
ABSTRACT

Exploiting Unused Storage Resources to Enhance Systems’ Energy

Efficiency, Performance, and Fault-Tolerance

by

Hai Huang

Chair: Kang G. Shin

The invention of better fabrication materials and processes in solid-state devices has

led to unprecedented technological breakthroughs in computer hardware. Today’s system

software, however, often cannot take full advantage of the hardware’s rapidly improving

capabilities, thus resulting in idling resources, e.g., unoccupied memory and disk space. To

make hardware operate more efficiently and to reduce the amount of idle resources, this

thesis proposes several techniques that can harness such resources to the benefit of users.

Although there are many different types of hardware resources, this thesis focuses on

the reclamation of idle resources in the storage hierarchy.First, we implemented a pure

software technique to reduce the power dissipation of main memory. By aggregating un-

mapped and unused memory pages and powering down unused memory ranks, a signifi-

cant amount of energy can be saved with little or no performance degradation. Next, we

explored several architectural-level solutions that can more aggressively reduce energy, but

at the expense of performance.

We also developed techniques to exploit unused disk capacity to improve disks’ perfor-

mance and energy-efficiency. These techniques are realizedin our implementation of the

Free Space File System (FS2). Unlike traditional file systems where extra disk space is not

used, FS2 actively makes use of it to hold replicas of temporally-related data blocks that

were poorly placed by the underlying file system. Using contiguous regions of free disk

space to place related data blocks closer to one another enables disk heads to work more

efficiently.

Free disk space may also be used to enhance the fault-tolerance of disks. The placement

of replicas is shown to be critical to both the fault-tolerance and performance of file systems

that make use of replicas. However, without a thorough understanding of how disks fail

and how data become corrupted when failures occur, good dataplacement strategies are

difficult to devise. We studied a large number of failed disksand analyzed their failure

characteristics. This characterization study will help design more fault-tolerant file systems

that can take advantage of today’s large capacity hard drives.

ii

Exploiting Unused Storage Resources to Enhance Systems’

Energy Efficiency, Performance, and Fault-Tolerance

by

Hai Huang

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2006

Doctoral Committee:
Professor Kang G. Shin, Chair
Professor Peter Chen
Associate Professor Dawn Tilbury
Assistant Professor Jason Flinn

c© Hai Huang 2006
All Rights Reserved

To my parents.

ii

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Professor Kang G. Shin, for his guidance and

support during my six years at U of M. This work would not be possible without his enor-

mous amount of patience and understanding, for which, I am deeply grateful. I would also

like to thank Professors Peter M. Chen, Jason Flinn, and DawnTilbury for serving on my

thesis committee.

I am most indebted to my parents, my mother Mei L. Jin and my father Yong K. Huang,

who have stood by me from the beginning and supported me with unconditional love.

During my six years of graduate school, in spite of their longdrives across states and some

bad weather conditions, they would come and visit me very often, just to encourage me to

keep going. This thesis is dedicated to them.

I would also like to express my sincere thanks to all my officemates—those who are

still here and those who have already left, for their friendship. I would like to especially

thank Babu Pillai for his help during my early years in graduate school and collaboration

on several projects, John Reumann for being my technical sounding board, Hani Jamjoom,

Cheng Jin, Haining Wang, Cong Yu, Zhiheng Wang, Songkuk Kim,Howard Tsai, Mo-

hamed El Gendy, Jian Wu, Wei Sun, Zhigang Chen, and Jisoo Yang, just for being good

friends.

Finally, I would like to thank my fianćee, Xiaoyu Jia, for her patience, tolerance, and

constant encouragement. Having her with me has made this journey much less painful and

a lot more fun.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . x

CHAPTERS

1 Introduction . 15
1.1 Resource-Rich Hardware . 15
1.2 Primary Research Contributions 19

1.2.1 Energy Management . 19
1.2.2 Performance Improvement 23
1.2.3 Fault-Tolerance Enhancement 23

1.3 Thesis Overview and Organization 24

2 Power-Aware Virtual Memory . 26
2.1 Motivation . 26
2.2 Memory System Model . 27

2.2.1 Dynamic Random Access Memory 28
2.2.2 Double-Data Rate DRAM 29

2.3 Power-Aware Virtual Memory . 32
2.3.1 Tracking Active Ranks 33
2.3.2 Reducing Active Set Size 34
2.3.3 A NUMA Management Layer 35
2.3.4 Hiding Latency . 36

2.4 PAVM Implementation . 38
2.4.1 Initial Implementation . 38
2.4.2 Shared Memory Issues 40
2.4.3 Aggregation of Shared Libraries 42
2.4.4 Page Migration . 44
2.4.5 Reducing Migration Overhead 46

2.5 Evaluation . 47

iv

2.5.1 Simulation Setup . 48
2.5.2 SPEC Benchmarks . 49
2.5.3 Power Management Techniques 51
2.5.4 Results . 52

2.6 Discussion: DMA and Kernel Threads 56
2.7 Conclusions . 57

3 Software-Directed Memory Power Management 59
3.1 Motivation . 59
3.2 Overview . 60
3.3 PMU Architecture . 61

3.3.1 Design of a Context-Aware PMU 64
3.3.2 Cooperation with PAVM 67
3.3.3 Summary . 67

3.4 Evaluation . 68
3.4.1 Synthetic Workload . 68
3.4.2 SPEC Benchmarks . 74
3.4.3 Sensitivity Analysis . 78

3.5 Conclusions . 79

4 Active Memory-Traffic Reshaping .81
4.1 Motivation . 81
4.2 Memory Interleaving . 82
4.3 Active vs. Passive Power Management 84
4.4 Memory Traffic Reshaping . 86

4.4.1 Hot Ranks and Cold Ranks 87
4.4.2 Reducing Migration Overhead 88
4.4.3 Implementation . 90

4.5 Evaluation . 90
4.5.1 Rank Interleaving . 91
4.5.2 Memory Traffic Reshaping 93

4.6 Conclusions . 97

5 FS2: Free Space File System . 98
5.1 Motivation . 98

5.1.1 Motivating Example . 99
5.1.2 Dynamic Management of Disk Layout 101

5.2 Background . 104
5.2.1 Mechanical Components 104
5.2.2 Controller Components 107
5.2.3 Performance, Fault-Tolerance, and Power 107

5.3 Design . 109
5.3.1 Availability of Free Disk Space 110
5.3.2 Block Replication . 112
5.3.3 Keeping Track of Replicas 113

v

5.4 Prototype . 115
5.4.1 Block Device Implementation 115
5.4.2 File System Implementation 118
5.4.3 User-level Tools . 119

5.5 Experimental Evaluation . 120
5.5.1 Experimental Setup . 121
5.5.2 Evaluation Methodology 121
5.5.3 The TPC-W Benchmark 124
5.5.4 CVS . 132
5.5.5 Starting X Server and KDE 133
5.5.6 SURGE . 134

5.6 Discussion . 135
5.6.1 Degree of Replication . 135
5.6.2 Reducing Replication Overhead 136
5.6.3 Multi-Disk Issues . 136
5.6.4 Journaling File System 137

5.7 Conclusions . 137

6 Disk Failure Characterization .. 139
6.1 Motivation . 139
6.2 Probing for Physical Geometry 142
6.3 A Case Study of Failed Disks . 145

6.3.1 Overview . 146
6.3.2 IBM Deskstar 75GXP . 148
6.3.3 IBM Ultrastar 36LZX . 155
6.3.4 Western Digital Caviar 205BA 157
6.3.5 Western Digital Caviar WD400BB 158
6.3.6 Maxtor 4K020H1 . 159
6.3.7 Quantum Fireball LCT10 160
6.3.8 Quantum Fireball CX10.2A 162

6.4 Conclusions . 163

7 Related Work . 165
7.1 Energy . 165

7.1.1 Microprocessor . 165
7.1.2 Disk . 166
7.1.3 Memory . 166
7.1.4 Wireless Device . 168
7.1.5 System . 168

7.2 Performance . 169
7.2.1 Microprocessor . 169
7.2.2 Disk . 169
7.2.3 Graphics Processor . 171

7.3 Fault-Tolerance . 172
7.3.1 Disk . 172

vi

8 Conclusions and Future Work . 173
8.1 Conclusions . 173
8.2 Future Work . 174

BIBLIOGRAPHY . 176

vii

LIST OF TABLES

Table
1.1 Processor trend [95]. .16
1.2 DRAM trend [95]. 16
1.3 Magnetic disk trend [95]. .. 17
1.4 Local Area Network trend [95]. .. . 17
2.1 A snapshot of processes’ rank usage pattern using the primitive implemen-

tation of PAVM. The notationa(b) indicates a process has b pages allocated
on an active ranka. 41

2.2 Effect of aggregating pages used by DLLs. 43
2.3 Effect of DLL aggregation with page migration. 45
2.4 System parameters used in Mambo. All cache lines are 128 Bytes long. . . 49
2.5 Summary of the low memory-intensive and high memory-intensive work-

loads. SPECjbb is ran with 8 warehouses, each spawned as a separate Java
thread. 51

2.6 Summary of the low memory-intensive workload. 56
2.7 Summary of the high memory-intensive workload. 56
3.1 System parameters used in Mambo for running the synthetic workload. All

cache lines are 128 Bytes long. 69
3.2 Summary of the synthetic benchmark. 72
3.3 Summary of the low memory-intensive workload. 74
3.4 Summary of the high memory-intensive workload. 75
3.5 Summary of the mixed workloads. SPECjbb is ran with 8 warehouses, each

spawned as a separate Java thread. .77
3.6 Summary of Mixed workload #1. All timings are in unit of cycles. 78
3.7 Summary of mixed workload #2. All timings are in unit of cycles. 78
3.8 Summary of Mixed workload #3. All timings are in unit of cycles. 79
3.9 Summary of Mixed workload #4. All timings are in unit of cycles. 79
3.10 Comparing HW-only against HW–SW when varying the window size. . . . 80
4.1 Shows what percentage of memory pages is responsible for75%, 90%,

95% or 99% of all memory accesses. 88
4.2 Comparing rank interleave schemes for NOPM. 93

viii

4.3 Comparing rank interleave schemes when power is managedby HW. 93
4.4 Summary of the energy and performance results for the lowmemory-intensive

workload. 94
4.5 Summary of the energy and performance results for the high memory-

intensive workload. 94
5.1 System specification of the testing machine. 121
5.2 For the TPC-W benchmark, this table shows percentage improvement in

performance and energy-consumption for each disk access, with respect to
the Ext2 file system, where the disk was busy 31% of the time. 126

5.3 A summary of results for the CVS update command. The disk was busy
82% of the time on Ext2. 132

5.4 A summary of results for starting X server and KDE windowsmanager.
The disk was busy 37% of the time on Ext2. 133

5.5 A summary of results for running SURGE. The disk was busy 13% of the
time on Ext2. 135

6.1 Sectors-per-track probed for an IBM Ultrastar disk. From sector 0 to 503,
we write 2 sectors at a time and find that sector 503 is a track boundary. We
then make the assumption that the following tracks also have504 sectors.
Instead of writing sequentially, we write only to the assumed boundary
region. If we guessed correctly, we can leap ahead and quickly finish the
probing process. 144

6.2 IBM 75GXP: Disk specification. .. 148
6.3 IBM 75GXP: disk physical geometry. 149
6.4 IBM 75GXP: A sample mapping of bad sectors to their track.. 152
6.5 IBM 36LZX: Disk specification. .. 155
6.6 WD 205BA: Disk specification. .157
6.7 WD 400BB: disk specification. .. 158
6.8 WD 400BB: A sample mapping of bad sectors to their track and surface. . . 159
6.9 Maxtor 4K020H1: Disk specification. 160
6.10 Quantum LCT10: Disk specification. 161
6.11 Quantum CX10.2A: Disk specification. 162
6.12 Quantum CX10.2A: a sample mapping of defective sectorsto their track

and recording surface. 163

ix

LIST OF FIGURES

Figure
1.1 This figure shows a hierarchy of storage components. Components at the

top are fast to access and small in size. Towards the bottom, components
have lower performance, however with larger capacity and lower cost. . . . 21

2.1 Interaction of memory with the rest of the system. 28
2.2 An overview of DRAM architecture with a magnified view of asingle

DRAM cell composed of a transistor-capacitor pair. 29
2.3 A memory module, or a DIMM, composed of 2 ranks, 8 devices per rank,

and each of which is quad-banked. 30
2.4 (a) Power dissipation at each power state and the delay totransition be-

tween these states for a single 512-Mbit DDR device. (b) Power dissipation
of a TI CDCVF857 PLL device (one per DIMM) and a TI SN74SSTV32867
register. 31

2.5 Cumulative distribution of context switch times. 38
2.6 (a) Process P1 tries to access a page in libc, which is not currently in mem-

ory. (b) Demand paging in P1’s context brings the accessed page into mem-
ory and into P1’s active rank (Rank 0). (c) When process P2 tries to access
the same page, the page is simply mapped to P2’s address spacewithout
going through the page allocator. As a result, P2’s active set now will need
to also include Rank 0. 42

2.7 Cumulative distribution function of process life times. 46
2.8 Detailed DDR state machine that we simulate in our memorysimulator.

