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C H A P T E R  1

IN T R O D U C T IO N

1.1 M u ltica st N etw ork in g  and F low  C on tro l

M ulticast provides an efficient way of simultaneously disseminating data or information 

from one source to  multiple receivers. Instead of sending a separate copy of the data  to 

each individual receiver using multiple unicasts, the source ju st sends a single copy once 

to  all the receivers in the multicast group. Conceptually, the underlying multicast-network 

delivery system  forms a multicast tree connecting the source and all the receivers, with the 

sender as the root and the receivers as the leaf nodes. D ata  or information generated by the 

sender flows through the  multicast tree, traversing each link of the multicast tree exactly 

once. As a result, m ulticast offers high efficiency in utilizing network resources and has a 

wide spectrum  of applications, such as software distribution, multimedia streaming, and 

distance learning/collaboration. Like in unicast, flow control also plays a crucial role in 

m ulticast over the best-effort networks, such as the Internet. The purpose of flow control 

is to  minimize the traffic congestion while maximizing the efficiency in network-resource 

utilization. As a classic and popular research area in the field of networking, the flow- 

control theory  has evolved over the last two or three decades. However, multicast brings 

out many new challenges in flow control th a t were not encountered in unicast, and multicast 

flow control is still in its infancy. The main goal of this dissertation is to develop protocols

1
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and modeling techniques to  solve the new flow-control problems associated with multicast 

in wide-area networks.

Different multicast flow-control protocols ta rget a t different multicast applications, and 

also differ in their implementations. Based on different control methods, application ob

jectives, and network structures, multicast flow control can be classified into the following 

several m ajor categories.

O p en -lo o p  vs. C lo se d -lo o p . The open-loop multicast flow control is typically used for 

real-time multimedia streaming applications, such as teleconferencing, where multicast 

flow control is mainly used for admission control to  ensure the adm itted multicast 

users to  receive guaranteed QoS (Quality-of-Service). Real-time multicast flows can 

tolerate a certain level of losses, but are sensitive to large delay or delay jitter, making 

the closed-loop scheme unsuitable. On the other hand, the closed-loop multicast 

flow control is essential for data  dissemination over the best-effort networks where 

multicast flow control dynamically adapts the source rate to the  variation of the 

available bandwidth in the network/receivers. While data multicast flows usually 

do not have to guarantee strict delay-bounds, they must be delivered losslessly, thus 

requiring closed-loop flow control.

R a te -B a se d  vs. W in d o w -B ase d . There are mainly two types of multicast flow-control 

schemes: window-based (e.g., TCP [1]) and rate-based (see [2]). The window-based 

scheme dynamically adjusts the upper-bound of the number of packets tha t the trans

m itter may send w ithout receiving an acknowledgment from the receiver. In the rate- 

based scheme, the transm itter regulates its sending rate  based on network-congestion 

feedback. The window-based scheme is cost-effective as it does not require any fine- 

grain rate-control tim er, and the window size autom atically limits the load a source 

can impose on the network. However, the window-based scheme also introduces its 

own problems, including lack of bandw idth guarantee, vulnerability to packet losses 

and RTT (RoundTrip Time) variation, and complication of error-control mechanism.

2
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E x p lic it  v s . Im p lic it F eed b ack . Depending on whether routers perform Active Queue 

M anagem ent (AQM) or not, closed-loop m ulticast flow control can either use packet 

drop or duplicate ACKs (using a  simple Drop-Tail router) to  imply the  network 

congestion, or install an AQM mechanism in each router, such as RED (Random 

Early Detection) and REM (Random  Early M arking) or ECN (Explicit Congestion 

Indication), which explicitly detects and sends the congestion signals to th e  multicast 

source. While the implicit feedback minimizes the router complexity, it has two major 

weaknesses: (1) it cannot distinguish the drops due to congestion from those due to 

link failures (e.g., due to the noisy wireless links in the multicast tree), and (2) the 

flow-control scheme drops packets on its own, triggering unnecessary, but expensive, 

retransmissions. In contrast, explicit feedback can not only avoid the above two 

problems, but also minimize drops/retransm issions with early congestion detection at 

the expense of extra router complexity.

B in a ry  v s . M -a ry  F eedback . A feedback signal can employ one bit where the  traffic 

source makes every flow-control decision based on only a  single bit feedback, thus 

called binary feedback, such as T C P ’s drop-ACK, RED’s ECN-bit, A BR’s Cl-bit, 

etc., or M -ary feedback where each flow-control decision at source is derived from 

multiple-bit feedback, e.g., Explicit-Rate feedback in ATM networks. W hile binary 

feedback minimizes the feedback signaling overhead, it suffers from less dynam ic stabil

ity and low bandwidth-utilization efficiency, because it only implements coarse-grain 

flow control. In contrast, M -ary feedback can offer much higher flow-control per

formance because it applies fine-grained flow-control, accurately adapting the  source 

ra te  to  the actual available bandw idth. However, M -ary feedback is more expensive 

in both router implementation and bandwidth consumption. This problem becomes 

even severer in multicast because m ulticast incurs a  much higher volume of flow-control 

feedback signaling traffic when the number of m ulticast-tree branches is large.

D e te r m in is t ic  v s . R an d o m  M a rk in g . For AQM-equipped routers, the packet ECN-bit

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



can be marked either determ inistically as long as the aggregate queue length reaches 

a  predetermined threshold, such as the Cl-bit used in ABR, or randomly with a prob

ability proportional to  the congestion level measured a t the  bottlenecked routers, like 

in RED gateways. The random  marking outperforms the deterministic marking for 

the following four reasons. F irst, the marking probability of a  multicast connection is 

proportional to  its actual bandw idth share so tha t packets of ill-behaved connections 

are more likely to get marked. Second, random marking does not have any bias against 

bursty multicast sources, because a packet is marked based on the average of the ag

gregate queue length, allowing small bursts to  go unharmed and marking every packet 

only during sustained overloads. Third, random marking can avoid the “global syn

chronization” problem of determ inistic marking tha t results from many connections 

reducing their rate a t  the same time. Finally, as will be shown in Chapter 6, ran

dom marking can virtually achieve fine-grain M -ary feedback multicast flow-control 

performance while only using binary feedback by fusing a  sequence of random marks. 

However, these benefits of random  marking are achieved a t the cost of the increased 

complexity of random m arking m ulticast routers.

As is clear from the above discussion, there is no single flow-control scheme which can per

fectly satisfy all the m ulticast flow-control requirements. Each scheme has its own strengths 

and weaknesses, depending on the application objectives and the performance metrics used. 

The goal of this dissertation is to  make the optimal trade-off among different flow-control 

schemes by carefully tailoring them  to  develop new multicast flow-control protocols, which 

can best solve the new flow-control problems associated with multicast.

1.2  M ain  C on tr ib u tion s

From the flow-control theory viewpoint, a  flow-control scheme or protocol typically con

sists of two fundamental com ponents: (1) rate control— adapting the source rate (or window 

size) to  the dynamic variation of available network bandwidth; and (2) flow-control signal-
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ing — delivering the  flow-control information related to both congestion and rate-control 

between the source and network/receivers. We address the new flow-control problems as

sociated with m ulticast by considering these two components as follows.

M u lt ic a s t  ra te -c o n tro l a lg o rith m s : The multicast-tree bottleneck round-trip time (RTT) 

varies when the bottleneck changes from one path to another, which has a significant impact 

on the multicast flow-control performance [2-7]. To make the multicast flow control scal

able to  multicast RTT variations, we develop a binary-feedback-based rate-control scheme 

[2,5,6]. At the heart of the proposed scheme is an optimal second-order rate control al

gorithm , called the a-control [8], which adapts the rate ram p-up speed to the variation in 

RM-cell RTT resulting from dynamic “drift” of the bottleneck in a multicast tree. Ap

plying two-dimensional rate control, the proposed scheme not only makes the rate process 

converge to the available bandwidth of the connection’s most congested link, but also con

fines the  buffer occupancy to a target regime bounded by a finite buffer capacity. Using 

the fluid analysis, we model the proposed scheme and analyze the system dynamics for 

m ulticast ABR traffic. The analytical results show th a t the proposed scheme is stable and 

efficient in terms of convergence of source-rate and queue-size to a small neighborhood of 

the designated operating point. The simulation results verify the analytical findings.

In contrast to the  binary feedback based multicast flow control, we also develop a virtual 

M -ary  (VMARY) feedback-based multicast flow-control scheme [9,10], which can achieve 

a fine-grained ra te  control while keeping the feedback signaling traffic as low as the case 

of binary feedback. Using the duality theory, we first model the multicast ra te  control as 

a distributed optimization problem with a  structure separable in both aggregate utilities 

and constraints. The global optimization objective is to maximize the aggregate utility of 

all source rates subject to  every link’s capacity constraint in the multicast tree. We then 

achieve the optimization by developing a distributed gradient projection algorithm and a 

random marking based congestion feedback mechanism. The key of the feedback mecha-

5
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nism is the feedback fusion rule implemented at each branch router, which aggregates the 

feedback ECN-bit sequences from all connected downstream branches, and derives a single 

aggregate ECN-bit sequence. W hen the  aggregate ECN-bit sequence eventually reaches 

the source, the marking probability of the most-congested path is derived as the M -ary 

congestion-level feedback information, which is then used to control the next optimization 

iteration. The feedback fusion rule is easy to  implement and proved to be optim al in terms 

of maximizing the bandwidth utilization and adaptiveness. We model the proposed scheme 

and compare its performance with the binary-feedback scheme through both analysis and 

simulation.

M u lt ic a s t  flow -con tro l s ig n a lin g  p ro to c o ls : For m ulticast flow-control signaling, there 

are two new major problems. The first problem is scalability — simultaneous arrival of feed

back signals from all branches can cause feedback implosion [11-13]. Hence, all feedback 

signals need to  be consolidated a t all branch points, and then one consolidated feedback 

is sent to  its upstream node. The second problem is feedback synchronization — differ

ent downstream branches’ feedbacks may arrive a t the  branch point a t significantly dif

ferent times, and the unsynchronized feedback consolidation may mislead the source-rate 

controller, causing the consolidation noise problem [12,14,15]. To solve the above two 

problems with multicast flow-control signaling for ATM ABR services, we propose the Soft 

Synchronization Protocol (SSP) [3] which consolidates the feedback RM cells a t  each branch 

point th a t are not necessarily responses to  the same forward RM cell in each synchroniza

tion cycle. Through the fluid analysis and simulations, we show th a t the proposed SSP not 

only scales well with m ulticast-tree’s height and path  lengths [11] while providing efficient 

feedback synchronization, but also simplifies the implementation of detection and removal 

of non-responsive branches.

M ost previous research on m ulticast signaling has focused on the algorithm design and 

implementation. However, the delay properties of these algorithms, despite their vital im-

6
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pact on m ulticast flow control, are neither well understood nor thoroughly studied. To 

remedy this deficiency, we develop a  balanced and unbalanced binary-tree delay models 

to study the delay performance of a class of feedback-synchronization signaling protocols, 

including our SSP and the widely-known hop-by-hop (HBH) algorithm , for multicast ATM 

ABR flow control. The deterministic binary-tree model is then used to  derive a set of expres

sions for calculating each p a th ’s RTT in a  given multicast tree. To capture the statistical 

characteristics of multicast signaling delay when the m ulticast-tree bottleneck shifts among 

the m ulticast-tree paths, we further develop a  statistical model to  characterize the delay 

properties for RED- and REM-based m ulticast flow control, where the random markings at 

different links are independent. Applying the binary-tree and statistical multicast-signaling 

delay models, we derive the probability distributions for any path  to be the m ulticast-tree 

bottleneck and the first and second moments of multicast-signaling delay across the  entire 

m ulticast. The thus-obtained numerical results also statistically show that SSP outper

forms HBH in terms of both the means and variances of the m ulticast signaling delay. We 

also conduct extensive simulations, which all verify the analytical findings based on the 

statistical model, thus confirming the accuracy of the statistical model.

Finally, we consider the general case in which the congestion markings a t different 

links are dependent. Including congestion-marking dependencies in the analysis is usually 

much harder than th a t under the independence assumption. However, the analysis w ithout 

assuming independent markings can capture  the statistical characteristics more accurately 

for many practical cases. Specifically, we develop a Markov-chain model defined by the 

link-marking sta te  on each path in a  m ulticast tree [4,5]. The Markov chain can not only 

characterize link-marking dependencies, bu t also yield a  tractab le  analytical model. We 

also develop a  Markov-chain dependency-degree model, which can quantify and evaluate 

all possible Markov-chain dependency degrees without any prior knowledge of the actual 

dependency degree. Using the M arkov-chain and Markov-chain dependency-degree models, 

we derive the general expressions for the  probability distribution of each path being the
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m ulticast bottleneck. Also derived are the closed-form expressions for the first and second 

moments of multicast signaling delays. The modeling accuracy and analytical findings have 

been confirmed by simulations. The proposed Markov chain is also shown to  asymptotically 

reach an equilibrium, and its limiting sta te  distribution converges to the marginal link- 

m arking probabilities. We also show th a t the developed Markov-chain is ergodic if it is 

irreducible, which is practically useful because it enables us to  evaluate the various statistical 

averages through the sample averages. Applying the developed Markov-chain and Markov- 

chain dependency-degree models, we also analyze and contrast the delay scalability of SSP 

and HBH signaling protocols, and the numerical analysis show the superiority of SSP to 

HBH in term s of multicast signaling delay under dependent link-markings. Again, the 

obtained analytical findings are all confirmed by simulations.

1.3  O u tlin e  o f  th e  D isser ta tio n

This dissertation is organized as follows. In Chapter 2, we propose the second-order 

rate-control based flow-control scheme for m ulticast1 ABR service in ATM networks, which 

can adap t the multicast flow control to multicast RTT variations. To overcome the feed

back implosion and feedback synchronization problems, in C hapter 3 we propose the Soft 

Synchronization Protocol (SSP) which consolidates the feedback RM cells a t each branch 

point th a t are not necessarily responses to the same forward RM cell in each synchroniza

tion cycle. Also developed is a binary-tree-based deterministic multicast signaling delay 

model which generates a set of equations to calculate the RTT for each path  in the given 

m ulticast tree. In C hapter 4, we develop a statistical binary-tree models to study the 

delay performance of a  class of feedback-synchronization signaling algorithms for multicast 

ATM ABR flow control.In C hapter 5, considering the general case where the congestion

m arkings a t different links are dependent, we develop a Markov-chain and a Markov-chain

1 S tr ic tly  speaking , m u lticast includes p o in t-to -m u ltip o in t, m u ltip o in t-to -p o in t, a n d  m ultipo in t-to - 
m u ltip o in t transm issions. H ow ever, for th e  convenience o f  p resen tation , in  th is  d isse rta tio n  we use the  
n a rro w -sen se  defin ition  for m u ltica s t w hich s ta n d s  for th e  po in t-to -m u ltip o in t transm ission .
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dependency-degree model which are used to  derive probability density functions for a  path 

to  become the most congested and obtain the first and second moments of multicast sig

naling delay. In Chapter 6, we develop a  virtual M -ary  (VMARY) feedback optimization 

m ulticast flow-control scheme, which can achieve a  fine-grained rate control while only using 

the binary feedback. We model the proposed scheme and compare its performance with the 

binary-feedback scheme using both analysis and simulation. This dissertation concludes 

with C hapter 7, summarizing the main contributions of this dissertation and discussing 

future directions.

9
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C H A P T E R  2

S C A L A B L E  F L O W  C O N T R O L  F O R  M U L T IC A ST  A B R  

SER V IC E S IN  A T M  N E T W O R K S

2.1 In trod u ction

The ABR flow-control algorithm  has two m ajor functions: determining the bottleneck link 

bandw idth, and adjusting the source transm ission rate to  m atch the bottleneck link band

width and buffer capacity. In a multicast ABR connection, determining the bottleneck link 

bandw idth is a  daunting task. The first generation of multicast ABR algorithms [16-19] 

employ a  simple hop-by-hop feedback mechanism for this purpose. In these algorithms, 

feedback RM (Resource M anagement) cells from downstream  nodes are consolidated a t 

branch points. On receipt of a forward RM  cell, the consolidated feedback is propagated 

upwards by a  single hop. While hop-by-hop feedback is very simple, it does not scale well 

because the RM-cell RTT is proportional to  the height of the multicast tree. Moreover, 

unless the feedback RM cells from the dow nstream  nodes are synchronized a t each branch 

point, the  source may be misled by the incomplete feedback information, which can cause 

the consolidation noise problem [20].

In order to reduce the RM-cell RTT and elim inate consolidation noise, the  authors 

of [15, 20] proposed feedback synchronization a t each branch point by accumulating feedback 

from all downstream branches. The main problem with this scheme is its slow transient
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response since the feedback from the congested branch may have to  needlessly wait for 

the feedback from “longer” paths, which may not be congested at all. Delayed congestion 

feedback can cause excessive queue build-up and cell loss a t the bottleneck link. The authors 

of [21] proposed an improved consolidation algorithm  to  speed up the transient response 

by sending the fast overload-congestion feedback w ithout waiting for all branches’ feedback 

during the transient phase.

One of the critical deficiencies of the schemes described above is th a t they do not detect 

and remove non-responsive branches from the  feedback synchronization process. One or 

more non-responsive branches may detrim entally im pact end-to-end performance by pro

viding either stale congestion information, or by stalling the entire multicast connection. 

We propose a Soft-Synchronization Protocol (SSP) which derives a consolidated RM  cell at 

each branch point from feedback RM cells of different downstream nodes tha t are not nec

essarily responses to the  same forward RM cell in each synchronization cycle. The proposed 

SSP not only scales well with m ulticast-tree’s height and path lengths [11] while providing 

efficient feedback synchronization, but also simplifies the implementation of detection and 

removal of non-responsive branches. A scheme similar in spirit but different in term s of 

im plem entation has been proposed independently in [20] and [15].

As clear from the above discussion, the problem of determining the bottleneck link 

bandw idth in a  m ulticast ABR connection has been addressed by many researchers. Unfor

tunately, little a tten tion  has been paid to the  problem on how to adjust the transmission 

ra te  to match the bottleneck bandwidth and buffer capacity in the multicast context. All 

of the  schemes proposed in the literature retrofit the transmission control mechanism used 

for unicast ABR connections to m ulticast connections. Consequently, they have overlooked 

an im portan t but subtle problem tha t is unique to  m ulticast ABR connections. Unlike 

in unicast, in a  m ulticast connection the bottleneck may shift from one path to  another 

within the multicast tree. As a result, the RM-cell RTT in the bottleneck path may vary 

significantly. Since the  RTT plays a  critical role in determ ining the effectiveness of any
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feedback flow-control scheme, it is im portant to  identify and handle such dynamic drifts 

of the bottleneck. Failure to  adapt with RM-cell RTT variations may either lead to large 

queue build-ups at the bottleneck or slow transient response.

A key component of the scheme proposed in this chapter is an optimal second-order 

rate control algorithm, called the a-control, designed to cope with RM-cell RTT varia

tions. Specifically, the proposed rate control scheme not only regulates the traffic source 

rate based on the congestion feedback, but also adjusts the rate-gain param eter a , which is 

the speed of rate  increase. As will be discussed later, the maximum queue-size is an increas

ing function of both the RM-cell RTT and the rate-gain parameter a , and the a-control 

can make the flow-control performance dynamically adaptive to RM-cell RTT variations. 

The formal introduction and fundam ental principle of the a-control will be detailed in Sec

tion 2.4.2. Using the fluid analysis, we model the a-control with the binary-congestion 

feedback, and study the system dynamics in the scenarios of both persistent and on-off 

ABR traffic sources. We develop an optimal control condition, under which the a-control 

guarantees the monotonic convergence of system state  to the optimal regime from an ar

bitrary initial value. The analytical results show th a t the proposed scheme is efficient and 

stable in th a t both the source rate and bottleneck queue length rapidly converge to a small 

neighborhood of the designated operating point. The a-control is also shown to adapt well 

to RM-cell RTT variations in term s of buffer requirements and fairness.1 The dynamic 

performance of the proposed scheme is evaluated by both modeling analysis and simula

tion experiments, and the simulation results verify the analytical results. To analyze the 

performance of the proposed scheme in more general network scenarios, we also conducted 

extensive simulations for the case of concurrent multiple multicast connections where the 

number, location, and bandwidth of bottlenecks vary dynamically. The simulation results

dem onstrate the superiority of the proposed scheme to the other schemes in dealing with

1 T h e  defin ition  o f fairness u sed  th ro u g h o u t th is  c h a p te r  is ad op ted  from  [22] w here th e  fairness is 
achieved w hen all connections receive a n  equal sh a re /a llo c a tio n  of th e  netw ork  resources (b lindw id th  or 
buffer cap ac ities). T h is  differs from  th e  m ax-m in  fairness, w hich deals w ith  m ore general cases w here som e 
co n n ec tio n s’ d em an d  is sm aller th a n  an  equal sh a re /a llo c a tio n  of the netw ork  resources.
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the variations of RM-cell RTT and link bandwidth, achieving fairness in both buffer and 

bandwidth occupancies, and improving average throughput.

This chapter is organized as follows. Section 2.2 describes the proposed scheme. Sec

tion 2.3 establishes the flow-control system  model. Section 2.4 justifies the necessity and 

feasibility of the a-control, presents the a-control algorithm, and investigates its properties. 

Section 2.5 derives analytical expressions for both transient and equilibrium states, eval

uates the scheme’s performance for the  single-connection case, derives the greatest lower 

bound of target buffer occupancy, conducts loss control analysis, and compare the analysis 

and simulation results. Section 2.6 investigates the convergence to  fairness and aggregate 

efficiency of the proposed a-control am ong the multiple concurrent m ulticast connections, 

analyzes the flow-control dynamic perform ance of concurrent multiple multicast-connections 

by the fluid analysis, and compares the  proposed scheme with the other existing schemes 

through simulations. The chapter concludes with Section 2.7.

2 .2  T h e  P rop osed  S ch em e

Based on the ABR flow-control framework in [23], we use RM cells to convey network- 

congestion information. A forward RM cell is sent by the root (source) node periodically 

or once every N rm data-cells, and each receiver node replies by returning to the source 

a  feedback RM cell with C l (Congestion Indication) and ER (Explicit Rate) information. 

We redefine the RM-cell form at by adding information on the rate-gain param eter (second- 

order) control in the standard RM cell to  deal with RM-cell RTT variations. In particular, 

two new one-bit fields, B C I  (Buffer Congestion Indication) and N M Q  (New Maximum 

Queue), are defined. Our scheme distinguishes the following two types of congestion:

B a n d w id th  C o n g e s tio n : If the queue length Q (t) a t a switch becomes larger than  a 

predetermined threshold Qh, then  the  switch sets the local C l  (Congestion Indication) 

bit to 1.
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O n  r e c e ip t  o f  a n  R M  c e l l :

i f  (L C I= 1  a  C I= 0 ) { ! B u f-co n g est contro l trigger condition

i f ( B C I = l )  {A IR  :=  q x  A IR }; ! A IR  reduced  m u ltip licatively

e l s e i f  (B C I = 0  A  L B C I= 0 ) {A IR  :=  p  +  A IR }; ! In crease  A IR  a d d itiv e ly

e l s e i f  (B C I= 0  A  L B C I = l)  {A IR  :=  A IR /q }; ! B C I to g g les  from  1 to  0, around A IR
M D F  : =  e - A l R / B W - B S T . ! M D F  u p d a tin g
LNM Q  : =  1 ; L B C I : =  BCI; }; ! S ta r t a  new  m easurem ent cycle

i f  (C I= 0 ) {A C R  :=  A C R  +  A IR }; ! In crease  cell rate ad d itive ly
e ls e  {A C R  :=  A C R  x  M D F }; ! D ecrea se  cell rate m ultip licatively

LCI :=  C l; ! Save C l and  B C I b its  for a -contro l.

Figure 2.1: The pseudo-code for Source End System (SES).

B u f fe r  C o n g estio n '. If the maximum queue length Qmax a t a  switch exceeds the target 

buffer occupancy Qgoai , where 2Qh < Qgoal < C max (see Theorem 2.5.2) and Cmax is 

the buffer capacity, then the switch sets the  local B C I  to 1.

Notice th a t the buffer congestion represents a severer congestion condition than the 

bandwidth congestion, and thus, the buffer congestion always occurs after the bandwidth 

congestion already exists. As will be elaborated on later, the bandwidth congestion control 

deals with the link bandw idth constraint while the buffer congestion is targeted a t the buffer 

occupancy control.

2.2 .1  The Source A lgorithm

A pseudocode for the  source control algorithm is presented in Figure 2.1. Upon receiving 

a  feedback RM cell, the  source must first check if it is tim e to exercise the buffer-congestion 

control (the a-control). The buffer-congestion control is triggered when the source detects 

a  transition from a rate-decrease phase to a  rate-increase phase, th a t is, when L C I  (local 

congestion indicator) is equal to 1, and the C l  field in the RM cell received is set to 0. The 

rate-gain param eter is adjusted according to the current value of the local B C I  (L B C I ) and 

the B C I  field in the RM  cell ju s t received. There are three different variations: (i) if B C I  

is set to  1 in the RM cell received, the rate-gain param eter A I R  (Additive Increase Rate) is 

decreased multiplicatively by a factor of q (0 < q < 1); (ii) if both L B C I  and B C I  are set to
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0, the rate-gain param eter A I R  is increased additively by a  step of size p > 0; (iii) if L B C I  

=  1 and B C I  = 0, A IR  is increased multiplicatively by the same factor of q. For all of these 

three cases, the rate-decrease param eter M DF  (Multiplicative Decrease Factor) is adjusted 

according to the estimated bottleneck bandwidth B W -E S T .  Then, the local N M Q  bit is 

m arked and the B C I -bit in the RM cell received is saved in L B C I  for the next a-control 

cycle. The source always exercises the cell-rate (first-order) control whenever an RM cell 

is received. Using the same, or updated, rate-param eters, the source additively increases, 

or multiplicatively decreases, its A C R  (Allowed Cell Rate) according to the C l -bit in the 

RM cell received. Based on the source algorithm, Figure 2.5 in Section 2.5 demonstrates 

the equilibrium dynamics of the source rate R{t) and the bottleneck queue length Q (t) , 

using the fluid functions to be discussed in Section 2.3. Driven by feedback C l- bit, R(t) 

fluctuates around the bottleneck bandw idth, but alternates between two different ramp-up 

speeds determined by the feedback B C I-bit. As a result, the maximum queue length Qmix 

a t the bottleneck is confined to the  designated operating regime around the target buffer 

occupancy Qgoal.

2 .2 .2  T h e  S w itc h  A lg o r i t h m

A t the center of switch control algorithm is a pair of connection-update vectors: (I) 

connjpattjuec , the connection pa tte rn  vector where connjpattjuec{i) =  0 (1) indicates the 

z’-th  ou tpu t port of the switch is (not) a  downstream branch of the multicast connection. 

Thus, connjpattjuec[i) =  0 (1) implies th a t a data copy should (not) be sent to the z-th 

downstream  branch and a feedback RM cell is (not) expected from the z-th downstream 

branch;2 (II) respJbranchjuec, the responsive branch vector is initialized to 0 and reset to 

0 whenever a consolidated RM cell is sent upward from the switch. respJbranchjuec(i) is 

set to  1 if a  feedback RM cell is received from the z-th downstream branch. The connection 

p a tte rn  of connjpattjuec is updated by respJbranchjuec each time when the non-responsive

branch is detected or a new connection request is received from a downstream branch.

2 N o te  th a t  the negative logic is u sed  fo r  convenience o f im plem entation .
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O n  r e c e ip t  o f  a  D A T A  c e l l :
m ulticast DATA cell based  o n  c o n n jp a t t ju e c ; ! m ulticast d a ta  cell to  co n n ec ted  branches
i f  (d a ta j ju  >  Q h ) { C l  := 1 ;} ! 1) B and w idth  c o n g estio n  control
i f  (da ta_qu  >  Q m a x ) { Q m a x  :=data_qtx;} ! 2) up date  Q m a x

i t  (^ m a i  >  Qgoal) { S C I  := 1 ;} ! 3) buffer co n gestion  co n tro l
e l s e  { B C I  :=0;} ! 1), 2), 3) app lied  to  a ll co n n ctd  brches

O n  r e c e ip t  o f  a  f e e d b a c k  R M  c e l l  f r o m  t - t h  d o w n s tr e a m  b r a n c h :
i f  (c a n n jp a tt ju e c ( i) ^  1) { ! on ly  process co n n ected  branch

re sp J b ra n c h ju ec (i)  :=  1; ! m ark co n n ec ted /resp o n siv e  branch
M C I : =  M C I  V  C l ; ! b an d w id th -congestion  in d ica to r  process
M B C I : =  M B C l  V  B C I ; ! buffer-congestion in d ica to r  processing
M E R —  min { M E R , E R } ; ! B R  inform ation p ro cessin g
i f  (c o n n jp a ttju e c  Q  re sp J b ra n c h ju e c  = 1 )  { ! soft-synchronization
send RM  cell (d ir  b a c k w a rd , E R : =  m inreap_ fcran<.(lea M E R , C I : =  U r e i P - h - a n c f t «  M C I ,

B C * ■■= U M B C l ) ; ! send fully  co n so lid a ted  R M  cell upwards
re sp -b ra n ch -u ec:=  0; ! reset responsive branch vector
M C I  —  0; M E R  :=  E R ; ! reset congest control variab les o f  RM  cell
n o -re sp .tim .e r  :=  N n r t \} } ! reset non-responsive tim er

O n  r e c e ip t  o f  a  fo r w a r d  R M  c e ll:
m u lticast RM cell based on  c o n n .p a t tju e c ; ! m ulticast RM  cell
i f  ( N M Q  =  1) { M B C I : = 0 ;  Q m a = —  0 ;} ! sta r t a  new m easurem ent cy c le
n o j- e s p - t im e r  :=  n o .r e s p - t im e r  — 1; ! no-responsive branch check in g
i f  (n o .r e s p .t im e r  =  0) { ! there is a  no-respon sive  branch

c o n n .p a tt .v e c  :=  re sp J b ra n c h ju e c  0  J_; ! up d ate  connection  p a tte rn  vector
i f  (re sp Jb ra n ch ju ec  ^  0 ) { ! there is a t least on e  resp o n siv e  branch

send RM cell (d ir  —  b a c k w a rd , E R : = m 'm r f l p _ brancKe,  M E R ,  C l  =  U r«»p-krancliM  M C I ,
^ ^ ^ U r o s p - t r o n c H o s M B C I ) ; ! send  partial co n so lid a ted  RM  cell up

re sp Jb ra n ch ju ec  :=  0; ! reset the responsive branch  vector
M C I  :=  0; M E R  :=  E R ; ! reset congest control variab les o f  RM  cell
n o -r e s p - t im e r  :=  Wn r [; } } ! reset the n on -resp onsive  tim er

O n  r e c e ip t  o f  c o n n e c t / d i s - c o n n e c t  r e q u e s t  fr o m  j —th  d o w n s t r e a m  b r a n c h :
c o n n .p a t t .v e c ( j)  :=  0; ! a d d /rea ctiv a te  a  branch in m u ltica st tree
c o n n .p a t t-v e c ( j )  :=  1; ! d isconn ect a  branch in  m u ltica st tree .

Figure 2.2: The pseudocode for Intermediate Switch System (ISS).

A simplified pseudocode of the switch control algorithm is given in Figure 2.2. Upon 

receiving a da ta  cell, the switch m ulticasts the data  cell to its ou tpu t ports specified by 

connjpattjuec , if the corresponding ou tpu t links are available, else enqueues the d a ta  cell 

in its branch’s queue. M ark the branch’s C l  (E F C I ) if queue length Q (t) > Qh- Update 

Qmax for the a-control (to be discussed in Section 2.4.1) if the branch’s new Q{t) exceeds 

the  old Q max. B C I  :=  1  if its updated Qmax > Qgoal, the target buffer occupancy.

On receipt of a feedback RM cell returned from either one of the receivers or a connected 

downstream  branch, the switch first marks its corresponding bit in respJbranchjuec and
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then performs RM-cell consolidation operations, using OR rule. If the modulo- 2  addition 

(the soft-sychcronization operation of SSP), connjpattjuec  © respJbranchjuec =  1 , an all 

l ’s vector, indicating all feedback RM cells synchronized, then a  fully-consolidated feedback 

RM cell is generated and sent upward. But, if the modulo-2 addition is not equal to 1 , the 

switch needs to await other feedback RM-cells for synchronization. Since the switch control 

algorithm  does not require th a t  a  consolidated RM-cell be derived from only those feedback 

RM-cells corresponding to  the  same forward RM-cell, the feedback RM-cell consolidation 

is “softly-synchronized” .

Upon receiving a  forward RM-cell, the switch first m ulticasts it to  all the connected 

branches specified by connjpattjuec. Then, reset Qmax •'= 0 and the buffer congestion indi

cato r M B C l  := 0 if an N M Q  request is received. The non-responsive tim er nojresp-tim er  

is initialized to  a threshold N nrt and reset to N nrt whenever a consolidated RM-cell is sent 

upward. The predetermined tim eout value Nnrt for non-responsiveness is determined by 

such factors as the difference between the maximum and minimum RM-cell RTTs. We use 

the forward RM-cell arrival tim e as a natural clock for detecting/rem oving non-responsive 

branches (such tha t it will still work even in the presence of faults in the downstream 

branches). Each time a  switch receives a forward RM-cell, the multicast connection’s 

n o jresp -tim er  is decreased by one. If nojrespJtim er =  0 (tim eout) and respJbranchjuec ^  0 

(i.e., there is a t least one downstream  responsive branch), then the switch will stop await

ing arrival of feedback RM-cells and immediately generate a partially-consolidated RM-cell, 

and send it upward. W henever no-resp-tim er — 0 is detected, a t least one non-responsive 

dow nstream  branch is detected and will be removed by the simple operation: connjpattjuec 

:= resp-branchjuec  © .1 .

Therefore, a downstream branch which has not sent any feedback RM-cell for N nrt 

forward RM-cell time units will be removed from the m ulticast tree. On the other hand, 

a  dow nstream  node can join th e  m ulticast connection, a t run-tim e, by subm itting a join-in 

request to  its immediate upstream  branch-switch. So, our algorithm  supports the dynamic
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reconfiguration of a  m ulticast tree.

2 .2 .3  M ulticast F low -C ontrol S ignaling and Scalability

The multicast flow-control algorithm s proposed above consists of two basic components: 

flow-control signaling and rate control. These two components are conceptually separate 

from a flow-control theory viewpoint, even though they are blended together in the proposed 

algorithm s. We first consider flow-control signaling scalability in this section, and will then 

focus on the rate  control in the rest of the  chapter.

As clear from the proposed algorithm s, the flow-control signaling relies on RM cells, 

which deliver the rate-control and congestion information between the source-rate con

troller and the network/receivers. Signaling for multicast flow control imposes two new 

challenges: scalability and feedback-synchronization. These two problems are closely re

lated  in the signaling protocol for m ulticast flow control. F irst, if multicast flow-control 

signaling is implemented naively such th a t each receiver sends its own feedback RM cell 

individually all the way back to the source, the flow-control traffic due to feedback RM 

cells will result in “feedback explosion” — not only a t the source but at all branch nodes 

o f the  multicast session. Hence, it is im portan t for each branch point to consolidate the 

congestion-information feedback from its downstream  nodes and send only the consolidated 

feedback to its upstream  node. Second, we need a feedback-synchronization signaling al

gorithm  to synchronize the feedback-consolidation a t each branch point, because different 

dow nstream  branches’ feedback may arrive a t the branch point a t significantly different 

tim es, and the unsynchronized feedback-consolidation may mislead the source-rate control 

decisions, causing the consolidation noise  problem [15,20].

To solve the above two problems with m ulticast flow-control signaling, we propose the 

S o ft Synchronization Protocol (SSP) which consolidates the feedback RM cells at each 

branch point th a t are not necessarily responses to  the same forward RM cell in each syn

chronization cycle. The algorithm of SSP is detailed in Figure 2.2. Each multicast switch
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achieves once of feedback synchronization and sends a consolidated RM cell to  the upstream 

node as long as it receives a t  least one feedback RM cell from each of all the  connected down

stream  branches since the last sychronization cycle. Since SSP allows the  feedback RM cells 

corrsponding to different forward RM cell to be consoliated (soft-synchronization) at each 

branch point, the effective RM-cell RTT can be as small as the shortest path RTT, and 

virtually independent of the  m ulticast-tree height as compared to  the widely-known hop- 

by-hop feedback-synchronization scheme [16]. Moreover, SSP also ensures th a t the ratio 

of feedback RM cells to forward RM cells is no larger than 1  a t each link of the multicast 

tree. Thus, SSP scales well with the multicast session size in term s of both RM-cell RTT 

delay and feedback signaling traffic. The scalability of SSP in term s of RM-cell RTT delay 

is quantitatively studied in [1 1 ].

2 .3  T h e S y stem  M o d e l

The proposed scheme can support both ( 1 ) CZ-based rate control with a binary con

gestion feedback (CZ-bit); and (2) E’R-based rate-control with an explicit-rate feedback 

(.ER-value). The CZ-based scheme is more suitable for LANs because of its minimum mul

ticast signaling cost and lowest implementation complexity. As compared to the CZ-based 

scheme, the ER-based scheme is more responsive to  network congestion and can better serve 

WAN environments where the  bandwidth-delay product is large. However, the ER-based 

scheme is much more expensive to  implement than  the CZ-based scheme. In this chapter, 

we will focus only on the CZ-based scheme. The rate-control algorithm and the a-control to 

be discussed later will be only for the CZ-based scheme, not for the ER-based scheme. We 

model the CZ-based flow-control system by the first-order fluid analysis [7,24-26], which 

uses the  continuous-time functions R(f) and Q{t) as the fluid function of the source rate 

and bottleneck queue length, respectively. We also assume the existence of only a  single 

bottleneck 3  on each path a t  a  time with queue length equal to  Q (t) and a “persistent”

3T h is  is no t a  restric tion , b ecau se  th e  bo ttleneck  is defined as the m ost congested  link o r sw itch on a  
p a th .
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Figure 2.3: The system model for a m ulticast connection, 

source with A C R  = R(t) for each m ulticast connection.

2.3.1 S ystem  D escription

As shown in Figure 2.3, a  multicast-connection model consists of n  paths with RM- 

cell RTTs T i , t2j - • • , rn , and bottleneck link bandw idths ,fin. There is only a

single bottleneck on each path and its location may change with time. T represents the 

“forw ard” delay from the source to the bottleneck, and the “backward” delay from the 

bottleneck to the source via the receiver o f the  z-th path . Clearly, =  r t- — T jl\  Notice 

th a t because ABR flow control in ATM netw ork typically employs a special control channel 

(an out-of-rate channel) [23,27] to convey RM  cells to  avoid queueing delay of flow-control 

signaling messages, RTT in the proposed model, 7\  = yW  _|_ T jl\  for i =  1 , 2 , • • • , n, only 

considers the propagation delay without including queueing delay. Each pa th ’s bottleneck 

has its own queue length function Qi{t), i  =  1, 2 , • • • , n. All paths in a multicast connection 

“in teract” with one another via their “shared” source ra te  R(t).

We use the synchronous model by assum ing th a t the  source sends RM cells periodically 

with an interval A equal to a  fraction o f R TT . The additive increase and multiplicative
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decrease of ra te  control during the n-th  rate-update interval can be expressed as:

R n -i  +  a', additively increase, a = A IR
Rn =  <

where a > 0  and 0  <  b < 1 .

(2 .1)
bR n-i;  multiplicatively decrease, b =  M D F

2 .3 .2  S ystem  C ontrol Factors

In unicast ABR service, the source ra te  is regulated by the feedback from the most 

congested link/switch which has the minimum available bandwidth along the path from 

source to  destination. A natural extension of this strategy to multicast ABR service is to 

ad just the source ra te  to  the minimum available bandwidth share of the m ulticast-tree’s 

m ost congested path th a t the traffic source has sensed. This is the key feature of ABR 

service, most suitable for d a ta  applications th a t require lossless transmission. However, the 

dynam ics of m ulticast ABR flow control is more complicated than those of unicast ABR 

flow control, because not only the available bandwidth, but also the RTT and congestion 

threshold can differ from one path to  another in a  multicast tree. As a result, while the 

source ra te  always converges to the available bandwidth of the slowest path perceived/sensed 

by the traffic source (which is not necessarily the currently slowest path in the multicast 

tree), it is possible th a t in the transient s ta te  the dynamics of source ra te  is dictated  by the 

feedback via the path with a  bandwidth larger than  the current minimum available band

width across the m ulticast-tree, depending on the  path’s RTT and congestion threshold. 

To explicitly model these features for the m ulticast flow control, we introduce the following 

definition.

D e fin itio n  2 .3 .1  The m u lt ic a s t - t r e e  b o t t le n e c k  p a th  (also simply called m u ltic a s t-  

t r e e  bo ttleneck^) is the path whose congestion feedback c u r re n tly  re c e iv e d  a t  th e  so u rce  

dictates ( or dominates) the source rate-control actions. The m u ltic a s t- tre e  R M -ce ll R T T  

is the RM -cell R T T  experienced on the multicast-tree bottleneck path. ■

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R e m a rk s  o n  D efin ition  2 .3 .1 ,

R l .  The multicast-tree bottleneck path is a  source flow-control oriented concept/notion 

because only the congestion-information feedback currently received by the source can 

affect the current source flow-control decisions. The current congestion information 

detected a t switches does not affect the source’s flow control actions until it reaches 

the source after a  certain delay. So, it is the congestion-information feedback cur

rently received or perceived/sensed by the  source, instead of the congestion informa

tion currently detected a t the  switches, th a t decides which path is the multicast-tree 

bottleneck at the current moment. Thus, a t a given time instant the multicast-tree 

bottleneck path is n o t  necessarily always the slowest (with the minimum available 

bandwidth) path in the m ulticast tree.

R 2 . The multicast-tree bottleneck can be formed in one of the following two different 

phases:

(1) C o n g es ted  p h ase : If C l  =  1 in the currently received consolidated RM-cell a t

the source and if this C l  =  1  has resulted from m  > 1 paths with C I{i)  =  1, then 

the shortest (with the minimum RTT ( t ) ) 4  of these m paths is the multicast- 

tree bottleneck. This is because the  shortest path among the congested paths 

perceived/sensed by the source determines the RTT of m ulticast-tree’s feedback 

control loop and the dynamics of the multicast-tree bottleneck as far as the source 

rate control is concerned;

( 2 ) N o n -co n g es ted  p h a se : If C l  = 0 (non-congestion) in the currently received

consolidated RM-cell a t the source, then the shortest path among all paths, 

which will cause congestion immediately after this non-congested phase, is the 

multicast-tree bottleneck. This is also because the shortest congested path per

ceived/sensed by the source determines the RTT of multicast-tree’s feedback con

4 T h e  in fo rm ation  on th e  o th e r  two p ara m ete rs , available b andw id th  ( m )  and  congestion  th resho ld  ( Q ^ ) ,  
h as  b een  inc luded  in  C / ( i )  =  1.
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tro l loop and the dynamics of the m ulticast-tree bottleneck as far as the source 

rate  control is concerned;

R 3 . The multicast-tree bottleneck can change instantaneously as a  function of time (even 

within a  rate-control fluctuation cycle), b u t only a t the one of the following two types 

of transition instants:

( 1 ) W hen the consolidated RM-celFs C l  changes 1  —> 0;

(2 ) W hen the source-received congestion information C I(i)  for the shortest path 

P i  among all congested paths changes 1  —► 0; or the source-received congestion 

information C I [ i ) for a  non-congested path Pt , which is shorter than all congested 

paths, changes 0 —>■ 1, while the consolidated RM-cell C l  =  1 remains unchanged.

R 4 . From the above remarks R l  through R 3 , it is clear th a t the location of the multicast- 

tree bottleneck path  is a function of the available bandwidth (/^) in the bottleneck 

switch on path P,, the congestion-detection queue threshold in the bottleneck

switch on P,, and RTT (rt) of path Pt . In addition, it is possible tha t during the 

transien t state, the multicast-tree bottleneck is not the path th a t has the minimum 

available bandwidth in the bottleneck switch across the multicast tree, depending on 

the p a th ’s RTT and congestion threshold.

R 5 . Since a t any given tim e instant there exists only one shortest path among the congested 

paths perceived/sensed by the source when the congested phase starts, according to 

rem ark R 2 , there is only one m ulticast-tree bottleneck a t any given tim e instant, 

unless there are more than one path, which have exactly the same RTT (r^) on each 

path  and become the congested path a t exactly the same time. In that case, albeit not 

very often in practice, these paths either have exactly the same rate control param eters 

(/x, Qh, and r)  or generate feedbacks having the identical effect on the source rate 

control, and thus, we can arbitrarily choose any one of them as the m ulticast-tree 

bottleneck such th a t the uniqueness of th e  m ulticast-tree bottleneck in a  multicast
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tree for any given tim e instan t still holds.

2.3 .3  T he S tate  E quations for th e  M ulticast-T ree B ottlen eck  Path

As clear from the above discussion, the m ulticast-tree bottleneck dictates the source 

rate-control actions, and thus we can analyze the m ulticast flow-control system by focusing 

on its multicast-tree bottleneck’s sta te  equations. Let R (t) and Q (t) be the fluid functions 

of the source rate and the queue length a t the current m ulticast-tree bottleneck defined by 

Definition 2.3.1, respectively. Then, the m ulticast-tree bottleneck s ta te  is specified by the 

two s ta te  variables, R (t) and Q (t). According to the rate-control algorithm s described by 

Eq. (2.1), the state  equations of multicast-tree bottleneck, which is unique based on the 

R e m a rk s  o n  D e fin itio n  2 .3 .1 , in the continuous-time domain are given by: 

S o u rc e - ra te  fu n c tio n :

R (t0) +  a{t — t0)\ if Q {t — Tb) <  Qi

m  = (2 .2 )

R t t o ^ - ^ - V ^ ]  if Q (t -  Tb) > Q h

M u lt ic a s t- t r e e  b o tt le n e c k  q u e u e  fu n c tio n :

Q ( t) =  f l R ^ v - T f )  - A d v  + Q {t0), (2.3)
Jto

where a  =  a /A  and (9 =  1 +  lo g 6  (a and b are defined in Eq (2.1)); t is the current 

observation time of the system  states for the current m ulticast-tree bottleneck path, to is 

the last observation time of the system states for the current m ulticast-tree bottleneck path, 

and t is chosen such tha t, during the time period of (t — to), the m u lt ic a s t - t r e e  b o ttle n e c k  

p a th  is fixed and unique and also, during (t — to), R{t) is either only in its increasing phase 

or only in its decreasing phase; r  =  T / +- Tb is the current m ulticast-tree RM-cell RTT 

defined by Definition 2.3.1 and RTT, r  =  Ty +  TJ,, in our proposed model only considers the 

propagation delay w ithout including the queueing delay as detailed in Section 2.3.1; Qh. (Qi) 

is the high (low) buffer queue-threshold for the current m ulticast-tree bottleneck defined 

by Definition 2.3.1; (jl is the available bandwidth of the current m ulticast-tree bottleneck
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defined by Definition 2.3.1 (Note th a t p. is the minimum available bandwidth currently 

perceived./sensed  by the source, which is not necessarily the true current minimum available 

bandwidth of the path across the entire multicast tree).

R e m a rk  on  th e  sy s te m  s t a t e  eq u a tio n s  E qs. (2 .2 ) a n d  (2 .3 ): Fluid analysis is a time- 

period piece-wise modeling procedure [28]. So, we can use a set of system state  equations 

Eqs. (2.2) and (2.3) of the sam e form to model the dynamics of the different multicast-tree 

bottleneck path during the different time period, by replacing the system state variables, 

such as Q (t), Q (t — Tb), Tb, and T / (or RTT delay r  = T f  + Tb) for different time periods 

corresponding to different m ulticast-tree bottleneck paths. Consequently, the system state  

variables Q (t), Q{t — Tb), Tb, and T f  (or RTT delay r  =  Tj+ Tb) given in Eqs. (2.2) and (2.3) 

are not constant because they  may be associated with a different multicast-tree bottleneck 

path during a different time period of (£ —£0), depending on which path is the multicast-tree 

bottleneck during tha t time period of (£ —£0). Even though the multicast-tree bottleneck can 

change during any time period, the multicast-tree bottleneck path  th a t the traffic source 

can perceive is unique because the queue-length threshold testing: Q{t — Tb) >  Qh or 

Q (t -  Tb) < Qi is only sampled a t the time instants 5  which are the integer multiples of A 

(where A is the RM-cell update time interval). This feature of the proposed multicast flow 

control algorithm ensures th a t fluid analysis expressed by Eqs. (3.2) and (3.3) can accurately 

capture the dynamics of m ulticast-tree bottleneck path under the proposed multicast flow 

control algorithm even when the multicast tree bottleneck path changes from one path to 

another, as long as we take (£ —£o) < A or make (£—£o) small enough such that the bottleneck 

path th a t the traffic source can perceive is always unique6  during (£ — £o). As a result, the 

system sta te  equations Eqs. (3.2) and (3.3) characterize the m ulticast flow-control dynamics

5 O nly  a t  these sam pling tim e  in s tan ts , th e  traffic source can  perce ive /sense  the possible change of
m u ltica s t- tree  bo ttleneck  p a th , a n d  betw een  any two consecutive sam pling  tim e  in stan ts  (sep a ra ted  a p a r t
by  a  tim e  period  o f  A , i.e., th e  R M -cell u p d a te  tim e in terval) th e  traffic source does not have a  chance to  
p erce iv e /sen se  any  change o f  m u ltica s t- tree  bo ttleneck  p a th . So, th e  m u ltica s t-tree  bo ttleneck  p a th  th a t  
th e  traffic  source can  perceive rem a in s  to  b e  unique (the  sam e) d u rin g  th e  tim e period  betw een any  tw o 
consecu tive  sam pling  tim e in s tan ts .

8 T h e  un iqueness o f  the  m u ltica s t tree  bo ttleneck  p a th , w hich can  b e  perceived  by the  traffic source, can  
b e  alw ays achieved e ith e r by le ttin g  ( t  — to )  <  A , or o therw ise (if ( t  — to )  >  A ) by le tting  ( t  — to )  b e  sm all 
enough  su ch  th a t  m ulticast tree  b o ttlen e ck  p a th  th a t th e  traffic source can  perceive is unique d u ring  ( t  — to ) .
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by modeling the flow-control dynamics of the  different multicast-tree bottleneck paths, one 

path for each time-period of (t — f0) (piece-wise modeling in terms of time period), as 

the multicast-tree bottleneck changes from one path during a time-period to another path 

during the next time-period.

2 .4  A d a p ta tio n  to  V ariations o f  M u lticast-T ree R M -C ell R T T

In a  real network environment, there is always cross-traffic a t each link, which may cause 

the multicast-tree bottleneck path to shift from one path  to another. So, the multicast-tree 

RM-cell RTT fluctuates dynamically between r min =  mini<,-<n{Tt} and rmax =  maxi<t<n{rj} 

The main and direct impact of RM-cell RTT variations is on the maximum buffer require

ment for the m ulticast-tree bottleneck path.

2.4 .1  M axim um  Buffer R equirem ent and Cell-Loss Control

Although SSP makes the RM-cell RTT r  for the proposed scheme much smaller than 

th a t for the hop-by-hop scheme, as shown in [1 1 ], t ’s  swing between rmtn and rmax is still 

large enough to make a significant impact on Qmax- As discussed in [7], increasing or 

decreasing R ( t )  is not effective enough to have the maximum queue length Q m flT  upper- 

bounded by the maximum buffer capacity C m a x  when the multicast-tree RM-cell RTT r  

varies due to drift of the multicast-tree bottleneck. This is because rate-increase/decrease 

control can only make R ( t )  fluctuate around the designated bandwidth, but cannot adjust 

the rate-fluctuation amplitude th a t determines Q m a x - So, Q m a x  also depends on the source 

rate-gain param eter a  (to be detailed in Section 2.5). Q m a x  is analytically shown in [7] to 

increase with both r  and rate-gain param eter a  =  and can be written as a  function,

Qmax{oc, r ) ,  or Qm ai(a ) for a given r .  In reality, the buffer capacity, Cmai, on the bottleneck 

path  is finite, and hence, to ensure cell-lossless transmission, the condition Qmax < Cmax 

m ust hold. This constraint divides the 2 -dimensional (a , r)-space into two regions as follows.

D e fin itio n  2.4.1 I f  Cmax < oo, then the f e a s ib le  ( a ,T )-sp a c e , fi =  {(a, r )  | a  > 0 , r  >
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0} is partitioned into two parts: lo s s le s s  tr a n s m is s io n  region: T  =  {(a:, r )  | (a , r )  £ ft, 

Qmaxia , T) < Cmax} an(I lo s sy  tr a n s m is s io n  region: C =  ft \  IF. ■

The theorem presented below gives an upper bound for the equilibrium -state maximum 

queue length Qmax(<x, t )  as a function of (a , r )  £ ft and Qh-

T h e o re m  2.4.1 Consider a multicast-tree bottleneck characterized by the flow-control pa

rameters a , t ,  a n d Q h ■ I f  { o l , t ) £ ft and a  ^  ^ 0 ^  ~  ^Len m ax T̂num queue length 

is upper-bounded by

Q m a x i^ r )  < (Ty/a  +  y/2Q h)2. (2.4)

P ro o f . The proof is given in Appendix A. ■

The upper-bound function of Q m0 i ( a ,T )  described in Theorem 2.4.1 provides a closed- 

form expression th a t reveals an analytical relationship among the maximum buffer re

quirem ent and rate-control param eters. As suggested by Theorem 2.4.1 and also analyzed 

in [7,24,28-30], Q max(&, t ) is a m onotonic increasing function of both a  and r ,  and thus 

can be controlled by adjusting a  for a  given r .  The theorem given below establishes an 

explicit relationship among a, r ,  and Qh subject to lossless transm ission and Cmax < oo 

constraints.

T h e o re m  2.4.2 Consider a m ulticast connection flow-controlled by the proposed scheme 

with Qh > 0 and Cmax < oo at the multicast-tree bottleneck. I f  Cmax > 2 Qh, th e n  the 

following claims hold:

C la im  1 : IF /  0 and 3 K  > 0 such that (a , t )  £ IF V (a, r )  £ { (a , r )  | r^fa. < K ,  (a , r ) £ 

ft} ;

7T h e  co n s tra in t a  ^  ̂ ~  ^  ls se t *'° b a lan ce  th e  increasing  and  decreasing  speeds o f  R ( t )  [28].
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Exact border of lossy and lossless transmission regions 
Lower-bound function of lossy region defined by K = x (a)112

cc

Lossy transm ission region

Lossless transmission region

3020 25 35 40
R a te -g a in  p a ram eter : a  (cells/m s2)

Figure 2.4: Lossy and lossless transmission regions divided by the lower bound of Iossy- 

transm ission region.

C laim  2: C is lower-bounded by the function  K t  =  T y/a  where K i — y/Cmax ~ y/^Qh and 

(a , r )  e  ft.

P ro o f . The proof is provided in Appendix B. ■

R e m a rk s  o n  T h e o re m  2 .4 .2 . ( 1 ) Claim 1  shows th a t Q max is controllable, and identifies 

a sufficient condition (Cmax > 2 Qh.) for the feasibility of lossless transmission. Moreover, 

Claim 1 describes the configuration of the lossless-transmission region defined in ft. ( 2 ) 

Claim 2  gives a lower bound of the lossy transm ission region C for given Cmax and Qh, 

which is expressed by a continuous function defined over ft. Since ft is partitioned into T  

and £ , the lower bound of C can be used as an approxim ate upper bound for T  when the 

lower bound for L  is tight. Thus, for any given Cmax and Qh, the lower-bound function 

T y / a  =  v ^ m o x  — y / ^ Q h  provides the network designer with a  simple formula to estim ate a
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without seeking its close-form expression as a  function of r  and Cmaxi which is impossible to 

obtain (due to the non-linearity of Eq. (2.17)). Furtherm ore, since the lower-bound function 

T y / a  = y/Cmax — y/2Qh, which divides T  and £ , is obtained by the constraint Qmax < Cmax. 

Letting Q m a x  = Cmax, we get Q m a x  =  ( r y / a  +  y / 2 Q h ) 2 , which can be used to estim ate Q m a x  

when the bound is tight. (3) A nother interesting fact revealed by Theorem 2.4.2. is th a t 

Q m a x  is virtually independent of the m ulticast-tree bottleneck bandwidth f i  since neither 

the lossless transmission condition/region nor the lower bound of C contains f i .  This is not 

surprising since it is the relative difference between R ( t ) and /z , instead of the absolute value 

of /z ,  th a t determines Q m a x -

To illustrate the tightness of the derived lower bound of C, the exact border which 

partitions Q, the lower-bound function of L  given by K  = Ty/a = y/Cmax — y/2-Qh, and the 

configurations of the lossless transmission region T  (the shaded area separated by Ty/a = 

y/Cmax ~ V2Q h) and lossy transmission region C are plotted in Figure 2.4, with Cmax =  400 

cells and (2^=50 cells, which gives K  =  10, and f i  = 367 cell/ms (about 155 Mbps). The 

exact border between T  and C, is obtained numerically (by solving Eq. (2.17) which needs 

/z). The lower-bound function of C. (given by K  =  y/Cmax — y/2Qh = r y/&) plotted in 

Figure 2.4 is found to be very close to  the exact border between £  and !F. In addition, the 

smaller a, the tighter the bound is, which is consistent with the approximation log a: % x — 1  

when x  is close to 1 (see Eq. (A.7)).

