increment 1 Increment | Increment jj Increment | L oad jj Increment 1 Increment V Increment
It

MI Increment I Unk ! Increment

s ta te | A ctive | A ctive jj A ctive jj Active | A c tiv e t-°ad I Active I ActiveJk---------------------------- 1 A ctive | A ctive | L oad  J

Jump condition false jump condition true Return condition false Return condition true

F ig u re  B .3 : Instruction sequence example # 1
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■«n n n n n n rL__n__n__n_n
phi2 n ..n_ ...... n n __n_ n n n

PC i i+1 ;i i+2 i i+2 ; i+2 | i+3 I1 M I i+4 : * i i m i
MAR ( i

" i ; i+2 1 i+2 I i+3 1 1+4 I :4 . k i “ j -a -)
MIREN n n n0 B n n n

MIRA I  Instruction { i ) l Instruction ( i+ 1 ) ^  Instruction ( i+ 2 ) Instruction ( i+ 3 ) I  Instruction { k )  I Instruction ( k + 1 ) 1

MIRB ( L in stru ctio n  ( i ) |  In struction  ( i+1 ) ., Instruction  { i+1 ) |  In struction  i+1 ) In s tru c tio n  ( i+2  ) ] In s tru c tio n  ( i+3 ^ Instruction  t i+ 3 ) ) In s tru c tio n  ( i + 3 )
y
X In stru c tio n  ( k ) jj| In s tru c tio n  ( k+1 ) |

FLAG W A IT A D D W A IT /T R A P IDLE ADD FLAG

PCSEL II Increment g Increment I Pass I Pass j| Increment | Increment I p““ I Loac Increment || Increment jj Increment

state ( A ctive | Active j| A ctive | A c tiv e i A c tiv e  | Active s A ctive | Active H L oad | A c tiv e | A C iv e  )

Wait condition become true Trap condition becom es true

F ig u re  B .4 : Instruction sequence example # 2



phil n n n n n rL_n. n
phi2

PC 1 i+1 i+2 i+2 i+2 i+4 i+5 i+5 r~̂ ~nr k+1 I

MIHEN n n J"L FL
instruction ( i ) In stru c tio n  ( i+1 ) In s tru c tio n  ( i+ 2  ) I  In stru c tio n  ( i+3  ) Instruction ( i+4) Instruction (k)

Instruc tion  ( i )

LDC

Instruction  ( i+1 ) I  In stru c tio n  { i+1 ) I  Instruction  ( i+1 ) I  Instruction  ( i+2 ) I  Instruction  { i+3 ) I  Instruc tion  { i+ 4 ) I  Instruction ( i+4 ) I  Instruction  ( i+4 ) I  In stru c tio n  ( k  )
X FEH (C T)

Increment Increment Increment Load Increment I  Increment too

T P ”— —:—— r —
I Aclhre I Active

C T B U SY

Figure B.5: Instruction sequence example # 3



ALU Operations

M (1 9 ) M (1 8 ) M ( 1 7 ) M ( 1 6 ) M (1 5 ) M ( 1 4 ) M (1 3 ) M ( 1 2 ) M ( l l ) M ( 1 0 ) M (9 ) M (8 ) M ( 7 ) M ( 6 ) M (S) M ( 4 ) M (3 ) M (2 ) M ( l ) M ( 0 )

1 1 0
C a r r y

C o n t r o l A Port Select B Port Select ALU Function Control

C arry Control

M ( 16) M (1 5 ) ALU Carry Input

0 0 False (0)

0 1 C arry Flag

1 0 Zero Flag

1 1 True (1)

ALU Function Encodings

M ( 4 )  =  0 M ( 4 )  = 1J A r i t h m e t i c  O p e r a t i o n s

M (3 ) M ( 2 ) M ( l ) M (0 )
Logic c a r r y i n  =  0 c a r r y i n  =  1

F u n c t i o n s ( n o  c a r r y ) ( w i th  c a r r y )

0 0 0 0 A A minus 1 A

0 0 0 1 AB AB minus 1 AB

0 0 1 0 A +  B AB minus 1 AB

0 0 1 1 1 minus 1 (2’s comp) zero

0 1 0 0 A +  B A plus (A +  B) A plus (A +  B) plus 1

0 1 0 1 B AB plus (A +  B) AB plus (A +  B) plus 1

0 1 1 0 A © B A minus B minus 1 A minus B

0 1 1 1 A +  B A +  B (A +  B) plus 1

1 0 0 . 0 AB A plus (A +  B) A plus (A +  B) plus 1

1 0 0 1 A © B A plus B A plus B plus 1

1 0 1 0 B AB plus (A +  B) AB plus (A +  B) plus 1

1 0 1 1 A +  B (A +  B) (A +  B) plus 1

I 1 0 0 0 A plus A A plus A plus 1

1 1 0 1 AB AB plus A AB plus A plus 1

1 1 1 0 AB AB plus A AB plus A plus 1

1 1 1 1 A A A plus 1

T ab le  B . l :  ALU Instruction Encoding



ALU Port A Select

M ( 9 ) M ( 8 ) M ( 7 ) M ( 6 ) M ( 5 ) Device Selected

0 0 0 0 0 Reg 0 (RFOO)

0 0 0 0 1 Reg 1 (RF01)

0 0 0 1 0 Reg 2 (RF02)

0 0 0 1 1 Reg 3 (RF03)

0 0 1 0 0 Reg 4 (RF04)