Some minor states and transitions are omitted from this graph for better
viewing. 48

2.9 Description of the threshold prediction algorithm. Threshold value of each
rank is determined periodically based on previously observed memory ac-
cess patterns. For convenience, we choose this periodicityto be 7.8µsec,
i.e., memory refresh interval for the memory devices we are simulating in
this study.ThMax is currently set to 64 timestREFI. 53

2.10 (a) Instantaneous power dissipation for the low memory-intensive SPEC workload.
(b) Instantaneous power dissipation for the high memory-intensive SPEC workload.54

3.1 Architectural overview of the software-directed power-management system. 60

x

3.2 Architecture of a generic PMU. .. . 62
3.3 An example showing how threshold is used to manage power for the mem-

ory. Arrows indicate read or write memory accesses. 63
3.4 Inter-arrival time observed on two different ranks (or nodes). 63
3.5 (a) Inter-arrival time between consecutive memory requests observed in

two different processes on the same memory rank. (b) Architecture of the
process-aware PMU. 65

3.6 An example that gives some intuitions about why it is beneficial to make
the memory controller context-aware. 66

3.7 The first column gives the instantaneous power for a zoomed-in portion of
the synthetic workload when using (a) NOPM, (b) IPD, (c) ISR,(d) HW,
and (e) HW–SW. The second column shows the breakdown of the average
power dissipated. 71

3.8 (a) Instantaneous power for the low memory-intensive SPEC workload. (b)
Instantaneous power for the high memory-intensive SPEC workload. 73

3.9 Comparing power dissipated by HW and HW–SW techniques. Power is
normalized to HW’s power dissipation for (a) low memory-intensive work-
load and (b) high memory-intensive workload. 74

3.10 Comparing power management techniques using thePower × Delay1 × Delay2
metric for (a) the low memory-intensive workload and (b) thehigh memory-
intensive workload. 75

3.11 (a) Instantaneous power for the Mixed #1 workload. (b) Instantaneous
power for the Mixed #2 workload. (c) Instantaneous power forthe Mixed
#3 workload. (d) Instantaneous power for the Mixed #4 workload. 76

4.1 (a) Bank-fill interleave: consecutive cache lines (CL) are sequenced on the
same bank until the bank is full. (b) Bank-spread interleave: consecutive
cache lines are round-robined across the banks. 82

4.2 (a) Rank-fill interleave: consecutive cache lines (CL) are sequenced on the
same rank until the rank is full. (b) Rank-spread interleave: consecutive
cache lines are round-robined across the ranks. 83

4.3 An example that shows two bursts of sequential accesses in a memory system
with 4 ranks. Using rank-fill interleave, there are usually more and longer idle
periods between memory accesses that can be used for saving energy, whereas in
the rank-spread case, each time a burst of sequential memoryrequests occurs, all
the ranks are touched, thus making the average idle time smaller. However, when
performing power management, longer idle times are crucialto have for entering
some of the deep power-saving states.. 84

4.4 Breakdown of the energy consumed by DRAM. 85
4.5 In the first case (above figure), the gaps between consecutive memory ac-

cesses are too short for entering low-power states to have any benefits. In
the second case, by delaying and batching memory accesses, we can create
longer idle periods, thus allowing power management to takeadvantage of
some deeper power-saving states. .. 85

xi

4.6 An example showing that if memory traffic is left unshaped, power man-
agement cannot take full advantage of deeper power-saving states since
most idle periods are too short. .86

4.7 An example showing that if memory traffic can be loosely controlled (e.g.,
by migrating pages), some ranks will, as a result, have much longer idle
periods, thus allowing the use of the deeper power-saving states. 87

4.8 Number of times each physical page in the memory is accessed for low
memory-intensive workload and high memory-intensive workload. These
workloads are described in Section 4.5. 89

4.9 Part (a) shows idle time characteristic of a hot rank before (left) and after (right)
migrating frequently accessed pages. Part (b) shows idle time characteristic of a
cold rank before (left) and after (right) migrating frequently accessed pages. These
are derived from the low memory-intensive workload. High memory-intensive
workload gives similar result, thus is omitted here.. 92

4.10 Effects of actively reshaping memory traffic by migrating 1%, 5%, and
10% of pages for the low memory-intensive workload (above) and high
memory-intensive workload (below). 95

5.1 Part (a) shows disk sectors that were accessed when executing a cvs -q
updatecommand within a CVS local directory containing the Linux 2.6.7
source code. Part (b) shows the disk head movement within a 1-second
window of the disk trace shown in part (a). 100

5.2 Breakdown of the disk access time in 4 drives, ranging from a top-of-the-
line 15000-RPM SCSI drive to a slow 5400-RPM IDE laptop drive. 103

5.3 This figure shows the amount of free disk space available on 242 disks from
22 public server machines. 110

5.4 Files are accessed in the order of 0, 1, and 2. Due to the long inter-file dis-
tance between File 1 and the other files, long seeks would result if accesses
to these files are interleaved. In the bottom figure, we show how the seek
distance (time) could be reduced when File 1 is replicated using the free
disk space near the other two files. .112

5.5 This figure shows a more detailed disk layout of File 1 shown in Figure 5.4.
As file systems tend to place data and their meta-data (and also related data
blocks) close to one another, intra-file seek distance (time) is usually short.
However, as these disk blocks do not necessarily have to be consecutive,
rotational delay will become a more important factor. In thelower portion
of the figure, we show how rotational delay can be reduced by replicat-
ing File 1 and placing its meta-data and data in the order thatthey were
accessed at runtime. 113

5.6 A detailed view of the hash data structure used to keep track of replicas.
Hashing is used to speed up the lookup of replicas. Replicas that are close
to one another on disk also have their hash entries close to one another in
memory, so a contiguous range of replicas can be quickly invalidated and
released to users when needed. 115

xii

5.7 The testbed consists a testing machine for running workloads and a moni-
toring machine for collecting disk traces. Each machine is equipped with
2 Ethernet cards—one for running workloads and one for collecting disk
traces usingnetconsole. 120

5.8 This figure shows logical seek distance versus access time for a Western
Digital SE 80GB 7200 RPM drive. Each point in the graph represents a
recorded disk access. 122

5.9 Plots (a1–c1) show the disk sectors that were accessed for the duration of a
TPC-W run. Plots (a2–c2) show the measured access times for each request
with respect to the seek distance for the TPC-W benchmark. Plots a, b, and
c correspond to the results collected on Ext2, FS2-static, and FS2-dynamic
file systems. 125

5.10 For the TPC-W benchmark, part (a) shows the average response time of
each transaction perceived by clients. Part (b) shows the average disk ac-
cess time and its breakdown. Part (c) shows the average energy consumed
by each disk access and its breakdown. 126

5.11 For the TPC-W benchmark, parts (a–c) show disk access time for the 1st,
the 2nd, and the 7th FS2-dynamic run. 127

5.12 Plots (a) and (b) show the zoom-in section of Figures 5.9(b1) and (c1),
respectively. 129

5.13 Results for the CVS update command: (a) total runtime, (b) average access
time, and (c) energy consumed per access. 131

5.14 Results for starting X server and KDE windows manager: (a) total runtime,
(b) average access time, and (c) energy consumed per access.. 133

5.15 Results for SURGE: (a) average response time, (b) average access time,
and (c) energy consumed per access. .135

6.1 The proposed algorithm to quickly and accurately probe for the sectors-
per-track information. Some boundary cases are not included to make the
algorithm more succinct and readable. 143

6.2 A complete extraction of sectors-per-track for the entire IBM Ultrastar disk. 145
6.3 Categorizing the 60 failed disks by their manufacturers. 146
6.4 IBM 75GXP: The disk’s list of bad sectors. 149
6.5 IBM 75GXP: A mapping of bad sectors to recording surfacesusing the

published physical geometry. .150
6.6 IBM 75GXP: Comparing theactualphysical geometry (Probed) of the disk

with its published data (Spec). .151
6.7 IBM 75GXP: A mapping of bad sectors to recording surfacesusing the

actual physical geometry of the disk. 151
6.8 IBM 75GXP: A sample of bad sectors’ sector offsets. 153
6.9 Using sector offset difference to predict sectors’ relative location. 153
6.10 IBM 75GXP: Difference between bad sectors’ sector offsets. 154
6.11 IBM 36LZX: A list of bad sectors. .. . 155

xiii

6.12 IBM 36LZX: Mapping of bad sectors to recording surfacesusing the actual
physical geometry of the disk. 156

6.13 IBM 36LZX: Sector offsets of defective sectors. 156
6.14 IBM 36LZX: A histogram of sector offsets—smaller ones dominate. 157
6.15 WD 205BA: (a) A list of bad sectors. (b) Mapping of the badsectors to

recording surfaces. 158
6.16 WD 400BB: (a) A list of bad sectors. (b) Mapping of the badsectors to

recording surfaces. 159
6.17 WD 400BB: Sector offset differences of bad sectors. 160
6.18 Maxtor 4K020H1: A list of bad sectors on each of the Maxtor disks. 161
6.19 Quantum LCT10: (a) A list of bad sectors. (b) Mapping of the bad sectors

to recording surfaces. 161
6.20 Quantum CX10.2A: (a) A list of bad sectors. (b) Mapping of the bad sec-

tors to recording surfaces. .162

xiv

CHAPTER 1

Introduction

In 1981, the first IBM Personal Computer was introduced and ran on a 4.77 MHz Intel

8088 microprocessor with 16 KB of memory and one floppy drive.It cost $1,565, which

would be nearly $4,000 today after inflation. We have come a long way since then. Con-

tinual innovation in computer hardware, at a rate closely following Moore’s Law, has made

high-performance / low-cost computers widely available. As a result, computers of all

forms—ranging from small cellphones and PDAs to large server farms and mainframes—

have integrated into every aspect of our daily lives.

Hardware’s progress generally exceeds that of software, but its capabilities are often far

from being fully utilized. As a result, the additional resources made available in modern

hardware are sometimes wasted. This thesis will present thetheory and practice of man-

aging idle resources in systems. Before I describe how the excessive hardware resources

can be utilized, I will first recap the significant progress that is made in computer hardware

during the past two decades and the amount of additional resources that are made available

as a result.

1.1 Resource-Rich Hardware

Leading the way is the microprocessor. In the past two decades, microprocessor core

frequency has increased by three orders-of-magnitude. Important architectural innovations

such as pipelining, superscalar, speculative executive, branch prediction, hyper-threading,

15

Year 1982 1985 1989 1993 1997 2001 2005

CPU 16-bit 32-bit 5-stage, FPU, 2-way superscalar 3-way superscalar Superpipelined SMT, multi-core
addr/bus addr/bus on-chip I&D 64-bit bus Out-of-Order on-chip L2 64-bit addr/bus

Freq 12.5 MHz 16 MHz 25 MHz 66 MHz 200 MHz 1500 MHz 3200 MHz

Table 1.1: Processor trend [95].

and multi-core are the driving forces behind putting high-performance and low-cost pro-

cessors in modern systems. However, these architectural innovations would not be possible

without having much smaller transistors (half a billion transistors on a single die). In Ta-

ble 1.1, we summarize various generations of microprocessors.

During the time when the microprocessor was progressing by leaps and bounds, storage

devices, e.g., cache memory, dynamic RAM, magnetic devices, and flash memory, have

also made large strides. Dynamic random access memory (DRAM) is one of the most active

and volatile areas in the IT industry. Hundreds of companiescame and went, which has

made this technology sector highly competitive. This created a natural spawning ground

for innovation, shown in Table 1.2. With the recent price drop in DRAM devices, today’s

consumer-grade PC machines are commonly installed with 1 or2 GB of main memory.

Such large amount of memory is usually more than enough for typical users, but any unused

portion is often let idle and cannot benefit users in any way.

Year 1980 1983 1986 1993 1997 2000 2005

Memory DRAM Page Mode Fast Page 32b Fast Page 64b SDRAM DDR DDR2
Mbits/chip 0.06 0.25 1 16 64 256 1024
Bandwidth 13 MB/s 40 MB/s 160 MB/s 267 MB/s 640 MB/s 1600 MB/s 3200 MB/s

Table 1.2: DRAM trend [95].

It is impressive how densely today’s memory devices are packed, but compared to disks,

their density still trails behind. We show the trend of various generations of magnetic disks

in Table 1.3. In terms of capacity, the first IBM PC had only 10 MB of storage space, but

nowadays, a single disk drive is capable of storing close to 1TB of data. Transitioning

from horizontal recording to perpendicular recording, thedisk industry is expecting at least

another two orders-of-magnitude increase in recording density. Constant decrease in price-

per-gigabyte, at a rate of 60% per year, for the last 25 years,has made mass-storage in

small form-factor widely available to common users. Compared to 10 years ago, we are

much less constrained by the available disk capacity and often leave a significant amount

16

of disk capacity idle. As we will see later in this chapter, unused disk capacity is actually

a valuable resource that can be easily exploited and translated into a significant amount of

benefits perceivable to users.

Year 1983 1990 1994 1994 2003 2006

Hard Disk 3600 RPM 5400 RPM 7200 RPM 10000 RPM 15000 RPM 7200 RPM
Capacity 0.03 GB 1.4 GB 4.3 GB 9.1 GB 73.4 GB 750.0 GB

Access Time 48.3 ms 17.1 ms 12.7 ms 8.8 ms 5.7 ms 12.3 ms

Table 1.3: Magnetic disk trend [95].

Introduced in the early 90’s, flash memory was offered as an alternative to magnetic

disks in persistent storage. Having higher density than DRAM devices and better shock

resistance than magnetic disks has created a unique market for flash memory devices to

thrive. Additionally, as information can be stored withoutdissipating any power, flash

memory devices are especially attractive to small battery-powered devices. However, it

is unlikely for flash memory to replace magnetic disks in the near future as there is still

a significant gap in capacity (more than two orders-of-magnitude) between the technolo-

gies. The same argument also applies when comparing to DRAM devices as there is a

five orders-of-magnitude difference between their access time. Despite the flash mem-

ory’s small capacity, it is still rare for users to consume all the disk space. However, with

its unique I/O access characteristics and low-power property, the unused portion of flash

memory’s capacity can potentially be exploited for interesting applications.

Year 1978 1995 1999 2003

Local Area Network Ethernet Fast Ethernet Gigabit Ethernet 10 Gigabit Ethernet
Bandwidth 10 Mbps 100 Mbps 1 Gbps 10 Gbps

Delay 3000 ms 500 ms 340 ms 190 ms

Table 1.4: Local Area Network trend [95].