2.4 .2  T h e Second-O rder R ate  Control

As suggested by Theorem 2.4.2, a  can be controlled to  confine Qmax to Cmax, and as 

long as Cmax > 2 Qh, lossless transmission can be guaranteed by adjusting a  in response to 

the variation of r .  The control over a  =  — which we call a-control — is the second-

order control process which will be elaborated on below from a control-theoretic viewpoint. 

The original ATM recommendation for unicast (C /-based) ABR flow control is based on 

the Additive Increase and Multiplicative Decrease (AIMD) rate control algorithm. The
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AIMD algorithm adapts the source rate  R (t)  to  the currently available bandwidth p. based 

on the feedback congestion inform ation contained in C /-b it in feedback RM cell. Since the 

AIMD algorithm applies direct control over the rate R(t) to match the target bandw idth p, 

we can call AIMD the speed feedback-control process (from a control-theoretic viewpoint). 

The speed feedback-control system  is traditionally called the first-order feedback control 

system which has one pole, or can be represented in a one-dimensional state-space. The 

a-control is an acceleration feedback-control process, which is one-order higher than the 

AIMD algorithm, since it exerts d irect control over a =  . The acceleration feedback-

control system is conventionally called the second-order feedback control system , which 

has two poles, or can be represented in a two-dimensional state-space. Thus, we also call 

the a-control the second-order ra te  control, which in fact provides one more dimension in 

state-space control over the dynam ics of the proposed flow-control system.

2 .4 .3  T he a-ControI

The a-control is a discrete-tim e control process since it is only exercised when the 

source rate control is in a “decrease-to-increase” transition based on the buffer congestion 

feedback signal B C I. B C I(n )  :=  0  (or 1 ) if Qmix < Qgoal (or Q m ii > Qgoal) , where 

Qgoal (Qh < Qgoal < Cmax) is the targe t buffer occupancy (also called a  setpoint) in the 

equilibrium state. If the m ulticast-tree bottleneck shifts from a shorter path to  a longer 

one, then r  will increase, making Qmax larger. When Qmax eventually grows beyond Qgoai, 

the buffer will tend to overflow, implying th a t the current a  is too large for the increased 

r .  The source must reduce a  to  prevent cell losses. On the other hand, if r  decreases 

from its current value due to the shift of the multicast-tree bottleneck from a longer path 

to  a  shorter one, then Q max will decrease. W hen Qmax < Qgoal, only a small portion of 

buffer space will be utilized, implying th a t the current a  is too small for the decreased r .  

The source should increase a  to  avoid buffer under-utilization and improve responsiveness in 

grabbing available bandwidth. So, feedback B C I  contains the information on RM-cell RTT
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variations. Keeping Qh < Qgoal < Cmax has two benefits: ( 1 ) the source can quickly grab 

available bandwidth; (2 ) it can achieve high throughput and network resource utilization.

The main purpose of a-control is to  handle the buffer congestion resulting from the 

variation of r .  We set three goals for a-control: (1) ensure tha t Qmix quickly converges 

to , and stays within, the neighborhood of Q goai, which is upper-bounded by Cmax, from 

an arb itrary  initial value by driving the ir corresponding rate-gain param eters a n to the 

neighborhood of agoai for given t ;  (2 ) m aintain statistical fairness on the buffer occupancy 

am ong multiple multicast connections which share a  common m ulticast-tree bottleneck; (3) 

minimize the extra cost incurred by the a-control algorithm. To achieve these goals, we 

propose a  “converge-and-lock” a-control law in which the new value a n+i is determined by 

a n , and the feedback information B C I  on Qmax7s current and one-step-old values, Qmix 

and Qmlx^- The a-control law can be expressed by the following equations:

a n +  p ; if B C I(n  -  1 , n) =  (0, 0), {Q^max^ < Qgoal A Qmix < Qgoal)

« n+ 1  =  ?a„; if B C I(n )  =  1 , (Q&L > Qgoal) (2-5)

acn/q; if B C I(n  -  1 , n) =  ( 1 , 0 ), (Qmax^ > Qgoal A Q^max < Qgoal)

where q is the a-decrease factor such th a t 0  <  q < 1  and p  is the a-increase step-size, whose 

values will be discussed next.

2 .4 .4  T he C onvergence P rop erties o f the a-C ontrol

To characterize the a-controPs convergence properties, we first introduce the following 

two definitions.

D e fin it io n  2 .4 .2  The neighborhood  o f target buffer occupancy, denoted by Qg0 al> is spec- 

ified by  {<?!,„,, with

= / ? ? ?  l 1 5  <2'6> ne{0 ,l,2 ,...}

Qgoal =  & £ l x  I Q t lx  > Q9 oal} (2.7)

where Qmix is governed by the proposed a-control law. ■
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D e fin itio n  2 .4 .3  {Qmix} =  {Qmax(o:n)} is said to m o n o to n ica lly  converge to Qgoal’s 

neighborhood at time n  = n* from  its initial value Qmax =  Q max (a 0), i f  B C I ( 0 ,1,2,3, • • • , 71* 

1, n*, n* +  1, n* +  2, ra* +  3,• • •) =  (0, 0, 0 ,0 ,- •• ,0 ,1 ,0 ,1 ,0 , •••) for  a 0 < a goai; and

B C I ( 0 ,1 ,2 ,3 , - • • , 71* -  1,71*, 71* +1,71* +  2,71* +  3, • • •) =  (1 ,1 ,1 ,1 , • • • , 1, 0, 1,0,1, - • •) for

O!o ^  Qlgoal • I

The a-control is applied either in transient state, during which Qmix has not yet reached 

Qgoal’s neighborhood, or in equilibrium s ta te , in which Qmix fluctuates within Qgoai’s 

neighborhood periodically. The a-control aims a t making Qmix converge rapidly in transient 

s ta te  and staying steadily within its neighborhood in equilibrium state. The following 

theorem  summarizes the a-control law’s convergence properties, optimal control conditions, 

and the method of computing the a-control param eters in both the transient and equilibrium 

states. Note th a t Qlgoal and Qgoal are the closest attainable points around Qg0al> but Qgoai 

may not necessarily be the midpoint between Q lgoal and Qgoal■ The actual location of Qgoai 

between Q lgoai and Qgoal depends on all rate-control parameters and the initial value of ao-

T h e o re m  2 .4 .3  Consider the proposed a-control law Eq. (2.5) which is applied to a mul

ticast connection with its multicast-tree bottleneck characterized by Qg0 ai> Qh, ond r . I f  

(1) a  =  ao, an arbitrary initial value at tim e n  =  0, (2) 0 <  q < 1, a.nd (3) p <

^ 1 ~ ^ ~ ^   ̂ th e n  the following claims hold:

C la im  1 : During the tra n s ie n t s ta te , the a-control law guarantees Qmix to m o n o to n 

ica lly  converge to Qgoal’s neighborhood {Q lgoal,Q goal}=  { Q m ax C ^ i) , QmaxCo^/)},
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which are determined by
'

Q m a x  (<7 £*0) j i f  Oto Q g o a l
Q  goa l

Q g o a l  —

(2 .8)
Q m a x  ( q { n * p  +  a 0 ) ) ;  i f  a 0 <  a goa l

Q m a x  ^ao); i f  Oto >  O tgodl

Q m a x  {jl* P "I- ^ o ) j i f  QQ ^  Qgoal

where n* is defined in  Definition 2-4-3;

C la im  2 : During the eq u ilib rium  s ta te , the fluctuation amplitudes ofQ$£ax around Qgoai 

are upper-bounded as follows:

Q g o a l  -  Q g o a l  <  T 2 Ctgoal Q  -  1^ +  T y /8 o tgoalQ h -  1^ (2-10)

Q g a o l -  Q g o a l  <  T 2 OLg o a l (  1 -  q )  +  T  y / 8 a goa[ Q h ( l  -  y / q )  ( 2 . 1 1 )

and the diameter o f neighborhood fo r the target buffer occupancy Q goal 1 5  upper- 

bounded as follows:

Q g a o l  -  Q g o a l  <  T 2 a  g o a l  ^  -  q j  +  T y /8 o tgoalQ h -  y / q j  ( 2 . 1 2 )

where a goai is the rate-gain parameter corresponding to Qgoai fo r  given r .

Proof. The proof is provided in Appendix C. ■

R e m a rk s :  The a-control law is similar to, but differs from, additive-increase/multiplicative- 

decrease algorithm in the following sense. In the transient state, the a-control law behaves 

like an additive-increase/multiplicative-decrease algorithm, which accommodates s ta tisti

cal convergence to fairness of buffer utilization among the multiple multicast connections 

sharing a common multicast-tree bottleneck. On the other hand, in equilibrium state , the 

a-control law guarantees buffer occupancy to be locked within its setpoint region a t the 

first tim e when Qmix reaches Qgoai s  neighborhood, regardless of the initial value ao- In 

contrast, the additive-increase/multiplicative-decrease does not guarantee this monotonic
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convergence since a-control is a discrete-time control process and its convergence is depen

dent on ao- The monotonic convergence ensures th a t CJmax quickly converges to, and stays 

within, the neighborhood of its target value Q g o a l • The ex tra  cost paid for achieving these 

benefits is minimized since only a  binary bit, B C I , is conveyed from the network bottle

neck and two bits are used to store the current, and one-step-old feedback information, 

B C I{ n  — 1 ) and B C I{n ), a t the source. The a-increase step-size p specified by condition

(3) in Theorem 2.4.3 is a function of a-decrease factor q. A large q (small decrease step-size) 

requests a  small p for the monotonic convergence. By the condition (3) of Theorem 2.4.3, 

if q —> 1 , then p —> 0 , which is expected since for a  stable convergent system, zero decrease 

corresponds to zero increase in system state. According to Eqs. (2.10), (2.11), and (2.12), 

when <7 —>• 1 , both Q lg o a i  and Q goa[ —>• Q g o a l ,  i-e., Q m l x ’s  fluctuation amplitude approaches 

zero, which also makes sense since q 1  implies p  —> 0 , thus Qmix approaches a  constant 

for all ra.

To balance i2 (t)’s increase and decrease rates, and to  ensure the average of the offered 

traffic load not to  exceed the bottleneck bandw idth, each time when a n is updated by the 

a-control law specified by Eq. (2.5), the proposed algorithm  also updates the rate-decrease 

factor by (3n =  1  — accordingly.

2 .5  S in g le-C on n ect ion B o ttlen eck  D yn am ics

2.5 .1  E quilibrium -State Analysis

The system is said to be in the equilibrium s ta te  if source rate R(t) and m ulticast-tree 

bottleneck’s Q (t) have already converged to  a certain  regime and oscillate with a  constant 

frequency and a steady average amplitude. The equilibrium -state analysis is mainly used 

to  characterize the dynamics of the multicast-tree bottleneck after it has converged to a 

particular path and becomes relatively steady. In the equilibrium state, the source rate 

R (t)  fluctuates around the multicast-tree bottleneck’s available bandwidth p., and its Qmix 

around Qgoai- The fluctuation amplitudes and periods are determined by the rate-control
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Figure 2.5: Dynamic behavior of i2(£) and Q {t) for a single multicast connection.

param eters a, (3; the m ulticast-tree bottleneck link’s available bandwidth p; its target buffer 

occupancy Q goal', a-control param eters p, q; its congestion detection thresholds Q h ,  Q i ,  and 

delays Tb, T j. To simplify the  analysis of equilibrium state, we assume th a t the a-control 

param eters (i.e., ao, Q g o a i ,  p, and q) are properly selected according to the conditions 

specified in Theorem 2.4.3, such th a t Q m i x  converges to asym m etric neighborhood of Q g o a i

where Q g oal =  2 ( .Q g o a l  "I” Q g o a l )  an<̂  Q g o a l  ^  Cmax-

Figure 2.5 illustrates the first 4 cycles of rate fluctuation and the associated queue-length 

function a t the bottleneck link in equilibrium sta te  with a  1 =  a ^ ^ .  At tim e £0 , the rate 

reaches the link bandwidth p. {B W ) and the queue starts to build up after a  delay of T f. 

A t time to + Tb + TgX\  Q {t) reaches Qh and bandwidth congestion is detected. After a 

backward delay of Tb, the source receives C l  =  1  feedback and its rate begins to  decrease 

exponentially. Q{t) reaches the  peak as R ( t ) drops back to the link bandwidth p. When 

the rate falls below the link bandw idth, Q (t) s ta rts  to decrease. After a time period of T/ 

elapsed, Q (t) reaches Qi, then the  non-congestion condition {C l = 0) is detected and sent 

backward to the source. A fter a  delay of Tb, the {C l  =  0) feedback arrives a t  the source, 

then the “rate-decrease to rate-increase” transition condition {local JO I  =  1 A C l  =  0) is 

detected a t the source. Subsequently, the source adjusts the next rate-gain param eter a.i 

to  a  smaller value, qa  1 {(32 is also adjusted accordingly by / ? 2  =  1 — since B C I{  1) =  1 

(due to  Qmax > Q g o a l) is received in the feedback RM cell. Then, the source ra te  increases
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linearly with the newly updated rate-gain param eter ot2  =  qoti =  a lgoa[- When R (t) reaches 

p  after a  time period of T$l \  the system sta rts  the second fluctuation cycle.

The dynamic behavior of the second cycle of fluctuation follows a similar pattern to 

th a t in the first cycle except for the adjusted rate-control param eters ot2 and @ 2  resulting 

in a longer cycle length due to  smaller increase/decrease rates. W hen the transition from 

rate-decrease to rate-increase is detected again for the second fluctuation cycle, the source 

sets a 3 =  a 2/q  because Q m a x  <  Q g o a l > i-e., B C I{ 2 ) =  0, hence B C I{  1 , 2 ) =  (1,0). But 

Qf3  =  a 2/q  =  (q a i)/q  =  c*i since a n has already converged to {o lgoaii otgoal} in equilibrium 

sta te . Thus, the dynamic behavior of the third fluctuation cycle is exactly the same as the 

first cycle. Likewise, the fourth cycle is the same as the second one, and so on. So, we can 

only focus on the dynamic behavior of the first fluctuation cycle 7 \ =  2 (7 / +  Tb) +  Tq1̂  +  

r j 1 ) -t-7’/ 1 ) + T r(x) and the second fluctuation cycle T 2  = 2{Tf  + Tb) + T ,(2) +  r j 2) +  7,/ 2) +  7’r(2). 

We define the control period to be T  =  7 \ +  T2.

In the  z'-th fluctuation cycle (z =  1,2), let TZmoi and be its maximum and minimum

rates, respectively, and <9 max be its maximum queue length, then we have

J $ L  =  A* +  ( r «  + T b + 7>) (2.13)

where Tq  ̂ is the time for the queue length to grow from 0  to Qh, a:i =  agoal

®joa//7 and ot2  =  qai = cnlgoal. For convenience of presentation, we define

L  = Tb + T &  + T f  = Tb + \J~ ~ ~  +  T f  (2.14)

which is the time for R (t)  to increase from p  to  its maximum Rmax by exercising linear 

rate-increase control. Then, the maximum queue length is expressed as

« S L  =  J * ~ “ a i t d t  +  £ ‘  - # » ) < “  <2 1 5 )
where T is the time for R (t) to  drop from i?max back to p  (i.e., the BW, see Figure 2.5), 

and is obtained, by letting R { T ^ )  =  p, as
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T hus, we o b ta in

<p(0  =  lyf*) I 2 _j ^ __
max 2  L m a x J 1 - /5 , ^ r i ‘L  +  MIog ( 0

(2.17)

Letting 7 )^  be the period for Q {t) to  decrease from Qmax to  Qi, we have

Q m a x  ~  Q l  =  J q V ( l  -  e ( 1  dt. (2.18)

So, r / l) is the  non-negative real root o f non-linear equation:

r( 0
> ( 1 — -J- l - A m ( t )  Q m a x  Q l  

Tl *
- 1  =  0 . (2.19)

(  ̂ y(0 ^  Tf
Then, the minimum rate is given by =  /ze- ^1 -  0* ) - 1  5 L

(2 .20)

The control period is determined by

2 2

T  =  T< = Y l  I7 ? 0  +  Ti °  +  ^  +  2 r  +  Tri]
.= i .=1

where =  (ji — R ^ in ĵ /cti+i is the  time for R {t) to  grow from to /z with the

increase-rate param eter a t+i ( 0 3  =  ari). Note th a t each T, contains two RTTs, which 

correspond to  the two transitions of R (t)  (from linear to exponential and then back to 

linear).

The average equilibrium throughput, denoted by R, can be calculated by averaging R (t)  

over control period T  as follows

i=x

C ■* ma x  C c /  • t \  C T /  t - \  \
I  (fj. + a lt )d t  + Jo dt + j Q (Rmin + a i+ it) dt

(2 .21)

where t J ‘} =  r j °  +  r / 0  +  r  is the tim e spent on exponential-decrease rate control within

the i-th  cycle. The above equation is reduced to: 

2

R =  k  £  [ ^ L + y l T i i L F + s S L  ( j ^ r )  ( l - e - (1- f t> ^ ) + r r<‘)jjM.n + ^ ti[T W ]2

(2 .22)
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Figure 2.6: Equilibrium -state performance evaluation: average throughput R  vs. q

2 .5 .2  E q uilib rium -S tate  Perform ance E valuation

Assume (i) the bottleneck link bandwidth fi = 155 Mbps (367 cells/ms) and Cmax =  

750 cells, and (ii) the bottleneck is detected a t a node farthest away from the source, so, 

Tb = T f  =  1  ms and t  =  T& +  T / =  2 ms. Also, we use A =  0.5r -  1 ms, Q h  - 50 cells, 

Ql =  25 cells, and the initial source rate Ro =  /i as we are dealing with equilibrium sta te .

F igure 2.6 plots R  vs. q for different values of Q g o a l ,  which are obtained from the 

analysis and the sim ulations . 8  We first focus on the ideal case where Qgoai = | ( Q g ^i  +  

fluctuates symmetrically above and below Q g o a i • Figure 2.6 shows th a t R  

monotonically increases as q grows from 0.1 to 1.0. This is expected since a smaller q leads 

to  a larger fluctuation of i 2 mlx and q £ L ,  which defeats the equilibrium-state performance 

of R . W hen q gets larger, the fluctuation amplitudes of Q m h  and i2 m lx  get smaller, as 

shown in Theorem 2.4.3. In the extreme case when q —> 1 (q cannot be equal to 1  since

q =  1  means th a t the a-control is shut down), iZmlx approaches a constant value, and the

8T h e  s im u lations w ere p e rfo rm ed  by using th e  N etS im  package [31], a n d  for com parison pu rposes, th e  
p a ra m e te rs  w ere se t ex ac tly  th e  sam e as those u sed  th e  analysis.
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Figure 2.7: Equilibrium-state performance evaluation: maximum queue length Qmax vs. q

equilibrium-state performance of R  a ttains its maximum. Figure 2.6 also indicates th a t for 

the same value of q, a smaller value of Q g o a i =  kC max, 0  < k < 1 , leads to a  larger R  in 

equilibrium state, which is also consistent with our observations in [7], since a  smaller Q goal  

implies a  smaller agoai- In summary, Figure 2.6 shows (i) an increasingly sharp drop in R  

when q gets smaller than 0.4, and (ii) a slow gain in R  when q > 0.6, providing information 

on how to  select q for the a-control to  operate in a balanced region within which an optimal 

balance between average throughput and response speed is achieved. In addition, Figure 2.6 

shows th a t the analytical results based on the fluid modeling fit the simulation results well. 

The slight discrepancy is due to  the RM-cell processing and queuing delays, and the fluid 

analysis approximation.

Although Q goai can be anywhere between Q lgoai  and Q g ^ ,  depending on a o ,  in order to 

analyze how q affects the maximum buffer requirement, we consider the worst case when 

Q g o a l  >  Q g o a l-  Figure 2.7 plots Q m a x  vs. q in the worst case of buffer requirement. Q m a x  

is observed to increase as q decreases, which makes sense since a smaller q implies a larger
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fluctuation amplitude of Q m a x ■ Moreover, when q is very small, particularly below the 

range of 0.4-0.6, Q m a x  shoots up quickly. Also, when q is beyond the range of 0.4-0.6, Q m a x  

drops slowly as q increases. Again, we observe th a t the analytical results are verified by 

the simulation results, since the la tte r closely matches the former in terms of the maximum 

buffer requirement, as shown in Figure 2.7

2.5 .3  T ransient-State A nalysis

An equilibrium state can be broken by either the change of the multicast-tree bottleneck 

from one path  to another with different flow control parameters; or the change of available 

bandwidth due to the variation of cross traffic or the number of active VCs (V irtual Cir

cuits). After an equilibrium state  is broken, the system experiences a certain period of 

transient state , during which the system typically converges to a  new equilibrium s ta te  if 

any. Thus, the transient-state analysis is mainly targeted to  characterize the system dynam 

ics while the multicast-tree bottleneck path  is still in progress of changing or converging to  a 

path; or the bottleneck’s available bandw idth for this multicast connection is changing due 

to  the variation of cross-traffic. Here, the transient-state  analysis mainly focuses on the  case 

where the system ’s entry to the transient s ta te  is caused by the change of the m ulticast-tree 

bottleneck from one path to another with the different RTTs (r) . The system can move 

to  transient sta te  due to the variation of RTT r  in two different cases: (I) ao > the

ra te  convergence is underdamped, and (II) a:o < a goal> rate convergence is overdamped, 

where a goal and a lgoal are functions of Qgoal, P, 9 , t , and p..

Denote the rate-gain param eter a t the beginning of transient state  by cco. Let the 

new m ulticast-tree bottleneck’s target rate-gain param eter be a ^ i  which corresponds to 

the  new multicast-tree bottleneck p a th ’s RM-cell RTT r  and target bandwidth JL. The 

following theorem gives a formula to calculate the number of transient cycles.

T h e o re m  2 .5 .1  Consider a multicast-tree bottleneck characterized by Qgoai, Qh, V, o.nd q. 

I f  the initial rate-gain parameter a  = ao, the new RM -cell R T T  t  = t , and new target
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bandwidth p. = p, th e n  the number o f transient cycles, N , is determined by

N  =

log (  & goal \
V Qo )

/lo g  q

[  ( a goal OCQ ) / p ]  J

i f  a 0  > ctgoai

i f  Cl o  ^  Cl g o a l

(2.23)

where a goai is the non-negative real root o f non-linear equation: 
2

Q g o a l J
U2

+  z f e  log V-

<■Xgoal J  C tgoai p  - f  a g o a l  ( t  +

and can be approximated as

-—■—  ^  f  y / Q g o a l  y / ^ Q h  ^
Ctgoai ~  I ~  I i

\  T  J

Q g o a l  — 0 .

(2.24)

(2.25)

i f  Q g o a l  is small.

P ro o f . The proof is provided in Appendix E. ■

Let ancl Qpcak ''I1 6  Peak source ra te  and queue length, respectively, in the z-th

transient cycle, i = 1 , 2, • • • , iV(> 1 ) (by assuming ao >  ^ a ^ i  or ao <  a^ffii — p)- Let’s 

s ta r t from the first transient cycle, or t =  1. Since the rate-increase function in the first 

transien t cycle is R (t) =  Ro +  ao£, we have

* S *  =  jR° +  a °(r «(1) +  ? )

where =  —  
ao

equation:

— ( R q — p .)  +  y /  ( R q — p . ) 2 +  2 a o Q h .

(2.26)

is obtained by solving the following

r T ^
Q h =  ( R ( t ) -  P )  d t .

J o
(2.27)

For convenience, let T ^ ak = + r  be th e  tim e for R (t)  to  increase from Ro to R ^ ak- 

Then, the peak queue length can be obtained as:

r T r T ^

Ql£ t = f 0  r" \ R °  + <*ot-V.)dt +  j f  '  ( j W . c M l i - j i ) , #  (2.28)
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where - —

Eq. (2.28) gives

1°6 ~R(i) is the time for R (t)  to drop from Rpeak back to Ji. Reducing
p e a k

=  (S o  -  V )t £ L  +  Y p e a k l - / ? o
a OT£ lk  + (R o ~  (*)+ V  log - ^ y

R peak

(2.29)

MmaxW hen Ro = JL, Eq. (2.29) reduces to Eq. (2.17), which is consistent with the fact th a t Q 

is the special case of Q^}ak with R 0  = fl.

To com pute the first transient-state cycle, we need to find T f 1̂  which is the non-negative 

real root of nonlinear equation:

T ( 0
e -  ( 1  -00) ^  _|_

The period of this transient-state cycle is

+ 1 =  0 .

r (i) _  T (1 ) +  r ji)  +  T (i) + 2t  +  Tr(1)

(2.30)

(2.31)

where

T,( 1 ) + r
r ( i )  = JL 1 1 -  e- ( i - 0 o)^-

Q l  V /

is the  tim e for R (t)  to reach fi from its lowest value in the first transient cycle. 

The average throughput during the first transient-state cycle is expressed by

(2.32)

R (1)
T ( 0

w
t ~a k \ l - P o J

1
T^+T,(I)+f

(2.33)

Now, le t’s consider cases for 2 <  i < N  (N  is given by Eq. (2.23) of Theorem 2.5.1). Since 

the perform ance param eters are derived similarly to  the case of i =  1 , we only give the final 

expressions for the average throughput, the peak queue length, and the length of the i-th
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tran s ien t cycle (2 <  i < N ):

tco
~ T (i) Q t- 1  rT (t) 12 , f f (
r l - p e a k  +  2 *- P«=«*J ^  p e a k

■0 )
tW+j IO,;

+ r« + ^[rrW]2

^  p e a k  

j ,(i) 

where

2 L pea&J
A __ A

: T v e a k  +  I1 ',+  +  » ( T i u )  'og  F >
f*
M
p e a k

+  j , ( i )  +  T ( i )  +  r W  +  2 ~

y a:i-i

(2.34)

(2.35)

(2.36)

(t)   ~  _< /  %Qh
p e a k

*SLb =
r i °  =

- r  +

- A  Ji

r «  =  JL
aci

(2.37)

(2.38)

(2.39)

(2.40)

and is the non-negative real root of the following non-linear equation:

Q p e a k  Q l \  ( I  ~  P i - +  1 =  0. (2.41)

The entire transient-state period is then T t r a n  — YliL t  T ^ ,  and its average throughput is 

expressed by

N

R,t r a n
t tran

(2.42)
i=i

.h . _  r)!1)The peak queue length for the case of a 0  > ctgoai is Qpeak = QpJak• Here N  is given by 

Eq. (2.23) of Theorem 2.5.1, and a , is determined by the a-control law defined in Eq. (2.5).

2 .5 .4  Transient-State Perform ance Evaluation

Using the analytical results, we derived numerical solutions to  evaluate transient-state 

performance. Assume the same flow-control param eter settings as in the equilibrium-state
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Figure 2.8: T ransient-state performance evaluation: No. of Tran-cycles N  vs. (rmax—r mtn).

analysis, except th a t Cmax =  700 cells and Q goal =  |Cmax =  350 cells, and ao is specified 

by /i0  =  367 cells/m s and r 0  =  2 ms. To study  the worst case, we let the initial r 0  =  =

minte{12j... nj.{ri} and r  =  r — T =  maxte{li2 I—,n}{Tt} ° f  a multicast VC with n  paths. Also, 

assume J1 =  267 cells/m s. Figure 2.8 plots N , obtained numerically by Eq. (2.23) and 

simulations using the  NetSim [31], vs. (rmax — r miTl) for different values of q. N  is found to 

increase stepwise monotonically with (rmax — r mtn). This is expected since a  large variation 

in RM-cell RTT requires more transient cycles to converge to the new optimal equilibrium 

sta te . A smaller q results in a  fewer num ber of transient cycles. Thus, q measures the 

speed of convergence. These observations have been exactly duplicated by simulations, 

thus verifying Theorem  2.5.1. Figure 2.9 shows the numerical and simulation results for 

Qpeak vs. (rmax — Tmin ) with Qgoal varying, where we assume R 0  = 367 cells/ms, ( 1  - 347 

cells/m s, r mtn =  r 0  =  2  ms, and Cmax = 700 cells. Qpeak is observed to shoot up quickly 

w ith (rmax — r miTl), further justifying the necessity of a-control, and a larger target buffer 

occupancy is found to  result in a faster increase of Qpeak- The simulation results closely
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match the  analytical results as shown in Figure 2.9.

2.5 .5  T h e G reatest Lower B ou nd  for the Target Buffer Occupancy

How to  choose the target buffer occupancy Q g o a l is a practically im portant design prob

lem associated with the a-control. Usually, as long as Q g o a i can ensure the full bandwidth 

utilization, a  small Q g o a i  is desired, because a  large Q g o a i  may increase queuing delay and 

delay variations, affecting the network dynamics and stability. Using the analytical results 

derived in Section 2.5.1, the theorem given below finds the greatest lower bound for Q goal 

and its relationships with a ,  r ,  and Q h -

T h e o re m  2.5 .2  Consider a connection flow-controlled by the proposed rate-control scheme 

described by Eqs. (2.2) and (2.3). I f  (i) the upper queue-length threshold Qh < < O O ,

(ii) its R T T  r  > 0, and (Hi) the rate-gain parameter a  is controlled by the a-control law 

defined in  Eq. (2.5), th e n  the following claims hold:

C la im  1 : The greatest lower bound o fQ goa(a n,T) under the a-control defined in Eq. (2.5)
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exists and is determined by:

inf {.Qgoal(a n tr )} =  2Qh', (2.43)
t > 0 ,  a „ > 0 ,  n = l , 2 , - - -  , 0 0

C la im  2 : The right-hand limit o f Qgoa(a, t ) at a  — 0 in the continuous-domain o f a  exists 

and is determined by:

lim Qgoai ( a ,T ) = 2 Qh; (2.44)
a | 0

where all variables are the same as defined in  Section 2-4-3 and Section 2.5.1.

P ro o f . The detailed proof is provided in A ppendix F ■

R e m a rk s  o n  T h e o re m  2 .5 .2 : Claim 1  derives the greatest lower bound of Qg0 ai{0 tiT)

under the proposed a-control law, showing th a t Qgoai must be at least larger than 2 Qh for

a  > 0  and r  > 0 . Claim 2  shows th a t a  m ust approach 0  for Qgoai(& ,t ) to converge to 

its greatest lower bound 2 Qh- Combining Claim 1  and Claim 2 . we choose Qgoai 2 Qh as 

specified in Section 2.2. Theorem 2.5.2 also provides the network designer with an explicit 

guidance in selecting Qh for any desired ta rge t buffer occupancy Qgoai and the given buffer 

capacity C mox a t routers. As shown in [32], Q max(<*, r )  increases as Qh increases, and so 

does Qgoal(& iT)- On the other hand, too small a  Qh is also undesirable because too small 

a  Qh may decrease the bandwidth utilization.

2 .5 .6  Packet-Loss Analysis

Since the buffer size at routers is always finite, in this section we focus on the case where 

packets are lost due to buffer overflow.

2 .5 .6 . 1  P ack et-L o ss  C a lcu la tio n

To quantitatively evaluate the loss-control performance of the proposed scheme, we 

introduce the following definition:
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D e fin itio n  2 .5 .1  The p a c ke t- lo ss  ra te , denoted by 7 , is the percentage o f the lost packets 

among all the transmitted packets and the l in k - tr a n s m is s io n  e ffic ien c y , denoted by 77, 

is the fraction o f packets successfully transmitted (without retransmitting them) among all 

packets transmitted. Then 7  and tj in  one rate-control cycle are expressed as:

7  =  and  77 =  1  — 7  =  1 -----------------------------------------(2.45)
T R  T R  v '

where T  is the rate-control cycle specified by Eq. (2.20), p is the number o f lost packets 

during T , and R  is the average throughput determined by Eq. (2.22). ■

The link-transmission efficiency 77 is an im portant metric for flow and error control since 

it measures the percentage of link bandw idth used by successfully-transmitted packets. The 

following theorem  gives an explicit form ula to calculate the number p of packet losses from 

which both 77 and 7  can be derived.

T h e o re m  2 .5 .3  I f  a connection with buffer capacity Qh < £ < 0 0  is under the rate- 

control scheme described by the state equations (2 .2)-(2 .3) and the a-control law defined in 

Eq. (2.5), then the number, p, o f lost packets during one rate-control cycle T  is determined 

by:

P =

2 Q  m a x  P -T d  +  R m a x  ^
l-=P-Td

p. ( t f  Tmax — T f) +  Rmax i —(3 — T m a x )  _  g -e & d

i f k  < Tr, 

i t f  >  T „
(2.46)

where all variables are the same as defined in Section 2.5.1, except that £f =  t f  £ <

\ a T ^ aa. (i.e., £f =  < Tmax, which determines the value o f variable £f fo r  the condition

used in  the first part o f Eq. (2 .46));  else £f is the non-negative real root o f the following 

non-linear equation, which determines the value o f variable £f fo r  the condition used in the
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second part o f Eq. (2 . f 6 ):

1
2  ® ^ r a a i  "F  - S m a

_ A _

Tmax) £ — 0, i f  £ > —OcT^az.. (2.47)

P r o o f .  The detailed proof is provided in Appendix H.

2 .5 . 6 . 2  P e rfo rm a n c e  E v a lu a tio n  o f  Loss C o n tro l

Consider the bottleneck with p. =  367 packets/m s (155 Mbps), £ =  400 packets; Qh 

=  50 packets, and q =  0.6. Fig. 2.10 plots the number of lost packets, p, obtained from 

Eq. (2.46), against a  for different RTTs r ’s. Note th a t p increases with a, and for a  given a, 

p gets larger as t  increases. It is  therefore necessary to apply a-control to reduce the packet

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•o

oO•'3'
II

uJ1

0.98

*=• 0.96

oe©
'o
Hi
cz
o
■tf)

cn c  
CO

tr

0.94

0.92

0.9

0.88

b".
2*^

O'",

analysis: x = 2.0 ms 
simulation: x = 2.0 ms 

analysis: x = 2.3 ms 
simulation: x = 2.3 ms 

analysis: x = 2.7 ms 
simulation: x = 2.7 ms 

analysis: x = 3.2 ms 
simulation: x = 3.2 ms

ox.
A

o ' -- - .

O

j  i i i i i a
10 15 20 25 30 35 40 45 50 55 60 65 70

Rate-Gain Param eter: a  (packets/ms2)

Figure 2.11: Link-transmission efficiency (77) vs. a .

losses due to the increase in the number and RTT of cross-traffic flows. Packet losses cause 

retransmissions, and thus affect link-transmission efficiency 77. In Fig. 2.11, 77 is plotted 

against a  for the same parameters. As illustrated in Fig. 2.11, 77 =  1  a t the beginning, 

implying th a t there is no retransmission (loss) if a  is controlled to  be small enough under 

the a-control for any given r .  As a  increases, Fig. 2.11 shows tha t 77 is a decreasing function 

of a , and drops faster for larger r ’s. For instance, 7  =  1 — 77 < 2% of packets need to be 

retransm itted if a  is controlled to be smaller than 50 packets/m s2  for r  =  2 ms, but to keep 

77 > 98% for r  =  3.2 ms, a  needs to be limited to  no larger than 22 packets/m s2. Using the 

NetSim [31], we also simulated packet losses and link-transmission efficiency, which agree 

well with the numerical results (see Figs. 2.10-2.11).

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.6  M u ltip le  M u lticast C o n n ectio n s

We now model and analyze the convergence properties of the proposed scheme for M  

(>  1 ) concurrent multicast connections th a t share a  common multicast-tree bottleneck.

2.6.1 Efficiency and Fairness o f th e  a-C ontrol

Since Qm„„{a) is a one-to-one mapping function between (?mnT and a  as shown in 

Eq. (2.17), buffer-allocation control can be handled equivalently by a-allocation control. 

We introduce the following criteria to evaluate the a-control law for buffer management in 

term s of a-allocation.

D e f in it io n  2 .6 .1  Let vector <x{k) =  (ai(fc), • • • , ocn(k)) be the rate-gain parameters at 

time k  fo r  n  multicast connections sharing a common bottleneck characterized by a goai =  

Qmax (Qgoal) ■ The efficiency o f a-allocation is measured by the distance between the super

posed a-allocation, a t {k) =  a i(^)i an<̂  ârQe  ̂ value a goai. ■

Neither over-allocation a t (k) > agoai, nor under-allocation a t (k ) < a goai is desirable 

and efficient, as over-allocation may result in packet losses and under-allocation yields poor 

transient response, buffer utilization, and transm ission throughput. The goal of a-control 

is to drive the to ta l or aggregate a-allocation a t (k ) of cx(k) to agoai as close and as fast as 

possible from any initial state.

D e f in it io n  2 .6 .2  The fairness o f a-allocation a .(k ) =  ( a i (k), ■ ■ ■ ,a n(k )) fo r  n  multicast 

connections o f the same priority sharing the common bottleneck at time k is measured by 

the fairness index 4 >(ct(k)) =  t , . ■

Notice th a t ^  <  <f>(a.(k)) < 1 . cf>(ai(k)) =  1  if a t (fc) =  ay(k), Vi ^  j ,  corresponding 

to  the “best” fairness. 0 (a(A:)) =  £ if a  is allocated to  only one of n  active connections.
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This corresponds to the “worst” fairness and 4>(a.(k)) —̂0 as n —>oo. So, the  fairness index 

^p{ot(k)) should converge as close to 1  as possible as k —>0 0 .

The a-control is a negative feedback control over the rate-gain param eter, and computes 

a(Ar+l) based upon the current value a (k ) and the feedback B C N ( k —l , k ) .  Thus, a(A:-|-l) 

can be expressed by the control function as a(A:+l) =  g(a(k),  B C N ( k —l,  k)).  For imple

m entation simplicity, we only focus on a linear control function g(-, •) by which we mean 

th a t a (k - \- 1 ) =  p + qa{k), where coefficients p  and q are determined by feedback informa

tion B C N ( k —1 , k).  The theorem given below describes the feasibility and optim ality of the 

linear a-control, which ensures the convergence of a-control to the efficiency and fairness 

of buffer allocation as defined by Definitions 2.6.1 and 2.6.2.

T h e o re m  2 .6 . 1  Suppose n  connections sharing a common bottleneck are synchronously 

flow-controlled by the proposed a-control. Then, (1) in  transient state, the a-control law is 

feasible and optimal linear control in term s o f convergence to the efficiency and fairness o f 

buffer allocation; (2 ) in equilibrium state, the a-control law is feasible and optimal linear 

control in  terms o f maintaining the efficiency and fairness o f buffer allocation.

P ro o f .  The detailed proof is provided in Appendix I. |

R e m a rk s  o n  T h e o re m  2 .6 . 1 : Theorem 2.6.1 is an extension from bandwidth control [22] 

to  buffer control, but differs from [22] as follows. Unlike the bandwidth control exerted at 

the  control-packet transmission rate, the a-control is exercised once every rate-control cycle. 

As a  result, the a-control distinguishes transien t sta te  from equilibrium sta te , and applies 

different control algorithms in these two sta tes , which makes a t (k) not only monotonically 

converge to, but also lock within, a small neighborhood of its target a goai . Since the to tal 

allocation a t (k),  or the number of connections, keeps on going up and down due to  cross- 

traffic variations in real-world networks (or equivalently, the target a-allocation for each 

connection is “moving” up and down), it suffices to  ensure convergence to fairness/efficiency 

in transien t sta te  and maintain the achieved fairness/efficiency in equilibrium state .
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Figure 2.12: a-allocation convergence to efficiency and fairness: «(&) — > efficiency/fairness.

Using the analysis of Section 2.3, we consider two examples given below in a 2-dimensional 

space (for two connections) to  show the convergence of a-allocation under the a-control in 

term s of efficiency and fairness. As shown in Figures 2.12 and 2.12, any a-allocation of two 

connections a t the A:-th a-control is represented as a point cx(k) = (ai(fc), a 2 (fc)) in a 2-D 

space. All allocation points (0 1 , 0 2 ) for which a i + a 2  =  agoal form the efficiency line, and 

all points for which a i  =  a 2 form the fairness line which is a 45° line. It is easy to verify 

th a t an additive increase, ( a i , a 2)+ p  =  (a i+ p , a 2 +p), corresponds to moving up (p> 0 ) 

along the 45° line, and a multiplicative decrease or increase, g (a i, a 2) =  (ga i, g a 2) (0 < g < l 

or g > l) , corresponds to moving along the line th a t connects the origin to  (a i, a 2).

E X A M P L E  1 . Let two connections sharing a bottleneck be a-flow-controlled. The con

nection bottleneck is characterized by: p  =  184 packets/m s, Q goai =  2 0 0  packets, Q h  =  18
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packets, and r  =  2 ms (so, a goai =  18 packets/m s2). Consider a scenario (see Fig. 2.12) 

where a goai is equal to  =  18 initially, but reduces to  =  6  at the fci-th a-control,

and then returns to after the fc2-th  a-control. The variation of a goai is due to the

variation in the number of connections between n =  2  and n = 6 , or due to the variations 

in r  between r^1) =  2 ms and r ( 2) =  3.34 ms. We take q =  0.8 and p = 4 for the two 

connections with Qgoai =  2 0 0  and r  =  2  ms. Thus, \p  =  2  for each of the two connec

tions. Suppose ar(0 ) =  (3.035,12.76) initially. Then, by a-control, a ( l )  =  at(0) +  2 =  

(5.035, 14.76) and oc(2) =  0 .8 a (l)  =  (4.028,11.81) since a i(0 ) +  a 2 (0) =  15.795 <  a ^  

and cki(1) +  a 2 ( l)  =  19.795 > Thus, a-control enters equilibrium s ta te  around

during which oc(k) fluctuates between (4.028, 11.81) and (5.035, 14.76). When a goal reduces 
( 2 )to equilibrium is broken and ct(k) converges to a new equilibrium sta te  multiplica-

tively in 5 a-control iterations, and fluctuates between (1.32, 3.87) and (1.65,4.838). Finally, 

Qgoai returns back to  a(k )  converges to  the new equilibrium state additively through

3 a-control iterations and fluctuates between (6.12,8.671) and (7.65,10.838). We observe 

th a t in transient sta te , a-control not only guarantees the monotonic convergence to  the 

neighborhood of efficiency-line in both increase and decrease phases, but also improves the 

fairness index from <£(o:(0)) =  0.725 to <j)(ac(k3 )) =  0.971 as shown in Fig. 2.12, where oc(k3 ) 

=  (7.65, 10.838) is closer to the fairness line than  ct(0 ) =  (3.035, 12.76).

E X A M P L E  2 . The second example compares a-control with the AIMD algorithm applied

to a  (see Fig. 2.13). The parameters and ct(0) are the same as in EXAMPLE 1 except tha t

&goai reduces to, and stays with, after ot(A:) reaches c*(l). We observe th a t both

schemes share the control trajectory from ot(0) to  cx(A:x). However, after c*(A:) is driven to

oc(Arj), the two trajectories split. Under the a-control, cc(k) converges to  an equilibrium

sta te  and locks itself within a small neighborhood of oSgĴ i- {(1.32, 3.87), (1.65,4.838)}. In

contrast, under the AIMD algorithm, a ( k ) does not confine itself within a  small neighbor- 
( 2 )hood of or j ^  and, in fact, a  (A:) cannot even reach any equilibrium state. The resultant 

maximum buffer-allocation “overshoot” for the AIMD at ae(A:2) is as high as Qmai  — Qgoal
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Figure 2.13: a-allocation convergence to  efficiency and fairness: a-control vs. AIMD.

=  261 — 200 =  61 packets, which is about 9 times as large as th a t for a-control (with the 

maximum overshoot equal to  Q m a t^  — Qgoal =  207 — 200=7). So, even though the AIMD 

algorithm  is better than a-control in term  of speed of convergence to fairness, the AIMD’s 

maximum buffer requirement and potential loss rate are much higher than a-control, espe

cially when the variation in the number of connections or RTT is large.

2 .6 .2  Fluid M odeling and A n alytica l R esults

M  (>  1) concurrent flow-controlled connections with a common multicast-tree bottle

neck are modeled by a single buffer and a  server shared by M  source rates Ri{t).  At time 

t  the  aggregate arrival rate a t the m ulticast-tree bottleneck is Y liL i •^»(i — ^/*^)- So, the
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bo ttleneck’s queue length  function  a t  tim e t is

M

Q{t) =

0 ; if Q( t ) =  0 A ^  R i(t) <  fi

t  (  M   ̂ M  1—1

/  +  if  C1) £  R i i t )  >  W ° r  (2 .4 8 )
J t ° I  i = i  J «'=i

M

(2 )  R ,(£ )  <  f i  A < ? (0  >  0

i=i

where Ty*̂  is the forward delay for the z-th connection. Applying the same rate-control 

algorithm  proposed in Section 2.2, for z =  1 , 2, • • • , M , we get:

* w  =  I *(i0)+ “ “ ’^  (2.49)
I  Ri ( tQ)e (1 0 ] ; ifg(t-r6w) ><5,,

The a-control is applied in the same way as in the single multicast connection case, but 

Qmax is contributed, and Q goal is shared, by all M  connections.

Derivation of analytical results for multiple concurrent multicast connections is quite 

lengthy, thus om itted. Applying the derived analytical results to some simple multiple 

connection cases, we have already shown in [33] th a t the proposed scheme based on a- 

control is stable and efficient, and outperform s the schemes without a-control in dealing 

with RM-cell RTT and bandw idth variations, and achieving fairness in both buffer and 

bandw idth occupancies. Due to  lack of space, we omit the analytical evaluation and refer 

the interested readers to  [33] for more details. Instead, in the next section we present the 

simulation results to ( 1 ) verify the  analytical results and (2 ) analyze the performance of the 

proposed scheme for more general cases where the locations, the number, and the bandwidth 

of m ulticast-tree bottlenecks vary with time.

2 .6 .3  Sim ulation R esu lts

We conducted extensive sim ulations for concurrent multiple multicast VCs (Virtual 

C ircuits) with multiple bottlenecks to  study the performance of the proposed scheme with 

a-control, and compare it with schemes w ithout a-control. By removing the assumptions
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S i : Persistent ABR source 
S z : On-off ABR source 
S3 : On-off ABR source

1 msec 1 msec 1 msec
300Mbps

Figure 2.14: Simulation model for multiple multicast VCs.

m ade for the modeling analysis, the simulation experim ents accurately capture the dynamics 

of real networks, such as the noise-effect of RM-cell RTT due to the randomness of net

work environments, and RM-cell processing and queuing delays, instantaneous variations 

of bottleneck bandwidths, which are very difficult to  deal with analytically.

The simulated network is shown in Figure 2.14, which consists of 3 multicast VCs 

running through 4 switches SWi ,  S W 2 , ■ ■ • , S W .4  connected by 3 links Li ,  L 2 , L 3 . Si is the 

source of VC,, i =  1 ,2 ,3 , and R{j is S i’s j - th  receiver. So, VC2  and VC3  share L 1 and 

Z/3 , respectively, with VCi. S 1 is a  persistent A BR source which generates the main data  

traffic flow. S 2  and S 3  are two periodic on-off A BR sources with on-period =  360 ms and 

off-period =  1 0 1 1  ms, respectively, which mimic cross-traffic noises, causing the bandwidth 

to  vary dynamically a t the bottlenecks. We set L i ’s bandwidth capacity /z, to (1)

=  155.52 Mbps and (2) p. 2 = 300 Mbps, forcing the potential bottlenecks L 1 and L 3  to 

show up. Letting all links’ delays be 1  ms, S i ’s RM-cell RTTs via R\e, R \?, R\& equal 4 ms 

which is 2 times of S i ’s RM-cell RTTs via f lu ,  R i2, R 1 3 .

We implemented the simulation model by using the NetSim event-driven simulator [31]. 

The flow-control param eters used in the simulation remain the same as those used in the 

analytical solutions for comparison purposes. Specifically, Qh =  50 cells, Qgoal =  400 cells, 

A =  0.4 ms, q =  0.6, p = 16.67 cells/ms2, and Ro =  30 cells/ms; V Ci’s ao =  57.8 cells/ms2, 

VC 2  and V C s’s ao =  22.9 cells/ms2. We let S i s ta r t  a t t = 0, S2  a t t =  160 ms, and S 3  

a t t =  822 ms such th a t S 2 and S3  generate the  cross-traffic noises against the main data
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Figure 2.15: Dynamics perform ance comparison between schemes with and w ithout a- 

control.

traffic flow a t the potential bottlenecks L i  and L 3  with the respective on-periods appearing 

alternately  w ithout any overlap in time. Consequently, as shown in Figures 2 .15(a)-(f), the 

first two on-periods of VC 2  and VC 3  divide the first 1178 ms simulation tim e axis into the 

following 4 time periods (ms). T i =  [0 , 160] where only VCi is active; T 2  =  [160,520] where 

both VCi and VC 2 are active; T3  =  [520,822] where only VCi is active; T4  = [822, 1178] 

where both VCi and VC3  are active. The simulation results for the two different schemes are 

sum m arized in Figures 2 .15(a)-(f) and Figures 2.16(a)-(d), where all results with a-control 

are p lotted  in Figures 2 .15(a)-(c) and Figures 2.16(a)-(b) on the left, while those without
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(a) SW2: <?2i(t), Q22(t) —>■ fairness with a-control (c) SW?: Q21 (t), Q2i(t) A fairness without a-control
2000

Oi-lO

(b) S W 3: Q s i{ t ) ,  Qaa(t) —► fairness w ith  a -co n tro l (d) SJ't'j: Qsi  ( t) ,  QiaCt) A fairness w ithou t a -c o n tro l

Figure 2.16: Buffer occupancy fairness comparison between schemes with and without a- 

control.

a-control are shown in Figures 2.15(d)-(f) and Figures 2.16(c)-(d) on the right. Each 

individual performance measure with a-control is compared with its counterpart without 

a-control listed in the same row.

(1) D u rin g  7 \ .  For the a-controlled scheme, Figure 2.15(a) shows th a t V C i’s rate i2i(£) 

converges to L \ and L z ’s capacity 367 cells/ms (155.52 Mbps) since VCi is the only active 

VC and it grabs all the bandwidth available. Thus, during T \, there exist 2 bottlenecks 

located a t L i and Lz with RTT equal to 2 ms and 4 ms, respectively. Denote these two 

bottlenecks’ to ta l queue lengths a t S W 2  and SW z  by Q 2 (f) and Qz{t)  and their maximum by 

Q m a x  and Q m a x t  respectively. From Figures 2 .15(a)-(c) we observe th a t after experiencing 

one transient cycle due to Q m l x  = Q m h  =  560 > Q goai ,  Q^lLx and Qmlx converge to 

Q g o a l ’s neighborhood [350,446] by a-control. So, a-control not only drives i 2 i(t) to  its 

target bandwidth, but also confines the maximum queue lengths at the bottlenecks to  

Q g o a l ’s neighborhood. In contrast, for the schemes w ithout a-control, Figures 2.15(d)-(f)
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show th a t Ri ( t )  converges to = fj,3  =  367, but Qmlx =  Qmlx =  560 and never went 

down to Qgoai =  400.

( 2 ) D u rin g  T2 . VC2 s tarts transmission, and competes for bandwidth and buffer space

with VCi- The bottleneck a t L3  is expected to  disappear since R i ( t ) ’s new ta rg e t bandwidth

along path via L 1 is only a half of th a t via L 3 . So, L\  is the only bottleneck with RTT

=  2  ms, target bandwidth =  |/z i for each of VCi and VC2 . For the a-controlled scheme,

Figure 2.15(a) shows that the source rates Ri ( t )  and ^ ( i )  experience two transient cycles

during which R\( t )  gives up 1 to Ri i t )  until they reach a new equilibrium. Figure 2.15(b)

shows th a t a large queue build-up Q mlx =  704 as a  result of the superposed rate-gain

param eter from Ri(t)  and R^it),  and the reduced bottleneck bandwidth. W ith a-control,

Qmax is driven down to Qgoal's neighborhood of [385,468]. Figure 2.15(c) shows Q 3 (t) =  0,

verifying th a t the bottleneck at L3  vanished. Figure 2.16(a) is a zoom-in picture of Q 2 (4 ) =

Q 2 i(t)  +  Q 2 2 W of Figure 2.15(b), where Q 2 1 M  is the per-VC queue of V Ci and Q 2 2 W is

the per-VC queue of VC2 a t S W 2 , respectively. Figure 2.16(a) indicates th a t in the first

transient cycle, Q 2 i(f )’s maximum Qmax =  528, which is more than 3 tim es of Q 2 2 (0 ’s 
(2 2 \maximum Qmax = 175. Under a-control, Q u i t )  and Q 2 2 W converge to each other quickly 

and become identical from t =  391 ms. This verifies tha t the a-control law can ensure 

the fairness in buffer occupancy between the  competing VCs. By contrast, for the scheme 

w ithout a-control, Figure 2.15(e) illustrates th a t Qmax jumps up to as high as 900 and stays 

a t 900 even after the transient state. Figure 2.16(c), the zoom-in picture o f Figure 2.15(e), 

shows th a t Q 2 i(t) never converges to Q 2 2 ( 0  even after the transient s ta te , and thus the 

buffer space is not fairly occupied.

(3) D u r in g  T3. After VC2  goes into an off-period, Ri(t)  grabs all the  bandwidth of 

fii again. After Z2i(t) reaches the L i’s bandw idth capacity, the bottleneck a t L 3  also 

shows up due to  fix = fj.3, and then the to ta l number of bottlenecks becomes 2  again. 

For the scheme with a-control, because Q 2 2 W  suddenly drops to zero as VC 2  goes into 

an off-period, making Qmlx <C Qgoal, which generates 3 consecutive B C I  =  0 , the a-
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control’s additive-increase operation a n =  a „ _ i +  p  is executed twice during the transient
/ 2 V

cycles until Qmax converges to Qgoal’s neighborhood [367,483] within 3 transient cycles. 

Note th a t Qmax monotonically converges to  [367,483] as shown in Figure 2.15(b). This 

is expected since p =  16.67 < ^  ~ ^ y/Qgoai_—  ̂ satisfying the condition (3 ) in

Theorem 2.4.3. This observation further verifies the correctness of the optimal monotonic 

convergence condition derived in Theorem 2.4.3. In Figures 2.15(d)-(e) for schemes w ithout 

a-control, the queue and rate dynamics simply repeat their dynamics in 7 \, suffering from 

a large buffer requirement.

(4 ) D u r in g  T4. The rate and queue dynamics are similar to TVs, except th a t the bottleneck 

is now located a t L 3  with a new target bandwidth =  a-nd a  longer RTT =  4 ms. For 

the  a-controlled scheme, Figure 2.15(b) shows Q^{t) =  0, indicating tha t the bottleneck 

a t L i disappeared and L 3  is the only bottleneck. Figure 2.15(c) shows th a t Qmlx  shoots 

up to  928, as a result of the doubled RTT (4 ms) via L 3 . W ithin 3 transient cycles,
/3 V

Qmax converges to Qgoai ’s neighborhood of [367, 445] in equilibrium state. Figure 2.16(b), a 

zoom-in picture of Figure 2.15(c), shows the buffer-occupancy fairness ensured by a-control. 

These observations verify that a-control can efficiently adapt to RM-cell RTT variations in 

term s of buffer requirement and fairness. By contrast, for the scheme without a-control, 

Figures 2.15(e)-(f) show 2 bottlenecks: ( 1 ) a bandwidth-congestion bottleneck a t L \\  (2) a 

buffer-congestion bottleneck at L3. Figure 2.15(f) shows th a t Q m lx = 1740, almost 2 times 

of th a t under the a-controlled scheme. More im portantly, Qmlx stays around 1740 even 

after the transient state . Moreover, Figure 2.16(d), a zoom-in picture of Figure 2.15(f), 

dem onstrates th a t buffer occupancy is not fair because Qmax — 1 0 0 0  but Qmax = 740.

The three VCs’ average throughputs R \, R 2 , Rz (for on-off sources averaging over the 

on-period only) obtained by the simulation are compared for the two types of schemes in 

Table 2.1. In all the three VC cases the proposed scheme with a-control is observed to 

outperform  the scheme without a-control in term s of average throughput.
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scheme type R i  of VCx f? 2  of VC2 R 3  of VC3

with a-control 234.448 150.671 147.709

without a-control 209.367 143.672 137.655

Table 2 .1 : Average throughputs (cells/ms) of schemes with and without a-control.

2 .7  C on clu sion

We proposed and analyzed a  flow-control scheme for m ulticast ATM ABR services, 

which scales well and is efficient in dealing with the variations in the multicast-tree struc

ture and RM-cell RTT. We identified the main features of m ulticast ABR flow control and 

incorporated them into the design of our control algorithm. We developed the a-control, the 

second-order rate control, algorithm to handle the  variation of RM-cell RTT. By exercising 

two-dimensional rate control, the  proposed scheme not only makes the transmission rate 

converge to  the available bandwidth of the m ulticast connection’s most congested branch 

path  sensed/perceived by the source, but also brings the buffer occupancy to a small neigh

borhood of the target setpoint bounded by buffer capacity. By employing a “soft” feedback 

synchronization mechanism, the  proposed scheme scales well with the size of multicast 

tree. Non-responsive branches are also detected quickly with non-responsive timers and 

connection-update vectors.

Applying the fluid analysis, we modeled the proposed flow-control scheme and analyzed 

the system dynamic behavior for m ulticast ABR services under the persistent traffic sources. 

