
Model-Based Quality of Service Control

by

Mohamed A. El Gendy

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2005

Doctoral Committee:
Professor Kang G. Shin, Chair
Associate Professor Sugih Jamin
Associate Professor Brian Noble
Assistant Professor Mingyan Liu

c
�

Mohamed A. El Gendy 2005
All Rights Reserved

ABSTRACT

Model-Based Quality of Service Control

by

Mohamed A. El Gendy

Chair: Kang G. Shin

This thesis presents a model-based feedback control approach for network Quality-

of-Service (QoS), that achieves accurate control, better resource utilization, and faster re-

sponse to network and traffic changes than other prevalent techniques. It is a significant

departure from the traditional approaches in providing network QoS, that either calculate

and provision a priori the required network resources in a feed-forward way to meet certain

QoS requirements, or use ad-hoc adaptive solutions, that need significant tuning and cali-

bration efforts. Models are used as the basis for performance control of the network prob-

lems under study. We apply our control approach at several points in the network, starting

with differentiated packet marking, where we introduce a new marking algorithm for as-

sured services based on a feedback model of TCP congestion control. Then, we develop

models for per-hop QoS using statistical modeling techniques and build model-based con-

trollers for QoS over network nodes using these models. We further use control-theoretic

design techniques to build QoS-controlled FIFO-based network services. These services

are reservation-less and self-controlled, so they are capable of tracking reference QoS in

a way that could not be easily achieved using operator-controlled or other commonly-used

techniques. The problems and applications studied in the thesis demonstrate the effective-

ness and the importance of using new and versatile methods such as statistical analysis,

design of experiments and control-theory in studying network QoS. We evaluate the new

control approach using both simulation and experimentation on a Linux-based network

testbed showing its correct functionality as well as comparing it with other available QoS

schemes. We also present a two-tier QoS Gateway architecture that works at the first mile

to facilitate the use of these controls for QoS-sensitive applications and end-user devices

and enables better deployment and utilization of QoS frameworks in general. The overall

research in this thesis will provide a better understanding of QoS modeling and control

problems and enable wide QoS deployment.

To my Lord, the lord of heaven and earth..

ii

ACKNOWLEDGEMENTS

I thank Allah (SWT) who gave me the strength and spirit to survive through the long

and exhausting journey of my Ph.D. I always seek refuge to Him when it gets dark at the

corners of my life for He is the only one Who gets me out to the light again. Ph.D. is a life

cycle, in which, one learns and changes a lot, both professionally and personally. Without

the help and company of many great people around me, it would have been much harder

and less bearable, and I would not be able to thrive.

I would like to express my gratitude to Professor Kang Shin, my advisor and my second

father, for believing in me and standing beside me along the way of my Ph.D. journey. I

thank him for encouraging me all the time, teaching me how to overcome obstacles and

be strong, giving me of his wisdom and long experience, motivating me, and building my

self-confidence to lead a successful career after the Ph.D. I feel indebted to him for being

such a great father to me and all his students, opening his kind heart and listening to us,

backing us up, and never letting us worry about losing support. I owe him my success.

I am grateful to my parents for being there for me and for showering me with their

never-ending love. Although they are overseas, but when I needed them they came all the

way for me and they are always willing to do anything for me. They taught me patience,

which I consider the most important thing in life to be able to survive. I attribute my success

in life to them.

Special thanks go to my dear friends, Amgad Zeitoun and Hani Jamjoom, for being

such great buddies to me along my journey. I consider them my mentors as they were

always sincere to me, giving me great advices, and helping me to get over the stress and

frustration of the Ph.D. process.

I would like to thank Abhijit Bose for being such a great colleague and friend. We

iii

worked together a lot and I learned quite a bit from him. We went through a lot in our

research and I wish him the best of luck in his Ph.D. and his career. I do not want to forget

our previous colleague, Haining Wang, as the three of us had successful collaboration on

exciting research problems.

I thank Professor Sugih Jamin for serving in my thesis committee, for his friendly

support, and for giving me such a special place among his students, sharing interesting

ideas and visions. I would also like to thank Professors Brian Noble and Mingyan Liu for

serving in my thesis committee and for their feedback and suggestions.

I would also like to thank my friend Hosam Fathy in the Automotive Research Center

for helping me with many important parts in my research and for collaborating with me.

Having also good friends like Mohamed Abdel Moneum, Ahmed Omara, and Alaa El

Rouby around me and giving me the psychological support I needed is a great blessing.

My appreciation goes to my colleagues at the RTCL, especially Padmanabhan (Babu)

Pillai, John Reumann, and Songkuk Kim who have been of great help to me since the first

day I came to Michigan. They gave me a lot of their time and were ready to answer any

of my questions. I was lucky to be among such a friendly and cooperating environment.

I also like to thank my officemates, Wei Sun, Zhigang Chen, Min-Gyu Cho, Shige Wang,

and Kyu-Han Kim for sharing a lot of good and bad moments in my work and for giving

me the hand-of-help whenever I ask for it.

I extend my sincere appreciation to BJ Monahgan for being a second mom to me with

such a kind heart, and for giving us her utmost care and dedication which make our lives

easier. I also like to thank Kirsten Knecht, Dawn Freysinger, Karen Liska, and Stephen

Reger for their assistance and effort.

I had a great opportunity to work with Samsung corporation, especially Mathew Park,

and I hope that such collaboration will never end even after my graduation.

It is always exciting to end a cycle in our life and start another one, full of unknowns

and adventures, and I am asking my God, Allah (SWT), to bless me with similar great

people along the way.

I hope that I did not forget anyone in my acknowledgment, and if I did, then I sincerely

apologize for the mistake and hope they will accept my sincere appreciation.

iv

Finally, I thank everyone who prayed for me.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xiii

LIST OF APPENDICES . xiv

CHAPTERS

1 Introduction . 1
1.1 Internet QoS . 2
1.2 The Differentiated Services Architecture 3

1.2.1 The Components of the DiffServ Architecture 4
1.3 Model-Based QoS Control: Motivations 9
1.4 Applying Feedback Control to Networking and QoS 11
1.5 Research Goals . 12
1.6 Thesis Contributions . 13

1.6.1 Packet Marking Control 14
1.6.2 Per-Hop QoS Modeling and Control 15
1.6.3 CONNET: Self-Controlled Network Services 16
1.6.4 Paving the First Mile for QoS-dependent Applications and

Appliances . 17
1.7 Organization of the Thesis . 18

2 Equation-Based Packet Marking for Throughput Guarantees 20
2.1 Fairness in Bandwidth Distribution 21
2.2 Equation-Based Packet Marking 23
2.3 The Design of EBM . 25

2.3.1 Calculation of the target loss probability 26
2.3.2 Estimation of RTT and To 27
2.3.3 Estimation of the current loss rate 28
2.3.4 Marking Function . 28

2.4 Analysis of EBM Operation . 30

vi

2.4.1 Assumptions . 30
2.4.2 Proof of Correctness . 32
2.4.3 Convergence of EBM Iterations 33

2.5 Evaluation . 34
2.5.1 Subscription Level . 36
2.5.2 RTT . 36
2.5.3 Target Rate . 37
2.5.4 Packet Size . 38
2.5.5 A Closer Look into EBM and APM 39
2.5.6 Overhead . 40

2.6 Fairness between Responsive and Non-responsive Traffic 41
2.6.1 Packet Separation . 41
2.6.2 Evaluation . 42

2.7 Concluding Remarks . 43

3 Statistical Modeling and Control of Per-Hop QoS 45
3.1 Statistical Modeling . 46

3.1.1 Factors and Response Variables 48
3.1.2 Tools for Statistical Modeling 51

3.2 Experimental Setup for Modeling 52
3.2.1 Network Setup . 52
3.2.2 Components of the Automated Experiments 53
3.2.3 Design of Experiments 54

3.3 Model Extraction and Validation 56
3.3.1 First Modeling Set . 56
3.3.2 Second Modeling Set . 63

3.4 QoS Control . 74
3.4.1 Choosing Ia Parameters to Control Delay and Jitter 74
3.4.2 Using Rab and bn to Control Jitter 75
3.4.3 Using ber to Control Jitter 76
3.4.4 Delay and Jitter Control in EF-PRIO Scenarios 76
3.4.5 Model-Based PHQ Controller 78

3.5 Previous Work on the Use of Statistical Modeling in Networks . . 79
3.6 Concluding Remarks . 81

4 CONNET: Self-Controlled Network Services for Delay and Jitter Require-
ments . 82

4.1 Rationale and Main Features of CONNET 84
4.1.1 Reservation-less Delay and Jitter Control 84
4.1.2 Dynamic and Self-Controlled Services 86
4.1.3 A Control-Theoretic Approach to Network Service Control 87

4.2 Three Types of Self-Controlled Network Services 87
4.2.1 Self-Controlled Network Pipes in a Network Cloud 88
4.2.2 Self-Controlled Access Links 89
4.2.3 DQM: Delay-Controlled Active Queue Management . . . 91

vii

4.3 System Modeling and Validation 92
4.3.1 Experimental Network Setup 94
4.3.2 Model Extraction . 94

4.4 Design of Feedback Control . 97
4.4.1 Design of the LQR Controller 98
4.4.2 Design of the State Estimator 99
4.4.3 Intelligent Setting of Feasible References 99
4.4.4 Simulation and Verification 100

4.5 Implementation of Control and Actuation Algorithms 101
4.5.1 CONNET Pipes in a Network Cloud 103
4.5.2 CONNET for Access Links Control 105
4.5.3 DQM Implementation . 106

4.6 Experimental Evaluation . 107
4.6.1 Experimental Setup . 107
4.6.2 A Single FIFO Node . 107
4.6.3 Multi-Node FIFO Networks 111
4.6.4 Experiments using DQM 119
4.6.5 Assumptions, Limitations and Extensions 122

4.7 Related Work . 124
4.8 Concluding Remarks . 125

5 Paving the First Mile for QoS-dependent Applications and Appliances . . . 127
5.1 Basic Architecture and Operation 129
5.2 Design Considerations . 131
5.3 QoSGW Design and Functions 134

5.3.1 Host-based QoS Agent 134
5.4 Stand-alone Agent . 141

5.4.1 Protocol-specific Modules 142
5.4.2 Virtual Device Interface 143
5.4.3 QoS Manager . 143

5.5 Assumptions and Limitations of the QoSGW Design 153
5.6 Evaluation . 153

5.6.1 Protection of Important Application Traffic 154
5.6.2 Overhead . 156

5.7 Related Work . 157
5.8 Concluding Remarks . 159

6 Concluding Remarks . 161
6.1 Conclusions . 161
6.2 Future Work . 163

APPENDICES . 166

BIBLIOGRAPHY . 183

viii

LIST OF FIGURES

Figure
1.1 DiffServ architecture . 8
1.2 Modeling and control of network QoS . 13
1.3 Contributions . 14
2.1 AF PHB marking process . 21
2.2 Feedback loop operation of EBM . 24
2.3 Duality between throughput and loss probability 25
2.4 Operation of EBM . 25
2.5 EBM algorithm . 26
2.6 Estimation of RTT . 27
2.7 Marking function . 29
2.8 Pcir and Ppir . 30
2.9 Marking probabilities . 30
2.10 Output of the analytical proof — throughput vs. RTT 34
2.11 Throughput vs. loss probability for different RTT 34
2.12 Simulation topology . 35
2.13 Goodput vs. subscription level . 37
2.14 Goodput per flow — over-subscription . 37
2.15 Goodput vs. RTT — under-subscription 37
2.16 Goodput vs. RTT — over-subscription . 37
2.17 Goodput vs. target rate — under-subscription 38
2.18 Goodput vs. target rate — over-subscription 38
2.19 Goodput vs. packet size — under-subscription 39
2.20 Goodput vs. packet size — over-subscription 39
2.21 Throughput vs. time for APM . 40
2.22 Throughput vs. time for EBM . 40
2.23 Separate handling for TCP and UDP packets at router 42
2.24 One shared queue . 43
2.25 Two separate queues . 43
3.1 Model of per-hop QoS . 47
3.2 Steps of statistical modeling . 47

ix

3.3 Three different realizations for EF PHB sharing the a link with best-effort
(BE) . 49

3.4 Testbed network used for PHQ modeling 53
3.5 First set of experimental scenarios used in modeling 54
3.6 Second set of experimental scenarios used in modeling 55
3.7 Residuals vs. predicted response for J (scenario 1) 59
3.8 Normal Q-Q plot for J residuals (scenario 1) 59
3.9 Response surface for BW (scenario 1) . 59
3.10 Residuals vs. predicted response forJ (scenario 5) 62
3.11 Normal Q-Q plot for J residuals (scenario 5) 62
3.12 Response surface for J (scenario 5) . 62
3.13 Model validation for D with an (scenario 8) 64
3.14 Model validation for J with an (scenario 8) 64
3.15 Model validation for D with apkt (scenario 8) 65
3.16 Residuals vs. predicted response for D (scenario 9) 66
3.17 Normal Q-Q plot for D residuals (scenario 9) 66
3.18 Model validation for D with apkt (scenario 9) 67
3.19 Model validation for J with an (scenario 9) 67
3.20 Model validation for J with bpkt (scenario 10) 69
3.21 Model validation for J with bn (scenario 10) 69
3.22 Model validation for J with Rab (scenario 10) 70
3.23 Model validation for D with Rab (scenario 10) 70
3.24 Model validation for J with bpkt (scenario 11) 71
3.25 Model validation for J with ber (scenario 11) 71
3.26 Model validation for D with bpkt (scenario 12) 71
3.27 Model validation for D with Rab (scenario 12) 71
3.28 Model validation for D with apkt (scenario 13) 73
3.29 Model validation for J with Rab (scenario 14) 73
3.30 Model validation for D with bpkt (scenario 15) 74
3.31 Model validation for D with bn (scenario 15) 74
3.32 Controlled jitter by Rab (scenario 10) . 76
3.33 Controlled jitter by bn (scenario 10) . 76
3.34 Controlled jitter by ber (scenario 11) . 77
3.35 Controlled delay by apkt (scenario 13) . 77
3.36 Controlled jitter by Rab (scenario 14) . 77
3.37 Model-based PHQ controller . 79
4.1 Delay and jitter across a network pipe . 83
4.2 Control criterion . 86
4.3 FIFO multiplexer with two input traffic . 86
4.4 Edge-to-edge pipe in a network cloud . 88
4.5 The University of Michigan campus network topology 90

x

4.6 Internal control of a FIFO network node 92
4.7 Network setup . 93
4.8 Input and output signals applied for modeling 95
4.9 Simulated output using the same input . 95
4.10 Real and simulated model behaviors . 96
4.11 Feedback control loop . 98
4.12 Intelligent references-setting algorithm . 100
4.13 Closed-loop response . 101
4.14 Control implementation . 102
4.15 Control algorithm . 102
4.16 Control cycle . 103
4.17 Network service control in a network cloud 104
4.18 Access link control . 105
4.19 Implementation inside a Linux router . 105
4.20 Constant reference tracking . 108
4.21 Step response for jitter . 108
4.22 Variable reference tracking . 110
4.23 Control input R with a variable reference 110
4.24 Controller is turned on at time 100 sec . 111
4.25 Different premium rates . 112
4.26 Controller performance with TCP non-premium traffic 113
4.27 TCP throughput and target rate . 113
4.28 Fault-tolerance with 1 regulator failure . 114
4.29 Controlled non-premium traffic rate . 114
4.30 Fault-tolerance with 2 regulator failures 115
4.31 Performance with uneven regulator rates 116
4.32 Varying non-premium input traffic rate . 117
4.33 Comparison with CBQ . 117
4.34 Comparison with WFQ . 118
4.35 Comparison with uncontrolled delay . 118
4.36 Comparison with priority queueing . 119
4.37 Input and output signals applied for DQM modeling 120
4.38 Real and simulated DQM model behavior 120
4.39 Comparison with CBQ and RIO . 121
4.40 Controlled and uncontrolled cases . 122
4.41 Actual input and controlled rates . 123
5.1 Basic architecture of the QoS Gateway . 131
5.2 Abstract interface to heterogeneous devices and networks 132
5.3 QoS Agent main blocks . 135
5.4 QoSmod operation . 137
5.5 Kernel interface . 137

xi

5.6 Application registration procedure . 139
5.7 Application invocation procedure . 139
5.8 Stand-alone QoS Agent main building blocks 142
5.9 Device management and device lifecycle 144
5.10 QoS Manager main blocks . 145
5.11 Network SLA (netSLA) and Application SLA (appSLA) 146
5.12 netSLA � appSLA . 146
5.13 Admission control sequence . 148
5.14 E2E QoS verification via RSVP . 149
5.15 RSVP sender state diagram . 150
5.16 RSVP receiver state diagram . 150
5.17 Adding markers for application flows . 151
5.18 QoS Manager data and signaling planes can be exchanged to work with

different underlying networks . 152
5.19 Functionality can be downloaded from the QoS Manager to QoS Agent and

vice versa: (a) Marking can be done at the Agent; (b) QoS mapping and
monitoring can be done at the Manager 152

5.20 The evaluation network . 154
5.21 TCP throughput – QoSGW deactivated . 155
5.22 TCP throughput – QoSGW activated . 155
5.23 UDP throughput - QoSGW deactivated . 156
5.24 UDP throughput - QoSGW activated . 156
5.25 Comparing jitter with and without the QoSGW 156
5.26 Comparing loss with and without the QoSGW 156
C.1 Sequence of operations inside Gateway 180

xii

LIST OF TABLES

Table
2.1 MRED parameters . 36
3.1 Symbolic representation of the factors in I 49
3.2 Configuration parameters - set “C” . 50
3.3 Factors and their levels for EF-EDGE . 57
3.4 Factors and their levels for EF-PRIO . 57
3.5 Factors and their levels for AF PHB . 57
3.6 ANOVA results for scenario 1 . 58
3.7 Mean, standard deviation (SD), and 90% confidence interval (CI) for the

response variables in scenario 1 . 58
3.8 ANOVA results for scenario 2 . 60
3.9 ANOVA results for scenario 4 . 60
3.10 ANOVA results for scenario 5 . 61
3.11 ANOVA results for AF PHB . 62
3.12 Factors and their levels for EF-CBQ . 63
3.13 Factors and their levels for EF-PRIO . 63
3.14 ANOVA results for scenario 8 . 64
3.15 ANOVA results for scenario 9 . 66
3.16 ANOVA results for scenario 10 . 68
3.17 ANOVA results for scenario 13 . 72
4.1 Reference values for the third scenario . 109
5.1 Mapping in PATH message . 150
5.2 Mapping in RESV message . 150
B.1 ANOVA . 171
B.2 Basic transformations . 172

xiii

LIST OF APPENDICES

APPENDIX
A. TCP Model . 167
B. Analysis of Variance (ANOVA) . 168
C. QoS Gateway Prototype Implementation 173

xiv

CHAPTER 1

Introduction

The Internet has become the main communication vehicle for many of our daily-life and

real-time applications. These applications, such as online shopping, banking and gaming,

Voice-over-IP (VoIP) (e.g., IP telephony), and high definition TV (HDTV), depend on net-

work parameters such as bandwidth, delay, jitter (inter-packet delay variation), and loss for

their correct operation. The degree of tolerance or sensitivity to each of these parameters

varies widely from one application to another. Critical applications, such as remote surgery

and online trading systems, require reliability of such parameters as well as guaranteed

delivery. Emerging applications such as home networking, intelligent appliances, factory

supply-chain networks, as well as the vast majority of multimedia applications also require

different levels of service quality from the underlying network in terms of these parameters.

These applications impose throughput, delay, loss and other requirements on the Internet

links and routers carrying their traffic. Providing predictable, as well as controllable, net-

work performance at all times is still a major challenge even with the significant increase

in network bandwidth. Network Quality-of-Service (QoS) is the term for describing how

the network can serve these applications’ traffic. It is defined in [129] as “the capability to

provide resource assurance and service differentiation in a network.”

1

1.1 Internet QoS

The Internet QoS has been the main focus for a large body of research over many

years. It was motivated by the need to support the performance guarantees provided by

circuit-switched networks, such as the telephone network on the packet-switched Internet.

In traditional circuit-switched networks, the quality of a connection can be measured and

guaranteed in terms of connection setup delays, media quality (e.g., voice or video qual-

ity), and trunk availability. On the other hand, packet-switched networks, especially IP

networks such as the Internet, were not designed to provide per-connection service guar-

antees.1 As a result, packets of a particular flow can reach their destination via different

paths while experiencing different amounts of delay, jitter, and loss along the way. This

is a critical problem in the current Internet as more applications, originally developed for

circuit-switched networks, are being migrated to the Internet to take advantage of the re-

duced running cost. Additionally, new emerging applications rely on guarantees from the

underlying IP network for their correct operation. This has led to the introduction of sev-

eral network architectures that explicitly address the need to support QoS [34], such as

Asynchronous Transfer Mode (ATM), IP precedence and type of service, Internet stream

protocol (ST), Integrated Services (IntServ) [16] and its accompanying resource reservation

and signaling protocol RSVP [135], virtual private networks (VPNs), real-time protocols

(such as RTP, RTCP, and RTSP), optical networks (SONET/SDH), and more recently, the

Differentiated Services (DiffServ) [13]. A common goal in all these architectures is to

control the “quality” of forwarding traffic to satisfy the user and application service re-

quirements and offer different levels of service quality as well. This is not available in the

inherent type of service provided by the current Internet which is called “best-effort.”

The need for QoS support in the Internet has been a topic for many debates. Opponents

of QoS suggest that throwing more bandwidth (i.e., over-provisioning) is a simple and cost-

effective solution for congestion, packet loss, and network delays. This is motivated by the

decreasing cost of bandwidth. However, many real-time applications such as VoIP and

Video-on-Demand (VoD), require different guarantees on delay, jitter and packet loss in

1As part of its original principles of simplicity and scalability.

2

addition to bandwidth.

Even with the existence of “fat” or high-bandwidth network links in today’s Internet,

there is still a capacity mismatch at the interconnection points between different physical

network media, such as wired and wireless media, or between different network domains.2

Significant packet delays could occur at these network points, affecting the overall end-to-

end (e2e) delay performance. There is also the problem of heterogeneity in the traffic mix

flowing through the Internet. At their merging points, packets of time-sensitive traffic get

delayed behind other packets, and due to the non-preemptive forwarding at these points,

traffic can experience varying and unpredictable amounts of delay and jitter [20]. Further-

more, the advent of advanced multimedia applications and the growing use of the Internet

are expected to quickly consume the offered bandwidth, resulting in a bandwidth-limited

environment as before. Another argument in favor of incorporating QoS comes from the

disparity of available bandwidths in the core and edges of the Internet. The domains at

the edges of the Internet tend to have more congestion than the core. Also, over the last

few years, Internet dynamics have been found to lead to periods of severe congestion and

resource shortage regardless of abundant resource availability under normal conditions.

Therefore, QoS mechanisms are needed when network components experience their peak

usage. For better network and resource utilization, simply adding more bandwidth comes

as a last resort when persistent over-utilization is detected.

Throughout the thesis, the DiffServ architecture is used as a “use-case” in applying QoS

over the Internet.

1.2 The Differentiated Services Architecture

The IntServ is one of the initial frameworks for supporting QoS on IP networks, espe-

cially the Internet. However, its service model, in spite of its flexibility and per-flow QoS

provisioning, has not been successfully deployed in the public Internet, mainly because of

the lack of scalability. In order to address the problems of IntServ, the IETF developed

the Differentiated Services or DiffServ architecture [13] as a more scalable alternative.

2Due to technology and policy differences.

3

The DiffServ received considerable attention because it is considered a good match to the

Internet architecture. DiffServ works in harmony with the Internet basic design principles

[26] of simplicity, scalability, distribution of resource management and authority, aggregate

control, and stateless packet-level functionality.3

The main differences between the DiffServ and its predecessor, IntServ, are as fol-

lows [129]. First, the DiffServ is based on resource provisioning rather than resource sig-

naling and reservation as in IntServ. This in effect makes it difficult to achieve precise or

deterministic guarantees, but on the other hand, it is simpler to deploy and more attractive

to use. Second, the DiffServ handles traffic aggregates4 instead of individual flows. As a

result, on a per-flow basis, DiffServ provides qualitative instead of quantitative QoS guar-

antees provided by IntServ. Third, the DiffServ standards define forwarding treatments, not

end-to-end services like the guaranteed and the controlled load services in IntServ. Finally,

the emphasis in DiffServ is placed on Service Level Agreements (SLAs) between domains

rather than end-to-end dynamic signaling as in IntServ.

Additionally, the Internet is made up of independently-administered entities or do-

mains, often referred to as “clouds.” Clouds may be under different authorities and may be

administratively and technologically diverse. The DiffServ Working Group acknowledges

this fact by only providing basic building blocks (such as Per-Hop Behaviors or PHBs [13],

and Per-Domain Behaviors or PDBs [97]), rather than end-to-end services. With these ba-

sic building blocks, useful end-to-end or Internet-wide services can be constructed through

agreements between neighboring clouds.

1.2.1 The Components of the DiffServ Architecture

The DiffServ, like any large framework, has several components. The following sub-

sections describe the main components of the DiffServ architecture and their operation to

provide QoS on the Internet.

3This is different from state-full flow-level IntServ.
4A traffic aggregate is a group of traffic flows handled in a similar way through a part or all of the network.

4

DS Field

Service differentiation requires marking of selected bits in the header of IP packets.

These bits are called the “DS Field” in the DiffServ context. RFC 2474 [96] defines the

DS Field coinciding with the ToS byte in the IP header. However, only six bits are used to

carry the DS codepoint (DSCP), and the remaining two bits are not currently used.5

DSCP is the codepoint used to determine the forwarding behavior that a packet expe-

riences in a typical DiffServ node. This forwarding behavior is called Per-Hop Behavior

(PHB). DiffServ is based on defining a small number of PHBs implementing the necessary

service differentiation at the participating routers, and marking the DSCP bits to assign

incoming packets to one of these PHBs. Currently, the DiffServ WG has finalized three

types of PHBs in addition to the default best-effort service. One of these PHBs, the Class

Selector (CS) PHB, was defined to ensure backward compatibility with the IP precedence

bits used in the ToS byte. The other two PHBs are defined as Expedited Forwarding (EF)

and Assured Forwarding (AF). These two PHBs can be used to implement Premium and

Assured services, respectively.

Class Selector (CS) PHB

CS PHB was defined in RFC 2474 [96] to keep backward compatibility with the IP

precedence bits in the IP ToS byte. It can be used to create 8 different levels of priority with

a larger value indicating a higher forwarding priority. CS-compliant PHBs can be realized

by a variety of mechanisms, including strict priority queueing, WFQ [30, 72], CBQ [50],

WRR [58], and their variants (RPS [122], HPFQA [9], DRR [117]).

Expedited Forwarding (EF) PHB

The EF PHB is designed to implement a service with low delay, jitter and loss in addi-

tion to an assured bandwidth, as specified in RFC 3246 [29]. The idea behind the EF PHB

is to make packets marked with an EF DSCP encounter very small queues at the forwarding

nodes. This is usually achieved by allocating forwarding resources with a higher rate than

5Recently, these two bits are used for Explicit Congestion Notification (ECN).

5

the arrival rate of EF packets. EF is used for services that have strict requirements on delay

and jitter such as time-critical and multimedia applications. This type of service is usually

referred to as Virtual Leased Line (VLL).

The IETF documents suggest use of priority queues to implement the EF PHB as well as

other scheduling schemes such as CBQ and WRR. The latter may not result in an efficient

implementation due to the nature of round-robin scheduling.

Assured Forwarding (AF) PHB

The AF PHB is used for building services with controlled loss and assured bandwidth.

Such services do not have any delay or jitter guarantees. The IETF DiffServ WG defined

a PHB group6 for AF in [59]. The AF PHB group consists of three forwarding behaviors,

AFx1, AFx2 and AFx3 in increasing order of drop precedence. This can also be interpreted

as AFx1 being the most important and AFx3 being the least important. The notation ‘x’

represents the AF class. The WG recommends the use of four independent AF classes with

three drop precedences per class. Packet reordering between AF classes is not allowed. The

AF PHB defines two rates: a Committed Information Rate (CIR), which is the minimum

bandwidth from the network to be assured, and a Peak Information Rate (PIR) for a rate

above the CIR to accommodate bursts.

The AF PHB is usually implemented in terms of buffer-management schemes such as

RED In/Out (RIO) [24] and Weighted RED (WRED) [80]. It is worth mentioning that the

effect of the AF PHB becomes most prominent in case of network congestion when some

packets have to be discarded.

Per-Domain Behavior (PDB)

PHBs are designed to be installed on individual nodes or routers. A group of packets

that experience the same forwarding behavior at every node while traversing a domain

is called a Behavior Aggregate (BA). The term BA later became synonymous with Per-

Domain Behavior (PDB) — one of the basic building blocks of creating a DiffServ-enabled

6A PHB group is a set of one or more PHBs that can be meaningfully specified only if they are imple-
mented simultaneously.

6

network. A PDB [97] is used to define a certain edge-to-edge service that has measurable

network parameters as experienced by a set of packets with the same DSCP as they traverse

a DiffServ domain.7 Therefore, PDBs are used to construct services between ingress and

egress points of a domain. The attributes of PDBs (throughput, drop rate, delay bound, etc.)

are advertised as Service Level Specifications (SLSs) at the edges of the domain. They are

usually listed as statistical bounds or percentiles and not as fixed values.

PDBs can be constructed by concatenating a set of PHBs8 between the edges of a

domain. Traffic conditioning (marking/remarking, shaping and policing) on all incoming

packets is done so that the PDB can meet the service level for which it was designed. An

example of PDBs proposed by the WG so far is the Virtual Wire (VW) PDB [69] based on

the EF PHB, and is suitable for delay-sensitive applications. Other PDBs such as Assured

Rate (AR) [114] and Bulk Handling (BH) [19] PDBs have also been proposed.

Note that there is no one-to-one relationship between PHBs and PDBs. This means that

more than one PDB can be based on the same PHB. On the other hand, the inverse is not

currently supported, i.e., a PDB can only be based on one PHB within a single domain.

This means that a large number of PDBs can be constructed from a small number of PHBs,

depending on many factors, such as PHB characteristics, available routes between each

ingress–egress pair, and policy. An important consideration for the scalability of any PDB

is that its attributes should be independent of the amount of traffic entering the domain or

the path taken by this traffic inside the DS domain. Furthermore, the edge-to-edge attributes

of a PDB should hold regardless of any splitting or merger of the traffic aggregates inside

the domain.

With the basic building blocks defined, we now describe how DiffServ can be deployed

in practice. Fig. 1.1 illustrates a typical architecture of a DiffServ network. A DiffServ-

aware network consists of multiple DiffServ domains that can be viewed as Autonomous

Systems (ASs). The boundary routers of each domain perform the necessary traffic con-

ditioning at the edges, while the interior or core routers implement the necessary traffic

forwarding treatments for different PHBs supported by the DS domain. Every DS do-

7By DS domain, we mean part of the network under a single administration and compliant with DiffServ
standards.

8Usually, from the same type or group.

7

Leaf
router

DS1

Core routers
PHBs

SLA
(SLS + TCA)

Source

Egress
router

DS2

Core routers
PHBs

Ingress
router

Leaf
router

Destination

Intradomain
resource
allocation

Ingress edge routers
(classify, police, mark
aggregates)

Egress edge routers
(shape aggregates)

Leaf router
(police, mark
flows with DSCP)

BB BB

Bandwidth Brokers:
(admission control, manage network
resources, configure leaf and edge devices)

Leaf
router

DS1

Core routers
PHBs

SLA
(SLS + TCA)

Source

Egress
router

DS2

Core routers
PHBs

Ingress
router

Leaf
router

Destination

Intradomain
resource
allocation

Ingress edge routers
(classify, police, mark
aggregates)

Egress edge routers
(shape aggregates)

Leaf router
(police, mark
flows with DSCP)

BB BB

Bandwidth Brokers:
(admission control, manage network
resources, configure leaf and edge devices)

Figure 1.1: DiffServ architecture

main makes two agreements with each of its neighboring domains: a SLA specifying the

services (in terms of SLSs) that this domain will provide, and a Traffic Conditioning Agree-

ment (TCA) that incoming traffic to this domain will be subjected to. Adjacent domains

negotiate SLAs among themselves and with customers accessing their network. Each DS

domain configures and provisions its internal nodes such that these SLAs can be met. The

interior or core routers implement the necessary traffic forwarding treatments for different

PHBs supported by the DS domain. This distribution of configuration responsibilities adds

to the flexibility of the DiffServ architecture. It is important to emphasize here again that,

unlike IntServ, DiffServ employs “resource provisioning” with the help of SLAs and does

not use “resource reservation” in setting up different services across domains.

From the above discussion, it is clear that the DiffServ architecture pushes the com-

plexity of managing the network to the edges, and leaves packet handling and forwarding

in the core of the network as simple and fast as possible. This is a major improvement in

scalability of DiffServ over other schemes such as IntServ. Although dealing with aggre-

gated traffic only reduces the flexibility of providing QoS guarantees to individual flows, it

improves the overall scalability of the architecture.

8

1.3 Model-Based QoS Control: Motivations

Although modularity is one of the key principles behind DiffServ (and the Internet in

general), it is still unclear how to use such feature to provide “well-defined” services to

the Internet user. This lack of clarity, arises from both technical and business aspects.

The technical aspect is concerned with how to form “well-defined” and “well-controlled”

services using the basic DiffServ building blocks and principles, while the business-related

aspect is concerned with the absence of a business model behind the DiffServ QoS support

which is necessary for its success. In this thesis we explore new directions and efforts

addressing the first aspect which we call “QoS control.”

QoS control design can be characterized along two dimensions [48], time and space.

The first dimension specifies the time scale at which the control mechanism operates. This

can be at the packet, round-trip time, session levels, or even longer (such as hours, days,

weeks, months, or even years). On the other hand, the location of control can be at the

very edge of the network (traffic sources and customer sites) or at the very core (backbone

routers and links). Accordingly, this can be interpreted into the granularity of control,

which varies between per-flow and aggregate, forming the space dimension of QoS con-

trol. These two dimensions together define a broad design space from which QoS control

architectures can be built, reflecting various tradeoffs in service performance, operations,

management complexity and implementation cost. For example, control granularity has a

direct impact on the operation and management complexity of a network data plane (e.g., to

deal with per-packet, per-flow, or per-aggregate processing cost). On the other hand, time

scale determines how frequently control information must be conveyed and control actions

must be taken. These two dimensions also determine the scalability and deployability of

the QoS control mechanism.

While considerable attention has been paid to building techniques and mechanisms for

realizing QoS in packet-switched networks (e.g., packet schedulers, queueing disciplines,

filters, as well as others), much less attention has been paid to how to globally control these

techniques to provide predictable QoS. The traditional approach in providing network QoS

is to calculate and then provision the required network resources (e.g., link bandwidth,

9

processing power at routers, buffer allocation, and traffic scheduling) a priori to ensure

that the network can meet certain QoS requirements. This is usually referred to as a feed-

forward control strategy, and it relies on a priori knowledge of workload and resource usage

and it can work well for some cases [75]. However, as we mentioned before, the increased

dynamics of the Internet suggests for QoS control mechanisms based on accurate models

and a feedback control strategy that yield better resource utilization and faster response to

network and traffic dynamics. According to this strategy, the output QoS is measured and

fed back through a control algorithm (controller) to form the control actions to be applied

to the network, thus forming a feedback control loop [44].

In order to use this feedback control strategy, a model for the system under control is

required. Usually modeling is used to extract bounds on QoS performance metrics such as

delay and jitter [10, 22] or in admission control as in [21]. Most of previous QoS work has

relied on heuristic and ad-hoc approaches. We can find only a few efforts for using control

theory in QoS problems such as in [3, 4, 82, 107], but most of them are for application QoS

adaptation. However, the majority of modeling and control work has focused on congestion

control problems in TCP [87, 103, 104] and Active Queue Management (AQM) [14, 89].

An important and difficult process for the success of applying the control-theoretic ap-

proach is the ability to find an accurate model that represents the system under control.

By model here we mean a mathematical representation for the system that describes its

behavior and also the relationships between its inputs and outputs. Models can be either

stochastic or deterministic [71]. For example, in modeling network traffic, determinis-

tic models are usually constructed using fluid-based analysis while stochastic models are

constructed based on the Markovian process9 like what is used in queueing theory [12].

Stochastic models are usually used for studying the long-term or static case where it gives

only average estimates for the network parameters. On the other hand, deterministic mod-

els are usually preferable for transient analysis. Therefore, Floyd in [51] identified that

“models should be specific to the research questions being investigated.”

9Poisson-based random process.

10

1.4 Applying Feedback Control to Networking and QoS

Recently, there has been an increasing interest in applying fundamental and classical

theories such as Systems and Feedback Control theories [53, 100] to analyze and solve net-

working and computing problems (see, for example, [63, 64, 71, 95]). These theories have

been used for decades in many other engineering and scientific disciplines such as me-

chanical and aeronautical engineering, and their effectiveness in solving control problems

in networking has been realized as well. Significant efforts have been made on flow con-

trol problems in either high-speed networks like ATM, or IP networks (specifically TCP).

TCP congestion control is built based on a feedback from the network (or more accurately

between the source and destination) to sense the condition of the network and adjusts the

sending rate accordingly [67]. Also, Keshav [71] applied a control-theoretic approach in

studying the general flow control problem. He considered network conversations that do

not reserve any bandwidth in advance, and used the control approach to determine how

these conversations can adapt their transfer rate to varying network conditions in order to

satisfy throughput and queueing delay requirements. After that, a considerable amount of

work has been directed toward ABR rate control in ATM (see for example [56, 74]). More

recently, attentions were paid to TCP due to the predominance of TCP traffic and due to its

complex reaction to network conditions. For example, [52, 105] presented congestion con-

trol and rate control mechanisms that are based on a validated TCP model derived in [104],

and in [95] a study of fair bandwidth allocations in core-stateless networks is presented.

On the other hand, and along with the efforts on TCP, the control-theoretic approach has

been applied to Active Queue Management (AQM) as well. In [63, 89], the authors pre-

sented a fluid-based analysis for AQM supporting TCP flows and followed by a control

design of two-color marking for throughput differentiation of TCP flows. RED has also

been analyzed using control theory in [14, 64] as a well-known example of AQM.

On the server and software applications side, Abdelzaher et al. [3, 4] applied the

control-theoretic approach to web servers to control the user-perceived utility under varying

server workload. In [107], the authors used the control theory to design a controller for the

Lotus Notes server, thus achieving service-level objectives in performance management.

11

They used a stochastic autoregressive modeling technique based on ARMA which proved

to be an effective technique for modeling without knowing the details of the system under

control. Steere et al. [121] developed a feedback-based CPU scheduler that synchronizes

the progress of consumer and supplier processes. Finally, a middleware control framework

was used in [82] to enhance the effectiveness of QoS adaptation decisions of distributed

multimedia applications. The objective was to meet both system-wide properties like fair-

ness and application-specific requirements like critical performance needs.

1.5 Research Goals

The lack of a formal theory for QoS modeling and control has hindered qualitative un-

derstanding of the dynamics and quantitative assurance of performance. The resemblance

of network QoS problems to other physical (such as mechanical and fluid) systems prob-

lems motivated us to investigate the use of fundamental theories such as the systems theory

and control theory in studying network QoS control.

In this thesis, we develop new QoS control mechanisms that provide more dynamic,

and at the same time, reliable solutions for today’s Internet without the usual complexity of

the traditional QoS frameworks. Our mechanisms feature the use of model-based feedback

control to achieve the required QoS in the network. We present the use of versatile and

rigorous techniques such as statistical modeling [70, 93] and system identification [84] in

modeling network QoS elements, like per-hop and edge-to-edge QoS. Then, we show the

use of model-based feedback and control-theoretic approaches in designing control algo-

rithms for these elements that optimize resources for conflicting QoS requirements. Col-

lectively, we will be able to look at network QoS in the same way we look at a mechanical

system or fluid mechanics. Figure 1.2 illustrates our goal of modeling and control network

services. Generally speaking, applying a control-theoretic approach to a system requires

the following three steps:

System identification: to construct a transfer function which relates the inputs to the out-

puts of the system. This transfer function constitutes a model of the system. In

order to use classical linear control theory, linearization techniques may be applied

12

Model

Output
QoS

Input
Traffic

Controller

System

(1) Network Service (2) Modeling (3) Control

Figure 1.2: Modeling and control of network QoS

to non-linear systems to obtain a linear transfer function, and simplify the analysis

and controller design.

Controller design: based on the properties of the transfer function and the desired objec-

tives, a particular controller is designed. Control theory is used to predict how the

system will behave once the chosen controller is added to it.

Control action: in distributed systems, such as computer networks, it is important to spec-

ify the location and mechanism of control decisions to be applied. In the terminology

of classical control theory, this action is usually taken by an entity called an actuator.

We will identify the control action in each part of our study.

1.6 Thesis Contributions

The model-based control approach can be applied at many places in the network rang-

ing from hosts (or servers) running applications all the way down to the network protocol

layers as well as the network components such as routers, switches, and network links.