0 0 1 0 1 Reg 5 (RF05)

0 0 1 1 0 Reg 6 (RF06)

0 0 1 1 1 Reg 7 (RF07)

0 1 0 0 0 Reg 8 (RF08)

0 1 0 0 1 Reg 9 (RF09)

0 1 0 1 0 Reg 10 (RF10)

0 1 0 1 1 Reg 11 (R F ll)

0 1 1 0 0 Reg 12 (RF12)

0 1 1 0 1 Reg 13 (R.F13)

0 1 1 1 0 Trap Reg 0 (TRAPO)

0 1 1 1 1 Trap Reg 1 (T R A P l)

1 1 0 1 CTBus D ata (CTDATA)

1 1 0 0 1 Memory D ata Reg (MDR)

1 1 0 1 1 Header Fifo (FIFO)

1 1 1 1 0 Accumlator (ACC)

ALU Port B Select

M ( 1 3 ) M ( 1 2 ) M ( l l ) M ( 1 0 ) Device Selected

0 0 0 0 Reg 0 (RFOO)

0 0 0 1 Reg 1 (RF01)

0 0 1 0 Reg 2 (RF02)

0 0 1 1 Reg 3 (RF03)

0 1 0 0 Reg 4 (RF04)

0 1 0 1 Reg 5 (RF05)

0 1 1 0 Reg 6 (RF06)

0 1 1 1 Reg 7 (RF07)

1 0 0 0 Reg 8 (RF08)

1 0 0 1 Reg 9 (RF09)

1 0 1 0 Reg 10 (RF10)

1 0 1 1 Reg 11 (R F ll)

1 1 0 0 Reg 12 (RF12)

1 1 0 1 Reg 13 (RF13)

1 1 1 0 Trap Reg 0 (TRAPO)

1 1 1 1 Trap Reg 1 (T R A P l)

T ab le  B .2 : ALU Operand Selection Coding



Load Constant

M f 19) M (1 8 ) M ( 1 7 ) M ( 1 6 ) M ( 1 5 ) M ( 1 4 )  M ( 1 3 )  M( 12)  M ( l l )  M ( 1 0 ) M ( 9 ) M ( 8 )  M ( 7 )  M ( 6 )  M ( S )  M ( 4 )  M ( 3 )  M ( 2 )  M ( l ) M ( 0 )

1 0 1 RX CT Destination Select Im m ediate D ata IR

0

1

Do not trigger RXBUS interface 

Trigger RXBUS interface

0

1

Do not trigger CTBUS interface 

Trigger CTBUS interface

Do not Set CTBUS IR 

Set CTBUS IR

0

1

Transfer O peration

M ( 1 9 ) M ( 1 8 ) M ( 1 7 ) M (16 ) M ( 1 5 ) M ( 1 4 )  M ( 1 3 )  M ( 1 2 )  M ( l l )  M (1 0 ) M ( 9 )  M ( 8 )  M ( 7 )  M ( 6 )  M ( 5 ) M (4 ) M ( 3 ) M ( 2 ) M ( l ) M ( 0 )

1 0 0 RX CT Destination Select Source Select X X X X IR

0

1

Do not trigger RXBUS interface 

Trigger RXBUS interface

0

1

Do not trigger CTBUS interface 

Trigger CTBUS interface

Do not Set CTBUS IR 

Set CTBUS IR

0

1

Table B .3: Transfer Instructions



S o u r c e  S e le c t  F ie ld

M (9 ) M ( 8 ) M (7 ) M ( 6 ) M ( 5 ) D e v ic e  S e le c ted

0 0 0 0 0 R e g  0 (RFOO)

0 0 0 0 1 R e g  1 ( R F 0 1 )

0 0 0 X 0 R e g  2 ( R F 0 2 )

0 0 0 1 R e g  3 ( R F 0 3 )

0 0 1 0 0 R e g  4 ( R F 0 4 )

0 0 1 0 1 R e g  5 ( R F 0 5 )

0 0 1 1 0 R e g  6 ( R F 0 6 )

0 0 1 1 1 R e g  7 ( R F 0 7 )

0 1 0 0 0 R e g  8 ( R F 0 8 )

0 1 0 0 1 R e g  9 ( R F 0 9 )

0 1 0 1 0 R e g  10 ( R F 1 0 )

0 1 0 1 1 R e g  11 ( R F l l )

0 1 1 0 0 R e g  12 ( R F 1 2 )

0 1 1 0 1 R e g  13 ( R F 1 3 )

0 1 1 1 0 T r a p  R e g  0 ( T R A P O )

0 1 1 1 1 T r a p  R e g  1 ( T R A P l )

1 1 0 1 C T B u s  D a t a  ( C T D A T A )

1 1 0 0 1 M e m o r y  D a t a  R e g  ( M D R )

1 1 0 1 1 H e a d e r  F i fo  ( F I F O )

1 1 1 1 0 A c c u m l a t o r  ( A C C )

D e s t in a t i o n S e le c t  F ie ld

M ( 14) M ( 1 3 ) M (1 2 ) M ( l l ) M ( 1 0 ) D e v ic e  S e le c te d

0 0 0 0 0 R e g  0 (RFOO)

0 0 0 0 1 R e g  1 ( R F 0 1 )

0 0 0 1 0 R e g  2 ( R F 0 2 )

0 0 0 1 R e g  3 ( R F 0 3 )

0 0 0 0 R e g  4 ( R F 0 4 )