We derived closed-form expressions for queue buildup, average throughput, and other flow- 

control measures in both transient and equilibrium states. These expressions were then used 

to  evaluate the system performance and studies the  a-control’s convergence properties. We 

derived an analytical relationship between the rate-gain param eter and RM-cell RTT subject 

to  both cell-lossless transmission and finite buffer capacity constraints. This analytical
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relationship ensures the feasibility of the a-control in dealing with RM-cell RTT variations 

and provides an insight on how the required buffer space can be controlled by adjusting 

the rate-gain param eter. We developed an optim al control condition, under which the a- 

control guarantees the monotonic convergence of system sta te  to the optimal regime from 

an arbitrary  initial value. We also derived the closed-form expressions th a t upper-bound the 

size of convergence regime in the buffer requirements under the optimal control condition.

Analytical results show our scheme based on a-control to be stable and efficient in that 

both the source ra te  and bottleneck queue length rapidly converge to a small neighbor

hood of the designated operating point. The dynamic performance of the proposed scheme 

with a single m ulticast connection is quantitatively evaluated by both modeling analysis 

and simulation experiments. The simulation results verified the analytical results in both 

transient and equilibrium states. We proved th a t a-control guarantees the fairness of buffer 

utilization among multiple concurrent multicast connections. We also derived the greatest 

lower bound of ta rge t buffer occupancy to determ ine the optimal a-control parameters. 

We carried out loss control analysis, dem onstrating the feasibility and effectiveness of the 

a-control in improving bandwidth utilization.

To accurately capture the dynamics of real networks, the extensive simulation exper

iments were conducted for concurrent multiple multicast-connections where the number, 

location, and bandwidth of bottlenecks vary w ith time. The simulation experiments for 

multiple multicast connections dem onstrate the superiority of the proposed scheme to the 

o ther schemes in dealing with the variations of RM-cell RTT and link bandwidth, achieving 

fairness in both buffer and bandwidth occupancies, and increasing average throughput. Our 

ongoing work focuses on the error-control algorithm s and performance for m ulticast ABR 

services and the extension of the proposed scheme to  the ER-based flow-control schemes.
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C H A P T E R  3

M U L T IC A S T  S IG N A L IN G  P R O T O C O L S A N D  ITS  

D E T E R M IN IS T IC  D E L A Y  M O D E L IN G

3.1 In trod u ction

A flow-control algorithm  consists of two fundamental components: rate control and flow- 

control signaling. These two components are conceptually separate from the flow-control 

theory standpoint, but are often blended together in most flow-control algorithms. Rate 

control adapts the source rate to the dynamic variation of available network bandwidth. 

Flow-control signaling delivers the information related to congestion and rate-control be

tween the source and network/receivers. Consequently, this signaling is critically im portant 

to flow control because the source relies solely on the signaling information in making cor

rect and timely flow-control decisions. Designing an efficient flow-control signaling protocol 

is difficult because the signaling messages — unlike da ta  or audio/video traffic — tolerate 

neither error nor a large latency. A signaling message could be useless or even harmful if it 

is not accurate and its delay is very large. In other words, signaling traffic must meet both 

timeliness and reliability requirements. In ATM ABR services, flow-control signaling relies 

on the RM (Resource Management) cells, which convey the  rate-control and congestion 

information among the source rate-controller, network switches, and the receiver.

Signaling for multicast flow control introduces two additional problems: scalability and
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feedback-synch.roniza.tion. These two problem s are closely related in the signaling proto

col for m ulticast flow control. First, sim ultaneous feedback arrivals from all downstream 

branches can cause a feedback implosion  [13] a t the  source or a t a branch point, especially 

when the  multicast tree is large. Hence, it is im portan t for each branch point to  consolidate 

the congestion-information feedback from its downstream  branches and send only the consol

idated feedback to its upstream node. Second, we need a feedback-synchronization signaling 

algorithm  for consolidating feedbacks a t each branch point, because different downstream 

branches’ feedbacks may arrive a t significantly different times.

The first-generation feedback consolidation algorithms [16-19,34] for m ulticast ABR 

flow control employ a  simple hop-by-hop (HBH) mechanism to deal with the feedback- 

implosion problem. On receipt of one forward RM cell at each branch node, only one 

consolidated feedback RM cell is propagated upward by a single hop. While this HBH 

scheme ensures tha t a t each node of the m ulticast tree, the ratio of feedback RM cells to 

the  forward RM cells is not larger than 1, it does not scale well with the m ulticast-tree 

topology because the RM cell round-trip tim e (RTT) is proportional to the height of the 

m ulticast tree. The multicast signaling perform ance would become unacceptably poor if 

the delay of a  signaling message increases with the multicast-tree height. Thus, the HBH 

scheme does not scale well with respect to signaling delay. Moreover, since the feedback RM 

cells from downstream nodes are randomly consolidated without strict synchronization (or 

freely-synchronized) at branch points, the source may be misled by this incomplete feedback 

inform ation, which can cause the consolidation noise problem [15,20]. So, the HBH scheme 

perform s poorly in the sense of signaling accuracy.

To reduce the RM-cell RTT and improve the multicast signaling accuracy, the  authors 

of [15,20] proposed feedback synchronization by accumulating feedback from all branches. 

The main drawback of this scheme is its slow transient response, as the feedback from the 

congested branch may have to  needlessly wait for the feedback from longer paths, which 

may not be congested a t all. The authors o f [21] proposed an algorithm to  speed up the
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transien t response by sending fast congestion feedback without waiting for all branches’ 

feedback during the transient phase.

One critical deficiency of the schemes described above is tha t they do not detect and re

move non-responsive branches during feedback synchronization. One or more non-responsive 

branches may detrimentally impact signaling accuracy and timeliness by providing either 

stale congestion information, or by stalling the entire multicast connection. In [6 ], we pro

posed a novel feedback-synchronization signaling algorithm, called the Soft-Synchronization 

Protocol (SSP), which derives a single consolidated RM cell at each branch point from feed

back RM cells of different downstream branches th a t are not necessarily responses to the 

sam e forward RM cell in each synchronization cycle. The SSP not only scales well with the 

m ulticast-tree topology, but also can readily detect and remove non-responsive branches.

All of the above-referenced work only focused on the design and implementation of 

feedback-synchronization signaling algorithms. However, the delay properties of these algo

rithm s are, despite their vital im portance, neither well understood nor thoroughly studied. 

In this chapter, we introduce our proposed SSP in details for multicast signaling and develop 

balanced and unbalanced binary-tree models to  characterize the delay performance of a class 

of feedback-synchronization signaling algorithm s in term s of RM-cell RTTs. The benefits 

of these modeling and evaluation techniques presented in this chapter are two-fold. First, 

it enables a  direct quantitative comparison between the SSP and HBH schemes. Using the 

determ inistic binary-tree model, we derive the closed-form equations by which we can calcu

late each p a th ’s multicast signaling delay in any given multicast tree. We conduct numerical 

analysis which show that SSP outperform s HBH in term s of feedback-synchronization sig

naling delay in both cases of balanced and unbalanced multicast trees. O ur analytical results 

also reveal th a t SSP can not only support efficient feedback-synchronization signaling, but 

also make the effective RM-cell RTT virtually independent of the m ulticast-tree’s height 

and path-length variations. Second, the proposed modeling technique establishes a  general 

signaling-delay evaluation framework for all feedback-synchronization algorithms. While
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our evaluation focuses on the signaling delay for ABR multicast flow-control in ATM net

works, the modeling technique is not confined to an ABR multicast environment, and can 

be applied to  the signaling delay analysis for any feedback-synchronization based multicast 

algorithm.

This chapter is organized as follows. Section 3.2 presents an overview of SSP for com

pleteness. In Section 3.3, we introduce the binary-tree model, and apply it to  analytically 

derive the signaling delay properties of each path for both the SSP and HBH schemes. 

Section 4.2 studies the statistical properties of multicast signaling delay in term s of aver

age multicast-tree RM-cell RTTs and delay variations for both the SSP and HBH schemes. 

Section 4.6 describes the simulation results, verifying the analytical results. In Section 3.5, 

we derive the optim al RM-cell interval for SSP to minimize the RM-cell RTTs for a given 

m ulticast tree. The chapter concludes with Section 3.6.

3 .2  D escr ip tio n  o f  S S P

We first present an overview of SSP, especially the switch feedback-synchronization algo

rithm  [6 , 1 1 ]. At the  heart of SSP is a pair of connection-update vectors: (i) connjpattjuec , 

the  connection pattern  vector where connjpattjuec{i) =  0  (1 ) indicates the i-th output 

p o rt of the switch is (not) a  downstream branch of the multicast connection. Thus, 

connjpattjuec(i) =  0  ( 1 ) implies th a t a d a ta  copy should (not) be sent to  the t-th down

stream  branch and a  feedback RM cell is (not) expected from the i-th downstream branch ; 1 

(ii) resp-branchjvec, the responsive branch vector is initialized to 0  and reset to  0  whenever 

a  consolidated RM cell is sent upward from the switch. respJbranchjuec(i) is set to 1 if 

a  feedback RM cell is received from the i-th  downstream branch. The connection pattern 

specified in connjpattjuec  is updated by resp-branchjuec each time when the non-responsive 

branch is detected or a new connection request is received from a downstream branch.

A simplified pseudo-code of the  switch RM-cell processing algorithm is given in Fig- 

1 N ote  th a t  th e  negative  logic is u sed  fo r convenience of im plem entation .
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0 0 . O n  r e c e ip t  o f  a  f e e d b a c k  R M  c e l l  f r o m  t h e  t - t h  b r a n c h :

0 1 . i f  { c o n n jp a tt-v e c ( i)  ^  1) {  ! O nly  p ro cess c o n n ec ted  branches;

0 2 . re a p J b ra n ch jv ec (i)  :=  1; ! M ark co n n e c ted  a n d  resp o n siv e  branch;

0 3 . M C I  :=  M C I  V  C l ;  ! B a n d w id th -co n g estio n  in d ica to r  processing;

0 4 . M E R  :=  m \ r \ { M E R , E R } ;  ! E R  in fo rm a tio n  processing;

05 . i f  (c o n n ^p a tt jv e c  ©  rc sp J b ra n c h -v e c  =  Ij {  ! so ft feedback-synchron ization;

0 6 . send  RM  cell (d»r :=  back, E R  :=  M E R ,  C l  :=  M C I ) ;  ! S en d  fu lly -con so lid ated  RM  cell upstream

0 7 . n o jr e a p .t im e r  :=  N n r t ; 1 R eset n o n -resp o n siv e  tim er;

0 8 . re& pJbranch-vec  :=  0); ! R eset r esp o n s iv e  branch  vector;

0 9 . M C I  :=  0; M E R  :=  E R ;} } ;  ! R e se t R M -cell con tro l variab les

10. O n  r e c e ip t  o f  a  fo r w a r d  R M  c e ll:

11. m ulticast RM  cell based on c o n n .p a t t .v e c ;  ! M u ltica st R M  cell to  dow nstream  b ranches

12. n o jr e a p jt im e r  i— n o -r e a p - t im e r  — 1; ! N o -resp o n siv e  branch ch eck in g

13. i f  (n o jr e a p - tim e r  =  0 ) {  ! T here is a  n o n -resp o n siv e  branch;

14. c o n n jp a tt ju e c  :=  r e a p jr ra n c h -v e c  © 1_; ! u p d a te  c o n n e c tio n  p a ttern  vector;

15. i f  (rea p Jb ra n ch -vec  ^  0 ) {  I T here  is a t  lea st on e  resp on sive  branch;

16. send RM  cell (dtr :=  back, E R  :=  M E R , C l  M C I ) ;  ! Send  p a rtia lly -con so lid ated  RM  cell upstream ;

17. n o jr e a p J ,im e r  :=  N n r t l   ̂ R eset n o n -resp o n siv e  tim er;

18. re a p J jra n c h -v e c  :=  0; ! R eset resp o n siv e  branch vector;

19. M C I  :=  0; M E R  :=  E R ;  } } ;  ! R e se t R M -cell con tro l variab les.

Figure 3.1: Pseudocode for switch feedback-synchronization algorithm.

ure 3.1. On receipt of a feedback RM cell from a connected downstream  branch, the 

switch first marks its corresponding bit in respJbranch.vec and then conducts RM-cell 

consolidation operations. If the modulo-2 addition (the soft-synchronization operation), 

connjpattjuec  © resp-branch.vec =  1, an all l ’s vector, indicating all feedback RM cells 

are synchronized, then a  fully-consolidated feedback RM cell is generated and sent upward. 

B ut, if the modulo-2 addition is not equal to 1, the  switch needs to aw ait other feedback RM 

cells for synchronization. Notice th a t since the  synchronization algorithm  allows feedback 

RM  cells corresponding to different forward RM cells to  be consolidated, the feedback RM 

cells are “softly-synchronized” or “loosely-synchronized” a t branch nodes.

Upon receiving a forward RM cell, the switch first multicasts it to  all the connected
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branches specified by connjpattjuec. Then, it decrements the non-responsive tim er for this 

connection by one. The nojresp-tim er  is initialized to a threshold N nrt , and reset to Nnrt 

whenever a  consolidated RM  cell is sent upward. The pre-determined tim eout value Nnrt for 

non-responsiveness is determined by such factors as the difference between the maximum 

and minimum RM-cell RTTs in a multicast tree. We use the forward RM-cell arrival time as 

a  natural clock for detecting/rem oving non-responsive branches (such th a t it will still work 

even in the presence of faults in the dow nstream  branches). Each tim e a  switch receives 

a forward RM cell, the m ulticast connection’s nojrespJtim er is decremented by one. If 

nojrespJ.im .er =  0 (tim eout) and respJbranch—vec  0 (i.e., there is a t least one downstream 

branch responsive), then the switch will s top  awaiting arrival of feedback RM cells and 

immediately generate a  partially-consolidated RM cell, then send it upward. Whenever 

n o jresp J im er  = 0 , at least one non-responsive downstream branch is detected and will be 

removed by the simple complementary operation: connjpattjuec :=  respJbranchjuec @ 1 , 

which updates connjpattjuec. Thus, a dow nstream  branch which has not sent any feedback 

RM cell for N nrt forward RM-cell time units will be removed from the  m ulticast tree.

3 .3  T h e D eterm in istic  M o d el o f  M u lticast S ign alin g  D elay

It is well-known th a t the  feedback delay plays a  crucial role in determ ining the effective

ness of any flow-control scheme [6 ]. In this section, we analyze the properties of RM-cell 

RTTs of each path for different feeback-synchronization algorithms.

3.3 .1  T h e B inary-Tree M odel

To simplify the analysis of RM-cell RTTs, we quantize the network feedback delay by as

suming each switch-hop to  have a uniform delay (including the processing and propagation 

delays). This assumption can be relaxed easily because the difference in switch-processing 

delays and the link-propagation delays of different switch-hops can be translated into dif

ferent numbers of switch-hops, each with the  sam e delay. We use the  hop-delay, r^ , which
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is the sum of the switch-processing delay and link-propagation delay taken in each hop, 

as the time unit in our delay analysis. To study the worst case and enable performance 

comparison, we only consider two types of multicast trees: balanced and unbalanced binary 

trees. Since we are only concerned with a  pa th ’s RM-cell RTT which is determined by its 

length, it suffices to consider binary trees. Notice th a t in an unbalanced binary tree, the 

number of paths, denoted by n, from the root to all leaves equals the height of the tree, 

denoted by to, while in a balanced binary tree n  =  2m -1. Figure 3.2 illustrates these two 

types of trees with height m  =  4.

As discussed in [6 ,21], for ABR services only the feedback from the most-congested path 

in a  mulicast tree governs the flow-control operations at the source. However, the RM-cell 

RTT of different paths in a mulitcast tree may vary sinificantly due mainly to the difference 

in their length. Thus, we need to analyze each individual p a th ’s RM-cell RTT in a multicst 

tree. The individual path’s RTT is also affected by the feedback-synchronization algorithms 

used. In addition, the RM-cell RTT for a given path may vary at the beginning of the 

flow-control operation (in an initial s ta te ) when feedback RM cells are not yet “regularly” 

synchronized. The RM-cell RTT becomes stable after feedback RM cells are regularly 

synchronized (in a steady state). In w hat follows, we analyze the feedback-delay properties, 

in both initial and steady states, of each path in a multicast tree which is flow-controlled 

by the HBH and SSP schemes, respectively.

3 .4  M u lticast S ignaling D e la y  A n alysis  on Each P a th  in a  

M u lticast Tree

3.4 .1  Feedback-Delay P rop erties for the H B H  Scheme

The following theorem gives a  set of formulas for calculating all paths’ RM-cell RTTs 

in an unbalanced tree for the HBH scheme.

T h e o re m  3.4.1 I f  an unbalanced multicast tree o f height to > 2 is flow-controlled by HBH
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Figure 3.2: Balanced and unbalanced binary multicast trees.

with an RM -cell interval A > 1 ( t^ ) , then the RM-cell R T T , denoted by ru(j, A), of  the j- th  

(counting from  left to right) path, P j ,  remains the same in  both steady and initial states, 

and is determined by:

r u (j, A) =  2 + j  0 (A ), 

where 1  <  j  < m  — 1 and ©(A) is the threshold function defined by

A, Z/2 < A < Tjnax'i

(3.1)

0 (A ) =  max{2, A} =
2, */A =  l;

(3.2)

where 1  ^  A ^  7~max, Tmax 2 m .

P ro o f .  The proof is provided in Appendix J.

The following corollary, providing equations to com pute all paths’ RM-cell RTTs in a 

balanced tree for the HBH scheme, is the direct result from Theorem 3.4.1.

C o ro lla ry  3 .4 .1  I f  a balanced multicast tree o f height m  > 2 is flow-controlled by HBH

with A >  1, then RM-cell R T T s  o f all paths, denoted by Tb(j, A), are the same in both

2 T h eo rem  3.4.1 still holds even w hen  A  >  r m<II =  2m. B u t th e  RM -cell u p d a te  in te rval A  is usually a  
f ra c tio n  o f  th e  m axim um  RM -cell R T T . So, we do n o t consider the  ca se  o f A  >  r m<ix =  2m .
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steady and initial states, and are determ ined by:

n ( j ,  A) - max {ru(j, A )} =  rmax + (m  -  1)[0(A ) -  2]; (3.3)
je{i,2 ,- .n i- i}

where rmox =  2m, 1  < j  < 2m_1, and ru(j,  A) and 0 (A )  are defined by Eqs. (3.1) and 

(3.2), respectively, for an unbalanced multicast tree o f the same height.

P ro o f . The proof follows by letting j  = m  — 1  in Eq. (3.1) of Theorem 3.4.1. |

3 .4 .2  Feedback-Delay P rop erties for the SSP Schem e

The following lemma characterizes the synchronization relationships between paths un

der SSP, which lays the foundation for Lemma 3.4.2.

L e m m a  3 .4 .1  Consider an unbalanced multicast tree o f height m  > 2. Let Pt be a relatively 

shorter path than another path P-t such that l < i < i < m  — 1. I f  the multicast tree is 

flow-controlled by SSP  with RM -cell interval A > 1 , then P ;’s feedback R M  cell need not 

wait fo r  P i’s feedback R M  cell for synchronization at any branch node.

P ro o f . The proof is provided in A ppendix K. ■

The lemma given below reveals four i f f  conditions for a p a th ’s RM-cell RTT to attain 

its limiting minimum, which consists of propagation and processing delays only (i.e., no 

synchronization delay).

L e m m a  3 .4 .2  Let Pj be the j- th  path in  an unbalanced tree as defined in Lemma 3-4-1 with 

1 < j  < m —l.  Then, the following fo u r  claims are equivalent fo r  the steady-state RM-cell 

R T T :

C laim  1 : P j ’s feedback R M  cell need not wait fo r  a longer path P-j’s (j  > j )  feedback RM  

cell to achieve feedback synchronization at the first branch node from  P j ’s leaf;
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C la im  2 : P j’s feedback R M  cell need not wait for feedback R M  cells for synchronization at 

a n y  branch node on P j;

C la im  3 : 3A: 6  {0,1, 2, ■ • •} such that 2 { m —j  — 1 ) — A:A =  0, where 1 < j  < m — 1 and  1  < 

A ^  T'mai — 2m,

C la im  4 : P j’s steady-state R M  cell R T T  Tu(j, A) attains its m inim um  and is given by:

T’uO', A) =  m in{ru(j, A)} =  2( j  +  1) (3.4)
A

where 1 < j  < m  — 1 and  1 < A < r max - 2m.

P ro o f .  The proof is provided in Appendix L. |

Using Lemmas 3.4.1 and 3.4.2, we obtain the following theorem, which gives a set of 

formulas to calculate all p a th s’ RM-cell RTTs during both initial and steady states in an 

unbalanced tree under SSP.

T h e o re m  3.4 .2  Let Pj be the j- th  path o f an unbalanced tree as defined in Lemma 3-4-1 

(1 <  j  < m  — 1 ). I f  the multicast tree is flow-controlled by SSP  with the RM-cell update 

interval A ( 1  < A < r max = 2m ) , 3  then the following claims hold for j  =  1 , 2, • • - , m — 

1, — 2771, 1  ^  A ^  “̂max*

C la im  1 ; The number o f P j ’s feedback R M  cells going through initial state is determined

by:

k j =  max {A: I 2(m — j  — 1 ) — fcA > 0}; (3.5)

C la im  2 : P j’s RM -cell R T T  in  steady state is determined by:

Tu(j, A) =  Tmax -  k j A;  (3.6)

3 T h eo rem  3.4.2 still holds for A  >  Tm«  =  2m , b u t A  is typically  a  frac tio n  o f  the  m axim um  RM -cell 
R T T  rmo* =  2m.
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C la im  3 ; The i-th  RM -cell R T T  during P j ’s initial state is determined by:

Tmox -  (* -  1 )A ;  i f  k j  > 1 A  1 <  i  < k j  

r u ( j ,  A ) ;  i f  k* > l A i >  k j

T m a x i  k j  — 0 .

P ro o f . The proof is provided in Appendix M.

ru(ji A, i) =  <

The corollary described below, giving the equations for calculating all paths’ RM-cell 

RTTs in a  balanced tree under SSP, follows directly from Theorem 3.4.2.

C o ro lla ry  3.4.2 I f  a balanced-tree multicast connection o f height m  > 2 is flow-controlled 

by S S P  with the RM-cell interval A  >  1, then all paths’ RM-cell RTTs, rb{j,  A), are the

same in  both steady and initial states and are determined by:

TTb(j»A)= m ax {ru(j, A ) }  = 1~Tnax (3.7)
j € { 1,2 ,— , m - l }

where r mai =  2m, 1 < j  < 2m_1, and ru (j, A )  given by Eq. (3.6) is P j ’s RM-cell R T T  for  

an unbalanced multicast tree o f the same height.

P ro o f . The proof follows by letting j  =  m  — 1 in Eq. (3.5), which leads to k ^n _ 1 =  0 and

thus Tb(j, A )  =  r u(m  -  1, A )  =  r max by Eq. (3.6). ■

R e m a rk s  on T h e o re m  3 .4 .1  a n d  T h e o re m  3.4.2: Comparing Theorem 3.4.1 and 

Theorem 3.4.2, we make the following observations.

R l .  For the HBH scheme, RM-cell RTT in initial state  is the same as th a t in steady state. 

In contrast, for the SSP scheme, RM-cell RTT in initial state , if any, is larger than, 

and lower-bounded by, RM-cell RTT in steady state. For SSP, the initial state acts 

like a “warm-up” period for feedback RM cells to be synchronized a t each branch 

node, during which the initial-state RM-cell RTTs converge to their corresponding 

steady-state values. The “warm-up” periods for Pj ( 1  < j  < m  — 1) are determined 

by the values of kj  given in Eq. (3.5).
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Figure 3.3: Impact of P j  s path  length j  +  1, tree height m, RM-cell interval A on P j ’s  

RM-cell RTT t u(j, A): ru{ j , A) vs. (J 4 - 1, A), (m  =  50).

R.2. For SSP in both initial and steady sta tes , the RM-cell RTT r u(j, A) is upper-bounded 

by Tmax =  2m (see Claim 2 and Claim  3 of Theorem 3.4.2 and Eq. (3.7)). The increase 

ra te  of ru ( j , A) is O (m) in the w orst case. In contrast, for the HBH scheme, the RM- 

cell RTT r u(j, A) is not upper-bounded by r max =  2m (see Eqs. (3.1) and (3.3)). 

Also, Tu(j, A) is very sensitive to  path  length j  +  1 and RM-cell update interval A, 

and increases at a rate up to  O (m 2) in the worst case.

3 .4 .3  N um erical C om parison o f  S S P  and HBH

We present the numerical results draw n from Theorem 3.4.1 and Theorem 3.4.2. We only 

focus on the unbalanced m ulticast tree to  study the worst case of RM-cell RTT variations. 

Since Py’s length is j  -h 1 for j  =  1, 2, - - -  , m  — 1 (see the unbalanced tree shown in Figure 3.2),
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ru (j,  A ) is the RM-cell RTT for P j  with a  length of j  + 1  in an unbalanced tree. Figure 3.4.2 

plots P j ’s RM-cell RTT t u (J, A ) vs. P / s  length j+ 1  and RM-cell interval A with tree height 

m  =  50 for the two schemes. We observe tha t for both HBH and SSP schemes RM-cell 

RTTs Tu(j,  A )’s increase monotonically with path length j  + 1, RM-cell interval A, and 

tree-height m . However, ru (j, A) for the HBH scheme increases much faster, and is always 

larger, than  th a t for the SSP scheme, and tends to blow up (as high as 1200 r^) as j  +  1 , A, 

and m  increase. In contrast with the HBH scheme, the increase of r u(j, A) for SSP is very 

limited as j  +  1 , A, and m  get larger. In addition, ru(j,  A) for SSP is upper-bounded by 

2m  =  100 =  T m a x  as shown in Figure 3.4.2, which verifies Theorem 3.4.2. Thus, as shown 

in Figure 3.4.2, the RM-cell RTT for SSP is virtually independent of path length, RM-cell 

interval, and multicast-tree height, as compared to  the HBH scheme. This is because (1) 

the  synchronization waiting-time is much longer for HBH than  th a t for SSP; (2) the number 

of forward RM cells required for a feedback RM cell to  return from the leaf node to the 

root in the HBH scheme is proportional to m, while in SSP, any single RM cell can return 

from the  leaf node back to the root by itself.

As analyzed in [6 ], RM-cell RTTs, or path lengths, have a significant impact on both 

the  bottleneck maximum queue length Qmax and the average throughput R . Due to space 

limit, we om it the derivations of closed-form expressions for Qmax and R  as functions of RM- 

cell R TT (which are available on-line in [6 ]). Instead, we present the numerical solutions 

of Q max and R  as the functions of P j’s path length in an unbalanced multicast tree to 

com pare the performance between the HBH and SSP schemes. Assume the multicast-tree 

bottleneck bandwidth /z  =  155 Mbps ~  367 cells/ms, =  0.1 ms, A =  4 =  0.4 ms, 

and m  =  50. Figures 3.4.3 and 3.4.3 plot Qmax and R  vs. path  length j  + 1 with different 

rate-gain param eter a  [6 ] for the two different schemes. For HBH, maximum queue length 

Qmax is observed to increase dram atically (see Figure 3.4.3) while the average throughput 

R  drops significantly (see Figure 3.4.3) as P j’s path length and tree height m  increase. This 

undesirable trend worsens as a  gets larger. In contrast, for SSP with the same parameters
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Figure 3.4: Im pact of P j ’s  path length j  1, tree height m, t u(j, A) on maximum queue 

length: <?max vs. j  +  1 (m  =  50).

settings, both Q max’s increase and R ’s drop are very small when j  + 1 and m  (even as a 

varies) increase. Again, Qmax and R  for SSP are found to be virtually independent of the 

path length and tree height variations. SSP is therefore more scalable than  HBH in terms 

of maximum buffer requirement and average throughput when the multicast-tree topology 

changes.

3 .5  On S election  o f R M -C ell U p d a te  Interval A

Even though the RM-cell RTT for SSP is much smaller than tha t for HBH, its r ( j ,  A) 

value can be reduced further by properly selecting the RM-cell interval A . We now focus 

on how A affects r ( j ,  A) and discuss how to  select A to reduce the SSP’s RM-cell RTT.
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throughput: R  vs. j  + 1 with m  =  50.

3 .5 .1  R elationships betw een  R M -C ell RTTs and A

Unlike unicast, selection of A makes a significant impact on all p a th s ’ RM-cell RTTs in 

a  m ulticast tree. To quantify this im pact, we introduce the following definitions.

D e fin itio n  3.5.1 I f  path P j ’s  feedback R M  cell is synchronized only with the feedback R M  

cells corresponding to the same forward R M  cell, then path P j  is said to be s tr ic tly -  

syn c h ro n ize d . |

P m - i  is always strictly-synchronized since it is synchronized only w ith P m . The following 

theorem  describes the three i f f  conditions, as a function of A, for identifying strictly- 

synchronized paths.

T h e o re m  3.5.1 Let P j  be the j - th  path o f an unbalanced m ulticast tree as defined in  

Lem m a 3 - 4 - 1  (1 < j  < m  — 1). I f  this multicast tree is flow-controlled by S S P ,  then the 

following three claims are equivalent.
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Claim 1: The number o f P j ’s R M  cells going through the initial state, k j  = 0, where k* is 

defined by Eq. (3.5) in Theorem 3-4-2;

Claim 2: P j  is strictly-synchronized;

Claim 3: P j ’s RM-cell R T T  attains the maximum: r u(j, A) =  r max -  2m.

P r o o f . The proof is provided in Appendix N. |

Remarks on Theorem 3.5.1: (1) The strictly-synchronized path has the  largest RM-cell 

RTT, and hence, the number of strictly-synchronized paths should be minimized. (2) As 

shown in Eq. (3.5), a larger A results in a  larger number of strictly-synchronized paths, and 

thus the smaller A the better.

Definition 3.5.2 Let W j  be the net waiting tim e fo r  the P j ’s feedback R M  cell to synchro

nize with feedback RM  cells via the other paths at all consolidating branch nodes along P j .

I f W j  =  0, then P j  is said to be wait-free synchronized. ■

Clearly, P m - i  is always wait-free synchronized since according to Lemma 3.4.1, a feed

back RM cell on a longer path never waits to  synchronize with feedback RM cells from 

shorter paths. Since Pm_i is both strictly-synchronized and wait-free synchronized, we 

exclude Pm_i from all the following theorems and trea t Pm_i separately. The theorem 

given below provides formulas to  determ ine W j  and establishes the i f f  condition to identify 

wait-free synchronized paths, all of which are functions of A.

Theorem  3.5.2 Let P j  be the j - th  path o f an unbalanced multicast tree as defined in 

Lem m a 3-4-1 (1 < j  < m  — 2) and W j  be the net waiting time fo r the P j ’s feedback R M  cell 

to synchronize with feedback R M  cells at all consolidating branch nodes along P j .  I f  this 

multicast tree is flow-controlled by S S P ,  then fo r  1 < j  < m  — 2 the following claims hold: 

Claim 1: P j ’s net waiting time W j  fo r  synchronization is upper-bounded by A, and W j  is 

given by:

W j  =  2 (m  - j - i ) -  A^A < A; (3.8)
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where k* is defined by Eq. (3.5) in  Theorem 3-4-2;

Claim 2; I f  P j  is strictly-synchronized, then W j  =  2(m  — j  — 1) > 0;

Claim 3: P j  is a wait-free synchronized path, i.e., W j  =  0 i f f  2 (m — j  — 1 ) mod  A =  0. 

Proof. The proof is provided in Appendix O. ■

R e m a rk s  o n  T h e o re m  3.5.2: (1) According to  Lemma 3.4.2, the wait-free synchronized 

path has the minimum RM-cell RTT. Thus, the number of wait-free synchronized paths 

should be maximized. (2) A smaller A will lead to  a  larger number of wait-free synchronized 

paths. So, a  small A is desirable.

The following theorem classifies the paths of a  multicast tree into three exclusive groups, 

and provides explicit expressions (as functions of A) for calculating the number of paths 

for each path-group.

Theorem 3.5.3 Let P j  be the j- th  path o f an unbalanced multicast tree as defined in  

Lemma 3.4-1 (1 < j  < m  — 2). I f  this multicast tree is flow-controlled by S S P ,  then the 

entire path set V  =  {Pi, P 2 , ••• , Pm- 3 , Pm -2 } partitioned into a strictly-synchronized 

path subset P s , a wait-free synchronized path subset P n , and a non strictly-synchronized 

and non wait-free synchronized path subset Vw , i.e., V  =  V s  © P n  G P w , and, furthermore, 

fo r  1 < A < r max =  2m the following claims hold:

Claim 1: The number o f strictly-synchronized paths, denoted by S & ,  is determined by: 

S a  =  ||P s || =  [y ] — 1 , where || • || denotes the cardinality o f a set;

Claim 2: The number o f wait-free synchronized paths, denoted by N&, is determined by:

L - ( T 2) J .  i f  a  = even;
N a  = H7VII = , , (3-9)

L ^ J ,  i f  A =  odd;

C la im  3 : The number o f paths which are neither wait-free synchronized nor strictly-synchronized,
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denoted by W&, is determined by:

A \  m  — — f y ]  — 1, i f  A =  even;
=  ||*V|I = { L *  J , 2 ' (3.10)

[ m - L ^ J - r f l - 1 , i f  A  = odd.
P ro o f . The proof is provided in Appendix P. ■

R e m a rk s  o n  T h e o re m  3.5 .3 : ( 1 ) The number of strictly-synchronized paths is propor

tional to A. (2) The number of wait-free synchronized paths is proportional to  (3) If 

A =  1  or 2, then P j  is always wait-free synchronized for all j  =  1, 2, - • • , m  — 2. (4) Taking 

A =  even is preferable in term s of the number of wait-free synchronized paths.

3.5 .2  N um erical Evaluation and D iscussion

According to Theorem 3.5.3, 5 a  is proportional to A while A a  is inversely proportional 

to  A. Thus, a smaller A is desired since strictly-synchronized paths maximize RM-cell 

RTTs while wait-free synchronization paths minimize RM-cell RTTs. Consider two extreme 

cases: (1)A =  1 (i.e., there is an RM cell traversing per switch-hop) or 2, by Theorem 3.5.3, 

5 a  =  1 (P m -1 is always strictly-synchronized) and A a  =  m  — 1  (Pm_i is always wait- 

free synchronized), i.e., all paths of interest are wait-free synchronized paths with minimal 

ru(j, A) =  2( j  + 1); (2) A =  T m a x  = 2m, by Theorem 3.5.3, 5 a  =  m — 1 and A a  =  1 (Pm_i 

is always wait-free synchronized). However, the benefits of having larger A a  and smaller 

5 a  do not come free, the price paid for which is a high bandwidth cost for multicasting RM 

cells a t  a  higher frequency This introduces a  trade-off between r u(j, A) and bandwidth 

cost for RM cells.

Theorem 3.5.3 suggests th a t selecting A to  increase A a  is related to tree-height m. As 

indicated by Eq. (3.9), in order to take advantage of SSP, A should not be larger than  m  —2 

in which case only Pm_i and possibly P i (when A =  even) are wait-free synchronized paths 

and more than a half of paths are strictly-synchronized. In Figure 3.6, A a , 5 a i  and W& 

are plotted against A with m  =  50. We observe th a t ( 1 ) A a  decreases as A increases; 5 a  

is proportional to A; W& is not monotonic and reaches its peak value when A a  =  5 a  and
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Figure 3.6: N&, 5 a , and W& v s . A (m  =  50).

A £ [1 , m  — 2], (2) When A > m  — 2, N& becomes very small fluctuating between 0 and 

1; and on the other hand, when A decreases from m  — 2 to 1 , N& increases dramatically. 

If Th is large enough, then taking A =  2 will produce the optimal case where all paths 

become wait-free synchronized. In addition, we also observe tha t an even A is preferred 

since it gives a larger N& than the neighboring values of an odd A, which is consistent 

with Eq. (3.9). Thus, in general, A should be taken as an even number within the range of 

[2 , m  — 2 ].

Figure 3.7 plots synchronization waiting-tim e W j  vs. path number j  while varying A. 

Although W j  is not a monotonic function of j  for a  given A, W j  increases, on average, as A 

rises. Thus, a smaller A is desired to  minimize RM-cell RTTs on all paths. We also observe 

th a t W j  is a periodic function of j  with an am plitude upper-bounded by A, verifying Claim 1  

of Theorem 3.5.2. Moreover, for a given A , there are always some wait-free synchronized
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Figure 3.7: W j  vs. path  number: j  (m  =  50).

pa ths (W j =  0). For example, if A =  6 , there are N& = 16 wait-free synchronized paths, 

which is consistent with Theorem 3.5.3 and numerical results shown in Figure 3.7 with 

m  =  50. Furthermore, Figure 3.7 also shows th a t a smaller A results in a larger number of 

wait-free synchronized (W j  = 0) paths, N&, which also verifies Theorem 3.5.3.

3 .6  C on clu sion

We developed balanced and unbalanced binary-tree deterministic models to  study multi

cast feedback-synchronization signaling delay characteristics. Applying the proposed binary- 

tree  m ulticast signaling-delay model, we derived a set of equations to compute each indi

vidual p a th ’s RTT for a  given m ulticast tree. In contrast with HBH, SSP is shown to be 

able to  efficiently implement multicast signaling and also make the effective RM-cell RTT 

virtually  independent of, and hence scalable with, the multicast-tree topology. The numer-
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ical analysis has also shown the superiority of SSP over HBH in terms of the multicast 

signaling delays. We also derived the optimal RM-cell update interval for SSP to minimize 

RM-cell RTTs for a  given m ulticast tree. While the analysis in this chapter focuses on the 

feedback-synchronization signaling algorithms for ABR services, it is generic and thus, can 

be applied to the  signaling delay analysis for multicast flow-control algorithms based on any 

feedback-synchronization mechanism.
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C H A P T E R  4

S T A T IS T IC A L  D E L A Y  A N A L Y S IS  O F M U L T IC A ST  

S IG N A L IN G  P R O T O C O L S

4.1  In tro d u ctio n

As discussed in C hapter 2, while the delay property of multicast signaling protocols 

have significant im pact on the multicast flow-control performance, little attention has been 

paid to  the  delay modeling and analysis for multicast flow control, although it is critically 

im portan t. To remedy this deficiency, in C hapter 2, we develop the balanced and unbalanced 

binary-tree models to  statically quantify each p a th ’s m ulticast signaling delay. To capture 

the sta tistica l characteristics of multicast signaling delay when the multicast-tree bottleneck 

dynam ically changes among the multicast-tree paths, in this chapter, we further develop a 

statistical model to  characterize the delay properties for RED- and REM-based multicast 

flow control, where the random markings a t different links are independent.

This chapter is organized as follows. In Section 4.2, we introduce the targeted multicast 

flow control algorithm s and multicasting networks, where the  statistical multicast signaling 

delay modeling and analysis will be applied to. In Section 4.3, we introduce the proposed 

sta tistica l model and assum ptions we made for this proposed statistical model. Section 4.4 

derives a  set of closed-form expressions to calculate the probability distributions for each 

path  to  be the m ulticast-tree bottleneck. In Section 4.5, we conduct numerical analysis for
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m ulticast signaling delays and compare the m ulticast signaling delays performance between 

SSP and HBH multicast signaling protocols. Section 4.6 describes the simulation results, 

verifying the analytical results. In Section 3-5, we derive the optimal RM-cell interval for 

SSP to  minimize the RM-cell RTTs for a  given m ulticast tree. The chapter concludes with 

Section 4.7.

4 .2  T h e  D yn am ic D elay  A n a ly s is  o f  M u lticast-S ign a lin g  P ro 

to c o ls  in R an d om -M ark in g  B ased  M ulticast N etw ork s

So far, we only studied the determ inistic properties of the feedback-signaling delay for 

each individual path within a  m ulticast tree under the HBH and SSP schemes. However, 

in a  real-world environment the m ulticast-tree bottleneck, defined as the most congested 

path  (thus dictating flow-control decisions) of a multicast tree [6 ], shifts randomly and 

dynam ically from one path to another, depending on the traffic load distribution in the 

network. To quantitatively analyze the  delay characteristics of feedback-synchronization 

signaling for more realistic multicast scenarios, we now statistically analyze the RM-cell 

feedback-delay performance of the HBH and SSP schemes across the entire multicast tree. 

The congestion state on each link in the  m ulticast tree are determined by the difference 

between the aggregate arrival rate and the service rate a t that link, or the output-queue 

length a t th a t link. This congestion s ta te  can be specified by the network dynamic conges

tion s ta tu s  or by flow control algorithm s, such as widely cited and used random-marking 

based schemes: REM [35] or RED [36]. If the targeted multicast flow control algorithms 

are REM  [35] and RED-based or REM  and RED-like schemes, then the congestion states 

or random  link-markings a t different links are independent [36].

The principle of RED and REM are quite similar, and thus we only give a brief descrip

tion on R ED ’s the operational procedure th a t follows below. An RED router operates as 

follows. It computes the average queue length and when the average queue length exceeds 

a certain  threshold (this threshold can be zero, too), it marks each arrived packet with
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a certain probability, where the exact probability is a function (e.g., as a linear function 

used in RED, or an exponential function employed in REM) of the average queue length. 

The average queue length is calculated using a  low-pass filter from instantaneous queue 

length, which allows the transient bursts in the router. Persistent congestion in the router 

is reflected by a high average queue length and high marking probability. The resulting 

high marking probability will signal the traffic source early, and thus detect and control 

the congestion early. As a result, RED routers (either unicast routers, or multicast routers 

which will be detailed in C hapter 6 ) keep the overall throughput high while maintaining a 

small average queue length, and tolerate transient congestion due to the burstiness caused 

by window-based flow control scheme TCP. Then the average queue length exceeded a  cer

tain threshold, RED routers marks packets a t random  so th a t TC P connection or multicast 

connections back off a t different times. This avoid the global synchronization effect of all 

connections decreasing their sending rates a t th e  same time, resulting in low bandwidth 

utilization, and m aintains high throughput in th e  routers. Since RED has these excellent 

features, the IRTF (Internet Research Task Force) has singled out RED as one queue man

agement scheme recommended for rapid deployment throughout the Internet. While the 

REM and RED schemes are originally proposed for unicasts, they can also be extended to 

multicast environments as what will shown in C hap ter 6 . Moreover, unicast and multicast 

transmissions usually co-exist in a network.

4.3  T h e S ta tis tica l M od elin g  o f  M u ltica st S ignaling D elay

4.3.1 The S ystem  M odel and A ssum ptions

Our statistical analysis model builds on the recently-proposed Random Early Marking 

(REM) [35,37-40] and the widely-cited/used Random Early Detection (RED) schemes [36].1

The REM  and RED schemes can also be extended to  multicast environments. Moreover,

1 T h e  ana ly tica l techn ique  developed in  th is ch a p te r is also applicable to  cases where a  link’s random  
congestion  s ta te  is caused  by flow co n tro l schemes o th e r  th a n  R E M  an d  R E D  schemes.
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unicast and multicast transmissions usually co-exist in a  network. In RED or REM , each 

router m arks the packet’s ECN (Explicit Congestion Notification) [41] bit with a probability 

th a t is exponential in REM, or proportional in RED, to the average queue length a t the 

ou tpu t link. To simplify the analysis, our statistical model assumes th a t the ECN-bit 

marking operations a t all links are independent, an assum ption also adopted by REM 

in [35,37-40] and RED in [36]. Note th a t this assumption does not affect the evaluation of 

the relative performance improvement of the SSP scheme over the HBH scheme in term s of 

the feedback delay.

We will focus only on the RM-cell RTT during the congestion phase when the bottle

neck paths emerge. Also, the statistical analysis will only concentrate on the unbalanced 

m ulticast-tree case because it represents the worst case, and thus its analysis provides a 

lower bound of performance for the feedback-signaling delay. In contrast, the m ulticast-tree 

RM-cell RTT does not change in the balanced-tree case. In addition, our statistical model 

captures more realistic multicast scenarios by allowing multiple concurrent bottleneck links 

and paths in a multicast tree. Moreover, to be able to  handle any arbitrary size of the 

unbalanced multicast tree and make the analysis complete, the statistical model allows 

the m ulticast-tree height m  to be arb itrarily  large and include oo as its limiting case. To 

form ulate the statistical analysis, we introduce the following definition.

D e fin itio n  4.3.1 The random-marking based unbalanced-multicast binary-tree o f height m  

consists o f a set C o f links which satisfy the following conditions:

C l .  A ll links in C are labeled as shown in  Figure 4-l(<*) f or m  < oo (e.g., m  — A) and 

Figure 4.1(b) fo r  m —> oo, respectively, such that

A I { ^ ii  -^2 1 ’ ' '  i ^ 2 m -i}i i f  m  < oo;
Li E C =  (4.1)

{ { L \ ,  L 2, • • - , Loo}, i f  m  oo;

C 2 . V Li G C, the probability pi (0 < pi < 1) that Li is marked as a bottleneck link (with
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(a) Unbalanced Tree: Height m = 4 (b) Unbalanced Tree: Height m = Infinite

Figure 4.1: Random -m arking unbalanced binary-tree model. 

the ECN-bit set) is specified by:

Pi -
1 - 0 - ^ ,

maxth-minth

if  R E M  is used; 

Pmax, i f  RED is used;
(4.2)

where qt is average queue size o f Li; 7  > 0 is step size and <f > 1 fo r  REM ; pmax is f/ie 

m aximum marking probability and m axth (rnin th) is high (low) queue-size thresholds 

fo r  RED;

C 3 . Bottleneck-link (packet) m arking events at all links in L  are independent [35-fO]. ■

In unicast ABR service, the source rate  is regulated by the feedback from the most con

gested link/switch which has the  minimum available bandwidth along the path  from source 

to  destination. A natural extension of this strategy to multicast ABR service is to  adjust the 

source rate to  the available bandw idth share th a t can be supported by the m ost congested 

path , which contains a link/switch or a receiver having the minimum available bandwidth 

across the entire multicast tree. This is the key feature of ABR service, m ost suitable for 

d a ta  applications, th a t require lossless transmission. Thus, a t any given time, the feedback 

from the most congested path which contains the minimum available bandw idth across the 

m ulticast tree governs the dynamics of the source rate-control decisions. Consequently, in
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all the feedback-synchronization signaling algorithms an OR rule (see Figure 3.1) is used at 

a  branch point to consolidate the  congestion feedback signals from the different downstream 

branches. Moreover, since there can be multiple bottleneck links and paths a t the same 

tim e in the network, we need to  identify the path th a t dictates the  dynamics of the entire 

m ulticast tree. Clearly, based on the OR rule, the shortest bottleneck path in a  multicast 

tree dominates the source’s flow-control decisions and the RTT of the flow-control feedback 

loop. To explicitly model this feature, we introduce the following definition.

D e fin itio n  4 .3 .2  Among all concurrent bottleneck paths in a multicast tree, the bottleneck 

path o f m inim um  length is called the d o m in a n t b o ttle n e c k  p a th , and its RM-cell R T T  

is called the m u ltic a s t- tre e  b o tt le n e c k  R T T . ■

The multicast-tree bottleneck RTT varies randomly because the location of dominant 

bottleneck path dynamically drifts as the traffic-load distribution changes with time. Thus, 

it is im portant to statistically study the delay properties of feedback-synchronization sig

naling algorithms.

4 .4  S ta tistica l P ro p er tie s  o f  Feedback S ignaling D elays

Based on Definitions 4.3.1 and 4.3.2, the theorem given below derives the probability 

distribution function of the dom inant bottleneck path in a multicast tree.

T h e o re m  4 .4 .1  I f  an unbalanced multicast binary-tree o f height m  as defined in Defini

tion 4-3.1 is flow-controlled by the SSP  and HBH schemes, respectively, then the following 

claims hold:

C la im  1 : I f  m  —> oo, then there exists o n e  and  o n ly  o ne  dominant bottleneck path, and 

the probability distribution, denoted by ip(Pk, oo), that path Pk becomes the dominant
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bottleneck path, is determined by

2(k-l)
1p(Pk,Oo) =  (p2k - l  +  P2k -  P2k -lP 2k) n  (1 — Px) (4.3)

x— 1

where k =  1, 2, • • • , oo and pi is the link L i ’s bottleneck-marking probability fo r  i  =  

1, 2, • • • , oo. Furthermore, ip(Pk, oo) given in  Eq. (4-3) satisfies the following norm al

ization condition:

lim Y " tp (P k , oo) =  1.TI—VOO ^ (4.4)
k=i

Claim  2: If m  <  oo, then there exists a t  m o s t  o n e  dom inant bottleneck path, and the 

probability distribution, denoted by ip(Pk, m ), that path Pk becomes the dominant bot

tleneck path, is determined by

Pi +  P2 — P1P2 1 i f k =  1;

ip(Pk , m )=  < {P2k-l +P2k ~  P2k-lP2k) n (1 — pf) , if  k <  m  — 1;
t=i (4.5)

2 ( m — l )

p2m—\
t=i

if  k =  m  ;

where k  =  1 , 2 , • • • , m and pi is the link L i ’s bottleneck-marking probability fo r  i =  

1 , 2 , • • - , 2 m  — 1 .

P ro o f . The proof is provided in Appendix Q. ■

R e m a rk s  o n  T h e o re m  4 .4 .1 . By Eq. (4.3), lim ^ o o  ip{Pk, 0 0 ) =  0, which is expected, 

since a longer bottleneck path is always dom inated by a  co-existing shorter bottleneck 

path . Thus, when k —► 0 0  as m  —»■ 0 0 , Paa is always dominated by a  shorter bottleneck 

path  for 0  < pi < 1 , i =  1 , 2 , • • • , 0 0 , where pt- statistically  represents the traffic load level 

a t link Li. T h a t is, ip{P0o,oo) =  0. In addition, by Eq. (4.4) we have JZfcLi ^(-Pfci00) =  1 

which also makes sense because as the unbalanced-tree’s height m —>• 0 0  and 0 < P i  < 1, 

there always exists (with probability 1 ) one and only one dominant bottleneck path in a
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m ulticast tree. On the other hand, for the case of m < oo, by Eqs. (4.5) and (4.4) we 

have ip(Pk, to) <  1 ) implying the possibility th a t there does not exist any dominant

bottleneck path  in the multicast tree of height m  < oo. This is also expected because the 

bottleneck link marking probability falls in the range of 0  < Pi < 1 .

Using the probability distributions derived in Theorem 4.4.1, we can obtain the first and 

second moments of the feedback-synchronization signaling delay for a multicast tree under 

the HBH and SSP schemes. To simplify the com putation, we consider the homogeneous 

case where

Pi =  p Vi G { 1 , 2 , , 2 m - 1}, (4.6)

by assuming th a t the traffic load level, p,-, along all links are statistically a t the same level 

p . 2  This simplification also suffices to  assess the  relative delay-performance improvement 

of SSP over the  HBH scheme. Under this assumption, the theorem given below derives 

the probability distribution of the dom inant bottleneck path, characterizes its properties, 

and gives formulas to calculate the first and second order statistics (moments) of feedback- 

synchronization signaling delay for the SSP and HBH schemes, respectively, for m  < oo.

T h e o re m  4 .4 .2  Let an unbalanced multicast binary-tree as defined in Definition 4-3.1 be 

flow-controlled by the SSP  and H BH  schemes, respectively, with the RM-cell update interval 

A .  I f  the multicast tree has a fin ite  height m  <  oo and link-marking probability 0 < Pi = 

p < 1 , Vi G {1, 2, • • • , 2m — 1 }, then the following claims hold:

C la im  1: The probability distribution that the path Pk becomes the dominant bottleneck

path, denoted by ip(P k,p ,m ), is determined by
/

P (2 — p) (1 — p)2 k̂~1̂  , i f  k < m  — 1; 
ip(Pk,p,m)=<  (4.7)

p ( l  — p )2(m_1), i f  k = m;

where k  =  1 , 2 , • • • , m ;

2 T h e  an a ly tica l resu lts  derived from  th is  specia l case can  be easily ex tended  to  a  m ore general case 
w h ere  p i  differs fo r i  =  1, 2, • • • , 2m  — 1. T h e  deriv a tio n  p ro ced u re  for th e  generalized case rem ains a lm ost 
th e  sam e as  th e  one derived  here.
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C la im  2; For each path Pk, ip (P k,p ,m ) attains the u n iq u e  maximum w.r.t. p, which is 

given by

i f U - j e ) * " 1 . i f  k < m  — 1 ;
/ \ 2 (m— 1 ) (4-8)

2 m^T ( f c i )  , i f k  = m ;

where the u n iq u e  bottleneck-link marking probability maximizer, p*, is determined by

p* =  arg max ip (P k,p ,m ) = <
0 < p < l

1  -  i f  k < m  -  1 ;

d r y .  i f  k = m ;
(4.9)

where k =  1 , 2 , • - - , m ;

C la im  3: The means o f multicast-tree RM-cell RTT, denoted by r s s p { m ) and t h b h (m) 

fo r  the SSP and H BH  schemes, respectively, are determined by:

m —1

T ssp (m ) = 2 m 1 -  (1 - p ) 2(m_1) -  A (2p - p 2 ) J 2
k=i

2  (m  — k — I)

+ 2 m p (l — p) (4.10)

0 (A )

+ p (l -  p )2(m_1)

2  p — p 2

2  4 - (m  — 1 )©(A)

(m -  1 ) ( 1  -  p)2m -  m (l -  p)2^ " 1) +  1

(4.11)

where 0 (A ) is defined by Eq. (3.2);

C la im  4: The variances o f multicast-tree RM-cell R TT , denoted by crBSp(m ) and cr^B fI{m)
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fo r  the SSP and H BH  schemes, respectively, are determined by:

as s p (m ) =  4m 2
{ m — 1

4mA ^

k= l

2 ( m  — fc — 1)
A

m —1

( 1 - P ) 2(fc 1} - A 2 ^
fc=i

2 (m — k — 1 ) ( l - p ) 2^

771—  1

1  -  ( 1  -  p )2(— ^  -  A (2p -  p2)
k=l

2 (m  — A: — 1 ) 
A

•(1 — p)2(fc ^  +  2m p(l — p)2 m̂ +  4m 2 p ( l  — p)2 m̂

(4.12)

° h b h {™-)  =  4 1  -  ( 1  - p ) 2̂ ' 1)

( 1 - P ) 2m

+
40(A )
2  p — p2

+  . 0 2 (AL l ( 2 p - p 2)
( 2 p  -  P 2) 2

1 -  m ( l - p ) 2(m- 1} +  ( m -  1 ) 

1  - m 2(l  - p ) 2^ " 1)

+ (m 2  -  1 ) ( 1  -  p) 2m + 2 ( 1  -  p) 2  -  m (l -  p)2ra +  (m  -  1 )

2

2 +  (m  — 1)©(A)

e (A )
2  p — p 2

(m  -  1 ) ( 1  -  p)2m -  m (l -  p)2{-m~L) +  1

+2 1  -  ( 1  - p ) 2^ - 1) + ( l  _ p ) 2 (^ -i)p

2 +  ( m -  1)©(A)

where 0 (A ) is defined by Eq. (3.2). 

P ro o f .  The proof is provided in Appendix R.

(4-13)

R e m a rk s  o n  T h e o re m  4 .4 .2 : Under the assumption that each link’s bottleneck marking 

probability p =  p,, Vi G {1, 2, • • • , 2m — 1 }, and observing Eq. (4.7), tl>(Pk,p, m) is found to 

be a strictly  monotonic decreasing function of path  length k and the m ulticast-tree height 

m . Figure 4.2(a) plots the probability mass function (pmf) ip(Pk,P>m ) against k  and m, 

also confirming the above observation. This is not surprising because a  longer bottleneck 

path  is more likely to be dom inated by a shorter one. In fact, this is a desired feature for
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Figure 4.2: P robability  distributions of dominant bottleneck path.

the SSP scheme because the  S S P ’s effective multicast-tree RM-cell RTT is upper-bounded 

by the maximum RM-cell R T T  and is virtually independent of the  multicast-tree height. 

Figure 4.2(b) also plots the cumulative distribution function (cdf) for ip{Pk, p, m ) , which 

converges to 1  as k, m  —> oo, confirming th a t if>(Pk,p, m ) is a valid p m f .

Eq. (4.7) also indicates th a t  for a  given bottleneck path Pk, its dom inant bottleneck 

path  probability ip(Pk, p, m )  is not a  monotonic function of link-marking probability p. 