This involves traffic management, traffic conditioning, traffic scheduling, buffer manage-

ment, routing, resource allocation, admission control, as well as other numerous network

functions. Figure 1.3 illustrates our contributions in modeling and controlling different net-

work QoS components that are explained in the following subsections. We start by studying

differentiated packet marking control that is used at the host or gateway level. Then, we

present modeling and control of QoS-enabled network routers (per-hop QoS), and finally,

we study domain-level network services or edge-to-edge QoS across network clouds. We

13

�
Packet

Marking

Per-Hop
QoS

QoS
Gateway

Customer
Network

Service
Classes

Con
tro

l
th

eo
ry

Ingress Egress

FIFO pipe

Self-Controlled
Network
Services

Network
Cloud

Figure 1.3: Contributions

also present an architecture, called QoS Gateway, for promoting QoS support to hosts and

applications.

1.6.1 Packet Marking Control

The first piece of work in the thesis focuses on the mechanism that creates different

traffic classes in the network, which is called “packet marking.” Packet marking is con-

sidered as a basic mechanism of creating aggregate traffic classes to meet different QoS

requirements. It is used in most recent QoS architectures such as DiffServ, MPLS, IEEE

802 QoS, as well as others. Usually packets from different traffic or service classes are

marked with different tags to identify their relative importance. Techniques for QoS along

the network differentiate handling of packets according to their tags. In this way, per-flow

classification inside the network (which suffers the scalability problem) is avoided.

To show the effectiveness of applying the model-based control approach to network

QoS components, we start by using a recently-developed model at the University of Mas-

14

sachusetts for TCP [104] in creating a better marking algorithm. We show how to use this

model for controlling the output throughput, as one of the QoS parameters, of the network

traffic. Specifically, we consider the edge of the network and study the problem of packet

marking within the context of the Assured Forwarding (AF) services in DiffServ. We intro-

duce a new packet marking algorithm called Equation-Based Marking, or EBM [37, 38].

It uses the TCP model in [104] in a tight feedback control loop that controls the output

throughput. EBM handles the problems found in other marking schemes regarding fair-

ness among heterogeneous TCP flows through adaptation and control of the packet color

marking probabilities. Although we do not use a control-theoretic approach in designing

the controller for this problem, we show how an iterative model-based control approach

can result in a better and predictable QoS performance than other ad-hoc approaches. The

control action used here is “differentiated packet marking.” We design a packet marker that

uses EBM as the marking algorithm, and evaluate its performance using in-depth simula-

tion. We also prove analytically the correctness of the marking algorithm and compare it

with other marking schemes for different network scenarios. Our evaluation results demon-

strate the effectiveness of EBM in controlling the output throughput of the assured traffic

and in providing the required fairness among heterogeneous flows as well as ensuring pro-

tection against non-assured traffic.

1.6.2 Per-Hop QoS Modeling and Control

This time we apply control inside the network, and extract the models from scratch. We

take a typical QoS-enabled network node (specifically a PHB-enabled node) in isolation

and find the functions that relate the inputs to the outputs of this node. We call the out-

put of the QoS-enabled node as the “Per-Hop QoS” or PHQ [35, 38], which is measured in

terms of throughput, delay, jitter, and loss rate experienced by traffic crossing this PHB. We

use a statistical approach that is based on experiments on a real network testbed to charac-

terize the per-hop QoS of a given PHB. Specifically, we employ a full factorial statistical

“design of experiments” to study the effects of different PHB configurations and input traf-

fic scenarios on per-hop QoS. We use Analysis of Variance (ANOVA) to identify the input

15

and PHB configuration parameters that have the most significant influence on per-hop QoS.

Then, a polynomial regression analysis is applied to construct models for the per-hop QoS

with respect to these parameters. The overall approach is shown to be effective and capable

of characterizing any given PHB, within the ranges of the experiments, and for construc-

tion of functional relationships for the PHB output parameters. We are also able to identify

the operational differences between different realizations of a given PHB. These functional

relationships are considered as off-line (static) models for the PHB. Once these models are

found, we study how to use them in achieving a required PHQ within a simple feedback

controller following our “model-based control” approach.

1.6.3 CONNET: Self-Controlled Network Services

Despite the attractive features of the modeling framework used in PHQ, it does not

cover all possible performance ranges or configurations for a particular PHB. Instead, it

predicts the PHB performance under the levels of factors used in the experiments which

represent only a certain range of the PHB operation. We would like to think of these “off-

line derived” models as static models that capture only a snapshot of the per-hop QoS, and

in order to be able to apply the control theory we need to find the dynamic version of these

models. PHQ control proves that model-based control is working, but we need to use more

reliable feedback control.

To meet this need, we develop a new reservation-less mechanism for delay and jitter

guarantees across “single FIFO queue” network services by controlling interfering non-

premium traffic. The mechanism, called CONNET (CONtrolled NETwork) [32], capital-

izes on the dependence of the delay/jitter of premium traffic on the amount of non-premium

traffic sharing the same network service. Specifically, it uses feedback regulation to create

self-controlled network services capable of tracking delay and jitter references specified

either online or off-line with minimal management overhead. The difference between the

measured delay/jitter and the reference value is fed back to control the rate of non-premium

traffic entering the network service. We use a control-theoretic approach in designing the

feedback loop based on a “black-box” model of the access link in both cases of single

16

and multiple nodes. For robust control, we use an optimal Linear Quadratic Gaussian

(LQG) regulator that achieves a good balance between the system response and the con-

trol effort required. We evaluate the performance of the CONNET algorithm using a real

testbed implementation, and illustrate ways of deploying it on the Internet. This evalua-

tion demonstrates CONNET’s superiority to other rate-based schemes (such as CBQ and

WFQ) in terms of simplicity, deployability, robustness, accuracy, and fault-tolerance. We

also present the use of the same control approach in Delay-controlled Queue Management

(DQM) [31] for delay-sensitive traffic.

1.6.4 Paving the First Mile for QoS-dependent Applications and Ap-

pliances

To realize the full potential of the proposed QoS control mechanisms in creating a QoS-

aware environment, applications should be able to incorporate them. Therefore, paving the

first mile of QoS support becomes an essential step for full deployment and utilization of

QoS techniques that are introduced in this thesis and even to existing techniques. Usually,

the efforts have been focused on providing network services and control without paying

much attention to how applications can use these services. Until recently, a few operat-

ing systems have provided APIs for new applications to access network QoS. The main

problem with this scheme is that it provides support only for those applications that are

programmed to use these interfaces. For legacy applications that are not aware of these

interfaces, they will not be able to use them.

To address these issues, we propose the design and implementation of a two-tier archi-

tecture, called QoS Gateway or QoSGW [33], that can support both types of applications

in addition to small embedded network devices that need to use network-provided QoS

support. Our system, once fully integrated, is composed of two main components: (i) an

agent that either resides on the end-host or as a stand-alone entity, and it provides adequate

interface to QoS-dependent applications, and (ii) a QoS manager for network services that

provides interfaces to these agents. Using two components achieves both generality and

scalability in providing QoS support for applications and end devices. The agent receives

17

the application requirements either directly or indirectly, map them to an intermediate form,

and consults the manager to map these requirements to an appropriate network service. The

manager, on the other hand, serves a number of agents in providing adequate network ser-

vices from the underlying network in addition to other management responsibilities. This

system promotes QoS deployment and facilitates the building of QoS-aware customer net-

works. For example, EBM is implemented within the marking module of the manager.

The manager can also use the self-controlled network services mentioned above to build

edge-to-edge or end-to-end QoS for applications with pre-specified QoS.

1.7 Organization of the Thesis

The thesis is organized as follows. Chapter 2 introduces the Equation-Based Marking

(EBM), which shows the effectiveness of using model-based control for predictive QoS as

a first example. Chapter 3 presents the modeling and control of per-hop QoS for typical

QoS-enabled nodes using statistical methods. The chapter covers the modeling framework,

validation of the models and the model-based control algorithm. CONNET is covered in

Chapter 4, where we present the motivations behind using the control-theoretic approach

and a detailed analysis of the feedback control design. It also presents a thorough experi-

mental evaluation to show the effectiveness of CONNET. Chapter 5 presents our approach

for paving the first mile of QoS to QoS-depended applications and appliances. It describes

the architectural design of the QoS Gateway, points to its operation, and finally presents

the evaluation of a prototype of the design to show its correctness and effectiveness. Fi-

nally, Appendices A, B, and C include the TCP model used in EBM, a brief review of

the statistical tools used in PHQ modeling and control, and an excerpt of the prototype

implementation of the QoS Gateway.

Note that our analysis techniques are tailored throughout the thesis to best suit the

problem at hand. This allows us to maximize the effectiveness of each proposed technique

in our study of QoS modeling and control, and to gain different experiences during the

course of the thesis research. In particular, we use simulation and simple mathematical

proofs in the packet marking study. Then, we use a full experimental approach (based

18

on a real network testbed and implementation) along with statistical analysis in studying

the per-hop QoS which gives hands-on experience. Finally, we use MATLAB design and

simulation tools in designing CONNET followed by an evaluation using a Linux-based

testbed network.

19

CHAPTER 2

Equation-Based Packet Marking for Throughput

Guarantees

Packets entering a DiffServ-enabled network are marked with different DiffServ Code

Points (DSCPs). Based on this marking, packets are subject to classification, traffic condi-

tioning (such as metering, shaping, and policing), as well as to a certain PHB. As mentioned

before, one of the defined PHBs, the Assured Forwarding (AF) PHB [59], is proposed to

offer different levels of forwarding assurance and throughput guarantees.

The idea behind the DiffServ’s AF PHB in controlling throughput is to identify “less

important” packets and let the network buffer management drop them upon detection of

congestion to protect “more important” packets. Packets are identified by their marking,

based on conformance to their target throughput. Non-conformant packets are called out-

of-profile (OUT), while conformant packets are called in-profile (IN). Then, by using a

differentiated random drop gateway like RIO [24] or a more general form thereof, at the

time of congestion, OUT packets are more likely to be dropped than IN packets. This, in

effect, protects IN packets from OUT ones, giving applications their required bandwidths.

For three-color AF, IN packets are labeled Green, and OUT packets are divided into Yellow

and Red in order to have more control on the available bandwidth of the network. These

three colors correspond to the AF’s three drop precedences, AFx1, AFx2, and AFx3, re-

spectively. Associated with any marking algorithm, there is one or more values of “marking

probabilities.” Each probability determines the ratio of the traffic to be marked with a cer-

20

Source Destination

Drop
Gateway

(1) (2)

AFx3

AFx2

AFx1

Marker

PIR

CIR

congestion
more

congestion
AFx3 AFx2

AFx1

Figure 2.1: AF PHB marking process

tain color. They all add to one, which is the total traffic sending rate. Figure 2.1 shows this

idea of marking for the AF PHB.

2.1 Fairness in Bandwidth Distribution

AF works best with TCP because of responsiveness to packet drop. The interaction

between the packet drop rate (also known as loss rate), and TCP effective throughput is a

complex process and is known as “congestion control.” Recently, significant efforts have

been invested into the performance evaluation of TCP congestion control for a random drop

gateway like RED [49] and RIO [24] with an emphasis on AF services. The authors of [85,

115] pointed out unfairness issues among TCP aggregates that have different round-trip

times (RTTs), average packet sizes, target rates, or numbers of micro-flows in the aggregate.

This unfairness occurs in sharing the extra bandwidth in under-subscribed networks, or in

the degraded performance in over-subscribed networks. They considered different models

for the drop gateway configuration, such as RIO-C, WRED, overlapped, non-overlapped,

single and multiple averages. Similar results have been reported in [109] and [65], the latter

of which has also evaluated the difference between using token bucket and average rate

estimator policing (marking). Fairness between responsive (e.g., TCP) and non-responsive

(e.g., UDP) traffic was also investigated in [115, 116].

Fairness has also been an important problem in the performance of AF services1 within

1Because of AF’s dependency on congestion control.

21

the DiffServ framework [13, 98]. We define the fairness term as follows: “In an under-

subscribed network, all flows should get a share of the excess bandwidth proportional to

their target rates (an equal share for equal target rates). In an over-subscribed network, all

flows should experience throughput degradation proportional to their target rates (equal

degradation for equal target rates).”

Several packet marking algorithms were proposed to work with AF, such as the Two

Rate Three-Color Marker (TCM) [60], and the Time Sliding Window Three Color Marker

(TSWTCM) [39, 77]. TCM is based on token bucket metering, while TSWTCM is based

on the average rate estimator algorithm in [24]. An enhanced version of the TSW, called

Enhanced Time Sliding Window (ETSW), was proposed in [83] to handle TCP dynamics

and over-marking in the original TSW marker. We found that these marking algorithms

do not handle the unfairness issues mentioned above, nor have they been evaluated with

respect to these issues in the first place. For most of these marking schemes, two target

rates are defined: Committed Information Rate (CIR) and Peak Information Rate (PIR).

The former is the minimum requirement to be achieved, and the latter is for a surplus of

bandwidth when the network is lightly-loaded.

The authors in [85, 115] found that all these marking algorithms suffer from the same

afromentioned fairness issues. To emphasize, TCP flows with different RTTs cannot achieve

throughput proportional to their target rates, and the same phenomenon occurs also for TCP

flows with different target rates, different mean packet sizes, or aggregates with different

numbers of micro-flows. This was detected in our extensive simulations as well, and it is

not acceptable in the operation of AF. Also Non-responsive flows usually get more band-

width than their fair (proportional) share, leaving responsive flows with less than their fair

share, and sometimes starve for bandwidth (because of greedy non-responsive flows).

Several remedies have been proposed to overcome these fairness problems, such as the

TCP-Friendly marker [43] and the Fair Marker in [73], but they suffer from their inherent

complexity, and their performance has not been evaluated either. Two adaptive marking

algorithms have been proposed in [41] and [92]. They are called Adaptive Packet Marking

(APM) and Intelligent Traffic Conditioners (rtt-aware and target-aware), respectively. APM

is found to perform well in tracking the dynamics of TCP and preserving the target rate, but

22

it is based on an inaccurate feedback model which causes performance fluctuations. More-

over, APM has to be implemented inside the TCP code itself, requiring modification of all

TCP agents to be able to use this marking algorithm. The Intelligent Traffic Conditioner

tries to use the simple TCP model in [87] to handle the unfairness associated with differ-

ent RTTs and different target rates. This is somewhat similar to the approach proposed in

this chapter, except that these conditioners require external inputs and cooperation among

markers for different traffic aggregates, which tend to be very complex in implementa-

tion and deployment. Moreover, several researchers attempted to mimic TCP congestion

control using models in [87, 104, 133] and introduced model-based rate control [105], and

equation-based congestion control [52]. On the other hand, an excellent analytical study of

the achievable performance for TCP using token bucket marking is reported in [112] where

the authors prove that token bucket markers cannot achieve all values of assured rates and

the achieved rate is not proportional to the assured rate. They also introduced a method of

choosing the correct profile to achieve a given service level.

In this chapter we address these issues in the AF PHB performance by introducing a

new marking algorithm that draws from the model-based control approach we described

in Chapter 1. Our marking algorithm is called Equation-Based Marking or EBM, and it

is based on a model (or equation) for the TCP congestion control process that was devel-

oped in [104], hence the name “Equation-Based.” Next, we describe the design, operation,

analysis and evaluation of EBM and compare it with the previously-mentioned marking al-

gorithms showing its superiority in achieving required throughput guarantees and solving

the fairness issues of those algorithms.

2.2 Equation-Based Packet Marking

Our solution for the fairness problem in AF is two-part: The first part is EBM, which

works similar to TCP, but on the packet-marking level. It senses the current network con-

ditions and adapts the packet marking probabilities (IN and OUT for two-color marking;

Green, Yellow, and Red for three-color marking) accordingly. This adaptation adjusts the

loss rates of heterogeneous TCP flows, thus providing an equal or proportional share of

23

Source Gateway
TCPTCP DropMarker

Link Link Link

Implicit feedback through dropping

Implicit feedback through dropping

TCP feedback through ACK

Receiver

Figure 2.2: Feedback loop operation of EBM

extra bandwidth in under-subscribed networks, and an equal or proportional degree of

throughput degradation in over-subscribed networks. The new marking algorithm pre-

dicts the behavior of the TCP sender and adjusts the marking probabilities accordingly,

distinguishing itself from the other approaches to AF marking. This behavior gives a close

interaction between the marker and the TCP sender.

The second part is called “Packet Separation” mechanism and it handles the fairness

between responsive and non-responsive traffic. It is mainly a mechanism for isolating dif-

ferent traffic types at routers or nodes that are performing buffer management and packet

dropping.

EBM employs a compact feedback control loop based on the TCP model mentioned

before and summarized in Appendix A for completeness. The model encodes all the

previously-mentioned factors affecting performance, in a single equation, Eq. (A.1). EBM

is different from other marking algorithms because it is based on TCP’s reaction to packet

losses as we will show shortly. The marker works in the feedback loop shown in Figure 2.2

by sensing the losses that the TCP connection experiences, hence it tries to estimate the

current network conditions and adjusts the packet marking probabilities accordingly. EBM

works just like TCP, which adjusts the sending rate by sensing the level of congestion in

the network via observation of packet losses. EBM forms another feedback loop, as shown

in Figure 2.2, which provides appropriate marking to achieve the required target rate. This,

24

Throughput
Domain Domain

Loss probability

Green

CIR

PIR

Duality

Ppir

Pcir

Red

Green

Yellow

Red

Yellow

Figure 2.3: Duality between throughput

and loss probability

Marking
TCP

Model

RTT feedback

Loss feedback

Pcir

Ppir

CIR

PIR

Red

Yellow

Green

Network

Figure 2.4: Operation of EBM

in effect, provides fairness among different TCP flows.

One basic difference between EBM and the previous marking algorithms, is that EBM

uses estimated loss rate, instead of estimated average throughput, in calculating the required

marking probabilities. This was drawn from the duality between throughput and loss prob-

ability when using the TCP model in Eq. (A.1), as shown in Figure 2.3. In this figure, we

identify the target loss probabilities, pcir and ppir, corresponding to target throughput rates,

CIR and PIR, respectively. EBM uses these two probabilities in its operation, and calcu-

lates them from the TCP model in Eq. (A.1) using the current network conditions like RTT,

mean packet size, and maximum TCP window size. Then, as described later, it uses the

current loss rate seen by this TCP flow as well as these target loss probabilities to calculate

the packet-marking probabilities.

2.3 The Design of EBM

The operation of EBM is shown in Figure 2.4, where the marking engine uses the cur-

rent estimated RTT (Section 2.3.2) as well as the current estimated loss rate (Section 2.3.3)

in its marking decision. It plugs the estimated RTT into the inverse of the TCP equation,

T � 1
p � rt � M � RTT � To � Wmax � 2, to get the target loss probabilities from the target throughput

rates. This calculation is the key, as it adapts to the current values of RTT, packet size, and

the other derived parameters, reflecting different values for different TCP flows/aggregates.

2We call T � 1
p the inverse of T w.r.t. p.

25

Each periodic interval:

1. Use current estimate of round-trip time and time-out,�
	�	
and

	��
, respectively

2. Use value of the maximum TCP window size, ������
3. Calculate maximum achievable throughput, ����� ,� ������� 	�� ��� �!� �
	�	 � 	�� � "�����
#
4. if ($!% �'& � ���(�)
5. Exit with error ‘‘Not able to achieve CIR and PIR’’

6. if ()�% �*& � �����)
7. Warning ‘‘Not able to achieve PIR’’

8. end if

9. end if

10. Calculate �,+(-/.0� 	�1!23 � $!% � � �!� �
	�	 � 	�� � "�����
#
and � 3 -/.0� 	�1!23 �)�% � � �!� �
	�	 � 	�� � "������#

11. Use current estimate of loss rate, 4�5
6�6 �
798
:
12. Calculate packet marking probabilities)�;=<=>(> ��? and)9.=<=@
13. Mark packets

Figure 2.5: EBM algorithm

The target loss probabilities are used through a special marking function to get the packet

marking probabilities for the three colors: Green, Yellow, and Red. Figure 2.5 illustrates

the detailed algorithm of EBM. The steps in the algorithm are executed periodically, and

the execution period is tunable to achieve the best performance. In the following sections

we detail each of the building blocks of the EBM and the steps of the algorithm.

2.3.1 Calculation of the target loss probability

Eq. (A.1) indicates a one-to-one relationship between throughput, rt , and loss proba-

bility, p, for a given maximum window size, RTT, and mean packet size. EBM uses this

relationship to derive the loss probabilities corresponding to the target throughput rates,

CIR and PIR. As mentioned earlier, these loss probability values are called target loss

probabilities, pcir A T � 1
p � CIR � M � RTT � To � Wmax � and ppir A T � 1

p � PIR � M � RTT � To � Wmax � .
This calculation requires the inverse of the TCP equation with respect to loss probability,

p, however, there is no closed form for this inverse. So, EBM numerically calculates the

required values. The calculation process is tuned by changing the rate and/or accuracy of

calculation.

26

At each estimation interval:

Record and timestamp a packet of the TCP flow

Upon receiving an acknowledgment

/*Check if it is for the previously-recorded packet*/

if (seqno of the ack B recorded seqno)

current rtt := now C recorded timestamp

/*Calculate the WMA of the measured RTT values*/

srtt = w D rtt + (1 - w) D srtt

delta = |rtt - srtt|��8�89E ��.F�HG�.(I � DKJ : 4 8
7ML �(N COG�.(I � #PD ��8�89E ��.	�� �Q6 ��8�8MLSR D ��8�89E ��.
end if

Figure 2.6: Estimation of RTT

One important step to be taken by the EBM algorithm is to ensure that the numerical

iterations converge to a correct value; otherwise, there is no need to iterate in the first place.

This is the role of Steps 3-9, where the algorithm calculates the maximum achievable TCP

throughput, rmax, with the current values of RT T , To, and Wmax by putting p A 03 when

evaluating T . Then, it compares the target throughput rates, CIR and PIR, to this maximum

value, and if it is smaller than any of the target rates, then this target rate can not be achieved

under the current circumstances. Accordingly, the numerical iteration will not converge to

a correct value. The proof of this convergence criterion is given in Section 2.4.3.

2.3.2 Estimation of RTT and To

This module uses a method similar to the one used in TCP’s estimation of RTT with two

differences. First, the estimation procedure uses the timestamp option in the TCP header

in order to estimate RTT and To with a high resolution. Second, the module is located

outside the sender TCP, so it reads and modifies the packets’ TCP headers in order to use

the timestamp option. The estimation procedure is depicted in Figure 2.6, where srtt is the

estimated RTT and To the estimated retransmit time-out.

3In fact, there is no value for T at p T 0, but we use a very small value like 10 � 15, instead.

27

2.3.3 Estimation of the current loss rate

Using the “average loss interval” method [52], EBM estimates the current loss rate of

the network seen by a TCP flow. For convenience, we describe the method here and give

the details of detecting loss events4 from the marker side, which is located outside the

TCP source. The loss interval, si, is defined as the number of packets transmitted correctly

between two loss events (i, i U 1). The estimated loss interval ŝ V 1 W n X is calculated as the

weighted average of the last n intervals:

ŝ V 1 W n X A ∑n
i Y 1 wisi

∑n
i Y 1 wi

for weights wi:

wi A Z[]\ 1 1 ^ i ^ n _ 2

1 U i � n ` 2
n ` 2 a 1 n _ 2 b i ^ n

For the reasons mentioned in [52], EBM uses n A 8, giving weights of 1, 1, 1, 1, 0.8, 0.6,

0.4 and 0.2 for w1 through w8, respectively. The reported loss rate is loss rate = 1/ŝ.

Detecting loss events from the marker side and outside the TCP sender requires some

knowledge of packet losses. In TCP, a packet loss is detected when the sender receives

three duplicate ACKs, or when the retransmit time-out expires, whichever occurs first. In

both cases, and according to the TCP Reno’s fast retransmit procedure [68], the lost packet

is retransmitted. Detecting three duplicate ACKs at the marker is not a problem when using

similar state variables to the ones used in TCP, however, detecting packet loss that causes

a time-out is harder, especially when a time-out timer is not used. Also, we ignore any

loss within one RTT from a previous one, as mentioned in [52]. After taking several tuning

procedures, a reasonable behavior of the loss estimator has been reached.

2.3.4 Marking Function

Based on the target loss probabilities, EBM uses a linear function to calculate the mark-

ing probabilities, Pyellow and Pred for the three-color marking case, proportional to pcir

4A loss event is different from packet loss, as the former may consist of several packet losses within a
round-trip time.

28

if
� 4�5
6�6 �
798
: Bc��+(-/.)
Mark packet as GREEN

else if
� ��+(-�. & 4�5
6�6 �
798
: BH� 3 -/.9#

calculate)9;=<=>(> ��? � 3edgfih 1 > �kj(j .=��I=<3edlf h D � ��+(-�.mD�n�o�p 7 4 : #
with probability)�;=<=>(> �(? mark packet as YELLOW and

with probability (1 -)�;=<=>(> �(?) mark packet as GREEN

else if
� 4�5
6�6 �
798
:�q � 3 -/.9#

calculate)9.=<(@0� 3=r/fih 1 > �kj(j .=��I=<3=r�f h D � � 3 -�.0D � o�p 7 4 : #
calculate)9;=<=>(> ��? � 3edgfih 1 3=r/fih3=r�f h D � � 3 -/.mD�n�o�p 7 4 : #
with probability)�.=<(@ mark packet as RED and

with probability)�;=<=>(> �(? mark packet as YELLOW and

with probability (1-()�;=<=>(> �(? L)9.=<=@)) mark packet as GREEN

Figure 2.7: Marking function

and ppir as shown in Figure 2.7. This marking function is similar to the one used in the

TSWTCM marking scheme, but with throughput replaced by loss rate, and CIR and PIR

replaced by pcir and ppir, respectively. The YScale and RScale are design parameters that

take values which depend on the current network conditions.

To show how the marking function works, we present the case of four similar TCP flows

but with different RTTs. We plot their pcir and ppir in Figure 2.8 and the resulting marking

probabilities for the three-color case in Figure 2.9. We identify here that the marking

function tries to adjust the packet marking probabilities to equalize the loss rates for the

four different flows, and hence equalizing throughput (as there is a one-to-one relationship

between throughput and loss probability). The flow with a higher percentage of Yellow, and

Red will have more losses, and hence less throughput. One should see the same behavior

for the other factors, or for a combination thereof as well. This validates the operation of

EBM in providing the required fairness among heterogeneous TCP flows or aggregates.

29

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

0.0045

0.005

50 100 150 200 250 300 350

P
ro

ba
bi

lit
y

RTT (msec)

Pcir
Ppir

Figure 2.8: Pcir and Ppir

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 100 150 200 250 300 350

M
ar

ki
ng

 P
ro

ba
bi

lit
y

RTT (msec)

Green
Yellow

Red

Figure 2.9: Marking probabilities

2.4 Analysis of EBM Operation

In this section, we analyze the operation of EBM to show the correctness of the opera-

tion and examine the convergence of the numerical iterations taken to calculate the target

loss probabilities. Here we choose a steady-state analysis, and we will consider the dynam-

ics of EBM in our future work. First, we present a correctness proof based on the feedback

model of the marker with both TCP and the drop gateway. The approach to this proof has

been inspired by the study in [47]. We present the proof here for the case of flows with

different RTTs only. Using a similar procedure, the other cases of different target rates or

different packet sizes can also be proved.

2.4.1 Assumptions

In order to make the proof tractable and simplify the mathematics involved, we make

the following assumptions.

A1. We consider a system of n TCP flows passing through a common link s with capacity

C as shown in Figure 2.12, except for using a single-hop network. In Section 2.5, we

use a multi-hop network as a generalization, and the results are valid for that case as

well. All other access links have enough capacity, so that link s is the only bottleneck

for all flows.

A2. All TCP flows have the same parameters except for RTTs, i.e., each flow sees a dif-

30

ferent RTT. We assume that the system is in the steady state (no slow start), and all

TCP flows have unlimited data to send. We also assume that the system is under-

subscribed, i.e., there is a surplus of bandwidth that can be allocated to each flow.

A3. Without loss of generality, we will use a two-color version of the RED drop gateway,

called RIO [24], to make the proof simpler and tractable, but the results work for the

three-color case as stated in Section 2.5.

A4. Unlike the study in [47], we do not use the average queue size model of the RIO.

Instead, we assume that a typical RIO drop gateway gives a fixed loss probability

per class (IN and OUT) for all flows passing through this gateway. So, all flows

see the same value of loss probabilities, lossin, for IN packets, and lossout for OUT

packets. Note that different flows may still see different total losses, depending on

their parameters, but we only assume that loss probabilities in a class are the same

for all flows. A justification for this assumption is given in the following:

In RED, and similar Active Queue Management (AQM) schemes like RIO, the drop

rate is a linear function of the average queue size. So, for example, for a two-color

drop gateway based on RIO, the drop probabilities (or drop rates) are given as fol-

lows. For the IN packets:

lossin Tutvvvw vvvx
0 y 0 z q̄in { minthin

q̄in � minthin
maxthin � minthin

pmaxin y minthin z q̄in { maxthin

1 y maxthin z q̄in z B

(2.1)

where:

B: is the maximum queue size or buffer size.

q̄in: is the average queue size for the IN packets calculated as WMA of the instanta-

neous queue samples.

pmaxin � minthin � maxthin: are the RIO parameters for IN packets.

31

A similar formula exists for OUT packets obtained simply by replacing every in

with out. The loss probabilities, lossin and lossout , will be in the range � 0 � pmaxin � ,
and � 0 � pmaxout � , respectively. It is important to note that the calculation does not

depend on per-flow information, so packets from different flows will see the same

instantaneous values of loss probabilities for IN and OUT packets as functions of the

same average queue size. However, total losses for IN and OUT packets for each flow

depends on the number of IN and OUT packets in the flow’s packet stream, which is

directly related to the marking technique used. The values of lossin and lossout are

proportional to the average traffic load on this gateway. If the load is high, the loss

probabilities will be high; and if the load is low, the loss probabilities will be low, but

will still be confined in range � 0 � pmaxin | out � .
As mentioned before, the TCP model in Appendix A does not have a closed-form in-

verse with respect to loss probability p; neither does the approximate model given in [47],

so we use numerical methods for this proof and discretize the problem as explained next.

2.4.2 Proof of Correctness

Theorem 1 (Fairness). For a set of TCP flows, fi, 1 ^ i ^ n, with same parameters and

same target rate, CIR, but with different RTTs, RT Ti, when EBM is used for AF marking,

they will get approximately the same goodputs, rti . In other words, for all i }A j, 1 ^ i � j ^ n,

if RT Ti }A RT Tj, then using EBM will result in rti A rt j ~ i and j.

Proof. Listed below are the steps taken for the proof.

1. For each value of RT Ti, calculate the TCP throughput rti � Li � RT Ti � from Eq. (A.1),

using the loss probability, Li, seen by flow fi.

2. The value of Li is calculated from the RIO loss probabilities for each flow, depending

on its packet marking probability, Pmi .

Li A Pmi � lossout � � 1 U Pmi � � lossin (2.2)

32

3. The value of the marking probability, Pmi , is calculated for each flow using a similar

marking function to the one in Figure 2.7 but for two colors only (IN and OUT).

Pmi A pciri U Li

pciri
� � pciri � Scale � (2.3)

4. The value of pciri is calculated numerically for each flow using its own RT Ti from

the inverse of Eq. (A.1) with respect to p as:

pciri A T � 1
p � CIR � RTTi � (2.4)

5. Solving for Li using Eqs. (2.2) and (2.3), we get:

Li A pciri � � lossout U lossin � � Scale � lossin

1 � � lossout U lossin � � Scale
(2.5)

Then, substituting in Step 1 for each value of RT Ti, we get the final TCP throughput, rti ,

for each flow fi. Next, by plotting the values of rti , we numerically show that they are equal

for the same target rate.

We show one instance of the results using these steps is in Figure 2.10 for M A 576

bytes, Wmax A 256, Scale A 5000, C A 15 Mbps, CIR A 0 � 5 Mbps, n A 20, lossin A
0 � 000066, lossout A 0 � 00066, and RTT is uniformly-distributed from 200ms to 900ms. The

figure also shows the throughput values without using EBM, as well as the CIR value. The

figure clearly shows the correct operation of EBM with respect to the required fairness

among TCP flows with different RTTs.

2.4.3 Convergence of EBM Iterations

As mentioned in Section 2.3.1, Eq. (A.1) describes a continuous and one-to-one rela-

tionship between rt and p as shown in Figure 2.11, where T is plotted as a function of p

for different RTTs ranging from 0.07s to 0.7s, M A 576 bytes, and Wmax A 256. We use the

bisection method for finding the inverse of T w.r.t. p numerically [7], and to iterate for the

values of pcir and ppir, we start from p A 0 and p A 1. These two values bound the whole

scale of possible loss probability, meaning that a valid value of r can be calculated by the

Intermediate Value Theorem [7]. However, T is a function of other variables like RT T , M,

33

0

200

400

600

800

1000

1200

1400

1600

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
hr

ou
gh

pu
t (

K
bi

t/s
)

RTT (sec)

w EBM
w/o EBM

CIR

Figure 2.10: Output of the analytical proof —

throughput vs. RTT

0

100

200

300

400

500

600

700

800

900

1000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
hr

ou
gh

pu
t (

K
bi

ts
/s

)

Loss Probability

RTT=0.07s
RTT=0.1s
RTT=0.3s
RTT=0.5s
RTT=0.7s

Figure 2.11: Throughput vs. loss probability

for different RTT

and Wmax, which impose other limitations on the throughput achieved at certain p as shown

in Figure 2.11. So, given some values for RT T , M, and Wmax, there is a maximum value

for the throughput, rmax, that can be achieved. This is the value calculated in Section 2.3.1

to compare with. By definition, rmax should be found at very small p, and this value is

bounded for certain values of RT T , M, and Wmax. Therefore, we first test for this condition

in the EBM algorithm, and if the required target rates are below this maximum value, then

the numerical iteration will always converge.

2.5 Evaluation

We use ns-2 [118] to evaluate the performance of EBM and compare it with other

marking algorithms. The network in Figure 2.12 is used in our evaluation. Different

scenarios have been simulated on this network to measure the performance for different

parameters. In all these scenarios, we use ten TCP sources (i.e., n A 10) along with two

UDP sources as background traffic. This background traffic represents the best-effort traf-

fic in the Internet and uses Red-colored CBR (Constant Bit Rate) packets. Edge routers do

the metering and packet marking (represented as squares in Figure 2.12) and core routers

implement the Multi-RED (MRED) buffer management as a realization of the AF PHB.

MRED uses a single average, non-overlapped (staggered) model and has the parameters

34

S1

S2

S3

Sn

D1

D2

D3

Dn

R1 R2 R3 R4 R5

End-host

Router/Gateway

Marker

Access link

Network link

Figure 2.12: Simulation topology

listed in Table 2.1 where thresholds relative to the total queue length L are used. Each TCP

source generates an infinite FTP bulk data transfer, with its own target rates, CIR and PIR.

The subscription level of the network is set by properly adjusting CIRs and the background

rate. All access links have a capacity of 100 Mbps and a latency adjustable to the simulation

scenario, while the links between core routers have a 10 Mbps capacity and a 10ms latency.

The bottleneck is made to occur at the links between the core routers. Unless otherwise

stated, a packet size of 576 bytes is used. In all the simulations, we measure the goodput

achieved by each TCP flow using the Weighted Moving Average (WMA) technique with

a 1-second window and a weight of 0.5–0.8. We then calculate the average goodput over

the whole simulation period. Each simulation scenario is repeated 10 times, and then an

average is taken over all runs. The EBM uses a 10sec interval between two successive

calculations of pcir and ppir, and an accuracy of 0.005%, while using a YScale of 500 and a

RScale of 1000. These values have been set empirically for the best performance of EBM

with the current network configuration used in the simulation.

For different marking algorithms, we use the following notations in the graphs: TCM

for Token bucket Three Color Marker, TSW for Time Sliding Window three color marker,

ETSW for Enhanced Time Sliding Window marker, RPM for Random Packet Marking,

APM for Adaptive Packet Marking, and finally EBM for Equation-Based Marking. Also,

CIR is used for Committed Information Rate, and PIR for Peak Information Rate.

35

Parameters for Green Yellow Red

Queue length L L L���������
0.875L 0.625L 0.3125L�0�!� ���
0.625L 0.3125L 0.025L�������

0.02 0.05 0.1�M� 0.002 0.002 0.002

Table 2.1: MRED parameters

2.5.1 Subscription Level

In the first scenario, we investigate the effect of the network subscription level, or load,

on the performance of EBM, comparing it with other marking schemes. The subscription

level is changed from a light load (45%) to a heavy overload (200%), and the results are

plotted in Figure 2.13. A CIR value of 500 Kbps and a PIR value of 700 Kbps are used

for all markers, and by changing the background rate, we achieve the required subscription

level in the network.

From the figure, we see that EBM has better protection and adherence to CIR than other

marking schemes under a broad range of network loads. Of course, under a very light load,

all the markers can achieve good throughput, as there is a large surplus of capacity in the

bottleneck links. On the other hand, for heavy network loads, EBM is superior to others

in protecting the AF traffic from background traffic to sustains its CIR and get as much

bandwidth as they can from the extra capacity toward PIR. To show the fairness among

different flows, Figure 2.14 plots the goodput per flow for a 120% subscription level. All

marking schemes have the same fairness in this case for similar flow parameters. Note that

APM also yields similar performance on a large time scale, but on a small time scale, APM

causes more fluctuations in the achieved throughput than EBM. This characteristic is also

experienced in all other scenarios.

2.5.2 RTT

Using a range of RTTs from 100ms to 1520ms for different TCP flows, by changing the

latencies of access links, we evaluate the fairness and performance of EBM against the other

marking schemes in moderately- and heavily-loaded networks. The results are plotted in

36

0

200

400

600

800

1000

1200

40 60 80 100 120 140 160 180 200 220 240

G
oo

dp
ut

 (
K

bi
t/s

)

Subscription Level (%)

TCM
TSW

ETSW
RPM
APM
EBM
CIR
PIR

Figure 2.13: Goodput vs. subscription level

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12

G
oo

dp
ut

 (
K

bi
t/s

)

Flow

TCM
TSW

ETSW
RPM
APM
EBM
CIR
PIR

Figure 2.14: Goodput per flow — over-

subscription

0

500

1000

1500

2000

0 200 400 600 800 1000 1200 1400 1600

G
oo

dp
ut

 (
K

bi
t/s

)

RTT (msec)

TCM
TSW

ETSW
RPM
APM
EBM
CIR
PIR

Figure 2.15: Goodput vs. RTT — under-

subscription

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200 1400 1600

G
oo

dp
ut

 (
K

bi
t/s

)

RTT (msec)

TCM
TSW

ETSW
RPM
APM
EBM
CIR
PIR

Figure 2.16: Goodput vs. RTT — over-

subscription

Figures 2.15 and 2.16 for 80% and 130% load, respectively. One can see form these figures

how EBM equalizes the throughput among different TCP flows while satisfying the CIR

requirement under both conditions, whereas the other marking schemes can not even reach

CIR under heavy loads and large RTTs.

2.5.3 Target Rate

TCP flows with different target rates should get proportional shares of excess bandwidth

in under-subscribed networks [92, 115]. We evaluate EBM for this case using a range of

CIR from 0.5 Mbps to 2.3 Mbps and a PIR equal to twice the CIR. Each flow has a different

37

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

500 1000 1500 2000 2500

G
oo

dp
ut

 (
K

bi
t/s

)

CIR (Kbit/s)

TCM
TSW

ETSW
RPM
APM
EBM
CIR
PIR

Figure 2.17: Goodput vs. target rate —

under-subscription

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

500 1000 1500 2000 2500

G
oo

dp
ut

 (
K

bi
t/s

)

CIR (Kbit/s)

TCM
TSW

ETSW
RPM
APM
EBM
CIR
PIR

Figure 2.18: Goodput vs. target rate — over-

subscription

CIR and PIR values. A link capacity of 20 Mbps is used between core routers instead of 10

Mbps. Results are plotted in Figure 2.17 for 80% load and in Figure 2.18 for 120% load.

One can see that EBM provides each connection its proportional share of excess bandwidth

for both under-subscribed and over-subscribed cases.

2.5.4 Packet Size

We now evaluate the performance of EBM along with the other marking schemes for

flows of different packet sizes. We use a range of packet sizes from 100 bytes to 1500 bytes

and show the results for 65% load (under-subscribed) in Figure 2.19, and 120% load (over-

subscribed) in Figure 2.20. CIR and PIR values are 1 Mbps and 1.5 Mbps, respectively,

and we use a link capacity of 20 Mbps between core routers.

Although Figure 2.19 shows a significantly fairer behavior of EBM than other marking

algorithms, we still see some slight increase in the goodput with the increase of packet size.

To quantify this increase, we compare the average slope of the EBM performance with the

other markers. The average slope in the EBM graph is calculated to be 0.32, while the ratio

between the maximum and minimum value of the goodput is 1.35 which is close to the ideal

case of 1 for equal target rates, CIR and PIR. TCM, as the basic marking algorithm, has

a slope of 1.97 and the ratio between the maximum and minimum values of the goodput

is 17. Knowing that the ratio between the maximum and minimum packet sizes in this

38

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000

G
oo

dp
ut

 (
K

bi
t/s

)

Packet Size (byte)

TCM
TSW

ETSW
RPM
APM
EBM
CIR
PIR

Figure 2.19: Goodput vs. packet size —

under-subscription

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000

G
oo

dp
ut

 (
K

bi
t/s

)

Packet Size (byte)

TCM
TSW

ETSW
RPM
APM
EBM
CIR
PIR

Figure 2.20: Goodput vs. packet size — over-

subscription

experiment is 15 (1500/100), TCM goodput is directly proportional to packet size, which

makes it significantly unfair with respect to EBM. For completeness, the slope in case of

TSW is found to be 1.45, for ETSW it is 1.48, while for RPM it is 1.57. This means that

EBM achieves about 76.5% improvement in fairness than the lowest-slope marker, TSW.