The Internet boom has brought over a billion people online, where most of them are

from countries in Asia, Europe, and North America [117]. Internet users can access any in-

formation imaginable and chat with friends from thousands of miles away in real-time, all

from the convenience of their home computer. As a result of the Internet boom, home net-

working equipments, e.g., Ethernet and wireless 802.11 devices, quickly became low-price

commodity items. The upward trend of Ethernet devices’ bandwidth and downward trend

of their latency are shown in Table 1.4. Many homes with Internet access are switched from

17

Plain Old Telephone Switches to Cable, ISDN, and DSL services with plenty of network

bandwidth. It makes us wonder how much of this bandwidth is actually getting utilized?

25%? 10%? 5%? Or less than 1%? Can network bandwidth be betterutilized while not

interfering with other users on the Internet?

In addition to the previously mentioned hardware, there aremany other types of under-

utilized hardware resources, and the most noticeable of them is the graphics processing unit

(GPU). GPUs are used for texture mapping and polygon rendering in 3D applications. With

their core frequency doubling roughly every 6 months [33] (even faster than the CPU’s rate

of improvement), these operations can be done at a blazing speed. However, as GPUs are

utilized by only a small number of 3-D applications, they mostly sit idle in the background.

Various interest groups are pushing for GPU manufacturers toward more general-purpose

GPU architectures with an easier programming model. This will ideally allow GPUs to be

used for general-purpose computation, but up-to-date, only a very specific set of scientific

applications is able to take advantage of these GPUs [26, 120]. This is still a research area

with many open questions and plenty of low-hanging fruits. In addition to the GPU, an

ample amount of video memory is often found in today’s video cards. Half of a gigabyte

of video memory is common, which is comparable to the size of the main memory. It is

not difficult to imagine having system software that can opportunistically take advantage

of the idle video memory as a part of the main memory when running memory-intensive

applications.

It is the aim of this thesis to reclaim unused resources for the benefit of users with a

minimal amount of their effort and interaction. Today’s systems are built from powerful

hardware components operated by fine-tuned system softwarethat can efficiently allocate

resources to running tasks. But if the running tasks are highly volatile and require a unpre-

dictable amount of resources, as in mobile devices and desktop workstations, inefficient use

of hardware resources may result. Today’s system software does not cope well with many

unused (inactive) resources. We will show in this thesis that it is critically important for

system software to manage both theactive resourcesand theinactive resource, and that the

potential benefit of utilizing the inactive resources can bequite high with low overheads.

There are some previous works done in this area, and the most widely known work is

18

the SETI@Home project [111]. SETI stands for Search for Extra-Terrestrial Intelligence,

which, as its name suggests, is used to detect life outside ofEarth by analyzing radio

signals collected by the Arecibo radio telescope. In this project, a massive amount of data

is sent to 5.2 million participants around the world connected by the Internet and then

processed by their idle CPU cycles. Besides harnessing the CPU cycles, projects such as

Farsite [28], Pastiche [16], and Samsara [17] exploit free disk space from participating

clients for distributing data across geographically different locations to implement a highly

available, reliable, and secure data storage system.

Although there are many different types of hardware resources, this thesis focuses on

the utilization of wasted resources in the storage hierarchy, and namely, memory and disk.

Using unused memory pages and disk blocks, we will show how they can be used to im-

prove systems’ energy-efficiency, performance, and fault-tolerance, with energy manage-

ment being our main focus.

1.2 Primary Research Contributions

In Section 1.2.1, we will first introduce energy management and its importance. Here,

we will briefly discuss how unused memory pages and disk blocks can be used for reducing

hardware’s energy consumption. Next, in Section 1.2.2, we will discuss how the unused

disk space can also be used for improving performance. Finally, in Section 1.2.3, fault-

tolerance techniques designed to opportunistically use the unused disk space are described.

1.2.1 Energy Management

Faster, denser, and highly integrated hardware componentsare readily available, but

unfortunately, they also dissipate a good amount of power. This causes problems in a wide

variety of systems ranging from small battery-powered embedded devices to large-scale

servers. Some of the most pressing problems in this area are discussed in the following

paragraphs.

The need to be mobile in today’s society has created a huge market for battery-powered

19

devices, e.g., cellphones, PDAs, and laptops, but this mobility is severely constrained by

the amount of battery energy these devices can carry. Despite having more power-efficient

hardware, today’s mobile devices do not necessarily have a longer operating time than some

of the older devices. Driven to meet consumers’ ever increasing needs and having to run

bloated software, vendors are packing more, and more powerful hardware into smaller and

smaller devices. Designed often for peak loads, these mobile devices are provisioned with

much more hardware resources than needed for typical usage.And the fact that battery

technology has always trailed behind hardware will only make the gap between energy

supply and demand increasingly larger.

On large-scale server systems, we are faced with a differentset of problems. These sys-

tems, including data centers, Internet service providers,and telecommunication switches,

can have a power density ranging from100W/ft2 – 300W/ft2[6], which is ten to forty

times more than the power density of typical commercial office buildings. Data from sev-

eral sources [4, 59] have indicated that the cost of electricity represents a significant portion

of the Total Cost of Ownership (TCO) in such systems. In one ofthe studies [4], it was

estimated that as much as 30–40% of the TCO in a particular data center is due to the

cost of electricity used for powering computational and cooling equipments. Furthermore,

as power dissipation becomes heat, hardware will tend to become less reliable and cause

systems to become more prone to failures.

To reduce power dissipation and improve energy-efficiency of a system—whether for

the purpose of elongating battery lifetime or for alleviating heat-related problems—we

must first have a thorough understanding of each of its subsystems so that effective power

reducing mechanisms can be deployed to target the most energy consuming parts. The stor-

age subsystem is by far one of the most power-hungry subsystems, and reducing its energy

consumption is one of our focuses in this thesis.

Storage Hierarchy Overview

A storage system is organized hierarchically as shown in Figure 1.1. Within this hier-

archy, magnetic disk and main memory are often responsible for most of its power drain.

Using custom-made circuits, it was reported in [8] that disks alone can consume more

20

C
o

s
t

C
a

p
a

c
ity

Registers

L1 Cache

L2/L3 Caches

Main Memory

Magnetic Disk

Tape Drive

Figure 1.1: This figure shows a hierarchy of storage components. Components at the top are

fast to access and small in size. Towards the bottom, components have lower performance,

however with larger capacity and lower cost.

than 50% of the total system power. This translates to as muchas 27% [100] of the total

electricity cost in a data center.

Main memory also dissipates a significant amount of power. Asreported in [75], 40%

of the total system power (excluding the power drawn by disks) in a mid-range IBM eServer

system is dissipated by the main memory. Even on small battery-powered devices, memory

and disk can also consume a significant portion of the total power—up to 20% as reported

by [84].

Main Memory

To reduce the power dissipated by main memory, we first implemented a purely software-

controlled technique, calledPower-Aware Virtual Memory(Chapter 2), where all the power-

control mechanisms are implemented in the operating system. Leveraging the rich amount

of information available in an operating system to manage power, we have shown that

power can be reduced with little or no effect on performance.This approach has the benefit

of requiring no additional hardware support beyond what is already implemented in typical

PCs, and therefore, can be easily implemented in today’s systems. However, due to some

inherent limitations of the operating system, only a coarse-grained level of monitor and

power-control can be achieved if the power is managed solelyby the system software. As a

result, many energy saving opportunities are lost. To re-capture some of the missed oppor-

21

tunities, we next implemented a software-directed hardware power management technique

(Chapter 3) in which the system software is able to provide the memory controller with a

small amount of information about the current state of the system. This enables the hard-

ware to more accurately react to the changing state of the system for the purpose of power

management. Fine-grained monitor and power-control mechanisms available only at the

hardware level are exploited. However, using only the hardware to manage power is not

sufficient as hardware has only a bottom-up and narrow view ofthe entire system. In our

design, we have the system software provide it with some additional information to prevent

it from making bad power management decisions when they can be avoided and to allow

it to make more aggressive decisions when they are safe to do so. Lastly, we implemented

a memory-traffic reshaping technique (Chapter 4) to aggressively expose idle time in main

memory with little impact on performance. This technique can complement some existing

power management techniques that rely on having long idle periods in memory devices.

Magnetic Disk

Reducing power for magnetic disks requires a very differentstrategy from that of

the main memory. Memory has a constant access time regardless of the data’s location,

whereas a disk has access times that can vary by a few orders-of-magnitude. Additionally,

memory devices can transition to a ready state from a low-power state in a few nanosec-

onds, whereas disks would take seconds or tens of seconds. Due to these differences, we

must take a different approach when designing power management techniques for disks.

It has been shown in [57, 132] that idle periods in disks are often short and scarce,

especially in server systems, thus rendering many traditional power management tech-

niques [20, 21] not applicable sometimes, as they rely on theexistence of long idle periods.

We took a different approach—an active approach to improve disks’ energy-efficiency. By

reducing the number and the travel distance of head-seek operations, which dissipate a

large amount of power, we can lower disks’ energy consumption. To do so, we selectively

replicate disk blocks that were observed to have frequentlyincurred long access times and

place their replicas to strategic disk locations. As replicas can be accessed in place of their

original data, head movements are minimized, in both their number and distance.

22

1.2.2 Performance Improvement

As mentioned in the last section, maintaining performance is critically important when

power management techniques are applied. In addition tomaintainingperformance, we

will show unused hardware resources can also be used forimprovingperformance. Specif-

ically, we studied how the free disk space can be used to improve disk performance. As

disks are often identified as one of the slowest hardware components in many systems—

with access times that can take up to tens of milliseconds—improving their performance

will significantly increase the overall performance of a system by shortening critical I/O

paths.

The same replication technique we introduced in Section 1.2.1 can also be used to

improve disks’ access time. By ways of reducing seek time androtation delay, we can

significantly cut down on the average access time. Experimental results using real-world

workloads have shown that disk drives can be much better utilized when system software

can dynamically monitor and utilize the unused disk space during runtime.

1.2.3 Fault-Tolerance Enhancement

Besides energy consumption and performance, fault-tolerance is also an important area

to improve as losing data can be extremely costly. In mission-critical applications, unpro-

tected hardware failures can even lead to more serious consequences.

In this thesis, we are mainly concerned with disk hardware failures and any data loss

that may result. It is one of the most commonly occurring hardware failures in today’s

computer systems. Disk failures come in four different flavors: firmware failure, electronic

failure, mechanical failure, and logical failure. Firmware and electronic failures are usually

completely recoverable as data are often kept intact in the aftermath. Logical failures are

usually caused by human errors or file system bugs, which are not commonly found in

production-grade operating systems. The type of disk failures that is the most destructive

and the most difficult to protect against is a mechanical failure, which often lead to a partial

and sometimes a complete loss of data on disk.

In systems with multiple disks, there are some existing fault-tolerance solutions, such

23

as Redundant Array of Inexpensive Disks (RAID) [94], which can tolerate a certain number

of disk failures without losing data by keeping additional parity information and mirroring

techniques. However, for some systems, e.g., laptops and PDAs, having multiple disks is

usually not an option due to form-factor constraints. We believe replicating important user

data and file system’s meta-data and placing the replicas on the disk itself (using its unused

disk space) is a possible method to avert unexpected data loss. However, determining

which data blocks to replicate, where to place these replicas, and how many replicas we

should maintain are all difficult decisions to make, especially when disk failures are poorly

understood.

We characterized 60 failed disks. From our observation, we believe replication should

be implemented as an integral part of file systems. This is true only when performance

and space overheads of maintaining the replicas are tolerable. Our study has shown some

interesting results that can do exactly that. Similar techniques may also be extended to

systems with multiple disks to provide additional fault-tolerance orthogonal to existing

fault-tolerance techniques.

1.3 Thesis Overview and Organization

This thesis focuses on the development of software techniques to dynamically monitor

and utilize unused storage resources for benefiting users. The advantage of this approach

is that users can more efficiently use their hardware resources. We will show benefits, such

as energy savings, performance improvements, and fault-tolerance enhancements, can be

easily attained with our approach.

In Chapter 2, we consider how to identify and aggregate unused and unmapped memory

pages in an operating system for power savings. Power-AwareVirtual Memory [62] is a

software technique realized in a Linux kernel, and it is platform-independent. Only a small

amount of code revision is needed to have it ported to anotheroperating system, machine

architecture, or memory architecture. This is the first workthat we know to consider the ef-

fects of multi-tasking, virtual memory, and low-level operating system behaviors on power

management.

24

There are many benefits associated with this software technique, but its coarse-grained

power-control and monitor mechanisms do not save as much energy as some of the pro-

posed hardware solutions (although with their own set of drawbacks). Chapter 3 discusses a

cooperative hardware-software power management technique [63] for main memory. This

cooperative technique can leverage the best of both worlds—fine-grained power-control

and monitor mechanisms available only in the memory controller and the high-level state

information about processes from the system software.

The power management techniques that we have proposed in thetwo previous chapters

are all passive-monitoring techniques, which act upon the monitored state of main memory.

In Chapter 4, we describe an active technique [61] to actively modify memory request

streams so memory devices can be allowed to go to deeper sleeping states for a longer

period of time to achieve additional energy savings.

In Chapter 5, we propose and implement the Free Space File System [60] that can

actively make use of the unused portions of disks for storingreplicated data blocks. This

technique allows disks to be utilized much more efficiently in terms of energy consumption

and I/O performance by reducing seek distance and rotational delay.

We believe intra-disk replication can improve the fault-tolerance of disks in systems

with a single disk, but the lack of information on disk failures may result in an inefficient

use of disk space for replication. We believe the characterization of disk failures described

in Chapter 6 can help design more fault-tolerant data and replica placement strategies and

allow file systems to make better use of today’s large-capacity disks.