Tp(Pk, P, m )  attains the m aximum value, tp*(Pk,p*, m) determined by Eq. (4.8), as a function 

of p, which statistically reflects the network traffic load. Solving the first part of Eq. (4.9) 

for k  with a given p, we obtain

1k* = (4.14)
p ( 2  -  p) ’

where Pk- is “most likely” to  be the dom inant bottleneck path for the given link marking 

probability p. When p departs from p*, ip(Pk,p, m)  converges to  zero as either p —> 0  or 

p  —> 1, as shown in Eq. (4.7). This is expected because a  small p  implies th a t the entire 

network traffic load is low, driving the m ost likely dominant bottleneck path Pk- towards 

the longest path, while a  large p  m eans th a t the entire network traffic load is heavy, making 

the most likely dom inant bottleneck path Pk- shift towards the shortest path. If the given 

path  has a  length somewhere between the longest and shortest paths, the probability for 

the path  to  be a dom inant bottleneck path  converges to zero as p —> 0 or 1 . On the other 

hand, p* and ip*(Pk,p*,m) are  both  the monotonic decreasing functions of path length k,
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Figure 4.3: Properties of dominant bottleneck path  probability-distribution functions, 

because in general ip(Pk,p ,m ) is a strictly  decreasing function of k and, when k  increases, 

the link-marking probability p  must decrease to  ensure a longer path to be the most likely 

dom inant bottleneck path, which, in tu rn , reduces p*. Figure 4.2(c) plots the path number 

k* of the  “most-likely” dom inant bottleneck path  against p  based on Eq. (4.14), and shows 

th a t k* decreases as p increases. That is, the higher the network traffic load, the shorter 

the most likely dom inant bottleneck path . This makes SSP multicast signaling scheme 

based on REM  or RED very suitable for m ulticast flow control since multicast-tree RM-cell 

RTT statistically  adapts to network traffic load variations. Figure 4.3(b) plots ^*(Pit,p*, to) 

against path  length k and multicast-tree height to. We observe tha t Tpm(Pk ,p* ,m )  drops 

very quickly when the path length k  and m ulticast tree height to rise, which makes the 

longer pa th  to  have a relatively smaller probability to  become the most likely dom inant 

bottleneck path as compared to  the shorter path  (also see Figure 4.3(c)).

Figure 4.3(a) dem onstrates how the network traffic load and multicast-tree height affect 

the dom inant bottleneck path probability by plotting ^(Pfc,p, to) v s . p with different to 

values. Figure 4.3(a) clearly shows th a t there exists a  unique maximum ip*(Pk ,p* , to) for 

any given to. A s  to  increases, Tp*(Pk, p*, to) decreases, confirming the above observations. 

In Figure 4.3(c), i>{Pk ,P, m ) is plotted as a  function of two independent variables, p and k. 

We observe th a t for each given path Pk , tp(Pk, p, rn) a tta ins its unique maximum a t p* while 

both ip*(Pk,p*, to) and p* are monotonic decreasing functions of k. This also confirms our 

analytical findings.
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and T5 5 p(to) are im portan t performance metrics for the feedback-synchronization 

signaling since they represent the  average RM-cell RTT of a  multicast tree. Clearly, small 

t h b h (™) and t s s p (tu) are desired because a  small feedback delay can improve feedback 

accuracy and system responsiveness. Eqs. (4.10) and (4.11) indicate tha t both T ssp(m ) and 

are functions of A and m . So, the selection of A will affect the multicast tree’s 

average RTT. On the other hand, a ^B H i171) anc* as s p (m ) represent the variation ampli

tudes around the average tree RM-cell RTT for HBH and SSP schemes, respectively. Also, 

small cr|fpp-(m) and & ssp(m ) are desired, because they impact the stability and transient 

performance of flow control. Likewise, Eqs. (4.12) and (4.13) indicate that both <^ssp(Tri) 

and o’h b h (tti) are functions of A and m . So, the selection of A will also affect the variation 

of multicast-tree’s average RM-cell RTT.

The next corollary th a t follows directly from Theorem 4.4.2 for the homogeneous case 

of pi =  p, Vi, by letting m  —>■ oo, derives the probability distribution of the dominant bot

tleneck path, analyzes its properties, and provides expressions for the statistical properties 

of feedback delay for HBH and SSP, respectively, when m  —> oo.

C o ro lla ry  4 .4 .1  Let an unbalanced multicast binary-tree as defined in Definition 4-3.1 be 

flow-controlled by the SSP and H BH  schemes, respectively, with the RM-cell update interval 

A . I f  the multicast-tree’s height m  —> oo and link-marking probability 0 < pt =  p < 1,

Vi 6  { 1 , 2, • • ■ , oo}, then the following claims hold:

C la im  1 : The probability distribution that Pk becomes the dominant bottleneck path, de

noted by tp(Pk,p, oo), is determined by

ip{Pk , p, oo) =  p(2 -  p )( l  -  p)(2fc_1) (4-15)

where k  =  1,2, • • • , oo.  Also, ip(Pk,p,oo) given in  Eq. (4-15) satisfies the following 

normalization condition:

m
lim V '^ ( P i k,p, oo) =  1; (4-16)

m —>oo ‘k= 1
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C la im  2; For each path Pk, ip(Pk, P , oo) attains the unique maximum given by

/ v p  • i  if k < 0 0 >Tp (Pk ,P  , 0 0 )=<j
I 0 , i f  k  —► oo;

where the bottleneck-link marking probability m axim izer p* is determined by

(4.17)

. a  h p  \ r ~  v ? ’ i f k < o o >p =  arg max V,(-nt,P, oo) =  <
0 < p < 1  It), i f  k  —> oo;

(4.18)

where k  =  1 , 2 , • • ■ , oo;

C la im  3; The means o f multicast-tree RM -cell R T T , denoted by t h b h (oo) and t s s p (oo) 

fo r  the HBH and SSP  schemes, respectively, e x is t  and are determined by:

/ ._n 4p — 2p2  + ©(A) 
t h b h (  oo) =  ------ — j 2------- ,

-  / X L  A ( 2 p - p 2 ) ’^ = , 1 2 (m  — k — 1 )
t s s p (oo) =  _hm_ 2 m  ,

(4.19)

( 1 - P ) 2 k=i
( l - p ) 2 M ;  (4.20)

where 0 (A ) is defined by Eq. (3.2);

C la im  4: The variances o f multicast-tree RM-cell R T T , denoted by ^ffBH i00) anc  ̂as s p (° ° ) 

fo r  the HBH and SSP  schemes, respectively, e x is t  and are determined by:

( l - p ) 2 0 2 (A)
(Th b h {co) — (2 — p) 2 P2 ’

(4.21)

m — 1

k=l

2 (m  — A: — 1)

m— 1
2 (m  — « — 1 )

2 (m  — fc — 1 )

(1 ~ P )
2 k 2 m  —

C1  ~ P )

A (2 p — p2)
( 1  - p ) 2

2Ar ^2

( 1  - P )
2 Jb (4.22)

fc=l L-

where ©(A) is defined by Eq. (3.2); 

P ro o f .  The proof is provided in Appendix S.
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Figure 4.4: Comparison: means and variances of m ulticast-tree RTT between HBH and 

SSP schemes

R e m a rk s  o n  C o ro lla ry  4 .4 .1 : While m  does not a tta in  oo in real networks, Corol

lary 4.4.1 ensures the existence and convergence of fin ite  means and variances for the dom 

inant bottleneck-path probability distribution derived in Theorem 4.4.1. This makes our 

statistical analysis complete and meaningful. This corollary also states the trend of means 

and variances of the SSP and HBH schemes when m  is large. For instance, from Eq. (4.19) 

we observe th a t t B bh{po) is proportional to  the  RM-cell interval A (or 0 (A )) for a given 

p.  In contrast, from Eq. (4.20), we observe th a t t s s p {°o) is upper-bounded by the max

imum RM-cell RTT, 2m, regardless of p.  Likewise, Eq. (4.21) indicates th a t cr ĵBfI{oo)  is 

proportional to  ©2 (A) or A 2  while & ssp(°°) *s a ŝo upper-bounded.

4 .5  N u m er ica l C om parison  o f  S ta tis t ic a l P rop erties for S S P  

an d  H B H

Using the analytical results derived in Section 4.4 we numerically compare the statistical 

delay properties for HBH and SSP. Figure 4.4(a) plots TnB H {m ) and r s 5 p(m ), respectively, 

against the m ulticast-tree height m  for different RM-cell interval A ’s. From Figure 4.4(a) we 

observe th a t t h b h {m ) is much larger (% 6  tim es), and increases much faster, than r s s p (m ) . 

Moreover, T /fp /f(m ) is more sensitive to A than  t s s p (tti)- Figure 4.4(a) also shows th a t 

f r5 s p ( 77i) — unlike RTT rp-pp(m ) — is virtually independent of m. Figure 4.4(b) plots 

&HBH(jn ') an£i o’ssp(pt-) against m  while varying A . From Figure 4.4(b), crfjBHi'm) is found
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to  be much larger (s; 6  tim es), and increase much faster, than crssp(m ) as m  increases. 

Again, crHBH{,rn') is much more sensitive to A than crsspim)- Thus, the multicast-tree 

RM-cell RTT for SSP scales much better than th a t for HBH with respect to  the multicast- 

tree height and structure. Also, as illustrated in Figure 4.4(b), SSP’s multicast-tree RTT 

variation (Jssp(m ) is virtually independent of m  as compared to  HBH’s multicast-tree RTT 

variation,

Setting tree height m  =  25 and RM-cell RTT interval A =  20, Figure 4.4(c) plots 

t h b h { m) and T s s p (m ) against link marking probability p, which statistically represents 

the network traffic load. We observe th a t both t h b h { jn) and T ssp (m ) have their respective 

unique maximum, which is expected because ip(Pk,p,Tn) has the unique maximum with 

respect to p. Moreover, the maximum of th b h { jn )  is found to  be about 8  times larger 

than  th a t of T s s p i171) while the maximizer (p =  0.037) of r/fg if(m ) is slightly smaller than 

th a t (p =  0.044) of T5 5 p(m ). So, the SSP significantly outperforms the HBH in terms of 

the first moment of multicast-signaling delays. When p  increases beyond the maximizer, 

both f^ B ^ (m )  and r s s p (m )  decrease quickly since the dom inant bottleneck path tends 

to  be short as the network traffic load increases. This observation states the fact that the 

multicast-tree RM-cell RTT of the SSP multicast signaling scheme based on REM or RED 

can statistically adapt itself to  the network traffic-load variation dynamically. Figure 4.5(a) 

plots cr#B# (m ) and u s s p {m) against p with m  = 25 and A =  17. Likewise, both cthbh(fn) 

and cr5 5 p(m ) are observed to  have their own unique maximum, which is also due to the 

uniqueness of maximum for ip(Pk,p, m ) over p. Also, <7 //pp-(m) is found to be much larger 

(about 7 times) than <X5 5 p(m ) while the maximizer (p =  0.017) of <thbh{m) is slightly 

larger than th a t (p =  0.015) of o’s s p ( 7̂ )- This observation indicates th a t the multicast-tree 

RM-cell RTT for SSP is statistically much stabler than th a t for HBH in terms of multicast 

signaling delay variations. Moreover, the dynamics of <thbh(wi) and o"5 5 p(m ) with traffic 

load p varying behave in a m anner similar to those of t h b h { wi) and ^ s s p (m )-

To examine the properties of the first and second moments of the multicast-tree bottle-
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Figure 4.5: S tatistical and asymptotic properties of multicast-tree RTT for HBH and SSP 

as m  —> oo.

neck path RM-cell RTT when m is large, their plots as the function of p (with A =  20, and 

m  =  25 if m  < oo) in Figures 4.5(b) and (c) show the trends of r BBn{m )  —> t B b h {oo), 

Tssp{rri) ->• ts sp (o o ) , aHBH{m ) cthbh{°°), and crs s p (m ) -+ o’S5 p(oo), asymptotically

as m  —► oo. We made the following observations.

0 1 .  As m  —> oo, the extreme points for t B b h ( , ° ° ) ,  t s s p ( ° ° ) ,  <?h b h {o o ) ,  and & s s p ( oo) 

disappear, and become monotonic decreasing functions of p. This is expected since 

p* =  0 and tp*(Pk,p*,oo) =  0 as oo as shown in Eqs. (4.18) and (4.17).

0 2 . r B B B (m ) and T ssp(m )  converge to t h b h ( p ° )  and t s s p ( oo), respectively, and both 

are lower-bounded by the same bound for each scheme, as p —> 1 . This also confirms 

our analytical results, because limp_n thbh{™ -) =  linip-n t BBh(oo) =  2 +  0 (A ), 

which is the lower bound of HBH’s RM-cell RTT given by Eq. (3.1) for path Pi, and
2(m—2)

A , which is the lower bound oflimp_>i T ssp (m ) =  limp_n t Ss p (oo) =  2m  -  A 

SSP’s RM-cell RTT given by Eq. (3.6) for pa th  P i.

0 3 .  <JB B B {rn) and o\ssp(m) converge to cthbh{oo) and asspf,oo) as m  -> oo, respectively, 

and both converge to 0, as p —► 1. This also confirms our analytical results, because 

from Eqs. (4.13) and (4.21), we have limp_»i &HBH(m ) =  ^mp->i aHBH(°°) =  an<  ̂

from Eqs. (4.12) and (4.22), we have Iimp_n cr^s p (m) = linip-n 0 s 5 P (oo) =  0.

0 4 .  W hen m is large, T/fptf(ra) and r s s p (m )  drop very quickly as p increases. For in

stance, when p > 0 .1 , i.e., when network is busy for more than 1 0 % of the time,
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Figure 4.6: Simulation model for delay analysis of unbalanced-tree bottleneck RTT with 

m  =  8 -

Ts5 p (m ) already converges closely to the lower bound (limp_n rs sp ( ro )  =  2 m  — 

A =  10) for the case of m  =  25 and A — 20. In contrast, t h b h {tti) does not

converge closely to its lower bound (limp_n Tfj££f(m) =  2 +  A =  22) until the net

work traffic load is beyond 40%-50% for the same case. Likewise, a similar behavior is 

found to  hold for and c r s s p ( m ). This reveals th a t the SSP’s multicast-tree

RM-cell RTT and its variation converge to the lower bound much faster than the 

HBH’s. Thus, the SSP scheme adapts to network traffic-load much faster than the 

HBH scheme in terms of m ulticast-tree RM-cell RTT.

4 .6  S im u lation  R esu lts

We sim ulate the network with concurrent multiple m ulticast/unicast VCs (Virtual Cir

cuits) and multiple bottlenecks to  study  the statistical behavior of SSP signaling delay and 

com pare it with HBH.

This simulation study focuses on the unbalanced multicast-tree case because it represents 

th e  worst, but general, case for signaling delay variations, and thus, provides a lower bound
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of the  delay performance. In contrast, the balanced-tree case is trivial and can be treated as 

a  special case of the  unbalanced-tree case. The simulated network in Figure 4.5 consists of 

16 switches, S W i, S W 2 , • • • , SW ie, connected via 15 links L i, L 2 , • - - , L 1 5 as an unbalanced 

m ulticast tree of height m  =  8 . As shown in Figure 4.6, the network contains one multicast 

connection with a persistent ABR traffic source, starting from the sender M S  to 8  receivers 

M R i,  M R 2 , • • • , MR% through the m ulticast tree and forming 8  paths P i, P 2 , • • • , P%. We 

also set up 15 independent random  O N -O FF unicast VCs, each of which is represented by 

V C i  corresponding to  link L i  for i  =  1 , 2 , • • • , 15. V C i  functions as independent random 

cross-traffic sharing Lt ’s bandwidth with the  multicast connection. The activity intensity 

of the cross-traffic generated by VC, determ ines the congestion marking probability pi for 

link L i . When these cross-traffic sessions random ly switch between ON and OFF states, 

the multicast-tree bottleneck changes random ly from one path to  another.

We implemented the simulation model by using the NetSim event-driven simulator [42] 

where we set all links to  have identical bandw idth //, =  p. =  155 Mbps and link (or hop) 

delay r/, =  1 ms (millisecond). Thus, all p a th s ’ RTTs, r B B H ( j ,  A) and t „ s p (j, A), are given 

by Eqs. (3.1) and (3.6) for HBH and SSP (steady-state), respectively, which are obtained 

and listed in Table 4.1. The last row in Table 4.1 gives the physically limiting minimum 

for the  RTT, of each path of the sim ulated multicast tree. The RM-cell interval

is set to  6  ms.

Path  Name Pi P 2 Ps Pa Ps Ps P 7 Ps

8 14 2 0 26 32 38 44 44

TuSPU ,^ ) 4 1 0 1 0 1 0 16 16 16 16

4 6 8 1 0 1 2 14 16 16

Table 4.1: RTT (unit: ms) for each path  for the simulated network model.
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The link congestion marking probabilities, pt- (i =  1, • - • , 15), are generated by 15 in

dependent [0, l]-uniform random-number generators, R i, which control the 15 cross-traffic 

V C iS  ON-OFF states and their activity intensities. The entire simulation observation time 

T  is divided into N  repeated observation slots Tk, k  =  1,2, •••  , N , and T  =  JZitli At

the beginning of each observation slot Tk, k = 1 , 2, • • • , N , VCi, i = 1) 2, • • • , 15, enters an

ON (O FF) sta te  and stay there for a period of Tk if Ri <  Pi {Ri > pi), such tha t

Pr{V C i =  ON} =  P r {Ri < pi} = l P' l d u  = Pi (4.23)
Jo

and

P r {VC i =  OFF} =  Pr > p,} =  1  -  [* ' 1  du = 1  -  Pi. (4.24)
Jo

This generates a multicast-tree bottleneck RM-cell RTT observation t(£*) a t the end of Tk- 

Notice th a t since the 15 random cross-traffic VCi independently switch between ON and 

O FF states a t any Tk under the control of Ri, there are possibly multiple congested links 

and paths during some overlapping ON periods. Repeating the above observation procedure 

in Tk independently for k = 1,2, ■ ■ ■ , N , we can obtain N  m ulticast-tree bottleneck RM-cell 

RTT observations T{ti), t(£2), • • •, t(£ ^ ) . Then, the means r  and standard deviations a 

of the m ulticast-tree bottleneck RM-cell RTT can be estim ated through their time-sample 

averages, r (T )  and ^ (T ), respectively, over the simulation observation time T as follows:

/■ p I  r p

t  a; T(T) =  i  ^  t(£) dt and a % a{T) = J ^  [r(£) -  ?(T)] dt (4.25)

where r(£) is the running instant multicast-tree bottleneck RM-cell RTT observed at time 

t through the simulation.

Setting pi = p, T  = 10000 ms, and N  =  100, Figure 4.7(a) plots the simulated time- 

sample of the multicast-tree bottleneck RTT of SSP for p =  0.3 over T . Figure 4.7(b) 

plots the running sample-average r s s p { t ) and standard deviation a ssp (t)  of the multicast- 

tree bottleneck RTT, which are obtained through time-averaging. The ending-values of 

7rSSp(Tt) and & ssp{T ) over the entire simulation observation time T  give the time av-
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Figure 4.7: T he sim ulated m ulticast-tree bo ttleneck  RM-cell RTTs and the ir s ta tis tic s  for 

SSP

erage o f  t s s p ( T )  s; t s s p ( j t l ) and $ s s p { T )  ~  crssp{m ) for p =  0.3. As show n in Fig

ure 4 .7 (a ), th e  dynam ics of rssp{ t )  evolves random ly, depending on the p robability  distri

bu tions o f th e  cross-traffic sessions over T .  However, rs sp (£ ) is always bounded from  above 

by TmaI  =  2m  =  16 m s,3 and from below by (1) = 4  ms, which confirms T heorem  3.4.2

(also see Table 4.1). F igure 4.7(b) shows th a t  t s s p ( T ) -*-7.78 ms and c?ssp(T)  —>-3.51 ms, 

approx im ate ly  converging to  the s ta tis tica l averages r s s p (m ) and CTS S P  (”■*•) as £ —*■ T  for 

p =  0.3 (see F igures 4.9 and 4.10), respectively. F igures 4.8(a) and (b) present th e  corre

sponding  sim ulation results w ith p =  0.2 for H BH. T he  dynam ics of thbh{P)  are also found to 

evolve random ly, following th e  probability d is trib u tio n s  o f th e  cross-traffic sessions over the 

observation  period T .  However, t h b h ( t )  is bounded from  above by Tmax = 2 m  =  44  m s,4 and 

from below by T'^[^, t ( l )  =  8 ms, verifying T heorem  3.4.1 (also see Table 4.1). F igu re  4.8(b) 

shows th a t  t h b h { T )  —» 17.0 ms and B h b h { T )  —>•9.7 ms, converging approxim ately  to  the 

s ta tis tic a l averages t h b h { m )  a nd £Thbh(w ) a-s t —>T  for p  =  0.2 (see Figures 4.9 and  4.10), 

respectively.

F ig u res  4.9 and  4.10 plot the  sim ulated m eans and  s tan d a rd  deviations for m ulticast-tree

bo ttleneck  RM-cell R T T  against the link-m arking probabilities p, and com pare them  with

3 T h e  sligh t exceed o f  T s s p ( t )  upper-b o u n d  over 16 m s as  show n in  F igure 4.7(a) is d u e  to  sw itching 
p ro cessin g  delays.

4 T h e  sligh t exceed o f  r HBH( t )  u pper-bound  over 44 m s as  show n in  F igure 4.8(a) is d u e  to  sw itching 
p ro cessin g  delays.
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Figure 4.8: The simulated m ulticast-tree bottleneck RM-cell RTTs and their statistics for 

HBH.

the  analytical results derived for SSP and HBH, respectively. Comparing Figure 4.9 and 

Table 4.1, one can observe th a t the  statistical averages of m ulticast-tree bottleneck RTTs 

for both SSP and HBH are generally smaller than the upper bound of the deterministic 

RTT along each path. This is because the probability distribution ip(Pk,p, k) of the dom

inant bottleneck path favors the pa th  P*. (&* ~  3) which is closer to Pi than P7  or Pg. 

The simulation results also show the existence of the respective unique p* that maximizes 

T s s p (m ) and t h b h { in), respectively, verifying th a t ip(P k,P ,k) has the unique maximum 

w .r.t (with respect to) p for each path  Pk as shown in Theorem  4.4.2.

Figures 4.9 and 4.10 also show th a t under SSP the average multicast-tree bottleneck 

RTT over p is always smaller than  the upper-bound of as shown in Table 4.1.

In contrast, under HBH, the average m ulticast-tree bottleneck RTT can be larger than 

the upper-bound of the physically limiting minimum for certain values of p. The

statistics collected from the sim ulation show th a t, on average, the signaling delay for SSP 

is only about one half of th a t for HBH as illustrated in Figure 4.9. This advantage remains 

unchanged when the entire traffic congestion level is varied in the simulated range of p. 

Hence, the multicast flow control based on SSP is more responsive, and thus more efficient, 

th an  HBH. Furthermore, Figure 4.10 shows th a t the variation of multicast signaling delay
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Figure 4.9: Comparison of the simulated RTT delay means with the analytical results: t s s p  

and t h b h  vs. p

for SSP is much smaller than th a t for HBH. So, SSP is more stable than  HBH in terms of the 

m ulticast signaling delay. In addition, Figures 4.9 and 4.10 also show th a t the simulation 

results agree well with the analytical results, thus verifying the correctness of modeling 

and analytical results for both the deterministic analysis derived in Section 3.3 and the 

statistical analysis derived in Section 4.2.

4 .7  C onclusion

We proposed statistical modeling approaches to  analysis of the performance of a class 

of m ulticast feedback-synchronization signaling algorithms. Specifically, we developed a 

independent random model to  characterize the m ulticast signaling delay when the conges

tion markings of different links are based on RED or REM-like multicast and unicast flow 

control scheme, where the random markings at different links are independent. Using this 

model, we derived general expressions for the probability distributions of individual paths in
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Figure 4.10: Comparison of the simulated standard  deviations of RTT with the analytical 

results: crssp and crssp vs. p

a m ulticast tree being the bottleneck. Using the developed statistical model, we derived the 

first and second moments of a multicast-signaling delay for both HBH and SSP schemes, 

respectively, when link-markings are independent. The analytical results have also been 

confirmed by simulations.
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C H A P T E R  5

M A R K O V -C H A IN  M O D E L IN G  F O R  T H E  M U L T IC A ST  

S IG N A L IN G  D E L A Y  A N A L Y S IS

5.1  In trod u ction

The independent-marking statistical model developed in C hapter 4 for multicast singling 

delay analysis builds on the recently-proposed Random Early M arking (REM) [35,37, 38, 

40,43,44] and the widely-cited Random  Early Detection (RED) [36] flow-control schemes. 1 

The independent-marking statistical model is suitable for signaling delay analysis for multi

cast flow control based on REM- or RED-like schemes, where link-markings are assumed to 

be independent a t different links/routers. However, there are also cases where link-markings 

may not be independent. In many real unicast or multicast networks, these kinds of cases 

are even more likely to occur. In such a case, the independent-marking algorithm, modeling, 

and analysis can only offer approxim ate results, and their performance and accuracy will be 

affected by the “degree of dependency” between link-markings. In this chapter, we address 

the  more generalized case of dependent link congestion markings. Including dependence in 

the  analysis is usually much more difficult than with the independent-m arking assumption.

We develop a Markov-chain model over the link m arking/congestion sta tes at different

levels in a  multicast tree, and a M arkov-chain dependency-degree model which can capture

1 T h e  an a ly tica l technique developed  in  th is  c h a p te r  is also applicab le to  cases w here a  link’s random  
congestion  s ta te  is caused  by th e  flow -con tro l schem es o th e r th a n  R E M  a n d  R E D .
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all possible Markov-chain dependency degrees between different link congestion markings. 

Using the Markov chain and Markov-chain dependency-degree models, we derive the prob

ability distribution for a path to be the multicast-tree bottleneck. We also derive the first 

and second moments of a multicast signaling delay.

The benefits of our modeling and evaluation technique are two-fold. First, the tech

nique enables a direct quantitative comparison of feedback-synchronization delays between 

different m ulticast signaling schemes. Second, the proposed technique establishes a general 

framework for evaluating the signaling delay of feedback-synchronization-based multicast 

flow-control algorithm s. Although our evaluation focuses on ATM ABR m ulticast flow con

trol, it can also be applied to any feedback-synchronization-based m ulticast flow-control 

algorithm , and to  o ther Markov-chain model based analyses.

The chapter is organized as follows. In Section 5.2, we develop the Markov-chain model 

and apply it to derive the multicast signaling delay probability distribution for the case 

of dependent m arking. Section 5.3 proposes a Markov-chain dependency-degree model 

to  measure and calculate the one-step transition probabilities. In Section 5.4, we derive 

expressions for calculating the statistical characteristics of multicast signaling delays. Sec

tion 5.5 explores the asymptotical behavior of the derived link-marking Markov chain and 

its dependency-degree models. Section 5.6 presents the numerical analyses and evalua

tions, and simulation results to confirm the  analytical analyses and findings. The chapter 

concludes with Section 5.7.

5 .2  T h e M arkov M od el for D ep en d en t C on gestion  M arkings

In random -m arking schemes like R E M /R E D , and any other flow-control schemes, the 

m arking/congestion s ta te  of a link is a  function of its queue length. However, the queue 

lengths of different links carrying the sam e flows are generally not independent of each 

o ther. For instance, if a  large (small) queue is built up a t a congested upstream  link in a 

m ulticast tree, the downstream links carrying the same flows are more likely to  have large
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Forxi = l at Link L\ : Pr {Â  = 1} =p{ Forx’;= l  at Link L \ : Pr {.Vj= 1}
For x j = 0 at Link L\ : Pr { X-, = 0} = 1— Pf- For x\ = 0 at Link L\ : Pr {X\= 0} = 1— P\

Level: Root Root
0
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1*2
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L ’a
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(a) Unbalanced Tree: Height m= 4 (b) Unbalanced Tree: Height m = Infinite

Figure 5.1: Dependent random-marking unbalanced binary-tree model.

(small) queues.

For multicast flow control with dependent marking probabilities, we develop a Markov- 

chain model and a Markov-chain dependency-degree model for measuring and evaluating 

the degree of the Markov-chain dependency, in order to study the various statistical charac

teristics of multicast feedback-synchronization delay. The proposed modeling technique can 

not only be used to analyze the RTT delay of multicast feedback-synchronization signaling, 

bu t is also applicable to the general algorithm design/analysis for both multicast and unicast 

flow control.

5.2 .1  T h e D ependent S tatistica l M odel

To analyze the multicast feedback-synchronization signaling with dependent marking 

probabilities, v/e introduce the following definition.

D e fin itio n  5 .2 .1  A d e p e n d e n t random-marking unbalanced binary-tree of height m  con

sists o f a set, L, o f links which satisfy the following conditions:

C l .  A ll links in C. are labeled as shown in  Figure 5.1(a) fo r  m  < oo and Figure 5.1(b) fo r
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m  —>00 , respectively, such that

I { L i , L 2, L 2,L'3,L 2,- - -  i f  m  < 00;
(5.1)

{ L i ,L ' 2 ,L 2 ,L'3 ,L 3,- - -  , L'aa, Loo}, i f m - *  0 0 .

TVie /infc sef £  contains m  paths, Pi, P2, - , Pm, eac/i 0 /  which is represented by its

component links as:

Pk = { L u  L 2, ■ ■ - , Lkt L'k+l}, i f l < k < m - l ;
A

(5.2)
Pm — L 2, , , i f  k  — 771.

We define Pm as the m a in -s tr e a m  pa th  which takes only right branches at all branch 

nodes, and define each Pk , fo r  1  < k < m  — 1, as a b ra n ch -strea m  p a th  which 

consists o fk  right branches and one left branch at the last branch node (see Figure 5.1). 

Links Li and L'i, Vi >  2, are at the same level o f the multicast tree.

C 2 . The marking state o f  link Li (L'i) (i = 1,2, ■ ■ ■) is represented by a random variable 

X i (X'i) which takes value in  {0, 1} such that (see the top part o f Figure 5.1)

P r { X t = Xi} =
P i ,  fo r  Xi =  1;

1 -  Pi, fo r  Xi = 0;
P r{ X ' =  * '}

for x't = l;
(5.3)

1 -  Pi. for x'i =  0; 

where pi (p[) is the m arking probability fo r  Li (L'i) and is determined by

1
l i  ~ rninth

i f  R E M  is used; 

P m a x  1 i f  RED  is used;

Pi =

_maxtk — m m th .

1 — <j> rq'i , i f  R E M  is used;

P m a x ,  i f  RED  is used;
q'i - m m th

(5.4)

(5.5)

TTLCLX^fi TTLtThtfi

where 0 < pt , (p'f) < 1 (since pi (p\) reflects the degree o f traffic load, we will use the 

terms “marking probability” and “traffic load” interchangeably fo r  pi (p'i));qi (q'i) is 

the average queue size at Li (L[); j  > 0 is the step size; <f> > 1 fo r  REM; pmox is the 

maximum marking probability; maxth (m inth) is the high (low) queue threshold for  

RED;
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C 3 . The congestion marking states at all links are dependen t, and satisfy the Markovian 

property such that

Pr {-^t =  | X i —i =  1 i =  ) X i — 2  =  2 i X^_2 — •ci— 2  i ’ " ’ > "̂ 1 == }

=  P r { X i  =  Xi | X i - !  = Xi_i};  (5.6)

Pr {X'i = x'i | X t_! =  X i - u X U  =  x ' ^ X i ^  = Xi_2, X ' _ 2 = x '_ 2, ■■■,X1 = x 1}

=  P r { X !  = x'i I X i - l = x i- l }; (5.7)

C 4 . The congestion marking states within the same level are also d e p en d e n t and satisfy 

the following properties:

P r { X t =  Xi | X [  =  X i ,X i - x  =  Xi_i, X t-_! =  Xi_u X i - 2 =  * i - 2 , X ' _ 2 =  x '_ 2, • • • , X i  =  x j

=  Pr{X,- =  i ,  | X i_ i  =  (5.8)

Pr =  Xi | X i  = Xi, X i —i =  Xi—i , X t_i  =  x ,_ i ,  X i —2 : Xi- 2 , X i _ 2 =  Xj_2, • • • , X± =  i i }  

=  P r { X ?  =  z' | (5.9)

■
R e m a rk s  o n  D efin itio n  5.2 .1  (C 3  a n d  C 4 ): We only consider the upstream  and same- 

level dependence of link marking states as described by Eqs. (5.6), (5.7), (5 .8), and (5.9),  

because the  multicast-tree signaling delay analysis to be developed below need not consider 

the downstream  dependence. The congestion information on the links above the immediate- 

next upstream  link or on the link a t the  sam e level (see C4) is all concentrated into, and 

carried over by, the given congestion inform ation on the immediate-next upstream  link. 

Conditions C 3 and C 4 are reasonable because one link’s congestion state  depends most on 

its im m ediate upstream link’s congestion s ta te . The upstream ’s influence on a  downstream 

link’s congestion state  propagates through its im m ediate upstream link which carries same 

flows, and thus, as long as the im m ediate upstream  link’s congestion s ta te  is given, the 

probability distribution a t the downstream  link is independent of the congestion sta te  at 

links which are located above the im m ediate upstream  link or at the same level as indicated 

by conditions C 3 and C 4 in Eqs. (5.6) th rough (5 .9).
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0 0 . O n  r e c e i p t  o f  a  fe e d b a c k  R M  c e l l  fr o m  t h e  i - t h  b r a n c h :

0 1 . i f  (corm_pat£.x/ec(t) ^  1) {  ! O nly  p ro cess con n ected  dow nstream  branches;

0 2 . re sp Jb ra n ch ^vec (i)  :=  1; ! M ark th e  co n n ected  and responsive branch;

0 3 . M C I  :=  M C I  V  C l ;  ! C l  (C o n g estio n  In d icator) is random ly m arked a t router; M C I  is consolidated C l

0 4 . M E R  :=  m l n { M E R t E R } ;  ! E R  (E x p lic it  R a te ) inform ation  processing; M E R  is th e  consolidated E R

0 5 . i f  (co n ri-p a tt-vec  © r e sp J y r a n c h -v e c  =  1.) {  ! T his is the wS o f t  S y n c h r o n iz a t io n ” operation

0 6 . sen d  RM  cell (dir :=  b ack , E R  :=  M E R t C l  :=  M C I ) ;  ! Send a  fu lly -con so lid ated  RM  cell upstream

0 7 . n o jrc a p JU m er  :=  N n rt;  1 R ese t th e  non-responsive tim er  for n on -resp o n siv e  branch detection /rem oval

0 8 . r e sp .b ra n c h .v e c  :=  0); ! R ese t th e  responsive branch vector

0 9 . M C I  :=  0; M E R  :=  E R ;} } ;  ! R ese t R M -cell control variable.

Figure 5.2: Pseudocode for the Soft Synchronization Protocol (SSP).

5 . 2 .2  P r o b a b i l i t y  D i s t r i b u t i o n  o f  t h e  D o m i n a n t  B o t t l e n e c k  P a t h

To ensure reliable da ta  transm ission, the multicast ABR service needs to adjust the 

source ra te  to the minimum available bandwidth share th a t can be supported by the 

m ost congested path. Clearly, based on the OR rule (see the multicast signaling algo

rithm s detailed in Figure 5.2 and [45]. Specifically, a t the heart of SSP [6,11,45] is a 

pair of connection-update vectors: (i) the connection pattern  vector, conn-pattjuec, where 

connjpa ttjuec(i) =  0(1) indicates the i-th  output port of the switch is (not) a downstream 

branch of the multicast connection. Thus, conn.patt.vec{i) =  0(1) implies th a t a data cell 

should (not) be sent to the i-th  downstream  branch and a feedback RM cell is (not) expected 

from the  i-th  downstream branch;2 (ii) the responsive branch vector, resp-branchjuec, is 

initialized to  0 and reset to 0 whenever a consolidated RM cell is sent upward from the 

switch, resp Jar anchjuec{i) is set to  1 if a  feedback RM cell is received from the i-th down

stream  branch. A pseudocode [11,45] of the switch RM-cell processing algorithm is given in 

Figure 5.2. On receipt of a returned feedback RM-cell, the switch first marks its correspond

ing bit in the resp-.branch.juec and then conducts RM-cell consolidation operations. If the 

modulo-2 addition (the soft-synchronization operation), connjpatt juec © resp-branchjuec

2N o te  th a t  th e  negative logic is u sed  fo r convenience o f im p lem en ta tion .
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equals i ,  an all l ’s vector, indicating all feedback RM cells synchronized, then a fully- 

consolidated feedback RM cell is generated and sent upward. But, if the modulo-2 addition 

is not equal to  1, the switch needs to  await other feedback RM cells for synchronization. No

tice th a t since the synchronization algorithm allows feedback RM cells corresponding to dif

ferent forward RM cells to  be consolidated, the feedback RM cells are “softly-synchronized” 

a t branch nodes.), the shortest bottleneck path in a  multicast tree dominates the source’s 

flow-control decisions and the RTT of flow-control feedback loop. To explicitly model this 

feature, we introduce the following definition.

D e fin itio n  5 .2 .2  Among all concurrent bottleneck paths in a multicast tree, the bottleneck 

path o f m in im u m  length is called the d o m in a n t bo ttlen eck  p a th  (also called m u ltica s t-  

tree  b o ttlen eck  p a th ), and its RM -cell R T T  is called the m u ltic a s t- tr e e  bottleneck  

R M -c e ll  R T T  or simply m u ltic a s t- tr e e  R T T .

Based on Definitions 5.2.1 and 5.2.2, the following proposition lays a foundation for 

deriving the distribution of the  dom inant bottleneck path.

P r o p o s i t io n  5.2.1 The sequence o f random marking states {X i, X i ,  , X m_!, X m }  

(for the tree height m  < oo and m  —> oo, respectively) in Definition 5.2.1 defines a 2-state 

discrete-indexed Markov chain over the links on the main-stream path Pm =  { L i , L i, • • • , Lm }, 

and the sequence o f marking states { X \ ,  X i , - • ■ , X k, X'k+l} in Definition 5.2.1 on each 

branch-stream path Pk = { L \, L i, ■ ■ ■ , Lk, L'k+l}, fo r  k =  1 ,2 ,-- - ,m  — l, also define a 2-state 

(finite-sequence) Markov chain.

P ro o f . The proof follows from conditions C3 of Definition 5.2.1. ■

R e m a rk s  o n  P ro p o s it io n  5 .2 .1 : Unlike the traditional definition of Markov chain/process 

where the random-variable sequence index set is time, we define the Markov chain for every 

path  (including the main- and branch-stream  paths) which is indexed by the (discrete) link 

sequence number associated w ith th a t path.
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Since the mathematical p roperties/treatm en ts and random marking definitions for both 

the Markov chain defined over the m ain-stream  path Pm and the Markov chain defined over 

the branch-stream  paths P*. (A: =  1, 2, - • • , m  — 1) are the same, except th a t the last link’s 

m arking sta te  differs in labeling by a  symbol (see Proposition 5.2.1), we will henceforth 

use {Xi} to represent the Markov chain defined over both the main- and branch-stream 

paths, and explicitly state  otherwise.

Applying Proposition 5.2.1, the theorem  given below derives the probability distributions 

of the  dominant-bottleneck path.

T h e o re m  5 .2 .1  I f  a dependen t-m arking  multicast tree of height m  as defined in Defini

tion 5.2.1 is flow-controlled under SSP  or HBH, then the following claims hold:

C la im  1: I f  m —t oo, then there exists o n e  a n d  o n ly  on e  dominant bottleneck path, and 

the probability distribution, ^ ( P t ,  oo), that P* becomes the dominant bottleneck path,

is

1 -  P r{X j =  0}Pr{X £ =  0 | X i =  0}, i f k  =  1;

i>d(Pk, oo) =  <
Pr{X x =  0 } P r{ X ' =  0 | X * =  0} P r {Xfc =  1 | X k - i  = 0 }

+ P r {Xfc =  0 | X * -!  =  0}Pr {X'k+l =  1 | X* =  0)
f c - 2

(5.10)

• n { p r{ X I+i =  0 | X i =  0 } P r{ X '+1 =  0 | Xt- =  0 } J ,  i f k  > 2;

The ifid(Pk, o°) given in Eq. (5.10) satisfies the following normalization condition:

m
lim y^i> d(P k, oo) =  1; (5-11)

*71—* 0 0  *
A := l

C la im  2: I f  m  < oo, then there exists a t  m o s t  o n e  dominant bottleneck path, and the 

probability distribution, tftd(Pki m ), that P* becomes the dominant bottleneck path, is
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given by

Tpd{Pk, m ) =

1 -  P r { X 1 = 0}Pr { X '  =  0 | X x =  0}, i f k  =  1;

P r {X x =  0}Pr {X ' =  0 | X fc_x =  0} P r {X / t  =  1 I X * : - !  = 0 }

+ P r{ X fc =  0 | X fc_x =  0 } P r{ X '+1 =  1 | X* =  0)

fc-2 r  ̂ (5.12)
' n { P r {* t+ i = 0 \ X i  =  0}Pr{X '+1 =  0 | X , =  0} j ,  i f k  > 2;

Pr{X x =  0}Pr {X,
m —2

1 | X m_i =  0}P r{X ^ =  0 | X m_x =  0}

• n  { P r {Xl+1 =  0 | X t =  0}P r{X '+1 =  0 | X t =  0 } |,  i f k
i=  1 *■ '

m;

P ro o f . The proof is provided in Appendix T. ■

R e m a rk s  o n  T h e o re m  5.2.1: We observe that by Eq. (5.10), lim *:-^ Tpd(Pk, oo) =  0.

This is expected, since a longer bottleneck path is always dominated by a  co-existing shorter 

bottleneck path, if any. Thus, when k —> oo as m  —> oo, P 0 a is always dominated by a 

shorter bottleneck path for 0 < pi,p( < 1, z =  1,2,*-- ,oo. T h a t is, ^ ( ^ 0 0 1 °°) =  0. In 

addition, notice th a t by Eq. (5.11) we have H it l i  °°) =  1' which also makes sense

because as the unbalanced-tree’s height m  —>• 0 0  and 0 < Pi,p( < 1, there always exists

(with probability 1) one and only one dom inant bottleneck path in a multicast tree. On the 

other hand, for the case of m  < 0 0 , by Eqs. (5.12) and (5.11) we have ^(Pfci^n) < 1)

implying the possibility th a t there is no dominant bottleneck path  in the multicast tree of 

height m  < 0 0 . This is also expected because 0 < Pi, P i < 1.

5.3 M od elin g  o f  M arkov-C hain  D ep en d en cy  D egree

To use Eqs. (5.10) and (5.12), we need to derive explicit expressions for P r{X i =  x t- | 

X { - 1 =  x t_x} and P r{ X t- =  | X^_i =  Xi_x}, which are the fundam ental conditional dis

tribution functions used in Eqs. (5.10) and (5.12). However, it is difficult to know/compute 

the accurate dependency between two random variables. To solve this problem, we propose
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to use a real-valued Markov-chain dependency-degree factor a  £ [0, 1] to  quantify all pos

sible degrees of dependency between the random variables in the Markov chain’s one-step 

transition probabilities. Using this dependency-degree factor, one can evaluate the Markov 

chain’s any possible degree of dependency ranging from “independent” to  “perfectly depen

dent” , w ithout knowing a priori the dependency-degree of the two random variables.

In general, two dependent random events can affect each other either positively or nega

tively. For instance, if occurrence of one event is likely to trigger another, then they are said 

to be positively-dependent. On the o ther hand, if occurrence of one event makes another 

event unlikely to occur, then they are said to be negatively-dependent. As we discussed 

earlier, an upstream link’s being congested (uncongested) state  will make the downstream 

links carrying the same flows more likely (unlikely) to be congested. So, the positive de

pendence can accurately characterize the dependence of link markings. To quantitatively 

describe this feature, we introduce the following definition:

D e fin itio n  5 .3 .1  Two dependent link marking states X i and X t+i are said to be positively 

(negatively) dependent i f  P r{ X t+i =  x | X , =  x} > P r{X t+i =  x | X,- =  x} ( P r{ X i+i = 

x | X i =  x} <  P r {-^i+i =  x | X , =  x} ), where x £ {0, 1}.

Based on Definition 5.3.1, the theorem  given below models the dependency-degree be

tween the random variables of the M arkov chain. Notice tha t the theorem below only gives 

the results for the case of P r{ X I+i =  Xi+ i | Xi =  x,} and P r{X , =  1} =  p,-, and it also 

holds for the case of Pr{X,-+1 =  x(+1 | X t =  Xi} and P r{X / =  1} =  p( with the similar 

results th a t we omitted.

T h e o re m  5 .3 .1  Consider the Markov chain {Xx} defined on link marking states on every 

path (for both main-stream and branch-stream) in  the multicast tree specified by Defini

tion 5.2.1. I f  {X{} is p o s itiv e ly  d e p e n d e n t, and the link marking-probability is equal to 

P r {Xi =  1} =  pi, then the following claims hold.

C laim  1. The conditional distribution P r{ X 1+i =  x1+1 | X, =  Xi}, with x,-, xt+i £ {0, 1},
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is upper- and lower-bounded by

1 - P * + 1  < P r  {X t+1 =  0 |X t =  0}< I 1'
1 ~  Pi+i 

1 -  Pi

P i+ i > Pr {-ATt+i — 1 1 X i  — 0} >

0,

P t+ i  ~ Pi 
I - P i  ’
'  Pi ~  Pi+1

i- P t+ i  > P r{ X i+ i= 0 |X i  =  l} >  <
Pi

Pi+i < Pr{A 't+ i =  l |X j  =  l}< <

0, 

Pi+l
1

Pi

1,

i f  Pi >  p i + i ;

i f  Pi < Pi+1/ 

i f  Pi > Pi+i;

i f  Pi < Pt+ii 

i f  Pi > Pi+1/

i f  Pi < Pi+1/ 

i f  Pi > Pi+i;

i f  Pi < Pi+1/

(5.13)

(5.14)

(5.15)

(5.16)

C la im  2 . 3 a t (a() £ [0,1] such that all possible dependency-degrees between X t and Xl+ i 

(X'i+l) can be measured by the real-valued Markov-chain d ep en d en cy-d eg ree  fa c to r  

cti (a'i), and 3

and

a, =  0 iff X i and Xt+1 are independent;

oci = 1 iff X i and X1+1 are p e r fe c tly  dependent;

a' = 0 iff X i and X(+1 are independent;

a' =  1 iff X i and X 'i + 1  are p e r fe c tly  dependent;

(5.17)

(5.18)

C la im  3 . The conditional distributions P r {X,+i =  x t+i | X i =  x^}, with x,, xt+ i € {0,1},

* E x am p les o f th e  p e r fe c t ly  d e p e n d e n t events discussed below  include th a t  tw o events a re  identical or 
one even t is a  sub-event o f  th e  o th e r.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



are determined by

1 -  (1 -  Qi) pi+1, i f  Pi > Pi+i;
P r{ X t+1 =  0 |X t =  0} =  { f l - P i +l \  (5' 19)

(1 -  a , ) ( l  -  Pi+i) +  a , ^ :  _  J  , i f  Pi < Pi+i;

P r { X t + 1  =  1 | X i = 0} =  <

P r{ X I+1 = 0 \ X i  = l }  =

P r { X i + 1  = 1 | X i = 1} =  <

( 1  -  ati) p i+ 1, i f  Pi >  Pt+i;

/ ,  \ , / 'P i+ i  ~ P i \  -r  ̂ 5̂ '2°^
( 1  -  Qi) Pi+i +  Qi I 1 _  p.  J  . V  Pi <  P h - 1 /

(1 -  a , ) ( l - p i+1) +  a ;  ( —-, i f  pi >  p i + l ;
V Pi J  (5.21)

(1 -  a t ) ( l - p i+1), i f  pi <  pi+ 1;

(1 -  Q, )p i+ i +  Qi ( , i f  Pi >  Pi+1/
V  ^  /  (5.22)

Pi+i +  <*i(l -  P i+ i) ,  i f  Pi <  Pi+1/

where i = 1,2, , and Qi is the dependency-degree factor defined in  Claim 2 of The

orem 5.3.1.

P ro o f .  See Appendix U. ■

R e m a rk s  o n  T h e o re m  5 .3 .1: Claim 1 finds the upper and lower bounds of all 4 possible 

2-state Markov chain one-step transition probabilities as functions of the marginal link- 

marking probabilities pt- and Pi+i specified by networks. Claim 2 ensures the existence 

of a  real-valued dependence-degree factor a , 6 [0, lj. It also proves the completeness of 

the Markov-chain dependence-degree factor by mapping all possible degrees of dependency 

onto the real-valued interval [0,1]. Claim 3 derives expressions for all 4 possible 2-state 

M arkov chain one-step transition probabilities, expressing the conditional distributions as 

the  functions of their marginal distributions.

Applying Theorem 5.3.1 and Eqs. (5.19)-(5.22) to  Theorem 5.2.1, we obtain the general- 

case (heterogeneous) expressions for calculating the m ulticast bottleneck path probability 

distributions as follows.

C o ro lla ry  5 .3 .1  Let a dependent-marking multicast tree o f height to  as defined in Def

in ition  5.2.1 be flow-controlled under S S P  or HBH. I f  the one-step transition probability
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of the Markov chain { X t }  defined over every path (including the main- and branch-stream 

paths) is specified by the dependency-)actor vector a  =  ( q ' i ,  q ^ ,  £*2, ot'2, 0:3, a'3> ■ • • )  which 

is derived in Theorem 5.3.1, and further, denote the link marking probability vector by 

p =  ( p i ,  p [ , P2, p'2, P3, P3, • • ■), respectively, then the following claims hold.

C la im  1 : I f  m —t  00, then there exists o n e  a n d  o n ly  o n e  dominant bottleneck path, and 

the probability distribution, denoted by - ^ ( P t ,  <?, p, 00), that Pk becomes the dominant 

bottleneck path, is determined by

1 -  ( 1 - P i ) [ l  -  (1 -  < *i)py , i f  k = 1;

i>d(Pk,a,P, 00) = <
( 1 - P i )  [1 -  ( l - a ' t - i ) P k . (1 -  ack-i)pk +  [1 — (1 -  “ fc-OPJt]

■(! -  O Pfc+ i I I  { [ ! - ( !  -  <*i)Pi+1] [1 ~ (1 -  « i)P i+ i] }. i f k > 2/
1=1  ̂ '

(5.23)

and, ipd(Pk,at,p, 00) g iven in E q . (5.23) satisfies the following normalization condition:
m

lim S ^  ipd(P k,a ,p , 00) =  1; (5-24)
m —foo £ —'

k = l

C la im  2 : I f  m  <  00, then there exists a t m o s t o n e  dominant bottleneck path, and the 

probability distribution, denoted by ipd(Pk, <5, p, m ), that Pk becomes the dominant bot

tleneck path, is determined by

1 -  (1 -  P i) [1 “  (1 -  <*i)p'2] , i f k  =  1;

ipd(Pk, a, p, m ) -

(1 - P x )  [ l  -  (1 -  afc_x)p*] (1 -  Otk- l ) p k  +  [1 -  (1 -  <*fc-l)pfc]

•(! -  <*fc)Pfc+i] I l j t 1 “  C1 _  a *)Pt+i] [l -  (1 -  tti)Pi+i] j .  i f k > 2;

(1 -  P l) ( l  -  Qm_ i)p m [l -  (1 -  a^_i)P m ]

• 1 7  {[1 -  (1 -  “ .)P.+i] [1 -  (1 -  1 ] }.
t=i  ̂ '

i f  k =  m; 

(5.25)
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P ro o f .  The proof follows by plugging Eqs. (5.19) through (5.22) o f Theorem 5.3.1 into 

Eqs. (5.10), (5.11) and (5.12) of Theorem  5.2.1. ■

R e m a rk s  on  C o ro lla ry  5 .3 .1 : We can use Eqs. (5.23) and (5.25), and tune up the 

dependence-degree factor a  to see how the system performs with different dependence- 

degrees. More importantly, the completeness of this approach guarantees th a t the actual 

unknown Markov-chain dependency degree imposed by the practical problems can always 

be covered by tuning a t- in the interval [0,1], Vi. Moreover, Eqs. (5.23) and (5.25) provide 

very general probability distribution expressions since one can arbitrarily select <5 and p for 

different links to handle the heterogeneity. Eqs. (5.23) and (5.25) reduce to the probability 

d istribution expressions of tp(Pk, m ) derived for the multicast signaling delay analysis under 

independent random-marking [45] by letting  a  =  0 (independent), verifying the correctness 

of Eqs. (5.23) and (5.25).

5 .4  S ta tistica l P ro p er tie s  o f  M u ltica st S ignaling D elays

Using the probability distribution derived in Corollary 5.3.1 and Eqs. (3.1) and (3.6) of 

tu(j , A) derived in Theorems 3.4.1 and 3.4.2 in Appendix R, the following theorem derives 

th e  probability distributions, their properties, and the means and variances of multicast 

signaling delays under SSP and HBH, respectively, for the homogeneous case and with

771 <  o o .

T h e o r e m  5.4 .1  Let a dependent-marking multicast tree of height m  as defined in  Defini

tion  5.2.1 be flow-controlled under S S P  and HBH, respectively, with the RM-cell interval A. 

I f  77i <  oo, 0 < pi = p\ =  p <  1 and  0 <  a t =  =  a  < 1, Vi (the homogeneous case) , 4  then

the following claims hold:

C la im  1: The probability distribution that Pk becomes the dominant bottleneck path, de-

4 T h e  an a ly tica l resu lts  derived  from  th e  hom ogeneous case can  be easily ex ten d e d  to  th e  heterogeneous 
case  w h ere  p i  and  a ;  a re  different Vi.
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noted by i/Jd(Pk, &,P, m ), is determined by

1 -  (1 -  p) [1 -  (1 -  a )p ] , i f k  = 1;

(1 -  a ) ( l  — p)p [2 — (1 — a)p] [1 — (1 — a)p]2 3 , i f  k  > 2; (5-26)

(1 -  a ) ( l  -  p)p [1 -  (1 -  a)p] 2m—3 i f  k = m;

C la im  2: For each path and a given a , tfd{Pk, <+ P, rn) attains the unique maximum at

p* =  arg max i)d{Pk, a , p, m)
0 < p < l

1, i f k  =  1;

(5.27)

i f  k = m;
m  — (m  — 1)q — yj[m — (m  — l)o:]2 — (1 — a)(2 m  — 1)

(1 — a ) ( 2 r a  — 1) ’

and fo r  2  < k < (m — 1), p* is non-negative and no larger than 1 real-valued root o f

the following cubic equation:

2 k (l -  a ) 2p3 +  (1 -  a )  [(2A: -  l)or -  6 k] p 2  -  2 [(2£ -  l ) a  -  2 k -  l ]p  -  2 =  0. (5.28)

C la im  3: For each path P*. and a given p, ipd(P k, a ,p ,  m) attains the unique maximum at

+ -  I I -p p V 2 k — 1

a * =  arg  max ipd(Pk, a, p, m) =
0 < c k <1

, i f  2  < k < m  — 1

and k >

1 -

2 ( 7 7 1  — l ) p ’

2 p(2 -  p)

i f  k = m  and k >
1  + TP

(5.29)

C la im  4: I f  Markov-chain dependency-degree factor a  = ao > 0 for a given ccq, it shifts the 

probability distribution o f multicast-tree bottleneck path from shorter paths to longer 

ones. I f  the tree height m  satisfies:

log
m  > 1 — chq

1 -  (1 -  a 0)p +  2.5
log

1 - p  
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then there exists the unique “dependency-balanced, path” such that 2 < k < m  — 1 

and

VuCflfc, a , p, m ) | cr=o > ipd(Pk, a, p, m ) | a=Qo, i f  k < k\
(5.31)

ipd(Pk, a , p, m ) | a = 0  < i'diPk, a, P, m ) \ oL=a0  j i f k  > Ar, 

where iftd(Pk, a , P, m.) is given by Eq. (5.26), and the “dependency-balanced path num 

ber” k is determined by

log
k =

2 - p
(1 -  ar0)[2 -  (1 -  a 0)p]

log 1 -  (1 -  a0)p
1 - p

+  1.5 (5.32)

C la im  5: The means o f multicast-tree bottleneck RM-cell R T T , denoted by r s s p ( a iP im ) 

and t h b h  («*, p, m) fo r  the SSP  and HBH schemes, respectively, are determined by:

T s sp { a ,p ,m )  =  [p +  ( l - a ) ( p -  p2)] 2 m  —
2 ( 7 7 1  — 2)

A
A

+  2m (l - p )  [1 -  (1 -  a)p]

• j l - f  [1 -  (1 -  a)p]2(m 2) [(1 -  ot)p -  1] j  -  (1 -  a ) ( l  -  p)p

m—1 s
[2 -  (1 -  a)p] A ^ 2  |

k=2 ^

2 (to — k — 1) [ l - ( l - a ) p ] 2* -3} , (5.33)

-  ( l - a ) p j -  [1 -  (1 -  a)p]3 

- m  [1 -  (1 -  a)p]2m‘ 3 +  ( m - 1) [1 -  (1 -  o^p]2̂ 11 +  (1 -  p) 

- [1 -  (1 -  a)p ] 2 m - 3  { (1  -  a)p[2 +  (m  -  l)0 (A )j -  2 } +  (2 +  0 (A ))

• [p+  ( l - a ) ( p - p 2)] -+- 2(1—p) [1 -  ( l - a ) p ] ;  (5.34)

where 0 (A ) is defined by Eq. (3.2) in  Appendix R;

C la im  6: The variances o f multicast-tree bottleneck RM-cell R T T , denoted by cr^s p {a, p, m)
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and cr2HBH (a ,p ,m ) fo r  the S S P  and H BH  schemes, respectively, are determined by:

aSSP(a ,p ,m )  =  4m + 4 m  (1 - p )  [1 - ( 1  -a )p ]  m [(1- o ) p - 1 ] - ( 1 - o ) ( l - p ) p

[2 — (1 — or)p] < 4m A
m —1 

fc=2 L

2 (m  — Ar — 1)

m — 1 r

- * 2£ {  
f c = 2  '•

2(771 — k — 1)
A

+ p  1 +  (1 — o ) ( l  -  p) 

2(m  -  2)
{A 2 2(777 — 2 )  

A
— 4mA

}  - T 2S S p { a , P , ™ ) ,

a H B H ( a i P>m ) =  [! +  ( !  ~  “ X 1 -  p )]p (2 +  © (A ))2 +  ( l - a ) ( l  - p ) p

• [1 -  (1 -  a)p]2m"3 [2 +  (m -  1)0 (A )]2 +  4(1 -  p) [1 -  (1 -  a)p]

a)p]2( - 2) )  +  4(1,~  P) [! 7  (1 T Q)P] fI L v J ( l - a ) p [ 2 - ( l - a ) p ]

. | 2  -  [1 -  ( 1  -  a )p}2 -  m [ l  -  (1  -  a)p]2(m- 2) +  ( m  -  1 )

-[1 -  (1 -  c^p]2*”1- 1) )  +  ( ! - p )©2(A )

(5.35)

(1 — a )2 [2 — (1 — a)p]2 [p2 — (1 — a:)p3]

- | l  +  [1 -  (1 -  a)p ] 2  -  [2 -  (1 -  a)p]3 [(1 -  a)p]3-  m 2

• [ l - ( l - a ) p ] 2(m_1) +  (2m 2 —2m —1) [1 -  ( l - a ) p ] 2m

+ (2 m  -  m 2 -  1) [1 -  (1 -  a)p]2(m+1) j -  r 2HBH(a ,p ,m ) ,  (5.36)

where 0 (A ) is defined by Eq. (3.2) in Appendix R, and r s s p ( a t Pi m ) an<d P , m )

are given by Eqs. (5.33) and (5.34), respectively.