0 0 1 0 1 R e g  5 ( R F 0 5 )

0 0 1 0 R e g  6 ( R F 0 6 )

0 0 1 1 R e g  7 ( R F 0 7 )

0 1 0 0 0 R e g  8 ( R F 0 8 )

0 1 0 0 1 R e g  9 ( R F 0 9 )

0 0 1 0 R e g  10 ( R F 1 0 )

0 1 0 1 R e g  11 ( R F l l )

0 1 0 0 R e g  12 ( R F 1 2 )
0 1 0 1 R e g  13 ( R F 1 3 )

0 1 1 1 0 T r a p  R e g  0 ( T R A P O )

0 1 1 1 1 T r a p  R e g  1 ( T R A P l )

1 0 0 0 0 R X  D a t a  R e g  0 (R X D O )

1 0 0 0 1 R X  D a t a  R e g  1 ( R X D l )

1 0 0 1 0 R X  D a t a  R e g  2 ( R X D 2 )

1 0 0 1 1 R X  D a t a  R e g  3 ( R X D 3 )

1 0 1 0 0 R X  C o n t r o l  R e g  ( R X C T L )

1 0 1 0 1 C T B U S  D a t a  R e g  0 ( C T D O )

0 1 1 0 C T B U S  A d d r e s s  R e g  ( C T A D D R O )

1 0 1 1 1 C T B U S  A d d r e s s  R e g  ( C T A D D R 1 )

1 1 0 0 0 C T B U S  C o n t r o l  R e g  ( C T C T L )

1 1 0 0 1 M e m o r y  D a t a  R e g  ( M D R )
1 1 0 1 0 M e m o r y  A d d r e s s  R e g  ( M A R )

1 1 0 1 1 H e a d e r  F i fo  ( F I F O )

Table B .4: Source and D estination Operand Coding



Set Flag O peration

M ( 1 9 ) M ( I 8 ) M (1 7 ) M ( 1 6 ) M (1 S ) M (1 4 ) M (1 3 ) M ( 1 2 ) M ( l l ) M ( 1 0 ) M ( 9 ) M (8 ) M ( 7 ) M ( 6 ) M (S ) M ( 4 ) M ( 3 ) M (2 ) M ( l ) M ( 0 )

1 1 1 D a t a  Sele c t X X Flag Mask

Flag Select Mask

M ( 1 2 ) M ( l l ) M ( 1 0 ) M ( 9 ) M(B) M (7 ) M ( 6 ) M (5 ) M (4 ) M (3 ) M (2 ) M ( l ) M (0 ) Flag Modified

X X X X X X X X X X X X 1 User Flag 0

X X X X X X X X X X X 1 X User Flag 1

X X X X X X X X X X 1 X X User Flag 2

X X X X X X X X X 1 X X X User Flag 3

X X X X X X X X 1 X X X X User Flag 4

X X X X X X X 1 X X X X X User Flag 5

X X X X X X 1 X X X X X X Eophold Flag

X X X X X 1 X X X X X X X Markhold Flag

X X X X 1 X X X X X X X X A borthold Flag

X X X 1 X X X X X X X X X Set IR (Set always)

X X 1 X X X X X X X X X X Clear Mark (Clear always)

X 1 X X X X X X X X X X X Clear Eop (Clear always)

1 X X X X X X X X X X X X Clear A bort (Clear always)

D ata Select

M (1 6 ) M ( 1 5 ) Flag Input

0 0 False (0)

0 1 Carry Flag

1 0 Zero Flag

1 1 True (1)

T a b le  B .5 : Flag M anipulation Instruction Encoding



W ait Operation

M ( 1 9 ) M ( 1 8 ) M ( 1 7 ) M ( 1 6 )  M (1 S )  M ( 1 4 )  M ( 1 3 )  M ( 1 2 )  M ( l l )  M ( 1 0 )  M ( 9 ) M ( 8 )  M ( 7 )  M ( 6 )  M ( 5 )  M (4 ) M ( 3 ) M ( 2 )  M ( l ) M ( 0 )

Mark Condition Select Trap 0 Mask
'rap 1 

Mask

Link

Enb

0

1

Do not fall through on MARK 

Fall through on MARK

Do not store re tu rn  Link 

Store retu rn  Link

0

1

Trap 0 Select Mask

M ( 8 ) M (7 ) M (6 ) M(5) M (4 ) Trap Condition

X X X X 1 CT Interface Busy

X X X 1 X RX Interface Busy

X X 1 X X Mark Flag

X 1 X X X Eop Flag

1 X X X X A bort Flag

Trap 1 Select Mask

M(3) M(2) M (l) Trap Condition

X X 1 M ark Flag

X 1 X Eop Flag

1 X X A bort Flag

T ab le  B .6 : Wait Instruction Encoding



Jum p Operation

M ( 1 9 ) M ( 1 8 ) M (1 7 ) M ( 1 6 )  M ( 1 5 )  M ( 1 4 )  M ( 1 3 )  M ( 1 2 )  M ( l l )  M ( 1 0 )  M ( 9 ) M ( 8 )  M ( 7 )  M ( 6 )  M ( 5 )  M ( 4 )  M ( 3 )  M ( 2 )  M ( l ) M ( 0 )