25

CHAPTER 2

Power-Aware Virtual Memory

2.1 Motivation

Current hardware technologies allow various system components (e.g., microprocessor,

memory, hard disk) to operate at different power levels (andcorresponding performance

levels). Previous research has demonstrated that by judiciously managing power states for

each of the components subject to the workload, a significantamount of energy can be

saved. Such findings are based on the fact that many systems are designed for providing

continuous service even when they are stressed at their predeterminedpeak load. This

is usually accomplished by over-allocating resources to these systems. However, when the

system is operating at atypical load, some system resources will be under-utilized, thus cre-

ating opportunities to put some components to low-power states, or even power them off.

Subsequently, when the load increases, the relevant systemcomponents are then restored

to higher performance / power levels. Effectively, this provides performance on-demand

while conserving energy during the non-peak periods. However, due to non-negligible

delays in transitioning between an energy-saving state andan operational state, both sys-

tem performance and energy-efficiency may degrade if these transitions are not controlled

properly.

A large body of previous research concentrates on reducing the power dissipation of

processing elements in computer systems due to their high peak-power. However, using

existing techniques, a Mobile Pentium 4 processor dissipates only 1–2 W on average when

26

running typical office applications despite having a high 30W peak-power [66]. From a

software perspective, further effort to reduce power in microprocessors is likely to yield

only a diminishing marginal return. On the other hand, therehas been relatively little work

done on reducing power used by the memory. As applications are becoming more data-

centric, more power is needed to sustain a higher-capacity/performance memory system.

Unlike microprocessors, a fairly substantial amount of power is continuously dissipated by

the memory in the background independent of the current workload. Therefore, the energy

consumed by the memory is usually as much as, and sometimes more than, that of the mi-

croprocessor. In this chapter, we propose a purely software-controlled power management

technique, called Power-Aware Virtual Memory (PAVM). Implementing Power-Aware Vir-

tual Memory (PAVM) allows us to significantly reduce power dissipated by the memory but

with almost no impact on performance. Additionally, this technique requires no additional

hardware support beyond what existing hardware already provides.

The rest of this chapter is organized as follows. Section 2.2provides some background

information on various memory technologies. Here we also give the memory system model

that we use in the rest of the thesis. Section 2.3 describes our initial design of PAVM, while

Section 2.4 describes the limitations of this prototype design and the necessary modifica-

tions needed to handle the complexity of memory management and task interactions in

a real working implementation. Section 2.5 presents detailed simulation results. In Sec-

tion 2.6, we discuss limitations of the proposed technique and ways to get around them.

Finally, we conclude this chapter in Sections 2.7.

2.2 Memory System Model

Since the 1980’s, the performance gap between memory (DRAM)and processor has

been widening continuously—DRAM speed has been improving at an annual rate of only

7% while processor speed has been leaping at an annual rate of40% [129]. Frequent

interactions between memory and other I/O components, e.g., disks, networking hardware,

and video devices (shown in Figure 2.1), are making it a crucial component in the overall

performance of the system. However, since memory’s power can only be reduced when it is

27

Figure 2.1: Interaction of memory with the rest of the system.

operating at lower performance states, it is important to ensure that either this performance

degradation can be hidden or that the energy saved in the memory justifies the performance

degradation that it had caused. Before illustrating the tradeoffs between performance and

energy, we will first briefly describe the basics in DRAM technology.

2.2.1 Dynamic Random Access Memory

Dynamic Random Access Memory (DRAM) core consists large arrays of cells, each

of which is a transistor-capacitor pair as shown in Figure 2.2. To prevent electric current

leakage, each capacitor must be periodically refreshed to retain its state, making memory a

continuous energy consumer. In reality, however, energy consumed by periodic refresh is

very small as refresh rate is fairly low. Instead, most of theenergy is actually consumed by

row and column decoders, sense amplifiers, and external bus drivers, as well as the internal

drivers needed to propagate signals across large arrays of cells over very long and high

capacitance internal bit lines. To reduce power, one or moreof these subcomponents are

disabled by switching a device to a low-power state when it isnot being actively accessed.

To keep things simple, memory controller implements a simple interface that we can use to

transition memory devices to various power states, and it will take care of all the power-up

and power-down operations, and their timing constraints, thus controlling memory’s power

28

R
o

w
 D

e
co

d
e
r

Column Decoder

Sense Amplifier

Select line

B
it

lin
e

Figure 2.2: An overview of DRAM architecture with a magnifiedview of a single DRAM

cell composed of a transistor-capacitor pair.

states in the software layer is trivial. However, if a deviceis accessed while it is still in

a low-power state, a certain performance penalty, called aresynchronization cost, is in-

curred to transition the device to an active-ready state before it can be accessed again. This

non-negligible delay is the cause of performance degradation when power management is

applied to main memory, and masking it is vitally important as performance is still often

the primary metric for many systems.

The above holds true for all types of Synchronous DRAM (SDRAM) including single-

data-rate (SDR), double-data-rate (DDR), and Rambus (RDRAM). In this work, we mainly

focus on DDR as it is becoming the most-widely used memory architecture. Nevertheless,

our technique is architecture-independent and can be easily applied to other memory types.

2.2.2 Double-Data Rate DRAM

Double-Data Rate (DDR) memory is usually packaged as modules, or DIMMs, each of

which usually contains either 1, 2, or 4memory ranks, which are commonly composed of

4, 8 or 16 physical devices (shown in Figure 2.3). Each time a DIMM is accessed, 64 bits

of data are read or written. Since each device, depending on design, can only supply 4, 8,

or 16 bits at a time, multiple devices are grouped together and operate in unison to satisfy a

29

64 bits

8 bits

Bank 0
Bank 1
Bank 2
Bank 3

Module Device

Side View

Top View

Rank 1

Rank 0

Figure 2.3: A memory module, or a DIMM, composed of 2 ranks, 8 devices per rank, and

each of which is quad-banked.

64-bit memory access. This group of simultaneously accessed devices constitute a memory

rank. A rank is then divided into multiple banks (logical devices, usually 4 or 8), each of

which may be accessed individually, but cannot be power-managed separately. Therefore,

the smallest physical unit for which we can independently manage power is a single rank.

DDR architecture has many power states defined and even more possible transitions be-

tween these states [69, 88]. These states and transitions are fully simulated in our memory

simulator, which we will discuss in Section 2.5. However, for simplicity of presentation,

we only show four of these power states here—Read/Write, Standby, Powerdown, and Self

Refresh—listed in a decreasing order of power dissipation.The power dissipated in each

state and the transitional delays between them are shown in Figure 2.4(a). Note that the

power numbers shown here are per single device. Therefore, to calculate the total power

dissipated by a rank, we need to multiply this power by the number of device parts used

for each rank (for ECC DIMMs, one additional device is used per rank to hold parity bits).

For example, in a 512MB registered DIMM consisting of 8 devices in a rank, the expected

power draw values are 4.2 W, 2.2 W, 1.2 W, and 0.167 W, respectively, for the four power

states considered here. Details of these power states are asfollows.

• Read/Write: Dissipates the most amount of power, and this state is only briefly

entered when a read/write operation is in progress.

• Standby: When a rank is neither reading nor writing, Standby is the highest power

30

Pre

SR

IO

PD

ns 5tCK =

ns 5tCK =ns 5tCK =

ns 1000t XSRD =

read/write
State Power

IO Read/Write 1200 mW
PRE Precharge 137.5 mW
PD Powerdown 12.5 mW
SR Self Refresh 10 mW

(a)

PLL Power Register Power

Low-power 0.05 mW Low-power 0.025 mW
High-power 750 mW High-power 117.5 mW

(b)

Figure 2.4: (a) Power dissipation at each power state and thedelay to transition between

these states for a single 512-Mbit DDR device. (b) Power dissipation of a TI CDCVF857

PLL device (one per DIMM) and a TI SN74SSTV32867 register.

state, or the most-ready state, in which read and write operations can be initiated

immediately at the next clock edge.

• Powerdown: When this state is entered, the input clock signal is gated except for the

periodic refresh signal. I/O buffers, sense amplifiers and row/column decoders are

all deactivated in this state.

• Self refresh: In addition to all the subcomponents on a DIMM that are deactivated

in Powerdown, phase-lock loop (PLL) device and registers are also put to their cor-

responding low-power state to maximize energy savings as PLL and registers (Fig-

ure 2.4(b)) can consume a significant portion of the total energy on each DIMM.

However, when exiting Self Refresh, a 1µs delay is needed to resynchronize both

the PLL and the registers.1

1Registered memory is almost always used in server systems tobetter meet timing needs and provide
higher data integrity, and the PLL and registers are all critical components to take into account when evaluat-

31

As there is a large power difference between Standby and Powerdown / Self Refresh,

we want to minimize the time a rank stays in Standby and maximize the time it spends in

either Powerdown or Self Refresh. However, at the same time,we also want to minimize

performance degradation caused by accessing ranks that were previously put to one of the

low-power states. Therefore, determining which ranks to power down, when to power

them down, and into which low-power state to transition willsignificantly impact both

energy and performance. For the time-being, we refer to Standby as the high-power state,

and both Powerdown and Self Refresh as the low-power state. We make the distinction

between these two low-power states in Section 2.5 and illustrate how to best utilize each to

maximize energy savings while minimizing performance impact.

2.3 Power-Aware Virtual Memory

Prior research on reduction of power dissipation in the mainmemory primarily focused

on power management at a very low hardware level, where the memory controller is respon-

sible for monitoring activity on each of the ranks and putting them to lower power states

based on certain power-management policy. This has the benefit of being completely trans-

parent to processes, but because the controller is totally unaware of the running processes,

which actually are the entities responsible for all the memory accesses in the system, per-

forming power management at such a low level can often lead topoor decisions which, in

turn, degrade performance. In the design of Power-Aware Virtual Memory (PAVM), we el-

evate this decision making to the operating system level, where more information is readily

available to make better state transitioning decisions to minimize performance degradation

and reap greater energy savings. By elevating this decisionmaking to the software level,

this approach also has the advantage of not relying on any hardware support beyond what

most existing systems already provide, and therefore, can be easily ported to other systems.

Since a rank is the smallest unit of power management in memory, we now describe how

to manage these ranks from the system software layer.

ing registered memory in terms of performance and energy.

32

2.3.1 Tracking Active Ranks

Since each rank’s power state can be individually controlled, power can be reduced by

selectively having ranks operating at lower power states. However, selecting which ranks

to put into a low-power state is critical to both a system’s performance and its memory

subsystem’s power dissipation since accessing a rank that is in a low-power state will incur

resynchronization cost and stall execution, and, as a result, may increase energy consump-

tion and offset any prior savings.

To avoid such costs, we need to ensure that all the ranks a process may access (i.e., its

active ranks) in near future are kept in a high-power ready state during its execution. More

specifically, we define a rank to be an active rank of processi, denoted asPi, if and only if

there is at least one page within this rank that is mapped toPi’s memory address space, and

we denote the set of active ranks forPi asαi. By promoting all ranks inαi to the highest

ready state and demoting all other ranks (i.e., those inαi) to a low-power state whenPi

is running, we not only can reduce power but also can ensure that Pi does not suffer any

performance degradation since none of the low-power ranks will be accessed whilePi is

executing. In this work, we assume uniprocessor systems, but this technique can also be

applied to multiprocessor systems. In such systems, instead of using the active ranks of

the current running process, we need to use the union of the active ranks of all running

processes.

Of course, this assumes thatαi can be easily tracked to accurately reflect the active

ranks for each processPi. Delaluzet al. [42] used repeated page faults and page table

scans to keep track of the active set, but this involves very expensive, high overhead oper-

ations. Instead, we take a different approach: we maintain an array of counters for each

process, and have each counter associated with each of the memory ranks in the system.

The kernel is then modified such that on all possible execution paths in which a page is

mapped intoPi’s address space, the counter associated with the rank that contains this page

is incremented. Similarly, when a page is unmapped, this counter is decremented. From

these counters, the active set,αi, is trivially derived: a rank is inαi if and only if Pi’s

counter for this rank is greater than zero. The overhead of maintainingα is only one extra

33

instruction per each mapping/unmapping operation, and is therefore negligible.

2.3.2 Reducing Active Set Size

By performing power management based on active sets, we can ensure that none of

processes will suffer any performance loss during their execution. However, this approach

does not necessarily guarantee any energy savings. In particular, if the number of ranks

in (i.e., size of) the active set,|α|, of each process is close to the total number of ranks in

the system, power cannot be significantly reduced. So, to further reduce power, we need

to minimize the total number of active ranks used by each process. This can be formally

expressed as a minimization problem. Specifically, we want to minimize the summation,

(
∑

ωi|αi| : i ∈ all processes), where the number of active ranks,|αi|, of Pi is weighted

by its CPU utilization (fraction of processing capacity/time spent executing the process),

denoted byωi. However, allocating pages for all processes among all the ranks to minimize

this sum is a very difficult and high-overhead problem to solve at runtime, even with a static

set of tasks, let alone in a dynamic system.

For simplicity, we assume that an approximate solution can be obtained by minimizing

the number of active ranks for each process. To this end, a simple heuristic can be applied

by using the concept of thepreferred rankand by maintaining a set of preferred ranks,

ρi, for eachPi. A preferred rank is defined as follows. All processes start with an empty

set of preferred ranks. WhenPi allocates its first page, this page is taken from the rank

with the most free memory space available, which is then added to ρi. Future memory

allocations requested by this process are first tried on ranks in ρi. If all ranks inρi are full

(which happens very rarely), the allocation is made from therank which currently has the

most free memory space available, and this rank is then addedto ρi. By using this worst-fit

algorithm to generateρ, each process’s memory footprint is packed onto a small number of

ranks, thereby decreasing each process’s energy footprint.