P r o o f .  The proof is provided in Appendix R. ■

R e m a rk s  o n  T h e o re m  5 .4 .1 : Claim 1 derives formulae for m ulticast-tree bottleneck 

path  distributions as a function of path  length k, marginal link-marking probability p and 

dependency-degree factor a , and tree height m . Claim 2 examines the dynam ic behavior 

of ipd(Pk, <*i Pi m) as p varies and observes th a t ifrd(Pk, c t,p ,m )  a ttains the  unique maxi

mum a t p* given by Eqs. (5.27) and (5.28), representing the link-marking probability tha t 

makes Pk the most likely m ulticast-tree bottleneck path. Claim 3 studies the  behavior of
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if>d(Pk, oe,p, m ) from the viewpoint of a  and indicates th a t ^ ( P * ,  cc, p, m) can be either 

monotonic or non-monotonic, depending on the given values of k  and p. As long as k and 

p satisfy the  conditions specified in Eq. (5.29), ipd{Pk,&,P,Tri) achieves the maximum at a * 

given by Eq. (5.29).

Claim 4 reveals the fact th a t  the  Markov-chain dependency (a  > 0) reduces the prob

abilities for shorter paths to be the bottleneck while increasing the probabilities for longer 

paths to  be the bottleneck. This probability shift is also shown to be balanced a t the unique 

path, P^, where tpd(P^,0 ! ,p ,m )  |cx=o= i ’di.P^, P, m ) |a>0, if the tree is high enough. This 

claim also derives the condition for the existence and uniqueness of P^ and the equation to 

compute the  dependency-balanced path number k  as a function of the given Markov chain 

dependency-factor aro and the link-marking probability p. Claim 5 and Claim 6 derives the 

closed-form expressions for the  multicast-signaling delay means and variances for SSP and 

HBH as the  functions of A, p, a , and m. In addition, Eqs. (5.26), (5.27), (5.28) (5.33), 

(5.34), (5.35), and (5.36) all reduce to the analytical results derived for the multicast sig

naling delay analysis under independent random-marking [45] by letting a  =  0, confirming 

the correctness of the dependence-degree modeling and these derived expressions in a sense.

5.5 A sy m p to tic a l A n a ly s is  o f  L ink-M arking M arkov C hains

Theorem  5.5.1 given below investigates the long-term behavior of the link-marking 

Markov chains based on the proposed Markov-chain dependency-degree model when m  

is large.

T h e o re m  5 .5 .1  Consider the Markov chain {X,} defined by the link-marking states on 

both m ain- and branch-stream paths in the multicast tree specified by Definition 5.2.1. I f  

(i) the dependency degree o f {X t} is specified by the dependency-degree factor vector a  = 

(a-i, a^, c*2 ) ct2 , c*3 i c*3 i • • •) derived in  Theorem 5.3.1, (ii) the link-marking probability vector 

is specified by p =  (P i, P i, P2  > P2 1 P3  > P3 , - - -) defined in Definition 5.2.1, and (iii) p  and a  

satisfy 0 < Pi — p[ — p < 1 and  0 < a* =  ar(- =  a  < 1 , Vi, respectively, such that {X,}
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l-(l-CC)p

Figure 5.3: Markov chain model for dependent link-marking multicast flow control. 

becomes a homogeneous Markov chain, then the following claims hold:

C la im  1. The n-step transition probability matrix, denoted by P ^ , o f the homogeneous 

Markov chain {X,} is determined by:

1 — (1 — an)p (1 — ocn)p 
P (n) =  {Py?} =  { P r{ X r+n =  k  | X r =  j } }  =  (5.37)

_ ( l - a n) ( l - p )  a n{ l - p ) + p  _

where j , k  G {0,1}, n  6 {0,1,2,---}, Vr > 1, P r { X r+n = k\ Xr = j'}  l ( r = i , n = i )  are 9 ™en

by Eqs. (5.19) through (5.22), and the Markov chain model for case o f P ^  with n  =  1

is shown in  Figure 5.3;

C la im  2. I f  a  G [0,1], then both link-marking states are ergodic, with

n

limsup pW  = lim p $  > 0, lim p $  - oo,
n —t o o  J  n —t o o  J J  n —* 0 0  ^ — J  J J

r = l

where j  G {0,1}, and the recurring probability converges as follows:

(5.38)

Pr { X k = j }  =  1 - p ,  i f  j  =  0, a  G [0,1); 

P r { X k = j } — p, i f j  =  1, a  G [0,1); 

1, i f  j  € { 0 , 1 }, a  = 1 ;

(5.39)

where k  G {1, 2, - - - };

C la im  3. I f  a  G [0,1), then the Markov chain {X, } is ergodic and its limiting probabilities 

exist and converge to the u n iq u e  equilibrium state probabilities which are independent
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o f both the initial state probabilities and dependency-degree a. The Markov chain’s 

lim iting probabilities, denoted by 7 r ,, i  G {0, 1}, converge to the marginal link-marking  

probabilities as follows:

_  A 
7T = 7To T il ( 1 - p )  p (5.40)

i.e., ttq = Pr{X^ =  0} =  (1 — p) and tti =  P r{ X , =  1} =  p;

C la im  4. I f  the Markov chain {-Xi} is perfectly dependent, i.e., a  =  1, then {X,} also 

converges to an equilibrium state, but the equilibrium state probabilities are not unique 

and are equal to the initial state probabilities. I f  the initial state probabilities are 

P r {X i =  0} =  1 — p and P r {X^ =  1} =  p, then ttq = 1 — p and 7Ti =  p still hold.

P ro o f .  The proof is provided in Appendix W. ■

R e m a rk s  o n  T h e o re m  5.5.1: Claim 1 fully specifies the long-term behavior of the Markov 

chain and determines the distribution of a  bottleneck path in the homogeneous case. Claim 2 

classifies the link-marking states as the dependency-factor a  varies. It also shows th a t the 

Markov-chain sta te  recurring probabilities converge asymptotically to the marginal link- 

marking probabilities (see Eq. (5.39)), if the Markov chain is not perfectly dependent (a  ^  

! ) •

Claim 3 ensures th a t the Markov-chain dependency-degree modeling converges asymp

totically, and the long-term behavior of the resulting Markov chain is stable. Also, the 

ergodicity of the Markov chain enables us to evaluate its various statistics (ensemble aver

age) through the sample averages in simulations o r implementations. Moreover, this claim 

shows th a t the limiting probabilities converge to  the marginal link-marking probabilities 

P r{ X i =  x,}, where x, G {0,1}. This is also expected, because 7r0 and tti represent the 

long-term proportion of the Markov chain remaining a t s tate  0 and 1, respectively, and is 

consistent with the definitions of Pr{X^ =  0} and P r{ X t =  1}, which verifies the valid

ity of the Markov-chain dependency-degree model. Claim 4 says tha t when a  =  1, i.e., 

the link-marking sta te  is perfectly dependent, the equilibrium sta te  distribution still exists,
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(a) i>d{P k ,a ,P ,m ) vs. k (b ) ipd(Pk, a ,p ,m )  vs. p (c) ipd(Pk,a ,p ,m )  vs. a

Figure 5.4: Im pact of path length k, link-marking probability p, and dependency-degree a  

on bottleneck path  probability distribution tpd(Pk , a , p ,m ).

but is not unique, depending on the initial s ta te  probabilities. This is expected because 

when a  =  1, the M arkov chain {X,} has two isolated classes (see Figure 5.3). So, it is not 

irreducible, and thus is no longer ergodic.

5 .6  N u m er ica l and S im u lation  E va lu ation s

Based on the analytical results derived thus far, various multicast signaling delay prop

erties are evaluated numerically as described as follows.

5.6.1 M ulticast-T ree B ottleneck  P ath  D istr ibution  ii'd(P k . a .  p .  m )

Figure 5.4(a) plots ipd(Pk, ce,p, m ) against path  length k  while varying the Markov-chain 

dependency-degree factor a. ipd(Pk , a, p, m )  is found to  be a strictly monotonic decreasing 

function of k  for both the independent ( a  =  0) and dependent (a  > 0) cases. This is 

expected because the longer the bottleneck path , the more likely it will be dominated by 

shorter paths, as described in Definition 5.2.2.

Compared to the independent-marking case, the  marking dependency is found to reduce 

the probability for shorter paths (with k  <  4) to  be the bottleneck path while increasing 

the probability for longer paths (with k >  5). This verifies Claim 4 of Theorem 5.4.1, and 

the dependency-balanced path number: k  is found to  be around 4 and 5. Figure 5.4(a) also 

shows th a t the larger a , the more this probability shifts from shorter paths to  longer ones.
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This is because the stronger the link-marking dependency, the larger the probability th a t all 

links s tay  in the  same congestion sta te . This trend is also shown in Figure 5.6(a), plotting 

i>d(Pk, £*, p, m) | a=o -ipd(Pki <*> P, wi) I a-ac0>o against k for different values of a  =  a 0.

We now analyze why the bottleneck probability shifts from shorter paths to  longer ones 

as a  increases, as shown in Figure 5.4(a). Theorems 5.2.1 and 5.4.1 s ta te  th a t for Pk to 

be the m ulticast bottleneck, all links on shorter paths Pk> (k ' < k) must be un-congested 

and P t ’s last two links Lk o r  L'k+l m ust be congested. Thus, il;d(Pk,a,p,7n) is contributed 

by two events, {X fc =  1 U  X k+l = 1} and {f)i=i (-^i =  0»^.-+i =  0)}» which must occur 

a t  the  sam e time. But, the link-marking dependency reduces the probability contribution 

from { X k  =  1  U  X 'k + 1  =  1 }  while increasing th a t from {flf-Ti (X i =  0 ,X t'+1 =  0)}. Then 

for ot > 0 the  decaying rate of i>d(Pk, a , Pi m ) as & increases is slower than th a t for the 

case of a  =  0. Compared to the case of a  = 0, when k  is small (A: < 4), the decrease of 

probability contribution from {X k  =  1 U  * * + i =  1} due to a  > 0 cannot be compensated 

for by the  increase in that from =  °> =  °)}- So, i/;d(Pk,a,P ,m ) |tt>0 <

^d(Pki &i Pi m ) |a=o for small k (k < 4). When k is large (k  > 5), the gain in probability 

contribution from {Di^i =  =  0)} is larger than the drop in th a t from {Xfc =

1 U X k + 1  = 1} due to a  > 0. Thus ipd{Pk ,a ,p ,m )  |a>0 > ipd(P k ,0 ! ,p,m)  |a=0 for a large 

k (k > 5). W hen k becomes very large, both tpd(Pki a i Pim ) U>o and i>d(Pki <*i Pi m) |<*=o 

converges to zero. So, i>d(Pki <*, Pi m ) U>o= Tpd{Pki&i Pi m) |c*=o as k —too, which is confirmed 

by Figure 5.4(a).

B ut, no m atte r how ijjd(P k ,a ,p , 7 n) shifts as a  changes, the normalization condition 

given by Eq. (5.24) is always satisfied; this is verified by the fact th a t the area under each 

plot for any given a  always sums to  1 as shown in Figure 5.4(a).

F igure 5.4(b) shows that <*, p, m ) is inversely proportional to path length k, also

verifying the above observations. Figure 5.4(b) also shows th a t there exists a  unique max

imum i/jj(Pk,at,p*,m ) for any given k , verifying Claim 2 of Theorem 5.4.1. Figure 5.4(c) 

indicates th a t for any given a, the larger the path length Ar, the smaller Tpd(Pki &i Pi m)-
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(a) rp d (P k ,  cc,p , m )  vs. (a ,p )  (b) T S S p ( a , p , m ) ,  t h b h (<* ,P ,  m ) vs. m  (c) a s s p ( a , P ,  m ) ,  <Th b h { cl, p , m.) vs. m

Figure 5.5: Impact of dependency-degree factor a, link-marking probability p, and

multicast-tree height m  on bottleneck path probability a , p, m) and bottleneck RM-

cell RTT means and standard  deviations.

Figure 5.4(c) also indicates th a t  ipd(Pk, a, p, m) is not always a monotonic function of a, 

but there can be a unique maximum ip^(Pk, &*,P, m) as long as the given path length k  and 

p satisfy the conditions in Eq. (5.29). As k  gets larger, a * increases. These also validate 

Claim 3 of Theorem 5.4.1. Figure 5.5(a) shows a more complete dynamic-behavior picture 

of Tp4 (P k,a(,p ,m ) as a function of two independent variables (a ,p ). Figure 5.5(a) shows 

th a t ipd(Pk,a,p,Tn) always has the maximum along the p-axis direction as a  varies from 0 

to 1. In contrast, it>d(Pk> a , p, m )  can have the maximum along the a-axis direction only for 

a certain range of p values which satisfy the conditions given in Eq. (5.29) in Theorem 5.4.1 

for a given k.

5.6 .2  Delay S tatistics for H B H  and SSP Schem es under the D ependent  

M arkings

Figure 5.5(b) plots the means, ts sp (& ,P , m ) and th b h (& ,P , m ) calculated by Eqs. (5.33) 

and (5.34), respectively, against m  for different a ’s. We observe th a t th b h {& ,P , m ) is much 

larger, and increases much faster, than  T5 5 p (a ,p , m) as shown in Figure 5.5(b). Moreover, 

TrHBH(&,P,m)  is more sensitive to  a  than  T s s p ( a , P, m). Figure 5.5(b) also shows th a t, as 

compared to the HBH’s average RTT T n B H ( a ,P , m ), the SSP’s average RTT r s s p ( a ,P , m )
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Figure 5.6: Impact of dependency-degree factor a  and link-marking probability p on bot

tleneck path probability ipd(Pki at, p, m )  shift and bottleneck RM-cell RTT means.

is virtually independent of m  and a . Figure 5.5(b) also shows th a t for longer paths (m > 20), 

the larger a, the larger the means while for shorter paths (m  < 12), the larger a, the smaller 

the means. These verify th a t  the  bottleneck path probabilities shift from shorter to longer 

paths as a  increases, which is shown in Figure 5.6(a).

In Figure 5.5(c), the standard  deviations, crssp{&,p,™-) and 0 h b h (&i Pi Tn) given by 

Eqs. (5.35) and (5.36), respectively, are plotted against m  while varying a . As shown in 

Figure 5.5(c), (THBH(<XiPim ) is found to be much larger, and increase much faster, than 

o’ssp i& i Pi m) as m  increases. Again, c /fs /f(a :, p, m) is much more sensitive to a  than 

o'5 5 p(o:, p, m). Thus, the bottleneck RM-cell RTT for SSP scales much better than th a t 

for HBH with respect to the m ulticast-tree height and structure. Figure 5.5(c) also shows 

th a t SS P’s multicast RTT variation crssp(&i Pi th) is virtually independent of both m  and 

a, as compared to  HBH’s RTT variation o’h b h (.&i Pi T7i). Figure 5.5(c) also shows th a t for 

longer paths (m >  10), the larger a , the larger the variances while for shorter paths (m < 8 ), 

the larger a, the smaller the  variances, also verifying tha t the bottleneck probabilities shift 

from shorter to longer paths as a  increases, which is also shown in Figure 5.6(a).
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proxim ation error under independent m arkings assumption and bottleneck RM-cell RTT 

standard  deviations.

5 .6 .3  Im pact o f L ink-M arking D ep en d en cy  D egree ( a )  on M ulticast Sig

naling Delays

Figures 5.6(b) and (c) plot the means of multicast signaling delays THBH(&,P,m ) and 

t s sp ( &i P ,  tti), respectively, against the  network traffic load p, while varying the Markov- 

chain dependency-degree factor a. We have the following observations: (1) there is a 

unique maximum for each of t h b h (< * 1  P> m ) and tssp (& , P, tt i)  with respect to  p, which is 

consistent with the unique maximum of i/^d{Pk, p, m) in Claim 2 of Theorem 5.4.1; (2) the 

maximizers for t h b h ^ i P ,  m ) and T s s p ( a >P> m ) shift from a small to  large value of p as a  

increases; (3) also, as a  increases, THBH(a ,Pt m ) and Tssp(a,p ,  m)  become less sensitive to 

the  network traffic load p; (4) THBH(.<x,P, m ) is about two times larger than t s sp(&,  P, m) 

for all values of p calculated under our param eter settings.

To evaluate the approximation error of the multicast signaling delay analysis where the 

“independent marking” is assumed while the actual congestion markings are not indepen

dent, Figures 5.7(a) and (b) plot the approxim ation errors in term s of means between the 

multicast-signaling delay analyses under the dependent (a  >  0) and independent (a  =  0) 

m arkings. The approximation errors in term s of the means of m ulticast signaling delay are
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tleneck RM-cell RTT standard  deviations and the approximation error under independent 

markings assumption.

defined as follows:

= THBH ( a , p , r n )  \a=Q- T HBH(a,P,rn)  \a>0] (5-41)

£mSP(“ .P.TJi) =  TSs p ( a , P , m )  |Q=0 - t s s p (a , P, m)  |a>0 . (5-42)

We have the following observations: (1) the maxima of both £BBH(a, p, m ) and £%fp (a, p, m)  

are monotonically increasing functions of a , implying th a t the approximation error increases 

as the dependency degree increases; (2) both £BBH(a, p, m ) and £%fp (a, p, m ) are not mono

tonic functions of traffic load p , but change from a positive to a  negative value as p increases 

from 0 to 1, indicating th a t the  analysis under the independent assumption over-estimates 

the mean delay for small p, while under-estimating the mean delay for large p; (3) the 

approximation error for HBH is more than  two times higher than  th a t for SSP. In general, 

the above analyses show th a t the approximation error in term s of multicast signaling delay 

mean resulting from the independent assumption is not negligible, and thus justifies the 

necessity of a  Markov-chain-based marking-dependency analysis.

Similar observations on the im pact of dependent markings can be drawn for the multicast 

signaling delay variations as shown in Figures 5.7(c) and 5.8(a) (for delay variations) and 

Figures 5.8(b) and (c) (for the approximation error of delay variations defined by Eqs. (5.43)
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and (5.44)) under HBH and SSP, respectively. The approximation errors (see Figures 5.8(b) 

and (c)) in terms of the standard  deviations of multicast signaling delay are defined as 

follows:

£%BH{ a , p , m )  =  (t H B h {.ol, p , m )  1^=0 - ( T h b h (<x , P, m ) U>o; (5.43)

£dSP(a ,Pim ) =  <rssp{ci,p,Tn) |tt=0 -a s S P (<*,p , m )  |a>0 . (5.44)

5 .6 .4  Sim ulation R esu lts

To confirm and evaluate the accuracy of the proposed M arkov-chain and Markov-chain 

dependency-degree models, using the NetSim event-driven sim ulator [42] we also simulated 

a  network with concurrent multiple m ulticast/unicast VCs (V irtual Circuits) and multiple 

bottlenecks. Figures 5.9(a) and (b) plot the multicast signaling delay mean and standard 

deviation over the traffic load p, respectively, drawn from both simulations and analytical 

results. Figures 5.9(a) and (b) also show that the simulation results agree well with the 

analytical results (for the case of a  =  0.7 > 0) which use the  proposed Markov-chain 

and Markov-chain dependency degree models, thus verifying the accuracy of modeling and 

analytical results derived based on the Markov chain and M arkov-chain dependency degree 

models (in Section 5.2 through Section 5.4). In contrast, the simulation results disagree with 

the analytical results obtained under the independent-marking assum ption as indicated by 

the the large approximation error as shown in Figures 5.9(a) and (b). So, the simulation 

experim ents also quantitatively justify  the  necessity of the Markov-chain- and Mark-chain 

dependency-degree-models-based multicast-signaling delay analysis.

5 .7  C onclusion

In this chapter, we proposed the  dependent statistical modeling approaches to ana

lyze the performance of a class of m ulticast feedback-synchronization signaling algorithms. 

Specifically, we developed a Markov-chain model to  characterize the  m ulticast signaling de-
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Figure 5.9: Comparison of the sim ulated delay means and standard  deviations with the 

analytical results.

lay when the congestion markings of different links are dependent. Using this model, we 

derived a set of general expressions for calculating the probability distributions of individual 

paths in a multicast tree being the m ulticast-tree bottleneck. The derived Markov chain is 

shown to  be able to  reach an equilibrium, and its limiting s ta te  distributions converge to 

the marginal link-marking probabilities when the Markov chain is irreducible.

We also developed a M arkov-chain dependency-degree model to quantify and evaluate 

the dependency between different link congestion markings. Using the proposed Markov- 

chain dependency-degree model, we derived a set of equations to compute all one-step 

transition  probabilities as functions of the marginal link-marking probabilities and the 

M arkov-chain dependency-degree factors. The proposed Markov-chain and Markov-chain 

dependency-degree models are generic and thus can be used not only for signaling delay 

analysis, but for other Markov-chain-based analyses extracted from other applications as 

well.

Using these two models we derived the first and second mom ents of a  multicast-signaling 

delay for both HBH and SSP flow control signaling schemes, respectively, when link- 

markings are dependent. The obtained numerical evaluations also showed tha t the  de-
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pendency degree factor tends to  shift the bottleneck from a shorter path to a longer one, 

which is consistent with the definition of the positive link-marking dependency imposed 

by the nature of multicast flow control signaling. The analytical results have also been 

confirmed by the simulation experiments.
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C H A P T E R  6

O P T IM IZ A T IO N -B A S E D  M U L T IC A S T  FL O W  C O N T R O L  

U S IN G  V IR T U A L  M -A R Y  F E E D B A C K  

6.1 M otiva tion  and O verv iew  o f  th e  P rop osed  Schem e

6.1 .1  M otivation

M ulticast has a wide spectrum of applications, such as software distribution, multimedia 

conferencing, and distance learning/collaboration [46-55]. Like in unicast, flow control 

also plays a very im portant role in m ulticast service over the best-effort networks [56-68], 

such as the Internet. Most flow-control schemes are typically structured as a closed-loop 

feedback control system [69,70], where the traffic source adjusts its transmission rate or 

window size based upon the congestion feedback generated by the receivers and routers 

in the network. Congestion feedback can be in different forms, such as packet drops in 

TCP, ECN-bits in RED-gateways, D EC-bits in DECbit-Network, and ER-field or Cl-bit 

in ATM ABR. We categorize the feedback into two types: (1) binary feedback where the 

traffic source decides on every flow-control action using only a single bit feedback, like 

T C P ’s packet drops, and duplicate ACKs, R ED ’s ECN-bit, ABR’s C l-bit, etc., and (2) 

Af-ary feedback where each flow-control decision a t the source is derived from multiple- 

bit feedback, like ABR’s Explicit-Rate (ER) feedback in ATM networks. While binary 

feedback minimizes the flow-control signaling overhead, it has the drawback of low dynamic
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stability  and low bandwidth-utilization efficiency, because it only implements coarse-grained 

flow control. For instance, T C P  halves its (window) (sending rate) as long as it “sees” 

indication of packet-drop/loss, regardless w hether this congestion is caused by a short

term , less severe congestion, o r by a long-term severer congestion. In contrast, M -ary 

feedback can offer much higher flow-control performance because it applies fine-grained flow- 

control, accurately adapting the  source rate to  the  bandwidth available at the bottleneck. 

However, M -ary feedback-based flow control is more expensive in both router complexity 

and bandw idth consumption for flow-control signaling. This problem becomes even severer 

in case of multicast because m ulticast usually incurs much higher volume of flow-control 

feedback signaling traffic, particularly when the number of multicast-tree branches is large.

Moreover, multicast also introduces several o ther new challenges th a t were not encoun

tered in unicast. First, simultaneous congestion feedbacks from all receivers can cause 

feedback implosion [13] a t the source and branch routers, especially when the multicast 

tree is large. Hence, it is im portan t to  consolidate the congestion feedbacks a t each branch 

point, and only the consolidated result is sent upstream . Second, since feedbacks via differ

ent dow nstream  paths may arrive a t the branch point a t significantly different times, the 

feedback consolidation must be synchronized a t the branch point before sending the con

solidated result upstream to avoid the feedback noise problem [20]. Third, the flow-control 

scheme m ust be able to keep track  of the most-congested path which changes dynamically 

and d ictates the source rate to  ensure th a t every receiver receives the same d a ta . Finally, 

the  m ulticast feedback consolidation or fusion mechanism must be able to derive the con

gestion level of the most-congested path  such th a t the source can perform fine-grained flow 

control. This is crucial for m ulticast over a wide-area network with a large round-trip time 

(R TT), because either inaccurate or coarse-grain feedback information can significantly de

grade the stability and responsiveness of m ulticast flow control, bandwidth utilization, and 

the  overall flow-control performance.
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Figure 6.1: The architecture of the proposed scheme.

6 .1 .2  O verview  o f the P rop osed  Schem e

To solve the above-mentioned problems of multicast flow control, while retaining the 

benefits of both the binary and M -ary  feedback flow-control schemes w ithout their demer

its, we propose an optimization-based multicast flow-control scheme using virtual M -ary  

(VMARY) feedback th a t performs as well as an explicit M -ary feedback mechanism while 

only employing binary feedback. Figure 6.1 illustrates the proposed scheme which con

sists o f the four m ajor components: (1) dual optimization-based rate controller a t source,

(2) m ulticast-tree marking probability generator a t source, (3) feedback ECN-bit random 

m arker a t routers, and (4) feedback ECN-bit feedback sequence fusion rule a t branch routers. 

Each of these components is described below.
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6.1.2.1 Dual Optimization-Based Multicast R ate Controller

Conceptually, the flow-control problem can be formulated as a distributed optimization 

problem [71,72], as in the recent work for unicast [35,37,38,40,43,44] and for layered 

m ultirate  multicast [73,74]. The objective of the optimization-based flow control is to 

maximize the global utility in terms of bandwidth utilization subject to link-bandwidth 

constraints. The previous research on optimization-based flow control focused only on either 

unicast [35,37,38,40,43,44], or layered m ultirate m ulticast [73,74]. By contrast, we will 

focus on single-rate m ulticast flow control which is much simpler [75] and more cost-effective 

in implementation and resource management than  the layered multi-rate multicast flow 

control, because the la tte r requires multiple m ulticast groups to  implement a single multicast 

session, which is not resource-efficient for source, receivers, and routers [76]. Moreover, the 

single-rate multicast flow control meets the requirements of some im portant applications, 

such as reliable content distribution, and can scale well with the number of receivers in 

the m ulticast group [75,77]. As a result, the single-rate multicast flow control has received 

considerable attention [75,77].

As analyzed in Section 6.2, although the optimization-based multicast flow-control prob

lem is analytically tractab le, it requires direct coordination among all the source-rate 

controllers associated with multiple concurrent m ulticast sessions. This implies th a t the 

optimization-based m ulticast flow control is a coupled problem, making it practically un- 

solvable. Therefore, as was done in [71, 72], we apply the duality principle to decompose the 

m ulticast flow-control problem into a number of independent subproblems, which can then 

be solved independently and in parallel. However, the im portant extensions/differences 

distinguishing our approach from others’ are: (1) our approach deals with multicast flow 

control, instead of unicast flow control over a  single fixed path; (2) our dual optimization 

is based on single-rate m ulticast flow control; (3) our flow-control model performs the dual 

optim ization only over the multicast-tree’s most-congested paths, labeled with the thick 

arrowed lines in Figure 6.1, i.e., a subset of links dom inate the optimization decisions a t all
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m ulticast sources. We show th a t the dual optim ization problem defined over the multicast- 

tree’s most-congested paths have the sam e optim ization solution and objective-function 

value as those for the original optim ization problem defined on the entire multicast tree. 

This significantly reduces the com putational complexity in solving the m ulticast flow-control 

problem.

6.1.2.2 Derivation of VM ARY Feedback on the Most-Congested Path

The second component of our m ulticast flow-control scheme is how to  derive the band

width constraints along the most-congested path  in a multicast tree to make the  optimiza

tion decision a t the source. This requires information on the level of congestion of the 

m ulticast tree th a t needs to be derived from the consolidated feedback from the receivers 

and routers. We use a congestion detection and collection mechanism a t all m ulticast routers 

based on feedback ECN-bit random m arking. Especially, we develop a m ulticast-tree mark

ing probability generator E C N k (t))  a t each source as shown in Figure 6.1, to

calculate the path marking probability which is proportional to the sum of average queue 

lengths along the most-congested path in a  m ulticast tree. We call this feedback the virtual 

Af-ary (VMARY) feedback, as it only uses a sequence of N  consecutive feedback ran

dom m arks — binary ECN-bits — to ex trac t the fine-grained congestion-level information 

j f  Ylk=i E C N k (t) , which is usually coded and conveyed as an M -ary (log2 M - bit, M  > 2) 

packet to  represent the sum of average queue lengths along the most-congested path. Such 

M -ary feedback enables the fine-grained optim ization-based multicast flow control a t the 

source, but is expensive to implement. Using a history of ECN-bits to  derive a control 

decision is a  generalization of the 2-bit ECN sequence-based a-control [6] as well as the 

D EC -bit scheme [78], but our ECN is based on random (instead of determ inistic) marking. 

REM  (Random Early Marking) [35 ,37,38,40,43,44] applies a similar approach, but has 

been used only in unicast. The proposed m ulticast-tree marking probability generator is 

detailed in Section 6.3.1.
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6.1.2.3 VM ARY Feedback Signaling Protocol

M ulticast flow-control signaling coordinates the  optimization-decision makers at differ

ent sources of multiple concurrent multicast sessions and optimization-constraint detec

tors/collectors a t routers while performing the optim ization in a distributed manner. Mul

ticast flow-control signaling plays a crucial role in the distributed optimization flow control 

since it measures and conveys the congestion information from the location where the op

tim ization constraint occurs, to the location where the optimization constraint comes into 

play in making the optimization decision a t the source. To deal with the new signaling prob

lems imposed by multicast, we develop a m ulticast signaling feedback mechanism which is 

composed of the following two m ajor elements: (1) feedback ECN-bit random marker th a t 

measures the congestion level a t each link /router in the multicast tree, and (2) feedback 

ECN-bit sequence fusion rule which consolidates, synchronizes, and dynamically tracks the 

most-congested feedback ECN-bit flows from all downstream  paths a t each branch router.

F e e d b a c k  E C N -b it  R an d o m  M a rk e r  a t  E a c h  R o u te r :  This is necessary to implement 

the proposed VMARY feedback. Note th a t congestion-level measure at each link based on 

random ECN-bit marking transforms the queue-length (congestion-level) information (i.e., 

the marking probability) into a  sequence of coded ECN-bits, which is then transformed 

back to the queue-length (congestion-level) information, or the marking probability, from 

the feedback ECN-bit sequence received a t the source. The ECN-bit random marker works 

similarly to  R ED /R EM , where it marks the feedback ACK-packet with a probability pro

portional to  the average queue length a t th a t o u tp u t link. On the other hand, the proposed 

ECN-bit random marker differs from R ED /R EM  in th a t it only marks the ECN-bit in feed

back ACK-packets corresponding to every K  > l 1 forward data packets received by each 

receiver —  unlike RED /REM  which marks ECN -bit in each forward data  packet passed 

through each router. This is because the marked ECN-bit in a forward da ta  packet a t an

1K  is u sed  to  rep resen t the trad e o ff betw een  th e  congestion  level an d  signaling traffic volume.
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upstream  branch router may be redundantly duplicated multiple times as the d a ta  packet 

passes through downstream branch routers, even when the downstream branches/receivers 

are not congested a t all. Consequently, when all of these redundant ECN-bits are returned 

by all receivers, the resultant congestion signal will over-throttle the source rate unneces

sarily, a  phenomenon similar to the multiple-path problem [79]. In contrast, the ECN-bits 

carried by the feedback ACK-packet in the proposed signaling protocol can precisely inform 

the m ulticast source of the congestion level on each path in the multicast tree. Section 6.3.1 

details the  proposed feedback ECN-bit random marker.

F e e d b a c k  E C N -b it S eq u en ce  F usion  R u le  a t  R o u te rs :  This element needs to  per

form three main functions: (1) consolidate feedback ECN-bit sequences, (2) synchronize the 

feedback consolidation, and (3) identify the most-congested path /branch  in the multicast 

tree. We achieve these by developing a  Maximum-MArk-Select (MAMS) fusion rule which 

is implemented at each branch router as shown in Figure 6.1 (also in Figure 6.2 for more 

details). It generates one consolidated ECN-bit if and only if it receives a t least one feedback 

ECN -bit from each of connected downstream branches, such th a t the feedback consolidation 

is soft synchronized (similar to [6]) even when the feedbacks from different receivers arrive 

a t  the branch point a t significantly different times. The consolidated ECN-bit is selected 

from the path whose last N  consecutive feedback ECN-bits contain the maximum number 

of l ’s, ensuring the selection of ECN-bit sequence of the most congested path because the 

percentage of marks in the  last N  consecutive feedback ECN-bits reflects the average-queue 

length or congestion level on each path. Note th a t it is essential to dynamically identify the 

most-congested path /branch  at each router for implementation of the proposed single-rate 

optimization-based flow control a t the source since the single-rate reliable multicast flow 

control m ust guarantee the receiver on the most-congested path to receive the same data 

copy as all other receivers in the multicast tree. The proposed optimal feedback ECN-bit 

sequence fusion rule and the implementation issues are described in Section 6.3.1.
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6 .1 .3  C hapter O rganization

The rest of the chapter is organized as follows. Section 6.2 models m ulticast flow- 

control control scheme and justifies the  rational of the proposed control model. Section 6.3 

describes the implementation of the  proposed scheme and the optimal fusion rule a t  branch 

routers. Section 6.4 investigates the  effect of fusion register on the multicast flow-control 

performance. Section 6.5 presents the  numerical analysis of the proposed feedback fusion 

mechanism, while Section 6.6 conducts the simulation evaluation, confirming analytical 

results and observations. The chapter concludes with Section 6.7.

6 .2  T h e O p tim ization  M o d e l o f  M u lticast F low  C on tro l

6.2 .1  T he System  M odel

To formulate the multicast flow as an optimization control problem and justify the 

rational behind the proposed scheme, we establish the flow-control system model by first 

introducing the following definitions.

D efin itio n  6 .2 .1  A multicast network o f fin ite  bandwidth shared by multiple elastic (best- 

effort) traffic sources under the m ulticast flow  control, satisfies the following conditions.

C l .  All links o f the multicast network are unidirectional and indexed by a set o f C =  

{1, 2, - • • , L} with link £ ’s bandwidth capacity p t G (0, +oo), W G C;

C 2 . All elastic traffic sources are persistent (using as much bandwidth as available) and 

indexed by a set o f S  =  {1, 2, - • • , 5}  where the transmission rate o f source s is denoted

by r 3  e  I s = [ma, M a], 0 <  m s < M a < oo, and X = { /a | s G <S}, Vs G S ;

C3. A multicast-connection tree with source s at the root, denoted by M T ( s ) ,  is charac

terized by a 7-tuple (C(s), Ck(s),  Ck-(s),  C * , ms, M s,n)  where n  > 1 is the number 

of branches o f the multicast source s (n =  1 represents a unicast, a special case

o f multicast), and £ (s) C C. are links o f MT{s) ,  s  E S,  £*(s), k G {1, 2, - • • , n},
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is the link subset constituting the k-th  path from  s to its k-th  receiver such that 

C(s) = U f c e { i  ••• n} £k*(s) is the link subset constituting the m ost c o n g es te d

p a th  among the n  paths from  s to receivers, which is defined by Definition 6.2.3;

C 4 . For each link I  E C, define S{£) = {s  E S  | I  E £ (s)}  as the set o f sources that use 

link £, such that £ E C(s) i f  and only i f  s  E S(£).  ■

R e m a rk s  on  D e fin itio n  6 .2 .1 : Condition C l  specifies a  finite-bandwidth multicast net

work while C2 characterizes the traffic transported  through the multicast network. C3 

defines the descriptors and structu re  of a m ulticast-tree. C 4  describes the relations be

tween multicast source and the corresponding links in M T ( s ) .

Applying the nonlinear programming approaches [71,72,80,81] to  the multicast network 

model in Definition 6.2.1, we can form ulate the m ulticast flow control as an optimization 

problem as follows.

D e fin itio n  6 .2 .2  The p r im a l  o p t im iz a t io n  problem, denoted by P , of multicast flow  

control fo r  source s E S  over the multicast network defined by Definition 6.2.1 is to choose 

source rate r 3, Vs E S , such that

P : max Us(r3) (6.1)
56*5

subject to y  ] r 3  < p i, W E C, = {1, 2, • • • , L}  (6-2)
*es( t)

where Ua{rs) : 3fJ+  i— y 3? is a utility function  fo r  source s; source s is said to attain a 

utility U3 (r3) when it transm its at rate r 3  E I3; and U3 (rs) is chosen to be increasing  and 

s tr ic t ly  concave in its argument in  the feasible solution set. ■

R e m a rk s  o n  D e fin itio n  6 .2 .2 : The constraint given by Eq. (6.2) says that the to tal 

source ra te  a t any link £ is less than its capacity p i. A unique maximizer, called the primal
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optimal solution, exists since the objective function is chosen to  be strictly concave and 

hence is continuous, and the feasible solution set is compact.

6.2 .2  M ulticast-T ree B ottlen eck  P ath

In unicast flow control, the source rate is regulated by the feedback from the most 

congested link/router which has the  minimum available bandwidth along the path from 

source to  destination. A natural extension of this strategy to m ulticast flow control is to 

adjust the source rate to the minimum available bandwidth share of the m ulticast-tree’s 

most congested path th a t the traffic source has sensed from the feedback. This is the key 

feature for d a ta  applications th a t require lossless transmission. To explicitly model these 

features for the multicast flow control, we introduce the following definition.

D e fin itio n  6 .2 .3  The m u ltic a s t- tree  b o ttlen eck  path (also simply called m u ltica s t-tree  

b o ttlen eck ) is the m o s t c o n g es te d  p a th  whose congestion feedback at the source dictates 

(or dominates) the source rate-control decisions. I f  letting Ck-(s) be the subset o f links 

which constitutes the m o st co n g es te d  p a th  among the n  paths from  source s to receivers 

fo r  any given M T ( s ) ,  Vs £ S,  then the m ost congested path’s index determined by

k* =  arg min < pi — r 3 > . (6-3)
j

Thus, C* = Uae.s (s ) =  {1 , 2 , - - - ,  L*} represents the subset o f links each o f which is part 

o f at least one o f the most congested path in S  multicast trees, where L* = ||£*|| is the the 

cardinality o f C*.

R e m a rk s  o n  D efin itio n  6.2.3: The most-congested-path-dominant multicast flow-control 

policy is widely used in the single-rate d a ta  multicast flow control [75-77,82], such as 

representative acker in pgmcc [77] and current limiting receiver (CLR) in [75]. Making 

use of this feature, we can simplify the d a ta  multicast flow control by adapting the source 

ra te  only to the most congested path  in a multicast tree, which is formally justified by the 

following theorem.
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Theorem 6.2.1 I f  the multicast flow  control fo r  source s  G S  over the multicast network 

defined by Definition 6.2.1 is formulated as the primal-optimization problem P  specified by 

Definition 6.2.2, then P ’s primal-optimization solution and optimal objective-function value 

are the same, respectively, as those o f another primal-optimization problem, P*, which is 

defined as follows.

The multicast flow control fo r  source s G S  over the multicast network defined by Defi

nition  6.2.1 is to choose source rate rs, Vs G S , such that

P* : max V  U3 {ra) (6.4)r.eh .ses

subject to r a <  yn V£ G £* =  (J  Ck- (s) =  {1, 2, • • • , L*}, (6.5)
ses(t) *es

P ro o f . The proof is given in Appendix X. ■

R e m a rk s  on  T h e o re m  6 .2 .1 : This theorem enables us to solve the m ulticast flow-control 

problem by solving P*, instead of P , where P  is much more com putationally complex and 

more difficult to implement, than  P*. We will henceforth only focus on solving P*.

6 .2 .3  A Separable O ptim ization  Structure for M ulticast Flow Control

As shown in Theorem 6.2.1, if constraints ^2aes ( l)r* < A*/) Vf G £» =  =

{1,2, ••• , L*} given by Eq. (6.5) were not present, it would be possible to decompose P* 

into S  independent subproblems as follows:

=  m a?U ,(ra). (6.6)
r’eI" 3€S^  7 t s r’€1'

However, solving P* subject to the  constraint Eq. (6.5) requires direct coordination between 

multiple source-rate controllers, which makes P* a coupled optimization problem. As a 

result, directly solving P* is not practical, and hence, we propose the optimal multicast

ra te  control by applying the D uality Theory [80,81], which solves P * ’s dual-optimization 

problem D* th a t can decouple the rate-control coordination among m ulticast traffic sources.
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The theorem given below proves the  feasibility o f separating the multicast flow control into 

S  independent subproblems, and derives a distributed optimization algorithm which can 

implement the multicast dual-optimization ra te  control in a parallel manner.

T h e o re m  6.2 .2  I f  the multicast flow  control fo r  source s  £ S  over the multicast network 

defined by Definition 6.2.1 is achieved by the prim al optimization model specified by Defini

tion 6 .2 .2 , then the following claims hold.

C la im  1. P* ’s dual optim ization problem is determined by

D*: min D*( A.) (6.7)

where the objective function  Z?*(A,) is defined by a Lagrangian function L { r , \ f )  

w T  \ ^    X \ *D ' ( A.) ^  max L (r,A .) £  E  (6’8)

where

B ' A K - )  =  max {C/.(r,)-r,A£.}, Vs £ «S = {1, 2, - • • , S} (6.9)r,€ij,5€o

K -  =  Y  >~l =  t max {AJ} = max A,. (6.10)

Claim 2 . The optimal solution to D* exists, is unique, and equals the optimal solution to

P*;

Claim 3. The dual-optimization solution to D* fo r  multicast flow control can be solved by a

distributed gradient projection algorithm, which yields the following iterative equation 

where fo r  each multicast source s £ S , the Lagrange multiplier A/ at time (t + 1) fo r  

each link I  £ Ck- (s) is determined by

i  +
A * ( t + 1 )  = MO+7 ( 51 r» (**(0)-/** ]

\5€«S(Z),Ze£fc.(») /  _
, W €  £*•(*),  vs  e  «s (6.11)

where 7  > 0 is the step size o f the distributed gradient projection algorithm, and 

[Z]+ — max{Z, 0} is a projection function.
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C la im  4 . D* decomposes P* into S  independent subproblems in term s o f the aggregate 

utility and the aggregate constraints.

P ro o f . The proof is given in Appendix Y. ■

R e m a rk s  o n  T h e o re m  6 .2 .2 : Claim 1 formulates the multicast flow-control problem 

under the general Lagrange Dual Theory, and gives a concrete and workable analytical 

model to  achieve the optimal m ulticast flow control. The first term of the dual objective 

function D{p)  is decomposed into S  separable subproblems Eqs. (6.9) and (6.10). Claim 2 

is the  direct application of Duality Theorem: (1) if the primal-optimization problem P* has 

an optim al solution, the dual-optim ization problem D* also has an optimal solution and the 

two optim al values are same; (2) the m ulticast rate  vector f 0  £ T  are the primal-optimal 

solutions for P* and Lagrange multiplier vector A° are the dual-optimal solution for D* if 

and only if

max L (r, \%) =  L (rot X°) =  min L (rot A.). (6.12)
A / > 0 ,  £ «

The existence and uniqueness of the dual-optim al solution is guaranteed by the fact tha t 

the objective function of P* is strictly  concave. Claim 3 derives an iterative algorithm 

which can be implemented in a  distributed fashion to calculate the congestion-level (the 

bandw idth-constraint information) a t all routers in the multicast network. This algorithm 

gives a  standard  solution for the non-constrained optimization problem transformed from a 

nonlinear-constrained optimization problem by Lagrange-Multiplier and Lagrange-Duality 

theorem s. It shows tha t the dual-optim ization problem also decomposes the multicast 

optim ization flow-control problem in term s of constraints because each link’s Lagrange 

m ultiplier is iteratively calculated based upon the  previous value of this link’s Lagrange 

multiplier, and is also independent of all o ther links’ Lagrange multipliers. Claim 4 is 

crucially im portan t because it decomposes the coupled optimal optimization problem into 

separate  subproblems, making it possible to  implement D* by a distributed algorithm in
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parallel. In particular, given the minimizer vector of Lagrange multiplier \ °  (obtained by 

solving Eq. (6.7)), each individual m ulticast traffic source can solve Eq. (6.9) for optimal 

multicast flow-control rates ra independently or separately without the need to coordinate 

with other sources. The correlation among the multiple multicast flow-controllers, due to 

sharing of the same multicast network, is captured by the Lagrange multiplier vector A,, 

which serves as a  coordination signal to  align individual optimalities defined by Eq. (6.9) 

with the global optimality described by Eq. (6.4).

6 .3  V irtu a l i\/-ary  F eedback  Signaling and M u ltica st Flow  

C on tro l

Theorem 6.2.2 transforms the m ulticast flow control over the m ulticast network defined 

by Definition 6.2.1 into a distributed com puting system. It treats the m ulticast source s £ S  

and all links £ £ Ck- (s) on its most congested path as multiple processors connected by the 

most congested path to solve the dual-optim ization problem D*. In each iteration, each 

m ulticast source s £ S  individually solves Eq. (6.9) and communicates the thus-obtained 

result r s(A*) to links £ £ Ck-(s)  on the most congested path in M T ( s ) .  Links £ £ £fc*(s) 

then update their Lagrange multipliers A/, V£ £ £fc-(s), using Eq. (6.11), and communicate 

the  new Ai back to the source s, and the procedure repeats. The rate-control algorithms 

specified by Eqs. (6.9), (6.10), and (6.11) only provide the first component of a multicast 

flow-control scheme (the second com ponent is the flow-control signaling). We now describe 

how the m ulticast source s and network links £ £ Ck-(s)  on the most congested path of 

M T ( s ) communicate through the m ulticast flow-control signaling protocol th a t we propose 

below.

6 .3 .1  T h e V irtual A/-ary Feedback M ulticast Signaling P rotoco l

The multicast flow control formalized by Eq. (6.7) is an M - ary feed back-based multi

cast flow control, and thus requires an M -ary feedback signaling protocol where both the
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multicast source ra te  r a(A,) and Lagrange multipliers Ai, V£ £ £fc-(s), must be expressed 

and transm itted as multiple-bit signaling messages between the multicast source s and all 

links £ £ (s) on the most congested path of M T (s). A straightforward solution to m ulti

cast signaling is to  periodically use the control packets to  explicitly exchange the multicast 

rate r 4(A.) and Lagrange multipliers A*, VI £ £*• (s) between the multicast source s and 

the links in the m ost congested path . This approach is conceptually simple, but complex 

and expensive in im plem entation for the following reasons. F irst, it is very tim e-/space- 

consuming for each router to  com pute the aggregate arrival rates a t each output link, which 

are required to  com pute A*(£ -j- 1) as specified by Eq. (6.11). Second, it is also very time- 

/space-consuming for each router to identify the most congested branch a t its input port, 

which is specified by Eq. (6.3) to  determine the most congested path from the multicast 

source s, among all output-links from the branch. Third, the computations of Lagrange 

multiplier A*, V£ £ £&- (s) a t the input ports of branch routers on the most congested path  

is also complicated and expensive in time and space. Finally, explicitly sending r a(A«) and 

feeding back At, V£ £ Ck-(s)  will create a large volume of multicast signaling traffic, in

curring significant bandw idth overhead. Thus, this solution is impractical to  use for the  

multicast flow control formulated as the dual-optimization problem D*.

To overcome this difficulty, we propose a virtual M- ary  feedback signaling protocol, which 

only uses binary feedback, but can implement the M -ary  feedback-based multicast flow 

control of D* defined by Eq. (6.7). The proposed virtual A /-ary feedback multicast signaling 

protocol consists of three components: (1) feedback ECN -bit link ACK-random-marker a t  

each multicast-branch ou tpu t link, (2) optimal ECN-bit-sequence fusion a t each multicast- 

branch input link port, and (3) m ulticast-tree marking probability generator at the multicast 

source.
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A M ulticast B ranch  in a  Branching R outer
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Figure 6.2: The MAx-Mark-Select (MAMS) fusion rule for consolidating feedback ECN 

sequence {F7,(fc)}’s.

6.3.1.1 ECN-Bit ACK-Random-M arkerat Each M ulticast-Branch Output Port

This works in a way similar to  REM  or RED-based flow control in term s of com putation 

of marking probabilities. Each o u tp u t port sets its marking probability — exponentially 

as in REM or linearly as in RED — proportional to the average queue length at th a t 

o u tp u t link. Using the average queue length, instead of the instantaneous queue length, 

preserves the advantage of allowing transien t bursts in the router. However, there is a  big 

difference th a t distinguishes the v irtual Af-ary feedback multicast signaling protocol from 

REM  and RED: it doesn’t mark forward d a ta  packets as in REM or RED, but each router 

in the multicast tree randomly m arks only the  feedback ACK-packet as it passes through 

the branch output port toward the receiver th a t  generated this ACK-packet. Each receiver 

in the m ulticast tree, MT (s ) ,  acknowledges receipt of each forward d a ta  packet by creating
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and sending toward the source s  an ACK-packet which contains an ECN-bit. The reason of 

marking each feedback ACK-packet, instead of a  forward da ta  packet, is because if ECN-bit 

of a  d a ta  packet is marked by an upstream  branch router, this ECN-bit will be redundantly 

replicated multiple times as this d a ta  packet traverses downstream branch-routers, even 

when some downstream branches are not congested a t all. As a result, when all these 

redundant ECN-bits are returned by all receivers, the resultant congestion signal will over- 

th ro ttle  the source rate unnecessarily. In contrast, ECN-bits generated and carried by the 

feedback ACK-packet in the proposed multicast signaling protocol can accurately signal the 

multicast source s the level of congestion along each path in M T( s ) .

6 .3 .1 .2  O p tim a l E C N -B it-S e q u e n c e  F usion  a t  E ach  M u ltic a s t-B ra n c h  In p u t  

P o r t

We design an optimal ECN-bit-sequence fusion mechanism at each multicast-branch 

input-link port, which is connected to  multiple branch output link ports, as shown in Fig

ure 6.2. The three main purposes of ECN-bit-sequence fusion are to:

(1) consolidate feedback ECN-bits to  avoid the feedback implosion and hence scale well

with multicast-tree size;

(2) perform the synchronization of feedback ACKs from all branch-paths to avoid feedback

noise;

(3) identify the most congested path in the multicast tree to implement the dual-optimization

multicast flow control as specified by Theorem 6.2.2.

The ECN-bit-sequence fusion mechanism a t each branch input port is composed of n  ECN- 

bit-sequence fusion shift registers of length N  bits each, corresponding to  the n  branches of 

this input port. The ECN-bit-sequence fusion shift registers in Figure 6.2 can be easily im

plemented in either software or hardware since it only needs simple operations. Each fusion 

shift register contains/m aintains and shifts, from-right-to-left, N  ECN-bits consecutively
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received from the feedback ACK-packets of th a t branch. W hen a feedback ACK-packet 

arrives a t the output port Ot , i =  1, • - - , n from the i-the downstream branch and if it is 

not marked (i.e., no congestion indication), then it is marked randomly with the marking 

probability proportional to  the average queue length in tha t ou tpu t port; an already-marked 

ECN-bit is kept unchanged. The “processed” ECN-bit is then put into the rightmost bit 

of the i-th register after left-shifting the entire register by one bit. To identify the most 

congested path in a  given m ulticast tree MT’(s), we design a MAximum Mark Selected 

(MAMS) fusion rule to consolidate the feedback ECN-bit sequence, as shown in Figure 6.2. 

After each shift-register receives a t least one feedback ACK-packet from all connected down

stream  branches where the soft-synchronization [2] is achieved, the leftmost bit of the shift 

register which has the maximum number of l ’s among all shift registers in this input port is 

selected and put into the consolidated feedback ACK-packet generated by this input port. 

Then, this newly-generated consolidated feedback ACK-packet is forwarded to its upstream 

router. Consequently, the proposed ECN-bit-sequence fusion mechanism generates a con

solidated ACK-packet i f  and only i f  all of its downstream branches receive at least one 

feedback ACK-packet, and the ou tpu t feedback ECN-bit sequence { E f ( k ) }  at the input 

port I  will follow the pa ttern  of {.£?,(&)} at the output port O, which contains the maxi

mum number of l ’s in the last N  consecutive feedback ACK-packets, which corresponds to 

the most congested branch path  from this branch point.

6.3.1.3 Multicast-Tree Marking Probability Generator at the Multicast Source

It has been shown in [71,72] th a t the Lagrange multipliers A*, i t  6 Ck-(s) can be used 

as a link congestion level indicator, which is proportional to the ou tpu t link’s average queue 

length qt (t):

MO = 7<fc(0 (6-13)

This is also verified by Theorem 6.2.2, where if the aggregate arrival rates, or equivalently the 

rate-m ism atch between the aggregate arrival rates and the bottleneck bandwidth, are too
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00. O n receip t each feedback A C K -packet:

01. ca lcu la te  th e  new m u ltica s t-tree  m ark in g  p ro b ab ility ;

02. i f  (le f t jm o s tJ b it  =  1) a n d  (A C K J E C N  =  0);

03. m c a s tJ r e e .m a r k .p r o b  :=  m c a s t .tr e e jm a r k .p r o b  —

04. e l s e i f  (l e f t jm o s t J n t  =  0) a n d  ( A C K  J S C N  =  1);

05. m c a s tJ .re e .m a rk .p ro b  :=  m c a s tJ r e e jm a r k .p r o b  +

06. e n d i f ;

Figure 6.3: Pseudocode for the m ulticast marking probability calculation algorithm.

large, then the Lagrange multipliers A*(£ +  1), W G £fc*(s) derived from Eq. (6.11) increase. 

Then, the increased Lagrange multipliers A (̂£ +  1), W G Ck-(s)  will require reduction of 

the  optim al multicast-source rates r 3 1  Vs G S ,  as shown in Eq. (6.9). On the other hand, if 

the  sending rates are over-reduced, then Eq. (6.11) generates smaller Lagrange multipliers; > 

A^(£+ 1), W G Ck- (s), which then lead to larger optim al sending rates r3, Vs G S  determined 

by Eq. (6.9). Based on this observation, we can use the average queue length qi{t) a t link 

£, W  G Ck' ( s )  to derive Ai, W G Ck-(s)  for all links on the most congested path  in M T ( s ) ,  

s  G S.

According to the REM-based ECN-bit-link ACK-random-marker described in Section 6.3.1, 

the  ECN-bit marking probability a t tim e t a t link £, denoted by pi(t),  is exponentially to 

the  average queue length ?/(£);

pi{t) =  1 -  W  G £ * .( s )  (6.14)

where 4> is a  constant. When feedback ACK-packets of multicast source s G 5  pass through 

the  ou tpu t link £, W G Ck-(s),  they are independently marked with the probability p/(£) 

defined in Eq. (6.14). Thus, when a feedback ACK-packet arrives a t the multicast source 

s  a t tim e £, the probability p%{t) th a t its ECN -bit is marked is exponential to  the sum  of 

average queue-lengths of all ou tpu t links £, W G £ j f ( s ) ,  along the most congested path of
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M T (s) which is given by:

p: co = i -  n  ( i -p«(0)  = i - ^ " E£e£‘*(,,nr54(t)- (6-i5)
£€£*•(*)

We define p*(£) as the multicast-tree marking probability for M T ( s ) since it measures the 

sum of average queue-lengths a t all links along the most congested path from source s, and 

thus dom inates the congestion control decision a t s  6 S.