2.5.5 A Closer Look into EBM and APM

As it was clear in the previous set of experiments, the performance of EBM and APM

was close to each other. This motivated us to conduct another experiment to distinguish

between EBM and APM operations.

APM is designed using a simple feedback loop based on measurement of the achieved

throughput and changing the marking probabilities accordingly [41]. However, this simple

feedback loop, which does not resemble the behavior of the original transport algorithm,

can lead to overshoots and undershoots in the achieved throughput, especially when dealing

with long-lived TCP flows. Figure 2.21 shows the throughput achieved as a function of time

using APM, and also shows the share of each color in this throughput. A large amount of

fluctuations in the achieved throughput is observed and the main reason for this is that the

APM adaptively adjusts the marking probabilities, depending on the current position of

the measured rate. For cases in which the measured rate is always above the target rate,

the marking probability will decrease continuously until it reaches the value of 0.0, i.e.,

39

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

K
bi

t/s
)

Time (sec)

CIR

PIR

Total
Green
Yellow

Red

Figure 2.21: Throughput vs. time for APM

0

500

1000

1500

2000

2500

3000

3500

4000

0 100 200 300 400 500 600

T
hr

ou
gh

pu
t (

K
bi

t/s
)

Time (sec)

CIR

PIR

Total
Green
Yellow

Red

Figure 2.22: Throughput vs. time for EBM

marking all packets as out-of-profile, and causes the TCP flow to have a high probability of

packet drop which, in turn, results in fluctuations in throughput. The behavior of the EBM

under the same situation is depicted in Figure 2.22. Another difference between APM

and EBM is that APM needs to be implemented inside the TCP code itself on the host

as it makes use of internal TCP state variables. This means modifying TCP in every host

machine which will induce large overhead. EBM, on the other hand, can be implemented

within the host, but as a separate module from TCP, or can be implemented on a completely

separate device called a marker (this can be found in leaf routers or gateways).

2.5.6 Overhead

We evaluate the overhead caused by the operation of EBM which is expressed in two

terms. The first is the time taken in packet classification, marking, and state variable up-

dates. This term is common to all other packet markers and is not unique to EBM, hence

we do not evaluate it. The second overhead is for the calculation of pcir and ppir. We

measured this overhead to be 1.5 to 2ms on a Pentium II, 450MHz processor with 192MB

RAM machine. This calculation is performed every 10 seconds resulting in 0.015% to

0.02% overhead, which is considerably small, hence EBM introduces very low overhead.

40

2.6 Fairness between Responsive and Non-responsive Traf-

fic

As pointed out earlier, buffer management using packet drop schemes are always bi-

ased against responsive (TCP) traffic sources. This biased performance results from the

action taken by responsive traffic sources when they experience packet losses. Usually,

these losses are interpreted as congestion and network overflow, and accordingly, respon-

sive sources tend to reduce their transmission rate. Unfortunately, this does not take place

in non-responsive (UDP) traffic sources. They keep sending packets at the required rate re-

gardless of the packet losses they may experience. An equal treatment for both traffic types

at the buffer management node is not appropriate and another solution has to be found.

The fairness between TCP and UDP traffic has been studied in [115, 116] and the results

there confirm the existence of the unfairness problem. In the following two subsections we

present a solution that alleviates this unfairness and also demonstrate its effectiveness in

achieving the required fairness.

2.6.1 Packet Separation

The key issue of the fairness problem between responsive and non-responsive traffic is

putting all the packets of the two types into the same queue at routers where all the buffer

management functionalities apply on them indiscriminately. A serious result of putting

all packets in the same queue is that when the queue overflows, mainly because of the

continuous unaffected transmission rates of the non-responsive flows, packets belonging to

responsive traffic are dropped blindly irrespective of their relative importance, especially

when using packet marking. This cannot protect responsive traffic from non-responsive

traffic.

One solution is to calculate the virtual queue lengths separately between responsive and

non-responsive traffic and try to punish non-responsive traffic more, but this solution turns

out to be too complex. Another simpler, and at the same time effective, solution is to use

separate queues for responsive and non-responsive traffic at buffer management nodes. This

41

Packet
Classifier

Incoming
packets

MRED
queue

MRED
queue

UDP
packets

Outgoing
packets

TCP
packets

WRR

Wtcp

Wudp

Figure 2.23: Separate handling for TCP and UDP packets at router

isolates performance between the two types, and the correct drop ratios can be calculated

without changing the original buffer management algorithm. The idea of using separate

queues was mentioned before in [92], but here we put it in action with EBM. As shown in

Figure 2.23, two MRED queues are used, one for TCP (as an example of responsive traffic)

packets and the other for UDP (as an example of non-responsive traffic) packets. These

two queues are served using a Weighted Round Robin (WRR) scheduler. Both queues have

the same MRED parameters. Wtcp and Wud p are the scheduler weights assigned to TCP and

UDP queues, respectively, and they should be proportional to their target rates, or can be

set according to a certain policy. This separation scheme can be used to handle fairness

issues between responsive and non-responsive traffic in general and can be extended to any

number of queues depending on the types of traffic handled in the network.

2.6.2 Evaluation

To evaluate the performance of using two separate queues for TCP and UDP traffic

at routers, we conduct simulation experiments using the same network topology used in

previous evaluation. We compare the two cases of using a shared queue for both TCP and

UDP traffic, and using two separate queues. Four TCP and four UDP sources share a link

of 10 Mbps capacity with 40 ms latency. Access links have 100 Mbps capacity with 10 ms

latency and MRED parameters are the same for both TCP and UDP queues. Both TCP and

UDP flows have the same CIR and PIR values of 0.875 Mbps and 1.75 Mbps, respectively,

and hence, they use equal weights at the WRR scheduler.

42

0

500

1000

1500

2000

TCP TCP TCP TCP UDP UDP UDP UDP

G
oo

dp
ut

 (
K

bi
t/s

)

Flow Type

CIR

PIR

TCM
TSW

ETSW
RPM
APM
EBM

Figure 2.24: One shared queue

0

500

1000

1500

2000

TCP TCP TCP TCP UDP UDP UDP UDP

G
oo

dp
ut

 (
K

bi
t/s

)

Flow Type

CIR

PIR

TCM
TSW

ETSW
RPM
APM
EBM

Figure 2.25: Two separate queues

Figures 2.24 and 2.25 show the performance for the two cases. We can see the differ-

ence in fairness between TCP and UDP flows in the achieved throughput even when packet

marking is used. When using a single shared queue, none of the TCP flows could achieve

their CIR, while UDP flows exceeded their PIR. This is not the case when using two sepa-

rate queues, where both TCP and UDP flows could achieve their CIR. Moreover, we notice

enhanced performance when the EBM algorithm with TCP traffic is used.

2.7 Concluding Remarks

In this chapter we presented a working example of using the model-based control ap-

proach in achieving throughput guarantees and fairness as two parameters of QoS. Al-

though the model used in this example is not our original contribution, we were keen to

choose an accurate model that can be trusted in generating the control decision. We used

packet marking as the control action in this study which is currently specific to the DiffServ

framework.5 The EBM marking scheme solves the problems associated with previously-

proposed schemes in providing fairness between heterogeneous TCP flows and protection

of target rates under diverse network conditions.

We compared the performance of the new marking algorithm with other ad-hoc schemes

and found it to be superior to others. Even with other adaptive marking schemes that

5We expect marking to be a common technique for achieving QoS in the future.

43

are based on less accurate models, a close look at the performance difference shows an

advantage of our EBM technique.

There are several lessons learned from this work. First, using an accurate model of the

controlled system gives better results and stable control actions. We showed this in the

difference between EBM and APM. Second, using feedback control is an effective tech-

nique in controlling QoS in computer networks. Third, choosing the right control action is

important for realizing the control decision and achieving the required output.

44

CHAPTER 3

Statistical Modeling and Control of Per-Hop QoS

The ability to provide predictable network services, to support, for example, Voice-

over-IP and Video-on-Demand, is an important goal for most network providers on the

Internet. Such services should have well-defined, and at the same time, well-controlled,

network-level QoS. In IntServ [16] and DiffServ [13, 98], QoS is achieved by applying

different traffic management and control techniques at all, or a subset, of the network nodes

that are handling traffic. A major difference among these frameworks lies in the granularity

of traffic control. For example, in DiffServ, a small set of PHBs have been proposed [29, 59]

to provide different classes of services to different traffic aggregates. The PHB is the key

building block of the DiffServ architecture end-to-end (e2e) QoS. In a typical PHB, service

differentiation is achieved by allocating different amounts of network resources, such as

link bandwidth and buffers, to different types of traffic aggregates traversing the DiffServ-

enabled routers. The output of this service differentiation at each router with respect to

throughput, delay, jitter, and loss of the output traffic, is called per-hop QoS (PHQ). On the

other hand, under IntServ, this control is applied on a per-flow basis, which is fine-grained

but with less scalability. In both cases, providing a certain PHQ guarantee along the traffic

path is the fundamental requirement in realizing network-level QoS.

Given the PHQ for every node along an e2e path, the e2e QoS perceived by users can

be pre-computed or even estimated and controlled at runtime.1 Each QoS-aware node has

a variety of traffic-management components, such as queues, schedulers, buffer managers,

1Edge-to-edge Per-Domain Behaviors (PDBs) can also be quantified.

45

policer, and filters. These components must be properly designed and configured to ensure

PHQ guarantees. However, it is a challenging task to integrate these building blocks to-

gether to meet the QoS requirements, especially in view of the complex interactions among

the various components.

It is becoming more important for network operators to be able to adjust the config-

uration parameters of network nodes within their domains to meet the needs of specific

services being offered, and to respond to the dynamic changes in input traffic. Accu-

rately modeling and controlling a network node is, therefore, an important step to achieve

network-level QoS in corporate networks as well as the Internet.

We showed the effectiveness of the model-based control approach in Chapter 1, and

now, we take it further and build the models to be used in the control algorithm. We use a

generic quantitative approach in modeling the PHQ for a typical QoS-aware network node

(e.g., PHB) under a wide range of input traffic and configuration parameters. We con-

sider the DiffServ PHBs (EF and AF) as “use-cases” for our study, but the approach itself

is general enough to be applied to any QoS-aware subsystem (a single node or the entire

network). We demonstrate that a careful statistical analysis in conjunction with an experi-

mental framework can effectively characterize any QoS-aware node or PHB, and extract the

functional dependencies of PHQ on the input traffic and configuration parameters. These

functional relationships point out the differences in performance guarantees provided by

different PHB implementations [35].

Once these statistical models are extracted through the analysis, we show how to use

them to predict and control the PHQ [36]. The control is applied to the inputs of a QoS-

aware node to achieve the required PHQ level following our “model-based control” ap-

proach. We evaluate the overall modeling and control with several experiments on our

network testbed, showing its effectiveness and accuracy.

3.1 Statistical Modeling

To model the PHQ of a given QoS-aware node, we take a statistical approach following

an experimental analysis. We use Design of Experiments (DOE) [70] along with statistical

46

Configuration
C

Output

O (BW, D, J, L)Background
Ib

QoS
node

Premium
IaInput traffic

I (r, b, pkt, ...)

Control

Figure 3.1: Model of per-hop

QoS

Full
factorial
design

Run Exp. &
collect

data
ANOVA Tests Regression

Adjust parameters values

Model Validation

Adjust model structure

Controlled
factors

Significant
factors

Figure 3.2: Steps of statistical modeling

modeling such as Analysis of Variance (ANOVA) and regression analysis to get a charac-

terization of the PHQ under different conditions and parameters. Formally, the following

major steps are taken to model the PHQ of a given QoS-aware node or PHB.

S1: Our key idea is to abstract a given QoS-aware node or PHB2 as a “black-box” system

with input (I) and output (O) traffic characteristics, as well as a set of configuration

parameters (C), as shown in Figure 3.1. These parameters can be controlled and/or

measured via experiments. The details of the internal implementation and states of

the QoS node are not considered explicitly, but their effects on the overall perfor-

mance (i.e., the output traffic characteristics) are modeled.

S2: Design a set of full factorial experiments [70], by expanding the inputs and the config-

uration parameters, to measure the effects of the input and configuration parameters

on the output PHQ.

S3: Perform ANOVA on the measurement results to identify the most significant param-

eters, and apply a polynomial regression analysis to extract the functional relation-

ships — statistical models of the node under study — between the PHQ and input

parameters within the range and domain of our experiments.

S4: Evaluate the extracted models against real experimental results, adjust their structures

accordingly, and validate their correctness as the conceptual representation of a given

node.

2The terms “QoS-aware node” and “PHB” will be used interchangeably throughout the rest of the chapter.

47

In the context of our experimental design, we refer to the PHQ attributes experienced

by traffic traversing the corresponding node as O or the response variables. The parameters

of I and C are termed input factors and the values each factor takes are called factors levels.

The basic steps of our approach are illustrated in Figure 3.2. For certain experiments, due to

the large number of combinations of input factors and their levels, it is useful to start with a

reduced number of levels for the input factors. Once the most significant/influential factors

are identified, the number of levels corresponding to these factors are increased to capture

the detailed dependency on their particular levels. This allows us to construct higher-order

regression models in the second stage of the analysis. This repetition of factorial analysis

is shown as the “adjust parameters values” step in Figure 3.2.

The statistical models extracted in our approach describe the steady-state behaviors

of a QoS-aware node, instead of specific “time-detailed” or “transient” behavior. Note

that the purpose of these models is to control the overall behavior of the node against

changing levels of inputs and configuration parameters regardless of the specific transient

dynamics of the node’s behavior. For this reason, the models do not carry any notion of

time dependency.

We investigate three different realizations of the EF PHB, as an example of a QoS-aware

node, as illustrated in Figures 3.3(A) and (B). These realizations show different choices

for premium (EF) and best-effort (BE) traffic that shares a single physical link using two

scheduling algorithms: Class-Based Queueing (CBQ) [50] and Priority Queueing (PRIO).

We also consider the case of an edge node with policing support using Token Bucket filters

(TBFs) as in Figure 3.3(C). While these different realizations are expected to provide simi-

lar qualitative behavior of the aggregated output traffic, the functional relationships among

the parameters are different due to the internal construction of the traffic handling blocks.

We will later demonstrate this through experiments.

3.1.1 Factors and Response Variables

The parameters of I include both premium (EF), Ia, and best-effort (BE), Ib, input traffic

specifications. We use the Dual Leaky Bucket (DLB) representation for the input traffic, as

48

CBQ/
WRR

EF

BE

FIFO

FIFO

efr

ber

(A) A CBQ-based

EF PHB (EF-CBQ)

Priority

EF

BE

FIFO

FIFO

(B) A priority-based

EF PHB (EF-PRIO)

TBF

Priority

EF

BE

RED

(C) A edge-based

EF PHB (EF-EDGE)

Figure 3.3: Three different realizations for EF PHB sharing the a link with best-effort (BE)

Factor Symbol

Premium traffic average rate ar
Premium traffic peak rate ap

Ia Premium traffic burst size ab
Premium traffic packet size apkt
Premium traffic number of flows an

Best effort traffic rate ratio Rab
Best effort traffic rate br

Ib Best effort traffic burst size bb
Best effort traffic packet size bpkt
Best effort traffic number of flows bn

Table 3.1: Symbolic representation of the factors in I

shown in Table 3.1. This lets the characterization process be independent of the application

traffic type as long as the traffic can be described in the general form of DLB representation,

which is a common practice. In some cases, we also use the ratio, Rab, of EF traffic rate to

BE traffic rate, i.e., ar
br

, instead of the absolute value of the BE rate (br). The reason behind

this is that we are primarily interested in the performance of premium traffic, and hence, it

is more meaningful to consider the relative load of the BE traffic with respect to premium

traffic.

The set of configuration parameters (C) usually consists of parameters such as queue

length, drop probability, allocated forwarding rate, and scheduling parameters. Choosing

the parameters of C requires either knowledge of the traffic control components of the

node, or the use of vendor-supplied specifications. Different choices of schedulers and

traffic controls give rise to different functional configurations, and therefore, constitute

different sets of parameters in C. We use routers based on the open-source Linux operating

system and, therefore, we have access to all the configuration parameters. The Linux traffic

control module provides a flexible way to realize various PHBs with the help of a number

49

Factor Symbol

EF service rate e fr

BE service rate ber

(A) EF-CBQ

Factor Symbol

Token bucket rate e fr

Bucket size e fb

Max Transfer Unit e fmtu

(B) EF-EDGE

Factor Symbol

Min threshold minth

Max threshold maxth

Drop probability prob

(C) AF PHB

Table 3.2: Configuration parameters - set “C”

of queueing disciplines and traffic conditioning modules.

For the three different realizations of the EF PHB shown in Figure 3.3, EF-CBQ signifi-

cant configuration parameters (set C) are listed in Table 3.2(A). EF-PRIO employs absolute

priority3 scheduling, and hence, no significant parameters are used, while for EF-EDGE,

Table 3.2(B) lists the considered parameters. We also repeat similar performance analysis

for the AF PHB. We use a multi-color RED (or GRED) queue for each AF class served by

a CBQ scheduler. Table 3.2(C) lists the C set for the AF PHB. It includes the parameters

for the AF11 RED virtual queue only. We choose the AF PHB as another instance of a

DiffServ PHB to demonstrate the generality of our measurement framework and analysis

approach.

Since most QoS schemes do not provide any guarantee for best-effort traffic, we are

primarily interested in the performance of the premium traffic. Therefore, the response

variables in O used in this chapter are throughput (BW), per-hop delay (D), per-hop jitter

(J), and loss rate (L) of the premium traffic.

An important issue is how to choose the levels for the factors in designing a set of

experiments. It may not be possible to cover all possible ranges and various modes of

operation of a specific PHB. However, the experiments should capture the expected ranges

of operation for the node.4 A full factorial design utilizes every possible combination of

all the factors [70] at all levels. If we have k factors, with the i-th factor having ni levels,

and each experiment is repeated r times, then the total number of experiments to perform

will be ∏k
i Y 1 ni � r. One of the drawbacks of the full factorial analysis is, therefore, the

number of experiments growing exponentially with the number of factors and their levels.

Moreover, in the context of network measurements, the total duration of an experiment can

3Absolute priority means processing EF packets as soon as possible in a non-preemptive work-conserving
manner.

4Given by a network administrator, for example.

50

be prohibitively long, and often taking several days.

To reduce the number and the execution time of experiments, we use a combination of

factor clustering and semi-automated experimental execution techniques. In factor cluster-

ing, the input and configuration parameters having similar effect on the output, are grouped

together, while the semi-automated experiments enables investigation of a large number of

scenarios in one execution.

3.1.2 Tools for Statistical Modeling

A detailed description of the statistical methods we used, namely, ANOVA and regres-

sion analysis can be found in [70, 93]. However, we include a brief description of them in

the Appendices B.1 and B.2 for completeness. The linear model used in ANOVA is based

on the following assumptions [70]: (1) the effects of the input factors and the errors are

additive, (2) errors are identical and independent, normally distributed random variables,

and (3) errors have a constant standard deviation. Therefore, an important step after the

ANOVA analysis is to validate the model by inspecting the results. This can be done using

two basic visual tests:5 (1) the scatter plot of the residuals (errors) versus the predicted re-

sponse should not demonstrate any trend, and (2) the normal quantile-quantile (Q-Q) plot

of residuals should be approximately linear (after removing the outliers). The ANOVA

method itself, however, does not make any assumption about the nature of the statistical

relationship between the input factors and the response variables [93].

To obtain the required relationships between each output response variable and the most

significant input factors, we use a variant of the multiple linear regression method called the

polynomial regression [93]. The reason for this is to approximate any complex, nonlinear

relationship into an expansion of piecewise polynomials of an enough number of terms. We

use a number of simple transformations [70] such as inverse, logarithmic, and square root,

to capture non-linearity in these relationships, and convert them into linear ones. However,

more complex transformations [70, 93] can be used to capture complex dependencies. We

choose the transformation that best satisfies the visual tests, minimizes the error percentage

5These tests can be automated as well.

51

in ANOVA, and maximizes the coefficient of determination (R2) in the regression model.

3.2 Experimental Setup for Modeling

A controlled environment is used for extracting the PHQ models. The values of the

input factors are chosen according to specific scenarios, and for each scenario, the corre-

sponding models are extracted. This controlled execution of scenarios is automated, and in

the following we describe the scenarios used and the way they are automated.

3.2.1 Network Setup

The testbed network used, illustrated in Figure 3.4, consists of Linux-based software

routers and end-hosts. The traffic conditioning and handling mechanisms built into the

Linux kernel [6] enable building QoS-aware nodes such as those under study. A Fast-

Ethernet based ring network topology, with link capacity of 100 Mbps, is used so that

the one-way delay can be measured without sophisticated time synchronization techniques

such as GPS. Since the objective of our experiments is to characterize PHQ of a single

PHB, we need only one router (M) implementing the PHB. We are primarily interested

in determining how a single EF or AF flow, which we refer to as the designated flow,

is influenced by PHB configuration parameters as well as other traffic sharing the router

with it. This designated flow is always generated and terminated at host H (as a result of

the ring topology). In order to build the ring topology, we add a second router S to (i)

forward outgoing packets from M back to host H using iptables in Linux, and (ii) act as a

destination for the background or best-effort6 traffic. Hosts 1 through 6 are used to generate

background traffic (both premium and best-effort) that share the links between routers M

and S along with the designated flow.

6Unless otherwise mentioned, we use terms “background” and “best-effort” interchangeably onwards.

52

switch

Router Configuration
Agent

Network Configuration
Agent

1 2 3 4 5 6

Traffic
Agent

Traffic
Agent

Traffic
Agent

Traffic
Agent

Traffic
Agent

Traffic
Agent

Traffic
Agent

Controller
Agent

Analysis &
Control

Traffic
Agent

Router (S)

Host (H)
Background

traffic

Premium
traffic

Router (M)

Figure 3.4: Testbed network used for PHQ modeling

3.2.2 Components of the Automated Experiments

The software components used to conduct the automated experiments and their loca-

tions are illustrated in Figure 3.4. We use a traffic generation agent for UDP traffic, based

on a modified version of Iperf [99], that is policed with a built-in leaky bucket to produce

output traffic following a particular DLB specification. The response variables, namely,

BW , D, J, 7 and L are measured within the agent itself. The network and router config-

uration agents are placed on the QoS subsystem under evaluation to configure the traffic

control blocks on that subsystem. For our QoS node, we use the traffic control (tc) APIs

in the Linux kernel [6]. The controller agent executes and keeps track of the experiment

steps. It resides on host H, as shown in Figure 3.4, reads in a scenario file, that defines

the parameters (factors) and their values (levels), and runs the experiments accordingly. It

communicates with the other agents on a request-reply basis. The statistical analysis and

computation of the extracted models are performed on host H as well.

7J is calculated as J T J ����� D � i � 1 y i �,��� J ��� 16, where D � i � 1 y i � is the delay variation between packets
i and � i � 1 � .

53

EF

EF-EDGE EF-PRIO

Ia+C Ib

OP
1

UP
2

FP
3

OP
4

Ia
5

Ib
6

scenario
number

AF

Ia+C
7

Figure 3.5: First set of experimental scenarios used in modeling

3.2.3 Design of Experiments

As discussed earlier, we cluster the input factors and the configuration parameters to

reduce the parameter space and duration of the experiments. The I set is partitioned into two

subsets: the premium traffic factors (Ia), and the best-effort traffic factors (Ib) as depicted

in Table 3.1. Along with these, we also choose a few parameters from the configuration set

(C).8

There are usually three different operating modes for a given PHB configuration with

respect to the premium input traffic: the PHB can be over-provisioned (OP), under-provisioned

(UP), or fully-provisioned (FP). In the OP mode, the total premium input traffic rate is less

than its allocated rate; It is larger than the allocated rate for the UP mode, and in the FP

mode, they are nearly equal. These three modes can be further investigated for different

scenarios of input traffic type and the degree of flow aggregation. We also study two other

scenarios, saturated (SAT) and not-saturated (NOT-SAT) network depending on the rela-

tionship between the background traffic sending rate and its allocated rate.

We consider two sets of experimental scenarios, the organization of the first set is illus-

trated in Figure 3.5, which has been presented in [35], while the second set, illustrated in

Figure 3.6, has been presented in [36]. Each cell is associated with a scenario number to

distinguish them in the following sections.

8If the size of C is large, it can be partitioned as well.

54

EF

EF-PRIOEF-CBQ

Ia
13

Ia + efr Ib + ber

OP
8

UP
9

NOT-SAT
10

SAT
11,12

ar > efr ber > brefr > ar br > ber

Ib

NOT-SAT
14

SAT
15

scenario
number

Figure 3.6: Second set of experimental scenarios used in modeling

First Set of Scenarios

In this set, we have 7 scenarios to study EF-EDGE, EF-PRIO, and AF PHBs and char-

acterize their behaviors. We start by investigating the interaction between sets Ia and C in

the absence of any best-effort traffic. This experiment is performed for the two modes of

OP and UP. The purpose of these two scenarios is to identify the most important factors in

sets Ia and C that affect the output PHQ. Next, we target a specific type of premium traffic,

e.g., fix set Ia at certain constant values and vary the factors in Ib around these constant

values. The factors in the best-effort traffic (such as rate, burst size, packet size and number

of flows) range in values that include both higher and lower levels than their corresponding

parameters in the premium traffic. The purpose is to investigate the effect of best-effort

traffic on the premium traffic within a given range. These scenarios are investigated for OP

and FP modes only, since the PHQ of an already-overloaded PHB is not going to change

significantly due to changes in the best-effort traffic. We repeat these scenarios for each

one of the EF PHB realizations in Figure 3.3. We also study the AF PHB in this set to show

generality of the approach.

Second Set of Scenarios

In this set, we start by investigating the effect of Ia factors with the change of e fr

for EF-CBQ. This experiment is performed for the two modes of OP (e fr � ar) and UP

(ar � e fr) as shown above. The purpose of these scenarios is to identify the most important

55

factors in Ia that affect the output PHQ under different network provisioning conditions.

This is used to adjust the premium traffic parameters according to the network conditions

to achieve certain QoS, and it can be done by either signaling traffic sources, or by using

other coordinated mechanisms. Next, we target a specific instance of premium traffic,

i.e., certain values of Ia, (similar to the first set) and vary the factors of Ib and C sets

(specifically ber). Here, we distinguish between the two cases, NOT-SAT (ber � br) and

SAT (br � ber), where br is the background traffic sending rate, which equals ar _ Rab. The

purpose is to investigate the effect of best-effort traffic and the configuration parameters

on a specific premium traffic flow. Again, this scenario is investigated for OP mode only.

For the EF-PRIO realization, we consider three scenarios, one for modeling the effect of

Ia on the PHQ, and other two scenarios for modeling the effect of Ib at SAT and NOT-SAT

conditions of the PHB.

3.3 Model Extraction and Validation

The results from our experiments are presented in the same order of the scenarios de-

scribed in Section 3.2.3 and the charts in Figures 3.5 and 3.6. Note that the results presented

in this section are only examples of illustrating the applicability of our approach, and are

not meant to be standard models for any QoS-aware node. Throughout the experiments,

and unless mentioned otherwise, each experiment is repeated at least 5 times and each traf-

fic trace is collected for 20 seconds. We use a rest period of 3 seconds between successive

runs so that the network drains packets of a previous run. Both premium and best-effort

traffic are ON/OFF with periods of 5/0.5 sec, and 4/0.3 sec, respectively.

3.3.1 First Modeling Set

For the EF-EDGE and EF-PRIO realizations, we group the results into two categories:

the interaction between sets Ia and C, and the effect of background traffic (Ib) on the fixed

premium traffic (Ia). The input factors (Ia, Ib, and C) used in each experiment scenario are

listed in Tables 3.3, and 3.4 for EF-EDGE and EF-PRIO, respectively. For the AF PHB,

56

Factor (unit) Scenario 1 Scenario 2 Scenario 4

ar (Mbps) 0.5,1,2,4 3,3.5,4,4.5 1 (X)
ap (Mbps) 6 (X) 8 (X) 2 (X)

Set Ia apkt (bytes) 100,400,600,900 800,900,1000,1200 1000 (X)
ab (bytes) 20000 (X) 40000 (X) 20000 (X)
an (flows) 1,2,3,5 1,2,3,5 1 (X)
e fr (Mbps) 20 (X) 2,2.2,2.5,3 3 (X)

Set C e fb (bytes) 40000 (X) 20000 (X) 40000 (X)
e fmtu (bytes) 1000,1200,1400,1520 1520 (X) 1520 (X)
Rab (X) (X) 2,1,0.1.0.01

Set Ib bpkt (bytes) (X) (X) 200,1000,1200,1470
bb (bytes) (X) (X) 10000,20000,30000,40000
bn (flows) (X) (X) 1,2,3,4

Table 3.3: Factors and their levels for EF-EDGE

Factor (unit) Scenario 5

ar (Mbps) 0.5,1,2
ap (Mbps) (X)

Set Ia apkt (bytes) 100,800,1470
ab (bytes) 5000,10000,60000
an (flows) 1,3
Rab (X)

Set Ib bpkt (bytes) (X)
bb (bytes) (X)
bn (flows) (X)

Table 3.4: Factors and their levels for EF-
PRIO

Factor (unit) Scenario 7

ar (Mbps) 50,100
ap (Mbps) 60,100

Set Ia apkt (bytes) 600,1200
ab (bytes) 20000,40000
an (flows) 1 (X)
minth (Kbytes) 10,20

Set C maxth (Kbytes) 40,55
prob 0.02 (X)
Rab 0.01 (X)

Set Ib bpkt (bytes) 600,1200
bb (bytes) 20000,40000
bn (flows) 2 (X)

Table 3.5: Factors and their levels for AF
PHB

the values of the input factors used in the modeling experiments are listed in Table 3.5. The

factors marked with (X) are not active in the corresponding experiment. An inactive factor

is a factor with one level only, and therefore, has no effect on the ANOVA results.

Over-Provisioned (OP) EF-EDGE PHB without Background Traffic

This corresponds to scenario 1 in Fig. 3.5. The PHB is over-provisioned (OP), i.e., the

throughput of the premium traffic is less than the configured rate for the PHB. The effects

of significant factors and their significant interactions9 are identified by using ANOVA and

listed in Table 3.6. The transformation applied to each response variable, satisfying the

basic assumptions of the linear ANOVA model, is indicated in the second column. The

mean, standard deviation (SD), and 90% confidence interval (CI) are listed in Table 3.7.

The loss (L) in this experiment is basically zero (no loss) since this is an over-provisioned

9We neglect any factor or interaction with a percentage of variation less than 2%.

57

Response Trans. ar apkt an (ar,an) (ar,apkt) Error

BW linear 48.55% � 0% 34.23% 17.21% � 0% � 0%
D linear � 0% 83.15% � 0% � 0% � 0% 13.53%
1 � J inverse 4.12% 12.52% 46.58% � 0% 2.88% 25.34%

Table 3.6: ANOVA results for scenario 1

Response Mean SD of Mean 90% CI for Mean

BW 948.81 Kbps 0.125 (948.60,949.015)
D 0.262199 msec 0.001088 (0.260409,0.263989)
1 � J 311.21 3.74 (305.05,317.37)

Table 3.7: Mean, standard deviation (SD), and 90% confidence interval (CI) for the re-
sponse variables in scenario 1

case.

To verify the linearity of the ANOVA model, the visual tests for jitter (J), as an example,

are shown in Fig. 3.7 and 3.8. After the inverse transformation, there is no trend in the

residual versus predicted response scatter plot. Moreover, the errors are normal since the

normal Q-Q plot is almost linear. The tests for the throughput and the delay show linearity

as well.

The polynomial regression models for the response variables are calculated, and the

model for the BW is given in Eq. (3.1). The surface plot corresponding to this model is

shown in Fig. 3.9. The coefficient of determination (R2) is 96%.

BW T 299733 � 48 � 3246957 � 34ar � 2318542 � 4an � 32371 � 95a2
r � 2223351 � 57a2

n� 2815325 � 9aran � (3.1)

Eq. (3.2) represents the model for jitter, with the corresponding value of R2 A 84%.

Note that we use the same transformation from ANOVA while performing the regression

analysis to maintain consistency of results. We also normalize the input factors by their

maximum values to provide a scaled version of the model equations.

1 � J T 620 � 62 � 1343 � 58ar � 1024 � 12apkt � 2212 � 85an � 1586 � 15a2
r � 231 � 39arapkt� 574 � 60aran � 913 � 48a2

pkt � 717 � 55apktan � 3485 � 72a2
n � 281 � 31a3

r

58

-500

-400

-300

-200

-100

0

100

200

300

400

0 100 200 300 400 500 600 700 800 900 1000

re
si

du
al

predicted response

scatter plot residuals vs. predicted response (jitter)

Figure 3.7: Residuals vs.

predicted response for J

(scenario 1)

-500

-400

-300

-200

-100

0

100

200

300

400

-4 -3 -2 -1 0 1 2 3 4

re
si

du
al

 q
ua

nt
ile

normal quantile

normal quantile-quantile plot for residuals (jitter)

Figure 3.8: Normal Q-Q

plot for J residuals (sce-

nario 1)

regression model for BW

experimental output
surface plot

0
0.2

0.4
0.6

0.8
1

ar/4*1060 0.2 0.4 0.6 0.8 1
an/4

0
500000
1e+06

1.5e+06
2e+06

2.5e+06
3e+06

3.5e+06
4e+06

BW

Figure 3.9: Response sur-

face for BW (scenario 1)� 583 � 23a2
rapkt � 700 � 89a2

ran � 133 � 74ara2
pkt � 249 � 64arapktan� 51 � 79ara2

n � 268 � 81a3
pkt � 307 � 76a2

pktan � 106 � 48apkta
2
n � 1768 � 39a3

n � (3.2)

As shown in Table 3.6, the throughput (BW) depends mostly on the sending rate of the

premium traffic (ar) and number of EF flows (an). The reason for the dependency of BW

on an is that, in this experiment, we divide the total EF rate (ar) specified in Table 3.3,

by the number of flows (an) to get an equal share for each EF flow. Because we only

measure a single designated EF flow, the resulting throughput depends on the number of

flows. The per-hop delay is mainly affected by the EF packet size. On the other hand,

jitter is affected mostly by an and apkt , but little by ar. This follows our intuition about

jitter: the packets from the monitored flow have to wait in the queue because of other

EF flows sharing the same queue, as well as due to the relative difference of their packet

sizes. Larger values of an and apkt result in larger jitter. This can be seen in the regression

results as well, since the corresponding coefficients are negative in the model equation

given that an inverse transformation is applied to jitter. The statistical analysis also provides

us with confidence intervals for each of the parameter estimates in the regression equation.

The confidence intervals determine the accuracy of the models extracted, and therefore

constitute an important part of model checking.

59

Response Trans. ar an e fr (ar ,an) (ar ,e fr) (an,e fr) (ar ,an,e fr) Error

1 � L inverse 6.06% 20.81% 6.63% 15.1% 8.9% 16.21% 25% � 0%

Table 3.8: ANOVA results for scenario 2

Response Trans. bpkt bn Rab (bpkt ,bn) (bpkt ,Rab) (bn,Rab) (bpkt ,bn,Rab) Error

BW linear � 0% 36.6% 2.65% � 0% � 0% 2.87% 4.4% 38.76%
log

�
D # log 3.28% 8.98% 36.3% 3.54% 10.01% 27.07% 10.69% � 0%

J linear 3.36% 7.5% 39.14% 3.7% 9.72% 12.13% 22.77% 1.4%

Table 3.9: ANOVA results for scenario 4

Under-Provisioned (UP) EF-EDGE PHB without Background Traffic

In scenario 2, the EF PHB is under-provisioned (UP), i.e., the throughput of the pre-

mium traffic is greater than the configured rate for the PHB. Here we present the results for

loss (L) only. The effects of significant factors and their significant interactions are listed

in Table 3.8. The transformation used is indicated in the second column as before. The

polynomial regression model for loss is given in Eq. (3.3) with R2 A 74%.

1 � L T 0 � 06 � 0 � 63ar � 0 � 2an � 0 � 63e fr � 1 � 48a2
r � 0 � 79aran � 2 � 05are fr � 0 � 3a2

n� 0 � 69ane fr � 0 � 43e f 2
r � 1 � 14a3

r � 0 � 73a2
ran � 2 � 37a2

re fr � 0 � 42ara2
n � 1 � 23arane fr� 1 � 69are f 2

r � 0 � 18a3
n � 0 � 46a2

ne fr � 0 � 57ane f 2
r � 0 � 57e f 3

r � (3.3)

The model for loss clearly shows that by increasing the sending rate, the loss increases

(due to the negative sign of ar and the inverse of L). A similar effect was observed with

the number of flows (an). We can see also that the loss can be reduced by increasing the

EF service rate (e fr). The positive coefficient of e fr in Eq. (3.3) clearly indicates this and

it agrees with our intuition.

Over-Provisioned (OP) EF-EDGE PHB with Background Traffic

Next, we investigate the effect of background (e.g., best-effort) traffic on the premium

traffic for the EF PHB. As shown in Table 3.9, the throughput (BW) of the EF traffic is

affected heavily by the number of background traffic flows sharing the link with it.

Since the PHB is over-provisioned, the effect of the ratio Rab or the size of the back-

60

Response Trans. apkt an (apkt ,an) Error

1 � J inverse 29.37% 18.27% 6.97% 31.78%

Table 3.10: ANOVA results for scenario 5

ground traffic itself is not dramatic. As a result of over-provisioning too, the percentage of

variation due to experimental error is high. This is because of the weak interaction between

the inputs and the output BW . The results also indicate that the priority scheduler does a

good job in isolating the EF traffic from the background flows. There are no significant EF

losses for the same reason above. Both delay and jitter values show very little experimental

errors due to repetition, and strongly depend on the background traffic characteristics, such

as the packet size, number of background flows, and their interactions. Note that a lin-

ear transformation fits jitter well with respect to the background traffic parameters, where a

logarithmic transformation is appropriate for delay. This is different from what we found in

Section 3.3.1 with EF-EDGE, where jitter is inversely related to the EF traffic parameters.

Similar results are to be observed in Section 3.3.1.

EF-PRIO PHB without Background Traffic

The purpose of scenario 5 is to demonstrate how different implementations of a specific

PHB can differ in their extracted input/output relationships. We present the results for jitter

(J) as an example. The most important factors affecting J are listed in Table 3.10. Note

that there is no effect due to ar, unlike the scenario in Section 3.3.1 using EF-EDGE PHB.

The visual tests are shown in Fig. 3.10 and 3.11 to test the validity of the ANOVA

model. The jitter model is given in Eq. (3.4) with a coefficient of determination (R2) of

64%. The response surface is shown in Fig. 3.12. The inverse relationship also holds here

with respect to the EF traffic parameters as mentioned earlier.

1 � J T 727 � 74 � 810 � 85an � 748 � 17apkt � 425 � 13a2
n � 322 � 99a2

pkt � 189 � 18apktan � (3.4)

The negative coefficients for both an and apkt in the above model indicate that an in-

crease in either of them will increase the value of jitter. A very important result can be

61

-800

-600

-400

-200

0

200

400

600

0 100 200 300 400 500 600 700 800 900 1000

re
si

du
al

predicted response

scatter plot residuals vs. predicted response (jitter)

Figure 3.10: Residuals

vs. predicted response forJ

(scenario 5)

-800

-600

-400

-200

0

200

400

600

-4 -3 -2 -1 0 1 2 3 4

re
si

du
al

 q
ua

nt
ile

normal quantile

normal quantile-quantile plot for residuals (jitter)

Figure 3.11: Normal Q-Q

plot for J residuals (sce-

nario 5)

regression model for 1/J

experimental output
surface plot

0
0.2

0.4
0.6

0.8
1

apkt/14700 0.2 0.4 0.6 0.8 1
an/2

01002003004005006007008009001000

1/J

Figure 3.12: Response sur-

face for J (scenario 5)

Res. ar ap apkt maxth minth (ar ,ap) (ar , (ar , (ap, (apkt , (ar ,
maxth) minth) maxth) bpkt) ap,maxth)

BW 51.38% 12.51% � 0% 2.67% 2.38% 13.27% 3.27% 2% 2% � 0% 2.37%
D 38.2% 25.42% 2.85% � 0% 3.1% 25.06% � 0% � 0% � 0% � 0% � 0%
1 � J 14.75% 17.35% 34.82% � 0% � 0% 18.94% � 0% � 0% � 0% 4.09% � 0%
L 29.32% 17.12% � 0% 7.14% 4.17% 16.98% 7.4% 3.89% 3.91% � 0% 4.03%

Table 3.11: ANOVA results for AF PHB

deduced accordingly — the larger the number of flows in an EF traffic, the larger the jitter.