34

2.3.3 A NUMA Management Layer

Implementing PAVM based on the above approach is not easy on modern operating

systems, where virtual memory (VM) is extensively used. Under the VM abstraction,

all processes and many parts of the OS only need to be aware of their ownvirtual ad-

dress space, and can be totally oblivious to the actual physical pages used. Effectively, the

VM decouples page allocation requests from the underlying physical page allocator, hid-

ing much of the complexities of memory management from the higher layers. Similarly,

the decoupling of layers works in the other direction as well—the physical page allocator

does not distinguish from which process a page request originates, and simply returns a

random physical page that is free, treating all memory uniformly. However, when perform-

ing power management for the memory, we cannot treat all ranks equally since accessing a

rank that was previously put to a low-power state will incur higher latencies and consume

more energy. Therefore, we need to eliminate this decoupling and make the page alloca-

tor aware of which process has made a page allocation request, so it can non-uniformly

allocate pages based onρi to minimize|αi| for eachPi.

This unequal treatment of multiple sections of memory due todifferent access latencies

and overheads is not limited only to power-managed memory. Rather, it is a distinguishing

characteristic of the Non-Uniform Memory Access (NUMA) memory architecture, where

there is a distinction between low-latency local memory andhigh-latency remote memory.

In a traditional NUMA system, the physical location of a pageused by a process is critical

to its performance since local and remote memory access times can differ by a few orders-

of-magnitude. Therefore, a strong emphasis has been placedon allocating and keeping the

working set of a process localized.

In this work, by treating each rank as if it were physically located on a unique node in

a large multi-node computer, we can employ a NUMA managementlayer to simplify the

non-uniform treatment of the physical memory. This createsan illusion that each process is

running under a different NUMA system, even though these NUMA systems are consisted

of the same set of memory ranks. With a NUMA layer placed belowthe Virtual Memory

(VM) system, the physical memory is essentially partitioned by ranks. Each rank has a

35

separate physical page allocator, to which page allocationrequests are redirected by the

NUMA layer. The VM is modified such that, when it requests a page on behalf ofPi,

it passes a hint (i.e.,ρi) to the NUMA layer indicating the preferred ranks from which

the physical page should be allocated. If this optional hintis given, the NUMA layer

simply invokes the physical page allocator that corresponds to the hinted ranks. If the

allocation fails,ρi must be expanded as discussed previously. By using a NUMA layer, we

can implement PAVM with preferential rank allocation without having to re-implement the

complex low-level physical page allocator.

2.3.4 Hiding Latency

The techniques described in the previous sections ensure that processes will not ex-

perience any performance loss during their execution. However, at each context switch

time, a resynchronization delay is incurred when there is atleast one rank that needs to be

transitioned from a low-power state to a high-power state. This happens fairly commonly

as different processes usually have different active memory ranks. As mentioned earlier,

the transition from Self Refresh to Standby takes 1000 nanoseconds, which, although not

a long time, is non-negligible if incurred at every context switch. This problem will only

become worse as more operating systems are transitioning from 10 ms scheduling quanta

to 1 ms quanta to increase system responsiveness. If this delay is not properly handled and

masked, it could, as a result of increased runtime, erode prior energy savings and undermine

the effectiveness of our technique.

One possible solution is that at every scheduling point, we find not only the best process

(Pi) to run, but also the next best process (Pj). Before making a context switch toPi, we

transition the ranks in the union set ofαi andαj to Standby mode. The idea here is that with

a high probability, at the next scheduling point, we will either continue execution ofPi or

switch toPj . Effectively, the execution time of the current executing process will mask the

resynchronization latency for the next process. Of course,the cost here is that we will need

to have more ranks idling in Standby mode than needed for the current running process,

thus consuming more energy, but, with a high probability, performance degradation (i.e.,

36

long state transition latencies) can be completely eliminated.

We also proposed an alterative solution, which is easier to implement, has lower com-

putational and energy overhead, but might not be able to hideresynchronization latency

as well as the first approach. The intuition behind this solution is that context switching

takes time, e.g., load new page tables, flush TLB and cache, and modify internal kernel

data structures to get ready for executing the next scheduled process, and these operations

are all done even before the next process’s memory pages are accessed. We instrumented

a Linux kernel to measure the context switching time in the scheduler function—from the

time immediately after the scheduler has decided which process is to be executed next un-

til the time when this process actually starts running. The cumulative distribution of the

context switching time on a 1.6 GHz Intel PentiumR© 4 processor is shown in Figure 2.5.

Given that DDR takes 1000 nanoseconds to transition from Self Refresh to Standby, we

can see that at every context switch, we will pay a resynchronization penalty equal to the

time difference between 1000 nanoseconds and the actual context switching time. This al-

ready allows us to mask hundreds of nanoseconds in resynchronization penalty. Moreover,

because there might be overlaps in the active ranks of consecutively executing processes,

memory accesses (made by the newly scheduled process) that are within the range of any

overlapped ranks will not incur any performance penalty as these ranks are already in a

high-power ready state (previously used by the last scheduled process). Not only these

memory accesses do not incur any performance penalty, they also help us further mask the

perceived resynchronization latency until the time when the first memory access lands in

a non-overlapping active rank that has not been completely resynchronized to full power.

However, as we have mentioned before, its effectiveness is probabilistic as there is no way

to guarantee a high degree of overlapping between active ranks of consecutively-scheduled

processes.

With faster processors in the future, the cumulative distribution function of the context

switching time shown in Figure 2.5 may shift toward left, making the second solution less

attractive as latencies will less likely be masked. The firstsolution proposed is more general

and may be applied without any hardware constraints, but at ahigher energy overhead.

In practice, however, even as processor frequencies have been increasing rapidly, context

37

0%

20%

40%

60%

80%

100%

0 200 400 600 800 1000 1200

Context Switching Time (ms)

C
u

m
u

la
tiv

e
 D

is
tr

ib
u

tio
n

Figure 2.5: Cumulative distribution of context switch times.

switching time improves rather slowly, so the second solution should remain viable and

more energy efficient under most circumstances.

2.4 PAVM Implementation

In this section, we describe our experience in implementingand deploying PAVM in

a real system. Due to numerous complexities in real systems,a direct realization of the

PAVM design described in the previous sections did not perform up to our original expec-

tation. Further investigation into how memory is used and managed in the Linux operating

system revealed insights that led us to further refinement ofour original system, and we fi-

nally succeeded in conserving a substantial amount of energy in memory running complex

real-world workloads.

2.4.1 Initial Implementation

Our first attempt to reduce memory’s power dissipation is a direct implementation of

the PAVM design (described in Section 2.3) in a Linux kernel.We extend the memory

management data structures in the kernel to include variouscounters that are needed to keep

track of the active ranks,α, per process. Furthermore, in the task scheduler, as soon asthe

next process is scheduled to execute, we transition all ranks in its active set to Standby, and

all others to Self Refresh. This way, power is reduced, resynchronization time is masked,

38

and the performance loss is minimized.

We also modify the page allocation code to use the preferred set, ρ, to reduce the size

of the active sets for each process. Linux relies on the Buddysystem [72] to handle the

underlying physical page allocations. Like most other pageallocators, it treats all memory

equally, and is only responsible for returning a free page ifone is available, so the physical

location of the returned page is generally nondeterministic. For our purpose, the physical

location of the returned page is not only critical to the performance but also to the en-

ergy footprint of the requesting process. Instead of addingmore complexity to an already-

complicated Buddy system, a NUMA management layer (described in Section 2.3.3) is

placed between the Buddy system and the VM, to handle the preferential treatment of

ranks.

The NUMA management layer logically partitions the physical memory and permits

independent management and allocation to each segment. TheLinux kernel already has

data structures defined to accommodate architectures with NUMA support. To ensure the

NUMA layer partitions memory according to memory ranks and permits rank-granular

control of allocation, we populate these data structures with the memory geometry, which

includes the number of ranks in the system as well as the size of each rank. As this infor-

mation is needed before the physical page allocator (i.e., the Buddy system) is instantiated,

determining the memory geometry is one of the first things we do at the system initializa-

tion time. On almost all architectures, memory geometry canbe obtained by probing a set

of internal registers on the memory controller.

Unfortunately, at the time when we implemented PAVM, NUMA support for the x86

architecture in Linux was not complete. In particular, since the x86 architecture is strictly

non-NUMA, some architecture-dependent kernel code was written with the underlying as-

sumption of having only uniformly accessed memory. We remove these hard-coded as-

sumptions and add NUMA support for x86. With this modification, page allocation is now

a two-step process: (i) determine from which rank to allocate a page, and (ii) perform the

actual page allocation steps within that rank. Rank selection is implemented trivially by

using a hint, passed from the VM layer, indicating the preferred ranks. If no hint is given,

the behavior defaults to a sequential allocation. The second step is handled simply by

39

instantiating a separate Buddy system on each rank.

With the NUMA layer in place, the VM is modified such that on allpage allocation

requests, it passesρ of the requesting process down to the NUMA layer as a hint. This

ensures that allocations tend to be localized to a minimal number of ranks for each process.

In addition, on all possible execution paths, we ensure thatthe VM updates the appropriate

counters to accurately bookkeepα andρ for each process with a minimal overhead, as

discussed in Section 2.3.

2.4.2 Shared Memory Issues

Having debugged the the initial implementation and ensuredthat the system is stable

with the new page allocation method in place, we evaluate PAVM’s effectiveness in reduc-

ing the energy footprint of processes. We expect that the setof active ranks,α, of each task

will tend to localize to the task’s preferred set,ρ. However, this is far from what we have

observed.

Table 2.1 shows a partial snapshot of the processes in a running system, and, for each

processPi, indicates the ranks in setsρi andαi, as well as the number of pages allocated

on each rank.2 It is clear from this snapshot that eachPi has a large number of ranks in its

active set, and|αi| is much larger than the corresponding|ρi|. This causes a significantly

larger energy footprint for each process than what we have originally anticipated. Never-

theless, since most pages are allocated on the preferred ranks, and none of the processes

use all the ranks in the system, we still have opportunities to put some ranks into low-power

states and conserve energy. However, it is not as effective as we would like, due to the fact

that for each process, there is a significant number of pages that arescatteredacross a large

number of ranks.

To understand this “scattering” effect, we need to investigate how memory is used in

a Linux system. As in most systems, a majority of the system memory is used by user

processes. Most of these pages are, in turn, used to hold memory-mapped files, which in-

clude binary images of processes, dynamically-loaded libraries (DLL), as well as memory-

2We only show a partial list of processes running in the system, but other processes behave similarly.

40

Process ρ α

syslog 14 0(3) 8(5) 9(51) 10(1) 11(1) 13(3) 14(76)
login 11 0(12) 8(7) 9(112) 11(102)12(5) 14(20) 15(1)
startx 13 0(21) 7(12) 8(3) 9(7) 10(12) 11(25) 13(131) 14(43)
X 12 0(125)7(23) 8(47) 9(76) 10(223) 11(19) 12(1928)13(82) 14(77)15(182)
sawfish 10 0(180)7(5) 8(12) 9(1) 10(278) 13(25) 14(5) 15(233)
vim 10,15 0(12) 9(218)10(5322)14(22) 15(4322)
.

Table 2.1: A snapshot of processes’ rank usage pattern usingthe primitive implementation

of PAVM. The notationa(b) indicates a process has b pages allocated on an active rank a.

mapped data files. To reduce the size of the executable binaries on disk and the processes’

cores in memory, DLLs are extensively used in Linux and most other modern operating

systems. The scattering effect of pages that we observed is aresult of this extensive use of

DLLs combined with the behavior of the kernel-controlled page cache.

The page cache is used to buffer blocks previously read from the disk, so on subsequent

accesses, they can be served without going to the disk, thus effectively reducing file access

latencies. This causes complications for our technique. For example, when a process

requests a block that is already in the page cache, the kernelsimply maps that page to

the requesting process’s address space without allocatinga new page. However, since

this block may have been previously requested by any arbitrary process, it can be on any

arbitrary rank, resulting in an increased memory footprintfor the process. Unfortunately,

this is not limited to shared data files, but also to DLLs, as these are basically treated as

memory-mapped, read-only files. The pages used for DLLs are lazily loaded, through

demand paging. So, when two processes with disjoint preferred ranks access the same

shared library, demand-loaded pages in this shared librarywill scatter across the union of

the two preferred sets, depending on the access pattern of the two processes and which

process first incurred the page-fault to load a particular portion of the library into the page

cache. An example is shown in Figure 2.6.

In what follows, we describe how to reduce the memory/energyfootprint for each pro-

cess by using DLL aggregation and page-migration techniques. We then discuss how to

reduce the overhead of these new techniques.

41

P1

Libc
1

Rank 0

Rank 1

Rank 2

Rank 3

(a)

P1

Libc
1

Rank 0

Rank 1

Rank 2

Rank 3

2

(b)

P1

Libc
1

Rank 0

Rank 1

Rank 2

Rank 3

2

P2

Shared Page

3

P2 needs to keep both Ranks 1 and 3 in a high-power state

(c)

Figure 2.6: (a) Process P1 tries to access a page in libc, which is not currently in memory.

(b) Demand paging in P1’s context brings the accessed page into memory and into P1’s

active rank (Rank 0). (c) When process P2 tries to access the same page, the page is simply

mapped to P2’s address space without going through the page allocator. As a result, P2’s

active set now will need to also include Rank 0.

2.4.3 Aggregation of Shared Libraries

Due to the many benefits of using shared libraries, or dynamically loaded libraries (e.g.,

libc), most, if not all, processes make use of them, either explicitly or implicitly. Therefore,

a substantial number of pages within each process’s addressspace may be shared through

the use of shared libraries. As discussed above, this sharing inevitably causes pages to be

littered across the entire memory range, resulting in a drastic size-increase ofα for every

process.

The cause of this scattering effect is that we are trying to load shared library pages onto

42

Process ρ α

syslog 14 0(108) 1(2) 11(13) 14(17)
login 11 0(148) 1(4) 11(98) 15(9)
startx 13 0(217) 1(12) 13(25)
X 12 0(125) 1(417)9(76) 11(793) 12(928)13(169)14(15)
sawfish 10 0(193) 1(281)10(179) 13(25) 14(11) 15(50)
vim 10,15 0(12) 1(240)10(5322)15(4322)
.