Plugging Eq. (6.13) into Eq. (6.15), we obtain

Afc-(0 =  M t ) =  ~ l° g  ( i - P K 4) ) -  (6 -16)
(a)

Eq. (6.16) gives a useful formula to derive the sum of Lagrange multipliers specified by 

Eq. (6.10), which is required to solve for the optim al multicast rate r 4 specified by Eq. (6.9), 

from the m ulticast-tree marking probability p»(£). Since pl(t )  is the marking probability for 

the feedback ACK-packet returning via the most congested path, it can be estimated from a 

sequence of N  consecutive ECN-bits, {.£*(£)} a t time t (note th a t here the symbols used to 

represent feedback ECN-bit sequence for {£*(£)} are different from those used in Figure 6.2 

where k is the time index and i  is the branch index while here k is the time or number index 

of the fc-th ECN-bit of interest within an IV-bit long “multicast-tree marking probability 

calculation window”2 a t the multicast source and t  is the time when the multicast-tree 

marking probability p%(t) is calculated), generated by the optimal ECN-bit-sequence fusion 

mechanism described in Section 6.3.1 as follows:

1 N
p :M  =  j y I > * ( 0 -  (6.17)

k= 1

The pseudo-code for implementing the m ulticast-tree marking probability generator speci

fied by Eq. (6.17) a t the multicast source is given in Figure 6.3. Letting ps,{t) = pl(t)  and 

plugging Eq. (6.17) into Eq (6.16) yield the final formula to compute the Lagrange multi

pliers specified by Eq. (6.10) to solve for the optim al m ulticast rate r , specified by Eq. (6.9)

2 T h e  m u ltic a s t- tre e  m ark ing  p robab ility  g en e ra to r c a n  also b e  im p lem en ted  by using an  E C N -bit sequence
sh ift reg is te r.
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00. On r e c e ip t  e a c h  fe e d b a c k  A C K -p a ck et:

01. ca lcu la te  th e  new  o p tim al rate ;

02. i f  Tnca.stJ.reejmaTk-.prob  =  0;

03. r ,  :=  m a x jr a te ;

04. e l s i f  m c a s tJ re e jm a rk -p r o b  =  1;

05. r , :=  m in jr a te ;

06. e ls e  m c a s tJ r e e jm a r k -p r o b  :=  1;

r \ r y  \  _  lo g  (1 — m c t t J t J r e e j n a r f c . p r o f c )u'- — ioff̂  ;
08. r s :=  m ax{m in{ti;J/A /, m a x j-a te } , m in jr a te } ;

09. e n d if  m c a s tJ re e jm a rk -p r o b  :=  0;

Figure 6.4: Pseudocode for the optimal multicast rate control algorithm.

from the A -bit long ECN-bit sequence sent back via feedback ACK-packets as follows:

v ,  log 0  -  F  £ 2 = ,  E *(f))
Ai.(t)= E  M 0 = ------~----- j - ^ ------------------------------------ (6.18)

t € C k . ( 3)

The pseudo-code for the multicast source rate-control algorithm based on Eq (6.18) is 

summarized in Figure 6.4.

6 .4  L en gth  o f  th e  O ptim al Feedback Fusion R egister

For the proposed multicast feedback fusion, the length N  of ECN-bit shift-register is a 

critical design param eter. This design problem is also associated with, but has not yet been 

addressed in, the unicast optimization-based flow control [35,37,38,40,43,44]. However, 

this problem gets much more complicated for m ulticast feedback fusion. Clearly, neither 

too large nor too small a value of N  is desired. Too small an N  can lower bandwidth- 

utilization efficiency because the multiple m ulticast ECN-bit sequences stored in too short 

an ECN-bit register can generate an excessive num ber of l ’s in the aggregated/consolidated 

ECN-bit sequence a t the ou tpu t end (left-most b it of the shift-register) which will eventually 

over-reduce the sending rate, lowering bandwidth utilization. On the other hand, a too
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large an N  can filter out the rapid, short-term  variation of traffic congestion, thus lowering 

the  responsiveness/adaptiveness of the feedback fusion mechanism to  the change of traffic 

p a tte rn , which can either lower network utilization, or make networks over-congested due 

to  lack of responsiveness to  the increased congestion condition.

The above observations indicates the existence of an optimal ECN-bit shift register 

size, denoted by N *, which makes an optim al tradeoff of the above two opposing effects. 

However, the design of optimal N * tu rns out to  be a  non-trivial problem, because it is 

involved not only with the  feedback fusion rule and multicast-tree topology/size, but also 

with the network traffic dynamics and congestion Ievels/burstiness, which are typically 

random  and not predictable a priori. To quantitatively and accurately capture these trade

offs in selecting optimal buffer length N*, we introduce the following definition.

D e fin itio n  6 .4 .1  Under the proposed multicast feedback fusion rule, the achieved multicast 

bandwidth efficiency, denoted by a random variable F^, is characterized by

F , ±  1 —1  max (6.19)
~  ~ ' t = l

and the achieved adaptiveness o f the proposed multicast feedback fusion, denoted by a random 

variable Fa , is characterized by

Fa =  Xfj} , (6.20)

and the achieved multicast fusion utility function, denoted by a random variable F^, is

characterized by

F„ = Fv + Fa -  1 =  ^1 -  i  max ̂  X iJ^j (6.21)

where X u  6 {0, 1} is the i-th  E C N  bit in the j - th  branch filter o f the feedback EC N  filter

array. ■

R e m a rk s  o n  D efin ition  6 .4 .1 : The above definition defines the metrics by which one 

can measure and derive the  optim al ECN-bit shift-register length N * .
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Based on Definition 6.4.1, the following theorem derives a  formula to calculate the s ta 

tistical metrics in deriving N * for any multicast-tree topology and link-marking probability.

T h e o re m  6 .4 .1  Consider an ECN-filter array with buffer size equal to N  and the branching 

fan-out factor equal to n . I f  random markings at different branches are independent, then 

the means and variances o f Fv, Fa, and are determined by the following expressions, 

respectively:

{ ( y i  ,V 2 , - , y n )  I m a x i < . ,< , i { y j } = t }  i - 1  '

(6 .22 )

V o.t [F„} =  E | { l  -  -ffe 'J K  ■'}

{ ( y i ,I /2, ~  .yn ) |m a x 1< i < n {yi } = t }  J - 1 3 3

and

■E[^] =  E 1{ { e" i I " " i |}
1=0 I

E  n ( " > f  a -«>"-* ■
{ ( y i  .y 2 ,— ,y n )  I m a x ^ j ^ l y , - } ^ }  J - l  >

(6.23)

Var[Fa} =
i=o I

{ ( y i  ,V 2 .— .y ti)  | m a x j < j < n {yy } = *)' 3  ^ 3
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and

N - l

* K J  =  E

e  n © ^ ( 1 - w ){(yi ,y2 .— ,yn) I max1<J<„{yJ }=t} i - 1
(6.24)

N - l

{ (y i .V 2 .— .y»i) |m a x 1< j < „ { y J } = i }  J - 1 3 >

where p j = P r {Xi j  =  1} and yj £ {0,1, 2, • • • , N }  fo r  j  =  1, 2, • • • , n, and Xi j  £ {0, 1} is 

the i-th  E C N  bit in the j- th  feedback ECN-bit register.

P ro o f . See Appendix Z. ■

R e m a rk s  o n  T h e o re m  6 .4 .1 : This theorem  provides a set of closed-form expressions 

for the first and second moments of bandwidth efficiency and adaptiveness of the proposed 

feedback fusion rule. These equations are useful because they can help network designers 

com pute the optimal ECN buffer length N * for different link marking probabilities and 

m ulticast-tree topologies. The assumption th a t random markings at different branches are 

independent is reasonable, because the ECN -bit is only randomly marked in feedback ACK 

packets, which traverse different branch paths from different multicast receivers, and arrive 

a t the m ulticast source independently. N  equals the marking-probability computation win

dow size. The marking probability pj differs for different multicast branches, but we assume 

th a t pij =  p j along each multicast branch is constant within the probability com putation 

window N  because the ECN-bit sequence in the window N  is used to com pute/estim ate 

the single marking probability p for th a t window.
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Figure 6.5: Mean utility function •E’[F#X] vs. ECN buffer size N  with different fan-out factors

71.

6 .5  N u m erica l E va lu a tion  for th e F eedback  Fusion R u le

Figure 6.5 plots the mean utility function E[F^\ against the ECN shift-register length N  

for different multicast fan-out factors n. We observe th a t E[F^\ is not a  monotonic function 

of N ,  but there exists a  unique maximum for E[F^\ given any fan-out factor n. This was 

expected because either too large or too small a value of N  can lower the bandwidth- 

utilization efficiency. Figure 6.5 also indicates tha t the optim al ECN shift-register size N *’s 

for fan-out factor n =  4 , 5 , 6  are 5 ,6,7,  respectively, showing th a t the larger the fan-out 

factor, the larger N*. This is reasonable because a large number of branches will need a 

longer ECN shift-register length to achieve higher bandwidth-utilization efficiency.

Figure 6.6 plots the mean of utility function E[Ffj\ against ECN-bit shift-register length 

N  for different link m arking probabilities p. We also observe th a t is not a monotonic

function of N ,  and there exists a  unique maximum for E[Ffi\ given any fan-out factor n. 

Figure 6.6 also indicates th a t the optim al ECN shift-register length N * for link marking 

probabilities p =  0.4, 0.5, 0.6 are 4, 5, 7, respectively, showing th a t the larger the link marking 

probability p, the larger N*. This is reasonable because a large link marking probability
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Figure 6.6: Mean of utility function vs. ECN buffer size N  with different marking

probabilities p.

will also need a  longer ECN -bit shift-register length to  achieve higher bandwidth-utilization 

efficiency.

6.6  S im ulation  o f  th e  P ro p o sed  S ch em e

To validate the analytic results and observations, we have also conducted extensive 

simulations. Specifically, using NetSim [31], we sim ulated the  network performance un

der the proposed optimization-based multicast rate  control and optimal fusion mechanism 

for multiple concurrent multicast connections with multiple bottlenecks. By removing the 

assum ptions (such as the independence between different link markings) made for the mod

eling analysis, the simulation accurately captures the dynamics of real networks, such as the 

noise effect due to the randomness of network environments, and processing and queueing 

delays, instantaneous variations of bottleneck bandwidths, which are very difficult to  handle 

analytically.

The simulated network is shown in Figure 6.7, and consists of 3 multicast connections
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S i : Persistent multicast source 
S i : On-off multicast source 
S i : On-off multicast source

Figure 6.7: Simulation model for multiple multicast connections under the virtual M -ary 

feedback optimization flow control using random binary feedback.

running through 4 routers Router-1, Router-2, Router-3, Router-4, connected by 3 links 

L \ ,  Z-2 , L 3 . S{ is the source of the i-th  multicast connection, i  =  1, 2, 3, and R ij is r , ’s y-th 

receiver. So, connections 2 and 3 share L \  and L 3 , respectively, with connection 1. r i  

is a persistent multicast source which generates the main d a ta  traffic flow, r-i and r 3  are 

two periodic on-off multicast sources with on-period =  360 ms and off-period =  1011 ms, 

respectively, which mimic cross-traffic noises, causing the bandwidth to vary dynamically 

a t the bottlenecks. We set Li s bandwidth capacity fi^ as (1) fj .i =  fj . 3  =  370 packets/ms;

(2) H2  =  740 packets/m s, forcing the potential bottlenecks L \  and L 3  to emerge. Letting 

all links’ delays be 1 ms, r i ’s RTTs via Ri6, R 17, -Ris equal 4 ms which is 2 times of r i ’s 

RTTs via i2u , R 1 2 , R 1 3 . We let r j  s tart at t =  0, r 2 at t = 140 ms, and r 3 a t t = 440 ms 

such th a t r 2  and generate the cross-traffic noises against the main data  traffic flow at 

the potential bottlenecks L \  and L 3  with the respective on-periods th a t occur alternately 

w ithout any overlap in time.

We implemented the simulation model by using the NetSim event-driven simulator [31]. 

The flow-control parameters used in the simulation remain the same as those used in the 

simulation solutions shown in [2] for comparison between binary and M-a.ry feedback based 

m ulticast flow control. There are several types of utility functions [71,72], but the utility 

function used in this paper is given by

Us (r4) =  wa log r 3  (6.25)
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Figure 6 .8 : Simulated m ulticast source rates Ri(t ) ,  / ^ ( t ) , and Rs(t)  with same weights to  

receive same bandwidth share: w\ = w2  = W3 .

which leads to the  maximizer of Eq. (6.9) determined by

XUarg max {U3 (ra) -  r sA£.} =  - j - ,  Vs G S (6.26)

where w 3  is the weight, determining the bandwidth share th a t source s £ S  will receive a t 

the bottleneck. We simulated the following two cases:

C a se  1 . Setting wi = w 2  = W3 , Figure 6 . 8  plots the rate evolution functions, Ri( t ) ,  R 2 {t), 

and R(t)  for all m ulticast sources. During time [0, 140ms], Ri( t )  converges to the 

target bandwidth, /1 2  = 370 packets/ms at the bottleneck link Li ,  which is the optimal 

rate the bottleneck bandwidth can support. At time t =  140 ms, the source s 2  enters 

on-state and s ta rts  d a ta  transmission, which shares the same bottleneck link L 1 with 

source si- In Figure 6 . 8  Ri(t )  and Rz{t) very quickly converge to an equal share 

of bottle bandw idth. A t time t = 300 ms, s 2  enters off-state and stops sending any 

d ata . Then, Si takes over all available bandwidth a t link L\  again. However, a t 

time t  =  440 ms, S3  s ta rts  competing for bandwidth w ith Sj a t link L 3 , i.e., the new
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bottleneck occurs a t link L 3  which is different from the first bottleneck a t link L x. 

Again, Figure 6 . 8  shows th a t R \{ t) and Rz{t)  quickly converge to  the equal-share of 

the bandwidth of link L2.

Figure 6.9 plots the simulated link m arking probability pi(£) a t the bottleneck link L\.  

It shows th a t the bottle-link m arking probability varies with bottleneck congestion 

level because during [140,300ms], the  link marking probability is higher than the 

other periods. Figure 6.10 plots the m ulticast-tree marking probability function p * 1 (t) 

source s 1 . Comparing Figure 6.10 w ith Figure 6.9, we observe th a t during [0,450ms], 

p*l (£) basically follows the pattern  of Pi(£). This is expected because during this 

period, L\  is the only bottleneck, and thus path from si to  R u ,  R 1 2 , etc., is the 

most congested path. However, after t=  300ms, p* 1 (t) does not follow the pattern  of 

Pi(£) any more because the path going through Li  is not the most congested path of 

M T ( s  1 ) any more. Thus, we can m ake the following observations:

1. The proposed virtual M -ary feedback conveys the congestion degree information

by only using binary feedback.

2 . The optimal feedback fusion mechanism can identify the most congested path in

any given multicast tree.

3. The proposed scheme can guarantee fairness among competing multicast connec

tions.

C a se  2. For this case, we set wi  =  2w2 and only use two multicast connections MT{s{)  

and M T ( s2) in the simulated network in Figure 6.7. The bottleneck is now located 

a t link L\  because s 3  does not transm it d a ta . The simulated source rate evolution 

functions for both si and S2  are plotted in Figure 6.11, from which we obverse:

1 . The bottleneck bandwidth is still fully-used, verifying th a t the proposed flow con

trol can realize best-effort service for elastic multicast traffic sources.
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Figure 6.9: Simulated multicast link L i marking probability with: u/i =  tu2 =  w3.

2 . Sources sj and s2 do not share the bottleneck bandwidth evenly, bu t Si receives 

about 2 times as much bandwidth as s2 because wi — 2u/2. In fact, we can 

arbitrarily control the bandwidth share of all multicast connections, with the 

same bottleneck link by properly selecting the weight factors w3, Vs £ <5. This 

means th a t our proposed scheme can also provide differential services to  different 

multicast traffic connections.

6 .7  C on clu sion

In this chapter, we proposed and analyzed an optimization-based multicast flow con

trol w ith virtual M -ary feedback for wide-area high-speed networks. Taking advantage 

of a  history of binary feedback congestion information, the proposed scheme realized the 

explicit rate control for multicast d a ta  transmissions only by using binary random mark

ing/congestion feedback. The proposed scheme consists of two fundamental parts: (1) the 

random-marking-based rate controller a t the m ulticast source and (2) feedback fusion rules
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Figure 6.10: The most congested path  marking probability for M T (s i) with wi = w-i =  wz-

a t all m ulticast routers. We used the  non-linear dynamic programming to implement the 

multicast ra te  control algorithm and designed an optimal feedback fusion mechanism for 

consolidating the feedback signals a t branch points. We developed the metrics and eval

uation criteria for the design of optim al feedback ECN register size. We evaluated the 

proposed rate-control scheme and feedback fusion rule using both analysis and simulations.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



450
e  400
"c/5
ffl 350

&  300

£  250 
(0

^  200

Multicast source Ri (t) 
Multicast source R2(t)

a

1  150  
CO
to 1°0
CO
=  50
=3
^  n

5e+062e+06 3e+060 1e+06 4e+06
Time (ms), weight parameters: w-, = 2w2, bandwidth: p. =  370 packet/ms
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C H A P T E R  7

C O N C L U S IO N  A N D  F U T U R E  W O R K

We recapitulate the contributions of this dissertation, and discuss possible extensions 

and future directions.

7.1 R esearch  C on trib u tion s

In this dissertation we developed flow-control protocols and modeling techniques to 

solve the new problems associated with multicast rate  control and feedback signaling. In 

particular, the main contributions in this dissertation are summarized as follows.

•  In C hapter 2, we designed a  flow-control scheme for multicast ATM ABR services. The

key of the proposed scheme is the optim al second-order ra te  control algorithm, called 

the a-control, developed to  deal with the RTT variation resulting from dynamic 

“drift” of the bottleneck in a  m ulticast tree. Using the fluid analysis, we model the 

proposed scheme and analyze the system dynamics for m ulticast ABR traffic. The 

analytical results and sim ulations show th a t the scheme is stable and efficient in the 

sense th a t both the source rate  and bottleneck queue length rapidly converge to  a 

small neighborhood of the designated operating point.

•  To solve the feedback implosion and feedback synchronization problems imposed by mul

ticast, in Chapter 3 we developed the Soft Synchronization Protocol (SSP) which
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consolidates the feedback RM cells a t each branch th a t are not necessarily responses 

to  the same forward RM cell. To evaluate the delay performance of multicast signal

ing protocols, we develop a  balanced and unbalanced binary-tree model, by which we 

analyzed the feedback-delay scalability of SSP and HBH schemes.

•  To evaluate the dynamic delay performance of multicast signaling protocols for the mul

ticast flow control schemes built based on REM or RED flow control scheme, in 

C hapter 4 we develop a statistical binary-tree model to  study the delay performance 

of a  class of feedback-synchronization signaling algorithms. Applying the proposed 

statistical model, we derive the probability distributions for the signaling delay across 

the entire multicast tree and their first and second moments.

•  In C hapter 5, we generalized the multicast signaling delay analysis to the cases where

the congestion markings a t different links are dependent. Specifically, we developed 

a Markov-chain model over link-marking states on each path in a multicast tree. 

We also develop a Markov-chain dependency-degree model to quantify/evaluate all 

possible Markov-chain dependency degrees w ithout knowing the actual dependency 

degree a priori. Using the two models, we derived the probability distributions for the 

m ulticast bottleneck and the first and second moments of multicast signaling delay. 

The modeling accuracy and analytical findings have been confirmed by simulations.

•  In C hapter 6, we develop a virtual M-ary-feedback based optimization multicast flow-

control scheme, which can achieve a fine-grained ra te  control while keeping the feed

back signaling traffic as low as the binary feedback. Using the duality theory, we first 

model the multicast rate control as a distributed optim ization problem which decom

poses the primal optim ization in both aggregate utilities and constraints. We then 

implement the optimization by developing a distributed gradient projection algorithm 

and an optimal feedback ECN-bit sequence fusion mechanism.
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7 .2  F uture R esearch  D ire c tio n s

The work performed in this dissertation has revealed several promising research issues

th a t are worth further investigation:

I n te g r a te d  E r r o r  C o n tro l w ith  M u lt ic a s t  F low  C o n tro l. As in unicast, error con

trol is also im portant for reliable multicast da ta  transmissions over lossy networks. 

While error control in principle can be treated separately from flow control [8], they 

are closely related to each o ther and often blended together in implementations, such 

as in T C P  [1]. There are two m ajor new challenges associated with multicast error 

control. The first problem is th a t  packet retransmissions from the  sender are delivered 

to  the entire multicast group, not only to receivers which did not receive the pack

ets. This causes unwanted packet processing at receivers which have already received 

the packets, and wastes network bandwidth on the links on paths to these receivers. 

Secondly, when the number o f receivers is large and the lossy probability is high, the 

probability of at least one receiver losing the packet is very high. This means that 

almost every packet is likely to  be retransm itted, perhaps several times. Subsequently, 

the m ulticast sender may have to  conduct a large number of retransm issions to ensure 

reliable delivery to potentially thousands of receivers. Thus, the  sender and the links 

in its proximity are likely to  become bottlenecks, resulting in a  significant degradation 

of the overall throughput.

The first problem can be overcome by the retransmission scoping [83] technique which 

retransm its the packets only to  the sub-multicast tree th a t did not see the packet, 

while the second problem can be solved by the distributed loss recovery [82,84,85] 

which allows efficient loss recovery from the point of loss using a  nearby repair agent 

(a designated server a t router or receiver) for local multicast of retransmissions. The 

m ulticast flow control scheme proposed in Chapter 2, together with the SSP devel

oped in Chapter 3, can be enhanced for error control by including the retransmission
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scoping capability to implement the scalable reliable multicast flow control. This 

is because the proposed flow-control framework and the SSP make it very easy to  

implement the selective m ulticast of retransmissions for lost packets. On the other 

hand, the multicast flow-control scheme developed in Chapter 6 can be extended to  

implement the distributed loss recovery mechanism since the optimal feedback fusion 

mechanism installed a t each m ulticast router can easily determine the most congested 

sub-m ulticast tree and thus cache packets in advance to subcast (multicast on the 

subtree below the router connected to the repair server) the retransmissions for lost 

packets if needed.

M u lt ip le -R a te  M u ltic a s t F low  C o n tro l .  In this dissertation, we have mainly focused 

on the single rate m ulticast flow control, where all receivers in the multicast tree re

ceive d a ta  or information a t a single identical rate. The single-rate based scheme is 

cost-effective in implementations and resource management, and suitable for sender- 

oriented multicast flow control. There is another category of multicast flow control 

where different receivers within a  m ulticast session can receive the da ta  packet a t dif

ferent rates [73,74,86-89]. This can be accomplished by layering da ta  among several 

m ulticast groups and allowing each receiver to independently determine the subset of 

layers (i.e., multicast groups) it joins or a  single d a ta  layering with router-filtering with 

different branching rates a t m ulticast routers. Protocols that use a layered approach 

to support multicast applications range from live multimedia stream s to reliable d a ta  

transfer. The common property of these protocols is th a t the transmission rate  to 

each receiver is constrained only by the bandwidth availability on the receiver’s own 

data-path  from the d a ta  source, and is not limited by other receivers’ rate lim itations 

in the same multicast session. This ensures the intra-session fairness such th a t each 

receiver can receive service at a  ra te  com m ensurate with its capacity and the capac

ity of the path  leading to it from the source, independently of the capacities of the 

o ther receivers of the same m ulticast session. The virtual M -ary feedback optimiza-
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tion multicast flow-control scheme proposed in C hapter 6 provides the basic facilities 

and mechanisms to support multiple-rate multicast flow control through either data  

layering or router filtering techniques. However, how to  implement the multiple-rate 

multicast flow control by extending the proposed scheme to  support both live multime

dia stream s and reliable d a ta  transfer remains an interesting and challenging research 

topic.

M u ltic a s t F low  C o n tro l  o v e r  W ire le ss  N e tw o rk s . The anticipated multicast stream 

ing and da ta  applications in mobile computing environments impose the stergent 

requirement on reliability and traffic management strategies [90-104]. Error and con

gestion control for continuous media [105] (e.g., audio and video) multicast over wire

less networks remains a  challenging problemciteTowsley:85. Most conventional error- 

control techniques based on ARQ (Automatic Repeat reQuest) are not applicable 

for multicast over the wireless/mobile environment because: (1) retransmission-based 

ARQ does not scale well to multicast group with a large number of receivers; (2) 

communication over wireless links is highly asymmetric and receivers can move fre

quently; (3) the processing capacities and loss rates are highly heterogeneous among 

the multicast receivers over the different wireless links; (4) in wireless networks, uplink 

communication is very expensive due to power consumption/limitation, and thus is 

often constrained.

A different approach often used to  improve reliability is FEC (Forward Error Correc

tion) which adds the controlled redundancy to the d a ta  stream such th a t a receiver 

to recover from packet losses w ithout asking the source for retransmissions. FEC is 

not only attractive for error control in multicast over wireless networks since it does 

not impose the above-mentioned problems, but also provides an efficient congestion- 

control approach for m ulticast as recently proposed in [76]. The implementation of 

the FEC-based m ulticast flow control needs a  router-assisted flow-control scheme, 

which can be well supported by the virtual M -ary feedback optimization multicast
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flow framework proposed in C hapter 6. Thus, how to properly integrate the flow con

trol with error control in a unified FEC-based framework setup using the proposed 

virtual M -ary feedback optimization m ulticast flow control over wireless networks is 

an another interesting research direction to  take.
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A P P E N D I C E S
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A P P E N D I X  A

P R O O F  O F T H E O R E M  2.4.1

P r o o f .  Using the fluid-modeling results on the multicast-tree bottleneck described in 

Section 2.5, for (a, r )  £ Q we have (see the derivations of Eqs. (2.15) and (2.17))

f ’ Tm a .x  .  /  t \
Qmax(a,T) =  J  a t  dt +  J  ^R jnaxe^1' 0^  -  fMj dt (A .l)

= 2:T™x + (a Tmax + * log l i t z )  (A 2)

where /z is the multicast-tree bottleneck target bandwidth, and

Tmax = T + J  , (-A-.3)V o:

Rtnai  =  [L + a ^ T  + ^J~̂ \ > (A‘4)

‘° E
1 +  -  ( T + (A.5)

(J. \  V a

On the o ther hand, Qmai is also equal to the area between R(t) and // over the tim e interval 

° f  Tmax +  Td, and is upper-bounded by the area of its circumscribed triangle A  A B C  as 

shown in Figure A.I. Thus, we have
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m a x

R(t)

max
0

Figure A .l: Q  -  (shaded area) is upper-bounded by the area of A A B C .

Qmaxi&i T )

< 2 ( a 'I 'm a x ) (T Tna3: +  T d )

1
2

1
2

< 1  
~ 2

a . I t  +

a  r  +

2 Q k

a

2  Q h

a

+ t  +

+  r +

a  I r  + \/  +

2 Q h
a

2 Q h

a

2 Q h

a

a A  

fi log

l o g

at /
1 H [ r

V \

I  -
2 Q h

a

2 Q h

a

= ( tv /q  +  v/2O h f

(A.6)

(A.7)

(A.8)

Since a  > 0 due to (a, r )  £ fi, in Eq. (A.6) we can apply the given condition equality 

(constraint) of a  =  f1  which is set to balance the increasing and decreasing speeds

of R (t)  (for the details, please see [28]). Eq. (A.7) is due to  the fact tha t logx < x — 1 

(Note: logx ss x — 1 for x close to  1. So, the derived upper bound becomes tighter if

1  +  % ( T  +  \ / ^ F )  =  k Rt"OX i s  c l o S e  t o  1 > L e -> A* < R ™ax = H + a  ( t +  <  2(*>

or equivalently 1 < i Rmax 2, which is the typical operating regime for the  proposed 

a-control based flow control scheme since a  is small under the cc-control for the given
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finite buffer capacity Cmox). Equation (A.8) yields the upper bound derived by Eq. (2.4), 

completing the proof. |
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A P P E N D I X  B

P R O O F  O F T H E O R E M  2.4 .2

P ro o f . C la im  1: Let K  =  T y / a  which is a positive real number for (a , r )  £ fi. Define a 

real-valued function C(-^0 =  C(r \A*) =  (K  +  V ^Q h ) 2 1 which is the upper-bound function of 

Qmax{ot, r )  obtained from Eq. (A.8). Thus, by Theorem  2.4.1 we have C,{K) >  Qmax(&,i~) 

for (a , r )  £ Q and further

Qmax(a,r) < C(K)  =  [ K 2 +  2 y / 2 Q ^ K +  (2Qh - C max)] + Cmax. (B .l)

Since Cma3: > 2Qh and C(-^0 is a continuous and monotonically-increasing function of K,  

3 K  > 0 such th a t

K 2 + 2y / 2Q^K < ( C max- 2 Q h), i.e., [ K 2 + 2 y /W h K  +  (2Qh -  Cmax)] < 0.

(B-2)

and { (a , r )  | Ty/a  < K , (a , r )  £ fi} /  0. Thus, V (a , r )  £ { (a , r )  | Ty/a < K,  ( a , r )  £ fi} 

where K  is specified by Eq. (B.2), by Eqs. (B .l) and (B.2), we get

Qmax ( a , r )  <  [ K 2 +  2y/2Q~hK +  (2 Qh -  C m ax)] “T C m a x  ^  C m axi (B.3)

which implies (a , t )  g ^  thus F  /  0.

C la im  2: To obtain a tight lower bound for £ , we set QmaxCc*, "O’s upper-bound function 

C(K)  equal to  C m ax, i.e.,

Qmax (a ,r )  <  C(A-) =  K 2 +  l y / W h K  +  2Qh — Cmax i (B.4)
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which reduces to a quadratic equation: K 2 + 2 y / 2 Q h K  +  (2Qh. — Cmax) =  0. Solving this for 

K  and taking the positive root, K t = — \ / 2 Q h  > 0 since Cmax > 2Qh- By Eq. (B.4),

( a , r )  G F , V ( a , r )  G { ( a , r )  | Ty/a  < K i, (a , r )  G £2}, implying th a t all points located 

below or on the curve of function K t  =  Ty/a  ^  C. Thus, C is lower bounded by the function 

of G ( K )  =  Cmax or K t  -- T y/a  =  y/Cmax ~ V ^ Q h ,  completing the proof. ■
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A P P E N D I X  C

P R O O F  O F T H E O R E M  2 .4 .3

P ro o f . C la im  1: We prove this claim by considering the following two cases depending 

upon the range of the initial value of rate-gain param eter ao-

C ase  1. ao & g o a l' Q m a x ( a ) is a monotonically-increasing function of a, ao < agoai => 

Q m a x  — Qmax(^o) ^  Q g o a i  — Q m a x i .& g o a l ')  • Applying the QJ-COntrol law, Q m a x  monotonically 

increases from Q m a x  tow ards Q g o a i  with an increase-step size p. W hen Q m a x  the first time 

becomes larger than Q goa i  a t n  = n* , i.e., q 0 +  n *P =  anm >  & g o a i,  the source detects 

B C I(n *  — l,n * ) =  (0 ,1), and then reduces a n exponentially by setting a n* + 1 =  qan- 

(0 < q < 1). We want to prove the following fact:

Q mai(®n'+l) =  ^ Q g o a i (C.l)

Since ( r ^ / a goa l  -f- \ / 2 Q h ) 2 > Q m a x ( < * g o a l ) =  Q g o a i  by Theorem 2.4.1, we have

(  y j Q g o a i  ~  y / ^ - Q h  \

{  T  J

2

< Otgoal- (C-2)

But, since

p  <  ^ , (C .3)

we obtain

P  <  a 9oal (C-4)
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which reduces to

q(.Qgoal ~F P) 5: Qgoai-

On the other hand, due to a n' - i  < Qgoai, we have q(an*-i +  p) < q(agoai +  p). Because 

Qn' = Qn' - i  +  p, q{an - - 1 +  p) < q(Qgoal +  p), and q(agoal + p) < a goai, we get

a „ - + 1 =  qan - = q(an- - i  + p) < q(agoai -f p) < agoai (C.6)

Thus, Q m o i ( ® n ‘  +  l) =  Q m a i ( 9 ® n ’ )  ^  Q  m a x  {Q goa i) 11 Q g o a i ,  which IS  Eq. (C .l) . Due to

Eq. (C .l) , B C I ( n * , t l *  -f 1) =  (1 ,0). Applying the a-control law, we get a n-+ 2 =  a n~+i/q. 

But q „ .+1 -- qan.,  giving a „ .+2 =  qan' / q  = an- > a goar, thus, BCI(n*  +  l,n *  +  2) =  

B C I { 0, 1). Applying the a-control law again, a „ .+3 =  qa n - + 2 =  qan• =  a:n-+1. But by 

Eq. (C.6), a n. +3 =  qan• < a go*i, and thus BCI(n*  +  2,ra* +  3) =  (1,0). Repeating the

above procedure, we get V k  G {0, 1, 2, - - • , }

0 = n * + (2 A :+ l)  =  “ n ’ + l  =  ? a n *  <  Q g o a l  ^

Qn' +2k — Qn’ Qgoai i

implying th a t

B C I { 0,1, 2 ,3 ,- - -  ,n* -  l,n * ,n *  +  l,n *  +  2,n* +  3 ,-- -)

=  (0 ,0 ,0 ,0 ,- - -  ,0 ,1 ,0 ,1 ,0 ,• • • )•  (C.8)

By Definition 2.4.3, Q m l x  monotonically converges to  Qgoai s neighborhood {Q lgoal, Qgoai}- 

In addition, in the  equilibrium state,

Qmax{qa n’) =  Qmax{q{n *P "b a o )) =  m a*xn e{0 ,l,2 ,—} { Qmax | Qmax <  Q g o a i } ]

In )  (n )  ^ )
Q m a x ( Q n ' )  — Q m a x  (  71 P  "F ® o )  — Tnin^g^gti t2l. . .}  { Q m a x  I Q m a x  ^  Q g o a i } -

Thus, by Definition 2.4.2, Q lgo a l  = Q m a x ( q ( n * p  +  Q!0 ) )  and Q goal  =  Q m a x { n * p  + a 0)-

C a se  2. Ocq >  Qgoai • Since Qmax =  Qraoi(®o) Qgoai “  Qmax{Qgoal) , applying the Q!- 

control law, Qmlx monotonically decreases from Qmax towards Qgoai with a  factor q (0 <
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q < 1). When Qmlx < Qgoal for the first time at n = n*, i.e., qn"ot0  =  a n- < agoai, 

the source detects B C I(n * — l,n * )  =  (1 ,0). Applying the a-control law, we get =

a n -/q  = a n*-i > ocgoa[, and thus B C I(n * , n* + 1) =  (0,1). By a-control, a n. +2 =  qan-+1 =  

q(an-/q )  =  a n. < agoai, and thus B C I{n *  +  1, n* +  2) =  (1,0). Applying the a-control law 

again, we get a n. +3 =  a n. +2/g  =  ttn’+i > <*goal, and thus B C I(n*  -J- 2 ,7i* -h 3) =  (0,1). 

Repeat the above deducing procedure, we have V k g {0, 1, 2, - - • , }

»n-+(2Hl) =  Qn'+1 = <*n'/q> <*goal 

+2 k — — &goali
(C-10)

implying that

B C I ( 0, 1, 2, 3, • - • , n* -  1, n*, n* +  1, n* +  2, n* +  3, • • •)

=  (1 ,1 ,1 ,1 , - - - ,1 ,0 ,1 ,0 ,1 , •••)• (C .ll)

Therefore, by Definition 2.4.3, Q m ii monotonically converges to Qgoais  neighborhood 

iQ g o a l’ Qgoal}- addition, in the equilibrium state,

Q m a x ( & n ' )  =  Q m a x ( Q O q ) — m 3JC n g ^ o i l t2 ,.--} { Q m a x  | Q m a x  ^  Q g o a l } )
^L/.l 2 )

Qmax(a:n- /q ) =  Qmax{.q{-n'~ 1)&o) =  minne{0>1,2i...} {<?&L I Qmlx > Qgoal}-

Thus, by Definition 2.4.2, Qlgoal =  Qmax(qn'a 0) and =  Qmax(?(n’_1)tto).

C la im  2: Since 0 < q < 1 and p  <  ^ y/Qg°ai _—v/2t?±. ̂  ) by Claim 1 of Theo

rem 2.4.3, Qmlx is guaranteed to  converge to Qgoai's neighborhood in the equilibrium state. 

Define maximum-queue-length upper-bound error function for (a , r )  £ !F by

7(a, r) = C(ry/a) -  <?max(a, r) =  (r y /a  + y / 2 Q h )2 -  Q ma x ( a ,  r), (a, r) g T  (C.13)

which is a non-negative real-valued function since Qmax( a , t )  < C,{ryfa). According to 

Lemma D.1.1 given in Appendix D, which is also verified in Figure 2.4, and because a goal >
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agoai, we have 7 (a£oa/>r ) ~  7 (Qgoal,r) > 0 , which leads to:

Qgoal Qgoal

< Qgoal Qgoal 

— Qgoal Qgoal "h

+ 7(o£oaZ. T) ~  liagoal, r )

( T \ / a goal 4" y/^QhJ Qgoal ( r y /agoal +  y/^Qh) Qgoal

=  T 2 ( a j ^ /  -  Q g o a l)  +  T y / 8 Q ^  (  y j a ^  -  y / ^ i )

^  T  ^  ~  Q g o a l Q g o a l  ̂  “I- \ /& Q h .  ^  \  j  ~  Q g o a l Q g o a l  ̂

=  T  Q goal ^  ~  1 ̂  ~~b \ / 8 Q g o a lQ h  ^  y / q  1 ̂

(C.14)

(C.15)

where Eq. (C.14) is due to  the inequality agoa[ < - agoai th a t resulted from the a-control 

law. This proves Eq. (2.10). Likewise, because a g0a i >  Q lg o a i > which results in 7 ( a goa i , r )  — 

'y(a goal>T) — 0 due to Lemma D .1 . 1  given in Appendix D ensuring 7  (a , r )  to be a  mono

tonically increasing function of a , we obtain

Q goal Q goal

— Qgoal ~ Qgoal "Y(.Qgoal, T) ~~ lf(Qgoali T)

=  Qgoal ~ Qgoal d" s/Ogoai +  \/^Q h) Qgoal

=  T 2 (^Olgoal -  Q g o a l)  +  T  ( y / a goal  -  \ J  Q goai )

^  T  ( Ctgoa.1 Q Q g o a l)  "f" \ J & Q h  ( y / ^ g o a l  y / Q l g o a l )

( T \ f a goal +  V^Qh) Qgoal

— 1" Q goal ( 1  9 )  4" 1~ y f& Q g o a lQ h .  ( 1  y /* l)

(C.16)

(C.17)

where Eq. (C.16) is due to  the fact th a t oclgoal > qagoai resulting from the a-control law. 

This proves Eq. (2.11). Adding both sides of Eq. (C.15) and those of Eq. (C.17), Eq. (2.12) 

follows, which completes the proof. ■
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A P P E N D I X  D  

P R O O F  O F L E M M A  D .1 .1

D . l  M axim um  Q u eu e-L en gth  U p p er-B ou n d  Error F u n ction  

M on oton ic ity  L em m a

L e m m a  D . 1 . 1  The maximum-queue-length upper-bound, error function  7 (0 , r )  =  ( ( r ^ /a )  — 

Q ™„-(a ,  r )  =  ( r , / a + y / 2 Q h ) 2—QTnax{a,T) defined inE q. (C.13), is a s tr ic tly  m o n o to n ic -  

in c re a s in g  function with respect to a,  Vcn >  0 and  (a , r)  6 T . ■

D .2  P r o o f o f  th e  M axim u m  Q u eu e-L en gth  U p p er-B ou n d  E r

ror F unction  M o n o to n ic ity  L em m a (L em m a D .1 .1 )

P r o o f .  Since 7 (0 , r )  is defined only for (a,  r )  6 T , we only need to  consider (a , r )  € T  C 

w here 7 (0 , r )  is continuous and  differentiable, and  thus we can ta k e  a  partial derivative over 

7 (0:, r )  w ith  respect to  a  as follows:

# 7 (a , r )  _  r ) _  &Q
d a  d a  d a
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w here

dC (a,r)
d a

  2 . / 2Qa.
-  -  + ’ - 1 .  Q (D .2)

s c ™“ (“'T)- = r 2W ^ - V ^ - ' 7 % “- | + £ log 1 + ^ T + V ^

( ’/*2 h -  +  \ / &
(D.3)

/za +  a 2 +  / I F )

Note th a t again, we use fact th a t  fi =  in derivations of 3<̂ m̂ a'Tl in Eq. (D.3). Thus,

we obtain

d a = TT +  T 2a
i I Qh —2- i
+ /i\/-?rQ: 2 —o losa '

a  /
1 +  -  r

A* V a

v 2  h - + \ / s

/za +  a 2 +  / ^ F )

Using Eq. (D.4), we define a  new real-valued function <p(a, r )  as follows: 

-2N d~f(a, t  )

'0(a'T) = (? )
1 f  raN\ . T Q h i  _j_ 1 Q hCt i (

=  2 ( t J  + ? V ^ , + ^ V  —  -  lo g (
/z +  r a  +  y J 2 Q h .a

(a  r  +

A* +  a (r +  /^ F )

Taking partial derivative with respect to a  on both sides of Eq. (D.5), we obtain

d<p(a,T)
&a  {fi +  y /2 Q ha  +  r a ) 4 

2 t 2

4rQ h
“ + “ 2 | -  +fJ-

/ 2 r 3 , 5r2Qh
V ^

3 r 3 [ Q ^  , 3 rQ
+  £>= | — V 2 Q ^ + —  yj —  +  7 V + 2?V , T

<3*

S (  2 t  
+  02

T h a t is, Eq. (D.6) proves:

5y>(a, r)  
d a

2  fJL

> 0 Va >  0, (a , t )  G F ,

>  0 ,

(D.4)

(D.5)

(D.6)

(D.7)
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implying th a t <p(a, r )  is a strictly monotonic-increasing function with respect to a , Va > 0 

and (at, r ) € !F. On the other hand, note

<p(a i T) U=o= 0- (D-8)

Combining Eq. (D.7) and Eq. (D.8), it follows th a t <p(a,r) > 0, Va > 0 and ( a , t )  £ T ,

and th a t is for Va > 0 and (a , r )  6 F , we have

Reducing Eq. (D.9), we obtain

> 0 ,  Va >  0 and (a, r )  e  JF, (D.10)
OCX

which completes the proof of Lemma D.1.1. ■
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A P P E N D I X  E

P R O O F  O F  T H E O R E M  2.5.1

P ro o f .  We also need to prove this theorem  by considering the following two cases, which 

correspond to the first and second pa rts  of Eq. (2.23), respectively

C a s e  1. a 0  > a goal: Let otlgoal correspond to  the new Qlgoal =  Qmax{oLlgoal). From Eq. (2.8), 

we have ctlgoal = qn'ao, which reduces to

n  =
log=f£»

°̂ goal
log l —

lQg ^^  a goal _ log * g o a l

l°g £ log q
(E .l)

where

log j*g_
V*goal log

l°g £1 >
agoal

l°g a
(E.2)

is due to  ocgoai > q 'mI. But since qagoai < oclgoal, th a t is

log OQ

g o a l

log \

lQg ^
a g a a l  . .  -I

lo g |
(E.3)

we obtain

log
f  a °  <  n *  =
log?

log QQ

g o a l

l°g£
< 1 +

log * g o a l
ocq

log?
72 = log [ ° ^ -  ) /log ? (E.4)

since 72* m ust be an integer. By Definition 2.4.3, N  =  72* — 1 for a  > a goai. Thus we have

N  =  72* -  1 = log
f  & g o a l \  

\  “ 0  /
/log? (E.5)
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C a se  2. Q0 < a goal: Let correspond to  the new =  Qmax(<*goal)- From Eq. (2.9),

we have = n*p +  ao, which reduces to

n m : ~  a ° > a 9°«l ~  a °_ (E.6)
P P

. y j j  1 0  U L IC  >,u u s o a l  ^  C h

-  ° g° ° r a° < 1. we get

where the inequality in Eq. (E.6) is due to  a goai < Since a goal -  a goai < p, i.e.,
i
P

s.h
- 90al ~ Qo < n*  = Qgoaf - <  1 +  ° 9 ^ 1 a ° = >  \ ( a £ Z - a o ) / p ] ,  (E.7)

p p p

since n* must be an integer. By Definition 2.4.3, N  =  n* for a  < a ^ i -  Thus, we get

N  =  ra* =  [ (5 ^ f / -  a 0)/p ] - (E.8)

Since a ^ i  corresponds to Q goal = Q m a x (a ^ i) ,  we can solve Eq. (A.2) for by

letting Qmax = Qgoal and a. =  Pi which leads to Eq. (2.24). When Qgoai is small,

i.e., a ^ i  is small, the lower-bound function Tyfa — sJCmax — y/2Qh. given in Theorem 2.4.2 

is tight, we can use

<3mox(a,t) % (Ty/a + \/2 Q h)2 (E.9)

to estim ate Qmax as discussed in (2) (about Claim 2) of R e m a rk s  o n  T h e o re m  2.4 .2 .  

Substituting a, r ,  and Q — - (a , r )  by a ^ i ,  r ,  and Qgoai in Eq. (E.9), respectively, yields 

Eq. (2.25). Hence, the proof follows. ■
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A P P E N D I X  F

P R O O F  O F T H E O R E M  2.5.2

P ro o f . For the convenience of presentation, we first prove the Claim 2. and then we give 

the proof of the Claim 1.

Claim 2: Since Q goal { o t , r )  is defined only for rate-gain parameter a  > 0, from Eq. (2.17) 

we can take the right-hand limit by letting a  approach 0 from the right-hand side of a  = 0 

as follows:

hm Q go<ii(oc, r )  =  lim j  — -  ( r max +  £  log )  j  +  lim { - T ^ ax} . (F .l)

Plugging Eq. (2.14) into the second term  of Eq (F .l)  leads to

2  '

lim |  ^ T ^ ax j  =  lim < ^  r  +  \ / —^  a to 12 maxJ a;o 12 V a =  Qh. (F.2)

Applying the constraint of (3 =  1 — (see the footnote of Theorem 2.4.1), and plugging 

Eqs. (2.13) and (2.14) into the first term  of Eq. (F .l) , we obtain

lim { (
« lo  1 1 - 0  VTmax +  -  log ^ :)}

=  lim 
a to

Oi R m a x

y  ( ra  +  y/2Q ha) +  y 2 log '

a

=  lim <
a  4-0

=  Qh-

y  ( r s / a  + +  V 2Qh)

y  + ( r a  +  y/2Qha)

(F.3)

(F-4)

(F.5)
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where Eq. (F.4) is obtained by taking the partial derivatives with respect to  a  over both 

the num erator and denominator of the fraction in Eq. (F.3). Plugging Eqs. (F.5) and (F.2) 

into Eq. (F .l) , Eq. (2.44) follows, which proves Claim 2.

Claim 1: According to Lemma G.1.1 which is given and proved below in Appendix G, 

Qgoai(&jT) is a  strictly increasing function with respect to a  for r  > 0 and a  > 0. On the 

o ther hand, from the proof of Claim 2. we already proved that

lim Q g0 ai(oc,r) = 2Qh- (F.6)
ct i  0

which implies th a t the Claim 1. because a n resulted by the a-control law defined in Eq. (2.5) 

only assumes the discrete values of a  = a n for n — 1, 2, • • • , oo, and a  =  a n >  0 must always 

hold. Thus, we obtain

inf {Qgoal{a n , r )} =  2Qhi (F-7)
t > 0 , > 0 ,7 1 = 1 ,2 ,— ,oo

which completes the proof. ■
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A P P E N D I X  G  

P R O O F  O F  L E M M A  G .1 .1

G .l  M axim u m  Q u eu e-L en gtli M o n o to n ic ity  L em m a

The following lemma has been verified and used on m any occasions through both numer

ical solutions and simulation results. T he lemma also plays a  critical role in our previous 

analysis and derivations. While this lem m a is relatively intuitive, it deserves a rigorous 

proof, which tu rns out to be not trivial as shown below.

L e m m a  G .1 .1  The maximum-queue-length function Q goai(a ,T ) defined by Eq. (2.17) is a 

s tr ic t ly  m o n o to n ic - in c re a s in g  function  with respect to a , Vr > 0 andV a  > 0 .  ■

G .2  P r o o f  o f  M axim um  Q u eu e-L en g tli M on oton icity  L em 

m a (L em m a G .1 .1 )

P ro o f . Since Qgoai(a ,T ) is defined only for r  > 0 and a  > 0, where Qg0a/(o;)7') is 

continuous and differentiable, and thus, we can take the partial derivative of Qgoal{&,T)
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w ith  respect to  a  as follows:

gg »” '( a ' T> =  I TJ +  T. / ? ? » _ T. / 2 i _ ^ , / 2 i a - l
d a  2 V a  V 2q  2

+  ̂ I o ga*

( ’a*2 h - + \ / ^

/za +  a 2
(G .l)

Again, we use the constraint of f3 =  1 — A (see the footnote of Theorem 2.4.1), in derivations 

of in Eq. (G .l). Using Eq. (D.3), we define a new real-valued function /c(a, r )  as

follows:

_ i  / § ^ +lo  ̂+  r o :  +  y/2Qhct
/z V 2 \L

r a  + v ^ )
H -f ( r a  +  sJ2 Q ha)

Taking the partial derivative with respect to a  on both sides of Eq. (G.2), we obtain 

5 « ( a ,r )  1

(G.2)

&a  (fj. +  y /2 Q ha  +  r a ) 2

2 t 2

Qh [a  ArQh z
 t / - H ---------- a - F a *
H V 2 /x

/27>7 , Zr 3  IQh 3 tQ I  r 2 fo *
/x v 2 < 3 » + — \ / - 2 - + V V

, 2 /^2r3 5 r 2Q h \  s
- I - a : -------1 =— I +  Q2

V V- V? )
3 r3 [Qh2  r 3

^ 2  V  ' 2/x2 V 2 J fl2 > o. (G.3)

T h a t is, Eq. (G.3) proves the following:

5 « (a , r )
5 a

> 0, Vr > 0 and Va >  0, (G.4)
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which implies th a t /c(a, r )  is a strictly monotonic-increasing function with respect to a , 

Vr >  0 and a  > 0. On the other hand, notice th a t

lim Ac(a, r )  =  0. (G.5)
ct 4.0

Combining Eq. (G.4) and Eq. (G.5), it follows th a t /c(a, r )  > 0, Va > 0, and thus

/c(a, t ) = ( dQg°ai(a i T) > Vt > 0 and Va > 0 (G.6)
\  fi J d a

Reducing Eq. (G.6), we get

dQgoal(a,T) > ^  W > Q  and > Qj (Q 7)
da

which completes the  proof of Lemma G.1.1. ■
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A P P E N D I X  H

P R O O F  O F T H E O R E M  2 .5 .3

Proof. We first need to  determine the upper and lower bounds of the “loss period” [£i, t 2], 

as shown in Figures H .l(a )-(b ) (where the do tted  lines of Q ( t ) represent queue length if 

Qmax < Qmax), within a  rate-control cycle where t y  ( t 2 ) is the time when the router s tarts  

(stops) dropping packets. So, £j can be obtained by solving the bottleneck queue state  

equation (2.3) as:

Q { t y )  = r  [R(v — T f ) — fj]dv = £ = Cmax (H .l)
Jo

where, to  simplify the calculations, the time-zero point is shifted to  t 0 = 0 when R ( t  — Tf)  

reaches bandwidth capacity /z =  BW. Depending on the the rate-control param eters, t y  

can be either smaller (Figure H .l(a)), or larger (Figure H .l(b )), than Tmai = Tq + Tb + Tf.  

Since Tmax is the last moment R ( t )  applies linear control, and t y  is the time when Q ( t )  hits 

£ =  Cmax for the first time, the conditions t y  <  Tmax and t y  > Tmax can be equivalently 

expressed as £ < l ^ m a x  and £ > haT2,„„, respectively. (From now on, we will use t^ to 

represent the lower bound of [£i, 2̂ ]-) These conditions generate the following two different 

cases in calculating £( =  £1 .

C a s e  1. If £ <  i a T ^ ox: Q { t )  is determined only by J?(£)’s linear-control period, thus (see 

Figure H .l(a ))

Q (tA  = [ t( a t d t  =  £ = >  ri =  J —  (H.2)
Jo V a
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R(t) R(t)max max

BW B W

min min

tTfTq TbT,- Td T, It, Tf Tq TbTf Td

Q(t)

max

Qh
Qi

maxQ(t)
- max

t
t0=0 U  t

(a ) D eriva tion  o f p —  C ase  1 . (b) D eriva tion  o f p —  C ase 2 .

F igure  H . l :  D e riva tio n  o f num ber o f lost packets p

w hich  gives the f irs t case o f  com pu ting  t(  in  Theorem  2.5.3.

C a se  2 . I f  £ >  ^ a T ^,„r : Q{t()  is de te rm ined  by both  f2(£)’s linear-con tro l and exponentia l- 

c o n tro i periods, thus (see F igure  H . l( b ) )

C Tmax —'I'max . »
Q(t€) = j  a t d t  + JQ (Rma*e- l l - W x  -  p )  dt =  Z. (H .3)

Eq. (2 .47) follows by s im p lify ing  Eq. (H .3 ).

B y  defin ition  o f [41, £2] 1 R(t)  >  P m us t hold during  [£1^ 2], which is the  cond ition  fo r 

Q ( 0  =  £• D uring  [£1, £2], when R(t)  >  /z, Q ( t ) tends to  increase, bu t upper-bounded by 

£, thus Q (t ) =  £. W hen R{t) = p., Q{t)  =  £ is m aintained because the bottleneck queue 

leng th  remains unchanged when the a rr iv a l ra te  a t the bottleneck equals its  depa rtu ring  

ra te . Therefore, the  upper bound £2 is the  tim e  when R(t)  drops back e xac tly  to  p. and 

any fu r th e r decrease in  R{t)  w ill lead to  Q(t)  <  £. B y the de fin ition  o f Td in  Eq. (2.16), we
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ob ta in  t 2 - Tmax + Td-

D u rin g  [ t1, t 2], R f )  >  Mi and thus Rif)  can be w r itte n  as: R(t)  = fi + (R(t ) — p.). T he  

f irs t te rm  p  m aintains Q f )  =  £, and the  second te rm  ( R ( t ) — p)  causes packet drops. 

Therefore , the packet-drop rate is (R(t) — p).  Then, the  num ber p o f lost packets w ith in  

one ra te -con tro l cycle, can be obtained by

"ti rTmax+T,i
[72(t) — p.] dt =  I

’tx Jtt

w hich is also divided in to  the  fo llow ing tw o cases, because R(t)  has d iffe ren t expressions, 

depending on f  <  \ a T ^ ax o r £ >  \ a T £ a i .

C ase  1 . I f  £ <  |a T ^ ax: R(t)  consists o f  tw o  parts, and thus  (see F igure H .l(a ) )

'Tmax "^^d

fTmax+Tj
p =  [ R ( t ) - p ] d t  =  /  [ R { t ) - p ] d t .  (H.4)

J t i  J t c

/* 1 max r 7 ̂
=  /  [fi(0  -  m] dt

J t (

f  ̂ 'rn-ax /  t \
=  J  atd t  4- J  yRmaxZ~^l ~ * ~  P j  dt. (H.5)

ce

R educing Eq. (H.5) yields the  first part o f Eq. (2.46).

C a s e  2 . If £ >  \o T ^ria3.: R ( t )  has only one p a rt, and thus (see Figure H .l(b ))

''Tmax'h'I'd r ̂"drimax +  id rid  /  , ,  -X t \
p =  [ R ( t ) - p ] d t  =  J  [Rmaxe  ( 0)* -  p.) dt

rtp—Tma.x / . v
-  J  ( R m a . e - i 1- 0^  -  p )  dt.  (H .6)

Simplifying Eq. (H.6) leads to  the second p a rt of Eq. (2.46). This com pletes the poof. ■

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A P P E N D I X  I

P R O O F  O F T H E O R E M  2.6 .1

Proof. We prove this theorem by considering transient and state and equilibrium states, 

respectively.

(I) In Transient S tate . The linear o-control function can be expressed by

P / +  ?/«,•(*); if B C N ( k  — !,&) =  (0, 0),
Qi(k +  1) =  < (1.1)

P D  +  if B C N ( k )  =  1.

We now derive the  constra in ts  to  determ ine the coefficients p /,  qi, pn ,  and qo to  guarantee 

convergence to  b o th  efficiency and fairness.