Modeling AF PHB

We present results for the AF PHB (scenario 7) to show the generality of our approach

and to provide an insight into the behavior of the AF PHB. The relevant PHQ attributes,

according to the IETF standard, are throughput (BW) and loss (L). However, some appli-

cations may also impose delay and jitter requirements on AF-based services, so we present

results for them as well. In this experiment, we mark the designated flow with AF11 DSCP;

and the background traffic (filling up the rest of the network capacity) with AF12 and AF13

DSCPs. The input factors and their levels are listed in Table 3.5. Table 3.11 lists10 the

ANOVA results for the four QoS attributes. The results indicate that the throughput (BW)

depends mostly on the average and peak sending rates, and their interactions. They also

exhibit some dependency on the threshold levels of the AF11 virtual queue. In another

experiment (not shown here), we find this dependency increases with the increase of the

drop probability for the virtual queue.

10The error column is not shown due to space limitation.

62

Factor (unit) Scenario 8 Scenario 9 Scenario 10 Scenario 11 Scenario 12

ar (Mbps) 0.5 C�� 2 2 CP� 10 1 (X) 1 (X) 1 (X)
ap (Mbps) 3 (X) 11 (X) 2 (X) 2 (X) 2 (X)

Set Ia apkt (bytes) 100 C�� 1470 100 C�� 1470 1000 (X) 1000 (X) 1000 (X)
ab (bytes) 20000 (X) 20000 (X) 20000 (X) 20000 (X) 20000 (X)
an (flows) 1 CP� 5 1 C�� 5 1 (X) 1 (X) 1 (X)

Set C e fr (Mbps) 10 (X) 1 (X) 2 (X) 2 (X) 2 (X)
ber (Mbps) 80 (X) 80 (X) 100 (X) 5 C�� 50 50 (X)
Rab or br (Mbps) 70 (X) 40 (X) 0.02 C�� 0.2 50 (X) 0.01 C�� 0.02

Set Ib bpkt (bytes) 1000 (X) 1000 (X) 100 C�� 1470 100 C�� 1470 100 C�� 1470
bb (bytes) 100000 (X) 100000 (X) 100000 (X) 100000 (X) 100000 (X)
bn (flows) 1 (X) 1 (X) 1 C�� 8 1 C�� 8 1 C�� 8

Table 3.12: Factors and their levels for EF-CBQ

Factor (unit) Scenario 13 Scenario 14 Scenario 15

ar (Mbps) 0.1 C�� 16 1 (X) 1 (X)
ap (Mbps) 20 (X) 2 (X) 2 (X)

Set Ia apkt (bytes) 100 C�� 1470 1000 (X) 1000 (X)
ab (bytes) 100000 (X) 20000 (X) 20000 (X)
an (flows) 1 C�� 8 1 (X) 1 (X)
Rab or br (Mbps) 50 (X) 0.0125 C�� 0.2 0.01 (X)

Set Ib bpkt (bytes) 1000 (X) 300 C�� 1470 300 C�� 1470
bb (bytes) 100000 (X) 100000 (X) 100000 (X)
bn (flows) 2 (X) 1 C�� 6 1 C�� 6

Table 3.13: Factors and their levels for EF-PRIO

The results for loss (L), delay (D), and jitter (J) show similar dependencies, although

the percentages vary with each of the QoS parameters. We notice a small, but non-trivial,

interaction between the packet size of the designated and that of the background traffic

contributing to the jitter of the premium traffic.

3.3.2 Second Modeling Set

The levels of input factors (Ia, Ib and C) used in each experiment scenario are listed

in Tables 3.12 and 3.13 for EF-CBQ and EF-PRIO, respectively. The values listed for

background rate are for Rab if it is less than 1.0; otherwise, the absolute values of br are

listed instead (i.e., if the value listed in Rab column is 10Mbps, then br equals to 10Mbps,

not Rab). We focus primarily on delay, D, and jitter, J.

Over-Provisioned (OP) EF-CBQ

In the first experiment scenario of this set (scenario 8), we characterize the EF-CBQ

realization with respect to the factors in Ia, i.e., the premium traffic parameters themselves,

63

Response Trans. ar apkt an (ar ,an) Error�
BW square 38.40% � 0% 58.30% 3.30% � 0%

D - � 0% 49.54% 44.53% � 0% 4.49%
log

�
J # log � 0% � 0% 94.02% � 0% � 0%

Table 3.14: ANOVA results for scenario 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4 5

D
 (

m
se

c)

an

delay vs. number of premium flows

3

0.3 msec

experiment
model

Figure 3.13: Model validation for D with an

(scenario 8)

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5

J
(m

se
c)

an

jitter vs. number of premium flows

experiment
model

Figure 3.14: Model validation for J with an

(scenario 8)

and its allocated service rate at the CBQ scheduler. This scenario studies the PHQ in case of

e fr � � ar � an � , i.e., over-provisioned PHB. In order to mimic a real situation, we also inject

best-effort background traffic at a rate of 70 Mbps into the network with fixed parameters.

The ANOVA results for this scenario is listed in Table 3.14. The transformation applied

to each response variable, satisfying the basic assumptions of the linear ANOVA model,

is indicated in the second column. The loss (L) in this experiment is basically 0 (no loss)

since this is an over-provisioned case.

The regression models for the delay and jitter are given in Eqs. (3.5) and (3.6), with the

coefficient of determination (R2) of 90% and 76%, respectively.

D T 0 � 15 � 0 � 0028an � 0 � 00028apkt � 0 � 022a2
n � 2 � 2 � 10 � 8a2

pkt � 6 � 2 � 10 � 6apktan � (3.5)

log � J � T � 3 � 73 � 0 � 72an � (3.6)

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000 1200 1400 1600
D

 (
m

se
c)

apkt (byte)

delay vs. premium packet size

820 byte

0.4 msec

experiment
model

Figure 3.15: Model validation for D with apkt (scenario 8)

As shown in Table 3.14, the per-hop delay (D) depends mostly on the packet size (apkt)

and the number of flows (an) of premium traffic, while the jitter is mostly affected by an.

This is consistent with our intuition: per-hop delay depends on the time taken to send the

packet, and is proportional to the packet size. Besides, both the delay and jitter depend on

the number of flows sharing the same premium traffic queue, as packets have to wait for a

longer time with a larger number of flows. We already pointed out to this in the first set of

scenarios. To validate the extracted models, we conduct two experiments: one to validate

the models with the number of premium traffic flows, and the other with its packet size.

For the first experiment, we use a fixed packet size of 100 bytes while changing the number

of flows from 1 to 5. Figure 3.13 shows the output delay calculated from the model against

the experimental measurements for the same values of input an, and Figure 3.14 shows the

same for the jitter. Clearly, the jitter model is not as accurate as the delay model due to a

lower R2. In the second experiment, we use a single premium flow, i.e., an A 1, and change

the packet size from 100 to 1470 bytes. Figure 3.15 shows the model validation for delay.

Section 3.4 will show how to use these models in limiting the per-hop delay and jitter, i.e.,

control of PHQ.

Under-Provisioned EF-CBQ

In this scenario, we set e fr to be less than the total premium traffic rate (ar � an), and

hence, we get an under-provisioned PHB. We also use a background stream sending at 40

65

Response Trans. ar apkt an (ar ,an) (apkt ,an) Error

D - � 0% 98% � 0% � 0% � 0% � 0%
log

�
J # log � 0% 44.16% 13.38% 2.16% 35.82% � 0%

L - 87.68% 2.86% 3.35% � 0% � 0% � 0%

Table 3.15: ANOVA results for scenario 9

-5

-4

-3

-2

-1

0

1

2

3

4

0 10 20 30 40 50 60

re
si

du
al

predicted response

scatter plot residuals vs. predicted response (delay)

Figure 3.16: Residuals vs. predicted response

for D (scenario 9)

-5

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

re
si

du
al

 q
ua

nt
ile

normal quantile

normal quantile-quantile plot for residuals (delay)

Figure 3.17: Normal Q-Q plot for D residuals

(scenario 9)

Mbps to load the network. Table 3.15 shows the ANOVA results for this scenario, and

we observe that loss L is significant as the arrival rate is greater than the service rate, and

hence, overflow packets are dropped. The visual tests used in judging the correctness of the

ANOVA delay models are shown in Figure 3.16 where the residuals-response scatter plot

does not show any strong trend, and in Figure 3.17 where the normal Q-Q plot is almost

linear.

The regression model for delay is given in Eq. (3.7) with coefficient of determination

(R2) of 98%. We validate the model against premium packet size (apkt) in Figure 3.18,

where we keep ar at 6 Mbps and use only one premium flow. The jitter model is given in

Eq. (3.8) with R2 of 86%, and its validation is plotted in Figure 3.19 against the number of

flows (an) while keeping ar at 2 Mbps and apkt at 100 bytes.

D T � 0 � 77 � 0 � 033apkt � (3.7)

66

0

10

20

30

40

50

0 200 400 600 800 1000 1200 1400 1600

D
 (

m
se

c)

apkt (byte)

delay vs. premium packet size

experiment
model

Figure 3.18: Model validation for D with apkt

(scenario 9)

0

1

2

3

4

5

0 1 2 3 4 5 6

J
(m

se
c)

an

jitter vs. number of premium flows

experiment
model

Figure 3.19: Model validation for J with an

(scenario 9)

log � J � T � 0 � 29 � 0 � 52an � 0 � 0039apkt � 1 � 6 � 10 � 7ar � 0 � 035a2
n � 0 � 0014anapkt� 1 � 8 � 10 � 8anar � 1 � 7 � 10 � 6a2

pkt � 1 � 8 � 10 � 10apktar � 1 � 3 � 10 � 14a2
r� 0 � 02a3

n � 1 � 2 � 10 � 4a2
napkt � 1 � 4 � 10 � 9a2

nar � 6 � 10 � 7a2
pktan� 3 � 2 � 10 � 14a2

pktar � 5 � 4 � 10 � 11a3
pkt � 6 � 4 � 10 � 16a2

r an� 7 � 1 � 10 � 18a2
r apkt � 3 � 4 � 10 � 22a3

r � 1 � 6 � 10 � 12anapktar � (3.8)

L T 6 � 83 � 4 � 15an � 1 � 8 � 10 � 5ar � 1 � 55a2
n � 1 � 04 � 10 � 12a2

r � 9 � 31 � 10 � 8anar � (3.9)

We note here that the delay depends only on the premium packet size and shows no

dependency on the number of flows. This is because, in the under-provisioned case, the

load on the PHB is high enough so that packets are randomly dropped from different flows

and the number of flows becomes insignificant for the packet waiting time in the queue.

We also present the extracted loss model in Eq. (3.9) as this is the only scenario that has

significant losses in the premium traffic (because of under-provisioning). From the ANOVA

results, we find no dependency of loss on the premium packet size (apkt), and the model has

a coefficient of determination (R2) of 90%. From the model, we notice that loss increases

with the increase of sending rate (due to the positive coefficient), and this is also consistent

67

Response Trans. bpkt bn Rab (bpkt ,bn) (bpkt ,Rab) (bn,Rab) (bpkt ,bn,Rab) Error

1 � D inverse 24.43% 3.63% 40.8% � 0% 15.27% 4.08% 4.41% 5.8%
log

�
J # log 18.83% 15.97% 41.68% 6.22% 2.95% 5.06% 4.79% 4.5%

Table 3.16: ANOVA results for scenario 10

with our intuition.

EF-CBQ with Background Traffic—Not Saturated

To study the effects of the background traffic on the premium traffic, we present sce-

nario 10 where there is a unsaturated (NOT-SAT) network node, i.e., best-effort allocated

service rate is higher than the traffic sending rate. The factors and their values for the back-

ground traffic are listed in Table 3.12, while Table 3.16 contains the ANOVA results for the

delay and jitter.

The polynomial regression model for the jitter is given in Eq. (3.10) with a coefficient

of determination (R2) of 87%. The comparative behavior of the model against the exper-

imental results is plotted in Figure 3.20 with background traffic packet size (bpkt) while

using 6 background flows (bn A 6) sending at a total rate of 25 Mbps (Rab A 0 � 04). In Fig-

ure 3.21 we plot the jitter (model output as well as experimental results) with the number

of flows (bn) while using bpkt of 1000 bytes and Rab of 0.04. The jitter model is validated

against Rab in Figure 3.22, where we use 6 background flows (bn A 6) sending with packet

size (bpkt) of 1000 bytes. We also validate the delay model (not shown) against Rab in

Figure 3.23 for the same scenario.

We notice from Figure 3.20 that the jitter is higher for small background traffic packet

sizes. This holds true for the same background traffic sending rate, i.e., same br, and this

is due to the way the CBQ implementation works in the router.11 When the BE packet size

is much smaller than EF packet size (1000 bytes in this scenario), the variability in delay

due to waiting for BE packets is significantly higher. On the other hand, and according to

our intuition, the jitter increases with the increasing number of BE flows due to the increas-

ing variability in processing BE packets coming from different flows before EF packets.

This is clear from Figure 3.21. These results show that, even in an over-provisioned and

11A variant of non-preemptive Weighted Round Robin (WRR).

68

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000 1200 1400 1600

J
(m

se
c)

bpkt (byte)

jitter vs. background packet size

experiment
model

Figure 3.20: Model validation for J with bpkt

(scenario 10)

0

0.02

0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5 6 7 8 9

J
(m

se
c)

bn

jitter vs. background number of flows

experiment
model

Figure 3.21: Model validation for J with bn

(scenario 10)

unsaturated network node, QoS metrics can vary and still need some control mechanism to

stabilize their values.

log � J � T � 2 � 12 � 52 � 7Rab � 1 � 21bn � 0 � 0077bpkt � 400 � 1R2
ab � 7 � 45Rabbn� 0 � 026Rabbpkt � 0 � 008b2

n � 0 � 001bnbpkt � 1 � 05 � 10 � 5b2
pkt� 993 � 82R3

ab � 11 � 96R2
abbn � 0 � 036R2

abbpkt � 0 � 336Rabb2
n� 3 � 57 � 10 � 5b2

nbpkt � 0 � 0071b3
n � 1 � 02 � 10 � 5Rabb2

pkt� 3 � 2 � 10 � 7bnb2
pkt � 3 � 7 � 10 � 9b3

pkt � 5 � 85 � 10 � 5Rabbnbpkt � (3.10)

For delay, we experience a smaller range of change with the background sending rate as

the network is not saturated. However, it is clear that for lower values of br (higher values

of Rab), the per-hop delay gets smaller.

EF-CBQ with Background Traffic—Saturated

When the background sending rate (br) is higher than the allocated rate (ber) at the

CBQ, we have a saturated node. We consider two experimental scenarios in this case; in

the first (scenario 11), we change ber with br fixed at a higher value all the time. We want to

investigate the effects of controlling the PHQ by changing one of the node’s configuration

parameters, which is ber. In the second scenario (scenario 12), we fix ber and change br,

69

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 0.05 0.1 0.15 0.2 0.25

J
(m

se
c)

Rab

jitter vs. background sending rate ratio

experiment
model

Figure 3.22: Model validation for J with Rab

(scenario 10)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.05 0.1 0.15 0.2 0.25

D
 (

m
se

c)

Rab

delay vs. background sending rate ratio

experiment
model

Figure 3.23: Model validation for D with Rab

(scenario 10)

or equivalently Rab, within higher value ranges. In the first scenario, the jitter model, given

in Eq. (3.11) with R2 value of 71%, and also the ANOVA output (not shown), both suggest

a strong dependency on ber and bpkt and a weak dependency on bn. Therefore, we conduct

validation experiments with respect to ber and bpkt only.

J T 0 � 2 � 7 � 1 � 10 � 8ber � 0 � 089bn � 0 � 0023bpkt � 6 � 3 � 10 � 16be2
r � 1 � 5 � 10 � 8berbn� 4 � 9 � 10 � 11berbpkt � 0 � 0066b2

n � 0 � 00032bnbpkt � 4 � 1 � 10 � 6b2
pkt� 2 � 3 � 10 � 22be3

r � 4 � 8 � 10 � 16be2
r bn � 9 � 1 � 10 � 18be2

r bpkt � 8 � 3 � 10 � 10berb2
n� 4 � 3 � 10 � 7b2

nbpkt � 0 � 0003b3
n � 8 � 3 � 10 � 14berb

2
pkt � 1 � 7 � 10 � 7bnb2

pkt� 1 � 9 � 10 � 9b3
pkt � 2 � 7 � 10 � 12berbnbpkt � (3.11)

In Figure 3.24, the calculated jitter is compared against the experimental output with bn

fixed at 4 flows, sending at 10 Mbps and changing background packet size from 100 to 1470

bytes. We see behavior similar to the NOT-SAT case in scenario 10 with small differences

in sizes around 1000 bytes. We refer this difference to the default average packet size used

in the CBQ configuration which is set to 1000 bytes. In Figure 3.25, on the other hand, we

change ber while fixing bpkt at 1000 bytes and bn at 4. This result is very important for

controlling the per-hop jitter of the premium traffic by controlling the allocated rate for the

BE traffic at the network nodes. We will investigate more on this result in Section 3.4.

70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 200 400 600 800 1000 1200 1400 1600

J
(m

se
c)

bpkt (byte)

jitter vs. background packet size

experiment
model

Figure 3.24: Model validation for J with bpkt

(scenario 11)

0

0.1

0.2

0.3

0.4

0.5

0 10 20 30 40 50 60

J
(m

se
c)

ber (Mbps)

jitter vs. background allocated rate

experiment
model

Figure 3.25: Model validation for J with ber

(scenario 11)

0

0.5

1

1.5

2

0 200 400 600 800 1000 1200 1400 1600

D
 (

m
se

c)

bpkt (byte)

delay vs. background packet size

experiment
model

Figure 3.26: Model validation for D with bpkt

(scenario 12)

0

0.5

1

1.5

2

2.5

3

3.5

4

0.008 0.01 0.012 0.014 0.016 0.018 0.02

D
 (

m
se

c)

Rab

delay vs. background sending rate ratio

experiment
model

Figure 3.27: Model validation for D with Rab

(scenario 12)

In scenario 12, the delay model (not shown) is validated against bpkt in Figure 3.26,

where we keep Rab at 0.016 and bn at 6 flows, and against Rab in Figure 3.27, where we

set bpkt at 100 bytes and bn at 8 flows. From the first figure, we notice a slow increase of

the delay with bpkt , except for small packet sizes such as 100 bytes, where it causes a high

delay for the premium traffic. We refer this to as the realization of the PHB itself since it

has been observed in all other experiments as well. On the other hand, the delay can be

reduced by lowering br, or equivalently, increasing Rab. This follows our intuition that the

smaller the background traffic, the lower the delay of premium traffic.

71

Response Trans. ar apkt an (ar ,apkt) (ar ,an) (apkt ,an) (ar ,apkt ,an) Error

D inverse 3.15% 76.72% 4.65% 5.64% � 0% 3.29% � 0% 4%
log

�
J # log 3.51% � 0% 59.46% 2.69% 6.43% 3.64% 15.51% 6.78%

Table 3.17: ANOVA results for scenario 13

EF-PRIO with Fixed Background Traffic

For the second realization of the EF PHB, which is based on priority scheduling, we

conduct the 13th experimental scenario, which models the effects of the premium traffic

parameters on the PHQ it receives. This is similar to what we did in scenarios 8 and

9, except that for absolute priority scheduling, there are no configuration parameters to

change.12 The ANOVA results are listed in Table 3.17 for both delay and jitter, i.e., the

most significant response variables. To show the effect of the model’s order on the accuracy

of the model, we confirm that the higher the order, the more accurate the model becomes.

From Table 3.17, we observe that the delay depends weakly on an and ar. We build two

delay models: the first is a 1st-order model that incorporates apkt only, in Eq. (3.12) with

R2 A 75%, while the second is a 3rd-order model, in Eq. (3.13) with R2 A 95%, which

incorporates all of the three factors.

1 � D T 4 � 13 � 0 � 002apkt � (3.12)

1 � D T 6 � 13 � 0 � 67an � 0 � 0067apkt � 3 � 5 � 10 � 8ar � 0 � 09a2
n � 0 � 0006anapkt� 3 � 10 � 8anar � 2 � 7 � 10 � 6a2

pkt � 1 � 69 � 10 � 10apktar � 9 � 6 � 10 � 15a2
r� 0 � 0015a3

n � 5 � 7 � 10 � 5a2
napkt � 1 � 1 � 10 � 9a2

nar � 1 � 3 � 10 � 7a2
pktan� 1 � 2 � 10 � 13a2

pktar � 1 � 9 � 10 � 10a3
pkt � 4 � 2 � 10 � 16a2

r an� 3 � 1 � 10 � 18a2
r apkt � 1 � 7 � 10 � 22a3

r � 1 � 2 � 10 � 11anapktar � (3.13)

The difference of the two models is shown in Figure 3.28, along with the experimental

output. Clearly, the 3rd-order model is more accurate than the lower-order model. There

12This is the case only for our particular realization.

72

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 200 400 600 800 1000 1200 1400 1600

D
 (

m
se

c)

apkt (byte)

delay vs. premium packet size

experiment
1st-order model
3rd-order model

Figure 3.28: Model validation for D with apkt

(scenario 13)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

J
(m

se
c)

Rab

jitter vs. background sending rate ratio

experiment
model

Figure 3.29: Model validation for J with Rab

(scenario 14)

is a tradeoff between the order of the model, hence the involved input factors, and the

complexity of the model. This should be determined by the type of traffic expected to

traverse the node under study.

EF-PRIO with Background Traffic—Not Saturated

In scenario 14, according to Figure 3.6, we investigate the effects of the background

traffic parameters on the premium traffic PHQ of a priority-based node. We look at an

unsaturated PHB, and extract a 2nd-order model for the jitter in Eq. (3.14) with R2 of 83%.

The model is plotted with Rab against the experimental output in Figure 3.29 with bpkt of

1000 bytes and 6 background flows. It is also used as an example of control in Section 3.4.

log � J � T � 3 � 27 � 21 � 3Rab � 0 � 33bn � 94R2
ab � 0 � 02b2

n � 2 � 8Rabbn � (3.14)

EF-PRIO with Background Traffic—Saturated

We study the saturated case of Section 3.3.2 in scenario 15. Saturation here is relative

to link capacity as there is no allocated rate to be configured in the priority-based node. The

delay model is depicted in Eq. (3.15) with R2 of 91% and is plotted against the experimental

output with bpkt in Figure 3.30 and with bn in Figure 3.31.

73

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

200 400 600 800 1000 1200 1400 1600

D
 (

m
se

c)

bpkt (byte)

delay vs. background packet size

experiment
model

Figure 3.30: Model validation for D with bpkt

(scenario 15)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7

D
 (

m
se

c)

bn

delay vs. background number of flows

experiment
model

Figure 3.31: Model validation for D with bn

(scenario 15)

log � J �¡T � 0 � 28 � 0 � 023bn � 0 � 0005bpkt � 0 � 009b2
n � 4 � 3 � 10 � 8b2

pkt � 1 � 2 � 10 � 5bnbpkt � (3.15)

3.4 QoS Control

In this section, we put the extracted models in action and show how we can use them

to control the PHQ of the afromentioned PHBs. We use the same experimental network

shown in Figure 3.4.

3.4.1 Choosing Ia Parameters to Control Delay and Jitter

Here we show how to use the models extracted in Sections 3.3.2 and 3.3.2 in control-

ling the per-hop delay and jitter of the premium traffic. We assume that all other network

parameters are within the range of our modeling experiments as mentioned before. In

Figure 3.13, where the delay is plotted against the number of premium flows in an over-

provisioned (OP) network, in order to achieve the delay ^ 0.3 msec, the number of flows

for the premium traffic should not exceed 3 flows according to the model. Similarly, keep-

ing the number of flows below 4 will achieve jitter ^ 0.1 msec from Figure 3.14. On the

other hand, for the application to achieve per-hop delay ^ 0.4 msec, it has to use packet

74

sizes ^ 820 bytes, as indicated in Figure 3.15. This can be done using different encoding

techniques within today’s real-time applications. To achieve a delay less than 0.4 msec per

node, both the number of flows and the packet size should be restricted to 3 and 820 bytes,

respectively.

The results obtained from this scenario as well as from the ninth scenario, can be used

as recommendations for applications to regulate their traffic to achieve certain PHQ. Of

course, this has to be done in coordination with the network to compose the required overall

e2e QoS. They can be used as per-hop data sheets that predict the PHQ for each hop along

the path according to the available premium traffic characteristics. If the network is under-

provisioned (UP), the models in Eqs. (3.7) and (3.8) and depicted in Figures 3.18 and 3.19

from the ninth scenario for delay and jitter, respectively, are used instead.

3.4.2 Using Rab and bn to Control Jitter

We demonstrate how to use the jitter model, developed in scenario 10 and validated

in Figure 3.22, in PHQ control. Given similar network configurations such as the ones

used in Section 3.3.2, we control br and hence Rab to achieve the jitter of 0.3, 0.097 and

0.014 msec. Using the jitter model in Eq. (3.10), and substituting with these jitter values

along with other configurations used in that scenario, we get the corresponding values of

Rab to be 0.02, 0.04, and 0.2, respectively.13 We conduct an experiment with a single

premium flow running at 1 Mbps with packet size of 1000 bytes and 6 background flows

each with packet size of 1000 bytes. We also change Rab from 0.02 to 0.04, and then

to 0.2, each lasting for 20 seconds. The resulting premium jitter at the PHQ is plotted14

against the experimentation time in Figure 3.32. This figure shows that using the models

extracted in this chapter, the input background traffic can be controlled at runtime to provide

predictable PHQ for premium traffic. The number of background traffic flows, bn, can also

be controlled (e.g., through admission control) to yield the desired per-hop jitter.

This is illustrated in Figure 3.33, where we attempt to achieve per-hop jitters of 0.0218,

0.061, and 0.101 msec. The corresponding values of bn from the models in Eq. (3.10)

13We can also look up the validation graph to find these values.
14We removed strong outliers.

75

are 1, 4, and 7 flows, respectively. We plot the actual measured jitter as well as the ref-

erence values of the jitter mentioned above, while keeping each bn value (of 20 seconds)

unchanged.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60

J
(m

se
c)

Time (sec)

jitter vs. experiment time

Rab = 50Mbps

Rab = 25Mbps

Rab = 5Mbps

actual jitter
reference jitter

Figure 3.32: Controlled jitter by Rab (sce-

nario 10)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 10 20 30 40 50 60

J
(m

se
c)

Time (sec)

jitter vs. experiment time

bn = 1

bn = 4

bn = 7

actual jitter
reference jitter

Figure 3.33: Controlled jitter by bn (scenario

10)

3.4.3 Using ber to Control Jitter

As depicted in Figure 3.1, not only the input traffic but also the configuration parameters

of the PHB can be controlled to achieve specific PHQ values. Here we control the allocated

service rate for the background traffic, ber, to get the pre-specified values of per-hop jitter

using the models developed in Section 3.3.2 (shown in Figure 3.25). We control ber at

three values, 5, 20, and 40 Mbps, calculated from the model, to give 0.081, 0.285, and

0.407 msec, respectively. We run each value for 20 sec, and measure the jitter of the

premium traffic. We use a single premium flow running at 1 Mbps with packet size of 1000

bytes, and 4 background flows with the same packet size. The output jitter is plotted in

Figure 3.34 with the experimentation time along with the reference values of jitter.

3.4.4 Delay and Jitter Control in EF-PRIO Scenarios

Using the priority-based scenarios, we show how to control the per-hop delay by choos-

ing the right premium packet size, apkt . As before, we choose three values of delay, 0.215,

76

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60

J
(m

se
c)

Time (sec)

jitter vs. experiment time

ber = 5Mbps

ber = 20Mbps

ber = 40Mbps

actual jitter
reference jitter

Figure 3.34: Controlled jitter by ber (scenario

11)

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60

D
 (

m
se

c)

Time (sec)

delay vs. experiment time

apkt = 100 byte

apkt = 700 byte

apkt = 1470 byte

actual delay
reference delay

Figure 3.35: Controlled delay by apkt (sce-

nario 13)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60

J
(m

se
c)

Time (sec)

jitter vs. experiment time

Rab = 0.0125

Rab = 0.04

Rab = 0.2

actual jitter
reference jitter

Figure 3.36: Controlled jitter by Rab (scenario 14)

0.415, and 0.615 msec, and use the model in Eq. (3.12) to get the corresponding values of

apkt to be 100, 700, and 1470 bytes, respectively. We compare the actual delay measure-

ments with the reference values in Figure 3.35, where we plot the delay versus experimen-

tation time, and each of the controlled packet sizes is held for 20 sec of the total time. This

experiment corresponds to the one shown in Figure 3.28 with all other factors kept at the

same values used before. Using scenario 14, the jitter can also be controlled by controlling

Rab. This is illustrated in Figure 3.36 where we use the values of 0.0125, 0.04, and 0.2 for

Rab calculated from the model in Eq. (3.14) to give jitter values of 0.367, 0.147, and 0.0122

msec, respectively.

77

3.4.5 Model-Based PHQ Controller

We have presented several examples for PHQ control through either limiting the pre-

mium traffic parameters, or controlling the background traffic as well as node configura-

tion parameters. These examples demonstrate the efficacy of the model-based PHQ control

scheme. A schematic of the model-based controller is illustrated in Figure 3.37. In this fig-

ure, the control action can be applied to either the premium traffic parameters as we have

seen in Section 3.4.1, non-premium traffic parameters as in Section 3.4.2, or configuration

parameters of the node as in Section 3.4.3.

Among these different control actions, we recommend the use of non-premium traffic

parameters in control. This can be done by using traffic controllers that limit the amount of

input non-premium traffic of the QoS subsystem (PHQ) to the values calculated from the

models. In such a case, there is no need to limit the input premium traffic or to re-configure

the parameters of the QoS subsystem which may be an unwanted task.

Although the simple model-based control approach works well, it has some limitations.

First, during real-time control, the inputs have to stay within the modeling range; otherwise,

the models used in control would not be valid anymore. Second, the scheme works best

by changing one control parameter (factor) at a time with the others fixed. This is because

the reverse calculation of the model equations, i.e., from a reference PHQ to input factors

values, is complex and not possible for multiple factors calculation. Third, the scheme is

suitable for controlling one output at a time, and this is a result of using a separate model

equation for each output response. Controlling multiple outputs simultaneously within

this scheme would be unwieldy and impractical. The last two points are referring to the

necessity of studying the problem as a Multiple Inputs Multiple Outputs (MIMO), instead

of Single Input Single Output (SISO) systems.

78

Con
tro

l C

C
ontrol Ib

Model

Reference
output

O`

QoS
subsystemPremium

source

Feedback
to control
source Ia

m
ea

su
re

m
en

ts

Other
traffic

Traffic
control

Calculate
required

I & C

Figure 3.37: Model-based PHQ controller

3.5 Previous Work on the Use of Statistical Modeling in

Networks

A very few previous studies reported the use of ANOVA for experimental analysis and

modeling of IP QoS networks. For example, the authors in [106] applied a full factorial de-

sign and ANOVA to compare a number of marking schemes for TCP acknowledgments in

a DiffServ network. The performance of AF PHB was also analyzed in [57] using ANOVA

where the authors compared the performance of different techniques for bandwidth and

buffer management. Our approach uses same statistical tools, but our goal is different from

the above, i.e., modeling and control of the PHQ of any QoS-aware node. The idea of fac-

tor clustering has been mentioned before in [61], where the authors studied the congestion

control in TCP Vegas. They clustered 10 congestion and flow control algorithms in TCP

Vegas into 3 groups, according to the 3 phases of TCP protocol, and deduced which of

the algorithms are the most effective in the overall operation which helps later reduce the

complexity of realization. We use a similar approach in clustering our factors, but in the

context of modeling. There have also been previous efforts in using statistical modeling

techniques to extract models for computer systems to be used in the feedback control of

these systems. The authors in [107], in designing a controller for the Lotus Notes server,

79

used a stochastic autoregressive modeling technique based on ARMA. It proved to be an

effective technique for modeling without knowing the details of the system under control.

To calculate the model parameters, they used the least-square regression estimator which is

similar to our case except we deal with steady-state polynomial models. Another example

of using statistical modeling (based on experimental characterization) and applying feed-

back control using these models was presented in [3]. The authors modeled a web server

as a difference equation and estimated the model parameters using experiments.

On the other hand, the authors of [45, 46] utilized a ring network topology, which is

similar to the one used in this chapter for experimental studies on the EF PHB [29]. Their

findings can be summarized as follows. The EF burstiness was greatly affected by the

number of EF streams and packet loss. Moreover, WFQ was found to be more immune to

burstiness of traffic than priority queueing, when used for scheduling, but had less timely

delivery guarantees. Our work complements these studies and provide a more rigorous

way to identify these effects. The authors of [90] conducted an experimental analysis of

the EF PHB by incorporating a part of the Internet2 QBone and using the QBone Premium

Service (QPS). They used the same QoS metrics (throughput, delay, jitter and packet loss)

as in our study. The difference, however, is that their metrics are measured as end-to-end

quantities, while ours are per-hop quantities. Moreover, they did not provide any functional

relationships or models for designing premium services over Internet2. A rigorous theoret-

ical study to find probabilistic bounds for EF was presented in [126]. The authors used a

combination of queueing theory and network calculus to obtain delay bounds for backlogs

of heterogeneous traffic as well as traffic regulated by a leaky bucket. They also derived

bounds on loss ratio under statistical multiplexing of EF input flows. Our approach is purely

experimental; instead of providing bounds on delay or packet loss, we seek to identify the

parameters necessary to construct simple performance models of PHQ mechanisms, and

eventually to control their run-time behavior.

80

3.6 Concluding Remarks

In this chapter we presented a novel approach for PHQ control based on design of

experiments and statistical modeling. We used ANOVA and regression analysis to extract

the required models used in steady-state control, and verified the thus-developed models

against the actual behavior of the PHQ. We were able to find strong functional relationships

between input traffic and output QoS for the PHQ. We pointed out operational differences

among the different PHB implementations, and explained these differences based on the

internal structure of the PHBs. The realization of measurement and experimental design

is automated – the configuration of the PHBs and the measurement of the corresponding

output parameters are automatically performed – which is important to the success of the

approach.

The proposed approach has two important features. First, it is a general modeling

approach, that can be applied on a variety of QoS components along the network, not only

on per-hop QoS. As long as the QoS component can be modeled as a system with input

traffic and configuration parameters, and output QoS, then our framework can be used to

get the functional relationships required for the operation. Second, it is simple and does

not involve complex mathematical analysis and relaxing assumptions. Moreover, it is a

convenient vehicle for modeling systems with a small number of input/output parameters. It

can be extended to more complex systems, e.g., edge-to-edge QoS building blocks such as

a Per-Domain Behavior (PDB) in DiffServ [97], or LSP in MPLS [110]. Most importantly,

we demonstrated the effectiveness of using these models in PHQ control.

As pointed out in Section 3.4.5, there are some limitations in our model-based control

scheme. In Chapter 4, we use dynamic feedback control within a control-theoretic approach

to address them. We will show how to build MIMO models to control both delay and jitter

at the same time. We will also show the dynamics of the control algorithm in tracking

reference QoS and extend the analysis to the multi-node case and hence, an edge-to-edge

or even end-to-end network services.

81

CHAPTER 4

CONNET: Self-Controlled Network Services for Delay and

Jitter Requirements

In first-in-first-out (FIFO) networks, such as the current Internet, and with the absence

of any QoS architecture such as the DiffServ or the IntServ, it is still a challenging task to

provide timely packet delivery for time-sensitive and real-time applications. Without pro-

tecting their traffic, the performance of these applications will likely be unpredictable with

respect to delay and jitter because of different traffic crossing the network. To accommodate

network unpredictability, many of the delay- and jitter-sensitive applications use a limited

form of adaptivity, such as changing their traffic parameters according to the availability of

network resources, or they use extra buffering to deal with transient congestion. This ap-

proach sometimes provides acceptable, but limited, performance for the above-mentioned

applications, especially in case of large amounts of competing traffic at bottleneck net-

work segments. In the absence of smart bandwidth management, applications usually have

limited control over the network performance. For this reason, application adaptivity fails

when the traffic distribution across the network exceeds a certain limit, especially at bot-

tleneck links. Therefore, a better-informed, network-centric approach is required, where

controllable network services can support premium traffic from delay- and jitter-sensitive

applications. These network services can be deployed within a single domain, or across

multiple domains.

In this chapter, we present a new scheme, called CONNET (CONtrolled NETwork), for

82

input premium traffic

T T T

output premium traffic

packet drop
(loss)

delay

non-premium
traffic

T3
T4 T5

jitter

T2T1

non-premium
traffic

Network
Pipe

Figure 4.1: Delay and jitter across a network pipe

providing controllable network services for delay- and jitter-sensitive premium traffic. It is

based on a simple, yet intelligent bandwidth control for traffic going through these network

services. Consider the network pipe1 shown in Figure 4.1, which carries two classes of

traffic, premium and non-premium. Assuming static link capacity and FIFO queueing (used

in the current Internet), the delay and jitter, as well as the throughput, of premium traffic

will depend directly on the amount of non-premium traffic sharing the network pipe with

it. This is because, for single FIFO-queue networks, non-premium packets in front of

premium packets cause them to experience variable queueing and service delays.

Based on this observation, we propose to achieve desired delays and jitters for pre-

mium traffic by controlling non-premium traffic. We first find a model for the relationship

between the amount of non-premium traffic and the premium traffic’s delay and jitter. We

then use this model in controlling the competing non-premium traffic to achieve the re-

quired premium delay and/or jitter. We take a control-theoretic — specifically model-based

control — approach to the network service control problem, and present a full design and

analysis of robust estimation and control.

Our contributions are two-fold: (i) development of a reservation-less approach for de-

lay and jitter control that does not require prior knowledge of input traffic specification,

and works well with currently-prevalent FIFO routers, and (ii) creating dynamic as well as

self-controlled network services that react to changing traffic loads while maintaining high

link utilization. We evaluate this scheme using an implementation on a real testbed net-

1A network pipe may represent a single or multiple hops.

83

work, demonstrating the correctness, accuracy, robustness, and fault-tolerance of the thus-

designed controller. Its performance is compared against other well-known schemes, such

as classed-based queueing (CBQ) [50] and weighted-fair queueing (WFQ) [30]. Based on

this evaluation, we found CONNET to make a significant improvement (more than 40% in

some cases) in preserving low delay and jitter for premium traffic.

4.1 Rationale and Main Features of CONNET

Before delving into the design, implementation and evaluation of our network service

control, we describe the rationale, and outline the main theme, of CONNET. As mentioned

earlier, CONNET provides two important salient features, making it more appealing than

other QoS or bandwidth-management frameworks whose deployment has been hindered

by their complexity and configuration burden. These features are detailed next.

4.1.1 Reservation-less Delay and Jitter Control

The traditional approach in providing network QoS is to calculate and provision a pri-

ori the required network resources (e.g., link bandwidth, processing power and buffer at

routers) to ensure that the network can meet certain QoS requirements [16, 124]. CON-

NET requires neither advance resource reservation nor a priori traffic parameterization. In

other words, it uses a reservation-less technique to control delay or jitter. Furthermore, it

does not assume any special queueing discipline other than single-FIFO-queue routers, un-

like common scheduling algorithms that serve multiple queues for different traffic classes.

This adheres to the basic principles of the Internet: simplicity and best-effort [26]. Most

routers in the current Internet are either FIFO or configured to be FIFO.2

For a typical FIFO network path with two types of input traffic, premium and non-

premium, sharing the same FIFO queue as shown in Figure 4.1, when we vary the rate of

non-premium traffic while keeping all other configurations fixed, and plot both the mea-

sured premium delay (d) and jitter (j) along with the rate of non-premium traffic (R), we

2Multiple queueing disciplines are usually turned off because of their configuration complexity.

84

get a relationship similar to the one in Figure 4.2(a).3 Increasing the rate of non-premium

traffic is found to increase the premium traffic delay and jitter, and vice versa. This figure

can also be interpreted as: “one can effectively control the delay and jitter of premium

traffic by simply controlling the rate of non-premium traffic.”

The relationship in Figure 4.2(a) represents the basis for our reservation-less control

as well as the “physics” of the system under study. This figure is also considered as the

“characteristic curve” for the network subsystem under study. It determines the feasible de-

lay and jitter under the current configuration and with the available range of non-premium

traffic rate.

This relationship has also been captured in [28], where Cruz considered the case of

first-come-first-served (FCFS) multiplexers with two input links (or traffic classes) and one

output link, shown in Figure 4.3(a), as an example application of delay calculus theory. If

we call one input class premium and the other non-premium, then the maximum delay for

the premium traffic is governed by the following relationship:

Dmax W p A 1
C

min ¢ bp � rp � bnp

C U R �K� � C U rp � L
C �

bnp � R � bp

C U rp
�K� R

L
C £ (4.1)

where Dmax W p is the maximum delay for the premium traffic, C is the link capacity,4 rp and

bp are the arrival rate and the burstiness of the premium traffic while R and bnp are the

arrival rate and the burstiness of the non-premium traffic, and L is the packet size for all

traffic. We observe that the delay increases with the increase of the non-premium traffic

(R), and if we evaluate Eq. (4.1) with respect to R while fixing all the other parameters, we

get a behavior like the one depicted in Figure 4.3(b), which is showing the same trend in

Figure 4.2(a).

We control the rate (R) of non-premium traffic sharing the network resources with the

premium traffic in order to achieve the required delay and jitter for premium traffic. This is

illustrated in Figure 4.2(b). Note that R is not the only factor affecting the premium traffic

3Measurements were averaged over the experiment time to remove the transients.
4All links have the same capacity.