Table 2.2: Effect of aggregating pages used by DLLs.

the preferred ranks of processes which first initiated the read-in from disk, as if these were

private pages. To alleviate the scattering effect on these shared library pages, we need to

treat them differently in the NUMA management layer. We implement this by ignoring

the hint (i.e.,ρ) that is passed down from the VM layer when allocating a page for shared

libraries, and instead, resorting to a sequential first-touch policy, where we try to allocate

pages linearly starting with rank 0, and fill up each rank before moving onto the next rank.

This ensures that all shared pages are aggregated together,rather than scattered across a

large number of ranks. Table 2.2 shows a snapshot of the same set of processes under the

same workload as in Table 2.1, but with DLL aggregation employed.

As expected, aggregating DLL pages reduces the number of active ranks used per pro-

cess. However, a new problem is introduced. Due to the extensive use of DLLs, by group-

ing pages used for libraries onto the low-address memory ranks, we allocate a large number

of pages onto these ranks and quickly fill them. As a result, many processes will now need

to have several of these low-address ranks in their active sets to access all the needed li-

braries without performance penalties. In the two snapshots shown, this is apparent: after

aggregating all the shared library pages (shown in Table 2.2), both ranks 0 and 1 are mapped

in all processes’ active sets, whereas only rank 0 was neededwithout aggregation (shown in

Table 2.1). With many libraries loaded, we would use up theseearlier ranks fairly quickly,

and may unnecessarily increase the memory footprint of someprocesses. We will give

a detailed account of this in the next section and also describe how to relieve the extra

pressure on these earlier ranks.

43

2.4.4 Page Migration

Even after aggregating these shared library pages, there isstill some scattering of pages

across ranks outside ofρ. Some of these are due to actual sharing of pages, but the rest

are due to previous sharing and residual effects of past file accesses in the page cache.

Furthermore, even though aggregating all the shared library pages ensures shared pages are

kept on a few ranks, not all libraries are shared, or remain shared as the system execution

progresses. It is better to keep these pages in the preferredranks of the processes that are

actively using them, rather than polluting ranks that are used for library aggregation and

unnecessarily increasing the energy footprints of processes. We can address all of these

issues by migrating pages dynamically.

In a NUMA system, page migration is used to keep the working set of a process local

to the execution node in order to reduce average access latency and improve performance,

particularly when the running processes are migrated to remote nodes for load-balancing

purposes. In the context of PAVM, there is no concept of process migration, or remote

and local nodes, but we can use page migration to localize theworking set of a process

down to a fewer number of ranks and overcome the scattering effect of shared pages and

other objects in the page cache during runtime. This will allow us to have more ranks in

low-power states, thereby conserving more energy.

In our implementation, page migration is handled by a kernelthread calledkmigrated

running in the background. As with other Linux kernel threads, it wakes up periodically

(every 3 seconds). Every time it wakes up, it first checks to see if the system is busy, and

if so, it goes back to sleep to avoid causing performance degradation to the foreground

processes. Otherwise, it scans the pages used by each process and starts migrating pages

that meet certain conditions. We further limit performanceimpact due to migration by

setting a limit on the number of pages that may be migrated at each invocation ofkmigrated

to avoid spikes in memory traffic. Effectively, by avoiding performance overheads, the only

penalty we pay from using this technique is a fixed energy costfor each page migrated.

A page is migrated if any of the following conditions holds:

• If a page isprivate(i.e., used only by one process, which is determined by the page’s

44

Process ρ α

syslog 14 0(15) 14(125)
login 11 0(76) 11(183)
startx 13 0(172)13(82)
X 12 0(225)1(2) 12(2220)
sawfish 10 0(207)1(56) 10(436)
vim 10,15 0(12) 1(240) 10(5322)15(4322)
.

Table 2.3: Effect of DLL aggregation with page migration.

reference count), and it is not located on a rank that is in this process’s preferred set,

ρ, then the page is migrated to any rank inρ. This will not affect the size of the active

set of any other processes.

• If a page issharedbetween multiple processes, and the rank that it resides on is

outside of at least one of these processes’ preferred sets, then the page is migrated to

an earlier rank so it can be aggregated with the other shared pages, if and only if this

migration does not cause the size ofα to increase for any of the processes sharing

the page.

Migrating a process’s private page is straightforward. We simply allocate a new page

from any active ranks of that process, copy the content from the old page to the new page,

redirect the corresponding page table entry in that process’s page table to point to the new

page, and finally free the old page.

Migrating a shared page is more difficult. First, from the physical address of the page

alone, we need to quickly determine which processes are sharing this page so we can check

if it meets the migration criterion given above. Second, after copying the page, we need a

quick way to find the page table entry for each of the sharing processes, so we can remap

these entries to point to the new page. If any of the above two conditions cannot be met,

an expensive full-range scan of the page tables of all processes is needed for migrating a

single shared page.

To meet both conditions, we use thermap [102] kernel patch, a reverse page mapping

facility. It is included in the default kernel of the RedHat 7.3 Linux distribution and the

45

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40

Process Lifetime (sec)

C
u

m
u

la
tiv

e
D

is
tr

ib
ut

io
n

Figure 2.7: Cumulative distribution function of process life times.

recent stable Linux kernel releases. Withrmap, if a page is used by at least one process, it

will have a chain of back pointers (pte chain) that indicates the page table entries among

all processes that point to this page (meets the second requirement). In turn, for each page

table containing the above page table entries, there is a back pointer indicating the process

that uses this page mapping (satisfying the first requirement). So, when trying to migrate

a shared page, we first allocate a new page, and find all the processes sharing this page to

determine whether migrating this page will cause memory footprint to increase for any of

the processes. If not, we copy the page content from the old page to the new page, replace

all page entries that point to the old page with ones that point to the new page, update the

reverse mappings in the new page, and finally free the old page.

With kmigratedrunning, processes use much fewer ranks (as shown in Table 2.3) than

in the initial implementation of PAVM. As a result, memory power is significantly reduced.

However, for each page migrated, we still incur a fixed energycost for performing the

memory-to-memory copy.

2.4.5 Reducing Migration Overhead

Although page migration greatly reduces the energy footprints of processes, it triggers

additional memory activity, which may undermine energy savings. Thus, we must consider

ways to limit the number of migration operations to have its benefits without incurring too

much energy cost. We propose two solutions to reduce the number of page migrations.

46

Solution 1: The DLL aggregation technique described previously assumes libraries tend

to be shared. Any library that is not shared will later be migrated to the process’s preferred

ranks. This is not efficient for those applications that use proprietary dynamic libraries.

We can keep track of the processes that cause a large number ofpage migrations, and then

classify them either asprivate-page dominatedor shared-page dominated. A process is

private-page dominatedwhen the number of private pages migrated is much larger than

the number of shared pages migrated. It indicates that the pages this process uses are not

likely to be shared, meaning that we should allocate pages onthis process’s preferred ranks

from the beginning and not automatically aggregate the library pages that it uses.

On the other hand, if a process isshared-page dominated, it means that many shared pages

were initially wrongly migrated and then later moved back. For these processes, we want

to inhibit the number of migrations for shared pages to prevent future migrations to reverse

the initial migration decision.

Solution 2: It is well-known that a majority of processes are short-lived. Process lifetime

is similar to what is shown in Figure 2.7 [81], where only 2% ofall processes live more

than 30 seconds. Instead of performing page migration for all processes, we only migrate

pages of long-lived processes, since the energy spent on migrating pages for short-lived

processes does not justify the resulting energy savings. Note that the current implementa-

tion of kmigratedimplicitly avoids migrating pages for many short-lived processes, as it

checks the system only once every 3 seconds and only when the system is not busy.

2.5 Evaluation

We now evaluate PAVM and compare it against some of the previously-proposed tech-

niques. Section 2.5.1 describes the simulation environment and the methodology that we

used to collect and analyze data. Section 2.5.2 describes the benchmarks used in our

evaluation—SPECjbb2000 and SPECcpu2000. In Section 2.5.3, we briefly describe each

of the power management techniques we evaluate here. Section 2.5.4 provides detailed

simulation results.

47

Pre

AR

SR ACT

IO

PPD APD

ns 15tRP =>

ns 15t RCD =

I/O burst

ns 40tRAS =>

ns 5tCK =

ns 5tCK =ns 5tCK =

ns 5tCK =

nsec 70tRFC =

Every 7.8125 us

ns 5tCK =

ns 1000tXSRD =

State Power
PRE Precharge 137.5 mW
PPD Precharge-Powerdown 12.5 mW
ACT Active 150 mW
APD Active-Powerdown 112.5 mW
SR Self-refresh 10 mW
AR Auto-refresh 27.5 mW
IO Read/Write 1200 mW

CL = 15 ns

ns 10tRRP =>

To different
banks

Figure 2.8: Detailed DDR state machine that we simulate in our memory simulator. Some

minor states and transitions are omitted from this graph forbetter viewing.

2.5.1 Simulation Setup

PAVM was initially implemented on a real machine running Linux 2.4.18 kernel. How-

ever, to compare it with other power management techniques,we port it to run on a sim-

ulated machine as some of the other power management techniques cannot yet be imple-

mented on real machines due to lack of hardware support. We used Mambo [36] as our

simulated machine. It is a full-system simulator for PowerPC R© machine architectures and

is currently in active use by multiple research and development groups in IBM. It emulates

both 32-bit and 64-bit PowerPCR© processors and also supports system configurations and

hardware components, including a multi-tiered cache hierarchy, SLBs, TLBs, disks, Ether-

net controllers, UART devices, etc. The simulated machine is easily configurable, and very

different system configurations can be quickly set up and simulated by simply changing a

few parameters. We used a modified 2.6.5-rc3 Linux kernel running on a Mambo-simulated

48

machine (parameterized as shown in Table 2.4) in this work.

Component Parameter

Processor 64-bit 1.6GHz PowerPCR©

DCache 64KB 2-way Set-Associative
ICache 32KB 4-way Set-Associative

L2-Cache 1.5MB 4-way Set-Associative
DTLB 512 entries 2-way Set-Associative
ITLB 512 entries 2-way Set-Associative

DERAT 128 entries 4-deep
IERAT 128 entries 4-deep
SLB 16 entries

Memory DDR-400 768MB (64Mbx8)

Linux Kernel 2.6.5-rc3 w/ PAVM patch

Table 2.4: System parameters used in Mambo. All cache lines are 128 Bytes long.

To evaluate various power-management techniques, we first use Mambo to record the

main memory traffic (i.e., filtered by the L1 and L2 caches), save it to a trace file, and then

feed it to a trace-driven main memory simulator to simulate various power-management

decisions that could have been made by the memory controllerat runtime. This memory

simulator is written using CSIM [86] library. It can accurately model performance and

power dissipation of the memory by simulating a detailed DDRstate machine (shown in

Figure 2.8). Furthermore, it can also simulate the effect ofqueuing and contention occur-

ring at the memory controller, at synchronous memory interfaces (SMIs), and on various

buses. Power dissipation of memory devices is calculated bykeeping track of the state

information for each bank on a per-cycle basis, as was described in [87].

2.5.2 SPEC Benchmarks

One of the benchmarks we used in our evaluation is the SPECjbb2000 [115] bench-

mark. It is implemented as a Java program emulating a 3-tier server system with an em-

phasis on the middle tier. The tiers simulate a typical business application, where users in

Tier 1 generate inputs that result in the execution of business logic in the middle tier (Tier

2), which calls a database on the third tier. In a benchmark run, one can instantiate mul-

tiple warehouses, each with a 3-tier system. Each warehouseexecutes as a separate Java

thread within the Java Virtual Machine (JVM), and each is mapped to a different Linux

49

process thread. However, since all warehouses are essentially running the same type of

workload and they all share the same memory address space within the JVM, we will only

observe a small amount of variation in how memory is accessedbetween context switches

among these SPECjbb processes. Such setup does not reflect how processes on real sys-

tems would use memory as they do not extensively share their address spaces. Additionally,

in real systems, where the processor time is often shared among multiple users and their

applications, system processes, and various daemon processes, we can expect memory ac-

cess behavior in a typical system to change constantly when context switching between

different processes at a fine granularity. All of these behaviors are not found in running the

SPECjbb benchmark alone. To simulate these behaviors, we decided to run a few SPEC-

cpu2000 [116] benchmarks that have well-known execution behavior in parallel with the

SPECjbb workload. We classify these workloads as either “high memory-intensive” or

“ low memory-intensive,” based on the L2 miss rates [106]. For the low memory-intensive

workload, we run SPECjbb having 8 warehouses in parallel with 256.bzip2and186.crafty,

and for the high memory-intensive workload, we run SPECjbb in parallel with181.mcfand

179.art. Referenceinput sets are used for all the SPECcpu2000 benchmarks.

The runtime statistics of the two previously described workloads are shown in Table 2.5.

For each process in our workload, we keep track of the amount of CPU time it consumed,

the number of memory read and write operations, and the number of times it was sched-

uled by the task scheduler. In our experiment, we keep the system idle at the start of each

run. To verify that the non-benchmark processes in the system (e.g., shell, background

daemons and interrupt service routines) did not interfere with our benchmarks and their

results, we compare the total CPU time, the total number of read and write operations

and the total number of context switches incurred by our benchmark with the total num-

ber that was observed during the entire run. For the low memory-intensive workload, the

benchmark processes used 97.7% of the total CPU time, and areresponsible for 97.2%

of all read requests and 91.6% of all write requests in the system. For the high memory-

intensive workload, the benchmark processes consumed 99.8% of the total CPU time, and

are responsible for 99.2% of all read requests, 99.5% of all write requests in the system.