( 1 ) C o n v e rg e n c e  to  E ff ic ie n c y .  To ensure a t (k) converges to  its  ta rge t agoai, the  a- 

co n tro l m ust be a negative feedback during  each a -co n tro l cycle, i.e.,

a t (k +  1) >  <**(*); i f  B C N { k  -  1, k) =  (0, 0)
( 1.2)

ott (k + 1) <  a t (k ); i f  B C N ( k )  =  1

where a t (k +  1) =  $Z £= iQt ( ^  +  1) and a t{k) =  a i(k )- U sing Eq. ( 1.1), we reduce

Eq. (1.2) to

q i  >  1 -  ’ V n  and V Q i W '  if B C N ( k  -  1.^) =  (0,0), 3

qD < 1 _  v  n  and v  a * W ; i f  B C N (k ) =  1>

( 2 ) C o n v e rg e n c e  to  F a irn e s s . Convergence o f  ot(k) to  fairness can be expressed by

« “ (*» (L4) 
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Plugging the linear-control function g(-, -) into the fairness index given in Definition 3 and 

defining 6 =  we get

_ ( E r =1[ g + ^ ( f e ) ] ) 2
=  <fi ( « ( * 0 )  +  [1 -  <K<*(*0)] 1 -

z r = l
E ? = i[«  +  « i ( * ) ] aJ

and further,

<f>(oc(k 4- 1)) — <j>(oc(k)) =  [1 -  4>(a.(/:))] 1 - (1.5)

N ote th a t (f>(oc.(k + 1)) — <f>(a(k)) in  E q . (1.5) is a m onotonic-increasing func tion  o f 9 =  

and <f>(ac(k +  1)) >  $ (a (fc )) i f f  6 > 0. T h us , i f  8 >  0, fairness increases: (p{cx{k -f- 1)) >  

(f>(oc(k)); i f  0 =  0, the fairness remains unchanged: (f>(a.{k +  1)) =  <f>(ac(k)). Since 0 = in 

ar-increase phase and 9 =  in  a-decrease phase, we get fou r possible cases as follows:

1. i f  > 0 A El >  0, then  <f>{<x(k +  1)) >  <fr(a.(k)) in

b o th  a-decrease and a-increase;

2. if >  0 A 2/. =  0, th en  4>{oc(k +  1)) >  <f>(a(k)) in

a-decrease and cp(oc(k +  1)) =

<p(cx(k)) in  a-increase;

3. i f  2s. =  o A >  0, then  (f>(at(k +  1)) =  <f)(a.(k)) in

a-decrease  and tj)(a(k +  1)) >

0 (cc(A:)) in a-increase;

4 . if =  0 A =  0, th en  <fi(oi(k +  1)) =  <f>(cx(k)) in

b o th  a-decrease and a-increase;

(1.6)

Eq. (1-6) im plies th a t con tro l-func tion  coeffic ien ts po ,  Pi, ?£>, and qi m ust a ll have the  

same sign i f  they  are not zero. C om b in ing  Eq. (1.6) w ith  Eq. (1.1), we conclude th a t these 

fo u r co n tro l- fu n c tio n  coefficients m ust be a ll pos itive  i f  no t zero, and qi and qn m ust be 

pos itive  since ctfijk) V i  are always pos itive  num bers. The convergence cond ition  given in

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Eq. (1.3) adds fu r th e r constra in ts  on qu such th a t 0 <  qo < 1- Thus, the constra in ts on 

the  con tro l-func tion  coefficients, in  term s o f convergence to  fairness and efficiency, can be 

sum m arized as

c o n s t r a in t :{0  <  qo < 1, 0 <  qi, (po  >  0 A pi  >  0) V (p& >  0 A pj  > 0 )}  (1.7)

w hich includes cases 1 , 2 , and 3 as described in Eq. (1.6).

Since the a -co n tro l is exercised on a per-connection basis, and the z-th source does not

have any in fo rm a tion  on aj(k),  V j  ^  i  and value o f n  (a -co n tro l is a d is trib u te d  a lgo rithm ),

the  convergence cond ition  given in Eq. (1.3) cannot be e x p lic it ly  used to  fu rth e r specify the

con tro l-func tion  coefficients. In  the absence o f such in fo rm a tion , each connection must

sa tis fy  the negative feedback cond ition  as follows, which represents a stronger cond ition  fo r

convergence to  efficiency:

(
oti(k + 1) >  a x(fc) ==> pi  +  (qi — l ) a t-(fc) >  0, V i, i f  B C N { k  — 1, k) =  (0, 0);

( 1.8)
oti(k 1) <  a ,(fc) pD +  (qD -  l)a ;(A :) <  0,V  i, i f  B C N ( k )  =  1;

Eq. (1.8) yields fu r th e r constra in ts  in determ in ing con tro l-func tion  coefficients. Since (qu — 

l)a ; t-(A:) (<  0 due to  Eq. (1.7)) may have an a rb itra r ily  sm a ll absolute value, the second 

in e qu a lity  in Eq. (1.8) requires pu  =  0, to  fairness in a-increase. The firs t inequa lity  in 

Eq. (1.8) requires qi > 1 to  ensure p i  +  (qi—l ) a t (fc)>0 V a t (A:) >  0. Since 0 =  (fairness 

increases on ly  in a-increase phase) and <p(a(k + 1)) — ^»(a(A:)) is an increasing function  o f 

9, we le t qi take its  m in im um  qi = 1 which is the optimal value fo r the convergence to  

fairness. Thus, we ob ta in  the feasible and op tim a l linear co n tro l func tion  defined by the 

fo llow ing  constra in t:

c o n s t ra in t : { 0  <  qo < 1 ,9 / =  I , p d  =  0 , p i  > 0 } (1.9)

w hich is the exac tly  w ha t we proposed fo r the a -con tro l in the  trans ien t state, i.e.,

p +  a t (fc); i f  B C N { k  — ! ,& )  =  (0 ,0 )
a t (fc +  1) =  < (1.10)

qa{k ); i f  B C N (k )  =  1
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where Pi =  p  > 0, qi =  1, Pd = 0, and 0 <  qo =  <7 <  1-

( I I )  I n  E q u i l ib r iu m  S ta te . The linear a -co n tro l fu n c tio n  is expressed by

Qi(k + 1) =
l- a t (k); i f  B C N ( k  - l , k )  = (1 ,0 ),

qai(k)- i f  B C N ( k )  =  1,

Since pp  =  0, p i  =  0, qo =  q (0 <  q < 1), and qi — |  >  1, th is con tro l function belongs

to  case 4 in  Eq. (1.6) where 6 = 0. Thus, the fairness is m aintained as the a-contro l enters

the  e qu ilib rium  sta te . O n the o ther hand, when pd  — 0 and pj  =  0, the constra in ts fo r

convergence to  effic iency become:

c o n s t ra in t :{0 <  qo < 1 , 9/  >  1}  (1-12)

w hich also satisfies Eqs. (1.8) and (1.3). Thus, the  convergence to  efficiency is also m ain

ta ined  fo r th a t connection. This completes the p roo f. ■
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A P P E N D I X  J

P R O O F  O F  T H E O R E M  3.4.1

P r o o f .  P j ’s length is j  1 (in num be r o f hops) and its  leaf is located a t the  ( j  +  l) - th  

level o f the m u lticas t tree (see F igure  3.2 fo r the  case o f m  =  4). P lugg ing  Eq. (3.2) in to  

Eq. (3 .1), we get

2 +  j  A ,  i f  2 <  A  <  T m a x  =  2m ;
(J . l)

2(j  +  1), i f  A  =  1.

So, i t  suffices to  prove Eq. ( J . l) ,  w hich consists o f  tw o parts to  be proved as fo llow s.

P a r t 1: Assume 2 <  A  <  r max =  2 m . W e can rewrite  the  f irs t p a rt o f Eq. ( J . l )  as

t u ( j ,  A )  =  2 +  j  A  =  ( j + 2) +  j '( A  — 2) -f- j  = C \  +  Ci  +  C3. Then, the  three com ponents o f 

t u ( j ,  A )  =  C\  +  C 2 -r  Cz constitu te  the  R M -ce ll R T T  under H B H  as fo llows.

Ci = j ' +  2 is the  tim e  fo r a fo rw ard  R M  cell to  traverse from  the ro o t to  P j ’s  lea f node, 

then to  re tu rn  to  the firs t branch node fro m  the leaf tow ard  the  ro o t (see F igu re  3.2 

fo r the case o f m  = 4 ). I t  takes ( j  +  1) t im e  units fo r a fo rw ard  R M  cell to  reach 

P j ’s leaf from  the ro o t and 1 t im e  u n it  to  im m edia te ly move one hop back to  the  firs t 

conso lida ting  branch node, so Ci  =  ( j  +  1) +  1 =  j  4- 2 .

C 2 = j ( A  — 2) is co n tribu ted  by feedback R M  cells w aiting  a t branch nodes fo r  the  sub

sequent fo rw ard  R M  cells, each m ov ing  one hop upward the feedback R M  cell a t 

each branch node. L e t’s s ta rt w ith  A  =  2, im p ly ing  th a t feedback R M  cells do not
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have to  w a it fo r fo rw a rd  R M  cells in o rder to  move upw ard as they arrive a t each 

branch node a t the same tim e  as a fo rw ard  R M  cell arrives a t the branch node. Thus, 

C2 = j ( A  — 2) =  0 holds. Now, suppose A  =  2 +  £ w ith  £ > 1. Then, feedback 

R M  cells always a rrive  a t branch nodes £ tim e  units earlie r than  forward R M  cells, 

and thus, have to  w a it £ =  (A  — 2) tim e  un its  before m aking  one hop move. So, 

Cz =  j  £ =  j  (A  — 2), since there are j  branch nodes along Pj.

C 3 =  j  is the tim e  fo r P j ’s feedback R M  cells to  traverse from  its  firs t branch node from  

the leaf back to  the ro o t w ith o u t w a itin g  fo r forw ard R M  cells to  arrive, which is j ,  

since there are j  hops between the f irs t branch node and the  roo t.

P a rt 2 : Assume A  =  1, then  feedback R M  cells w ill never w a it fo r fo rw ard  R M  cells a t any 

branch-node, im p ly ing  th a t Cz =  0, and C\ — j  -f- 2 and C 3 =  j  rem ain the same as in P a rt 

1. Thus, Tu (y, A )  =  Ci + C 3  =  2(jf +  1) fo r A  =  1, which gives the  second part o f Eq. ( J . l ) .  

T h is  completes the proof. H
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A P P E N D I X  K

P R O O F  O F  L E M M A  3.4.1

P r o o f .  W hen the sw itch a lg o rith m  checks fo r feedback RM -cell synchron iza tion , th a t is 

the  opera tion  o f (coimjpattjuecQrespJbranchjuec  =  1 ) at a branch-node, the feedback R M  

cell on a shorte r path Pi always arrives a t the  branch-node earlier than th a t ( in  response 

to  the  same forward R M  cell) fro m  a longer pa th  P j. Thus, P j’s feedback R M  cell can 

be synchronized, w ith o u t w a iting , at least w ith  the  feedback R M  cell in response to  the 

same fo rw a rd  R M  cell, from  the  sh o rte r pa th  Pi a t each branch-node. So, th e  feedback 

R M  cell on a longer path  never w a its  fo r  feedback R M  cells on a shorter path  fo r  feedback 

synchron iza tion . ■
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A P P E N D I X  L

P R O O F  OF L E M M A  3 .4 .2

P r o o f .  In contrast w ith  the  case described in Lem m a 3.4.1, the  feedback R M  cell from  a 

sh o rte r pa th  may or may not  have to  w a it fo r the feedback R M  cell from  a longer path fo r 

feedback synchronization.

C la im  1 ==> C laim  2 : I f  P j ’s feedback R M  cell does n o t w a it a t the firs t branch-node 

fro m  P j ’s leaf, then i t  becomes p a r t o f the feedback R M  cell fro m  a longer path  a fte r its  

R M  cell is consolidated a t th e  f ir s t  branch-node. B y Lem m a 3.4.1, i t  does not w a it fo r 

feedback R M  cells from  any p a th  a t a ll subsequent branch-nodes on Pj  to  achieve feedback 

synchron iza tion .

C la im  2 => • C laim  3: I f  P j ’s feedback R M  cell does not w a it fo r  a longer path ’s feedback a t 

any branch-node, then a t least i t  doesn’t  w a it fo r synchron iza tion  a t the firs t branch-node 

fro m  P j ’s leaf, i.e., P j ’s feedback R M  cell arrives a t its  f irs t branch-node at the exact same 

tim e  when the  feedback R M  ce ll fro m  the  longest pa th  arrives a t th is  branch-node. B u t i t  

takes (2m  — j )  tim e un its  fo r an R M  cell to  traverse from  the  ro o t to  the  leaf o f the longest 

p a th  then  re turn  to  P j ’s f irs t branch-node. On the o the r hand, i t  takes (j  +  2) tim e un its  

fo r an R M  cell to  traverse fro m  the  ro o t to  P j’s lea f then re tu rn  to  its  firs t branch-node. 

T hus, the  a rriva l tim e o f P j ’s feedback R M  cell a t its  f irs t branch-node is (j  + 2) + k A  where 

A; =  0 ,1 , - - - ,  corresponding to  th e  (k  +  l ) - th  R M  cell, respective ly. Then, 3 k  £ {0 ,1 , ■ • • }  

such th a t  the feedback R M  ce ll fro m  the longest pa th  is synchronized w ith  P j’s feedback
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R M  cell whose a rriva l t im e  is ( j + 2 ) +  A:A a t its  f irs t  branch-node, and satisfies the fo llow ing  

co n s tra in t (on k, fo r  1 <  j  < m  — 1 and 1 <  A  <  r m aI =  2m ):

( j  +  2) +  k A  <  2m — j  <  ( j  +  2) +  (A: 4 - 1) A .  (L - 1)

B u t P j ’s feedback R M  cell does n o t w ait fo r the  feedback R M  cell from  a longer path a t 

any branch-node on P j . T h us , 3 A: £  { 0 ,1 , - - - }  such th a t  ( j  +  2) +  k A  =  2m  — j ,  and hence 

C la im  3 follows.

C la im  3 = >  C la im  4 : F rom  2 (m  — j  — 1) — k A  =  0, we know  th a t P j ’s feedback R M  cell 

does n o t w a it fo r a longer p a th ’s feedback a t the  f ir s t  branch-node fro m  the leaf. Accord ing 

to  the  p ro o f o f C la im  1 =>■ C la im  2 . P j’s feedback R M  cell does no t w a it fo r a longer p a th ’s 

feedback at a ll branch-nodes on Pj.  Therefore, P j ’s  steady-sta te  R M -ce ll round trip  delay 

o n ly  consists o f  the pure transm ission  (p ropagation  plus processing, bu t no w a iting) delay, 

m eaning th a t ru( j , A )  =  2 ( j  +  1). Since P j’s feedback R M  cell may o r may not have to  w a it 

fo r  the  feedback from  a longe r pa th  fo r synchron iza tion , depending on the value o f A  fo r 

given m  and j ,  ru(j,  A )  is lower-bounded by 2 ( j  +  1), and thus C la im  4 follows.

C la im  4 =>• C la im  1: I f  ru (j,  A )  atta ins  its  m in im u m , then P j ’s feedback R M  cell does not 

w a it fo r feedback R M  cells fro m  a longer path  fo r synchron iza tion  a t a ll branch-nodes on 

Pj, and hence not a t the  f ir s t  branch-node from  the  le a f o f  Pj.  Th is  completes the proof. ■
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A P P E N D I X  M

P R O O F  O F T H E O R E M  3.4.2

P ro o f .  For convenience o f  p resen ta tion , we begin w ith  C laim  2’s proof.

C la im  2 : B y  C la im  3 and C la im  4 o f  Lem m a 3.4.2 and its  proofs o f C la im  2 C la im  3 and 

C la im  3 = >  C la im  4. P j's s teady-sta te  R M  cell ro u n d tr ip  delay r u (j", A )  can be expressed 

as the  sum o f  transm ission delay 2 ( j  +  1) and synchronization delay W j

Tu(j,  A )  =  2(j  +  1) +  W j  (M . l)

where W j  is the net w a iting  tim e  fo r  P j 's feedback R M  cell to  synchronize w ith  the  feedback 

on a longer pa th  a t the f irs t branch-node from  P j's  leaf. Based on Lem m a 3.4.2’s p roof o f 

C la im  2 =>■ C la im  3 and Eq. ( L . l ) ,  3 k  E  {0 , 1, 2, • • • }  such th a t W j  can be expressed as

W j  =  (2m  -  j )  -  [(j  +  2) +  kA] = 2(m  -  j  -  1) -  kA .  (M .2)

Since the feedback R M  cell on a longer pa th  is always synchronized w ith  the  most recently 

a rrived  feedback on a shorte r pa th  a t P j's  f irs t branch-node as a co ns tra in t Eq. ( L . l ) ,  the 

m in im um  possible synchron iza tion -w a iting  tim e  (>  0) determines W j.  B y Lem m a 3.4.1, 

W j  >  0. Thus, k  in Eq. (M .2 ) is de te rm ined  by

kj =  m ax {A: | 2 (m  — j  — 1) — k A  >  0 } (M .3)
3 fcefo.i.z,--}

where 1 <  j  < m  — 1 and k^ is ob ta ined  by m in im iz in g  W j  = 2(m  — j ' — 1) — A:A >  0 over 

k.  C om b in ing  Eqs. (M . l ) ,  (M .2 ), and (M .3 ), we get Eq. (3.6).
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C la im  1: Le t ni  be the num ber o f P j ’s feedback R M  cells going th rough  the  in it ia l state . 

Since the  f irs t feedback R M  cell received by th e  ro o t always experiences the  longest p a th ’s 

ro u n d tr ip  delay, in  in it ia l s ta te  the  R M -ce ll ro u n d tr ip  delay decreases from  r max =  2m  to  

its  s teady-sta te  value Tu(j, A )  (<  Tmax = 2 m ). Thus, the  num ber o f  R M  cells which go 

th ro u g h  the  in it ia l state  is given by

T m a x  — ru(j,  A )  W  ~  ( Tm a x  ~  k j  A)  ? .
m  -  A  -  A  -  j

=  m ax {k  | 2 (m  — j  — 1) — k A  > 0 } (M .4 )
fce{o,i,2,->

w hich results in  Eq. (3.5).

C la im  3 : Based on the  proposed sw itch  a lg o rith m , a ll fo rw a rd  R M  cells in  the  in it ia l s ta te  are 

consolidated in the  f irs t feedback R M  cell and sent back to  the roo t a t tim e  t =  r max =  2m  

to  s ta r t  feedback synchron ization. In a d d itio n , the  very firs t R M  ce ll’s ro u n d tr ip  delay is 

always equal to  r max =  2m  fo r a ll paths. T hus, i f  kj > 1 for Pj, the  z'-th (1 <  i <  A:*■) 

in it ia l-s ta te  R M  cell w ill experience a ro u n d tr ip  delay o f t u ( j ,  A , i ) =  r max — (z — 1) A ,  since 

i t  enters the  system  (z — 1 )A  tim e  un its  la te r th a n  the very firs t R M  cell. A f te r  k* R M  

cells pass th rou g h  the  flow -contro lled  system (i.e ., i > kj  fo r Pj), the system reaches steady 

s ta te  and P j ’s R M  cell ro u n d trip  delay becomes a constan t (independent o f z') specified by 

ru{j, A ,  z) =  Tu(j,  A ) .  I f  fcy =  0 fo r Pj,  i.e., P j ’s feedback must be synchronized w ith  those 

feedback R M  cells corresponding to  the  same fo rw a rd  R M  cell. Thus, the  system  enters 

steady s ta te  from  the  very f irs t R M  cell since P j ’s R M  cell ro u n d trip  delay does no t have 

in it ia l-s ta te  (i.e., kj  =  0). Therefore, ru( j , A , i )  =  2m  =  r mox, i f  kj  =  0 fo r Pj.  T h is  

com pletes the  p roof. ■
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A P P E N D I X  N

P R O O F  O F T H E O R E M  3 .5 .1

P r o o f .  C la im  1 = >  C la im  2 : I f  k j  =  0, then r ( j ,  A )  =  r max =  2m  according to  Theo

rem 3.4.2. Thus, corresponding to  the  same forw ard  R M  cell, the  feedback R M  cell returned 

v ia  p a th  Pj  arrives a t the ro o t node a t the same tim e  as the  feedback R M  cell returned 

v ia  any longer path P j (1 <  j  < j  < m  — 1). T h is  im plies th a t  a t the  firs t consolidating 

branch-node from  P j ’s leaf, P j ’s feedback R M  cell is on ly  synchronized w ith  the feedback 

R M  cells in  response to  the  same fo rw a rd  R M  cell, thus m ak ing  Pj  strictly-synchronized. 

C la im  2 = >  C la im  3 : I f  Pj  is s tric tly -synch ron ized , then a t the  f ir s t  consolidating branching- 

node fro m  P j's  leaf, Pj's  feedback R M  cell is on ly  synchronized w ith  the  feedback R M  cells 

in  response to  the same fo rw a rd  R M  cell. Th is im plies th a t r u (y, A )  =  r u ( j ,  A )  V j  such th a t 

l < y < j < m  — 1, w hich includes the  feedback R M  cell fro m  the  longest pa th  P j =  Pm_ i.  

B y  le tt in g  j  =  m  — 1 in Eq. (3 .6 ), o f  C la im  2 in Theorem  3.4.2, we get r u ( j ,  A )  =  r max =  2m. 

C la im  3 = >  C la im  1: I f  ru(j, A )  =  r mox - 2m, then by Eq. (3 .6) in  Theorem  3.4.2, we get 

kj  =  0 since A  >  1. |
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A P P E N D I X  O 

P R O O F  OF T H E O R E M  3.5.2

P r o o f .  C la im  1: The the e q u a lity  p a rt o f Eq. (3.8) follows d ire c tly  from  Eq. (M .2 ), 

Eq. (M .3 ) in  the p roo f o f Theorem  3.4.2, and Lem m a 3.4.1. We now prove the inequality 

p a rt: Wj < A , by con trad ic tion . Assume Wj  >  A .  Then, by the equa lity  pa rt o f Eq. (3.8), 

W j  =  2 (m  — j  — 1) — kj A  >  A .  Thus, we get 2 ( m —j  — 1) — (kj + 1) A  >  0, which contradicts 

the  de fin itio n  o f kj given in Eq. (M .3 ).

C la im  2 : I f  Pj is s tric tly -synchron ized , then kj = 0. Le tting  kj  =  0 in Eq. (3.8), we get 

W j  =  2 (m  — j  — 1). B u t since 1 < j  < m  — 1 and m  >  2, the  desired result Wj  =  

2 (m  — j  — 1) >  0 follows.

C la im  3 : We prove the suffic ient cond ition  firs t, and then the necessary cond ition .

I f  Wj  =  0, then Eq. (3 .8) is reduced to 2(m  — j  — 1) =  k j A ,  i.e., kj =  illJ iz izL i

Thus, 2 (m  — j  — I) mod A  =  0.

I f  2(771 — j  — 1) mod A  =  0, then 3 k G {0 ,1 , 2, • • • }  such th a t =  k. B u t kj

=  m ax/te{0,i,2,—} I 2 (m  — j  — 1) — k A  > 0 } =  =  2(m~J~ 1) =  k. Thus, we get

k = k j  and 2 (771—j  — 1) =  k j A  w h ich , by Eq. (3.8), implies Wj = 2 ( m —j  — 1) — k j A  =  0. Th is 

com pletes the proof. g
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A P P E N D I X  P

P R O O F  O F T H E O R E M  3.5.3

P ro o f .  T he  p ro o f o f V  =  V s G'Pn ©'Pw  is t r iv ia l fro m  D e fin ition  3.5.1 and D e fin ition  3.5.2. 

Now, we prove the  three claims as fo llows.

C la im  1: Le t j* be the largest possible p a th  num ber (from  le ft to rig h t) such th a t Pj- is 

s t i l l  no t ye t s tric tly -synchron ized , i.e., Pi, P2 , P3 , • - • , Pj- are either w ait-free  synchronized 

o r non s tric tly -synchron ized  and Pj-+i, Pj-+2, Pj-+3, - • - , Pm- 2 are a ll s tric tly -synchron ized  

paths. Thus, by D e fin ition  3.5.1 and Theorem  3.5.1, we have

which reduces to

2 { m -  j * — 1 ) >  A  = >  i *  <  i [ 2 ( m -  1 ) - A ], (P.2)

Since j*  is the  largest integer th a t satisfies Eq. (P . l)  o r Eq. (P .2), we get j*  =  [ | [ 2 ( m  — 1) — A ]J . 

B u t the  to ta l num ber o f paths under conside ra tion  is (m  — 2) (Pm_ i is a special case since 

i t  a lways has the same property  as Pm, w h ich  is a t r iv ia l case) fo r a m u lticas t tree o f  height 

m.  Thus, Sa =  (jn — 2) — j * =  (m  — 2) — [ | [ 2 ( m  — 1) — A]J =  (m  -  2) — [(m  — 1) — y j  =

(m  -  2) -  { ( m  -  1) -  [ f  ] }  =  [ f ]  -  1.

C la im  2 : A ccord ing  to  the sufficient and necessary cond ition  to  be a w a it-free  synchronized 

pa th , w h ich  is given in  C laim  3 o f Theorem  3.5.2, we w ant to  determ ine the num ber o f 

paths which sa tis fy  2 (m  -  j  — 1) mod. A  =  0 fo r 1 <  j  < m  — 2 and a given A . Let
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P ' =  {2{m — j  — 1) I j  = 1 ,2 ,3 , - - -  , ( m - 3 ) ,  ( m - 2 ) }  =  { 2 ( m . - 2 ) ,2 ( m - 3 ) , 2 ( m - 4 ) ,  - - - ,2 } .  

Thus, P ' defines a one-to-one m apping between elements o f  V '  and a ll (m  — 2) candidate

paths, such th a t 2 (m  — 2) -H- P i, 2 (m  — 3) <-*■ P2, 2{m — 4) <-»• P3, - - -, 2 Pm_ 2- Note th a t

P '  contains (m  — 2) consecutive even num bers s ta rting  fro m  2. Therefore, we consider the 

fo llow ing  tw o cases.

C a se  1: A  =  e v e n . The  num ber o f  w a it-free  synchronized paths, N & , is determ ined by 

the  elements in V  w h ich  is an in teger m u ltip le  o f A .  Since the  even numbers in V  are 

consecutive, we get

N a  =  | | { j  | 2 ( m - i - l )  mod  A  =  0 }|| (P.3)

m ax { N  I 2 (m  -  2) -  N A  > 0 } (P.4)

(P-5)

w here 1 <  j  < (m  — 2).

C a se  2: A  =  o d d .  Since A  is odd, on ly  those elements o f P ',  w h ich  contain bo th  factors 2 

and A ,  satisfy 2 (m  — j  — 1) mod  A  =  0. Thus, only those elements o f P ; , which are integer

m u ltip les  o f (2 A ), c o n tr ib u te  to  N&. Therefore, we get

N a  =  | | { j  I 2 (m  -  j  -  1) mod  A  =  0 }|| (P.6)

=  m ax { N  I 2(m  -  2) -  1V(2A) >  0 } (P.7)
N €{0,1,2, — } ’

(m ~ 2)
A (P-8)

where 1 < j  < (m  — 2). C om b in ing  Eqs. (P .5) and (P .8), Eq. (3.9) follows.

C la im  3 : A pp ly in g  C la im  1 and C la im  2 to  fact P  =  P 5 @ V s  ©  V w ,  Eq- (3.10) follows. 

T h is  completes the  p roof. ■
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A P P E N D I X  Q

P R O O F  O F T H E O R E M  4.4.1

P r o o f .  For convenience o f presentation, we s ta r t  w ith  the C la im  2.

C la im  2 : A n  unbalanced m u lticast tree o f height m,  as defined as in D efin ition  4.3.1, consists 

o f  a set o f  2m  — 1 links, C = {L\,  ^ 2i • • • »-^2m - i } i  w h ich  are labeled in the way as shown in 

F ig u re  4 .1 (a ). Since 0 <  p, <  1, it  is possible th a t a ll these 2m — 1 links are not m arked, and 

thus there  is no dom inan t bottleneck path  in the  tree. On the o ther hand, i f  a t least one 

o f  these 2m  — 1 links is marked as the bottleneck lin k , then by D e fin ition  4.3.2 the shortest 

p a th  which conta ins the marked link(s) is the d o m in a n t bottleneck path . A ccord ing  to  the 

s tru c tu re  defined by D e fin itions  4.3.1 and 4.3.2, the  dom inan t bottleneck path  is unique. 

T hus , there is a t most one dom inant bottleneck p a th .

In  w h a t follows, we use Li =  1 (0) to  represent th a t lin k  Li is (no t) marked as the 

bo ttleneck. Thus, P r { L t =  1} =  pt- and P r { L t =  0 } =  1 — p,. By D e fin itions  4.3.1 

and 4.3.2, the  p ro b a b ility  th a t P i becomes the  d om ina n t bottleneck path is equal to  the 

p ro b a b ility  th a t L\  =  1 o r Lz — 1, im p ly ing

ip(Pi, m) = P r {L i  =  1 U Z/2 =  1 } =  1 — P r {L\  =  0 f l  L2 = 0 }

=  1 -  P r { L i  =  0 } P r { L 2 =  0 }  (Q . l)

=  1 -  (1 - P i ) ( l  - p 2) =  p i + p 2 ~PiP2- (Q .2)

where Eq. ( Q . l)  is due to  C 3  o f D e fin ition  4.3.1. Thus, the f irs t pa rt o f Eq. (4.5) fo llow s
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fro m  Eq. (Q .2).

Consider P 1 <  k < m  — 1. Since the last tw o  links are L^k- i  and (see F ig 

ure 4 .1 (a )), the p ro b a b ility  th a t Pk becomes the dom inan t bottleneck path  is equal to  the 

p ro b a b ility  th a t Li =  0, V i G {1 , 2, • • • , 2(k — 1 )} and L ik - \  =  1 o r  Lik — l i  which leads to

,2(fc-l)
i>(Pk,m) - P r j  P | ^  =  OH { L 2A=-i =  l  U L 2ifc =  l }  I

 ̂ i= i '

{ n * = » }
i= i }

2 (*-l)
=  Pr<{ P | I t =  0 ) P r { L 2 i- i  =  l U L 2fc =  l }

2 ( f c - l )

=  (j>2k-l +  P2fc -  P2k-lP2k) 17(1 - P i )  (Q*3)
t = l

where the  second and th ird  equalities o f Eq. (Q .3) are due to  C 3  o f D e fin ition  4.3.1 and 

the  p ro o f o f Eq. (Q .2). Thus, the  second p a rt o f Eq. (4.5) follows fro m  Eq. (Q .3).

For the  last pa th  Pm , since the last lin k  is L 2m - i j  the p ro b a b ility  th a t Pm becomes the 

d om ina n t bottleneck path is equal to  the p ro b a b ility  th a t L , =  0, V i G {1 , 2, • • • , 2 (m  — 1)} 

and Z>2m—l — 1, which leads to

2(m —1) 2(m—1)
V»(Pm ,m )  =  P r <j p |  Li =  0 n { l 2m - i  =  1} f  = P 2m - i  7 7  ( 1 - P i ) .  (Q-4)

1 = 1  J 1 = 1

where the  second equa lity  o f  Eq. (Q .4) is due to  C 3  o f D e fin ition  4.3.1. Hence, the th ird  

p a rt o f Eq. (4.5) follows from  Eq. (Q .4).

C la im  1: The p ro o f o f Eq. (4.3) follows from  the p ro o f o f the second p a rt o f  Eq. (4.5). Now, 

we prove th a t the p ro b a b ility  mass function  defined by Eq. (4 .3) satisfies the fo llow ing
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norm alization  condition:

m

lim  T > ( P fc,oo)171-fOQ ^

1 -  (1  -  p 2* : - l ) ( l  -  P2fc)

fc=l
m ,

- lim  V ' im—foo f * I
A:=l  ̂

{

(1 P l ) ( l  - P 2 ) ( l - P 3 ) - - ’ (1  - P 2 J t - 3 ) ( l  -P2A:—2) }
=  lim

m —to o 1 -  (1 - p i ) ( i  -  P 2) + 1 -  (1  - P 3) (1  -  P a ) (1 — px) (1 - p 2)

+

+

1 -  (1 — p5) (1  ~ P s ) ( 1 -  P i )  ( 1 -  p 2 ) ( 1 -  P s )  ( 1 -  Pa ) +

P2m — 1) (1 P2m) C1 ~  P l )  (1  -  P 2) • • ( ! -  P 2 m —3 ) (1  -  P 2m —2 )  j

=  lim   ̂ 1 -  (1 _  P l) (1  _  P 2)  • • • (1  -  p2m—3) (1  -  P 2m —2) (1  -  P 2m - l )  ( l  “  P 2m ) f
771—fO O  I J

2m

=  1 -  lim jQ ( l  - p i )
m —> 0 0  A  

i = l

B u t since the  second lim it in g  te rm  o f  Eq. (Q .5) satisfies the  fo llow ing  facts:

2 m  2 m

0 <  lim  T T (1 -  Pi )  <  lim  T T (1 -  pmin) =  lim  (1 -  pmm) 2m =  0
m —v o o  -L -L '  m - ^ o o A i '  * '  m —> 0 0

(Q .5)

(Q .6)
»=i »=i

where 0 <  pmin = m in ie { li2 i...i00} { p t }  <  1, we ob ta in

m

lim  5 > ( P * |0 o ) = 1.
m —>oo ^k=\

(Q-7)

Thus, ip(Pk, oo), y  k  G {1 , 2, - • • , oo } defines a va lid  p ro b a b ility  mass fun c tio n . In add ition , 

Eq. (Q -7) also implies th a t the re  ex is t a t least one d om inan t bottleneck pa th  as m  —► oo. On 

the  o th e r hand, according to  the  tree  s truc tu re  defined by D e fin itions  4.3.1 and 4.3.2, there 

is a t m ost one dom inan t bo ttleneck  pa th . Thus, there exists one and on ly  one dom inant 

bo ttleneck  path , which com pletes the  proof. ■
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A P P E N D I X  R

P R O O F  O F T H E O R E M  4.4.2

P r o o f .  C la im  1: I t  fo llow s d ire c tly  from  C la im  2: o f Theorem  4.4.1 by le ttin g  p, =  p. 

C la im  2: Since V’CflbP, m)  is a real-valued continuous function  o f p and d iffe rentiab le  fo r 

0 <  p < 1, we can take a p a r tia l deriva tive  o f  -^(P fc ,p ,m ) w ith  respect to  p and set i t  to  

zero. Fo r d iffe ren t ranges o f  k, we have the fo llow ing  tw o cases.

Case 1. 1 <  k < m  — 1:

dtp 
dp

R educing Eq. (R - l) ,  we get the  fo llow ing  q u a d ra tic  equation and its solutions:

^ ( P k , p , m )=(2 - p ) ( l  - p ) 2^ - 1) - p ( l  -  p )2^ - 1) -  2{k -  l ) p ( 2 —p ) ( l  —p )2fc-3 =  0. (R - l)

Ik — 1 k — 1
kp2 — 2k p +  1 =  0 which has tw o  roo ts : =>• p i  =  1 y  — — and p2 =  1 — y  -  — . (R -2)

T a k in g  the  m eaningful so lu tion  from  Eq. (R -2) to  sa tis fy  the p ro bab ility  constra in t, 0 <  

p  <  1, we get

k — 1
p* =  arg m ax ip(Pk, p , m )  =  1 -  \ ——  (R .3 )

0 < p < l  V K

w hich  is unique and gives the f irs t  p a rt o f the  E q . (4 .9).

Case 2. k  =  to:

^ t ( P m , p , m )  = (1 — p )2(m_1) — 2 ( to  — l ) p ( l  — p )2m_3 =  0 (R-4)

R educing and solving Eq. (R .4 ) fo r p, we get th e  unique so lu tion :

P* =  arg m ax ifi(Pm ,p,  to )  =  -  1 (R .5)
o<p<i Zm — 1
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which is th e  second part of E q . (4 .9).

Then, p lugging Eqs. (R .3 ) and (R .5 ) in to  the firs t p a rt and the  second pa rt o f Eq. (4.7), 

respectively, Eq. (4.8) follows.

C la im  3 : Eqs. (4.11) and (4 .10) fo llo w  by p lugging Eq. (4 .7), and Theorem 3.4.l ’s Eq. (3.1) 

and Theorem  3.4.2’s Eq. (3 .6 ), respectively, in to  Eq. (R .6 ) th a t follows below:

m

r ( m )  =  E  [ r ( m )  ] =  ^  r u ( j,  A)V>(Pj, p, m)  (R .6)
i=  i

C la im  4 : Eqs. (4.13) and (4.12) fo llo w  by plugging Eq. (4 .7), and Theorem 3.4.l ’s Eq. (3.1) 

and Theorem  3.4.2’s Eq. (3 .6 ), respectively, in to  Eq. (R .7) th a t follows below:

a 2(m) = V  ar[T(m)]  =

T h is  completes the proof.

^2 [T u( j ,A ) ] 2ip(p j , p , T n ) -  ( 5 ^ t u ( j ,  A)i>(Pj t p,Tn) ] (R .7)
j = i \ j = i
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A P P E N D I X  S

P R O O F  O F C O R O L L A R Y  4.4.1

P ro o f .  C la im  1: Eq. (4.15) fo llow s fro m  Eq. (4.7) by  le ttin g  m  —► oo and observing th a t 

p(i-p)2(m-1) -> o as m  —>• oo. E q (4.16) fo llow s from  th e  p ro o f o f C laim  1 o f Theorem  4.4.1, 

w hich is also verified by the fo llo w in g  d ire c t proof:

lim  ' y ' i p ( P k,p, oo) =  lim  V 'p ( 2  -  p ) ( l  -  p )2(fc ^  p(2 -  p ) ( l  -  p )2(*
m —>oo * m —+oo *

A : = l  k — 1  k=  1

= ?(2 -  p) f ;  [(i ~ P?]k- '  =  = i- (s i)
fc=i ^

C la im  2 : T he  f irs t p a rt o f Eq. (4 .17) fo llow s from  the  p ro o f o f Eq. (4.8). The second p a rt 

o f Eq. (4.17) holds because

lim  \ ( l -  ' =  lim  — ( l -  ^ V  =  0 (S .2)
k —yoo k  \  k  J  k —yoo k  —  1  \  k  J

where we notice limjt-^oo ( l  — £ ) *  =  e- 1 . Eq. (4.18) fo llow s from  the  proof o f Eq. (4 .9).

C la im  3 : Eqs. (4.19) and (4.20) fo llo w  im m ed ia te ly  fro m  Eqs. (4.11) and (4.10) by le ttin g

m  —> oo.

C la im  4 : Eqs. (4.21) and (4.22) are the  im m ed ia te  resu lts  from  Eqs. (4.13) and (4.12) by

le tt in g  m  —> oo. T h is  completes the  p roo f. ■
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A P P E N D I X  T

P R O O F  O F T H E O R E M  5.2.1

P r o o f .  For convenience o f p resen ta tion , we s ta r t  w ith  C la im  2 .

C la im  2 : A n  unbalanced m u ltica s t tree o f  he igh t m  in D e fin ition  5.2.1, consists o f a set o f 

2m  — 1 links, £  =  {£ x , L 2, £21 £31 £ 3) • • ■ > L'm, £ m}, which are labeled as in  F igu re  5.1(a). 

Since 0 <  pi < 1, i t  is possible th a t a ll o f  these 2m  — 1 links are no t m arked, and hence, 

no d o m in a n t bottleneck path  exists in  the  tree. On the o ther hand, i f  a t least one o f these 

2m  — 1 links is marked as the  bottleneck lin k , then, by D e fin ition  5.2.2, the  shortest path 

w h ich  conta ins the marked lin k (s ) is the d om ina n t bottleneck. A ccord ing  to  the  s truc tu re  

defined by D e fin itions  5.2.1 and 5.2.2, the  d om inan t bottleneck path is unique. Thus, there 

is a t m ost one dom inan t bo ttleneck pa th .

B y  D e fin itions  5.2.1 and 5.2.2, the  p ro b a b ility  th a t becomes the  d om ina n t bottleneck 

pa th  is equal to  the p ro b a b ility  th a t  X \  =  1 o r  X '2 =  1, which yie lds the  f irs t p a rt o f 

Eq. (5 .12) as follows:

V'cK-Pi. m) = P r {X i  =  lU A r2 =  l }  =  l -  P r { I 1 =  0 n X ^  =  0 }

=  1 -  P r  { X x =  0 }P r  { X '2 =  0 | X t =  0 } ( T . l )

C onsider pa th  Pk, 2 <  k < m  — 1 . Since the last tw o  links are Lk and L'k+l (see 

F ig u re  5 .1 (a )), the p ro b a b ility  th a t  Pk becomes the dom inant bottleneck p a th  is equal to  

the  p ro b a b ility  th a t X , =  0, V i £ { 1 ,2 , - - -  , A; — 1}  and X[  =  0, V i 6 {2 , 3, • • • , & }, and
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X k = 1 o r X  

ipd(Pk,m)

'k+l =  1, which leads to  

=  P r |  f ] { X i  = 0, X '+1 = 0 } n  { X k  = 1 u  X 'k+1 =  1 } j

=  P r  {  =  0 ’ =  0 } , ^ T fc =  l |

- fP r  {  f ] { X t =  0 ,X '+1 =  0 }, X'k+l =  l j

- P r  {  f ] { X i  = 0, X '+1 =  0 } , X *  =  1, X'k+l = 1 j

=  P r |  p  =  0, X '+1 =  0 } , X *  =  1 }

- P r  |  f ] { X i  = 0, X '+1 = 0 } , X fc =  1, X'k+l = l |

+ P r  |  f ] { X i  = 0, X <+1 = 0 }, { X k = 0 U X k = 1 }, X £ + l =  1 j

r k — l

P r |  p  { X i  = 0, X '+1 =  0 }, X k = 1 }

+ P r  |  f )  { X i  = 0, X '+1 = 0 }, X *  =  0, X'k+l = 1 j  

P r { X i  =  0 } P r { X 2 =  0 | X i  =  0 } P r { X 3 =  0 | X 2 = 0 } • • •

• P r { X fc_ 1 =  0 | X k- 2 =  0 } P r { X '  =  0 | X x =  0 }

• P r { X '  =  0 | X 2 = 0 } • • • P r { X ^  =  0 | X fc_x = 0 }

• P r { X fc =  1 | X * - !  =  0 } +  P r { X x =  0 } P r { X 2 =  0 | X x = 0}

•P r { X 3 =  0 j X 2 =  0 } • • -P r { X k =  0 | X k- i  =  0 } P r  { X '2 = 0 | X x = 0 }

•P r { X 3 =  0 | X 2 =  0 } • • -P r {X'k =  0 | X k. x = 0 }

■Pr {-Xfc+i =  1 | Xk  = 0 }  (T .2 )

=  P r { X l =  0 }P r  {X'k = 0 | X * ^  =  0 } P r { X jk =  1 | X k- i  = 0}

+ P r  { X k =  0 | X k —i = 0 }P r {X £ +1 =  1 | X fc =  0)

• n | p r { X t+1 =  0 | X i  = 0 } P r { X '+1 =  0 | X t =  0 } } ,  (T .3 )
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w here Eq. (T.2) is due to  C 3  and C 4  of Definition 5.2.1. Thus, the second p a rt of Eq. (5.12)

follows from Eq. (T .3).

T he  p ro b a b ility  th a t Pm becomes the dom inan t bottleneck path  is equal to  the prob

a b ility  th a t X{ = 0, V i € {1 , 2, • • • , m  — 1} and X t- =  0, V i G {2 , 3, • • • , m } ,  and X m = 1, 

w hich im plies:

M Pk,m ) =  P r j f l i X .  =  0 ,X '+1 =  0 } , X m =  l }
 ̂ i= i  '

=  P r { X l = 0 } P r { X m = 1 | X m_ ! =  0 } P r { X ^  =  0 | =  0}

• Y l  { P r { X i+1 = 0 \ X t = 0 } P r { X '+1 =  0 | ^  =  0 } }  (T .4 )
t= i '

where Eq. (T .4 ) fo llow s from  the p roo f o f the f irs t te rm  o f Eq. (T .2 ) and is also due to  C 3  

and C 4  o f D e fin ition  5.2.1. Hence, the th ird  p a rt o f  Eq. (5.12) follows from  Eq. (T .4 ). 

C la im  1 : The p ro o f o f Eq. (5.10) follows from  the  p ro o f o f the f irs t and second parts o f  

Eq. (5 .12). Now, we prove th a t the p robab ility  mass fun c tio n  defined by Eq. (5.10) satisfies
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the  fo llow ing  norm aliza tion  cond ition

m

l im  'V '  V’dC-Pfc, oo)
m —¥OQ k=l

=  lim  { 1  -  P r { X i  =  0 }P r { X 2  =  0 | =  0 } +  P r =  0 }
771—►OO I

- P r { X ' =  0 | Xx = 0 }  

• P r { X ' =  1 | X 2 =  0 } 

-P r{X 2  =  0 | X i  =  0 }

P r  { X 2 = 1 | X 1 =  0 } +  P r { X 2 =  0 | X i  =  0 }

+  P r { X i  =  0 } P r { X 2 = 0 | X l =  0 }

P r { X '  =  0 | X 2 =  0 } P r { X 3 =  1 | X 2 =  0 }

+ P r { X 3 = 0 \ X 2 = 0 } P r { X '  =  1 | X 3 =  0 }

+ P r { X i  =  0 }

+

P r { X 2  =  0 | X i  =  0 } P r { X '  =  0 | X l = 0 } 

• P r { X 3 =  0 | X 2  = 0 }P r  {X' z =  0 | X 2  =  0 } P r { X 4 =  0 | X 3 =  0 } 

• P r { X ' =  0 | X 3 =  0 } • • - P r { X m_ i =  0 | X m_2 =  0 }

- P r { * m - x = 0 | X m_2 =  0 } P r { X ^  =  0 | X m_ 1 =  0 }

P r { X m = 1 | X m_x =  0 }  +  P r { X m =  0 | X m_! =  0 }

• P r { X ^ +1 = l | X m =  0 }  |  

lim  j  1 -  P r { X 1 = 0 } P r { X '  =  0 | X i  =  0 } +  P r {X x  =  0 }7i  —y oo I

• P r { X j  =  0 | X i  =  0 } ( l  -  P r { X 2 =  0 | X i  =  0 } )

+ P r  { X 2 =  0 | X i  =  0 } ( l  -  P r { X a  =  0 | X 2 =  0 } )  

+ P r { X x =  0 } P r { X 2 =  0 | X t =  0 } P r { X ^  =  0 | X x =  0 } 

• P r { X ' =  0 | X 2 =  0 } ( l  -  P r { X 3 =  0 | X 2 =  0 }^  

+ P r { X 3 =  0 | X 2 =  0 } ( l  -  P r { X 4 =  0 | X 3 =  0 }^

+  ■ (T .5)

where Eq. (T .5 ) continues on the next page in Eq. (T .6 ) as follows.
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T he equation  Eq. (T .6) th a t follows below continues from the Eq. (T.5) in th e  last page.

+  --- +  P r { X !  =  0 } P r { X 2 =  0 \ X l =  0 } P r { X '  =  0 | X x =  0 } 

• P r { X 3 =  0 | X 2  =  0 }P r  { X 3 =  0 | X 2  =  0 } P r { X 4 =  0 | X 3  = 0 } 

• P r { X ' =  0 | X 3 =  0 } • • - P r { ^ m_ ! =  0 | X m_2 =  0 }

(T .6)

- P r { X ^ _ 1 = 0 | X m_ 2 =  0 } P r {X'm =  0 | X m- i  =  0 }

^1 — P r {Xjn  =  0 | X m- i  =  0 } )  + P r { X m =  0 | X m_ 1 =  0 } 

( l - P r { ^ + 1 = 0 | X m =  0 } )  }  

=  lim  ( l  -  P r { X i  =  0 } P r {XL  =  0 | X i  =  0 } +  P r =  0 }
m —> 0 0  ^

•Pr { X 2 = 0 | X i  = 0} 1 -  P r { X 2 =  0 | X x =  0 }P r { X '3  = 0 | X 2  =  0 }

+ P r { X r =  0 } P r { X 2 =  0 | X x =  0 }

•Pr { X '2  = 0 | X i  = 0 } 

• P r { X ' =  0 | X 3 =  0 }

Pr { X '2  =  0 | X 2  =  0} 1 — Pr { X 3 =  0 | X 2 =  0 }

P r { X 2 = 0 | X i  = 0}+  • • •  +  P r { X 1 =  0 }

- P r { X ' =  0 | X i  =  0} P r { X 3 =  0 | X 2  =  0 } P r { X '  =  0 | X 2 =  0 }

•P r { X 4  = 0 \ X 3  = 0 }P r  { X 4 =  0 | X 3 =  0 } • • • P r { X m_ 1 =  0 | X m_ 2 =  0 }

•Pr = 0 | X m_ 2 =  0 } P r { X ^  =  0 | X m_ 1 = 0 }

1 -  P r { X m = 0 | X m_ ! =  0 } P r { X ^ +1 =  0 | X m =  0 }

=  lim  1 1 —
m —> 0 0  I

}
P r { X i  = 0 } P r { X 2 =  0 | X i  =  0 }P r { X ^  =  0 | X l = 0 } 

P r { X 3 =  0 | X 2 = 0 }P r  { X ^  =  0 | X 2 =  0 } P r { X 4 =  0 | X 3 =  0 } 

P r {X'A =  0 | X 3 =  0 }  • • -P r =  0 | X m_2 =  0}

P r { X ^ _ 1 =  0 | X m_2 =  0 }  P r - p C  =  0 | X m_! =  0}

P r { X m = 0 | X m. x =  0 } P r p C + i  =  0 | X m =  0 } |  

J i m ^ l  -  P r { X \  =  0 } P r { X ^ +1 =  0 | X m =  0 }

m—1n
«=i

P r { X ,+1 = 0 \ X i  =  0 } P r { X '+1 =  0 | Xi  = 0}

223
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



= l - P r { X 1 = 0 }  lim  P r { X ^ +1 =  0 | X m =  0 }

m —1

lim  TT
7 1 —> 0 0  X. A.

1 = 1

P r { X i+1 =  0 | X i  =  0 } P r { X '+1 =  0 | X t =  0 } (T .7)

B u t since the  lim itin g  term s o f Eq. (T .7 ) sa tis fy  the fo llow ing facts:

0 <  lim  P r { J C +1 =  0 [ X m =  0 }

m —1

lim  J J
m —foo -Li=l 

fc-1
<  lim  TT

fc->oo **■
1 = 1

P r { X t+1 = 0 \ X i  = 0 } P r { X '+1 =  0 | X ,  =  0 }

T *-1
P m a x P r, =  lim

A:—►oo
P m a x P r]

= o (T .8)

w here w ith o u t loss generality we assume there  exist subsequences1 such th a t 0 <  P r { X ^ i  =  

0 | =  0 }  <  1 and 0 <  P r { X ^ . +1 =  0 | X mi = 0 } <  1 for ni < n 3 < tl3 < ■ ■ - and

m i <  m 2 <  ” 73 <  • • •, and

0 <  Pmax =  m ax { p r  { X i+ i  =  0 | X t =  0 } j  <  1;
* 6 { n i ,n 2 .— ,00}  J

0 <p'max= m ax { p r { X ^ 1 = 0 | X 1- =  0 } } < l ;

(T .9)

T hus , we o b ta in :

lim  Y  ipd(Pk, 00) =  1.
7 i - 4 n o  • ^

(T.10)
fc=i

T hus, Tpd(Pki oo), V k 6 {1 , 2, • • • , 00 }  defines a va lid  p robab ility  mass function . In  addition, 

E q. (T .1 0 ) also implies th a t there ex is t a t least one dom inant bottleneck path a s m - >  00. 

O n the  o th e r hand, based on the tree s tru c tu re  defined by D efin itions 5.2.1 and 5.2.2, there 

is a t  m ost one dom inant bottleneck pa th . T hus, there exists one and o n ly  one dom inant 

bo ttleneck  pa th , which completes the  p roof. ■

l T h e  case fo r P r { X t+ i =  0 | X i  =  0} =  1 a n d  P r { X f +1 =  0 | X i  =  0} =  1, Vt, is tr iv ia l, an d  it is easy to  
p rove th e  th e o re m  still holds for the  triv ia l case.
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A P P E N D I X  U

P R O O F  O F  T H E O R E M  5.3 .1

P r o o f .  C la im  1: Consider lin k -m a rk in g  states X t and Xi+i over links Li and Li+i for 

i  =  1, 2, - • •. Using the p a r tit io n  ru le, we can w rite  the  M arkov chain { X t } ’s s ta te  p ro b a b ility  

( fo r  X{+i — 0) a t lin k  L l+ i  as follows:

P r ( X t+1 =  0 }  =  P r { X i  = 0 }P r  { X t+1 =  0 | =  0 }

+ P r  { X i  = l } P r  { X i+1 = 0 | X t =  1 }. ( U . l)

B y  defin ing

u/W =  P r { X i+l =  0 | X i  = 0 }  and =  P r { X t+l =  0 | X ,  =  1 }, (U .2)

E q. ( U . l )  reduces to

w (i) __ 1 ~  Pi t 1  (U .3)
I - P i  1 - n  K J

w hich  defines a fundam enta l re la tionsh ip  between the  tw o cond ition  d is tr ib u tio n s  and

fo r  the  given m arg inal m a rk in g  d is tr ib u tio n s  pi and pt+1 by the func tion  / ( • )  as follows:

«,(*) =  / ( UW ) ^  1 ~ -P-i+1. ---------------------------------------------------------- (U .4)
1 -  Pi  1 -  Pi

O u r goal is to  find  a general system  fu n c tio n a l

u/W =  <p(at-,p t-,p t-+ i ) .  (U .5)
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[» " '=  P r ( X . .  = 0 | JC=0> 
! c “’= P r< X ..1= 0 |X .=  I>| 1 ~ P -

' “ P.

CASE 1: P.  >  P..
1 -P .

1 -P .

1 -P ..
1 -P .

|io “'= P r(X ..,= 0 |X = O I j 
i c “'= P r(X ,.l = 0|.Y, = ll I

1 -P .

1-P..
1 -P .

(a) C A S E  1; pi > px+i (b) C A S E  2: pi < pi+i

Figure U .l: Markov-chain dependency-degree modeling for C A S E  1 and C A S E  2

which expresses the conditional distribution as a function of the Markov-chain dependency- 

degree factor cti £ [0, 1], and the marginal probability distributions pi and pt+i.

Then we can solve for th e  upper and lower bounds for =  (p(ai,Pi,Pi+i) such th a t 

the following three constraints are satisfied:

C l .  ^ (vjW, v ^ )  | wM = where /( • )  is defined in Eq. (U.4);

C 2 . > v ^ :  because the Markov chain {X,} is positively dependent (see Defini

tion 5.3.1);

C 3 . 0 < < 1: because are both probabilities.

We need to consider the following two cases, depending on px > pi+ 1 or p, < pJ+i-

C A S E  1: pi > pi+1 . To help present the proof, Figure U -l(a) plots the derived feasible

solution regions, under the above three constraints C l ,  C 2 , and C3, for C A S E  1 in a  2-

dimensional space spanned by and wW as the horizontal and vertical axis, respectively.

C l  s ta tes  th a t all solution points must be on the straight line defined by =  / ( «W) =

 ----??—— ------—v(‘)- C 2 says th a t all solution points m ust be within the region between
1 -  pi I - P i

the positive half axis of and the 45° straight line =  t/M (the shaded area in 

Figure U .l (a)); C 3 requires th a t all solution points must be within the unit square area 

■urW £ [0, 1] and vM £ [0, lj.

226

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Applying C l  through C 3 , the solution point set for lie between points A

and B  along the straight line w W =  f ( v M) =  --El+1.-------El— ^(0. After some algebraic
1 — Pi 1 -  Pi

manipulation, we can show th a t the projection points of A  and B  onto u(*) and w M axises

are = 1 ,tu ^  =  1 — Pi+i and = — —— , v*g =  1 — Pi+i, respectively.
Pi

Then, the projection points of A  and B  onto the axis give u/M’s upper bounds u/mox 

and lower bound w ^ in, respectively. Likewise, the projection points of A  and B  onto the 

t/(*) axis yields uM’s lower bounds and upper bound UmLc, respectively. T hat is,

(») (0 -tWJ in =  WB = 1 -P i+ i;

-J*') _  -JO _  .
u/m o i — A  — *

l - P i+ i  <  P r{ A t+1= 0 |A , =  0}< 1, (U.6)

which proves the first part of Eq. (5.13). Similarly,

,(«) _  „(0 _  P t-P i+ i.

"  - < P T { X i+1 = 0 \X i = l } < l - p i+l, (U.7)

v ' • =  v . =m tn  A
Pi  „ Pi-Pi+ i

^ m a x  — — 1 — P i+ i J

which leads to the first p art of Eq. (5.15).

C A S E  2: pi < pt+ i. Figure U .l(b) plots the derived feasible solution regions, under the

three constraints C l  through C 3, for C A S E  2 in the same axis-coordinate system. Using

constraints C l  through C 3  we obtain similar results to those under C A S E  1 . However,

the straight line w^  =  f ( v ^ )  =  El+ l  El— v(*) intersects with the w ^  axis a t point
1 -  Pi 1 -  Pi

smaller than 1 while C A S E  l ’s corresponding intersection point is larger than 1, because 

Pi < Pi+i. This requires recalculation of the changed projection points of straight line 

between A  and B  onto v and w W axises, which are shown to  be w V  =   Elll. »J0  —Wh =
1 - Pi

1 -  Pi+i and = 0, =  1 -  pt+i, respectively.

Thus, the new projection points of A  and B  onto the w M and axises yield C A S E  2 ’s 

upper and lower bounds for w ^  and respectively. T hat is,

(0 (0 ■> wrnin = WB = l - P i+ i ;
1 -  Pi+i= »  l - p I+1 < P r { X i + 1  = 0 \X i = 0} < (U.8)

(0 (0 1 “  Pt+ i Ptt±  '  —  711' '      1____-
A ~  1 _  I

1 -  P i
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which proves the second p a rt o f Eq. (5.13). Likewise,

« «  =  » «  =  0; m m  A  >

(0 (*) 1Umax — Uq — 1 Pi+ 11

0 < P r { X ,+1= 0 |X t =  l} <  l - p t+1, (U.9)

which proves the second p a rt o f Eq. (5.15).