Condition Select Target Address
Link

Enb

Do not store retu rn  Link 

Store retu rn  Link

0

1

R eturn Operation

M ( 1 9 ) M (1 8 ) M ( 1 7 ) M ( 1 6 ) M (1 5 ) M (1 4 ) M( 13)  M( 12)  M ( l l ) M (1 0 ) M ( 9 ) M (8 ) M (7 ) M (6 ) M ( 5 ) M (4 ) M ( 3 ) M (2 ) M ( l ) M ( 0 )

1 0 1 Condition Select X X X X X X X X 0

Table B .7: Jum p and R eturn Instruction Encoding



C o n d i t i o n  Se lec t  P a r t  I

M (1 6 ) M ( 1 5 ) M ( 1 4 ) M (1 3 ) M( 12) M ( l l ) M ( 1 0 ) M ( 9 ) C o n d i t i o n  S e le c ted

X X 0 0 0 0 0 0 R e s v  S t a t  0

X X 0 0 0 0 0 1 R e s v  S t a t  1

X X 0 0 0 0 0 R esv  S t a t  2

X X 0 0 0 0 1 1 R e s v  S t a t  3

X X 0 0 0 1 0 0 R e s v  S t a t  4
X X 0 0 0 1 0 1 R esv  S t a t  5

X X 0 0 0 1 1 0 R e s v  S t a t  6
X X 0 0 0 1 1 1 R e s v  S t a t  7

X X 0 0 0 0 0 R e s v  S t a t  8

X X 0 0 1 0 0 1 R e s v  S ta t  9

X X 0 0 1 0 1 0 R e s v  S t a t  10
X X 0 0 1 0 1 1 R e s v  S t a t  11

X X 0 0 1 1 0 0 T i m e r  Bit

X X 0 0 1 1 0 1 A b o r t

X X 0 0 1 1 1 0 A b o r t h o l d

X X 0 0 1 1 1 1 R a n d o m  Bit
X X 0 1 0 0 0 0 U se r  F l a g  0

X X 0 1 0 0 0 1 U se r  F l a g  1

X X 0 1 0 0 1 0 U se r  F l a g  2

X X 0 1 0 0 1 1 U se r  F l a g  3

X X 0 1 0 1 0 0 U se r  F l a g  4

X X 0 1 0 1 0 1 U se r  F l a g  5

X X 0 1 0 1 1 0 H e a d e r  F I F O  O R

X X 0 1 0 1 1 1 M a r k  F lag
X X 0 1 1 0 0 0 E o p  F la g

X X 0 1 1 0 0 1 D a t a  F la g

X X 0 1 1 0 1 0 A ck  F la g

X X 0 1 1 0 1 1 R X  I n t e r f a c e  B u s y
X X 0 1 1 1 0 0 C T  I n t e r f a c e  B u s y

X X 0 1 1 1 0 1 M a r k h o ld  F la g

X X 0 1 1 1 1 0 E o p h o l d  F la g

0 0 0 1 1 1 1 1 False

0 1 0 1 1 1 1 1 C a r r y  F la g

1 0 0 1 1 1 1 1 Zero  F la g

1 1 0 1 1 1 1 1 T r u e

C o n d i t i o n  S e le c t  P a r t  I I

M( 16) M ( 1 5 ) M ( 1 4 ) M (1 3 ) M ( 1 2 ) M ( l l ) M( 10) M (9  ) C o n d i t i o n  S e le c ted

X X 1 0 0 0 0 0 R e s v  S t a t  0

X X 1 0 0 0 0 1 R e s v  S t a t  1

X X 0 0 0 1 0 R e s v  S t a t  2
X X 0 0 0 1 R e s v  S t a t  3

X X 1 0 0 0 0 R e s v  S t a t  4
X X 1 0 0 0 1 R e s v  S t a t  5
X X 1 0 0 1 1 0 R e s v  S t a t  6
X X 0 0 1 1 R e s v  S t a t  7
X X 1 0 1 0 0 0 R e s v  S t a t  8

X X 1 0 0 0 1 R e s v  S t a t  9
X X 1 0 1 0 1 0 R e s v  S t a t  10
X X 1 0 1 0 1 1 R e s v  S t a t  11
X X 1 0 1 1 0 0 T i m e r  Bit
X X 1 0 1 1 0 1 A b o r t

X X 1 0 1 1 0 A b o r t h o l d
X X 1 0 1 1 1 1 R a n d o m  Bi t
X X 1 1 0 0 0 0 U se r  F l a g  0

X X 1 1 0 0 0 1 U se r  F l a g  1
X X 1 1 1 1 0 U se r  F l a g  2
X X 1 1 c 0 1 1 U se r  F l a g  3
X X 1 1 0 1 0 0 U s e r  F l a g  4
X X 1 1 0 1 0 1 U se r  F l a g  5

- X 1 1 0 1 1 0 H e a d e r  F I F O  O R
X X 1 1 0 1 1 1 M a r k  F la g

X X 1 1 1 0 0 0 E o p  F la g

X X 1 1 1 0 0 1 D a t a  F la g
X X 1 1 1 0 1 0 Ack F la g
X X 1 1 1 0 1 1 R X  I n t e r f a c e  B u s y
X X 1 1 1 1 0 0 C T  I n t e r f a c e  B u s y
X X 1 1 1 1 0 1 M a r k h o l d  F la g
X X 1 1 1 1 1 0 E o p h o l d  F la g
0 0 1 1 1 1 1 1 False
0 1 1 1 1 1 1 1 C a r r y  F la g

1 0 1 1 1 1 1 1 Zero  F la g

1 1 1 1 1 1 1 1 T r u e

CO

Table B.8: Condition Code Selection Coding
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A PPE N D IX  C 

PRC M ICROASSEMBLER IN P U T  G RAM M AR

This appendix lists the gram m er accepted by the PRC microassembler used for created 

the microcode images downloaded to  each individual PRX  RX during system initialization. 