However, in both workloads, the total number of context switches caused by benchmark

50

Benchmarks Total Runtime % of Total Read % of All Write % of All Context
(CPU cycles) Runtime Operations Reads Operations Writes Switches

Low memory-intensive workload
SPECjbb process 1 470,662,157 4.5% 495,849 5.95% 148,964 4.67% 283
SPECjbb process 2 430,865,647 4.1% 463,402 5.56% 150,847 4.73% 233
SPECjbb process 3 614,658,695 5.9% 500,704 6.01% 151,581 4.75% 350
SPECjbb process 4 389,326,169 3.7% 499,898 6.00% 146,077 4.58% 218
SPECjbb process 5 544,571,120 5.2% 511,707 6.14% 141,688 4.44% 309
SPECjbb process 6 330,170,302 3.2% 421,781 5.06% 110,106 3.45% 197
SPECjbb process 7 1,694,958,880 16.3% 1,281,690 15.39% 212,097 6.65% 921
SPECjbb process 8 396,145,352 3.8% 333,236 4.00% 100,222 3.14% 255
256.bzip2 2,591,125,601 24.9% 2,899,595 38.81% 1,467,012 46.00% 1,258
186.crafty 2,714,572,432 26.1% 692,731 8.32% 293,069 9.19% 1,259
Total (benchmarks) 10,177,056,355 97.7% 8,100,593 97.24% 2,921,633 91.61% 5,283
Total (all observed) 10,416,416,544 100.0% 8,330,756 100.00% 3,189,337 100% 10,148

High memory-intensive workload
SPECjbb process 1 510,607,464 4.6% 704,477 1.29% 194,867 1.31% 734
SPECjbb process 2 535,188,637 4.8% 772,954 1.41% 223,225 1.51% 478
SPECjbb process 3 510,438,599 4.6% 581,688 1.06% 186,979 1.26% 465
SPECjbb process 4 529,700,398 4.7% 768,019 1.40% 221,891 1.50% 420
SPECjbb process 5 941,338,844 8.5% 1,167,305 2.13% 303,557 2.05% 550
SPECjbb process 6 473,391,039 4.2% 776,669 1.42% 309,628 2.09% 715
SPECjbb process 7 808,101,475 7.3% 1,041,908 1.90% 277,971 1.88% 508
SPECjbb process 8 1,716,733,458 15.5% 2,092,407 3.82% 1,016,140 6.86% 1,379
181.mcf 2,853,500,163 25.8% 13,953,894 25.50% 7,004,631 47.26% 1,089
179.art 2,163,757,139 19.6% 32,453,738 59.31% 5,012,884 33.82% 1,089
Total (benchmarks) 11,042,757,216 99.8% 54,313,059 99.25% 14,751,773 99.53% 7,427
Total (all observed) 11,065,594,944 100% 54,721,075 100.00% 14,820,760 100.00% 12,342

Table 2.5: Summary of the low memory-intensive and high memory-intensive workloads.

SPECjbb is ran with 8 warehouses, each spawned as a separate Java thread.

processes is significantly smaller than the total number that was observed in the entire run.

This behavior is caused by a polling keyboard device driver (made specifically for running

Linux in Mambo), which periodically wakes up and then goes back to sleep. This does not

happen in real systems, but having it in our system does not interfere with the fidelity of

our benchmarks and our results. The runtime information gives us more confidence in our

results as these benchmark processes are minimally affected by the system’s background

noise. It is interesting to note that from the runtime statistics, SPECjbb is shown to be more

memory-intensive thanbzip2andcrafty, but much less thanmcfandart.

2.5.3 Power Management Techniques

In our evaluation, we compare 5 different power management techniques in terms of

performance and power. They are listed as follows.

• No Power Management (NOPM):Here, no power management technique is used,

and ranks are put to the highest ready state when idling. We use this as the baseline

51

in our study.

• Immediate Powerdown (IPD): This is the simplest form of hardware-controlled

power management. It is a static power-management technique where the memory

controller immediately transitions a rank to Powerdown when all memory requests

on this rank have completed.

• Immediate Self Refresh (ISR):Same as IPD, but transitions to Self Refresh instead

of to Powerdown.

• Dynamic Hardware Technique (HW): This is a dynamic, epoch-based, hardware-

controlled power management technique. It monitors past memory accesses, and

based on which, makes predictions on after how long of an idleperiod it should tran-

sition a rank to Self Refresh (threshold prediction algorithm is shown in Figure 2.9).

Transition to Powerdown has a zero threshold, which was previously shown to be the

most efficient [25].

• Power-Aware Virtual Memory (PAVM): This is the software technique that we

have proposed in Section 2.3 and Section 2.4.

2.5.4 Results

Figures 2.10(a) shows the instantaneous power dissipationfor the entire duration of the

low memory-intensive workload for different power-management techniques. These results

are then summarized in Table 2.6. In this table, we show average power, average response

time, normalized runtime and the number of delayed memory requests due to ranks being

put to Self Refresh or Powerdown. We use two metrics to evaluate performance—average

response time and normalized runtime. Average response time is useful to measure exactly

how much impact power management has on the main memory, and normalized runtime

shows impact on overall system’s performance due to slowdown in the memory. The more

important metric of the two is the normalized runtime as it represents the user-perceived

system performance. For the less memory-intensive workloads, we can be more aggressive

52

 value thresholdMaximum Th
rank xon Refresh Selfenter toThreshold Th[x]

rank xon T within accessesmemory ofNumber [x]N
intervalrefresh 1)(i and ibetween interval Time T

usec) (7.8 intervalrefresh Auto t

Max

1ii 1ii

thth
1ii

REFI

=
=
=

+=
=

++
+

Refresh) enter(Self
 thenTh[x]) exceeded has time(idle if

rdown)enter(Powe
Refresh) Selfin currently not is(rank x if

Th Th[x]
)Th (Th[x] if

 t[x]N Th[x] Th[x]
else

 t- Th[x] Th[x] else
Th[x]/2 Th[x]

 then) t (Th[x] if
 then0)[x]N(if

 rank x each For
intervalrefresh i theof end At the

:Algorithm Prediction Threshold

Max

Max

REFI1ii

REFI

REFI

1ii

th

=
>

∗+=

=
=
<
==

+

+

Figure 2.9: Description of the threshold prediction algorithm. Threshold value of each

rank is determined periodically based on previously observed memory access patterns. For

convenience, we choose this periodicity to be 7.8µsec, i.e., memory refresh interval for the

memory devices we are simulating in this study.ThMax is currently set to 64 timestREFI.

in making power management decisions. Even though this might result in higher average

response time, this slowdown in the memory will likely to have only a small impact on the

system performance. On the other hand, when memory is more frequently accessed, higher

average response time will result in more significant degradation in the overall system

performance. We will show these effects in our experiments shortly.

For the low memory-intensive workload, from Table 2.6, we can see that without any

power management, memory dissipates 49.97 W of power, and weuse this and its runtime

as the baseline in our evaluation. We first look at the simplest hardware power management

technique, Immediate Powerdown (IPD), where power is reduced to 25.54 W—a 48.89%

power saving. Even though many memory requests are delayed due to ranks being put to

53

0 2 4 6 8 10 12

x 10
9

0

10

20

30

40

50

60

Runtime (Processor cycle)

P
o

w
e

r
(W

a
tt

)
NOPM
IPD
ISR
HW
PAVM
PAVM+IPD

0 2 4 6 8 10 12

x 10
9

0

10

20

30

40

50

60

Runtime (Processor cycle)

P
o

w
e

r
(W

a
tt

)

NOPM
IPD
ISR
HW
PAVM
PAVM+IPD

(a) (b)

Figure 2.10:(a) Instantaneous power dissipation for the low memory-intensive SPEC workload.

(b) Instantaneous power dissipation for the high memory-intensive SPEC workload.

Powerdown state, the total runtime has only increased by 1.80% because the resynchroniza-

tion latency of exiting from Powerdown is so small. With Immediate Self Refresh (ISR),

power is further reduced since both PLL and registers can be turned off. ISR dissipates

only 6.23 W of power—a 87.54% power saving—but it is achievedonly with a heavy hit

on performance. It runs 110.70% slower than the baseline case, which makes it very im-

practical to use in real systems. Using the HW (dynamic hardware-controlled) technique,

we can achieve a similar amount of power savings compared to ISR but with much less per-

formance degradation. It dissipates only 10.24 W in power—a79.51% saving (comparable

to ISR)—and it runs only 3.21% slower than the baseline case.In the case of PAVM, even

though it dissipates more power than the other power management techniques, nevertheless,

it has achieved what we had in mind originally. First of all, it is completely software con-

trolled and requires no additional hardware support. Second, power can be saved (44.70%)

without any noticeable sacrifice in performance (in this case, runtime increased by less than

0.1%), thus making PAVM one of a kind. These are all desirablefeatures to have in power

management of real systems. Furthermore, we are over-estimating the amount of power

saved in the hardware techniques as we do not take into account of the additional power

dissipated to support the extra hardware components that are needed to implement these

54

techniques, thus making software-controlled techniques even more favorable.

In term of average response time, IPD has a 14.1% higher average response time,

ISR 868.74%, HW 25.18%, and PAVM only 0.4%. Even though IPD’s14.1% and HW’s

25.18% increase in average response time did not impact system performance significantly

(1.80% and 3.21%, respectively), we will see in the high memory-intensive workload that

its effect is more severe. However, with PAVM, system performance can still be preserved.

Despite its performance advantage, PAVM does not save nearly as much power as some

of the hardware techniques. This can be improved, however, at a price of performance. The

reason that PAVM does not save as much power as the other techniques is because it only

manages power for the inactive ranks and leaves active ranksin the highest power state,

which is somewhat wasteful. To limit performance degradation when managing power for

the active ranks, we decided to use IPD. As we have seen previously, IPD can save a sub-

stantial amount of power without significantly impacting performance and only requires

a minimal amount of hardware support. We label this technique as PAVM+IPD in Fig-

ure 2.10. It dissipates 14.72 W in power and increases runtime by only 1.86%. Which

technique is more appropriate to deploy will vary from system to system. For example, on

a system where performance is of the uttermost importance but with energy conservation

as another important metric, the generic PAVM technique will be more favorable as it can

save power without disturbing performance.

The instantaneous power dissipated for the high memory-intensive workload is shown

in Figure 2.10(b) and is summarized in Table 2.7. Here, similar conclusion can be drawn,

but there are a couple of things worth noticing. Because memory is much more inten-

sively accessed, managing power results in more performance degradation—IPD imposes

a 8.10% slowdown in runtime, ISR 555.82%, and HW 7.16%. On theother hand, PAVM’s

performance impact is still under 0.5%. This allows PAVM to be deployed in situations

where other power management techniques are not appropriate due to their performance

impact.

55

No Power
IPD ISR HW PAVM PAVM+IPDManagement

Energy Consumption 275.02 J 143.15 J 68.26 J 58.35 J 152.27 J 81.09
Average Power 49.97 W 25.54 W 6.23 W 10.24 W 27.64 W 14.72 W

Average Response Time 72.01 ns 82.17 ns 697.60 ns 90.14 ns 72.29 ns 82.52 ns
Normalized Runtime 1.000 1.018 2.107 1.032 1.001 1.019

Delayed Accesses Due to PD 0 6,781,614 0 6,693,095 0 6,720,072
Delayed Accesses Due to SR 0 0 2,701,345 74,094 70 70

Table 2.6: Summary of the low memory-intensive workload.

No Power
IPD ISR HW PAVM PAVM+IPDManagement

Energy Consumption 482.11 J 282.79 J 743.42 J 149.21 J 252.24 J 150.42 J
Average Power 52.15 W 28.30 W 14.57 W 14.79 W 27.15 W 16.19 W

Average Response Time 84.13 ns 92.19 ns 537.45 ns 93.21 ns 84.59 ns 92.83 ns
Normalized Runtime 1.000 1.081 5.558 1.091 1.005 1.087

Delayed Accesses Due to PD 0 20,648,953 0 20,603,033 0 20,280,402
Delayed Accesses Due to SR 0 0 4,954,357 27,559 181 182

Table 2.7: Summary of the high memory-intensive workload.

RDRAM

RDRAM is a new memory architecture that has recently emerged. It has some interest-

ing power-management features. A question one might ask is how would the result differ

if RDRAM is used instead of DDR in this study. We believe that similar results can be

achieved, as RDRAM has a similar set of power states and is organized with multiple en-

tities that may be independently power managed. In fact, RDRAM power states can be

controlled at the device level, rather than at the rank level, providing a finer grained level of

control than DDR. This finer-grained level of control gives RDRAM a significant advantage

over DDR and SDR in embedded and PC systems, where the number of power-controllable

memory units (i.e., DDR ranks or RDRAM devices) is small, butas we increase the number

of power-controllable memory entities in a system (as in thecase of large server systems),

there is a diminishing return. Very few number of things needs to be changed and the

proposed techniques can be directly applied to the RDRAM memory architecture.

2.6 Discussion: DMA and Kernel Threads

In the current implementation, there are three limitationsthat we do not fully address.

First, we do not consider direct memory access (DMA). Using DMA, hardware compo-

nents can more efficiently transfer data between themselvesand the main memory without

56

CPU intervention. However, without knowing whether a rank was put to a low state, DMA

operations may suffer performance degradation. Fortunately, this problem can be easily

mitigated by ensuring that DMA operations use only pages within a pre-defined physical

memory range (e.g., the first rank), which, due to the use of DLL Aggregation, is almost

always in the Standby ready mode, which will not result in anyloss in performance.3

Second, kernel threads that run in the background may touch random pages belonging to

any process in the system. Since these maintenance threads are invoked fairly infrequently,

a simple solution is to treat these as special processes and turn on all ranks when they are

invoked to avoid performance degradation.