Notice that adding both sides of Eq. (5.13) to those of Eq. (5.14), and Eq. (5.15) to 

those of Eq. (5.16), equals 1, respectively. We expected this result, because they are two 

mutually-complement events and must satisfy the normalization condition, i.e., P r{ X t+i =  

0 | X i = 0} +  P r{X £+1 =  1 | X t- =  0} =  1 and P r{X t+1 =  0 | =  l}  +  Pr{JTt+1 =  1 j X i  =

1} =  1. However, we need to  prove th a t this still holds under the  proposed Markov-chain 

dependency-degree model by independently proving Eqs. (5.14) and (5.16). For this, we 

apply the partition rule again over the s ta te  probability of =  1:

P r{ X t+i =  l}  =  P r{ X t =  0}Pr{X t+1 =  1 | X t =  0}

+ P r  {X i =  l}P r { * i+1 =  1 | X i = 1}- (U.10)

By defining

tZ7(,) =  P r {A " t+ i =  1 I X i  =  0 } and t/W =  P r { X t+1 =  1 | X i  =  1}, ( U . l l )

Eq. (U.10) reduces to

=  m i  E L -ip)
i  -  pi i - P i

Thus, the fundamental relationship between w and v W is given by

(U-12)

t  7(5*0) t  JK±1 K _ b (0 . (U.13)
1 Pi l Pi

We can now solve for the  upper and lower bounds for subject to  the following three 

constraints:

C l .  (w (* \v(1)) E  ̂(w^l\ v ^ )  | vjW =  /(jjW ) J: where /(• )  is defined in Eq. (U.13);
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! 5 “’= P r < x . . =  11 AT,=0) 
! tT-= P r (JK-..,= 11 JC,= 1)

1 - P ,

I CASE 3: Pi > P . . , !

1> 1 -P .1 - P .

( ^ “'= P r (X ..* l |X .= 0 »  
I c " '= P r (X .,=  I |X = H

P...
1-P .

Iff <o
p .. , -  p.

p...

I - p .l - p ,

(a) C A S E  3: p, > pi+i (b) C A S E  4: p t  <  p i + i

Figure U.2: Markov-chain dependency-degree modeling for CASE 3 and C A SE  4

C 2. because the Markov chain {A-,} is positively dependent (see Defini

tion 5.3.1);

C 3 . 0 < ujW, <  1: because are probabilities.

Figure U.2 plots the derived feasible solution regions, under the three constraints C l  

through C3 which also generate two different cases fCASE 3 and CASE 4 . depending 

on pi > pi+ 1  or pi < pi+i, respectively) as follows.

C A S E  3: pi > pi+i . Figure U.2(a) plots the derived feasible solution regions, under the

above three constraints C l ,  C 2, and C 3, for C A SE  3 in a 2-dimensional space spanned

by tjM and as the horizontal and vertical axis, respectively. C l  states th a t all solution

points must be on the straight line defined by uK*) =  fC u ^)  =  -------- —— iK*); C 2 says
1 -  pt I -  pi

th a t all solution points m ust be within the  region between the positive half axis of v M and

the 45° straight line =  tfW (the shaded area in Figure U.2(a) — Notice th a t constraint

C 2  is opposite to C 2, which makes the feasible solution area (shaded area in Figure U.2)

flip down to the area between u ^ ’s positive-half axis and 45° line); C 3 requires th a t all

solution points must be within the unit square area w M £ [0, 1] and 6 [0, lj-

Applying C l  through C 3 , the solution point set for {(ujM, u ^ )}  lie between points A

and B  along the straight line w W =  f ( y ^ )  =  ^ I+1-—— After  some algebraic
1 -  Pi 1 -  Pi

229

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



manipulation, we can show th a t the projection points of A  and B  onto t/W and wW axises
—(i)  (») n , —(*) —(0 Pi+l . - lare =  pt+1, u iy  =  0 and =  Pi+i, =  ------, respectively.A O A D
Then, the projection points of A  and B  onto the u/W axis give ujM’s upper bounds w $ ax 

and lower bound w ^ in, respectively. Likewise, the projection points of A  and B  onto the 

tj(*) axis yields u ^ ’s lower bounds and upper bound u&Lx> respectively. That is,

w ^- = w— - 0: mtn B

— (*) — (*)®mox =  V l i J  =  p ,+  i ;

0 <  P r{ X i+1 =  l |X t =  0 } < p i+1, (U.14)

which proves the first part of Eq. (5.14). Similarly,

f « «  = « «  =  »■ ,•m in  A  P*+l>
= >  pi+1 < P r{Jfi+1 =  l | ^ i  =  l} <  — , (U.15)

*(*) _ ^ ) _ P i ± l .  Ptum ax  — "d” — iB pi

which leads to the first part of Eq. (5.16).

C A SE  4: pi < pt+i. Figure U.2(b) plots the derived feasible solution regions, under C l  

through C 3 for CASE 4 in the same axis-coordinate system. Using C l ,  C 2, and C 3, we 

obtain similar results to  those under CASE 3 . However, the straight line = f ( y W) =

Pl+1 ———v ^  intersects the t/M axis a t point larger than 1 while CASE 3 ’s corre-
1 -  pi 1 -  pi
sponding intersection point is smaller than 1, because p, < pi+i- This needs to recalculate

the changed projection points of straight line between A  and B  onto vW  and w axises,

which are shown to be w Q  =  p ,, w ~  =------ ----— and =  P i+ i ,  =  1, respectively.A  S  1 — p^ A o

Thus, the new projection points of A  and B  onto the and axises yield CASE 4 ’s 

the upper and lower bounds for w (*) and t/W, respectively. T hat is,

= g W =  gL+l - f t ;
m t n  B  1 _  p i  ’

1 ~Pi
_ ( t )  _  _ ( t j
^ m a i  — ^  A  — P t+ l i

Px+l Pi < P r{X 1+1 = l \ X i  = 0 } < p t+ l, (U.16)
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which proves the second part of Eq. (5.14). Likewise,

v^l\ = v ^ = p i+i; m tn  “ t - t - u

= >  Pi+i < Pr{X,-+1 =  l |X t =  l} <  1, (U.17)

U m ax  =  =  1 ;

which proves the second part of Eq. (5.16).

C la im  2: Since we want to  derive the function of

P r{ X i+1 =  xt-+1 | X i  =  Xi} = ip(cti,pi,pi+1), (U.18)

which can model all possible dependency-degrees between and X i,  we introduce a real

valued Markov-chain dependency-degree factor a , € [0, 1] by which we define an exponential 

average between the upper and lower bounds of Pr{.Xi+i =  x,+i | X i  =  Xi} derived in 

C la im  1 to evaluate the conditional probability distribution P r{ X t+ i =  x,+i [ X i  =  xt-}. 

T hat is,

P r{ X l+1 =  xi+l | X i = x,} =

0 =  P r {Xi+1 =  0 I X i = 0} =  W ^in +  Q, ^tUmax -  u>™n) , if Xi+l = 0  A x ,= 0

iZ;(0 = P r  {Xt+1 =  1 | X t =  0 } = w ^ m +  (1 -  or,) (u & L  -  u>™ln) , if *i+i =  1 A x , = 0

u(0 =  p r { jfi+1= 0  I X t =  l}  =  u ^ |ri +  (1 -  c*i) (u^Lx -  r& L) , if xt+1= 0  A xi =  l

t/W = P r {Xi+1 =  1 | X i = l }  = v £ in + ai ( v $ ax -  v £ t )  , if x t+i =  1 A x, =  1

(U-19)

where iu£;-n , tu^ax, u^(n , uj£'ax, w ^ in, w%ax, u ^ „ ,  and u£;ai are defined by Eqs. (U.6), (U.8), 

(U.7), (U.9), (U.14), (U.16), (U.15), and (U.17), respectively, depending on p, > pt+i or 

Pi < Pi+i-

Notice th a t because w and are probabilities of two mutually-complement events, 

and so are and in Eq. (U.19) we need to use two complementary dependency-degree 

factors oti and (1 — cti) to calculate the exponential average. According to  the C la im  1 

proved above, the conditional distribution of P r{ A i+1 =  £i+i I X i  =  Xi} must take a 

value between its upper and lower bounds. Thus, by tuning the Markov-chain dependency- 

degree factor a i from 0 to  1, Eq. (U.19) ensures th a t P r{A t+x =  Xi+1 | X i = x,} can take
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any possible values between its upper and lower bounds. This proves th a t there exists a 

real-valued number a , £ [0, 1] such th a t all possible dependency-degrees between random 

variables X i  and X t+i can be measured by the  Markov-chain dependency-degree factor

€ [0, 1].

Eq. (5.17) needs to be proved for all four different conditional distributions of P r  {X^+i =  

x t+ i | X i  =  respectively, each corresponding to  one of the four different combinations 

of (xi, Xi+i) where Xi, xt+1 £ {0, 1}. Here we only give the proof for P r {Xt+i =  0 | X i  =  0} 

and the proofs for the other three com bination cases (Pr{-Xi+1 =  1 | X i = 0}, P r{ X ,+j =  

0 | X i =  1}, and P r{X ,+i =  1 | X i =  1}), which are omitted for lack of space, can be 

obtained in the way similar to the proof for P r{ X t+ i =  0 | X i =  0} th a t follows below. To 

prove Eq. (5.17) for X{ =  Xi+i =  0, we also need to  consider the following two cases:

C A S E  I: pi > Pi+i. Using Eqs. (U.6) and (U.19), we obtain:

=  P r{X t+l =  0 | X i  =  0} =
1 -  pi+1, if ai = 0; 

1, if at = 1;

We prove two opposite directions of the i f f  condition as follows:

(U.20)

(U.22)

(U.23)

P r { X i + 1  =  0, X i  =  0} =  Pr {Xt = 0}P r {X i+l = 0 | X , =  0} =  P r { X t = 0}u»(i) (U.21)

P r{X i =  0}(1 -  Pi+i), if oti = 0;

P v{X i = 0}, if on = 1;

P r {X i  =  0}Pr {X i+l = 0}, if a t =  0;

P r {X i = 0}, if oti =  1;

T he first part of Eq. (U.23) says if c*i =  0, then  P r {Xt+i =  0, X, =  0} =  P r  {X t+i =

0 } P r{ X i =  0}, i.e., {X i = 0} and {X i+i =  0} are independent. The second part of

Eq. (U.23) says if ati =  1, then P r {Xt+ i =  0, X t =  0} =  P r{X t — 0}, implying th a t 

{ X i  =  0} and {X^+i =  0} are “perfectly” dependent. This is because P r{X ,+ i =  0 ,X i =

0} =  P r{ X t =  0} if and only if {X i = 0} is a  sub-event1 of {Xt+1 =  0}. Also, here { X i — 0}

l The identical event is the special case of sub-event.
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is a sub-event of { X t+i =  0} because pi > pi+1 implies P r { X i =  0} =  1 — Pi < 1 — Pi+i =  

P r { X l+1 = 0 } .

“«S=” : If {Xi+ i =  0} and {X, =  0} are independent, then P r{ X ,+i =  0 | AT* =  0} =  

P r{ X t+i =  0} =  1 — pi+1 =  wW  |a{=o for pt > pt+i, where the  last equation (1 -  p;+i =

|ai=o) is due to  Eq. (U.20). Thus, we obtain: cti = 0, which proves the first part of

Eq. (5.17). On the other hand, if {X t =  0} and { X +1 =  0} are perfectly dependent and 

because pi > p;+i, then {Xi =  0} is a  sub-event of (X{+1 =  0} as shown in the above. This 

implies th a t if {Xi =  0} occurs, then {X i+i =  0} must occur under the positive dependence 

given by Definition 5.3.1. This means th a t P r{ X t+i =  0 | X i  =  0} =  1 =  w (*) |Q£=i for 

Pi > Pi+h where the last equation (1 =  |a£=i) is due to Eq. (U.20). Thus, we obtain:

Qi = 1, which proves the second p a rt of Eq. (5.17).

C A S E  I I ;  p. <  pi+ i. Using Eqs. (U.8) and (U.19), we obtain:

w y
1 -  p i + i ,  if a* =  0;
i - P.+1 ' u -2 4 >-, if a t =  1;

!»W =  P r{ X i+1 =  0 | X i  =  0} =

1 -  P i

The independent parts (c*i =  0) proof remain the same as in C A S E  I proved above. Now, 

we prove the i f f  condition for the perfect dependent part in the following two opposite di

rections.

If on = 1, then P r{ X t+1 =  0 ,X , =  0} =  P r{X , =  0 } P r{ X t+1 =  0 | X , =  0} = 

P r {Xi =  0}u;(‘) |Qi=1=  P r {Xi =  0} (  y  Z  ̂  )  =  (1 -  Pi) ( \ ~ _ v )  =  1 "  Pi+i = 

P r{ X t+1 =  0}. This says {X, =  0} and {Xt+1 =  0} are “perfectly” dependent, and in fact 

{X t+1 =  0} is proper sub-event of {X x =  0} because pi < Pi+i implies P r{ X i+i =  0} = 

1 -  Pi+i <  1 ~  Pi =  P r {X,- =  0}.

“< = ” : If { X t =  0} and { X I+i =  0} are “perfectly” dependent, then { X ,+ i =  0} is proper 

sub-event of { X t =  0} because P i  < P i + i ,  i.e., P r { X i+ i =  0} =  1 — Pi+i < 1 ~ P i  = Pr {X , =
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0}. So, P r { X t+i =  0 , X{ =  0 }  =  Pr{A"1+i =  0} =  (1 -  p ,+ i). But P r { X t+ i =  0 , X i  =  

0} =  Pr { X i  =  0 }P r  { X i+l =  0 | X t- =  0 }  =  (1 -  Pl+1) =  (1 -  Pl) =

0} [ -— E i± i j .  This implies th a t Pr{A"t+i =  0 | X i = 0} =  - — El£1 =  ^ (0  for
V 1 ~ Pi J 1 ~ Pi

Pi < Pi+i according to Eq. (U.24). Thus, we obtain a{ = 1, which proves the second part 

of Eq. (5.17). This completes the proof of Eq. (5.17) for the case of xt+1 =  0 and x, =  0. 

Eq. (5.18) can be proved in a similar way used to  prove Eq. (5.17).

C la im  3; Eqs. (5.19) -  (5.22) follow by plugging Eqs. (5.13) -  (5.16) into Eq. (U.19). Hence 

the proof follows. ■
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A P P E N D I X  V

P R O O F  O F T H E O R E M  5.4 .1

P r o o f . C la im  1: It follows directly from C la im  2 of Corollary 5.3.1 by letting pi = p\ =  p 

and oti =  a '  =  a  Vi £ {1, 2, • • •}.

C la im  2: Since tpd(Pk, a , P, to) is a  real-valued continuous function of p and differentiable 

for 0 < p < 1, we can take a partial derivative of ipd(Pk, a , P> m ) with respect to p and set 

it to  zero. For different ranges of k, we have the  following three cases.

C A SE  1 . k  =  1: Noticing th a t ipd(Pk, &,P, m )  |fc=i is a  strictly increasing function of p for 

a  G [0,1], and ipd(Pk, a ,p .m .)  |(fc=l p=l)=  1, i.e., ipd(Pk, a ,p ,m )  |fc=l attains the maximum 

value a t the boundary point p =  1, we obtain p* =  1, thus yielding the first part of

Eq. (5.27).

C A S E  2. k = m:

d i p d ( P k , a , P , m )

Solving Eq. (V .l) for the meaningful solution (root) w ith respect to  p under the constraint 

of 0 <  p <  1, we obtain:

p* =  arg max ipd ( P k , P , m )  =
0<p<l

m — ( m — 1) q — \ / [ m  — ( m -  l ) a ] 2— (1 — a ) ( 2 m — 1) 
(1 — n ) ( 2 m -  1)

(V.2)

which is unique and gives the second p a rt o f the  Eq. (5.27).
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C A SE  3. 2 <  k < m  -  1: 

dTpd(Pk,<*,p, m )
dp =  X1 “  2p)(2 -  P +  a P) -  (1 -  “ X 1 ~ P)p][l “  (1 “  a )p]

2 f c -3

- ( 1  -  a ){ 2 k  -  3)(1 -  p)p [2 -  (1 -  a)p][ 1 -  (1 -  a)p]2k~A = 0 (V.3)

Reducing Eq. (V.3), we get Eq. (5.28).

C la im  3 : Since i>d(Pki P, m ) is a  real-valued continuous function of a  and differentiable 

for 0 < a  <  1, we can take a partial derivative of i/>d{Pk, a, p, m ) with respect to a  and set 

it to  zero. For different ranges of k, we have the following two cases.

C A SE  1. 2 <  k  < m  — 1 and k >

d i / J d ( P k , a , P ,  m )

1
-  +
2 p (2  -  p)

 0^----------  =  b (! -  Q) -  (2 -  P +  <*p)][l -  (1 -  o)v\2k~Z

+ (2 k -  3)(1 -  a)p[2 -  (1 -  a)p][l -  (1 -  a)p ]2fc" 4 =  0 (V.4)

Solving Eq. (V.4) for the root with respect to  a  which is unique and noticing a > 0, we

obtain:

a * =   ----  -h — \ / l ------— I but a* >  0 and k must be an integer, so we have:
p  p V 2 k — 1

k >
1
-  +
2 p(2 -  p)

which gives the first part of Eq. (5.29). 

C A SE  2. k  = m  and k  >

dj>d(Pk, a ,P , m) 
d a k—r

= (1 — p)p*| (2m — 3)(1 — q)p — [1 — (1 — a)p] j- =  0 (V.5)

Solving Eq. (V.5) for the root with respect to  a  which is unique and noticing 0 < a  < 1, 

we obtain:

or* =  1 -
2(m  — l)p

; but a* > 0 m ust hold and m  must be an integer, thus we have:

m  > 1 +  ^
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which is the second part of Eq. (5.29) as m  = k.

C la im  4 : Letting i(;d(Pk , a ,p ,m )  | Q=0 =  i>d{Pk,ct,p,m ) | a=Q0I we get

? (2 ~ ?)(1 ~ P) =  (1 -  a o )(l -  p)p[2 -  (1 -  c*o)p][l -  (1 -  <*o)p] 

Solving Eq. (V.6) for the root with respect to  k  which is unique, we obtain:

r  l0g V(1 -  c.o)[2 -  (1
log 1 - 11 -  X *

1 -  p

2k—3 (V.6)

(V.7)

Taking the integer part of k, we obtain Eq. (5.32).

On the other hand, because to < oo, the  multicast-tree height to must be large enough 

to  ensure the existence of k. To derive the lower bound of m, let k = m  and also 

i ’diPm, a , p, to) | a=0 =  ipd{Pm, or, p, m) | Q=Qo, we get

P(1 -  P) 2 =  (1 -  <*o)(l ~ p)p[l -  (1 -  «o)p] 2 m — 3 (V.8)

Solving Eq. (V.8) for the root with respect to  m , we obtain: 

log
t o  =

1
(1 -  «o)

log 1 -  (1 -  a0)p 
1 - p

+ 1.5 TO >  TO +  1 =
log

(1  -  Oo)

log 1 -  (1 -  a 0)p 
1 - p

+  2.5 , (V.9)

where the inequality of Eq.(V.9) is because 2 < k  < to — 1, and we need to > t o + 1 > A :  +  1. 

Thus Eq. (5.30) follows.

Now, we prove Eq. (5.31) in the following two cases:

C A SE  1 : k < k. By Eq. (V.7), we have

log
k < k =

Reducing Eq. (V.10), we obtain:

2 - p
(1 - a o ) [ 2 -  (1 -  a Q)p\ , , e 
. 1 — (1 — O!o)p +  L5'
log

(1 -  a 0)p 
1 -  p

(V.10)

(1 -  <*o)(l -  p)p[2 -  (1 -  ao)p][l -  (1 -  <x0)p]2k~Z < P(1 -  p)(2 -  p )(l -  P)2k~3, (V .ll)
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where, according to  Eq. ( 5 . 2 6 ) ,  the left-hand side of Eq. ( V . l l )  is i>d(Pk, “ > P> fn) | Q- ao and 

the right-hand side of Eq. ( V . l l )  is t/;d(Pk,a,p,m ) | c t = o -  Thus, the first part of Eq. ( 5 . 3 1 )  

follows.

C A S E  2: k  > k. Also by Eq. (V.7), we have

i / 2 ~ Plog
k > k  = -----— 2°)[?--------- ( \  a ° ^  + 1 .5 , (V.12)

log IT . ^  ~
1 - p

Reducing Eq. (V.12), we obtain

(1 -  a 0) ( l  -  p)p[2 -  (1 -  ao)p][l -  (1 -  a 0)p]2fc- 3 > p ( l  -  p)(2 -  p )( l -  p)2* '3, (V.13)

where, according to  Eq. (5.26), the left-hand side of Eq. (V.13) is i>d(Pk, 0 ‘,P ,’’rL) I a=a0 and 

the right-hand side of Eq. (V.13) is tpd(Pk, P, m ) \ a=o. Thus, the second part of Eq. (5.31) 

follows.

C la im  5 : Eqs. (5.34) and (5.33) follow by plugging Eq. (5.26), and Theorem 3.4.l ’s

Eq. (3.1) and Theorem 3.4.2:s Eq. (3.6), respectively, into Eq. (V.14) th a t follows below:

m
r(m ) =  E [ r (m )]  = ^ r u(j, A)ipd(Pj, a ,p ,m )  (V.14)

i =  i

C la im  6 ; Eqs. (5.36) and (5.35) follow by plugging Eq. (5.26), and Theorem 3.4.l ’s Eq. (3.1) 

and Theorem 3.4.2’s Eq. (3.6), respectively, into Eq. (V.15) th a t follows below:

771

a 2 {m) = V a r[r{m )]  =  ] P [ r u(y, A)] 2 ipd(Pj, a, p, m)
j =i

-  ^ 5 ^ r u(j, A M K P j-.a .p .m )^  (V.15)

This completes the proof. ■
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A P P E N D I X  W  

P R O O F  O F T H E O R E M  5.5.1

P ro o f. C laim  1: Since the link-marking probability vector p = (Pi,p 'i,P 2 ,P 2 ,P 3 ,P3 , • ••) 

defined in Definition 5.2.1 and a  satisfy 0 <  p, =  p[ = p < 1 and 0 <  a , =  a '  =  a  < 1, Vi, 

respectively, {X,} becomes a homogeneous Markov chain, and its one-step s ta te  transition 

probabilities are fixed and independent of link numbers. The m atrix P  of one-step transition 

probabilities, which is defined by Eqs. (5.19) through (5.22) for a,- =  a  and p, =  p, Vi £ 

{1, 2, - • •}, is given by:

( W . l )

1 -  (1 -  <*)P (1 -  oOP
P  =  {Pik} = | P r  { X i+l = k \ X i = j } ^  =

(l-a)(l-p) o(l-p) + p

where j ,  k  6 {0,1} and Vi £ {1, 2, • • - }. Now, we prove Eq. (Y .ll)  for cases of n  £ {1, 2, ■ • • }x 

by mathematical induction.

1 It is easy to prove th a t Eq. ( Y . l l )  also holds for the trivial case of n  =  0. Based on the  definition of 
0-step link-marking s ta te  transition  probability, we have the following transition-probability  expression:

(W-2)

where j ,  k  G {0, 1} and Vr G {1, 2, • - • So,  Eq. (W .2) yields a  2 x 2 unit m atrix  I .  O n  th e  o ther hand, 
according to Eq. (Y .ll) ,  we have P ^  =  / ,  which is also a 2 x  2 unit m atrix. Thus, Eq. ( Y .l l )  also holds 
for n  =  0.
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Base Case: n  =  1. By Eq. (W .l), we have

1 — (1 — a)p  (1 — a)p

=  P {n)  | n = l

( l - a ) ( l - p )  a ( l  —p) +  p

where is defined in Eq. (Y .ll) .  Thus, Eq. (Y .ll)  holds for n — 1. 

Inductive Hypothesis: Suppose Eq. (Y .ll)  holds for n  =  q — 1, i.e.,

1 — ( 1  — a ( q  1) ) p  ( 1  — a ( q l ) ) p

(1 — a (q 1))( l — p) a^q 1̂ (1— p) + p 

and we need to prove th a t it also holds for n  =  q as follows:

l _ ( l _ Q(g-i))p ( l - a ^ - 1))p

p (q) = =

( l  — oĉ q 1̂ )(1—p) a(q ^ (1 — p )+ p  

1 — (1 — a)p  (1 — a)p

_ ( l - a ) ( l - p )  a ( l - p ) + p  

where P  is defined by Eq. (W .l). W ith a little algebra, Eq. (W.5) reduces to

* •>  =  {> S »} =

1 — (1 — a q)p (1 —a q)p

(W.3)

(W.4)

(W.5)

(W.6)

( l - a ‘I) ( l - p )  a 9( l  —p )+ p

Thus, Eq. (Y .ll)  holds for n  =  q. So, in general Eq. (Y .l l)  holds for n £ {0,1, 2, • • •}. 

C la im  2: Eq. (5.39) follows directly from Eq. (Y .ll) . To prove state j  (£ {0,1}) is ergodic, 

we need to prove th a t j  is positive recurrent and aperiodic. Clearly, j  is aperiodic (period 

d  =  1), but we need to prove j  is positive recurrent which is true if f  the following two 

conditions hold:

Condition 1: Iimsup p ^  > 0, and Condition 2 : lim 'S ''p ^}  =  oo,
_ . ______ J J  n-+oo f  *  J J

(W.7)
r = l
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But because j  is aperiodic, we have lim supn^ 00 = limn_>.00p ^ .  From Eq. (5.39), due 

to  0 <  p < 1 it follows th a t

lim sup p ty  =  Iim p ty  > 0
_ .   JJ  n —kr»r> JJ

(W.8)

for a  G [0,1], which proves the Condition 1 in Eq. (W.7). On the other hand, the 

Condition 2 in Eq. (W.7) also holds because from Eq. (Y .ll) , we have

71 UU UU

Iim ^  Poo =  5Z (1  “  P) +  5 1 pQn =  00’ (W.9)
r = l 71=1

and

(W.10)5 1  ^  =  _ p)Qn + J 2  p =  °°>
r = l  n = l  n = l

where 0 <  p < 1 and a  G [0, 1]. Thus, the two states of the Markov chain {X,} are ergodic. 

C la im  3: If a  G [0,1), i.e., a  /  1, implying {X,} is not perfectly dependent, then {Xt } is 

irreducible, and further the M arkov chain {X,} is ergodic because it is positive recurrent 

and aperiodic as proved in C la im  2 above. Then the ergodic M arkov chain {X,} has the 

unique limiting (equilibrium) sta te  probabilities which are determined by Eq. (Y .ll)  as 

follows:

7Tq = lim p ty  =  1 — p = P r {X i  =  0} and irx =  lim p = p = P r{X , =  1}(W.11)
n —> o o  J  n —> oo  J

where a  G [0, 1) and Vj G {0, 1}. Hence Eq. (5.40) follows.

C la im  4: If a  = 1, i.e., {Xt} is perfectly dependent, then {X,} has two isolated states (see 

Figure 5.3 where the transition probabilities between the two states become 0 when a  =  1). 

So, {X,} is not irreducible anymore, and thus is not ergodic. Furtherm ore, Eq. (Y .ll)  shows 

th a t the n-step probability m atrix  p (n) reduces to a 2 X 2 unit m atrix I  when a  =  1. Thus, 

the  equilibrium state probabilities of {X,} are determined by

-  A 7r = 7T0  7Ti =  lim p(n) =  lim M l )  Pi(1) P t " '1) =  lim
71—>00 M i )  M 1)

M i )  M i ) (W.12)
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where p(n) - Po{n) P i ( r a ) p (n x) denotes the vector of sta te  prob-P o ( l )  P i ( l )

abilities a t link n  (note th a t n  > 1 because the M arkov-chain’s index set consists of the 

link sequence numbers n  instead of tim e variables and thus the  initial value of n  is 1; also

note th a t by Eq. (Y .l l) ,  p(°) =  I  which is a  2 X 2 unit m atrix), and 0nd ]  o, f i t  are 

the initial s ta te  probabilities of the tw o states, which are generally arbitrary  and thus not 

unique. However, since the initial s ta te  (n  — 1) probabilities of each state  are equal to the 

marginal link-marking probabilities in the  cases addressed in this chapter, so

A
7T = 7T0  7Ti P o ( l )  P i ( l )

= : P r{X i = 0} P r { X i  =  1 } = 1 - p  p

still holds. This completes the proof.
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A P P E N D I X  X

P R O O F  O F T H E O R E M  6.2.1

P ro o f . Since the primal-optimization problem ’s objective functions, given by Eq (6.4) and 

Eq (6.4) for P  and P*, respectively, are exactly the same, v/e only need to prove th a t the 

optim al solutions for P  and P* are the sam e. Letting F  and !F* be the feasible solution 

sets of the  primal-optimization problem P  and P*, respectively, we have

( X . l )
sesm

^ = ^ ( r i , r 2, - - , r s )  | ^  r , - / ! ^ 0 , V £  e  £ *  = {1,2, • • • , L*} > . (X.2)
5 6  S ( l )  )

Using the definition of JF* given by Eq. (6.3) and combining Eq. (X .l) and Eq. (X.2), we 

obtain

L* C C = >  T*  C T .  (X.3)

On the o ther hand, according to the definitions of P  and P* and their constraints given 

by Eqs (6.2) and (6.5), respectively, the prim al-optim al solution of P  and P* must be de

term ined by the m ost congested paths which are defined by Eq. (6.3) and condition C 4  in 

Definition 6.2.1. Therefore, the prim al-optim ization solutions for both P  and P* m ust lie 

in T * . This implies th a t the primal-optimization solutions for both P  and P* are equal by 

Eq. (X.3), completing the proof. ■
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A P P E N D IX  Y

P R O O F  OF T H E O R E M  6 .2 .2

P ro o f . C la im  1: Applying the Lagrange Duality Theory [80,81,106] to the primal-

optimization problem P* specified by Theory 6.2.1, we define the Lagrangian function 

L(r, A,): dis+L" i— >■ 5ft, as follows:

L{r, A.) =  U .(r.) (Y-1)
aes tec-  \ae.S(*) /

where A, =  (A i,--- , A^-) is the Lagrange-multiplier vector and (^2a£S(t)r a ~ V-i) — 

W e  C*, is the constraint vector specified in Definition 6.2.2. Noting the fact tha t

E E ^ ' .  =  E  E  A< r> <Y -2 >
/€£* s£S(l) a&S l£Ck. (*)

we can reduce Eq. (Y .l) , which leads to

L{r, A.) =  Y ,  f U^ r>) -  r * Z  ^  ] +  H  (Y.3)
ses \  ieck.(a) J tec'
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The objective function of the dual optim ization problem can thus be obtained [80,81] 

through the  Lagrangian function as follows:

ZT(A.) =  max L(r, A*) (Y.4)

=  r  1 / ^ 5  [ & . { ? . )  - T .  S  ( Y 5 )
J ” \  teck.(s) J  eec- )

=  S r 1 u *(r °) - r * S  x * | +  S X i ^ 1 (Y-6)
" 3 (  l £ C k .{a) J l e C ’

=  +  (Y-7)
*e£*

where

B * A K -)=  max {Ua{ r . ) - r . \ i . }  and A£. =  V  A,. (Y.8)
r , e i , , s £ S  * — '

£ £ £ * •  ( a )

Then, the  dual optimization problem for the  multicast flow control is

D*: min £>*(A.) (Y.9)

which yields the desired result for Claim 1.

C la im  2: Since U3 (r3) is chosen to be strictly  concave, ensuring th a t Ua{rs) is continuous, 

and the feasible solution set is compact, P * ’s primal-optimal solution exists and is unique. 

Therefore, according to  the duality theory, the  D *’s dual-optimal solution also exists, is 

unique, and equals the P * ’s primal-optimal solution.

C la im  3: Since D*(A,) is transformed to  a  non-constrained optim ization problem by us

ing Lagrange multiplier, we apply the G radient Projection m ethod [81,107] to  solve the 

standard  minimization problem D*(A,), where the Lagarangian multipliers a t all links are 

adjusted in direction opposite to the gradient VD*(A,), th a t is, a t link I  6 £*, the La

garangian multiplier Ai  a t next time instance (t  + 1) is updated iteratively as follows:

A*(i +  1 )=  [a<(0 -  7 § ^  (A .(t))
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The gradient vector V.D*(A.) of the dual objective function is determined by

VD*( A) =

/  s d *(a(0 )  \
dXx

3D *(A (0)
ax2

(Y .ll)

SD*(A(0)
\  axL. /

where each term  in the column vector given by Eq. (Y .ll)  can be derived as follows. Using 

Eq. (Y.6), for Vs 6 S ,  we obtain the gradient of the dual objective function a t time t at 

link I  G (s):

BD- ( % ( ( ) )  g
dX't max£ ,ei„ses

+  y ,
ie c m

V, ( r ,  ( X . ( t ) ) )  -  r, ( X . ( t ) )  J 2  A4
ie c k.{s) J

(Y.12)

tec* aes " teck.(s)

= y - l -  Y  r - ( * - ( 0 ) >  W G C* =  {1,2, • • • ,L*} (Y.13)
ses(i),ieck.(3)

where Eq. (Y.13) holds because for s' £ «S( )̂» '̂A:*(S,) is not a subset of £fc-(s) = >  V

£* € £fc*(s'), we have t '  £ Ck-(s) => £' ^  £, thus ^ r ~  = 0- P egging  Eq. (Y.13) into
■ tsm  a x ‘

Eq. (Y.10) to  calculate the new target value of Lagrange Multiplier for the next iterative 

step a t tim e (£ +  1), we have

Ai ( t  +  1) =  Ai(i) +  71  ^  T* )  ~ l* i
\ses(i) , teck. (a)

which proves Eq. (6.11) of C la im  3 .

, V £ e £ fc.(s ) ,

C la im  4; The sum ation term  B*(X%.) of Eq. (6.8) shows th a t the dual-optimization

problem D* is decomposed into 5  separable subproblems. Once the minimizer vector of
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Lagarangian multiplier A° is obtained by solving Eq. (6.7), the primal-optimal multicast 

flow-control rates r 0  can be obtained by each individual multicast-traffic source s  by solving 

Eq. (6.9) and Eq. (6.10), which is a  simple maximization and can be implemented locally 

based only on local flow-control information. This proves th a t D* decomposes the primal- 

optim al multicast flow-control problem P* into S  independent subproblems in term s of the 

objective aggregate-utility function.

On the other hand, Eq. (6.11) shows th a t the bandwidth constraints functions are also 

decomposed because each link i  6 £* only needs to know the local bandwidth contraint 

without needing to know fi? (I ' ^  I) of other link-bandwidth constraints, to iteratively 

search for the local optim al Lagarangian multiplier A*, as shown in Eq. (6.11). Thus, D* 

also decomposes the primal-optimal multicast flow-control problem in term s of the aggre

gate constraints. This completes the proof of Theorem 6.2.2. ■
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A P P E N D IX  Z

P R O O F  O F T H E O R E M  6 .4 .1

P ro o f . Using the definition of Fj, given in Eq. (6.19) and observing th a t ECN-bit markings

are all independent, we obtain

N  N  N r

E iFi?] =  ^ 2  ] 1 ~ n  m ax{y i =  2/ii *2 =  2/2, • • • ,  y n =  yn }
y j = 0 y 2 = 0  y n = 0  I

-exp N  -  max{yi = y i ,Y 2 = y2,- - -  ,Y n = yn } 

i f - V i

e  n ( " > ^
{ ( y i . J / a . — .Vn) I n> ax l < j < „ { y j } = t }  3 ~ l

(Z . l )

which yields the first line of Eq. (6.22). All the other equations for V ar  [F,,], E  [Fa ], V ar  [Fa], 

F [ F M], and Var[F,^\ of this theorem can be proved similarly, thus completing the proof. ■

248

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B IB L IO G R A P H Y

249

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B IB L IO G R A P H Y

[1] Van Jacobson, “Congestion avoidance and control,” in A C M  SIG CO M M , 1988.

[2] Xi Zhang, Kang G. Shin, D ebajan Saha, and Dilip D. Kandlur, “Scalable flow control 
for multicast ABR services in ATM networks,” IE E E /A C M  Transactions on Network
ing, vol. 10, no. 1, , February 2002.

[3] Xi Zhang and Kang G. Shin, “Delay analysis of feedback-synchronization signaling 
for multicast flow control,” IE E E /A C M  Transactions on Networking, Accepted for 
publication subject to  minor revision, 2001.

[4] Xi Zhang and Kang G. Shin, “Markov-chain modeling for multicast signaling delay 
analysis,” IE E E /A C M  Transactions on Networking, Accepted for publication subject 
to  minor revision, 2001.

[5] Xi Zhang and Kang G. Shin, “Statistical analysis of feedback synchronization signaling 
delay for multicast flow control,” in Proc. o f IE E E  INFOCOM, pp. 1152-1161, April 
2001 .

[6] Xi Zhang and Kang G- Shin and Debenjan Saha and Dilip D. Kandlur, “Scalable 
flow control for m ulticast ABR services,” in Proc. of IEEE INFOCOM, pp. 837-846, 
March 1999.

[7] Xi Zhang and Kang G. Shin and Qin Zheng, “Integrated rate and credit feedback 
control for ABR services in ATM networks,” in Proc. o f IE E E  INFOCOM, pp. 1297- 
1305, April 1997.

[8] Xi Zhang and Kang G. Shin, “Second-order rate-control based transport protocols,” in 
Proc. o f IEEE International Conference on Network Protocols (ICNP), pp. 342-350, 
November 2001.

[9] Xi Zhang and Kang G. Shin, “Optimization-based multicast flow control using virtual 
M -Ary feedback,” submitted to A C M  SIG C O M M ’02 for publication, February 2002.

[10] Xi Zhang and Kang G. Shin, “V irtual M -  Ary feed back-based optimization multicast 
flow control using binary feedback,” Technical Report, Real-Time Computing Labora
tory, EECS Dept., The University o f Michigan, A nn Arbor, November 2001.

[11] Xi Zhang and Kang G. Shin, “Performance analysis of feedback synchronization for 
multicast ABR flow control,” in Proc. o f IE E E  GLOBECOM, pp. 1269-1274, Decem
ber 1999.

250

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[12] Xi Zhang and Kang G. Shin, “A scalable flow-control algorithm for point-to-multipoint 
communications in high-speed integrated networks,” Technical Report, CSE-TR-365- 
98, EEC S Dept., The University o f Michigan, A nn Arbor, June 1998.

[13] Jon Crowcroft and Ken Paliwoda, “A multicast transport protocol,” in Proc. of AC M  
SIGCOMM, pp. 247-256, August 1988.

[14] Xi Zhang and Kang G. Shin, “Second-order rate-based flow control with decoupled 
error control for high-throughput transport protocols,” Technical Report, CSE-TR- 
406-99, EECS Dept., The University o f Michigan, Ann Arbor, June 1999.

[15] W . Ren, K.-Y. Siu, and H. Suzuki, “On the performance of congestion control algo
rithms for multicast ABR service in ATM,” in Proc. o f IE E E  A T M  WORKSHOP, 
August 1996.

[16] Larry Roberts, Rate Based Algorithm for Point to Multipoint A B R  Service, ATM 
Forum contribution 94-0772, September 1994.

[17] Larry Roberts, Point-to-M ultipoint A B R  Operation, ATM Forum contribution 95- 
0834, August 1995.

[18] K.-Y. Siu and H.-Y. Tzeng, “On max-min fair congestion control for multicast ABR 
services in ATM,” IE E E  Journal on Selected Areas in Communications, vol. 15, no. 
3, pp. 545—556, April 1997.

[19] H. Saito, K. Kawashima, H. Kitazume, A. Koike, M. Ishizuka, and A. Abe, “Perfor
mance issues in public ABR service,” IEEE Communications magazine, vol. 11, pp. 
40—48, November 1996.

[20] Y.-Z. Cho, S.-M. Lee, and M.-Y. Lee, “An efficient rate-based algorithm for point- 
to-m ultipoint ABR service,” in Proc. o f IEEE GLOBECOM, pp. 790-795, November 
1997.

[21] S. Fahmy, R. Jain, R. Goyal, B. Vandalor, and S. Kalyanaram an, “Feedbackback 
consolidation algorithms for ABR point-to-mulipoint connections in ATM networks,” 
in Proc. o f IEEE INFOCOM , pp. 1004-1013, April 1998.

[22] D. Chiu and R. Jain, “Analysis of the increase and decrease algorithm s for congestion 
avoidance in computer networks,” Computer Networks and ISD N  Systems, pp. 1-14,
1989.

[23] S. Sathaye, ATM  Forum traffic management specifications Version 4-0, ATM Forum 
contribution 95-0013R7.1, A ugust 1995.

[24] N. Yin and M. G. Hluchyj, “On closed-loop rate control for ATM cell relay networks,” 
in Proc. o f IEEE INFOCOM , pp. 99-109, June 1994.

[25] H. Ohsaki, M. M urata, H. Suzuki, C. Ikeda, and H. M iyahara, “Analysis of rate-based 
congestion control for ATM networks,” AC M  SIG CO M M  Computer Communication 
Review, vol. 25, pp. 60-72, April 1995.

251

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[26] F. Bonomi, D. M itra, and J. Seery, “Adaptive algorithms for feed back-based flow 
control in high-speed, wide-area ATM networks,” IE E E  Journal on Selected Areas in  
Com munications, vol. 13, no. 7, pp. 1267-1283, September 1995.

[27] S. Keshav, A n Engineering Approach to Computer Networking — A T M  Networks, the 
Internet, and the Telephone Network, Addison-Wesley Publishing Company, 1997.

[28] J . Bolot and A. Shankar, “Dynamical behavior of rate-based flow control mechanism,” 
A C M  SIG C O M M  Computer Communication Review, vol. 20, no. 4, pp. 35—49, April
1990.

[29] M. R itter, “Network buffer requirements of the rate-based control mechanism for ABR 
services,” in Proc. o f IE E E  INFOCOM , pp. 1190-1197, March 1996.

[30] David D. Clark and M ark Lam bert and Lixia Zhang, “NETBLT: A high throughput 
tran sp o rt protocol,” in A C M  SIGCOM M , pp. 353—359, 1987.

[31] A. Hey bey, “T he network sim ulator,” Laboratory fo r  Computer Science, Mas
sachusetts Institu te  o f Technology, Septem ber 1990.

[32] Xi Zhang and K ang G. Shin, “Second-order rate-based flow control with decou
pled error control for high-throughput transpo rt protocols,” Full paper version: URL 
h ttp ://w w w .eecs.um ich .edu/~xizhang/papers/rw .pdf, July 2001.

[33] Xi Zhang and K ang G. Shin and Debanjan Saha and Dilip D. Kandlur, “Scalable flow 
control for m ulticast ABR services in ATM networks,” Technical Report, C SE-TR- 
353-97, Department o f Electrical Engineering and Computer Science, The University 
o f Michigan, A n n  Arbor, November 1997.

[34] K.-Y. Siu and H.-Y. Tzeng, “Congestion control for multicast service in ATM net
works,” in Proc. o f  IE E E  GLOBECOM , pp. 310-314, November 1995.

[35] D. Lapsley and S. Low, “Random early marking: for Internet congestion control,” in 
Proc. o f IE EE  G LOBECOM , pp. 1747-1752, December 1999.

[36] S. Floyd and V. Jacobson, “Random Early Detection gateways for congestion avoid
ance,” IE E E /A C M  Transactions on Networking, vol. 1, no. 4, pp. 397—413, August 
1993.

[37] D. Lapsley and S. Low, “An optim ization approach to ABR control,” in Proc. o f IE E E  
International Conference on Communications, June 1998.

[38] S. A thuraliya, S. Low, and D. Lapsley, “Random early marking,” in Proceedings o f  
the F irst International Workshop on Quality o f future Internet Services (Q ofIS’2000), 
Berlin, Germany, Septem ber 2000.

[39] D. Lapsley and S. Low, “An IP im plem entation of optimization flow control,” in Proc. 
o f IE E E  GLOBECOM , November 1998.

[40] S. A thuraliya, D. Lapsley, and S. Low, “An enhanced random early marking algorithm 
for In ternet flow control,” in Proc. o f IE E E  INFOCOM , pp. 1425-1434, March 2000.

252

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.eecs.umich.edu/~xizhang/papers/rw.pdf


[41] S. Floyd, “T C P and explicit congestion notification,” A C M  SIG CO M M  Computer 
Communication Review , vol. 24, no. 5, pp. 10-23, O ctober 1994.

[42] A. Heybey, The Network Sim ulator, Laboratory for Com puter Science, Massachusetts 
Institu te of Technology, O ctober 1989.

[43] S. H. Low and D. Lapsley, “Optimization flow control — I: basic algorithm and 
convergence,” IE E E /A C M  Transactions on Networking, vol. 7, no. 6, pp. 861-874, 
December 1999.

[44] S. H. Low, “Optimization flow control with on-line m easurem ent,” in Proc. o f Inter
national Teletraffic Congress, volume 16, pp. 237-249, June 1999.

[45] Xi Zhang and Kang G. Shin, “Feedback soft-synchronization for random-marking- 
based multicast flow control,” Technical Report, Real-Tim e Computing Labs., EECS 
Dept., The University o f Michigan, March 2000.

[46] C. Diot, W. Dabbous, and J . Crowcroft, “M ultipoint communication: A survey of 
protocols, functions, and mechanisms,” IEEE Journal on Selected Areas in Commu
nications, vol. 15, no. 3, pp. 277-290, April 1997.

[47] B. J . Vickers, M. Lee, and T. Suda, “Feedback control mechanism for real-time mul
tipoint video services,” IE E E  Journal on Selected Areas in Communications, vol. 15, 
no. 3, pp. 512-530, April 1997.

[48] B. Shacham and H. Yokota, “Admission control algorithms for multicast sessions with 
multiple stream s,” IE E E  Journal on Selected Areas in  Communications, vol. 15, no. 
3, pp. 557-566, April 1997.

[49] S. Kasera, S. B hattacharyya, M. Keaton, D. Kiwior, S. Zabele, J. Kurose, and 
D. Towsley, “Scalable fair reliable multicast using active services,” IE E E  Network 
Magazine, vol. 14, no. 1, pp. 48-57, January/February 2000.

[50] J . Gemmell, J. Gray, and E. Schoolerose, “Feast m ulticast file distribution,” IEEE  
Network Magazine, vol. 14, no. 1, pp. 58-69, January /F ebruary  2000.

[51] P. Moghe and I. Rubin, “Reserving for future clients in a multipoint application — 
why and how?,” IE E E  Journal on Selected Areas in Communications, vol. 15, no. 3, 
pp. 531-544, April 1997.

[52] L. Gong, “Enclaves: enabling secure collaboration over In ternet,” IE E E  Journal on 
Selected Areas in  Communications, vol. 15, no. 3, pp. 567-575, April 1997.

[53] C. Blum, P. Dubois, R. Molva, and O. Schaller, “A development and runtime platform 
for teleconferencing applications,” IE EE  Journal on Selected Areas in Communica
tions, vol. 15, no. 3, pp. 576-577, April 1997.

[54] B. Shacham, “Preem ptiion-based admission control in multim edia m ultiparty com
m unication,” in Proc. o f IE E E  INFOCOM, volume 2, pp. 827-834, April 1995.

[55] R. Aiello, E. Pagani, and G. P. Rossi, “Design of reliable m ulticast protocol,” in Proc. 
o f IE E E  INFOCOM, pp. 73-81, April 1993.

253

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[56] S. Paul, “Multicasting: Empowering the next-generation In ternet,” IE EE Network 
Magazine, vol. 14, no. 1, pp. 8-9, January /F ebruary  2000.

[57] K. Almeroth, “The evolution of multicast: from the MBone to  interdomain multi
cast to  Internet2 deployment,” IE EE Network Magazine, vol. 14, no. 1, pp. 10-20, 
January /F ebruary  2000.

[58] B. W hetten and G. Taskale, “Reliable m ulticast transport protocol II,” IEEE Network 
Magazine, vol. 14, no. 1, pp. 37-47, January /F ebruary  2000.

[59] C. Diot, B. N. Levine, B.Lyles, H. Kassem, and D. Balensiefen, “Deployment issues 
for the IP service and architecture,” IE E E  Network Magazine, vol. 14, no. 1, pp. 
78-88, January/February 2000.

[60] D. Towsley, J . Kurose, and S. Pingali, “A comparison of sender-initiated and receiver- 
initiated reliable multicast transport protocols,” IEEE Journal on Selected Areas in 
Communications, vol. 15, no. 3, pp. 398-406, April 1997.

[61] Y. Ofek and B. Yener, “Reliable concurrent multicast from bursty sources,” IEEE  
Journal on Selected Areas in  Communications, vol. 15, no. 3, pp. 434—444, April 
1997.

[62] G. J . Armitage, “IP multicasting over ATM networks,” IE E E  Journal on Selected 
Areas in  Communications, vol. 15, no. 3, pp. 445-457, April 1997.

[63] E. G authier, J.-Y . L. Boudec, and P. Oechslin, “SMART a many-to-many multicast 
protocol for ATM,” IEEE Journal on Selected Areas in Communications, vol. 15, no. 
3, pp. 458-472, April 1997.

[64] F. M. Chiussi, Y. Xia, and V. P. Kumar, “Performance of shared-memory switches 
under m ulticast bursty traffic,” IE EE  Journal on Selected Areas in Communications, 
vol. 15, no. 3, pp. 473-488, April 1997.

[65] M. Grossglauser, “Optimal deterministic tim eouts for reliable scalable multicast,” 
IE E E  Journal on Selected Areas in Communications, vol. 15, no. 3, pp. 422—433, 
April 1997.

[66] S. Floyd, V. Jacobson, S. McCanne, C. G. Liu, and L. Zhang, “A reliable multicast 
framework for light-weight sessions and application level fram ing,” in AC M  SIG
COMM, pp. 342-356, August 1995.

[67] A. Erramilli and R. P. Singh, “A reliable and efficient multicast protocol for boadband 
broadcast networks,” in Proc. o f A C M  SIGCOM M , August 1987.

[68] S. J . Golestani and K. Sabnani, “Fundam ental observations on multicast congestion 
control in the Internet,” in Proc. o f IE E E  INFOCOM, March 1999.

[69] M. Gerla and L. Kleinrock, “Flow control: a comparative survey,” IEEE Trans, on 
Communications, vol. 28, no. 4, pp. 553-574, April 1980.

[70] J . M. Jaffe, “Bottleneck flow control,” IE E E  Trans, on Communications, vol. 29, no. 
7, pp. 954-962, July 1981.

254

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[71] F . P. Kelly, A. Maulloo, and D. Tan, “R ate  control for communication networks: 
Shadow prices, proportional fairness and stability ,” Journal o f the Operational Re
search Society, vol. 49, no. 3, pp. 237-252, M arch 1998.

[72] F . P. Kelly, “Charging and rate  control for elastic traffic,” European Transactions on 
Telecommunications, vol. 8, no. 1, pp. 33—37, January-February  1997.

[73] K. Kar, S. Sarkar, and L. Tassiulas, “O ptim ization based rate control for m ultirate 
multicast sessions,” in Proc. o f IE E E  INFOCOM , pp. 123-132, April 2001.

[74] S. Deb and R. Srikant, “Congestion control for fair resource allocation in networks 
with m ulticast flows,” in IE E E  Conference on Decision and Control, December 2001.

[75] J . W idmer and M. Handley, “Extending equation-based congestion control to  multi
cast applications,” in Proc. o f A C M  SIG CO M M , 2001.

[76] Michael Luby, Lorenzo Vicisano, and Tony Speakm an, Heterogeneous multicast con
gestion control based on router packet filtering, Reliable M ulticast Transport (RM T) 
Working Group, May 1999.

[77] L. Rizzo, “pgmcc: a TCP-friendly single-rate multicast congestion control scheme,” 
in Proc. o f A C M  SIGCOMM, 2000.

[78] R. Jain , D. M. Chiu, and W. Hawe, “A quan tita tive  measure of fairness and discrim
ination for resource allocation in shared system s,” Technical Report, DEC-TR-301, 
Digital Equipment Corporation, 1984.

[79] S. B hattacharyya, D. Towsley, and J . Kurose, “The loss path multiplicity problem 
in m ulticast congestion control,” in Proc. o f IE E E  INFOCOM, pp. 856-863, March 
1999.

[80] D. P. Bertsekas, Nonlinear promgramming, A thena Scientific, 2nd edition, 1999.

[81] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation -  numerical 
methods, Prentice Hall, 1989.

[82] S. Paul, K. K. Sabanani, J. C.-H. Lin, and S. B hattacharyya, “Reliable multicast 
transport protocol (RM TP),” IE E E  Journal on Selected Areas in Communications, 
vol. 15, no. 3, pp. 407-421, April 1997.

[83] S. Floyd, V. Jacobson, C.-G. Liu, S. M cCanne, and L. X. Zhang, “A reliable multi
cast framework for light-weight sessions adn application level framing,” IE E E /A C M  
Transactions on Networking, vol. 5, no. 6, pp. 784-802, December 1997.

[84] S. Paul, K. K. Sabanani, and D. M. Kristol, “M ulticast transport protocols for high 
speed networks,” in Proc. o f IE E E  International Conference on Network Protocols 
(ICN P), April 1994.

[85] R. Yavatkar, J . Griffioen, and M. Sudan, “A reliable dissemination protocol for inter
active collaborative applications,” in Proc. o f A C M  Multimedia, November 1995.

255

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[86] S. M cCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered m ulticast,” in 
Proc. o f A C M  SIGCOM M , pp. 117-130, 1996.

[87] L. Vicisano, L. Rizzo, J. Crowcroft, “TCP-like congestion control for layered multicast 
d a ta  transfer,” in Proc. o f IEEE INFOCOM, pp. 996-1003, March 1998.

[88] S. Kasera, J . Kurose, and D. Towsley, “Scalable reliable multicast using multiple 
m ulticast groups,” in Proc. o f A C M  SIG M E TR IC S, pp. 64-74, June 1997.

[89] S. K. Kasera, G. Hjalmtysson, D. Towsley, and J. Kurose, “Scalable reliable multicast 
using multiple channels,” IE E E /A C M  Transactions on Networking, vol. 8, no. 3, pp. 
294-310, June 2000.

[90] A. Achary and B. R. Badrinath, “Delivering m ulticast messages in networks with mo
bile hosts,” in Proc. 13th International Conference on Distributed Computing Systems, 
May 1993.

[91] A. Achary, A. Bakre, and B. R. Badrinath, “IP m ulticast extension for mobile net
working,” in Rutgers D C S Technical Report LC SR-TR-243, May 1995.

[92] H. W ang and M. Schwartz, “Performance analysis of m ulticast flow control algorithms 
over combined wired/wireless networks,” IE E E  Journal on Selected Areas in  Commu
nications, vol. 15, no. 7, pp. 1349-1361, September 1997.

[93] H. W ang and M. Schwartz, “Performance analysis of m ulticast flow control algorithms 
over combined wired/wireless networks,” in Proc. o f IE E E  INFOCOM, April 1997.

[94] D. Ducham p, “Issues in wireless in mobile com puting,” in Third Workshop on Work
station Operating System s, July 1992.

[95] K. Cho and K. Birman, “A group communication approach for mobile computing,” 
presented a t Workshop on Mobile Computing System s and Applications, July 1994.

[96] P. Bhagwat and C. E. Perkins, “A mobile networking system based on Internet pro
tocol (IP ),” in Proc. U SENIX Symp. Mobile and Location Independent Computing, 
August 1993.

[97] R. Caceres and L. Iftode, “The effect of mobility on reliable transport protocols,” in 
Proc. 1 4 th International Conference on Distributed Computer Systems, 1994.

[98] M. S. Corson and S. G. Batsell, “A reservation based m ulticast (RBM) routing pro
tocol for mobile networks: overview of initial route construction,” in Proc. o f IEEE  
INFOCOM , pp. 1063-1074, April 1995.

[99] S. Dolev, D. K. P radhan, and J. L. Welch, “Modified tree structure for location 
m anagem ent in mobile environments,” in Proc. o f  IE E E  INFOCOM, pp. 530-537, 
April 1995.

[100] J . Ioannidis and G. Q. Maguire, “The design and implementation of a  mobile inter
networking architecture,” in Proc. U SENIX Conference, 1993.

256

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[101] D. B. Johnson, “Scalable and robust internetwork routing for mobile hosts,” in Proc. 
1 4 th International Conference on Distributed Computer Systems, June 1994.

[102] S. H. Brae, S.-J. Lee, W. Su, and M. Gerla, “Evaluation of the on-demand multicast 
routing protocol in multihop wireless,” IE E E  Network Magazine, vol. 14, no. 1, pp. 
70—77, January/February 2000.

[103] K. Sabnani and M. Schwartz, “M ultidestination protocols for satellite broadcast chan
nels,” IEEE Trans, on Communications, vol. 13, , 1985.

[104] M. H. Ammar and L. R. Wu, “Improving the throughput of point-to-multi-point 
ARQ protocols through destination set splitting,” in Proc. o f IEEE INFOCOM, pp. 
262-271, May 1992.

[105] X. Li, M. Ammar, and S. Paul, “Video multicast over the internet,” IE E E  Network 
Magazine, March 1999.

[106] D. G. Luenberger, Optimization by Vector Space Method, John Wiley and Sons, 1969.

[107] D. G. Luenberger, Linear and nonlinear programming, Addison-Wesley Publishing 
Company, 1984.

257

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