This BNF gram m ar was constructed from the parser gram m ar and lexical analyzer spe

cification files. All non-term inals are bracketed by ( /)  and alternatives are separated by |. 

T he lexical analyzer is configured to  be case insensative. This notation my cause a little 

confusion since | is also used in the bitwise OR operations in the alu instruction.

(program ) —> microprogram (identifier) ; (body)

(body) —> begin (s ta tem en tJist) end 

(const_l) —» const (identifier) (int)

(s ta tem en tJist) —> (s ta tem en tJist) (statem ent) | (statem ent)

(statem ent) —>
(recv_decl) ; |
(const _1 ) ; |
(orgin) ; |
(instruct Jine) ; |
(label) (instructJine) ;

(int) —»• (decint) | (octint) | (hexint)

(decint) -+ (nzdigit) | (decint) (digit)

(octint) —>■ 0  (octdigit) —> (octint) (octdigit)

(hexint) —>■ Ox (hexdigit) —>• (hexint) (hexdigit)

(octdigit) —> 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

(digit) (octdigit) | 8  | 9

(hexdigit) —> (digit) | a | b | c | d | e | f
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(alpha) —►
a |b|c|d|e|f|g|
h|i|j|k|l|m |n|
o|p |q |r|s|t|u |
v |w |x |y |z

(identifier) —►
(alpha) |
(identifier) (alpha) |
(identifier) (digit)

(label) —► (identifier) :

(orgin) —> a d d re s s  (int)

(recv_decl) —> receiver (int)

(instruct Jine) —>
(noopJnstruct) |
(a lu Jnstruc t) |
(ldcJixstruct) |
(x ferin struc t) |
(w a itin s tru c t)  |
(ju m p in s tru c t)  |
( re tin s tru c t)  |
(se tin stru c t)

(n o o p in stru c t) —> noop

(a lu in s tru c t)  —>
alu (mux_select) , (alu_a) , (alu_b) , operation (int) | 
alu (alu_op)

(mux_select) —» false | carry | zero | true

(alu_op) —>
(alu_a) +  (alu_b) |
(alu_a) +  (alu_b) +  1  |
(alu_a) - (alu_b) - 1  |
(alu_a) - (alu_b) |
(alu_a) |
(alu_a) +  1  |
(alu_a) - 1  |
A (alu_a) |
(alu_a) | (alu_b) |
(alu_a) | A (alu_b) |
A (alu_a) | (alu_b) |
(alu_a) & (alu_b) |



(alu_a) & A (alu_b) |
A (alu_a) & (alu_b) | 
(alu_a) ex o r  (alu_b) | 
(alu_a) ex n o r  (aluJb) |
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(alu_a)—► 
ctdata | 
mdr | 
fifo | 
trapO | 
trap l | 
rfOO | 
rfOl | 
rf02 j 
rf03 j 
rf04 | 
rfD5 | 
rf06 | 
rf07 | 
rft>8 | 
rf09 j 
rflO j 
r f l l  j 
rf!2 j 
rfl.3

(alu_b)—> 
trapO | 
trap l | 
rfOO | 
rfOl j 
rf02 j 
rf03 | 
rft)4 j 
rfD5 | 
rf06 j 
rf07 j 
rf08 j 
rf09 | 
rflO j 
r f l l  | 
rfL2 j 
rfl3



(ld c in s tru c t)  —►
ldc (int) , (dest) (goop) | 
ldc (identifier) , (dest) (gi

(goop) ->•
, go rxb u s|
, go rxbus , go ctbus |
, go ctbus |
, go ctbus , go rxbus |
€

(dest) —> 
t r a p O  | 
t r a p l  | 
c tdO  | 
c t a d d r O  | 
c t a d d r l  | 
c t c t l  | 
f ifo  | 
rx d O  | 
r x d l  | 
r x d 2  j 
r x d 3  j 
r x c t l  | 
rfOO | 
r fO l  j 
rfl)2 | 
r f0 3  | 
rfD4 | 
r f0 5  | 
rfD6 j 
r f0 7  j 
rfl)8 j 
rft)9  j 
r f lO  | 
r f l l  j 
r f l 2  j 
r f l 3  | 
m d r  | 
m a r
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(source) —► 
c t d a t a  | 
a c c  | 
m d r  | 
f ifo  | 
t r a p O  | 
t r a p l  | 
rfOO | 
r fO l  j 
r f0 2  j 
r f0 3  j 
rft)4  j 
r f0 5  j 
r f0 6  j 
r f0 7  j 
rfD8 j 
r f0 9  j 
r f lO  j 
r f l l  j 
rfL2 | 
r f l 3

(x ferJnstruct) —> x f e r  (source) , (dest) (goop)

(w a itin s tru c t)  —> w a i t  (polarity) (condition) (mark_handler) (trapO Jiandler) 
(trap lJ ian d le r)  (link_control)

polarity

(m arkJiandler) —> , m a r k  | c

(trapO Jiandler) —> , t r a p O  ( (trapO_conds) ) | c

( trap lJ ian d le r)  —> , t r a p l  ( (trapl_conds) ) | e

(trapO_conds) —> (trapO_conds) , (trapO_cond) | (trapO_cond)