85

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80 90 100

D
el

ay
, J

itt
er

 (
m

se
c)

R (Mbps)

delay
jitter

(a) Effect of non-premium rate, R, on premium delay and jitter

ControllerReference

Traffic
control

FIFO pipe

delay &
jitter

(b) FIFO network control

Figure 4.2: Control criterion

premium traffic
(rp, bp)

non-premium traffic
(R, bnp)

FIFO node
output link

C

(a) Two input multiplexer node

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100

D
el

ay
 (

m
se

c)

R (Mbps)

(b) Premium delay depends on non-premium traffic rate

Figure 4.3: FIFO multiplexer with two input traffic

delay and jitter. However, Per-Hop QoS control in Chapter 3 has shown that it has the

greatest effect, and hence, suffices to be the control input.

4.1.2 Dynamic and Self-Controlled Services

For better resource utilization, CONNET employs feedback control that yields faster

response to traffic changes. It adapts to traffic dynamics through a feedback loop that takes

the difference between actual and required (reference) delay/jitter and adjusts the control

action accordingly. This creates self-controlled network paths that do not require the op-

erator’s intervention to tune their performance each time the network workload changes.

The network operator only needs to set references for the output, and then, the feedback

controller will be able to track these values. Reference tracking also works with variable

86

references, meaning that the operator can provide a reference signal reflecting the scenario

of operation during a certain time interval (time-of-day or day-of-week). This would not

be easy with operator-controlled links or other commonly-used techniques.

4.1.3 A Control-Theoretic Approach to Network Service Control

We now outline the approach we take to achieve the above-stated goals of CONNET.

The resemblance of this network control problem to fluid mechanic problems motivated us

to investigate the use of a control-theoretic approach to designing the control algorithm for

the delay and jitter across the network service. Following this approach, we first obtain a

model for the relationship between the amount of non-premium traffic, in terms of average

bit rate, and the premium delay and jitter, and then use state-space [53] methods in the con-

troller design. State-space is recommended for digital control as in our network problem,

and also for multiple-input-multiple-output (MIMO) systems [54]. It is also an attractive

design method as it consists of a sequence of independent steps that can be executed sep-

arately. This is important when we need to change the systems parameters and adjust the

control loop.

We use a Linear Quadratic Regulator (LQR) controller along with Kalman filtering as

a combination of robust estimation and control [54]. The main advantage of following this

systematic approach is the generality of control design. We will study single- and multiple-

node network pipes using the same approach, which exemplifies its generality. In what

follows, we describe the steps taken for control design and evaluate the performance of the

self-controlled network services using both simulation and experimentation on a network

testbed.

4.2 Three Types of Self-Controlled Network Services

CONNET can be used in different places in the network where we need delay and

jitter guarantees by just controlling the interfering traffic. We present three examples of

CONNET in three different places in network: (i) a self-controlled pipe within a net-

87

Ingress

Egress

Everything inside the cloud is static
(routing, buffer allocation,... etc)

Network Cloud

H
Input

Traffic
I

Output
QoS

O

I1

I2

I3

In

Ik

..

Output
QoS

O

Input
Traffic

I Em

Ej+1

Ej

Figure 4.4: Edge-to-edge pipe in a network cloud

work cloud (edge-to-edge), (ii) self-controlled access links, and (iii) delay-controlled active

queue management.

4.2.1 Self-Controlled Network Pipes in a Network Cloud

Providing predictable edge-to-edge or per-domain5 services has been discussed be-

fore in many contexts such as in IntServ [16] RSVP, in DiffServ Per-Domain Behavior

(PDB) [69, 97], in MPLS Label Switched Path (LSP) [40, 110], or more generally Virtual

Private Networks (VPNs). The idea behind these services is to enable building predictable

end-to-end services by just concatenating per-domain services. We show here how to use

CONNET to build edge-to-edge services with delay and jitter guarantees by just control-

ling the input traffic at the domain ingress. In this way, we create a form of “core-stateless”

delay and jitter scheme that requires the minimal change to today’s Internet. We illustrate

the idea in Figure 4.4 where we look at traffic entering the domain at a certain ingress point

Ik and leaving at an egress point E j. The routers inside the domain are FIFO routers and

we assume the following:

5We use network cloud and network domain interchangeably.

88

¤ The traffic matrices of all incoming and outgoing traffic into and from the network

cloud, respectively, are known. This includes traffic specifications at ingress points

and traffic paths inside the network cloud.¤ The configuration of the network cloud does not change during the course of analysis.

This includes routing, buffer allocation, etc.¤ Link capacities and resource allocation are known inside the network cloud and they

do not change as well.

Then, as shown in the figure, we can abstract the per-domain service in terms of input traffic

and the measured delay and jitter across the domain. We will illustrate how to realize this

case in Section 4.5.1.

4.2.2 Self-Controlled Access Links

Access links are typically the bottleneck between a high bandwidth LAN and a high

bandwidth IP network. Currently, customer networks employ high bandwidth technology

ranging from 10/100 Mbps Ethernet to optical links, such as OC3 (155 Mbps) and OC12

(622 Mbps), to even Gigabit Ethernet. On the other hand, Internet Service Provider (ISP)

networks, or more generally IP backbones, are usually equipped with even higher capacity

using OC48 (2.4 Gbps), OC192 (10 Gbps) or 1 Tbps WDM fibers [78]. Access links (e.g.,

cable, xDSL, T1) between customer networks and their ISPs are still at most a few megabits

per second. This creates a bottleneck between these two high-bandwidth networks, and

hence, makes a strong negative impact on the performance of delay- and jitter-sensitive

applications at medium- and high-utilization levels of access links [120, 125, 130]. More-

over, with the current Internet’s first-in-first-out (FIFO) access links/routers there is not

much to do in order to protect time-sensitive traffic from being delayed and jittered at these

bottlenecks.6 Large background HTTP downloads can cause an annoying delay to an inter-

active or a real-time streaming application running through the same network. Without a

priori resource provisioning or reservation, this tends to have a serious effect on premium

6Note that this situation is found at both sender and receiver sides.

89

Michnet

Internet Internet2

CAEN
UMnet

School of
Education

Plant
Operations

LSA

FXB

Arbor
Lakes

Cooley

UMHSnet

The ATM BIN and
the proposed
new GigaBIN

OC12

OC3

GigE

Figure 4.5: The University of Michigan campus network topology

traffic from these applications. Static resource reservation is denounced for poor resource

utilization and lack of efficient handling of traffic dynamics.

To develop a feel for the need of access link control, we consider our campus net-

work, shown in Figure 4.5. From the EECS Department, we used traceroute to

www.google.com, and found it is taking 5 hops to reach mich.net, the regional ISP

for the University of Michigan, at access router AA1 (ge-1-1-0x984.aa1.mich.ne).

Specifically, we obtained the following result:

> 1 eecs2n-gw 0.488 ms

> 2 141.213.127.37 0.608 ms

> 3 caen-bin.r-bin-seb.umnet.umich.edu 0.711 ms

> 4 bin-arb.r-bin-arb.umnet.umich.edu 0.842 ms

> 5 ge-1-1-0x984.aa1.mich.net 0.922 ms

> 6 ge-1-2-0x25.nl-chi3.mich.net 7.138 ms

> 7 198.110.131.78 7.717 ms

Within each segment LAN environment, there is enough bandwidth—e.g., the link

speed of CAEN (Computer-Aided Engineering Network) varies between OC12 and OC48,

90

hence a small delay. However, the delay increases significantly (¥ 7 ms) at the 6-th hop

between access router AA1 and the next hop in mich.net. This indicates that the ac-

cess link (equivalently, the access router) has a significant percentage of the end-to-end

delay and must, therefore, be controlled in order to achieve overall predictable delay and

jitter performances. We show how to use the same idea of CONNET to provide delay-

and jitter-controlled access links [32], and we illustrate the realization of this control in

Section 4.5.2.

4.2.3 DQM: Delay-Controlled Active Queue Management

Current Active Queue Management (AQM) techniques are mainly concerned with band-

width requirements of the Internet traffic. This does not suffice for certain current and

future applications that require network nodes to be aware of delay and jitter in addition

to bandwidth. With the advent of many delay-sensitive applications on the Internet such

as Voice-over-IP (VoIP) (e.g., IP telephony), high-definition TV (HDTV), on-line gam-

ing, and home/office remote control, future IP networks must meet a new requirement for

delay-aware queue management.

Existing approaches to Active Queue Management (AQM) have mainly been using

either the average queue length (as in RED [49]) or packet loss (as in BLUE [42]) as

the indicator for network congestion. Although this is considered as a direct measure for

network overload and hence longer queues, it does not reflect the actual delay of traffic

while passing through network routers. Per-node delay can vary significantly even when

the queue length is still moderate. Moreover, in first-in-first-out (FIFO) networks such

as the current Internet, different packet sizes from different traffic aggregates can have a

significant effect on the delay behavior of each network node and might not be captured by

the existing queue-management approaches.

Figures 4.6 illustrates our way of applying CONNET inside a network node to realize

DQM. Both the delay/jitter feedback and the control signal are applied inside the node.

The premium traffic is stamped with T Si at the ingress interface and with T So at the egress

interface. The delay, T So U T Si, as well as the delay variation (jitter) are used in the feed-

91

Input
traffic

Traffic
control

TSo

Network node

Packet
drop

Controller
Output
traffic

Delay = TSo - TSi
Jitter = |Delay(i,i-1)|

TSi

Figure 4.6: Internal control of a FIFO network node

back loop. At the same time, traffic control is applied to non-premium traffic using a Token

Bucket Filter (TBF) inside the node itself. We present further details on the DQM imple-

mentation in Section 4.5.3.

4.3 System Modeling and Validation

We are mainly interested in a “black-box” model that describes the system behavior

in terms of its inputs and outputs only, and this process is called system identification.

This can be viewed as a dynamic extension of curve fitting. Models developed using this

approach have some uncertainties/errors that are acceptable as long as the robustness of the

overall control system is ensured. Despite their limited validity and working range, such

models are relatively easy to obtain and use. Since we use the state-space method for the

design and analysis of the network-control algorithm, we need a state-space model for the

system under study. We use a state-space system identification method called the subspace

modeling [101], which extracts a system model from traces of its inputs and outputs. A

discrete-time “state innovation” model

xk a 1 A Axk � BRk � Gek¦
dk � jk § T A Cxk � DRk � ek

V A E � epeq �¨A cov � ep � (4.2)

92

premium traffic

non-premium
traffic

shared link

output
d & j

1 2 N

host H

1 2 N

non-premium
sources

non-premium
sinks

forwarding
router

or

network service
subsystem

Figure 4.7: Network setup

is the output of the subspace modeling, where the input is uk A Rk, and the output is yk A¦
dk � jk § T . The state vector, xk, consists of variables that describe the internal condition of

the network subsystem. For example, the state variables could be the length of the queue

inside the network service node(s) and the rate of change of this length. For any dynamic

system, there exists an infinite number of choices of state variables. System identification

does not necessarily select state variables with physical meaning. Therefore, we will not be

able to assign a particular meaning to xk. Only the input and output vectors, uk and yk, will

have well-defined physical meanings in this chapter. The subspace system identification

provides the system matrices, A, B, C, and D, that describe how the input affects the state

variables and the output. Moreover, the subspace modeling quantifies the the measurement

error, ek, and system noise, Gek in terms of the covariance (cov) matrix of the measurement

error, V. Subspace modeling allows us to specify a particular, as well as a recommended,

system order n.7 We also denote the number of inputs to the system as m and the number of

outputs as s . In this chapter we focus on systems with one input, the non-premium traffic

bit rate (R) and two outputs, the delay (d) and jitter (j) of premium traffic.

7By calculating the singular values of the system.

93

4.3.1 Experimental Network Setup

We use the experimental network testbed shown in Figure 4.7 for both modeling (i.e.,

calculating the above system matrices) and evaluation. It consists of Linux-based software

routers and end-hosts. The traffic controls built into the Linux kernel [5] enable construc-

tion of FIFO queues as well as traffic regulators that are used to enforce the control signal.

A fast Ethernet-based ring network topology, with link capacity of 100 Mbps, is used so

that the one-way delay may be measured without sophisticated (and sometimes inaccu-

rate) time synchronization such as NTP or GPS. The ring topology was built using Linux

iptables installed on the forwarding router. Premium traffic is generated at host H, going

through the network service pipe (consisting of single or multiple routers) under study, then

the forwarding router, and finally, terminates at host H again (i.e., a ring topology). Hosts 1

to N are used to generate non-premium traffic that shares the links and FIFO router(s) with

the premium traffic. We use multiple non-premium sources to mimic a real network where

traffic comes from multiple subnets sharing the same network service. All measurements,

analysis, modeling and control calculations are done on host H.

We use “non-responsive” UDP traffic sources that can be instructed to generate traffic

according to a specific input signal chosen based on a given experiment scenario regardless

of the losses or delays at the bottleneck. This allows us to control the exact non-premium

rate without interference from either congestion- or flow-control mechanisms. However, in

Section 4.6, we evaluate CONNET with TCP traffic as well and show its effectiveness even

with the TCP congestion control algorithm.

4.3.2 Model Extraction

In the first phase of experiments, our main goal is to calculate the system matrices of

the model in Eq. (4.2). The input signal used for modeling has to cover most of the opera-

tional range of the system under study and avoid saturation regions. Saturation regions are

governed by the link capacity between network nodes, which is 100 Mbps each. Besides, it

should contain enough frequencies to excite most of the system dynamic modes and resem-

bles the actual network workload expected in a real deployment. We use an input signal

94

0 200 400 600 800 1000 1200
0

50

100
Intput

Time (sec)

R
 (

M
bp

s)

0 200 400 600 800 1000 1200
0

2

4

6

8
Experiment delay

Time (sec)

D
el

ay
 (

m
se

c)

0 200 400 600 800 1000 1200
0

1

2

3

4
Experiment jitter

Time (sec)

Ji
tte

r
(m

se
c)

(A)

(C)

(B)

Figure 4.8: Input and output signals applied

for modeling

0 200 400 600 800 1000 1200
0

50

100
Intput

Time (sec)

R
 (

M
bp

s)

0 200 400 600 800 1000 1200
0

1

2

3

Simulated delay

Time (sec)

D
el

ay
 (

m
se

c)

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2
Simulated jitter

Time (sec)

Ji
tte

r
(m

se
c)

(A)

(B)

(C)

Figure 4.9: Simulated output using the same

input

R depicted in Figure 4.8(A) for estimating the model parameters. It consists of a ramp-

up-ramp-down traffic sending rate that ranges from 1.5 Mbps to 95 Mbps of non-premium

traffic during a small constant-rate period. This rate is always higher than that of premium

traffic which is a 1 Mbps CBR.8 Each constant-rate period of the input signal lasts for 20

sec, and each cycle has 30 such periods for a total cycle time of 600 sec. Using two cycles

of this makes the total duration of the input signal 1200 sec. All traffic sources use the

same packet length of 1000 bytes. The corresponding measured output delay and jitter for

the single FIFO node case are depicted in Figures 4.8(B) and (C).

The one-way delay (d) and jitter (j) are measured at host H, and sampled every Ts by a

timer-operated traffic monitor listening on the receiving network interface. We use Ts A 1

sec, or equivalently a sampling frequency of 1 Hz. The UDP header9 in each packet car-

ries time-stamps to enable delay and jitter calculations. Delay and jitter measurements also

go through a weighted moving average (WMA) filter calculated for jitter, for example, as

j A j � �ª© d � i U 1 � i � © U j � _ 8, where d � i U 1 � i � is the delay variation between packets i and� i U 1 � . To determine the order of the system model, we tried several choices, and found

from experiments that choosing a second order model (i.e., n A 2) is good enough to capture

8Real-time applications usually send constant-bit-rate UDP traffic.
9We use RTP-like headers.

95

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80 90 100

D
el

ay
 (

m
se

c)

R (Mbps)

real
simulation

(a) Delay vs. R

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70 80 90 100

Ji
tte

r
(m

se
c)

R (Mbps)

real
simulation

(b) Jitter vs. R

Figure 4.10: Real and simulated model behaviors

the dynamics of the system and achieve the required goal. Accordingly, the thus-acquired

systems matrices for the single-node case are:

A A «¬ 0 � 7978 0 � 6260

0 � 0790 0 � 2525 ® � B A «¬ U 0 � 0243

0 � 0275 ®
C A «¬ U 0 � 5002 0 � 3134U 0 � 1988 U 0 � 1957 ® � D A «¬ 0 � 0108

0 � 0250 ®
G A «¬ U 0 � 2041 U 0 � 3298

0 � 2015 U 1 � 2981 ® � V A «¬ 2 � 8306 0 � 0694

0 � 0694 0 � 0747 ® �
From this model, we calculate the open-loop system’s discrete-time poles to be 0 � 8770

and 0 � 1733. The corresponding poles of the equivalent continuous-time system are U 0 � 1313

and U 1 � 7526 which indicates a stable system model. The two natural frequencies (corre-

sponding to the poles) of the system are 0 � 0208 and 0 � 2785 Hz, respectively. The model is

then simulated with MATLAB to compare with the original system outputs. The simulation

output is plotted in Figure 4.9 and indicates a correct behavior of the model.

In order to get a better view of the difference between the model behavior (from simu-

lation) and the real system behavior (from experimental data), we plot the average values of

the output delay and jitter versus the input R for both outputs in Figures 4.10(a) and 4.10(b);

the resulting model is linear, while the real system is not. However, the model is the best-fit

for the experimental data and is good enough for building the feedback control.

96

4.4 Design of Feedback Control

The feedback-control loop around a network service is to enforce the user-/application-

specified delay and jitter references of the premium traffic. This reference-tracking control

must meet two design criteria. First, the feedback loop is designed using the model ex-

tracted from particular input–output scenarios, and should be able to cope with the changes

and uncertainties of the model under different and/or real input–output scenarios. Second,

the controller is required to have a smooth response at an adequate speed. Large overshoots

or undershoots would have a negative effect on the network traffic performance, especially

with responsive congestion- and flow-control protocols such as TCP. A surge increase in

the allowed non-premium input traffic can drive the network service to saturation,10 hence

a large transient delay and even traffic loss that may generate and send an incorrect (false-

negative) feedback signal to traffic sources. Conversely, a surge decrease in the allowed

non-premium input traffic reduces the utilization11 of the network service as well as caus-

ing unnecessary drop of non-premium application packets. Third, within the context of

network delay and jitter control, it is always required not to exceed certain bounds. There-

fore, the delay and jitter references represent upper bounds, and the feedback-loop’s output

cannot exceed them, but there will always be a limit for how much lower (than the bounds)

they can be. This lower bound should be determined so as (i) not to unduly lower the uti-

lization, and (ii) to yield feasible output delay and jitter for the real system under control

according to Figure 4.10.

In state-space digital control design, unmeasurable states (x) of the system, as in the

case of network services, are estimated (x̂) using the measured input–output samples of the

system.12 The estimated states are then used to generate the feedback-control signal to act

as input to the system for the next sampling period. In order to overcome inaccuracies in

the system model (e.g., caused by linearization), robust control is preferred to other regular

control designs. Robust control can also deal with changes and uncertainties in the system

model and input conditions. The LQR (Linear Quadratic Regulator) controller [53, 54]

10In the presence of large unregulated non-premium traffic in the network.
11Defined as the percentage of the capacity used by the running traffic.
12This is possible because the system’s dynamic model is observable.

97

Network
subsystem

output

y (d , j)

Kalman
state

estimator

reference

r (dr , jr)
error

u (R)

-
+

Sensor

xˆ

x

LQR
controller

u = - Kxˆ

compensator

u (R)

state-space model

y - r

Figure 4.11: Feedback control loop

fits well this design criterion and achieves a good balance between system response and

the control effort required. For state estimation, we employ the Kalman filter [54], which

works well with experimentally-derived models.13 Moreover, intelligent reference setting

is used to adjust the input to the closed feedback loop according to the model behavior

plotted in Figures 4.10(a) and (b). More on intelligent reference setting will be discussed

in Section 4.4.3.

By putting all of these blocks together, the feedback control-loop is formed as illustrated

in Figure 4.11. The loop takes both the delay and jitter references as input, compares

them with the measured values, and produces an error signal. This error signal drives the

compensator to produce an input signal to the network service that brings the output of the

overall system closer to the reference values. The following subsections detail the design

and analysis of each part of the closed loop. Then, we will describe the implementation of

the algorithm on real networks and evaluate its effectiveness.

4.4.1 Design of the LQR Controller

The control law, based on the system’s estimated state vector, x̂, is given by:

Rk A U Kx̂k (4.3)

where K is the control gain to be designed based on the system matrices, A and B, and

two weighting matrices, Q1 and Q2, that minimize a certain cost function [54]. Using

13It accounts for process noise and measurements errors.

98

MATLAB, we calculated the controller gain as:

K A ¦ U 15 � 7017 � U 9 � 3098 § �
4.4.2 Design of the State Estimator

The states estimates (x̂) are iteratively calculated in terms of successive samples of

output yk or
¦
dk � jk § T , reference rk or ¯ dr

k � jr
k ° T , previous step input, and previous step state

estimate as:

x̂k a 1 A � A U LC � x̂k � � B U LD � uk � L � yk U rk � (4.4)

where x̂k a 1 and x̂k are the state estimates at step k � 1 and k, respectively. A, B, C, and

D are the system matrices from the model (i.e., Eq. (4.2)), while K is the controller gain

derived above and L is the estimator gain. This formula is used to update the states in real

time during control. The initial state, x̂0, is set to zero, and the closed-loop starts building

up from that point. The estimator gain, L, is optimally chosen to reduce the effects of both

the process noise and the measurement error [54]. Using the MATLAB built-in Kalman

filter function, we calculated the required estimator gain as:

L A «¬ U 0 � 1020 U 0 � 1649

0 � 1008 U 0 � 6491 ® �
4.4.3 Intelligent Setting of Feasible References

As mentioned in Section 4.1.1, the characteristic curve of a network service subsystem

governs the feasible delay and jitter achievable from the underlying control algorithm. Al-

though the developed model is linear and, theoretically, can be controlled to any arbitrary

value, we use only one input to control two output signals. So, it would not be possible to

get arbitrary delay and jitter values. However, this does not mean that our control approach

is incomplete; we chose to use one input only for the ease of realization in real networks.

In addition to following the feasible values in Figure 4.10, we also use an intelligent

reference-setting algorithm that utilizes these feasible values as upper bounds for the re-

quired premium delay and jitter. A key process takes place when the delay and jitter refer-

99

Given the characteristic curve of the network service:

1. Estimate R
�
dr #

2. Estimate R
�
jr #

3. if (R
�
dr #P± R

�
jr #)

4. choose dr and the corresponding j ² as reference

5. else

6. choose jr and the corresponding d ² as reference

Figure 4.12: Intelligent references-setting algorithm

ences are set. One can observe from Figure 4.10 that both delay and jitter increase with the

increase of R. If we require a certain pair of delay (dr) and jitter (jr), then we can imagine a

vertical line sweeping from left to right on Figure 4.10 until it meets the first value of either

delay or jitter. At this value of R, either delay or jitter will attain its required value, while

the other will be less than, or equal to, the required value, and this would be considered

advantageous for the application. Figure 4.12 illustrates a simple algorithm used to realize

this functionality, given the characteristic curve of the network service subsystem, which

can be determined during the modeling phase as discussed in Section 4.3.2.

4.4.4 Simulation and Verification

In order to simulate the closed-loop system along with its controller and estimator, we

manipulate Eqs. (4.2), (4.3), and (4.4) to get the closed-loop dynamics in terms of the

original and estimated states:14«¬ xk a 1

x̂k a 1 ® A «¬ A U BK

LC A U BK U LC ® «¬ xk

x̂k ®�³«¬ 0U L ® «¬ dr
k

jr
k ® �«¬ dk a 1

jk a 1 ® A ¦
C U DK § «¬ xk

x̂k ®
(4.5)

This system of closed-loop equations has the references
¦
dr � jr § T as the input, and¦

dk a 1 � jk a 1 § T as the output, and represents the closed-loop system in Figure 4.11. The

14Derivation is straightforward.

100

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

Closed loop delay response

Time (sec)

D
el

ay
 (

m
se

c)

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2
Closed loop jitter response

Time (sec)

Ji
tte

r
(m

se
c)

reference
simulation

reference
simulation

Figure 4.13: Closed-loop response

closed-loop system is simulated with a time-varying reference input using MATLAB, and

the resulting delay and jitter are plotted in Figure 4.13. From this plot we observe the con-

troller’s efficiency in tracking the delay and jitter references without overshoots or under-

shoots. The resulting discrete-time closed-loop poles of the single-node system are 0 � 9169,

0 � 7143, 0 � 0081, and 0 � 0936, which are equivalent to continuous-time poles of U 4 � 8196,U 0 � 0868, U 0 � 3364, and U 2 � 3688, respectively, hence a stable closed-loop. The closed-

loop bandwidth (control frequency) is 0 � 7671 Hz, indicating that a sampling frequency of

1 Hz is suitable when compared to the closed-loop bandwidth.

4.5 Implementation of Control and Actuation Algorithms

To control the rate of non-premium traffic, we employ traffic regulators in the form

of token bucket filters applied at the non-premium sources as shown in Figure 4.14. This

figure also illustrates the control steps executed inside host H, as described in the control

101

estimation
& control

non-premium
trafficHost H

1 2 N

control threads

sampling
Ts

measured
d & j

model
(A,B,C,D,K,L)

traffic
regulators

[dk , jk]

Rk+1
reference

[dr, jr]

Figure 4.14: Control implementation

At each sampling instance, k:

Begin

1. Read measured dk and jk
2. Use x̂k, uk from previous step (k C 1)

3. Apply Eq.(4.4) to get x̂k ´ 1

4. Apply Eq.(4.3) for step (k L 1) and get Rk ´ 1

5. Check control signal saturation (0 ± R ± 100 Mbps)

6. Create control threads to apply signal,

one thread per source

7. Each control thread sends control signal to

traffic regulators

8. Traffic regulators adjust the total non-premium

rate to Rk ´ 1

9. Store values of xk ´ 1 and Rk ´ 1 for next step

End

Figure 4.15: Control algorithm

algorithm of Figure 4.15. The traffic regulators are controlled by signals communicated

from H. The computation and communication of the control signal are to be completed

within one sampling period (Ts) and hence, a separate thread is assigned to communicate

the control signal to each of the non-premium traffic regulators. The measurement thread is

interrupted every Ts to sample the current delay and jitter values, and calculate the control

signal using a combination of Eqs. (4.3) and (4.4).

Figure 4.16 shows the control cycle where Tc is the time taken to compute the control

signal from the current sampled measurements, and Td is the delay in delivering the control

102

Tst

Tc

sampling period
Ts

Tc: computation time

Td: communication time

Tst: stabilizing time

Ts

sample
d and j

sample
d and j

Td

Figure 4.16: Control cycle

signal to traffic regulators. For the correct control cycle, both computation and communi-

cation of the control signal must end before the current sampling period expires. In our

testbed network, Td was the dominant factor and measured to range from 0.02 sec to 0.12

sec which was the main reason for choosing a value of 1 sec for the sampling period to

allow enough time (Tst) for stabilizing the traffic regulators.

In a real network situation, we recommend using a traffic regulator on each non-premium

traffic trunk coming from different subnets. Traffic classification (into premium/non-premium)

can be done using packet marking or more simply header-based classification/filtering (can

be done easily using Linux-based gateways as the one described in Chapter 5). In the

following subsections, we illustrate how to realize the three suggested cases of CONNET

described in Section 4.2.

4.5.1 CONNET Pipes in a Network Cloud

In the case of a network service extending across a network cloud or a domain as shown

in Figure 4.17, the traffic regulators can be installed at ingress points while the measure-

ments of the premium delay and jitter are made at the egress. For one-way delay measure-

ments, we suggest the use of a timestamp in the header of each premium packet passing

through the network service under control. This can be done by using existing frameworks

like MPLS [110]. The timestamps are checked at the egress, and given a synchronized

egress and ingress, the one-way delay can be calculated within a certain accuracy. Syn-

chronization between ingress and egress nodes has also been mentioned in [21], the au-

103

Network Cloud

d and j
measurements

control at
ingress

control
signal

network service
egress

control
node

Figure 4.17: Network service control in a network cloud

thors of which suggested the use of cumulative queueing times as a substitute for clock

synchronization. This is used in FIFO+ service discipline [25] for coordinated scheduling

using packet headers. The controller node receives these measurements at a rate equal to

the sampling frequency, computes the control decision (a new value of the control input),

and communicates the new allowed rate to traffic regulators which control the input rate

of non-premium traffic to the network service. We assume that, for each network service,

an associated list of ingress and egress points is available for the controller node based on

the routing policy. The controller node employs multiple threads, similar to the case in our

testbed network, where each works with a certain ingress point. This is done to minimize

the overhead of applying the control action within the sample period as explained earlier.

One interesting aspect of this approach is its ability of applying different control rates on

different ingress points. This may take into consideration the importance of each ingress

point (if they have different degrees of importance) or the amount of total traffic into each

ingress, so that the traffic control rate can be proportional to this amount.

104

Internet
Access
Router

Access
Links

(DSL, T1, etc)

Customer
Network

d and j
measurements

control
signal

control
node

Figure 4.18: Access link control

Input
traffic

Network node

user space

Output
traffic

kernel space

ip_forward()

controller
process

/proc/pkt_delay

netif_rx()
TSi

dev_queue_xmit()
TSo

delay = TSo - TSi

P
NP

report
delay

delay

control

Module

NF_HOOK

P : premium
NP: non-premium

Figure 4.19: Implementation inside a Linux router

4.5.2 CONNET for Access Links Control

Very similar to the network cloud case, CONNET can be implemented as an access

link control by applying traffic regulators at the output trunk of each part of the customer

network(s) going to the ISP. This is illustrated in Figure 4.18 where a controller node is

responsible for delivering the control signal (non-premium traffic rate) to TBFs acting on

the non-premium traffic trunks coming from each customer network subnet. Again, this

has the flexibility of applying different policies when throttling the non-premium traffic

coming from different subnets according to their relative importance.

105

4.5.3 DQM Implementation

We implemented DQM internally to a Linux network node as a combination of a kernel

module and a user-space controller, as shown in Figure 4.19. First, we had to patch the

Linux kernel to timestamp premium packets as they pass through a delay-controlled node

for delay and jitter measurements across the node. Due to the coarse time resolution in

the Linux kernel (i.e., jiffies) [15], which has a default value of 10 ms, we generate times-

tamps using the more accurate Time Stamp Counter (TSC) register.15 Incoming packets

are timestamped (T Si) once they are received from the ingress network interface inside the

netif rx() function. Timestamps are placed in the stamp field of the sk buff struc-

ture holding the packet inside the kernel. Before the packet is sent back to the egress net-

work interface in dev queue xmit(), another timestamp (T So) is taken and the packet

delay (T So U T Si) is stored in a global variable called pkt delay.

Using NetFilters [1] hooks inside the Linux kernel, we register the kernel module to the

ip forward() function, which is responsible for forwarding IP packets. Each forwarded

packet is sent to our module in its way inside the kernel. The module runs a simple classifier

based on the IP header of the packet to tell premium packets from non-premium.16 For

premium packets, the module reads the pkt delay variable and reports it to the user-

space using the /proc filesystem interface. On the other hand, for non-premium traffic, it

applies a traffic regulator in the form of a Token Bucket Filter (TBF).

The controller process samples pkt delay every Ts through the /proc filesystem

interface, evaluates the required feedback control, and finally pushes the required control

signal to the kernel module through the /proc filesystem to apply it on the non-premium

traffic. The reason for using an additional user-space process is to give the algorithm more

flexibility in configuration (e.g., providing a variable reference signal) and operation. Ad-

ditionally, the user-space controller offloads the kernel module from floating-point calcula-

tions in the feedback control loop given in Section 4.4.

15A 64-bit register found in recent Intel 80x86 microprocessors that counts at the processor speed.
16Currently, we use the Type-of-Service (ToS) field.

106

4.6 Experimental Evaluation

We evaluate CONNET experimentally for different scenarios, reflecting several aspects

of the controller performance. We divide the experimental results into three sets: one for a

single FIFO node, one for a multi-node FIFO pipe, and the third for DQM. Important and

interesting points in the results for each scenario are identified and discussed.

4.6.1 Experimental Setup

We use the same testbed network illustrated in Figure 4.7 for experimental evaluation

with 3 non-premium traffic sources, each running 2 flows17 with a total of 6 non-premium

flows. We use 3 traffic regulators, one for each traffic source, all controlled by the con-

trol algorithm running on host H. During evaluation, unless otherwise mentioned, each

non-premium traffic source sends constant-bit-rate (CBR) UDP data at the maximum rate

allowed by the network, which is 100 Mbps. This allows for actual testing of the controller

when the network encounters high loads.

4.6.2 A Single FIFO Node

For the case of a single FIFO node shared by premium and non-premium traffic, we

considered several experimental scenarios to show the effectiveness of the controller de-

signed in Section 4.4.

Constant Reference Tracking

In the first scenario, we study the controller’s performance in tracking a constant ref-

erence for both delay and jitter. The experiment is started with traffic regulators at non-

premium sources (see Figure 4.14) turned on while each source is sending data at the max-

imum link capacity of 100 Mbps, and then they are kept on for the rest of the experiment

duration of 100 seconds. We use a delay reference of 0.46 msec and a jitter reference of

0.043 msec as an example of driving the performance of the access link all the way from

17To increase statistical multiplexing between packets.

107

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100

D
el

ay
 (

m
se

c)

Time (sec)

actual delay
reference

(a) Controlled delay response

0

0.05

0.1

0.15

0.2

0.25

0 20 40 60 80 100

Ji
tte

r
(m

se
c)

Time (sec)

actual jitter
reference

(b) Controlled jitter response

Figure 4.20: Constant reference tracking

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100

Ji
tte

r
(m

se
c)

Time (sec)

actual jitter
reference

Figure 4.21: Step response for jitter

high to very low non-premium traffic loads. Figures 4.20(a) and (b) plot the measured delay

and jitter as well as their reference values. Clearly, the controller can achieve the required

delay and jitter together, despite some oscillation in the jitter due to the system dynamics.

We also observe here the dynamics of the controller when it tries to achieve a lower jitter

first and then closely tracks the reference value.

Step Response

In the second scenario plotted in Figure 4.21, the step response of the system is plotted

with respect to jitter as an example. A step jitter reference of magnitude 1.028 msec is

applied to the controller shortly after starting the experiment, and then kept constant for

the rest of the experiment duration of 100 sec. This is an example scenario of allowing

108

Time (sec) dr (msec) jr (msec)

0 - 200 0.70 0.42
201 - 400 1.10 0.63
401 - 600 0.60 0.36
601 - 800 0.92 0.60
801 - 1100 0.46 0.0437

Table 4.1: Reference values for the third scenario

more non-premium traffic in the network, given that the application does not require small

jitters. It also indicates the rise time of the controller output (about 15 sec), which depends

primarily on the sampling frequency and controller gain. These are all design parameters

that can be tuned to achieve faster response.

Variable Reference Tracking

To further illustrate the dynamics of the delay and jitter controllers using non-premium

traffic regulation, we provide the third scenario where a variable reference signal is used to

reflect a certain scenario when demands and requirements change throughout the day/hour.

It also compares the actual and simulated controller performances plotted in Figure 4.13.

The experiment lasts for 1100 sec, and the reference values of delay and jitter change

every 200 sec. Table 4.1 shows the reference values used in this scenario for both delay

and jitter as an example of a variable reference signal. The output delay is plotted in

Figure 4.22(a), while the output jitter is plotted in Figure 4.22(b). The real controller

performance is not as smooth as the simulated performance due to noise and un-modeled

factors in the network. However, the choice of robust control proves to be successful in

overcoming all these unaccounted-for factors and still yields a reasonable performance in

controlling delay and jitter.

To get an idea about how the control signal, R, would look like during the application of

control, we present Figure 4.23. We observe here that during the periods from time 246 to

400 sec, the control signal gets saturated,18 and this is a very common case in real feedback

control systems. However, due to the use of state-space design, which includes a Kalman

state estimator (or observer), the controller succeeds in avoiding saturation and returns to

18We set saturation level at 95 Mbps for all experiments.

109

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000 1200

D
el

ay
 (

m
se

c)

Time (sec)

actual delay
reference

(a) Variable delay reference

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200

Ji
tte

r
(m

se
c)

Time (sec)

actual jitter
reference

(b) Variable jitter reference

Figure 4.22: Variable reference tracking

0

20

40

60

80

100

0 200 400 600 800 1000 1200

R
 (

M
bp

s)

Time (sec)

R

Figure 4.23: Control input R with a variable reference

normal operation in the next period, giving correct delay and jitter values. This technique is

called “observer-based anti-windup.” Note that the R values plotted in this figure represent

the total control rate applied to all traffic regulators in the network and divided equally

among them.

Controller Activation During Run-time

The fourth scenario, plotted in Figure 4.24, illustrates what happens when the controller

is turned on during a heavily-loaded network operation. The experiment is started while

all traffic regulators were turned off and non-premium sources are sending data at a rate of

70 Mbps resulting in a delay of around 1.1 msec and a jitter of 0.6 msec. At 100 sec (the

total experiment time is 400 sec), the controller is turned on with the reference values of

110

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400
D

el
ay

, J
itt

er
 (

m
se

c)
Time (sec)

actual delay
reference delay
actual jitter
reference jitter

Figure 4.24: Controller is turned on at time 100 sec

0.534 msec and 0.145 msec for delay and jitter, respectively. As indicated in the figure, the

controller reacts instantaneously to regulate the non-premium traffic so that the delay and

the jitter may follow the reference values as closely as possible. This scenario reflects the

situation when a new premium application traffic is activated in the middle of a network

operation and requires the adjustment of a network service performance to meet the new

application’s requirements. This is a good example of the effectiveness of self-controlled

network services.

4.6.3 Multi-Node FIFO Networks

The above scenarios demonstrate the correctness and accuracy of CONNET. We ob-

tained similar results for the multi-node FIFO pipe, but we only present scenarios different

from those discussed so far. For all the following experiments scenarios, we use a FIFO

pipe that consists of 3 FIFO nodes connected to each other. All premium and non-premium

traffic enters the pipe only via the first node, and exit from the third node. No cross traffic

is introduced (see Section 4.6.5 for further comments).

Varying Premium Traffic Rates

In Section 4.3, we used a premium traffic source with a constant sending rate of 1

Mbps during system modeling. In the fifth scenario, we test the robustness of the control

algorithm with different premium traffic rates: 0.1, 0.5, 5, 10, and 30 Mbps. Although the

111

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160 180 200

D
el

ay
 (

m
se

c)

Time (sec)

0.1M
0.5M
1M
5M
10M
30M
reference

(a) Delay performance

0

0.5

1

1.5

2

0 20 40 60 80 100 120 140 160 180 200

Ji
tte

r
(m

se
c)

Time (sec)

0.1M
0.5M
1M
5M
10M
30M
reference

(b) Jitter performance

Figure 4.25: Different premium rates

controller was designed for a specific premium traffic rate, it can deal with rate changes,

thus showing its robustness. Figures 4.25(a) and (b) illustrate the controller’s performance

in keeping the delay at 1 � 29 msec and the jitter at 0 � 81 msec even when the premium rate

varies. However, we can still see a weak trend: for higher rates than 1 Mbps, delay and

jitter are kept at lower values than the reference values, which is a good behavior. This is

because the higher the premium traffic rate, the higher its queue occupancy, and at the same

time, the weaker it is affected by the non-premium traffic. However, the controller reacts

positively to this condition and keeps the rate of non-premium traffic at an appropriate level.

Dealing with Non-premium TCP Traffic

Instead of using non-premium UDP traffic, in this scenario we use TCP sources to

investigate the TCP friendliness and effectiveness of CONNET in dealing with TCP con-

gestion control. The LQR controller works carefully not to have large overshoots or under-

shoots, and this feature works well with TCP. Figures 4.26(a) and (b) plot the performance

of delay and jitter control, bringing both to their reference values. Figure 4.27 shows the

resulting throughput of 6 TCP sources used in comparison with a target rate of 9.167 Mbps.

The target rate indicates the actual rate needed to achieve the reference values of delay and

jitter taken from Figure 4.10, divided by 6. The regulated TCP traffic could reach the same

target rates and did not suffer congestion collapse or any loss of utilization, indicating that

CONNET works well with TCP as well as UDP background traffic.

112

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120 140 160 180 200

D
el

ay
 (

m
se

c)

Time (sec)

actual delay
reference

(a) Delay with non-premium TCP traffic

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

Ji
tte

r
(m

se
c)

Time (sec)

actual jitter
reference

(b) Jitter with non-premium TCP traffic

Figure 4.26: Controller performance with TCP non-premium traffic

0

5

10

15

20

25

0 20 40 60 80 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

tcp 1
tcp 2
tcp 3
tcp 4
tcp 5
tcp 6
target rate

Figure 4.27: TCP throughput and target rate

Fault-tolerance and Uneven Load Distribution to Regulators

In the following two scenarios, we present a very important and powerful feature of

CONNET, which is “fault-tolerance.” Here we examine the case when one or more traffic

regulators fail and open the door for unregulated non-premium traffic. Recall that we use

a total of 3 traffic regulators as the actuator, and the control rate is divided equally among

them. We first test the case of a single regulator failure, and then the case of 2 failures. In

the first case, the experiment is started with all 3 traffic regulators working, then at time

100 sec, one of the 3 regulators fails, allowing unregulated traffic at 50 Mbps to enter the

network pipe from the corresponding non-premium source. Then, after another 150 sec,

the failed traffic regulator is fixed and back to work again for the rest of the experiment

duration of 400 sec. Figures 4.28(a) and (b) show the delay and jitter during this scenario

113

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350 400

D
el

ay
 (

m
se

c)

Time (sec)

failure

fixed

actual delay
reference

(a) Delay performance

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400

Ji
tte

r
(m

se
c)

Time (sec)

failure

fixed

actual jitter
reference

(b) Jitter performance

Figure 4.28: Fault-tolerance with 1 regulator failure

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400

R
 (

M
bp

s)

Time (sec)

R

Figure 4.29: Controlled non-premium traffic rate

with the times of failure and repair indicated. We observe a spike in both delay and jitter

at the time of failure due to the unregulated non-premium traffic, but the controller acts

instantaneously and brings back both delay and jitter to their required (reference) values.