(trapO_cond) —> A c t b u s y  | A r x b u s y  | m a r k  | d a t a  | e o p  

(trapl_conds) —> (trapl_conds) , (trapl_cond) | (trapl_cond)

(trapl_cond) —̂ a b o r t  | m a r k  | e o p
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(condition) —> 
m a r k  | 
e o p  | 
d a t a  | 
a b o r t  | 
a c k  | 
r x b u s y  | 
c t b u s y  | 
m a r k h o l d  | 
e o p h o l d  | 
a b o r t h o l d  | 
ft) | 
f l  j
n j
f3 | 
f4  j 
f 5 j 
f6  |
r sv s ta tO O  | 
r s v s t a t O l  | 
r s v s t a t 0 2  | 
r s v s t a t 0 3  | 
r s v s t a t 0 4  | 
r s v s t a t 0 5  | 
r s v s t a t 0 6  j 
r s v s t a t 0 7  | 
r s v s t a t 0 8  j 
r s v s t a t 0 9  | 
r s v s t a t l O  | 
r s v s t a t l l  | 
r a n d o m  | 
t i m e r  | 
f a l s e  | 
c a r r y  | 
z e r o  | 
t r u e

(jum p_instruct) j m p  (polarity) (condition) , (identifier) (link.control)

(re tin s tru c t)  —» r e t  (polarity) (condition)

(link.control) —> , lin k  — c

(set .instruct) —>
s e t  (validJlags) |
c l e a r  (valid.flags) |
f la g  (mux-select) , (valid_flags)
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(validJlags) —»• (valid_flags) , (validJlag) | (validJlag)

(validJlag) —► 
fO | 
f l  |
£2 | 
f3 j 
f4  j 
f5 |
f6  j
e o p h o l d  | 
m a r k h o l d  | 
a b o r t h o l d  | 
a l l
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A PPEN D IX  D 

PRC BIT INTERLEAVED CRC IM PLEM ENTATION

The standard  CRC-CCITT polynomial

G ( X )  = X 16 + X 12 + X 5 + l  (D .l)

was used to  generate the next s ta te  equations assuming sixteen bits are clocked a t one time. 

This results in the following equations th a t were used in im plem enting the CRC generator 

and check units. These equations where then feed into the m ulti-input multi-level logic 

m inim ization program  to produce the final units.

Qo(t + 1) li M o 8,16,22,24)© ^ (6 ,8 ,1 4 ,2 2 ,3 0 )
0 ( 0 0 ( 0

Qx(t -f 1) =  E « . 9,17,23,25)0 ^ (7 ,9 ,1 5 ,2 3 ,3 1 )
< 3 ( 0 O ( t )

Qi{t +  1) = E p . 10,18, 24, 26) © ^ ( 4 ,  6 ,12, 20,28)
0 ( 0 0 ( 0

Q:i{t +  1) =  E < 3 ' 11,19, 25, 27) 0  ^ (5 ,7 ,1 3 ,2 1 ,2 9 )
0 ( 0 0 ( 0

+  1 ) =  E d . 12,20,26,28)0 ^ ( 2 ,  4, 10,18,26)
0 ( 0 0 ( 0

Qs{t + 1) = E ( 5’ 13,21,27,29)0 5^(3 ,5 ,11,19,27)
0 ( 0 o ( 0

Q&{t + 1 ) =  B 6 > 14,22,28,30)0 5^(0 ,2 ,8 ,16 ,24)
0 ( 0 0 ( 0

Qi{t + 1) = B * .
15,23, 29, 31) © 5 ^ ( 1 ,  3, 9,17, 25)

0 ( 0 0 ( 0

+ 1 ) =  E ( 8 . 16,24,30)0 5^(0 .6 ,14 ,22)
0 ( 0 0 ( 0

Qg(/ +  1 )

Ow

II 17,25,31)0 5^(1 ,7 ,15 , 23)
0 ( 0 o ( 0

Qio{t + 1) =  E < ° .
0 ( 0

8,10,16,18,22,24,26)0 5^ (4 ,6 ,8 ,12 ,14
0 ( 0



Q u it  +

Ql2(t + 

Ql3(t + 

Ql4(t +  

$ is(( +

Qie(t + 

Q n(t  +

Ql8(t + 

Ql9(t +  

Q2a(t + 

Q2l(t + 

Q22(i +

Q23(t + 

Q24{i + 

Q25(i +  

Q2e(i + 

Q27(t + ■

Q28(t +

Q29(t + 

Q3a{i + 

Q3l(t +
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5 ^(1 , 9,11,17,19,23,25,27)© ^ (5 ,7 ,9 ,1 3 ,1 5 ,2 1 , 23,31) 
0 ( 0  D ( t )

y ) ( 2 , 10,12,18,20, 24, 26, 28) © V ( 2 , 4, 6,10,12,18, 20,28)
0(0 0(0

] T ( 3 ,11,13,19, 21, 25, 27, 29)© ]T (3 , 5, 7,11,13,19,21,29)
0 ( 0  D ( t )

]T (4 , 12,14, 20, 22, 26, 28, 30) © ]T (0 , 2,4, 8,10,16,18, 26)
<2(0 D(t)