When the failed regulator is repaired at 250 sec, the network returns back to normal again

and keeps delay and jitter at their reference values. Figure 4.29 shows the rate sent to the

remaining operating regulators during this failure, and the controller reacts to this failure

by almost shutting off the other two traffic sources to keep premium traffic performance at

the required level.

We investigate further what happens when 2 out of 3 regulators fail at time 100 sec,

then one of them comes back to work at time 200 sec, and all three of them come back to

work at time 300 sec. This is illustrated in Figures 4.30(a) and (b). The first figure plots the

114

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200 250 300 350 400

D
el

ay
 (

m
se

c)

Time (sec)

2 failures

1 fixed

2 fixed

actual delay
reference

(a) Delay performance

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400

R
 (

M
bp

s)

Time (sec)

2 failures

1 fixed

2 fixed

R

(b) Controlled non-premium traffic rate

Figure 4.30: Fault-tolerance with 2 regulator failures

delay, showing a similar behavior at the time of failure. However, this time the controller

was not able to drive the delay to the reference value during the time of 2 failures. To see

why this happened, the second figure plots the output control rate from the controller. Since

the control rate cannot get below zero, the controller cannot change the control signal any

more and gets helpless. When one of the failed regulators was fixed to work again, the

controller catches up and sends a correct control signal to bring the output delay back to its

reference value. Finally, when all the three regulators work again, the network returns back

to normal. These two scenarios indicate that CONNET can survive up to one third (1/3) of

regulator failures in case of our testbed network, and we also expect a similar performance

when it is deployed on larger networks. This, of course, depends on the operating condition

and the non-premium traffic rates running through the network service.

Another feature of the control algorithm, is its ability to apply uneven control rates at

different traffic regulators. We demonstrate this ability with the following scenario, where

the control rates are distributed unevenly among 3 traffic regulators. The first one gets 50%

of the control rate, the second one 35%, and the third one 15%. Again, the controller was

able to work well in this case and brings both the delay and the jitter to their reference

values as shown in Figure 4.31. This is an attractive and important feature because of the

relative importance of the non-premium traffic trunks entering the network services from

different sources/applications. This allows for setting up a control policy to favor some

trunks over others.

115

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100 120 140 160 180 200
D

el
ay

, J
itt

er
 (

m
se

c)
Time (sec)

actual delay
reference delay
actual jitter
reference jitter

Figure 4.31: Performance with uneven regulator rates

Comparison with CBQ, WFQ, and Priority Queueing

We now compare CONNET with other well-known scheduling algorithms, such as

Class-Based Queueing (CBQ) [50], Weighted Fair Queueing (WFQ) [30], and Priority

Queueing (PQ). It is worth mentioning that these scheduling algorithms are different from

our delay/jitter control scheme, and hence, they are not expected to behave in a similar way.

However, we include this comparison to show the differences between the behavior of the

two schemes. One of these differences is the ability of CONNET to achieve a specified

delay/jitter reference while both CBQ and WFQ can only provide an upper bound on the

delay values with no specific run-time value. CONNET can also provide this reference

tracking behavior in a simple and practical way without the sophisticated behavior of these

scheduling algorithms and their dependency on several factors.

CBQ is known for its capacity distribution and bandwidth allocation, but it does not pay

direct attention to delay and jitter. This is exactly what we found from the experiment. We

compare the delay and jitter performance while applying a variable non-premium traffic

rates to the network service pipe. In this scenario, instead of FIFO queues, we set up the

CBQ discipline on all of the three router nodes, where a bandwidth of 2 Mbps is allocated

to premium traffic and the rest is given to non-premium traffic. Now, we start a varying

non-premium input traffic to the pipe in Figure 4.32, and the delay and jitter are plotted

in Figures 4.33(a) and (b), respectively. On the same delay and jitter figures, we also plot

the performance when CONNET is activated with FIFO nodes in place of CBQ. Clearly,

116

0

20

40

60

80

100

120

0 100 200 300 400 500 600
R

at
e

(M
bp

s)
Time (sec)

non-premium rate

Figure 4.32: Varying non-premium input traffic rate

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

D
el

ay
 (

m
se

c)

Time (sec)

CBQ delay
CONNET delay
reference

(a) Delay performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400 500 600

Ji
tte

r
(m

se
c)

Time (sec)

CBQ jitter
CONNET jitter
reference

(b) Jitter performance

Figure 4.33: Comparison with CBQ

the CBQ performs worse than CONNET, and both delay and jitter increase with the input

rate, while under CONNET, they follow the reference values. CONNET’s performance

improvement at a high non-premium rate is 100% for delay, and 54% for jitter.

WFQ is used to achieve a combination of good bandwidth allocation as well as de-

lay/jitter protection. We compare the proposed control scheme with WFQ,19 showing that

CONNET can still outperform WFQ in tracking low reference delay/jitter values. Fig-

ure 4.34(a) shows a significant improvement for the controlled delay over WFQ (about

80%) using the same input in Figure 4.33(a). Although WFQ can achieve low jitter even

with high loads, CONNET could achieve lower jitter with an almost 70% improvement

as shown in Figure 4.34(b). The jump at time 200 sec is due to the controller transients.

19Using WFQ implementation on Free-BSD ALTQ [23].

117

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400 500 600

D
el

ay
 (

m
se

c)

Time (sec)

WFQ delay
CONNET delay
reference

(a) Delay performance

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

Ji
tte

r
(m

se
c)

Time (sec)

WFQ jitter
CONNET jitter
reference

(b) Jitter performance

Figure 4.34: Comparison with WFQ

0

2

4

6

8

10

0 100 200 300 400 500 600

D
el

ay
 (

m
se

c)

Time (sec)

WFQ
CONNET
no control
reference

Figure 4.35: Comparison with uncontrolled delay

We also compare the delay performance with the case of uncontrolled delay in Figure 4.35

to show the degree of the absolute improvement of CONNET. Uncontrolled delay on our

FIFO network could reach values up to 8 msec without WFQ or CONNET.

To compare CONNET with a stronger scheduling algorithm, we use priority queueing

on the router nodes instead of FIFO, and repeat the above experiment scenario. In case of

priority queueing, the delay was not as bad as in the case of CBQ, but CONNET exhibited

a 40% improvement in delay control under high loads, as illustrated in Figure 4.36(a). The

jitter performances of CONNET and the priority queueing are very close to each other as

shown in Figure 4.36(b).

Finally, we do not claim that CONNET is absolutely better than any of the scheduling

algorithms mentioned in this section. Rather, we show that our approach is more practical

118

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

D
el

ay
 (

m
se

c)

Time (sec)

PRIO delay
CONNET delay
reference

(a) Delay performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400 500 600

Ji
tte

r
(m

se
c)

Time (sec)

PRIO jitter
CONNET jitter
reference

(b) Jitter performance

Figure 4.36: Comparison with priority queueing

and simpler than these scheduling algorithms and gives the ability to specify a delay/jitter

reference besides a delay/jitter bound.

4.6.4 Experiments using DQM

For the DQM case, we used a different modeling signal illustrated in Figure 4.37(A)

with the delay and jitter are plotted in Figures 4.37(B) and (C), respectively. It consists of

a sawtooth-like traffic sending rate that ranges from 1.5 Mbps to 95 Mbps of non-premium

traffic during small constant-rate periods. The behaviors of the delay and jitter with R in

both simulation and real experiments are plotted in Figures 4.38(a) and (b), respectively.

Accordingly, the thus-acquired systems matrices are:

A A «¬ 0 � 9699 0 � 0289U 0 � 0115 0 � 9441 ® � B A «¬ U 0 � 0000525U 0 � 0006954 ®
C A «¬ U 0 � 5309 0 � 0940U 0 � 2454 U 0 � 1839 ® � D A «¬ 0 � 0124

0 � 0104 ®
G A «¬ U 0 � 6023 U 0 � 0874

0 � 3929 U 0 � 8789 ® � V A «¬ 0 � 1329 0 � 0600

0 � 0600 0 � 0622 ® �
From this model, we calculate the open-loop system’s discrete-time poles to be 0 � 957 µ

0 � 0129i, which indicates a stable system model,20 but because the magnitude of the poles

20Poles are inside the unit circle.

119

0 500 1000 1500 2000 2500 3000
0

50

100
Intput

Time (sec)

R
 (

M
bp

s)

0 500 1000 1500 2000 2500 3000
0

2

4

6
Experiment delay

Time (sec)

D
el

ay
 (

m
se

c)

0 500 1000 1500 2000 2500 3000
0

1

2

3
Experiment jitter

Time (sec)

Ji
tte

r
(m

se
c)

(A)

(B)

(C)

Figure 4.37: Input and output signals applied for DQM modeling

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80 90 100

D
el

ay
(m

se
c)

R (Mbps)

real
simulation

(a) Delay vs. R

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80 90 100

Ji
tte

r
(m

se
c)

R (Mbps)

real
simulation

(a) Jitter vs. R

Figure 4.38: Real and simulated DQM model behavior

is close to 1, it is very close to the unstable region. This adds a level of difficulty to

the controller in bringing a smooth response as we will show in the experiments shortly.

The natural frequency (corresponding to the poles) of the system is 0 � 0073 Hz.21 Using

MATLAB, we calculate the controller gain as:

K A ¦ U 36 � 9558 � U 24 � 0288 § �
and the required estimator gain as:

L A «¬ U 0 � 3012 U 0 � 0437

0 � 1965 U 0 � 4395 ® �
21One frequency only as conjugate poles.

120

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

D
el

ay
 (

m
se

c)

Time (sec)

DQM
CBQ
reference

(a) CBQ delay performance

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600

D
el

ay
 (

m
se

c)

Time (sec)

DQM
RIO
reference

(b) RIO delay performance

Figure 4.39: Comparison with CBQ and RIO

Comparison with CBQ and RED

In this scenario, we compare DQM with Class-Based Queueing (CBQ) [50] and a two-

class version of RED called RED In/Out (RIO) [24]. The configuration of the experiment

is similar to the one in Section 4.6.3, and the non-premium input traffic signal is the same

as in Figure 4.32. The corresponding delay is plotted in Figure 4.39(a). On the same delay

figure, we also plot the performance when DQM is activated on the FIFO node in place

of CBQ. Clearly, the CBQ performs worse than DQM, and delay increases with the input

rate, while under DQM, it follows the reference value. DQM’s performance improvement

at a high non-premium rate is about 60% for delay.

In place of CBQ, we installed RIO (with premium traffic classified as In and non-

premium as Out), and we conducted the same experiment to show the difference in delay

performance. The output delay is plotted in Figure 4.39(b) with a significant delay im-

provement for DQM over RIO.

Comparison with Uncontrolled FIFO

To show the difference between the uncontrolled delay and the controlled delay using

DQM, we present the following scenario. We apply an input signal in the form of increasing

staircase (similar to modeling input signal but only one cycle) at values of 10, 20, 40, 60, 80,

and 100 Mbps to the two cases of uncontrolled FIFO node and DQM-enabled node. For the

DQM case, we set the delay and jitter references at 0.43 msec and 0.59 msec, respectively.

121

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600

D
el

ay
 (

m
se

c)

Time (sec)

DQM
no ocntrol
reference

(a) Delay performance

0

0.5

1

1.5

2

2.5

0 100 200 300 400 500 600

Ji
tte

r
(m

se
c)

Time (sec)

DQM
no control
reference

(b) Jitter performance

Figure 4.40: Controlled and uncontrolled cases

In Figure 4.40(a) we plot the delay performance in the two cases while in Figures 4.40(b)

we plot the jitter. From these figures, we see the effects of DQM on keeping both the

delay and jitter at their references even with increasing non-premium traffic in the network.

Figure 4.41 shows the actual staircase input along with the control signal R and the target

rate corresponding to the reference delay and jitter from Figure 4.38. From this figure

we show the effectiveness of the controller in keeping the utilization at an adequate level

during network operation. For example, before the input rate exceeds the target rate (i.e.,

before time 300 sec), the DQM controller is opening the traffic controls all the way to allow

maximum non-premium traffic at 100 Mbps. This is true as long as the delay and jitter are

lower than their reference values. At time 300 sec, the input rate starts exceeding the target,

and accordingly, the delay and jitter start exceeding their reference values, and therefore,

the controller starts throttling the non-premium traffic to keep the premium delay and jitter

at reference values and continues at a target rate of 55 Mbps until the end of the experiment

regardless of the increase in the actual input.

4.6.5 Assumptions, Limitations and Extensions

The various experiments we conducted have verified the correctness, robustness, and

performance enhancement of CONNET, but it is worth discussing the assumptions we

made, as well as the limitations of CONNET.

The first assumption is that no “uncontrolled” cross traffic enters the FIFO pipe. We

122

0

20

40

60

80

100

120

0 100 200 300 400 500 600
R

at
e

(M
bp

s)
Time (sec)

control input
input signal
target rate

Figure 4.41: Actual input and controlled rates

assume that all non-premium traffic is controlled and enters the FIFO pipe via the front-end

while exiting the rear-end. This reflects the actual case where network services are usually

short enough (one to three hops) to have little cross traffic. Second, we assume that there

is an adequate method for measuring run-time delay and jitter across the access link/pipe

in order to feed the error back to the controller. We also assume throughout the chapter

that the premium traffic cannot by itself exceed the network service capacity or available

resources. In other words, we do not consider admission control on premium traffic, but

we proved in 3 that premium delay and jitter are affected by the premium traffic parameters

themselves. We plan to investigate ways of controlling these parameters to develop a more

generic control mechanism in our future work.

One of the limitations of the current version of CONNET is not dealing with burst

control along with rate control. We use only one control input, which is the non-premium

traffic rate, but the burstiness of non-premium traffic also affects delay and jitter in the

network. Ideally, we would like to design a two-input controller that can control both the

rate and the burst of non-premium traffic. This can be implemented using token-bucket

regulators with a controllable bucket size. Another possible limitation one may find is

controlling only two classes of traffic, premium and non-premium. However, we designed

CONNET to have only two traffic classes for simplicity and easy configuration. A hierarchy

of controllers can be used for more than two classes, if needed.

123

4.7 Related Work

While feedback control theory [53, 54] has been used for decades in many engineering

and scientific disciplines, such as mechanical and aeronautical engineering, only recently

its effectiveness in solving network control problems has been realized (for example, see

[63, 74, 95]).

The authors of [64] presented a thorough control-theoretic analysis of RED, and hence,

they designed an AQM that is more robust to variations in system loads. Another more

recent example can be found in [62] where the authors used feedback compensation in

designing an AQM algorithm that eliminates the sensitivity to the change in system and

configuration parameters, which has been a problem associated with the original RED for

some time. Most of these studies focused on congestion control and active queue man-

agement, which presents a wide field to apply control-theoretic approaches. CONNET is

following a similar path, but its main goal is different from other rate-based schemes since

we are looking at delay and jitter guarantees in networks with two or more service classes.

Previous studies on delay jitter control (for example, see [86, 124]) mainly change

fixed-packet flows to reconstruct the original timing characteristics in the traffic or use

rate control (such as traffic shaping) to eliminate jitter. These solutions usually use a large

buffer enough to smooth variations in delay and delay jitter. CONNET provides a direct so-

lution for delay and jitter by just eliminating the original cause of delay and jitter, which is

the interfering traffic in shared queues, so the need for large buffers does not exist anymore.

CONNET shares some common features with the flow-control algorithm of [71] in that

both deal with best-effort networks and use a control-theoretic approach. However, the

scheme in [71] was not designed for explicit delay and jitter control. Moreover, it does not

treat the network as a black-box, which is a more general and simpler representation.

More recent studies that use control-theoretic approaches in controlling performance

guarantees were reported in [3, 55, 107]. These studies focused on server-side control, such

as web servers or Lotus Notes email servers. Although the domains of these studies are

different from those of CONNET, network and traffic control, they are useful examples for

us to illustrate many aspects in computer-based control design.

124

The idea of delay-controlled AQM has been cited before in TSQ [76] and RED-

Worcester [108], as both dealing with delay-sensitive versus throughput-sensitive traffic.

They both use delay hints to differentiate between different delay-sensitive traffic when do-

ing AQM, and the latter suggests an AQM scheme that can handle both delay and through-

put. DQM provides a more dynamic and more robust solution for delay-sensitive traffic

specifically through the use of a robust control algorithm.

The type of control closer to that used in this chapter is Adaptive Bandwidth Control

(ABC) [119] and the references thereof. CONNET differs from this type in that it does

not change the service rate, but rather uses traffic controllers to police the non-premium

traffic before entering the queue, which is much easier for controlling queue occupancy

than when controlling the service rate. This works well for better deployment. CONNET

is also different from rate-based scheduling techniques such as the ones in in [134], as we

study single FIFO queues and do not employ any particular scheduling mechanism (other

than FIFO).

4.8 Concluding Remarks

In this chapter we have presented a new simple, yet robust delay and jitter control

mechanism, called CONNET. It is designed to protect premium traffic that shares bottle-

neck links and nodes with non-premium traffic, and provides a predictable performance

following desired delay and jitter guarantees.

CONNET is a reservation-less mechanism and is based on the relationship observed

between the delay/jitter of premium traffic and the amount of non-premium traffic sharing

the same link. This relationship has been experienced before in Chapter 3, where we found

that both delay and jitter increase if the competing traffic rates inside a network node in-

crease. We control the competing non-premium traffic at the input of the network pipe to

achieve the required premium delay/jitter.

In order to do this in a more dynamic way than the approach in Chapter 3, we took a

control-theoretic approach to studying the delay and jitter control on FIFO-based network

pipes. Again, we first obtained a “black-box” model for the FIFO pipe under study using

125

system identification (SysId) methods. Then, we presented the design and implementa-

tion of feedback control on a testbed network using the LQG regulator. CONNET creates

automatic and self-controlled network services that require a minimal operational effort.

Accompanied with intelligent reference-setting algorithm, it can achieve “below-or-equal”

delay or jitter values compared to the requirements. We also introduced a delay-controlled

AQM (DQM), based on the same principle, for delay- and jitter-sensitive applications. It

provides a “delay-aware” replacement for the AQM schemes on the Internet.

We evaluated the performance of CONNET under various experimental scenarios to

show its correctness, accuracy and robustness. We also compared CONNET with other

well-known rate-based disciplines such as CBQ, WFQ, and RED, revealing its significant

improvement in delay and jitter performance over the other schemes. Since it is designed

to handle single-FIFO-queue networks, CONNET provides a better solution for today’s

FIFO-based Internet without requiring any modification or any special scheduling mech-

anism in the network routers. In future, we would like to address the limitations of the

current version of CONNET, and explore ways of integrating it into a more general traffic

control framework that creates self-controlled end-to-end (e2e) network services across the

Internet.

126

CHAPTER 5

Paving the First Mile for QoS-dependent Applications and

Appliances

Building network services that support QoS and controlling QoS inside the network

does not guarantee that the end-user applications will be able to use them or at least feel

their existence. This is one of the reasons for delaying wide QoS deployment because

usually end-users have no access to these high elevated services and they end up being not

used or even not required by the network service providers. Our work in the thesis so far

presents solutions for QoS control in the network without emphasis on how to use them.

For this reason, we were encouraged to introduce a system that provides QoS accessibility

and support to QoS-dependent applications (or QoS applications in short) and devices in

customer networks. It also promotes the use of the techniques proposed in this thesis in

providing real benefit to end-user network applications.

The past few years have witnessed the convergence of digital technologies such as tele-

vision, telephony, publishing, and computers. This convergence has yielded the emergence

of many QoS-dependent applications on the Internet [123], that require certain service qual-

ity from the underlying network such as throughput guarantee, reliability, timeliness, and

guaranteed delivery. For example, a wide variety of home devices and computing facili-

ties, such as personal desktop computers, voice over IP (VoIP) phones, home telemetry and

automation devices, home entertainment (mostly multimedia), shared data storage devices,

as well as others, are getting connected via a Home Area Network (HAN) in what is called

127

“smart homes.” A HAN, as well as other examples of customer networks, are usually con-

nected to the external network via cable modems, digital subscriber line (xDSL), ISDN,

optical fiber, IEEE 802.11 wireless, as well as other standards. Due to the wide range

and the dynamic operation of applications running on these devices, they require different

network resources, and these requirements vary from local (within a HAN or customer net-

work) to global (end-to-end) resources. Additionally, different physical media connecting

the customer network to the external network affect the overall performance of such appli-

cations. Maintaining a satisfactory QoS level for applications in such varying network con-

nectivity and complex application interactions poses a significant challenge that requires

intelligent resource allocation and admission control as well as adequate QoS support to

handle diverse link media and dynamic link quality associated with each medium.

On the other hand, with the introduction of new and different multi-service network

technologies to the Internet, it becomes a tedious job to upgrade every application in order

to accommodate the new technology. Moreover, managing service contracts with differ-

ent network service providers as well as resource usage accounting increase complexity

in customer network management and end-host devices. Therefore, an abstraction layer

is needed to provide an interface between the QoS-enabled network and QoS-dependent

applications. This abstraction layer hides all the complexity of Service Level Agreement

(SLA) management, QoS mapping, admission control, and even data plane traffic handling

such as packet marking and policing.

Previous approaches depend on either putting all of these functionalities in the end-host

operating system (such as IBM AIX [88] and Windows 2000 [2]) or deploying hardware de-

vices, called QoS appliances [27, 94, 102]. The former approach does not address the QoS

needs of other architectures, like small-memory devices and embedded systems, and also

creates heavy dependency on the end-host operating systems. This has the disadvantage of

relying on the QoS support “canned” in the underlying operating system, hence yielding

inflexible solutions and limiting deployability. On the other hand, the latter approach pro-

vides only bandwidth management for different applications traffic. However, it does not

provide enough flexibility to export network services up to the application level. Usually,

some kind of mapping or translation is required between the application QoS requirements

128

and available network services. The intelligence found in current QoS appliances is not

sufficient enough to provide such QoS mapping.

To address the above challenges and, at the same time, to provide QoS accessibility

and support to QoS-dependent applications and devices, we present a two-tier architec-

ture, called QoS Gateway (QoSGW), that acts as a QoS mediator between these applica-

tions/devices and the underlying network QoS infrastructure. The QoSGW also acts as an

abstraction layer that hides the complexity of the QoS-enabled network from QoS devices

and applications. This has the advantages of shielding the device or the end-host appli-

cation from the details of the underlying QoS infrastructure and facilitating both manage-

ment and deployment. Our architecture provides middleware QoS support for applications,

which does not depend on the end-host operating system and does not assume QoS-aware

applications.1 It also provides a transparent support for current QoS applications without

the need to modify their source code or operation. We employ the Differentiated Services

(DiffServ) [13] architecture as the underlying QoS infrastructure, but the approach is gen-

eral enough to be used with other QoS infrastructures. We implement a prototype system

using the Linux operating system to prove the functionality and evaluate the performance

of our proposed approach.

5.1 Basic Architecture and Operation

The QoSGW architecture is composed of two components: an agent that is working as

close as possible to QoS applications and devices in the access network (tier 1), called QoS

Agent, and a QoS Manager that is working closer to an external provider network before

the access router (tier 2). Depending on the size and capability of the supported device

or host, the QoS Agent is to be installed2 to manage applications traffic. The QoS Agent

provides a transparent QoS support for end-host applications by intercepting their network

connections and directing QoS requests to the QoS Manager so that it can assign suitable

service classes for applications traffic. The host agent also provides Application Program-

1QoS-aware applications are the ones that use QoS APIs to convey their QoS requirements.
2Small embedded devices will not be able to accommodate a QoS Agent.

129

ming Interfaces (APIs) to register applications for QoS support. These APIs basically add

a QoS profile for each application to be run on the host in the host database, which defines

all supported applications on that host. QoS profiles are used to map application QoS re-

quirements into their equivalent network-level QoS representations that are later used by

the QoS Manager in assigning service classes. This two-level QoS mapping allows more

flexibility and degrees of freedom in meeting application QoS requirements through avail-

able network services. The host agent keeps track of running QoS applications on the host

as well as their QoS profiles.

QoS Managers, on the other hand, process QoS requests sent by QoS Agents and allo-

cate network resources and suitable service classes to applications’ traffic. The managers

keep track of the SLA with the network service provider and apply appropriate policies

and admission control to applications’ traffic accordingly. They keep two types of SLAs:

application SLA (appSLA), and network SLA (netSLA). Application SLA carries per-flow

specific parameters. Each appSLA has a mapping to one netSLA, which, in turn, defines the

associated network service class. Network SLAs are negotiated with the network service

provider (ISP), but the negotiation process is outside the scope of this thesis. Applications

traffic is mapped to network service classes through packet marking.

Once the QoS Manager has been instructed to support a particular application traffic,

it starts the admission control process that checks resource availability as well as policy

rules. It also verifies the feasibility of meeting the e2e QoS requirements for the requested

flow through the specified service class. This process can be summarized as follows: the

manager compares the requested QoS against the available service classes defined in the

list of netSLAs. If a class matches, then the capacity of that class is examined to see whether

there is enough bandwidth to accommodate the new request. If there is enough capacity,

then the manager starts an e2e QoS verification procedure that involves a signaling protocol

like RSVP [135]. The result of this e2e verification procedure determines if the request can

be admitted or not. If the request is admitted, the manager installs a new appSLA, which

defines QoS parameters for that request, and starts installing traffic classifiers and traffic

markers for the traffic flows.

Finally, a reply is sent back to the host’s QoS Agent reporting the result of the admission

130

SLA

QoS-enabled
Network

QoS Classes

End-Host

QoS
Agent

QoS
Applications

Other
Applications

Operating System

Network Interface

Small & Embedded
Devices

Customer
Network

QoS
Managers

End-Host

QoS
Request

Stand-alone
QoS Agent

Access
Router

Customer
Network

Customer
Network

Customer
Network

Tier 1 Tier 2

Figure 5.1: Basic architecture of the QoS Gateway

and the QoS mapping process. Then, the application can either start sending traffic under

the specified network service class or choose to modify its QoS requirements if the original

specifications could not be met by the network. Figure 5.1 shows a general architecture of

using QoS Agents and QoS Managers to establish services for applications running on hosts

as well as on small and embedded devices. In the figure we also see two types of agents,

host-based Agent like the one we already described, and stand-alone Agent which provides

support for small and embedded devices through a heterogeneous device interface. More

details about the design of these two agents are to follow later in this chapter.

5.2 Design Considerations

The design of the QoS Gateway is meant to support various types of working environ-

ments such as small-scale networks (LANs), corporate networks, campus networks, and

even a metropolitan network. At the same time, application support may vary from elec-

tronic mails (e-mails) to file transfer to multimedia streaming to even more critical and

complex real-time applications that are motivated by the current network technological ad-

vances. In the process of designing the QoS Gateway architecture, we were guided by a list

of design considerations that also represent the unique features of the QoS Manager/Agent

131

computer

Different Hosts/
Applications

Laptop

Fax

PDA

Server DiffServ

IntServ

IEEE 802
QoS

QoS Gateway

Different QoS-
Enabled Networks

1 2 3

4 5 6

7 8 9

* 8 #

IP phone

PRINT

HELP

ALPHA

SHIFT

ENTER
RUN

DG ER FI

AJ BK CL

7M 8N 9O

DG DG DG

DG T 3U

0V .WX YZ

TAB

% UTILIZATION

HUB/MAU NIC

2
BNC
4Mb/s

embedded

Figure 5.2: Abstract interface to heterogeneous devices and networks

approach. In the following we list these considerations:

Isolation: The QoSGW provides an abstraction level that hides the complexity of the un-

derlying network QoS infrastructure. It provides a uniform interface for applications

to external networks such as IntServ, DiffServ, or even IEEE 802 network QoS (Fig-

ure 5.2 illustrates this).

Heterogeneous interface: Different devices use different connectivity standards and links

to connect to the external network. LAN, DSL, PPP, IEEE 802.11, USB, RS-232,

Bluetooth, infrared are a few examples. It is necessary for the proposed architecture

to support multiple interfaces to heterogeneous hosts/applications as well as being

compatible to communicate with them on different processing scales. Figure 5.2

also illustrates this concept.

Closeness and transparency to applications: The use of an agent that resides on the host

and interacts closely with QoS applications has the virtue of capturing the application

requirements accurately. At the same time it provides a transparent QoS support

(through a middleware) without the need to modify the applications’ source code or

the underlying end-host operating system. This is also required for the stand-alone

132

agent that works close to devices.

Flexibility: For lightweight end-hosts, such as embedded and hand-held wireless devices,

most or all QoS management functions and network support are provided by the

stand-alone agent. For more sophisticated and larger capacity devices such as per-

sonal computers, a special agent, QoS Agent is to be placed on such devices to per-

form part of the QoS management function, making the QoS Manager simpler and

more compact. The reason for having a QoS Agent is scalability as well as cost-

effectiveness. Consider the case of a subnetwork of 100 hosts on each of which 10

different applications are running. If the QoS Manager is to do the entire job, then

it has to handle 1000 applications’ QoS simultaneously and in real-time. This is re-

ally a burden on the QoS Manager while part of the functionality can be performed

on the host close to the application. In a typical apartment, personal computers are

more commonly deployed and used than tiny and embedded devices, resulting in a

compact design for the QoS Manager, and this is desirable as this device is usually

provided by the network provider or the site administrator.3

Easy administration: Administration of a few QoSGWs in a customer network is rela-

tively easier than managing every host and device in the network. This includes

policy, resource, or SLA updates. Moreover, controlling the network policy from a

trusted device, QoS Manager, is securer than distributing the policy among various

trusted and untrusted devices and applications.

Easy upgrade: Separating functionality inside the QoSGW is very important to facilitate

the upgrade and update of the architecture components in order to support future and

new network QoS frameworks. Both entities of the QoSGW follow a modular design

that allows replacement, addition, or even removal of some of the functionality and

protocols involved in the operation.

Multi-level of QoS mapping: QoS mapping is done at both the agents and the managers

levels. This allows more freedom in meeting QoS-application requirements and pro-

3Further on this point will be discussed later in Section 5.4.3.

133

vides a larger adaptivity margin to accommodate transient and dynamic changes in

the external network.

5.3 QoSGW Design and Functions

We first detail the QoS Agent design, specifying the main building blocks, functions,

and their interactions, and then present the detailed design of the QoS Manager.

5.3.1 Host-based QoS Agent

The main functions of the QoS Agent is to capture applications’ QoS requirements and

other traffic characteristics, perform initial QoS mapping, and then communicate the ap-

plication requirements to the QoS Manager. The host-based QoS Agent is designed as a

middleware that resides on the end-host and enables applications running on this host to ac-

cess QoS in the network. Using a middleware design eliminates the need for modifications

of the host operating system. The QoS Agent’s functionality is divided into two parts, a QoS

module (QoSmod), which works in the operating system’s kernel space,4 and a user-space

process, which is called QoS daemon (QoSd). The functions of the user-space daemon

include QoS mapping, exporting APIs, traffic monitoring, and communication with the

manager. The kernel module is employed for intercepting applications’ network connec-

tions and managing the QoS application processes (mainly bookkeeping and controlling

the start and end of application processes). The daemon and the module communicate via

a special channel or a device driver.

The QoSmod intercepts applications’ network connections and contacts the daemon to

perform QoS mapping, and admission control with the QoS Manager. The application has

to be registered with the host agent in order to intercept its network connections. Specific

APIs are used to register new applications’ QoS profiles in the host database. Before stor-

ing the profile in the database, the agent maps the application’s QoS requirements to an

intermediate form that is composed of bandwidth, delay, jitter, and loss. These parameters

4A kernel module in our Linux implementation.

134

Kernel Interface

Application
QoS Mapping

Application
Manager

Communication
with

QoS Manager

QoS
DB

Socket Layer QoS Module (QoSmod)

Device File Interface
User Space

Kernel Space

QoS Daemon (QoSd)

Network Interface

QoS
Applications

w/o APIs

Other
Applications

QoS
Applications

w/ APIs

QoS
API

Operating System

Request

Reply

Figure 5.3: QoS Agent main blocks

are called “network-level QoS.” This is the first level of QoS mapping done to the applica-

tion requirements. Figure 5.3 shows the main building blocks of the host-based QoS Agent

as well as their interactions, and in what follows, we give details of the functionality of

each building block.

Socket-Call Capturing Module

QoSmod provides a transparent interface to registered QoS applications through inter-

cepting their socket system calls. For each intercepted socket call, the module notifies the

user-space daemon, QoSd, and delivers important information about the call to the daemon.

This information includes the type of the call, the calling application name, the process

identifier, network addresses, ports, and protocol type. This information is used by QoSd

to locate the QoS profile of the application in the database and performs QoS mapping. The

network addresses and ports as well as protocol type are sent within the QoS request to the

QoS Manager to be used in traffic classifiers to be built for this application traffic on the

manager. The QoSmod blocks the application (similar to waiting for a device [15]) until a

reply comes back from the daemon. Once a reply is received from the daemon, the module

decides whether to continue the connection normally (if the application’s QoS can be met)

or to drop the request if the application’s QoS is rejected). Then, the module unblocks the

application with either normal or error code. Figure 5.4 shows how QoSmod processes a

135

system call from a QoS application.

In our Linux-based prototype, the module communicates with the user-space daemon

through a special character device file called /dev/diff0. The module, when loaded,

attaches itself to this device file, and provides read, write, poll, as well as other neces-

sary functions to serve the file in the kernel space [15, 111]. The module also creates two

message queues, a “send” queue (sndq) and a “receive” queue (recvq), for sending and

receiving messages to and from the QoSd, respectively.

The daemon, on the other side, listens to the device file waiting for any message sent

from the kernel module. Messages sent to the daemon are either reporting a socket call,

informing the daemon of a process state change, or replying to a request from the daemon.

A message reporting a socket call carries the user and the process identifiers of the calling

process. It also carries the necessary information about the socket call like the protocol

family (e.g., AF INET), the type of the call (e.g., accept, connect, send), the protocol (e.g.,

TCP, UDP), and the sockaddr structure that have the addresses and port numbers of the

two ends of the socket call. A message reporting a process state change contains the process

identifier, and the current status of the process. Finally, a reply message to a daemon request

contains the result of executing such a request.

Messages received from the daemon contain a message type, process identifier, size,

and a command from the application manager. There are two types of commands, either

terminating a certain process (or application) or replying to a socket call message from

the kernel module. Upon receiving a terminate command or a terminate reply, the kernel

module terminates the process immediately. Figure 5.5 illustrates the kernel interface in

both the daemon and the kernel module and shows how they work together.

Application Interface and Management

The QoSd provides a simple API, called RequestQoS(), to specify application’s

QoS requirements to QoS Agent and hence to the QoS Manager. The API supports three

functions, addQoS, modQoS, and delQoS. The first function, addQoS, is used to create

a new QoS profile for an application’s traffic and store it in the host’s QoS database.

We use the term “QoS profile” to describe an entry in the QoS database. A typical

136

block process notify daemon

reply
unblock
process

system calls table

socket system call

qos_socket_call

sys_socket_call

continue
socket call

to/from daemon

Figure 5.4: QoSmod operation

Listen

 Application
Manager

read write

socket call

process state

reply

command

reply

sendq recvq

QoSmod

kernel
Interface

kernel space

user space/dev/diff0

QoSd

Figure 5.5: Kernel interface

application’s QoS profile consists of the application’s name (as a unique identifier), its type,

number of flows generated by the application, traffic profiles of the flows, flows’ identifiers

(addresses, ports, and protocol of the traffic flows), user authentication information (user

and group identifiers5), and canonical QoS object containing the required QoS for each

flow.

Application’s QoS requirements are mapped first to their equivalent network-level QoS

before being stored in the host database. We refer to this procedure as “application regis-

tration.” Figure 5.6 illustrates the main steps for registering an application with QoS Agent,

where the QoS Manager is contacted only to find a matching network service class. How-

5We assume a UNIX-based or other multi-user system.

137

ever, the manager does not install traffic controls until the application starts sending traffic

as will be shown later. After successful creation of the application’s QoS profile, it can be

modified or deleted altogether using modQoS and delQoS functions, respectively. The

API functions can be used by QoS-aware applications or a manual configuration interface

for other legacy QoS applications.

The Application Manager keeps track of registered QoS applications running on the

host. When an application starts, QoSmod intercepts the application’s socket call and noti-

fies the Application Manager while blocking the application. If the application is registered

in the QoS database, then the corresponding QoS profile is fetched and a QoS request is

built to be sent to the QoS Manager. The QoS Manager is contacted to perform admission

control, network service class selection, appSLA installation, and traffic control. When the

QoS Manager replies back to the agent, the Application Manager adds this application to

the active list and unblocks the application to continue normal socket call processing. This

procedure is called “application invocation.” If the application is not registered, a normal

socket call will continue without contacting the QoS Manager. When an active application

terminates,6 the Application Manager notifies QoS Manager to delete the associated app-

SLA and free the resources allocated to the application’s flows. Figure 5.7 illustrates the

application invocation procedure.

QoS Mapping

QoS applications may have their own definitions for QoS and one of the main functions

of QoS Agent is to translate these various definitions to a common QoS form to be sent to

the QoS Manager and hence map it to a specific network service class. The QoS mapping

module takes care of implementing different mapping algorithms for this translation pro-

cess. The module also keeps track of the QoS database stored on the host, which records

all QoS applications that can run on this host. Records in this database carry a common

form for applications QoS which is referred to as the “canonical” QoS. This canonical form

specifies QoS requirements for bandwidth, delay, jitter and loss. Specifically, it consists of

a committed information rate (CIR), a peak rate (PIR), mean delay, maximum delay, jitter,

6QoSmod notifies the daemon with application closing connection.

138

Create QoS profile

QoS mapping

Call QoS Manager

No

addQoS API

SLA
matching ?

Store in QoS DB

Yes

QoS application / manual interface

Return
error

QoS
Manager

Return QoS class

QoS
Agent

Figure 5.6: Application registration proce-

dure

QoSmod captures
socket

Application
socket call

Block application

Notify Application
Manager

App found in
QoS DB?

Call QoS Manager

Unblock application

Install traffic control

Add to active
application list

Invoke traffic
monitoring

Normal socket call

No

Yes

Process management
level in the kernel

QoS
Manager

Operation without
QoS Agent support

Admission
Control

Install QoS (appSLA)

QoS
Agent

SLA admission

e2e QoS verfication

Yes

No

Figure 5.7: Application invocation procedure

and loss. We believe that any application’s QoS can be mapped to this finite set of param-

eters using the appropriate algorithms. The QoS database carries also information about

the traffic characteristics of these applications as well as information about their users. The

latter information enables the agent to treat the same application differently depending on

the user.

In this chapter we only give an example of this mapping process; the full set of mapping

algorithms is a topic for future work. Consider a video transmission application that wishes

to transmit frames at a rate of 30 frames/sec. Each frame can be sent at two different

resolutions, a high resolution of 1280 � 1024 and a low resolution of 1024 � 768, and the

application can tolerate the loss of 10% of frames every 30 consecutive frames.7 At the

other end, frames have to be played back at a specific speed and according to a play-out

timer. If a frame is late by 1 _ 2 of a frame time, it is considered as lost, and is not played

back. Consider also that the video received is used to activate a control action based on its

content, and this control action has to be taken within 100 msec.8 The algorithm for this

type of applications is straightforward. The CIR is the rate (in bits/sec) for transmitting

lower resolution frames, and the PIR is the rate for transmitting higher resolution frames.

7This depends on the codecs used to send frames.
8Video sensors are examples of such a situation.

139

The delay would be equal to the control delay (100 msec). The e2e jitter equals 1 _ 2 �
f rame size _ rate and the loss rate would be a � 1 _ 10 � f rame size � _ � 30 � f rame time � in

bits/sec, where f rame time is the f rame size divided by the rate. This shows an example of

how to extract the canonical QoS form from the application’s QoS specifications. However,

the job is not always easy like this example, and it can be a very complex operation and

may also involve the user’s perspective, which is still an open issue.

Traffic Monitoring

QoS Agent monitors applications traffic to make sure that it conforms to the profile

specified during the application registration. Traffic monitoring is done using the packet

filters user library (libpcap)9 [79]. A monitoring thread is started for each application

traffic flow and each thread installs a filter to select packets from that flow. Collected

measurements are compared to the registered traffic profile of the application flow and any

violations are reported to the application manager to take necessary actions.