J ] (5, 13,15, 21, 23, 27, 29, 31) © ]T (1 , 3, 5, 9,11,17,19, 27)
0 (0  -c(0

' y  (6 , 14,16, 22, 24, 28, 30) © V (0, 2, 6 , 8,14,16, 24)
0(0 o(0
]T (7 , 15,17, 23, 25, 29, 31) © ^ ( i ,  3, 7, 9, 15,17, 25)
0(0 o(i)

V ( 8 , 16,18,24,26,30)© Y "(0 , 4, 6,12,14,22)
0(0 o(0
]T(9,  17,19,25,27,31)© 5^(1,5,7,13,15,23)
0(0 o(0
5^(10,18,20,26,28)©  5^(2 ,4 ,10,12,20)
0(0 0 (1)

5^(11,19, 21, 27, 29)© 5 ^ (3 , 5,11,13,21)
0(0 o(0
y ' ' (12, 20, 22, 28, 30) © V "'(0,2,8,10,18)
0(0 o(0

, 23, 29, 31) © 5 ^ ( 1> 3, 9,11,19)
0(0 0(0
5 ^(0 , 8,14,16,30)© 5^(0,14,16,22,30)
0(0 0(0
5^(1,9,15,17,31)© 5^(1,15,17,23,31)
0(0 o(0
5^(2,10,16,18) © 51(12.14,  20,28)
0(0 o(0
5^(3,11,17,19) © 5^(13,15,21, 29)
0(0 o(0
5^(4 ,12 ,18 , 2 0 ) © 5©(10,12,18, 26)
0(0 0(0
5^(5,13,19,21)©  5^(11,13,19,27)
0(0 o(0
5^(6 ,14 , 20, 22) © 5^(8 ,10 ,16 , 24)
0(0 o(0
V ( 7 , 15,21,23)© 5^(9,11,17,25)
0(0 o(0
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A PPEN D IX  E 

ANCHO RED SHAPES to ANCHORED ROUTES PROOF

D e fin it io n  7 A pseudo-shape corresponding to the route n 0 ■ ■ ■ n k is the sequence a^ - ■ • a t- • • - ak 

of directions such that aL =  cwhrn(n ,_ \ , n t) for  1 < i < k.

Note th a t a shape is a pseudo-shape with constraints on the permissible directions (to  form 

minimal routes). Define an operator 0  between two directions in {d0, d x,. . . d5} as follows.

[ d[i+i]c, if j
< (7) if i

= [* +  2] 6 and i £ { 0 , . . .  5} 

d{ 0  dj — < 0 if j  = [i 0  3 ] 6 and i £ { 0 ,. .  .5} •

, d[i+s]6 if j  -  [i 0  4] 6 and i £ { 0 , . . .  5}

The 0  operator is undefined between two directions d,- and dj such th a t j  =  i or j  =  [i 0  1] 6

or j  — [i 0  5]6. Intuitively, traveling first along direction cf and then along dj equivalent to

traveling a single step along direction di@dj if <i;0 dj is well-defined. For instance, traveling 

along d0 and then along d2 is equivalent to  a single step along d\.

O b s e rv a tio n  1  A route n 0 - - - n k can be transformed to any other route with

k' < k using the following procedure:

1. Transform n 0 • ■ -nk to the pseudo-shape ax • • -ak .

2. Transform the a^ ■ ■ -ak to by ■ • ■ bj,./ by a finite number o f applications o f the following

operations:

(a) Replace a component a,- with a component a,-/ f  ai.

(b) Replace any two components a,i anda,j, i f  j , b y a ^ a j ,  where a ;0 aj is well-defined.

(c) Permute the components of u ,  ak.

3. Transform the pseudo-shape £q • ■ • b y  to the route m 0 • ■ • m ^ i .
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Note th a t operation (2a) does not “preserve the source-destination node pair” . This obser

vation can be formally sta ted  as follows. Let ax ■ ■ - ak be the pseudo-shape associated with 

the route n 0 • • -n k . Let ■ ■ -bk be a pseudo-shape obtained from aj • • -ak by a single ap

plication of (2a). Also let m 0 ■ ■ - m k be the route associated with the pseudo-shape 6 0 • • -bk . 

Then by “preserving the source-destination pair” we mean fq • • ■ bk is such th a t m 0 =  n 0 im 

plies m k =  n k . W ith this definition of preserving the source-destination pair we can conclude 

th a t the operations (2b) and (2c) preserve the source-destination node pairs. O peration 

(2 b) is the only operation th a t reduces the length of a pseudo-shape and the corresponding 

route.

L e m m a  6  A route n 0 ■ ■ ■ n k is a minimal route iff the associated pseudo-shape is a shape.

P ro o f :  We will first prove th a t the pseudo-shape of a minimal route is a shape.

Suppose not. Then there exist components a { and a ,j in the pseudo-shape such th a t 

we can apply operation (2b) to reduce the length of the pseudo-shape. The route associ

ated w ith this reduced pseudo-shape will be shorter than  the assumed minimal route. A 

contradiction.

Now consider the reverse direction of the lemma, i.e., the route associated w ith a shape 

is minimal.

Suppose not. Then there exists a  minimal route between the same source-destination 

pair whose pseudo-shape is shorter than  the given shape. Therefore we should be able to  

reduce our given shape to  the pseudo-shape of the minimal route using operations th a t 

preserve the source-destination pair. But this cannot happen since no operation of type 

(2b) can be applied to  this shape. Thus our initial assum ption the route associated with 

our shape is not minimal is false. B

T h e o re m  4 There is a one-to-one correspondence between anchored shapes and anchored 

routes anchored at node 0.

P ro o f :  We first show th a t Equation (4.2) transform s anchored shapes to  anchored routes at 

node 0. Consider the anchored shape (s,£). C onstruct the pair (r, 0) using Equation (4.2). 

We show th a t (r, 0) satisfies the three necessary properties of an anchored route.

1. Since s has a length of a t least 2, the corresponding route r has a length a t least 3.

2. Follows from Lemma 6  th a t r is a minimal route.
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3. Follows directly from the construction th a t node 0 is contained in the route r.

We now show th a t Equation (4.1) transform s anchored routes a t node 0 to  anchored 

shapes. Consider the anchored route ( r , 0 ) anchored a t 0 . C onstruct the pair (a j • • -ak ,£) 

using Equation (4.1). By Lemma 6 , ax • ■ ■ak will be a shape since the  route r is m inim al by 

definition. £ is bounded by construction between 1 and k — 1 as required by the  definition 

of an anchored shape. ■
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A PPE N D IX  F 

PP-M ESS-SIM  IN PU T  SPECIFICATION LANGUAGE

This appendix lists a pseudo BNF gram m ar for the language used to  specific the  simula

tion param ters for a pp-mess-sim run. This BNF gram m ar was constructed from the parser 

gram m ar and lexical analyzer specification files. All non-term inals are bracketed by ( /)  and 

alternatives are separated  by |. The lexical analyzer is configured to  be case insensative.

(specification) —> (specJists)

(specJists) —> (specJists) (spec) | (spec) 

spec —>
topology begin (topoJist) end | 
node (ident) begin (nodeJist) end | 
node (int) begin (nodeJist) end | 
task (ident) begin (taskJis t) end | 
general begin (genJist) end

(topoJist) —>■ (topoJist) (topoJine) | (topoJine)

(nodeJist) —> (nodeJist) (nodeJine) | (nodeJine)

( task Jis t) —»• (task Jis t) (taskJine) | (taskJine)

(genJist) —> (genJist) (genJine) | (genJine)

(genJine) —>•
output (pathnam e) ; | 
random seed (int) ; | 
random size (int) ; | 
option (switch) true ; | 
option (switch) false ;

(switch) —»
flex I bison I
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tasks | nodes | prime | 
toplevel | messgen | m essrecv | 
npbus | ctbus | rxbus | txbus | pcbus | 
rx | tfu | ni | imu |
npinterface | pcinterface | taxitx | taxirx |
cut | header | drop ) trace | arbitrate |
spec | topology | m em stats | resources | postnode

(param Jist) —>■ (param Jist) (param ) | (param )

(param ) -> (int) | (double) | e

(taskJine) —>
arrival (a_process) ; | 
length (Lprocess) ; | 
target (Lprocess) ; | 
routing (r_algorithm) ; | 
history (h-select) ; | 
cutoff (int) ; | 
messages (int) ; | 
drop (int) ; | 
max (int) ; | 
min (int) ; | 
rngcycle (int) ; | 
renew (int) ;

(a_process) —>
binomial (i_d_parms) | 
erlang (d_d_parms) | 
geom etric (d_parms) | 
hyperGeom etric (d_d_parms) | 
negativeexpntl (d_parms) | 
normal (d_d_parms) | 
lognormal (d_d_parms) | 
poisson (d_parms) | 
discreteuniform (iJ .parm s) | 
uniform (d_d_parms) | 
weibull (d_d_parms) | 
lengthdiscrete (kLparm s)

(Lprocess) —>
negativeexpntl (d_parms) | 
lengthdiscrete (ld_parms)

(Lprocess) —>
nodeuniform ( ) | 
hopuniform ( (d J is t) ) (d_parms)
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(i_d_parms) —»■ ( (int) , (double) )

(d_d_parms) —> ( (double) , (double) )

(d_parms) —> ( (double) )

(iJLparms) —> ( (int) , (int) )

(ld_parms) ( (d iJist) )

(d iJ is t) —»■ (d iJist) , (di_single) | (di_single)

(di_single) —> (double) , (int)

(dJis t) —> (d J is t) , (double) | (double)

(h_select) —»■ n o n e  | la te n c y  | c o r re la t io n

(nodeJine) —>■
ta s k s  (int) ; |
s e le c t ta s k  (ident) (int) ; |
s e le c t n o d e  (ident) ;

(topoJine) —»
se le c t c w h m  ; | 
s e le c t s q m e s h  ; | 
s e le c t h y p e rc u b e  ; | 
s e le c t k a ry c u b e  ; | 
s ize  (int) ; | 
d im e n s io n  (int) ;

(int) —> (decint) | (octint) | (hexint)

(decint) —> (nzdigit) | (decint) (digit)

(octint) —> 0  (octdigit) —>■ (octint) (octdigit) 

(hexint) —> Ox (hexdigit) —> (hexint) (hexdigit) 

(octdigit) —> 0 | 1 [ 2 | 3 I 4 | 5 | 6  | 7

(digit) —> (octdigit) | 8  | 9

(hexdigit) —> (digit) | a [ b | c | d | e | f

(alpha) —>•
a |b |c |d |e |f |g |
h |i |j |k |l |m |n |
o |p |q |r |s | t |u |
v |w |x |y |z

(identifier) —>
(alpha) |
(identifier) (alpha) |
(identifier) (digit)
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