Communication with QoS Manager

QoS Agent communicates with QoS Manager to convey applications’ QoS requests

and to set up the required support for these applications on the Manager. Communication

is done on a request-reply basis as follows. The request (called QoSrequest) that is sent

from the Agent to the Manger consists of a header and a body. The header includes mainly

the type of the request and the application flow identifier to be used by the Manager to set

up the required classifiers and traffic support functions. The body consists of a canonical

QoS object specifying the required application QoS after being mapped, and a traffic profile

(Tprof) description of the traffic flow to be supported. The traffic profile follows the Dual

Leaky Bucket (DLB) model and includes the average rate, peak rate, burst size, average

packet size, and maximum packet size of the flow. This information is to be either given by

the application in the registration process described before, or by the QoS mapping module

since each application has a QoS profile. Each member in QoSrequest’s QoS object is

9In Linux implementation.

140

represented in terms of a value and a time window for measuring this value.10

Once QoS Manager finishes processing the request, a reply is sent back to the Agent

that contains the result of the admission control procedure done by the Manager, an error

code if something went wrong, and a handle to the newly-installed record on the Manager

to be used later if any update is needed to be sent to the Manager. Upon occurrence of error

or rejection in the admission control procedure, the communication module reports back to

the Application Manager to take the necessary action. The QoS Agent sends four types of

messages to the Manager.

check SLA: During application registration, QoS Agent asks the manager if there is a

matching network service class to the application. This is shown in Figure 5.6.

install QoS: Likewise, during application invocation, the Agent requests the manager to

do admission control and install the necessary support for the application traffic. This

is illustrated in Figure 5.7.

delete QoS: When an application terminates, the agent sends a notification to the manager

with the traffic id to be deleted from the manager’s support. The traffic control setup

initially for the traffic is uninstalled from the manager as a result of this request.

modify QoS: The agent sends this message to the manager when it needs to re-adjust the

traffic control components according to a changing application characteristics. An

example of this situation includes change of QoS requirements which requires the

QoS Manager to redo admission control, e2e QoS verification, and traffic control.

As another example, a change of traffic profile or traffic id (such as port numbers)

requires change of traffic control components.

5.4 Stand-alone Agent

The main function of the stand-alone Agent is to support connecting devices (running

applications) through heterogeneous interfaces. Instead of the socket interception layer in

10This way we can apply a moving average in measuring these quantities.

141

computer

QoS applications
& devices

Laptop

Fax

PDA

1 2 3

4 5 6

7 8 9

* 8 #

IP phone

PRINT

HELP

ALPHA

SHIFT

ENTER
RUN

DG ER FI

AJ BK CL

7M 8N 9O

DG DG DG

DG T 3U

0V .WX Y Z

TAB

% UTILIZATION

HUB/MAU NIC

2
BNC
4Mb/s

embedded Virtual
device

interface Application
QoS mapping

Application &
Device Manager

Communication
with

QoS Manager

QoS
DB

External QoS Agent

Request

Reply

IEEE
802.11

USB

others.. ¶ ¶ ¶ ¶¶ ¶ ¶ ¶
Traffic monitoring

bluetooth
/Infrared

· · · · · · ·· · · · · · ·
IP stack / forwarding

Network interface

Control plane

Data plane

¸¹
º»» ¼¼½ ½ Applications &

devices traffic

Dev
TAB

App
TAB

Figure 5.8: Stand-alone QoS Agent main building blocks

the host-based Agent, the stand-alone Agent captures the application/device traffic and QoS

requirements through a multi-protocol interface layer that can connect to a wide variety of

today’s home/office devices. This layer, as shown in Figure 5.8, is composed of a number

of “protocol-specific” modules or device drivers for different interfaces (e.g., IEEE 802.11,

Infrared, USB, as well as others). These modules are all abstracted by a second layer of

virtual device interface that provides a single interface to all physical media. The rest of

the functional building blocks in the figure are similar to the ones in the host-based Agent

including all the device/application management and first level of QoS mapping.

5.4.1 Protocol-specific Modules

These modules are responsible for direct interaction with devices/applications through

different protocols. The main functionalities of these modules focus on providing a protocol-

specific link layer to the Agent. They deal with protocol data units in lower layers than the

IP layer including packetizing/depacketizing of application/device data. They also act as

device drivers for the virtual device interface and thus for the whole Agent as well.

142

5.4.2 Virtual Device Interface

The virtual device interface provides an abstraction level for the heterogeneous protocol-

specific device interconnection modules. It hosts the common functionality to be executed

for all connected devices. Among this functionality, we list the following:¤ Application/device connection interceptor¤ Device communication primitives: discovery, registration, description, eventing, con-

trol, deregistration, blocking, errors, etc.¤ Flow facilitators (forwarding): address translation/assignment, forwarding tables and

fire-walling, security¤ Traffic monitoring: although not really a part of the virtual device interface, it is a

part of the data plane of the Agent¤ For voice over IP (VoIP) devices, voice gateway functionality should be supported.

This needs to connect with a Subscriber Line Interface Circuit/Coder-Decoders

(SLIC/CODECs) units to connect directly with voice-enabled devices such as IP

phones. The control plane has to provide functionality for the following as well:

SIP, MGCP, PSTN proxy, and DSP capability.

Figure 5.9 illustrates the main steps taken to support a device through the virtual device

interface. This interface layer assumes a physical connectivity to the device through the

protocol-specific modules.

5.4.3 QoS Manager

The QoS Manager acts as a QoS server for the set of agents in the local customer net-

work, and provides an interface for applications to access various network QoS facilities

and service classes. For flexibility and upgradeability, the QoS Manager is composed of

two planes, a control plane (called Gateway) and a data plane (called Diff Agent). The

Gateway handles high-level QoS control functions such as SLA management, QoS map-

ping, admission control, and network QoS signaling. These functions are independent of

143

Device discovery

Device registeration

Application/Device startup

. passive

. active search

. device ID

. device description

. add to device table

. application/user registeration

Addressing (IP)

Device flow facilitator

Device control

. address assignment

. address translation

. security and firewalling

. authentication

. errors

. eventing

. device query (plug-n-play)

Device operation

Device termination

. flow interceptor

. flow QoS support

. flow termination

. device removal

Device reconnect

Figure 5.9: Device management and device lifecycle

the underlying network environment and can work with various QoS network infrastruc-

tures. The Diff Agent, which handles traffic marking, traffic classification, and traffic con-

trol, is network-specific and tailored to match the supported QoS network infrastructure

such as DiffServ or MPLS. These two components communicate with each other using

standard socket APIs. Therefore, these components can be located on different machines

for fault-tolerance and scalability.

Our current architecture uses the DiffServ framework as the underlying QoS network

infrastructure, and hence, the Diff Agent is DiffServ-specific. Figure 5.10 illustrates the

main building blocks of the QoS Manager as well as their interactions, and the following

subsections give details of the functionality of each building block.

SLA Management

The QoS Manager acts as an interface between the offered network service classes and

the application’s QoS requirements, and manages SLA with the network service provider.

It maps application requirements to appropriate network service classes in the SLA. As

mentioned in Section 5.1, the QoS Manager keeps track of two types of SLAs, network

144

Configuration Interface

Host
Communication

Traffic Control Interface

SLA
Manager

QoS Mapping and Admission Control

e2e Signaling

SLA
DB

RSVP
Daemon

RESV

Flow Classifier Policing Packet Marking

PATH

Socket Communication
Control Plane

Data Plane

Linux Kernel Traffic Control and Qdiscs

User Space

Kernel Space
RT-Netlink Sockets

Diff Agent

Gateway
Manual

Configuration

QoS
Agent

IP Traffic

H
o

st
 S

id
e

Figure 5.10: QoS Manager main blocks

SLA (netSLA) for each network service class, and per-flow SLA (appSLA) for each active

QoS application as illustrated in Figure 5.11. This is the second level of QoS mapping,

which maps appSLAs to netSLAs and is illustrated in Figure 5.12.

Each netSLA entry consists of a unique identifier, a DiffServ service class, a list of

DSCPs (each with 8 bits) associated with this service class, allocated bandwidth, avail-

able bandwidth, and a bandwidth sharing indicator (for bandwidth borrowing from other

classes). Entries for netSLAs are stored in a database “SLA DB” as shown in Figure 5.10.

On the other hand, each application flow is associated with an appSLA entry. Each entry

consists of a unique identifier, a flow identifier (containing source, destination, ports, and

protocol type), a traffic profile of the flow, application’s QoS in the canonical form, and a

pointer to the containing netSLA. As application flows are admitted, appSLAs are created

for each flow and mapped to suitable netSLAs. Available bandwidth in netSLAs is adjusted

according to subscribing applications.

QoS Mapping

Typically, network service providers specify services classes in their SLAs in terms

of capacity (amount of bandwidth available), latency (delay), delay variation (jitter), sup-

ported packet or frame sizes, availability (percentage of time available), reliability (some-

145

Per class/aggregate QoSPer-flow QoS

Class A

Class B

Class C

netSLAappSLA

QoS Manager

Figure 5.11: Network SLA (netSLA) and Ap-

plication SLA (appSLA)

appSLA1
netSLA1appSLA2

….

appSLAi

appSLAj
netSLA2….

….

appSLAk

netSLAm

….

appSLAn

appSLA1
netSLA1appSLA2

….

appSLAi

appSLAj
netSLA2….

….

appSLAk

netSLAm

….

appSLAn

appSLA1appSLA1
netSLA1netSLA1appSLA2appSLA2

….….

appSLAiappSLAi

appSLAjappSLAj
netSLA2netSLA2….….

….….

appSLAkappSLAk

netSLAmnetSLAm

….….

appSLAnappSLAn

Figure 5.12: netSLA � appSLA

times referred to as loss rate), and schedule of operations. The QoS Manager maps the

QoS of the application (appSLA) to one of the available services in the SLA (netSLA) by

matching the values of its canonical QoS parameters to the service specifications. A simple

example is the mapping of an application’s QoS to one of the available service classes in

a DiffServ-based network. For an appSLA that requires delay and jitter guarantees, it is

assigned to a suitable Expedited Forwarding or EF-based service [29]. For an appSLA that

has requirements on bandwidth and loss, it is assigned to a suitable Assured Forwarding

or AF-based service [59]. By “suitable” we mean matching the values of individual QoS

parameters with the values of the service specifications. Services based on class selec-

tors have more freedom for implementing services with different semantics of EF and AF

services. This makes the canonical QoS form very close to network SLAs and hence sim-

plifies QoS mapping at this stage. In most cases, this mapping process is simpler than the

first level of application’s QoS mapping done by the host agent, and mapping algorithms

for other types of networks can be found in [11, 123].

Admission Control

Based on the service classes mentioned above, Figure 5.13 illustrates the main sequence

for the admission control process inside the QoS Manager. Basically, the manager admits

the appSLA if there is enough available bandwidth in the corresponding netSLA. The pro-

146

cess starts when a QoS Agent communicates with the manager to request QoS for some

application flows. A new appSLA template is created to carry that request, then a suitable

DiffServ service class, that matches the requested QoS, is chosen. Currently, the basic de-

cision on selection of a service class depends on if there are delay or jitter requirements as

shown in the sequence. If a matching class can be found11 and it has enough capacity to

accommodate the new application flow, then the gateway starts an e2e admission control

process which we call “e2e QoS verification.” This process is described in Section 5.4.3.

Depending on the result of the e2e signaling process the gateway either registers a new

appSLA for this started flow, or rejects the request. In both cases, it replies back to the

agent indicating successful or unsuccessful admission. Both the traffic profile (Tprof) and

the canonical QoS object of the application flows are used in this process.

The QoS Manager then installs flow classifiers that distinguish packets from this flow,

and installs packet markers with the correct DSCP assigned to this application flow as

described in Section 5.4.3.

End-to-end QoS Verification

To provide the application with a predicted QoS level, the QoS Manager has to verify

that the e2e path of the application traffic has enough resources and suitable service classes

to support this QoS level. This verification process is also called “e2e admission control”,

and is done by the QoS Manager using a well-known signaling protocol, like RSVP [17,

131, 132, 135].

The gateway invokes the RSVP admission by communicating with a co-located RSVP

daemon to handle the protocol message processing and management. The communication

between the gateway and the daemon is enabled through the use of RAPI [18]. The QoS

Manager serving the sending host (also called RSVP sender) initiates a RSVP session on

behalf of the host toward the receiving host manager (also called RSVP receiver). RSVP

processing along the e2e path is similar to the one described in [11, 132]. We use RSVP

in our system for admission control only and not for resource reservation. Moreover, pro-

cessing RSVP messages is done on a per-domain basis, not per-hop like IntServ/RSVP.

11This matching is done during application registration procedure.

147

QoS Request from
QoS Agent

delay or jitter ?
NO YES

new appSLA

EF

AF

EF found?
EF QoS match?

appSLA > netSLA(EF) ?

NO

YES

get netSLA(EF)

YES

AFx found?

appSLA > netSLA(AFx) ?

NO

YES

get netSLA(AFx)

YES

x=1:4

AFx found?

NO

invoke e2e admission

e2e admission
ok ?

YES

NO

register appSLA

reply ok to QoS Agent

NO

update netSLA

no EF!

not enough
BW!

e2e admission reject

no AF!

not enough
BW!

Figure 5.13: Admission control sequence

148

Customer
Network

Server

Access
Router

Access
Router

PATH

PATH

PATH

RESV RESV

RESV

Network
Service
Classes

E2E
RSVP

Signaling

QoS Manager
A

QoS Manager
B

Figure 5.14: E2E QoS verification via RSVP

The process is reviewed in Figure 5.14 where QoS Manager A is the RSVP sender and

QoS Manager B is the RSVP receiver. Edge routers process RSVP messages to include

edge-to-edge QoS for service classes provided by each domain. The state diagram for the

RSVP sender process is shown in Figure 5.15, and the corresponding diagram for the RSVP

receiver process is shown in Figure 5.16.

A few changes have been made to enable e2e QoS verification using RSVP and to

match our architecture. RSVP supports only the two IntServ service classes, Guaranteed

Services (GS) and Controlled Load Services (CL). EF-based services are mapped to GS

while AF-based services are mapped to CL while being carried by RSVP messages. In

the PATH message, we use the ADSPEC object to carry the required nominal values for

the application QoS carried from the QoS structure QoSrequest sent by the application as

in Table 5.1. They are used to accumulate the path characteristics as defined in [131],

but using DiffServ edge-to-edge services instead of hop-by-hop. Traffic profile parameters

(Tprof) are carried by the TSPEC object to the receiver.

At the receiver, the accumulated e2e values of bandwidth, delay, jitter, and loss are

copied into the FLOWSPEC object in the RESV message back to the sender as in Table 5.2.

When the RESV message returns back to the RSVP sender, it compares the accumulated

values with the original required QoS values and if they are not acceptable, an error is

returned to the calling process indicating e2e QoS violation. As a result, the flow is not

149

Wait for new session

Map service

Prepare PATH

Wait for RSVP message e2e QoS admissionReturn ERROR

End session
Send PATH_tear

Send RESV_confirm

New session
request

Send PATH

PATH_error RESV

Error

OK

Start

Figure 5.15: RSVP sender state diagram

Wait for RSVP message
End session

Send RESV_tear

Return ERROR

PATH

RESV_error

RESV_confirm

Prepare RESV

Send RESV

Start

Figure 5.16: RSVP receiver state diagram

ADSPEC item QoS parameter

Composed MTU field bandwidth (bits/sec)
Minimum latency field delay (µsec)

Hop count field jitter (µsec)
Path BW field loss (%age)

Table 5.1: Mapping in PATH message

FLOWSPEC item e2e QoS parameter

Average rate (r) e2e bandwidth
Minimum policed unit (m) e2e delay
Maximum packet size (M) e2e jitter

Burst size (b) e2e loss

Table 5.2: Mapping in RESV message

admitted. Additionally, should an error occurs along the e2e path, a RESV-ERR message

is generated and sent back to the sender and an error is returned indicating resource vi-

olation in any of the routers along the e2e path. As a result, the flow is not admitted as

well. We use a third phase of messages to send a RESV-CONFIRM message from the

sender to the receiver as a confirmation of the success of e2e signaling. Upon receiving a

RESV-CONFIRM message, the receiver QoS Manager updates its service descriptions to

accommodate the new established incoming flow.

Traffic Control and Marking

After admitting a flow, the manager installs traffic classifiers and traffic policers based

on the flow identifier and traffic profile in the flow’s appSLA, respectively. The data plane

of the QoS Manager employs appropriate traffic controls and policing to do this job. In our

prototype implementation, Token Bucket Filters in the Linux kernel traffic control subsys-

tem [5] are used for traffic policing. After admitting a flow, the gateway installs a traffic

classifier based on the flow identifier of the flow sent in the QoS Agent’s request message.

The traffic policer and appropriate markers are installed based on the traffic profile (Tprof)

150

CBQ

CBQ class 1

u32 IP flow

u32 IP flow

MF classifier
u32 filter

CBQ class i

Marker

Marker

Policer

Policer

Figure 5.17: Adding markers for application flows

of the flow sent in the request. Traffic policers and markers are installed on a per-flow

basis. This per-flow chain can be installed on the ingress or the egress interface of the QoS

Manager device.

Packet markers are installed at the end of the traffic control chain mentioned in the

previous section when the flow is admitted. The marker uses the DSCP assigned to the

flow from the corresponding netSLA. Currently, we implement three marking algorithms

for AF: two rate Three-Color Marker (trTCM) [60], Time Sliding Window (TSW) [39],

and Equation Based Marking (EBM) [37]. For EF traffic, a single rate two color marker

is used which is simply using a single token bucket filter to compare input packets against

a rate and a burst size. It marks in-profile packets as EF and leaves out-of-profile packets

unmarked.

Figure 5.17 shows how the QoS Manager arranges classifiers, policers, and packet

markers. The manager installs a CBQ 12 queueing discipline at the root of the tree, and

for every admitted IP flow, a new CBQ class or branch is created to support this flow. A

series of u32 classifier, traffic policer, and packet marker are installed within a CBQ class

as shown in the figure. CBQ classes are assigned bandwidth equal to their nominal rates

with an allowance of burst that cover traffic burstiness. When the flow terminates, the

manager deletes the corresponding traffic controls and markers and frees their resources.

The QoSGW also uses IP Easy-pass [127, 128] in resource access control to protect the

customer network against network resource theft and intrusion.

12To control a correct distribution of bandwidth among different traffic flows.

151

IEEE 802.1p QoS
Interface

Manager

RSVP
Daemon

Control Plane

Data Plane

Kernel Traffic Control

User Space

Kernel Space

Q
o

S
 M

an
g

er

DiffServ Interface

SBM

Figure 5.18: QoS Manager data and signaling

planes can be exchanged to work with different

underlying networks

Marking Marking

QoS ManagerQoS Agent

Monitoring

QoS
Manager

QoS Agent
QoS

Mapping
QoS

Mapping

Monitoring

(a)

(b)

Figure 5.19: Functionality can be down-

loaded from the QoS Manager to QoS

Agent and vice versa: (a) Marking can be

done at the Agent; (b) QoS mapping and

monitoring can be done at the Manager

Flexibility in QoS Manager Design

One of the QoSGW design considerations is flexibility to work with different under-

lying network frameworks. Figure 5.18 illustrates this flexibility in separating the con-

trol plane from the data plane in the QoS Manager. We can use multiple different data

planes (e.g., DiffServ-specific, IntServ-specific, IEEE 802) that work with different un-

derlying networks. However, the control plane remains unchanged. Moreover, the e2e

signaling module in the QoS Manager can be replaced by a compatible module that uses

network-specific signaling protocols (e.g., RSVP, Subnet Bandwidth Manager or SBM). If

the manager is connected to multiple networks at the same time, then it can switch between

different data planes.

In Figure 5.19, we illustrate how packet marking can be done by the QoS Agent instead

of the Manager. This enables making the Manager smaller and less expensive. At the

same time in case of small or embedded devices, the Manager can do QoS mapping and

monitoring on behalf of the end-host. Just by intercepting the control and data traffic of the

application/device, the Manager can support these functionalities.

152

5.5 Assumptions and Limitations of the QoSGW Design

Our QoSGW design is based on the following assumptions that enable the overall func-

tionality:¤ There is a complete deployment of DiffServ (or any other QoS infrastructure) in the

external network (the Internet).¤ The RSVP signaling protocol is supported by the border or edge routers in the exter-

nal networks.¤ There is a system for exchanging and setting up Service Level Agreements (SLAs)

between the provider network and the customer network.¤ Currently we assume that each application has only one flow. For applications with

multiple flows per session, each flow will be handled individually.¤ The network or links between the QoS Agents and the QoS Managers are secure, i.e.,

no intrusion. The use of IP Easy-pass [127, 128] can help removing this requirement.

5.6 Evaluation

To demonstrate the effectiveness of the QoSGW in providing QoS for applications, we

conducted several experiments using the prototype we built. We use a simple network

testbed shown in Figure 5.20. Linux-based PCs are used in the testbed, where all PCs

are 600 MHz Pentium III with 256 MB RAM and running Linux kernel 2.4.2 with QoS

and traffic control enabled. The links between all PCs are 100Mbps Ethernet point-to-

point. Host 1 is running an application, which sends traffic to Host 2 passing through

QoS Manager, Router 1, and Router 2. Both Routers 1 and 2 are DiffServ-enabled routers

implementing a simple Expedited Forwarding (EF) PHB based on priority scheduling. Host

1 is running QoS Agent that has the application’s profile in the QoS database. When the

QoS Manager is active, the application’s traffic is to be mapped to an EF-based service

defined in the manager’s SLA database; otherwise, the application’s traffic will be treated

153

QoS Manager

Host 1
&

QoS Agent Router 1 Router 2

Host 3 Host 4

Host 2

Figure 5.20: The evaluation network

as best-effort. In addition to Host 1, both Hosts 3 and 4 are sending best-effort traffic (as

background) to Host 2 that enter through Routers 1 and 2, respectively, sharing the path

and link bandwidth with the application’s traffic. We use ON/OFF UDP background traffic

with 20 sec ON and 20 sec OFF periods, and each experiment is executed for a duration of

50 sec.

5.6.1 Protection of Important Application Traffic

TCP Traffic Throughput Protection

In the first set of experiments, the application starts sending TCP traffic, and we com-

pare the two cases of activating and deactivating the QoSGW. Figure 5.21 shows the per-

formance of the application’s traffic in terms of achieved throughput when the gateway is

deactivated. As one can see, the application’s traffic is not protected, and hence, suffers

severely from the background traffic during the ON period. The loss here is 100%. In

Figure 5.22, the gateway is activated and marks the application’s traffic as EF traffic, and

hence it does not suffer from any loss.13

13We can see small glitches at times 20 and 45 sec when the ON/OFF traffic changes mode, but this is
negligible.

154

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

Application (TCP)
Background (UDP)

Figure 5.21: TCP throughput – QoSGW de-

activated

0

20

40

60

80

100

120

0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

Application (TCP)
Background (UDP)

Figure 5.22: TCP throughput – QoSGW acti-

vated

UDP Traffic Throughput Protection

In the second set of experiments, the application sends real-time UDP traffic at a con-

stant rate of 30 Mbps. In Figure 5.23, we plot the throughput of the application’s traffic

and the background traffic when the gateway is deactivated. It is clear that the application

could not achieve more than 13 Mbps during the ON period of the background traffic as no

protection is available. In Figure 5.24, we activate the gateway and as a result, the appli-

cation can achieve the full 30 Mbps target rate without being affected by the background

traffic.

Jitter and Loss Protection

Not only throughput but also jitter and loss are affected. In Figure 5.25, we compare

the jitter with and without the gateway. Without the gateway, and during the ON period of

the background traffic, the application’s jitter is between 0 � 5 and 0 � 6 msec, while during the

OFF period it is between 0 � 2 and 0 � 45 msec. This unpredictability in jitter is undesirable

in real-time applications. When the gateway is activated, the application’s jitter is almost

constant at one level and unaffected by the background traffic. The application’s loss is

plotted in Figure 5.26 in the two cases. The application suffers no loss when the gateway

is activated, in accordance with Figure 5.24.

155

0

10

20

30

40

50

60

0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

Application (UDP)
Background (UDP)

Figure 5.23: UDP throughput - QoSGW de-

activated

0

10

20

30

40

50

60

0 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

Application (UDP)
Background (UDP)

Figure 5.24: UDP throughput - QoSGW acti-

vated

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

Ji
tte

r
(m

se
c)

Time (sec)

Without QoSGW
With QoSGW

Figure 5.25: Comparing jitter with and with-

out the QoSGW

0

20

40

60

80

100

0 10 20 30 40 50 60

Lo
ss

 (
%

)

Time (sec)

Without QoSGW
With QoSGW

Figure 5.26: Comparing loss with and with-

out the QoSGW

5.6.2 Overhead

We now consider the overhead in the gateway operation in supporting application’s traf-

fic. The first overhead is associated with application registration using the RequestQoS()

API. This is usually done once for each application running on the host and can be per-

formed as part of the application installation. Thus, no major overhead in this step. Sec-

ond, at application startup time, the QoS Agent intercepts the application’s connection and

contacts the QoS Manager for QoS processing. This process involves a message from the

kernel module to the daemon, followed by QoS profile lookup, then a network message

from the agent to the manager, followed by a sequence of function calls to SLA and admis-

156

sion control. Without accounting for the e2e RSVP QoS verification, the manager replies

back to the agent with an admission result message and installs the required traffic controls

(this involves messages between the Gateway and the Diff Agent), then the agent unblocks

the application and traffic starts transmission. Although this involves a number of mes-

sages to process the QoS request, only two of them are significant: the network messages

between the agent and the manager.14

We measured the overhead caused by all these operations which was about 0 � 22 sec. Al-

though the prototype is not optimized for performance, we find the setup time is not a major

overhead, especially when it is executed only once at the application startup. Measuring the

performance of RSVP signaling is outside the scope of this thesis. The only overhead left

to account for is the overhead of marking the application’s traffic on the egress interface of

the manager. This process is done inside the Linux kernel’s traffic control [5] code and it

adds only a call to ipv4 get dsfield() function which changes the DS-field in the IP

headers of each packet. This adds an insignificant overhead in the packets’ path. Overall,

the overhead of the QoSGW is insignificant compared to its added value.

5.7 Related Work

Support for QoS at the application and host level has been taking a significant amount

of efforts from both of the research and industrial communities. A close match to our

approach, was given in [91], which was tailored toward ATM. The authors presented an

end-point entity called the QoS Broker that orchestrates resources at the end-points, co-

ordinates resource management across layer boundaries. Their architecture manages and

translates three QoS parameters, application, network, and system parameters. Their de-

sign employs a broker-buyer end-point for buying resources, a broker-seller end-point for

selling resources, as well as the negotiation protocol between them to establish an end-

to-end QoS connection. It shares a common feature with our approach which is hiding

network configuration and operational details from applications and higher layers. They

use a module-structured design for ease of programming and extensibility which is also a

14Assuming both components of the manager are on the same machine.

157

common goal shared with our design. However, the main difference between our approach

and the QoS Broker approach is that we propose a two-part architecture, an Agent and a

Manager, with the advantages of more isolation, easier upgrade, heterogeneity, resource

aggregation, more administration, and security.

The authors of [81] presented an architecture for a Residential Gateway (RG) that con-

trol the bandwidth allocation for different devices in Home Area Network (HAN). It sup-

ports automatic device discovery and dynamic bandwidth allocation. The design was based

on the UPnP scheme and employs a UPnP control point and a traffic control (for QoS) mod-

ules at the RG besides a UPnP device host module at the home device or appliance. An

interesting point in their work is classifying home generated traffic into seven categories

and they apply bandwidth allocation between these categories according to different condi-

tions. This categorization enables easy mapping to network offered services. Not enough

details about the system architecture was given in the paper, and our overall approach fol-

lows a different track in terms of generality and flexibility.

Another architecture for QoS-enabled residential gateways is introduced recently by

Motorola Labs [8]. This architecture works on layer 2 (MAC) and layer 3 (network) and is

compliant with existing standards such as IEEE LAN bandwidth managers (SBM), RSVP,

IEEE 802 LAN, and CableHome. A common point with our design is the use of a separate

planes, a data plane and a control plane. In the data plane, they introduced a new entity

called Broadband Intelligent Bridge (BIB) that controls traffic and QoS features among

different flows. However, their architecture still lacks a lot of details which we provide in

our design, such as QoS mapping, user-based differentiation, SLA management, complete

admission control, and many others.

Bandwidth Managers such as PacketShaper from Packeteer [102], NetEnforcer from

Allot Communications [27], and QoSWorks from Sitara Networks [94], as well as others

are currently being introduced to the market. These devices are deployed to bridge cus-

tomer networks and provide a toolbox of traffic management mechanisms such as traffic

classification, monitoring, shaping, prioritization, bandwidth allocation, as well as other

functions. A first look at them suggests that they are very close to our architecture, but

they mainly do bandwidth management, not QoS support like our architecture. A second

158

difference is that they only employ one device that is in place of the QoS Manager in our

design, and hence they do not have an application-sensitive agent like QoS Agent which

interacts very closely with applications. Because they are commercial devices, not enough

details about their design issues are available, and we believe that our approach is more

flexible and more versatile than these devices.

Other gateway-based approaches, such as [113], exist. The authors introduced a dis-

tributed object gateway for supporting integrated QoS which is based on the Quality Ob-

jects (QuO) architecture. The approach was about a QoS-oriented Object Gateway for

integrating a variety of QoS enforcement and implementation mechanisms. A QuO ob-

ject gateway is a QoS-aware element inserted at the transport layer between clients and

objects/servers to provide managed communication behavior for the particular QoS prop-

erty being supported. Two goals were focused on: (i) providing a common platform for

Integrated QoS Dimensions, and (ii) facilitating integration of new and alternative control

mechanisms and policies. Our approach is different because it works at the application,

transport, and network layers, and it is not based on any predefined object framework.

5.8 Concluding Remarks

In this chapter we presented a QoS Gateway (QoSGW) architecture for providing QoS

support to QoS-dependent applications and devices in customer networks. The architecture

is composed of two main components or tiers: an agent that either resides on the end-host

or stand-alone and provides an adequate interface to QoS-dependent applications, and a

QoS manager that provides an interface to network QoS capabilities for the agents. Our

system acts as a QoS mediator between applications/devices and the underlying network

QoS infrastructure. It also acts as an abstraction level that hides the complexity of the QoS

network from devices and applications and provides easy management and deployment for

QoS. Using the two-component approach provides better generality and scalability. The

agent receives the application requirements either directly or indirectly, map them to an

intermediate form, and consults the manager to map these requirements to an appropriate

network service. The manager, on the other hand, serves a number of agents in providing

159

adequate network services that map to the application requirements in addition to other

management responsibilities. Although we use a Differentiated Services (DiffServ) net-

work architecture as the underlying QoS infrastructure, the approach we use is general

enough to be used with other QoS infrastructures. The architecture presented in this chap-

ter has some salient features such as:¤ The ability to specify QoS profiles in the QoS Agent by user id, so that the same

application can have different QoS specs (profiles) for different users. As an example,

consider an IP-telephony or VoIP-based applications. Some users would be satisfied

with a good voice quality in their calls. Other users may use the same application for

making important calls that require higher voice quality.¤ Putting applications QoS profiles in a separate QoS DB has the advantage of being

able to be migrated to new systems and used in the same way. This way, a new QoS

DB need not be initiated on each new system.¤ Usually the QoS Manager is a trusted device provided by the ISP, but the QoS Agent

can be from a third party as long as it can communicate with the installed manager.

This allows the implementation of policy and other access control rules in the man-

ager.

We have built a prototype on Linux OS implementing the main functionality of the

overall design to test the operational correctness and to demonstrate the importance of our

system in supporting real-time applications. We believe that a system like the QoSGW will

promote QoS deployment and facilitate building QoS-aware customer networks.

160

CHAPTER 6

Concluding Remarks

6.1 Conclusions

We have presented in this thesis a set of versatile QoS control mechanisms, that are

directed toward the dynamic Internet especially with the introduction of new time-sensitive

applications. Our QoS controls draw from the basic idea of using feedback to provide an

adaptive behavior required to handle network unpredictability and QoS variability. We use

model-based feedback which provides more accurate and more reliable control in addition

to other salient features such as reference tracking and robustness. The key point behind

using a model of the process under control is that it gives more accurate prediction of its

behavior when applying feedback control, and yields faster response and better handling of

network dynamics than ad-hoc feedback methods. We demonstrate the use of the model-

based QoS control approach in several case studies to prove its effectiveness as well as

its simplicity. We also show that our QoS control approach can be used in today’s “best-

effort” Internet without the need for sophisticated QoS architectures or advance resource

provisioning. This is an important feature that allows replacement of such complex and

expensive-to-deploy QoS frameworks.

The thesis starts by using a previously-built TCP model, which represents TCP through-

put, mainly, in terms of packet loss and round-trip time. The model is used at the heart of

a feedback algorithm to control packet-marking probabilities in order to achieve a pre-

dictable throughput within the context of the DiffServ framework. The packet marking

161

algorithm (EBM) developed, addresses the problems found in other marking schemes re-

garding throughput guarantees and fairness among heterogeneous TCP flows. Through the

use of this TCP model, EBM is able to better predict the behavior of application TCP traffic

sources in response to network conditions, thus adjusting the marking engine performance

accordingly. We compare EBM with other available marking schemes and prove analyti-

cally and through simulation experiments, that an iterative model-based control approach

results in a better, predictable, and fair QoS performance than other ad-hoc packet marking

approaches. We also present an accompanying packet separation mechanism that solves

the fairness issue between responsive and non-responsive traffic, and we evaluate it along

with EBM to achieve complete fairness in bandwidth distribution.

Different from packet marking, we use the model-based approach in controlling the

Per-Hop QoS of a typical network node/router. In this case we develop the models used

in control by employing formal statistical methods such as Analysis of Variance (ANOVA)

and polynomial regression. We show that they yield simple, yet effective, functional rela-

tionships between the inputs of the node (in terms of input traffic and configuration param-

eters) and the output QoS, which include throughput, delay, jitter, and loss. This enables us

to abstract per-hop QoS into a “black-box” model and never worry about the internal de-

tails. In building the models we use a full factorial design of experiments on a Linux-based

testbed. We assess the accuracy of the models, then employ them in building a model-

based controller for Per-hop QoS of a typical network node, and illustrate the correctness

and effectiveness of the controller.

The success of the model-based control in these two cases led us to pursue further in

using the same approach in creating Self-Controlled Network Services, or CONNET . This

time we use more formal design and analysis methods based on control theory. Specifically,

we use state-space design methods and chose optimal Linear Quadratic Gaussian (LQG)

regulators for robust control. The emphasis of control in this case is on the delay and jitter

of the traffic going through these network services. We extend the control from a single to

multiple network nodes using the same technique. The two important features of CONNET

are being “reservation-less” as well as being “self-controlled.” The reservation-less feature

is illustrated in controlling delay and jitter across FIFO network services without the need

162

of sophisticated scheduling algorithms. On the other hand, we demonstrate the ability of

CONNET, as a self-controlled scheme, in tracking various QoS reference scenarios and

handling variable network workloads with no significant management overhead. We show

how to implement CONNET in several places in the Internet ranging from access links to

domain-wide network services to active queue management. We also compare CONNET

with other well-known scheduling algorithms such as CBQ, WFQ, priority queueing and

RIO, and demonstrate, through experimental results, the effectiveness and superiority of

our scheme.

To provide access support for QoS-dependent applications, enable the use of the pro-

posed QoS control mechanisms, and create QoS-aware environment, we presented the de-

sign and implementation of a two-tier QoS Gateway architecture. Using a two tier archi-

tecture achieves both generality and scalability in providing QoS support for applications

and end-devices. In this design, we introduce several novel aspects such as transparent sup-

port for legacy applications through socket interception, virtual device interface to support

heterogeneous QoS-dependent devices, use of middleware to avoid operating system mod-

ifications, 2-level QoS mapping between applications and network services, and flexible

design that adapts to the underlying physical network. These features have been realized

through the modular design of the two entities of the gateway, namely, the QoS Agent and

the QoS Manager. The functional modules of both entities can be realized independently,

and their realizations are demonstrated through a Linux-based prototype. We evaluate the

performance of the prototype in a simple network testbed, showing correct functionality

and measuring the implementation overhead. This architecture is considered an essential

step for effective deployment and utilization of the QoS techniques introduced.

6.2 Future Work

The materials covered in this thesis can be considered as the seed for further devel-

opment of the same model-based control approach for various networking problems and

applications. The emerging next-generation networking environment presents an IP-based

core interconnecting many wired and wireless radio access networks (such as WiFi, Blue-

163

tooth, and 4G), providing ubiquitous access to end-users through a vast variety of hand-held

devices. It is evident that the future network environment will be characterized mainly by

heterogeneity of networks, especially the network access part. Although the IP protocol

will be the common denominator, the new environment brings together many different in-

terconnecting domains, each following different traffic and link models, complicating the

overall end-to-end traffic control and engineering processes. A typical end-to-end network

service will first traverse one access network that may be a high-speed wired segment (e.g.,

DSL) or a wireless LAN (e.g., 802.11), a wireless WAN (e.g., UMTS), or even a satel-

lite network. These first-hop (and may be last-hop as well) segments will probably be

supported by an IP-based core network, which will at least supply end-services with IP

connectivity.

It would be interesting to analyze the new characteristics and additional requirements

brought by wireless mobile environments on IP mechanisms and protocols such as link

availability, capacity mismatch, location management, cell hand-offs, security, and others.

One specific goal of this is to standardize the analysis and realization of well-defined net-

work services across heterogeneous environments. Providing a unified interface to these

network services is one of the expected outcomes. Building on the model-based control

approach presented in this thesis, it would be interesting to investigate new techniques

for building predictable, self-controlled, and self-healing end-to-end services in heteroge-

neous environments. In particular, it is important to study the ongoing evolution of IP

telephony and Voice over IP (VoIP) running on top of both wireless and cellular mobile

networks. In future Internet-based telecommunication, it is essential to have continuity of

VoIP calls seamlessly of the underlying network support and connectivity. One can also

analyze the end-to-end operation and performance of multimedia streaming applications

(e.g., TV broadcast over hand-held devices) on the integrated wired and wireless networks,

and characterize performance-critical factors.

On a more abstract level, virtualizing predictable network services to higher layers,

such as applications footsteps, will result in effective use of these services. In this way,

applications developers need not account for the heterogeneity of lower layers. This work

will involve a cross-layer design that expands across link, network, and transport layers.

164

On a different dimension, it would be interesting to study “user-centric” approaches

for building services that optimize network performance according to user profiles and

different utilities. The goal of this research will be to enable the design and construction of

smart network services that adapt to the underlying environment and type of usage.

Finally, it would be interesting to investigate the integration of the QoS Gateway design

into home networking frameworks within the DSL forum or CableNetwork recommenda-

tions. Specifically, one can build a realization of the design onto network processors such

as the Intel IXP [66], which can be embedded in various wireless and home routers and

provides a ready-to-work QoS functionality to be used in today’s home networking prod-

ucts.

We expect the model-based control approach to play an effective role in the design of

future networks and provide means for building more self-controlled networks that require

minimal management overhead.

165

APPENDICES

166

APPENDIX A

TCP Model

The TCP model developed in [104] is described as the following:

rt T T � p y M y RT T y To y Wmax �¾Ttvvw vvx M
1 1 p

p ¿ W À p Á ¿ Q Â p ÃW Â p Ä Ä
1 1 p

RT T À b
2 W À p Á ¿ 1 Á ¿ Q Â p ÃW Â p Ä Ä F Â p Ä To

1 1 p

if W � p � { Wmax

M
1 1 p

p ¿ Wmax ¿ Q Â p Ã Wmax Ä
1 1 p

RT T À b
8 Wmax ¿ 1 1 p

pWmax ¿ 2 Á ¿ Q Â p Ã Wmax Ä F Â p Ä To
1 1 p

otherwise
(A.1)

where

W � p �¾T 2 ¿ b
3b ��Å 8 À 1 � p Á

3bp �Æ� 2 ¿ b
3b � 2

Q � p y w �¾T min Ç 1 y À 1 � À 1 � p Á 3 ÁkÀ 1 ¿ À 1 � p Á 3 À 1 � À 1 � p Á Â w 1 3 Ä Á/Á
1 � À 1 � p Á w È

F � p �FT 1 � p � 2p2 � 4p3 � 8p4 � 16p5 � 32p6

where

rt : is the sending rate of the TCP flow in bits/sec.

M: is the average packet size in bits.

p: is the loss probability (i.e., probability of loss).

RT T : is the average round-trip time.

To: is the typical value of the retransmit timeout (typically 5RT T).

Wmax: is the maximum receiver window size enforced by the receiver in packets.

b: is the average number of packets acknowledged by an ACK, (usually 2).

167

APPENDIX B

Analysis of Variance (ANOVA) and Polynomial Regression

B.1 ANOVA

A brief description of the steps done in Analysis of Variance (ANOVA) [70] are as

follows:

B.1.1 Models

The general model for k-factor full factorial design contains 2k U 1 effects. This includes

k main effects, � k
2 � two-factor interactions, � k

3 � three-factor interactions, and so on.

For any three factors (i.e., k A 3) denoted as A, B, and C with levels a, b, and c, and

with r repetitions of each experiment, the response variable y can be written as a linear

combination of the main effects and their interactions:

yi jkl A µ � αi � β j � εk � γABi j � γACik � γBC jk � γABCi jk � ei jkl

i A 1 � ����� � a; j A 1 � ���!� � b; k A 1 � ����� � c; l A 1 � ����� � r (B.1)

where

yi jkl = response in the l-th repetition of experiment with factors A, B, and C at levels i,

j, and k, respectively.

µ = mean response = ȳ É]É]É]É
αi = effect of factor A at level i = ȳi É É]É�U µ

168

ȳi É]É]É = average response at the i-th level of A over all levels of other factors and repeti-

tions.

β j = effect of factor B at level j = ȳ É j É]É�U µ

γABi j = effect of the interaction between A and B at levels i and j = ȳi j É]ÉPU αi U β j U µ

γABCi jk = effect of the interaction between A, B, and C at levels i, j, and k

= ȳi jk É U γABi j U γBC jk U γACik U αi U β j U εk U µ

ei jkl = error in the l-th repetition at levels i, j, and k, and so on.

The effects are computed so that their sum is zero:

a

∑
i Y 1

αi A b

∑
j Y 1

β j A a

∑
i Y 1

γABi j A b

∑
j Y 1

γABi j AËÊ�Ê!Ê�A a

∑
i Y 1

γABCi jk AÌÊ!Ê�Ê�A 0

The errors in each experiment add to zero too:

r

∑
l Y 1

ei jkl A 0 ~ i � j � k
B.1.2 Allocation of Variation

One of the important steps in the statistical analysis conducted is to calculate the per-

centage of variation in the output response due to each factor and its levels as well as the

interactions between them and the errors in the experiment runs. This step is called the

Allocation of Variation.

Squaring both sides of the model in Eq. B.1, and adding across all values of responses

(cross-product terms cancel out) we get:

∑
i jkl

y2
i jkl A abcrµ2 � bcr∑

i
α2

i � acr∑
j

β2
j � abr∑

k

ε2
k � cr∑

i j
γ2

i j � br∑
ik

γ2
ik � ar∑

jk

γ2
jk� r∑

i jk
γ2

i jk � ∑
i jkl

e2
i jkl

This equation can be written as:

SSY A SS0 � SSA � SSB � SSC � SSAB � SSAC � SSBC � SSABC � SSE (B.2)

The total variation of y, denoted as the sum of square total or SST , is then:

SST A ∑
i jkl

� yi jkl U µ � 2 A SSY U SS0 �
169

The error in the k-th repetition is ei jkl A yi jkl U ȳi jk, and the sum of squared errors (SSE) is

equal to:

SSE A ∑
i jk

e2
i jkl A SST U SSA U SSB U SSC U SSAB U SSAC U SSBC U SSABC �

Once we got all the sum of squares, then the percentages of variation can be calculated

as 100 � � SSA
SST � for the effect of factor A, 100 � � SSAB

SST � for the interaction between A and

B, and so on, and finally 100 � � SSE
SST � for errors. From these percentages of variations, we

can identify the most important factors. The factors with small or negligible contributions

to the total variation of the output can be removed from the model.

B.1.3 Analysis of Variance

To statistically test the significance of a factor, interaction of factors, or errors, the

sum of squares are divided on their corresponding degrees of freedom (DF)1 to get the

mean squares. For the previous example of three factors, we have the following degrees of

freedom for Eq. B.2:

abcr A 1 � � a U 1 �K� � b U 1 �K� � c U 1 ��� � a U 1 � � b U 1 �K� � a U 1 � � c U 1 �K� � b U 1 � � c U 1 �� � a U 1 � � b U 1 � � c U 1 ��� abc � r U 1 �
For example, the mean square of factor A (MSA) equals to SSAV a � 1 X and the mean square error

(MSE) equals to SSE
abc V r � 1 X .

To compare the significance of each effect with the experimental error, the ratios of

mean squares are used. This is called the “F-test”. For example the ratio MSA
MSE corresponds

to the effect of factor A. These ratios have F distribution [70] calculated at their correspond-

ing degrees of freedom. If the computed F value is greater than the 95% quantile, F Í 0 É 95;α W β Î ,
value from the tables of the F-variates, then the effect is significant and vice versa. Here α

and β are the degrees of freedom of for SSA, and SSE, respectively. This usually leads to

the same conclusion if we compare the percentage of variations of the factors with those of

errors. Table B.1 summarizes the process.

1The degree of freedom is the number of independent values required to compute the corresponding sum
of square.

170

Effect SS %age DF MS F

y SSY T ∑y2
i jk abcr

ȳ Ï Ï Ï Ï SS0 T abcrµ2 1

y � ȳ Ï Ï Ï Ï SST T SSY � SS0 100 abcr � 1

A SSA T br ∑α2
j 100 � SSA

SST � a � 1 MSA T SSA
a � 1

MSA
MSE

.

.
AB SSAB T cr ∑γ2

i j 100 � SSAB
SST � � a � 1 ��� b � 1 � MSAB T SSABÀ a � 1 ÁkÀ b � 1 Á MSAB

MSE

.

.
ABC SSABC T r ∑γ2

i jk 100 � SSABC
SST � � a � 1 ��� b � 1 � MSABC T SSABCÀ a � 1 ÁkÀ b � 1 ÁkÀ c � 1 Á MSABC

MSE� c � 1 �
e SSE T SST 100 � SSE

SST � abc � r � 1 � MSE T SSE
abc À r � 1 Á� SSA � SSB � SSC� SSAB � SSAC � SSBC� SSABC

Table B.1: ANOVA

B.2 Polynomial Regression

Polynomial regression is based on the Multiple Linear Regression model which finds

a linear relation between one dependent and k independent variables. The linear model is

given by [70]:

yi A b0 � b1x1i � b2x2i �ÐÊ!Ê�Ê,� bkxki � ei (B.3)

where i A 1 �!Ê�Ê�Ê!� n, and n is the sample of size.

An example of a polynomial regression model with two independent factors is as the

following [93]:

yi A b0 � b1x1i � b2x2
1i � b3x2i � b4x2

2i � b5x1ix2i � ei (B.4)

The usual way of solving this polynomial model is to transform the right hand-side to

a linear relation by the following substitution:

z1i A x1i z2i A x2
1i z3i A x2i z4i A x2

2i z5i A x1ix2i

171

Non-linear relation Transformed variable Linear relation
Y T X1X2 Y ÑªT logY Y Ñ�T logX1 � logX2

Y T 1
X Y ÑªT 1 � Y Y ÑªT XÒ

Y T X Y Ñ T Ò
Y Y Ñ T X

Table B.2: Basic transformations

Once this transformation is done to the input factors, it can be solved using the same

methods used for linear regression [70, 93]. One important measure for the goodness of

the regression is called the coefficient of determination, R2, which is the ratio between

the variation explained by the regression (SSR) to the total variation (SST) caused by the

regression and the error (SSE). The higher the value of R2 the better the regression is.

172

APPENDIX C

QoS Gateway Prototype Implementation

This appendix presents details about important parts of the implementation. It include

actual codes, functions, data structures, and messages formats that represent major func-

tionality. Our prototype implementation is based on Linux 2.4.

C.1 Host-based Agent

The modules implemented in the Agent are the socket-capturing kernel module, appli-

cation manager, QoS database support, part of QoS mapping, and the communication with

the QoS Manager.

C.1.1 Socket Capturing Module

The module, when loaded, replaces the default kernel’s socket system call handler

sys socketcallwith our own modified system call handler that is called diff sys socketcall.

This is done by accessing the kernel system calls table directly.

module_main.c:

original_socketcall = sys_call_table[__NR_socketcall];

sys_call_table[__NR_socketcall] = diff_sys_socketcall;

The new socket system call, when invoked, compiles a message to be sent to the daemon

that contains information about the current application process.

173

socketcall.c:

/* get task info here and send it to the daemon */

sock_msg.call = <system call type>;

sock_msg.current_pid = current->pid;

sock_msg.current_gid = current->gid;

sock_msg.current_tgid = current->tgid;

sock_msg.current_uid = current->uid;

sock_msg.current_euid = current->euid;

sock_msg.current_gid = current->gid;

sock_msg.current_egid = current->egid;

Then, the module blocks the application process waiting for a reply from the daemon.

socketcall.c:

/* send msg to the user-space daemon */

send_msg(SOCK_MSG, sock_Message_Ptr, SOCK_MSG_SIZE);

/* don’t move and wait for a reply from the user-space daemon */

wait_for_reply();

The function wait for reply() is responsible for blocking the application process

by putting it in the device wait queue as if it is waiting for a device read.

dev_file.c:

current->state = TASK_INTERRUPTIBLE;

add_wait_queue(&wait_for_reply_q_h, &wait_for_reply_queue);

/* put another process on execution until I get a msg from the dae-

mon */

schedule();

When a reply is received from the user-level daemon, the module wakes up the blocked

process and continues work.

dev_file.c:

/* wakeup that process who waited for reply only */

wake_up_interruptible(&wait_for_reply_q_h);

174

The module communicates with the user-space daemon through a special character de-

vice file /dev/diff0. Messages sent throughout this communication link are exchanged

through functions like dev read() and dev write() like a normal file. Data are

moved from kernel space to user space and vice versa using the two functions copy to user()

and copy from user().

C.1.2 Application Management

The daemon (QoSd) uses the /proc filesystem to locate the application name using

the process pid (sock msg body->current pid). Then, the daemon searches in the

applications QoS database to locate the current application.

qos_mapping.c:

QoSDBresult = search_QoSDB_file(sock_msg_body, &app);

where app is the application structure we use throughout the application management.

daemon.h:

typedef struct application {

char name[CMDLINE_SIZE];

uid_t uid;

gid_t gid;

int family;

int type;

int protocol;

flowid_t fid; /* 5-tuple IP header (core.h) */

profile_t profile;

QoSrequest_t qos; /* QoS parameters needed */

}application_t;

The Application Manager keeps a list of all active and registered QoS applications.

Each entry is of type application t. All application management functions are found

in app.c where implementation of the list and its handlers are placed.

175

The daemon logs all messages and activities in a syslog file called qosd.log held

in /var/log/ directory. The daemon also uses a configuration file called qosd.conf

to load the necessary configuration parameters such as the Gateway IP address and port

number.

C.1.3 QoS Mapping and QoS Database

In the prototype, we use a simple QoS mapping based on a predefined values for ap-

plication QoS stored in the text-based database called QoSDB.dat. The database uses

the application name as the primary key, and each entry contains user information (uid

and gid), flow identifier object (fid), traffic profile (Tprof or profile), and the QoS

structure (qos). The flow identifier structure is given by:

gw_common.h:

/* flowid_t: describes a flow using 5-tuple IP header */

typedef struct _flowid {

char src[IPLEN]; /* source address in IPv4 */

char dst[IPLEN]; /* destination address in IPv4 */

unsigned short sport;

unsigned short dport;

unsigned short metric;

} flowid_t;

The traffic profile is given by:

gw_common.h:

typedef struct t_profile {

double rate;

double burst;

double pktsize;

double peakrate;

double maxpktsize;

} profile_t;

The QoS structure is given by:

176

gw_common.h:

typedef struct _QoSrequest {

QoSmetric_t CIR; /* Committed rate (bps) */

QoSmetric_t PIR; /* Peak rate (bps) */

QoSmetric_t delay; /* mean delay (msec) */

QoSmetric_t maxdelay; /* maximum delay (msec) */

QoSmetric_t jitter; /* jitter (msec) */

QoSmetric_t loss; /* loss (%age) */

QoSmetric_t maxloss; /* maximum loss (%age) */

QoSmetric_t trecov; /* recovery time (sec) */

} QoSrequest_t;;

The function qos mapping() in qos mapping.c is the one responsible for per-

forming application QoS mapping and contains all the QoS mapping algorithms. In the

current prototype, this function only reads entries from the QoS DB indexed by application

name.

C.1.4 Communication with QoS Manager

The function that is responsible for this communication is called:

qossignal.c:

int qossignal(char *gwIPaddr, u_short gwport, flowid_t fid,

profile_t *p, QoSrequest_t *q, __u32 flag, int *class)

It constructs a request packet to the QoS Manager that contains the flowid, traffic profile,

and the QoS structure of the application flow. It calls:

qossignal.c:

int sendqosreq(int sockfd, QoSmesg_t *msg, size_t n)

and waits for a reply (acknowledgment) through:

qossignal.c:

int recvserviceack(int sockfd, QoSack_t *ack)

177

The underneath functions are all implemented in rtrutil.c which has functions

for establishing a connection, waiting for a connection, sending and receiving messages

through this connection.

C.2 QoS Manager

In the prototype, we implemented the SLA management, a simple QoS mapping, ad-

mission control, traffic classification, and traffic marking.

C.2.1 SLA Management

SLA is a simple manual database called netSLA.dat that is read by the gateway at

the start of operation. It can also be modified at run-time and synchronized to the running

gateway for any updates. The functions in sla db.c are used to read the netSLAs from

the database one line at a time and they are stored in an active list called netSLAchain.

Each node in the netSLAchain is of type:

sla.h:

typedef struct netSLA {

int id; // primary key

unsigned short DiffServ_class; // EF, AFx - for mapping and marking

unsigned short IntServ_class; // GS, CL - for RSVP

unsigned short *dscp; // carry the associated DSCP(s)

unsigned int dscp_length; // for more than one DSCP

double total_bw; // total bw allocated to this class

double available_bw; // available bw left for this class

unsigned short bw_sharing; // isolated, borrow, or restricted

struct netSLA *next; // for linked list of netSLAs

} netSLA_t;

The functions in app sla.c handle the application SLA (appSLA) records in the gate-

way. Each appSLA entry is of type:

sla.h:

178

typedef struct appSLA {

int id; // primary key

flowid_t flowid; // this appSLA belongs to this flow

profile_t tprof; // profile or Tspec for this flow (TBF)

QoSrequest_t appQoS; // application QoS

netSLA_t *net_class; // handle to the associated netSLA

struct appSLA *next; // for a linked list of appSLAs

} appSLA_t;

C.2.2 QoS Mapping

The main QoS mapping function is:

qos_mapping.c:

int maprequest(QoSrequest_t req, profile_t prof, flowid_t flow)

which is supposed to perform the mapping between application QoS requests and network

classes. Currently, this function calls directly the SLA manager to handle the requests.

C.2.3 Admission Control

On of the important functions of the QoS Manager is Admission Control. The typical

sequence of processing a QoS request from an end-host is depicted in Figure C.1 in terms

of invoked modules inside the QoS Manager. The module cqossig is responsible for ac-

cepting host QoS requests, and it passes the request to theqos mapping::install qos

function after performing validity checks. The qos mapping module installs a set of

packet classifiers, packet markers and the necessary traffic conditioning blocks for the ad-

mitted request. Choosing a suitable network service class for the request is done inside

the sla manager which periodically updates network and application SLA (netSLA and

appSLA, respectively) databases. Before the requested flow(s) can be admitted, the e2e QoS

verification is done via rsvp snd – it communicates with a co-located RSVP daemon to

start a RSVP signaling session. Once the RSVP session is complete, the original signaling

process traces back and replies to host through a call-back function called back to host

179

Host
cqossig

back_to_host

install_qos
maprequest

map_return

sla_manager

e2e_admission
_return

rsvp_admission

rsvp_admission
_return

rsvpd
(RSVP daemon)

qos_signaling

qos_mapping

sla_manager

SLA
DB

marking

PATH

RESV

rsvp_snd

Figure C.1: Sequence of operations inside Gateway

with either an admission or a rejection decision .

C.2.4 Traffic Marking

Packet markers are installed at the end of the traffic control chain. The marker uses the

DSCP assigned to the flow from the corresponding netSLA. Currently, we implement three

marking algorithms for AF: two rate Three-Color Marker (trTCM), Time Sliding Window

(TSW), and Equation Based Marking (EBM). For EF traffic, a single rate two color marker

is used which is simply using a single token bucket filter to compare input packets against

a rate and a burst size. It marks in-profile packets as EF and leaves out-of-profile packets

unmarked.

Algorithmic packet markers are implemented as part of the Linux kernel traffic con-

trol. New queueing discipline (QDisc) called “dsmarker” implements several marking al-

gorithms for both EF and AF. A specific marker type, and hence a specific algorithm, is

chosen at the time of marker instantiation. The file sch dsmarker.c contains the defi-

nition and functions of the dsmarker QDisc module. The functions:

static int dsmarker_enqueue(struct sk_buff *skb,struct Qdisc *sch)

static struct sk_buff *dsmarker_dequeue(struct Qdisc *sch)

add and remove packets from the QDisc. The latter function calls one of the following

markers:

int TCM_MarkPacket(struct sk_buff *skb, struct Qdisc *sch);

int TSW_MarkPacket(struct sk_buff *skb, struct Qdisc *sch);

180

int EBM_MarkPacket(struct sk_buff *skb, struct Qdisc *sch);

int EFM_MarkPacket(struct sk_buff *skb, struct Qdisc *sch);

and upon return, it changes the DS-field of the IP packet’s headers using the kernel function:

ipv4_get_dsfield(skb->nh.iph);

C.2.5 Traffic Classifications and Control

The data plane of the QoS Manager employs the required traffic policing and condition-

ing to do traffic control. Token Bucket Filters are used for traffic policing. After admitting

a flow, the gateway installs a traffic classifier based on the flow identifier of the flow sent

in the QoS Agent’s request message. The traffic policer and appropriate markers are in-

stalled based on the traffic profile (Tprof) of the flow sent in the request. Traffic policers

and markers are installed on a per-flow basis. This per-flow chain can be installed on the

ingress or the egress interface of the QoS Manager device, if allowed. An optional func-

tionality of the data plane is to implement PHBs to act as a first router for the application

traffic. This is not required unless in a small-scale deployment scenarios where there is no

DiffServ-enabled routers in the interconnecting network. PHBs are installed on the egress

interface of the manager device.

When the QoS Manager starts, it installs the basic tree of traffic control which will hold

branches for each new admitted flow. The Gateway creates the root of the tree which has a

CBQ packet scheduler.

core.c:

send_req_qdisc_cbq()

Then for each flow, a new branch is created in the tree that defines a CBQ class which

carries a u32 classifier, followed by a policer, then followed by a marker.

qos_mapping.c:

181

send_req_class_cbq()

send_req_filter_u32_IPflow()

send_req_qdisc_dsmarker()

182

BIBLIOGRAPHY

183

BIBLIOGRAPHY

[1] The Linux Netfilter Project. http://www.netfilter.org.

[2] Windows 2000 Features in Support of Differentiated Services, July 2000. White
paper, http://www.microsoft.com/TechNet/win2000/win2ksrv/diffserv.asp.

[3] T. Abdelzaher, K.G. Shin, and N. Bhatti. Performance Guarantees for Web Server
End-Systems: A Control-Theoretical Approach. IEEE Trans. on Parallel and Dis-
tributed Systems, 13(1):80–96, 2002.

[4] T.F. Abdelzaher. QoS Adaptation in Real-Time Systems. Ph.D. Thesis, The Univer-
sity of Michigan, Ann Arbor, 1999.

[5] W. Almesberger. Linux Network Traffic Control - Implementation Overview. In
Proceedings of the 5th Annual Linux Expo, May 1999.

[6] W. Almesberger, J. H. Salim, and A. Kuznetsov. Differentiated Services on Linux.
Internet draft, work on progress, draft-almesberger-wajhak-diffserv-linux-01.txt,
IETF, June 1999.

[7] Kendall E. Atkinson. An Introduction to Numerical Analysis. John Wiley and Sons,
Inc., New York, 2nd ed., 1989.

[8] D. Bansal, J.Q. Bao, and W.C. Lee. QoS-Enabled Residential Gateway Architecture.
IEEE Communications Magazine, April 2003.

[9] J. Bennett and Hui Zhang. Hierarchical Packet Fair Queueing Algorithms. In Proc.
of the ACM SIGCOMM’96, August 1996.

[10] J. C. Bennett, K. Benson, A. Charny, W. F. Courtney, and J.-Y. Le Boudec. Delay
jitter bounds and packet scale rate guarantee for expedited forwarding. IEEE/ACM
Transactions on Networking, 10(4), August 2002.

[11] Y. Bernet et al. A Framework for Integrated Services Operation over DiffServ Net-
works. RFC 2998, IETF, November 2000.

[12] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, 1992.

[13] S. Blake, D. Black, M. Carlson, E. Davis, Z. Wang, and W. Weiss. An Architecture
for Differentiated Services. RFC 2475, IETF, December 1998.

184

[14] T. Bonald, M. May, and J. Bolot. Analytic Evaluation of RED Performance. In
Proceedings of IEEE INFOCOM’00, Tel-Aviv, Israel, March 2000.

[15] D.P. Bovet and M. Cesati. Understanding the Linux Kernel, 2nd ed. O’Reilly, 2002.

[16] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture:
an Overview. RFC 1633, IETF, June 1994.

[17] R. Braden et al. Resource ReSerVation Protocol(RSVP) – Version 1 Functional
Specification. RFC 2205, IETF, September 1997.

[18] R. Braden and D. Hoffman. RAPI – An RSVP Application Programming Inter-
face (Version 5). Work in progress, internet-draft, draft-ietf-rsvp-rapi-01.ps, IETF,
February 1999.

[19] B. Carpenter and K. Nichols. A Bulk Handling Per-Domain Behavior for Differ-
entiated Services. Work in progress, internet-draft, draft-ietf-diffserv-pdb-bh-02.txt,
IETF, January 2001.

[20] B.E. Carpenter and K. Nichols. Differentiated Services in the Internet. Proceedings
of the IEEE, 90(9):1479–1494, September 2002.

[21] C Cetinkaya and E.W. Knightly. Egress Admission Control. In Proceedings of IEEE
INFOCOM’00, Tel-Aviv, Israel, March 2000.

[22] A. Charny and J.-Y. Le Boudec. Delay bounds in a network with aggregate schedul-
ing. In Proc. 1st Int. Workshop Quality of Future Internet Services (QofIS’2000),
Berlin, Germany, September 2000.

[23] K. Cho. Managing Traffic with ALTQ. In Proceedings of USENIX’99, Monterey,
CA, June 1999.

[24] D. Clark and W. Fang. Explicit Allocation of Best-Effort Packet Delivery Service.
IEEE/ACM Transactions on Networking, 6(4):362–373, August 1998.

[25] D. Clark, S. Shenker, and L. Zhang. Supporting Real-Time Applications in an Inte-
grated Services Packet Networks: Architecture and Mechanism. In Proceedings of
ACM SIGCOMM’92, Baltimore, MD, August 1992.

[26] D. D. Clark. The Design Philosophy of the DARPA Internet Protocols. In Proceed-
ings of SIGCOMM’88, Stanford, CA, August 1988.

[27] Allot Communications. NetEnforcer. http://www.allot.com.

[28] R.L. Cruz. A Calculus for Network Delay, Part I: Network Elements in Isolation.
IEEE Transactions on Information Theory, 37(1):114–131, January 1991.

[29] B. Davie, A. Charny, J. Bennet, K. Benson, J. Bouded, W. Courtney, S. Davari,
V. Firoiu, and D. Stiliadis. An Expedited Forwarding PHB (per-hop behavior). RFC
3246, IETF, March 2002.

185

[30] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing
Algorithm. In Proceedings of the ACM SIGCOMM’89, Austin, Texas, September
1989.

[31] M. El-Gendy and K.G. Shin. DQM: Delay-Controlled Active Queue Management.
In submitted to IEEE Infocom’06, Barcelona, Spain, 2005.

[32] M. El-Gendy, K.G. Shin, and H. Fathy. CONNET: Self-Controlled Access Links
for Delay and Jitter Requirements. In Proceedings of International Conference on
Network Protocols (ICNP’05), Boston, MA, to appear, Nov. 2005.

[33] M.A. El-Gendy, A. Bose, S. Park, and K.G. Shin. Paving hte First Mile for QoS-
dependent Applications and Appliances. In Proc. of the 12th International Workshop
on Quality of Service (IWQoS’04), Montreal, Canada, June 2004.

[34] M.A. El-Gendy, A. Bose, and K.G. Shin. Evolution of the Internet QoS and Sup-
port of Soft Real-Time Applications. Invited paper, Proceedings of the IEEE,
91(7):1086–1104, July 2003.

[35] M.A. El-Gendy, A. Bose, H. Wang, and K.G. Shin. Statistical Characterization for
Per-Hop QoS. In Proc. of the 11th International Workshop on Quality of Service
(IWQoS’03), Monterey, CA, June 2003.

[36] M.A. El-Gendy, A. Bose, H. Wang, and K.G. Shin. Statistical Modeling and Control
of Per-Hop QoS. submitted to IEEE/ACM Transactions on Networking, Dec 2004.

[37] M.A. El-Gendy and K.G. Shin. Equation-Based Packet Marking for Assured For-
warding Services. In Proceedings of IEEE INFOCOM’02, New York, NY, June 2002.

[38] M.A. El-Gendy and K.G. Shin. Assured Forwarding Fairness Using Equation-
Based Packet Marking and Packet Separation. Computer Networks, Elsevier Sci-
ence, 41(4), March 2003.

[39] W. Fang, N. Seddigh, and B. Nandy. A Time Sliding Window Three Colour Marker
(TSWTCM). Internet-draft, work in progress, draft-fang-diffserv-tc-tswtcm-01.txt,
IETF, March 2000.

[40] F. Le Faucheur et al. Multi-Protocol Label Switching (MPLS) Support of Differen-
tiated Services. RFC 3270, IETF, May 2002.

[41] W. Feng, D. Kandlur, D. Saha, and K. Shin. Adaptive Packet Marking for Main-
taining End-to-End Throughput in a Differentiated-Services Internet. IEEE/ACM
Transactions on Networking, 7(5):685–697, October 1999.

[42] W.-C. Feng, K.G. Shin, D.D. Kandlur, and D. Saha. The BLUE Active Queue Man-
agement Algorithms. IEEE/ACM Transactions on Networking, 10(4), August 2002.

[43] A. Feroz, A. Rao, and S. Kalyanaraman. A TCP-Friendly Traffic Marker for IP
Differentiated Services. In Proceedings of the IWQoS’00, Pittsburgh, 2000.

186

[44] G. Ferrari. Applying Feedback Control to QoS Management. In Proceedings of the
7th CaberNet Radicals Workshop, Bertinoro, Italy, October 2002.

[45] T. Ferrari. End-to-End Performance Analysis with Traffic Aggregation. Computer
Network Journal, Elsevier, 34(6):905–914, December 2000.

[46] T. Ferrari and P. Chimento. A Measurement-based Analysis of Expedited Forward-
ing PHB Mechanisms. In Proceedings of IWQoS’00, Pittsburgh, IEEE 00EXL00,
pages 127–137, June 2000.

[47] V. Firoiu and M. Borden. A Study of Active Queue Management for Congestion
Control. In Proceedings of IEEE INFOCOM’00, Tel-Aviv, Israel, March 2000.

[48] V. Firoiu, J.-Y. Le Boudec, D. Towsley, and Z.L. Zhang. Theories and Models for
Internet Quality of Service. Proceedings of the IEEE, 90(9):1565–1591, September
2002.

[49] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion Avoid-
ance. IEEE/ACM Transactions on Networking, 1(4):397–413, August 1993.

[50] S. Floyd and V. Jacobson. Link-Sharing and Resource Models for Packet Networks.
IEEE/ACM Transactions on Networking, 3(4):365–386, August 1995.

[51] S. Floyd and E. Kohler. Internet Research Needs Better Models. In The First Work-
shop on Hot Topics in Networks, Princeton, New Jersey, October 2002.

[52] S. Floyd, J. Padhye, and J. Widmer. Equation-Based Congestion Control for Unicast
Applications. In Proceedings of the ACM SIGCOMM’00, 2000.

[53] G.F. Franklin, J.D. Powell, and A. Emami-Naeini. Feedback Control of Dynamic
Systems. Addison-Wesley, 1995.

[54] G.F. Franklin, J.D. Powell, and M.L. Workman. Digital Control of Dynamic Systems.
Addison-Wesley, 1998.

[55] N. Gandhi, J.L. Hellerstein, S.S. Parekh, D. Tilbury, and Y. Diao. MIMO Control
of an Apache Web Server: Modeling and Controller Design. In Proceedings of
American Control Conference, May 2002.

[56] N. Giroux and S. Ganti. Quality of Service in ATM networks: state-of-the-art traffic
management. Prentice Hall, 1999.

[57] M. Goyal, A. Durresi, R. Jain, and C. Liu. Performance Analysis of Assured For-
warding. Internet-draft, work in progress, draft-goyal-diffserv-afstdy-00.txt, IETF,
February 2000.

[58] R. Guerin. Quality of Service in IP Networks, Tutorial. In Proc. of the 6th IEEE
Real-Time Technology and Applications Symposium, Washington, D.C., May 2000.

187

[59] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured Forwarding PHB
Group. RFC 2597, IETF, June 1999.

[60] J. Heinanen and R. Guerin. A Two Rate Three Color Marker. RFC 2698, IETF,
September 1999.

[61] U. Hengartner, J. Bolliger, and T. Gross. TCP Vegas revisited. In Proceedings of
IEEE INFOCOM’00, Tel-Aviv, Israel, March 2000.

[62] Z. Heying, L. Baohong, and D. Wenhua. Design of a Robust Active Queue Man-
agement Algorithm Based on Feedback Compensation. In Proceedings of ACM
SIGCOMM’03, Karlsruhe, Germany, Aug. 2003.

[63] C.V. Hollot, V. Misra, D. Towsley, and W.B. Gong. On Designing Improved Con-
trollers for AQM Routers Supporting TCP Flows. In Proceedings of IEEE INFO-
COM’01, Anchorage, Alaska, April 2001.

[64] C.V. Hollot, V. Misra, D. Towsley, and W.B. Gong. A Control Theoretic Analysis of
RED. In Proceedings of IEEE INFOCOM’02, New York, NY, June 2002.

[65] J. Ibanez and K. Nichols. Preliminary Simulation Evaluation of an Assured Service.
Internet-draft, work in progress, draft-ibanez-diffserv-assured-eval-00.txt, IETF, Au-
gust 1998.

[66] Intel. Network Processors, IXP architecture.
http://www.intel.com/design/network/products/npfamily/index.htm.

[67] V. Jacobson. Congestion Avoidance and Control. In Proceedings of ACM SIG-
COMM’88, Stanford, CA, August 1988.

[68] V. Jacobson. Congestion Avoidance and Control. In Proceedings of the ACM SIG-
COMM’88, pages 314–332, August 1988.

[69] V. Jacobson, K. Nichols, and K. Poduri. The “Virtual Wire” Per-Domain Behavior.
Work in progress, internet-draft, draft-ietf-diffserv-pdb-vw-00.txt, IETF, July 2000.

[70] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley and Sons,
Inc., 1991.

[71] S. Keshav. A Control-Theoretic Approach to Flow Control. In Proceedings of ACM
SIGCOMM’91, Zurich, Switzerland, September 1991.

[72] S. Keshav. An Engineering Approach to Computer Networking. Addison Wesley
Professional Computing Series, 1997.

[73] H. Kim. A Fair Marker. Internet-draft, work in progress, draft-kim-fairmarker-
diffserv-00.txt, IETF, April 1999.

188

[74] A. Kolarov and G. Ramamurthy. A control-theoretic approach to the design of an
explicit rate controller for ABR service. IEEE/ACM Transactions on Networking,
7(5), October 1999.

[75] C.M. Krishna and K.G. Shin. Real-Time Systems. McGraw-Hill, 1997.

[76] A. Kumar. Traffic Sensitive Active Queue Management, Dec. 2003. Masters thesis,
Worcester Polytechnic Institute.

[77] E. Kusmierek and R. Kooldi. Random Packet Marking for Differentiated Services.
UMN Technical Report TR-00-020, Dept. of Comp. Science & Eng., University of
Minnesota, 2000.

[78] M. Kuznetsov et al. A Next-Generation Optical Regional Access Networks. IEEE
Communications Magazine, 38:66–72, January 2000.

[79] LBL. Packet filter library (Libpcap). ftp://ftp.ee.lbl.gov/.

[80] D. Lee. Enhanced IP Services for Cisco Networks. Cisco Press, 1999.

[81] B. Lei and T.S. Teck A.L. Ananda. QoS-aware Residential Gateway. In Proceedings
of the 27th Annual IEEE Conference on Local Computer Networks (LCN’02), 2002.

[82] B. Li and K. Nahrstedt. A Control-Based Middleware Framework for Quality-of-
Service Adaptations. IEEE Journal on Selected Areas in Communications, 17(9),
September 1999.

[83] W. Lin, R. Zheng, and J. Hou. How to Make Assured Services More Assured. In
Proceedings of the ICNP’99, 1999.

[84] L. Ljung. System Identification: theory for the user. Prentice Hall, 2nd ed., 1999.

[85] R. Makkar et al. Empirical Study of Buffer Management Schemes for Diffserv
Assured Forwarding PHB. Technical report, Nortel Networks, May 2000.

[86] Y. Mansour and B. Patt-Shamir. Jitter Control in QoS Networks. IEEE/ACM Trans-
actions on Networking, 9(4):492–502, August 2001.

[87] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm. ACM Computer Communication Review, 27(3),
July 1997.

[88] A. Mehra, D. Verma, and R. Tewari. Policy-Based DiffServ on Internet Servers: The
AIX Approach. IEEE Internet Computing, September-October 2000.

[89] V. Misra, W.B. Gong, and D. Towsley. Fluid-Based Abalysis of a Network of AQM
Routers Supporting TCP Flows with an Applications to RED. In Proceedings of
ACM SIGCOMM’00, 2000.

189

[90] A. Mohammed et al. DiffServ Experiments: Analysis of the Premium Service Over
the Alcatel-NCSU Internet2 Testbed. In Proceedings of the 2nd European Confer-
ence on Universal Multiservice Networks ECUMN’2002, CREF, Colmar, France,
pages 124–130, April 2002.

[91] K. Nahrstedt and J.M. Smith. The QoS Broker. IEEE Multimedia Magazine, 2(1),
Spring 1996.

[92] B. Nandy, N. Seddigh, P. Pieda, and J. Ethridge. Intelligent Traffic Conditioners
for Assured Forwarding Based Differentiated Services Networks. In Proceedings of
High Performance Networking 2000 Conference, Paris, France, May 2000.

[93] J. Neter, W. Wasserman, and M. Kutner. Applied Linear Statistical Models: Regres-
sion, Analysis of Variance, and Experimental Designs. Homewood, R.D. Irwin, Inc.,
1985.

[94] Sitara Networks. QoSWorks. http://www.sitaranetworks.com.

[95] H.T. Ngin and C.K. Tham. A Control-Theoretical Approach for Achieving Fair
Bandwidth Allocations in Core-Stateless Networks. Computer Networks, Elsevier
Science, 40(6), December 2002.

[96] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Differentiated Ser-
vices Field (DS Field) in the IPv4 and IPv6 Headers. RFC 2474, IETF, December
1998.

[97] K. Nichols and B. Carpenter. Definition of Differentiated Services Per-Domain Be-
haviors and Rules for their Specifications. RFC 3086, IETF, April 2001.

[98] K. Nichols, V. Jacobson, and L. Zhang. A Two-bit Differentiated Services Architec-
ture for the Internet. RFC 2638, IETF, July 1999.

[99] NLANR. Iperf 1.1.1, February 2000. http://dast.nlanr.net/Projects/Iperf/.

[100] K. Ogata. Modern Control Engineering. Prentice-Hall, 3rd edition, 1997.

[101] P.V. Overschee and B.D. Moor. Subspace Identification For Linear Systems: Theory,
Implementation, Applications. Kluwer Academic Publishers, 1996.

[102] Packeteer. PacketShaper. http://www.packeteer.com.

[103] J. Padhye, V. Firoiu, and D. Towsley. A Stochastic Model of TCP Reno Conges-
tion Avoidance and Control. Tech. Rep. 99-02, Department of Computer Science,
University of Massachusetts, Amherst, 1999.

[104] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Throughput: A
Simple Model and its Empirical Validation. In Proceedings of ACM SIGCOMM’98,
October 1998.

190

[105] J. Padhye, J. Kurose, D. Towsley, and R. Koodli. A Model Based TCP-Friendly Rate
Control Protocol. In Proceedings of the NOSSDAV’99, June 1999.

[106] K. Papagiannaki et al. Preferential Treatment of Acknowledgment Packets in a Dif-
ferentiated Services Network. In Proceedings of the IWQoS’01, June 2001.

[107] S. Parekh et al. Using Control Theory to Achieve Service Level Objectives in Per-
formance Management. Journal of Real-Time Systems, special issue on Control-
Theoretical Approaches to Real-Time Computing, 23(1/2), July/September 2002.
Also in IFIP/IEEE Int’l Symposium on Integrated Network Management, 2001.

[108] V. Phirke, M. Claypool, and R. Kinicki. RED-Worcester - Traffic Sensitive Active
Queue Management. In Poster at the 10th IEEE International Conference on Net-
work Protocols (ICNP’02), Paris, France, Nov. 2002.

[109] J. Rezende. Assured Service Evaluation. In Proceedings of the IEEE Globecom’99,
Rio De Janiero, Brazil, December 1999.

[110] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switching Architec-
ture. RFC 3031, IETF, January 2001.

[111] A. Rubini and J. Corbet. Linux Device Drivers. O’Reilly, 2001. 2nd ed.

[112] S. Sahu, P. Nain, D. Towsley, C. Diot, and V. Firiou. On Achievable Service Differ-
entiation with token marking for TCP. In Proceedings of the ACM SIGMETRICS’00,
Santa Clara, CA, June 2000.

[113] R. Schantz et al. An Object-level Gateway Supporting Integrated-Property Quality
of Service. In Proceedings of the 2nd IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, May 1999.

[114] N. Seddigh, B. Nandy, and J. Heinanen. An Assured Rate Per-Domain Behavior for
Differentiated Services. Work in progress, internet-draft, draft-ietf-diffserv-pdb-ar-
01.txt, IETF, July 2001.

[115] N. Seddigh, B. Nandy, and P. Pieda. Bandwidth Assurance Issues for TCP flows in a
Differentiated Services Network. Proceedings of IEEE Globecom’99, March 1999.

[116] N. Seddigh, B. Nandy, and P. Pieda. Study of TCP and UDP Interaction for the AF
PHB. Internet-draft, work in progress, draft-nsbnpp-diffserv-tcpudpaf-01.txt, IETF,
August 1999.

[117] M. Shreedhar and G. Varghese. Efficient Fair Queueing using Deficit Round Robin.
In Proc. of the ACM SIGCOMM’95, 1995.

[118] Network simulator. Ns-2, University of California at Berkeley, CA. Version ns-
2.1b6, http://www.isi.edu/nsnam/ns/, Jan. 2000, and Diffserv additions to ns-2
by S. Murphy, available from http://www.teltec.dcu.ie/ murphys/ns-work/diffserv/,
May 2000.

191

[119] P. Siripongwutikorn, S. Banerjee, and D. Tipper. A Survey of Adaptive Bandwidth
Control Algorithms. IEEE Communications Surveys & Tutorials, 5(1):14–26, Third
Quarter 2003.

[120] N. Spring et al. Receiver Based Management of Low Bandwidth Access Links. In
Proceedings of IEEE INFOCOM’00, Tel-Aviv, Israel, March 2000.

[121] D.C. Steere et al. A Feedback-driven Proportion Allocation for Real-Rate Schedul-
ing. In Proceedings of Operating Systems Design and Implementation, OSDI’99,
1999.

[122] D. Stiliadis and A. Varma. Rate-Proportional Servers: A Design Methodology for
Fair Queueing Algorithms. IEEE/ACM Transactions on Networking, April 1998.

[123] D. Verma. Supporting Service Level Agreement on IP Networks. Macmillan Tech-
nology Series, 1999.

[124] D.C. Verma, H. Zhang, and D. Ferrari. Delay Jitter Control for Real-Time Com-
munication in a Packet Switching Network. In Proceedings of IEEE TriCom’91,
1991.

[125] VoIP Troubleshooter. http://www.voiptroubleshooter.com/problems/access.html.

[126] M. Vojnovic and J.-Y Le Boudec. Stochastic Analysis of Some Expedited Forward-
ing Networks. In proceedings of IEEE INFOCOM’02, New York, NY, June 2002.

[127] H. Wang, A. Bose, M. El-Gendy, and K.G. Shin. IP Easy-pass: Edge Resource
Access Control. In Proceedings of IEEE Infocom’04, Hong Kong, Mar. 2004.

[128] H. Wang, A. Bose, M. El-Gendy, and K.G. Shin. IP Easy-pass: Edge Resource
Access Control. IEEE/ACM Transactions on Networking, to appear, Feb. 2006.

[129] Z. Wang. Internet QoS: Architecture and Mechanisms for Quality of Service. Mor-
gan Kaufmann publishers, 2001.

[130] H.-Y. Wei and Y.-D. Lin. A Survey and Measurement-Based Comparison of
Bandwidth Management Techniques. IEEE Communications Surveys & Tutorials,
5(2):10–21, Fourth Quarter 2003.

[131] J. Wroclawski. The Use of RSVP with IETF Integrated Services. RFC 2210, IETF,
September 1997.

[132] J. Wroclawski and A. Charny. Integrated Service Mappings for Differentiated
Services Networks. Work in progress, internet-draft, draft-ietf-issll-ds-map-01.txt,
IETF, August 2001.

[133] I. Yeom and A. Reddy. Modeling TCP Behavior in a Differentiated Services Net-
work. Technical report, Dept. of Electrical Engineering, Texas A & M University
(TAMU ECE), May 1999.

192

[134] H. Zhang and S. Keshav. Comparison of Rate-Based Service Disciplines. In Pro-
ceedings of ACM SIGCOMM’91, Zurich, Switzerland, September 1991.

[135] L. Zhang et al. RSVP: A New Resource ReSerVation Protocol. IEEE Networks,
September 1993.

193