Third, PAVM is very inefficient in managing power for the active ranks. A rank is active

simply means that there is at least one process that has pagesmapped onto it and may

potentially access these pages in near future. However, howfrequently or how infrequently

an active rank is being accessed is unknown to the OS. Withoutsuch valuable information,

the best one can do at the OS level is to either put active ranksto high power state or to use

IPD, and both ways are wasteful in terms of both power and performance. This problem is

more pronounced on dedicated server systems where almost all the memory in the system

is used by a single process, e.g., database server, file server, DNS server, etc. Most likely,

the active set of this process will contain all the ranks in the system, and thus PAVM will not

be able to save much power. A much finer-grained level of control is needed to effectively

manage power. In the next chapter, we propose a software-directed hardware technique

that will allow us to do just that.

2.7 Conclusions

Due to better processing technology and a highly competitive market, systems are

equipped with bigger-capacity and higher-performance main memory as workloads are

becoming more data-centric. As a result, power dissipated by the memory is becoming

increasingly significant. In this work, we have presented the design, implementation, and

3Note that due to the address space limitation in older ISA devices, Linux for x86 already limits DMA
operations to use only the first 16 MB of memory (i.e., within the first rank).

57

analysis of Power-Aware Virtual Memory (PAVM) to reduce total memory energy expendi-

ture by managing power states of individual memory ranks. Wehave also shown a working

implementation of PAVM in the Linux kernel, and described how it was later evolved to

handle complex memory sharing among multiple processes andbetween the processes and

the kernel in a modern operating system.

Using PAVM, we show that from software alone, 44.70–47.94% of the power can be

reduced. This technique can be directly applied to many of today’s systems without addi-

tional hardware support and has negligible performance impact (well less than 1%)—thus

this power saving comes almost for free. Combining PAVM withImmediate Powerdown

(IPD), we show that 68.96–70.54% of the power can be reduced with only 1.9–8.7% per-

formance penalty. It would only require as much additional hardware as IPD alone, but

it saves much more power than IPD (45.74–48.89%) can achieveby itself. Compared to

a more complex dynamic hardware technique, where it saves 74.66–82.71% in power and

causes 3.2–9.1% performance degradation, PAVM and its derivative certainly have many

advantages and can be more generally deployed.

58

CHAPTER 3

Software-Directed Memory Power Management

3.1 Motivation

In the previous chapter, we proposed a purely software-controlled power management

technique called PAVM. It is different from previously proposed techniques because it can

save energy without impacting performance. However, despite its performance advantage,

it is not as power efficient as some of the hardware techniques. It always puts the active

ranks to the highest power state as it can neither differentiate a frequently accessed rank

from an infrequently accessed rank, nor detect any memory access patterns that may be

exploited. The software technique treats all active ranks the same, and due to which, many

energy saving opportunities are lost. To re-capture these missed opportunities, we will

propose a software-directed power-management technique.We will show that with a mini-

mal amount of cooperation between the system software and memory controller hardware,

power can be more aggressively reduced.

The rest of this chapter is organized as follows. We begin with a brief design overview

in Section 3.2. Hardware and software control mechanisms are described in Section 3.3.

Results from detailed evaluation using both synthetic and SPEC workloads are given in

Section 3.4, and finally we conclude in Section 3.5.

59

Operating System
Software

Hardware

PAVM

Active Rank Tracker

Power-Aware
Page Allocator

Page
Migration

Shared Library
Aggregation

Pid
100

Pid
102

Pid
101

Processes

Page allocations

Memory Controller
Power

Management
Unit

Thin SW-HW Control
PAVM Control

Data / Control

Figure 3.1: Architectural overview of the software-directed power-management system.

3.2 Overview

Power management implemented in hardware (i.e., memory controller) has some ob-

vious advantages over software techniques, but it has its own set of deficiencies. On one

hand, as the memory controller is able to observe all memory traffic in real-time, it allows

for implementation of a very fine-grained and highly-adaptive control mechanism that can

be used to ideally glean all possible energy-saving opportunities. On the other hand, the ef-

fectiveness of using hardware to manage power is heavily dependent on how accurately the

memory controller is able to predict future memory references from its past observations.

Unfortunately, accurate prediction is often difficult to accomplish by the hardware alone,

especially in systems with multiple active processes running, each with its own memory

access behavior.

As the memory controller has no understanding of neither processes nor the operating

system, it can get easily confused from its observation of memory traffic. This is especially

true during context switching time when memory access pattern can suddenly change. To

avoid making bad power management decisions during such time, hardware will need to

60

adapt to the newly invoked process’s memory access pattern quickly, but in reality, it takes

a non-negligible amount of time to do so. Even after the memory controller has adapted

itself to the access pattern of the newly invoked process after a while, it will need to re-

adapt itself again at the next context switch, which will happen shortly afterwards. This

problem will only get worse as systems are making use of smaller and smaller scheduling

quanta (higher context switching frequency) to increase their responsiveness. 5 to 10 years

ago, most Linux systems were using 10 ms scheduling quantum.Today, 1 ms quantum is

becoming the standard scheduling interval. However, as scheduling quantum keeps getting

smaller, hardware will spend more time re-adapting and lesstime making the right power

management decisions.

As hardware-controlled and software-controlled techniques both have their own set of

problems, we will propose a software-directed hardware power-management technique. In

this approach, memory controller will respond to low-levelmemory access patterns not

visible to the system software, while the system software can provide the hardware with

high-level information about the current system state, permitting aggressive but accurate

power management decisions to be made at the hardware level.Figure 3.1 depicts the

system architecture used in this software-assisted power-management approach. We will

elaborate on this design shortly.

In the next section, we first describe the architecture of a generic power management

unit (PMU) implemented in the memory controller. The PMU is responsible for monitoring

memory traffic and controlling power for DRAM devices. In Section 3.3.1 we describe

how to minimally modify this PMU so it can communicate with system software to gain

additional information about the current state of the system. Then, in Section 3.3.2, we

describe what system and process state information are useful to the modified PMU and

how system software can convey this information down to the hardware.

3.3 PMU Architecture

Hardware power management performed at the memory controller has been previously

proposed in [25, 45, 46]. Fine-grained monitoring and power-control mechanisms are ac-

61

Rank 0

Rank 1

Rank 3

Rank 2

…

Reg0 Reg1 …

PMU Register File

Memory Controller

Power Management Unit (PMU)

Rank 0

Rank 1

Rank 2

Interarrival Monitor/Predictor

Thresh to PD

Thresh to PD

Thresh to PD

Thresh to SR

Thresh to SR

Thresh to SR

Command
Unit

To
DIMMsUpdate

Row/
Column
Decoders

Address Lines

Figure 3.2: Architecture of a generic PMU.

complished by a separate power-management unit (PMU) within the memory controller.

The PMU is typically implemented as a set of simple logic devices that (i) monitor mem-

ory accesses, (ii) predict threshold values to determine when to power down, (iii) determine

which low-power state to transition, and (iv) instruct the memory controller to perform the

actual power-down operations when certain conditions are met.

We show the schematic diagram of a generic PMU in a memory controller in Figure 3.2.

It monitors memory accesses by snooping the address lines and keeps track of past memory

access behavior in an internal register file, where the number of registers depends on how

accurate we need the prediction logic to be and also the available chip area on the memory

controller for laying out the PMU. Based on the observed memory traffic, a threshold value

can then be derived to determine how much idle time should elapse from the time of the last

memory access before putting a rank to a lower power state. When multiple energy-saving

states are defined, one can derive multiple thresholds, eachused to transition a rank to a

different low-power state. In Figure 3.3, we show an exampleof how threshold value is

used to transition a rank to a low-power state.

For each memory rank, the PMU will individually monitor memory accesses, keep

access history and manage power. The reason for keeping a separate set of logics for

62

Figure 3.3: An example showing how threshold is used to manage power for the memory.

Arrows indicate read or write memory accesses.

Interarrival Time (msec)

Interarrival Time (msec)

10
0

10
2

10
4

10
6

10
8

10
0

10
2

10
4

10
6

10
8

10
4

10
5

10
6

10
7

10
8

10
4

10
5

10
6

10
7

10
8

Node 0

Node 1

C
o

un
t

C
ou

nt

Figure 3.4: Inter-arrival time observed on two different ranks (or nodes).

each rank is that one may be accessed very differently from others. To give an example,

Figure 3.4 shows a histogram (in log scale) of interarrival times (in log scale) between

consecutive memory accesses observed on two different ranks. It is clear from this figure

that the access characteristics observed on these two ranksare distinct. On rank 0, we can

observe that with most interarrival times being very short,nearly every memory access

comes within 1 second after the previous one. On rank 1, however, there are many larger

gaps (indicated by the heavier-tailed distribution) between consecutive memory accesses,

suggesting that on this rank we have more energy-saving opportunities and also the fact

that different power-down thresholds should be used for these two ranks to maximize en-

63

ergy savings on each. However, thisper-rankimplementation in the PMU would require

additional circuitry which not only would increase manufacturing costs but also consume

more energy. Later, we will show how to use the process-stateinformation exported by the

system software to reduce these additional costs.

3.3.1 Design of a Context-Aware PMU

In the previous section, we illustrated the traditional PMUarchitecture. However, by

monitoring memory traffic and performing power management at such a low level, we

often lose sight on entities that are responsible for actually utilizing the memory—running

processes and the operating system. This loss of information results in hardware frequently

making short-sighted power management decisions, which can have significant impact on

performance and energy consumption.

Our solution to this problem is to export process-state information down to the PMU

layer so we can make itcontext-aware. This allows the PMU to monitor memory accesses

on a per-process basis, and using which, it can customize power management policies tai-

lored specifically to the currently executing process. Thisis very important as different

processes may exhibit vastly different memory access behaviors, and therefore, customiz-

ing power management decisions for each process can significantly increase the decisions’

effectiveness in conserving power. Furthermore, even if wehave processes with similar

memory access behavior, the way they access each of the memory ranks can be quite dif-

ferent (shown in Figure 3.5(a)). This is especially true formodern systems where virtual

memory is extensively used and virtual pages can be mapped toarbitrary physical pages by

the operating system.

Without having any understanding of the running processes,the observed memory traf-

fic by the PMU is essentially “polluted”, by all the processesthat have accessed this rank in

rapid successions (at a 10 ms or even an 1 ms quantum) as scheduled by the task scheduler.

Therefore, the PMU will likely make inefficient power-management decisions based on an

“average” access behavior observed from all the concurrentprocesses. We illustrate this by

an example shown in Figure 3.6. In this example, Process 1 rarely accesses rank 0, whereas

64

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
2

10
4

10
6

Inter−arrival time (nsec)

H
is

to
gr

am

PID 256

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
2

10
4

10
6

Inter−arrival time (nsec)

H
is

to
gr

am

PID 6

(a)

process
stack

GPR5
GPR4
GPR3
GPR2
GPR1
GPR0

saved
processor
context

Reg0
Reg1

...

...

memory
controller
context

Top

Bottom
0xc0000000

First page
reserved
for saving
memory
controller
context

Power Management Unit

power management
registers

Address
lines

Interarrival
monitor/predictor

to
DIMMs

Rank

0

1

2

Reg0 Reg1 ...

...

context
 save/
restore

From PAVM

Row/
Column
Decoder

command
unit

update

Memory Controller

HardwareSoftware

Rank0

Rank1

...

Rank2

...

Threshold to Powerdown

Threshold to Self-refresh

Threshold to Powerdown

Threshold to Self-refresh

Threshold to Powerdown

Threshold to Self-refresh

(b)

Figure 3.5: (a) Inter-arrival time between consecutive memory requests observed in two

different processes on the same memory rank. (b) Architecture of the process-aware PMU.

65

context
switch

Real Time

222 22 2 1 2 222 22Rank 0

process 1's
memory
access

process 2's
memory
access

1 1 1

Process 1 Virtual Time

222 22 2 2 222 22

Process 2 Virtual Time

1 1

context
switch

context
switch

Rank 0

Unaware of processes

Aware of processes

Figure 3.6: An example that gives some intuitions about why it is beneficial to make the

memory controller context-aware.

Process 2 accesses this rank very frequently. If the PMU monitors the memory traffic on

this rank without differentiating between the two processes, it will conclude that this rank

is accessed “moderately”, and thus, might make less-than-optimal power-management de-

cisions. However, by making the memory controller context-aware, the PMU can easily

detect that Process 1(2) rarely(frequently) accesses thisrank, and therefore, can select more

suitable thresholds depending on which process is currently executing. The problem, how-

ever, is that unlike in the case of the per-rank power management, the memory controller is

totally oblivious to the concept of a process, which ironically, has a strong impact on how

the memory is being accessed and how it should be power managed.

The improvement to make the PMU context-aware can be very easily augmented with

a small amount of hardware modifications and with some minor changes to the system

software. On the software side, when context switching, in addition to saving the proces-

sor context (i.e., CPU registers) onto the stack of the switched-out process, we must, in

parallel, also save the value of the history-keeping registers used by the PMU as shown in

Figure 3.5(b) (Ignore thePAVM line for now). When this process is context switched

back at a later time, we will need to restore both the processor and the PMU context as-

sociated with this process. The PMU context saving and restoring operations can either

be done synchronously by the processor, or asynchronously by the PMU itself when the

processor sends it a context-switching signal and gives it aphysical memory region for

saving/restoring the PMU context. On the hardware side, only a simple I/O interface needs

66

to be implemented for saving and restoring the PMU context. Essentially, this design will

allow the memory controller to manage power tailored specifically to each process because

the PMU is now capable of making power management decisions based purely on each

process’s own memory access behavior.

3.3.2 Cooperation with PAVM

As indicated in Section 3.3, even though only a small amount of modifications is needed

to implement the aforementioned energy-conserving mechanisms in hardware, the addi-

tional hardware does not come for free—a non-negligible amount of additional power is

dissipated as a result. To amortize this cost, PAVM can inform the PMU which ranks

are actively used by the running process so the PMU can completely gate off all the moni-

tor/predictor circuits and history-keeping registers forthose inactive ranks without affecting

its effectiveness. This information is passed down from thePAVM control line shown

in Figure 3.5(b). Since it is the characteristic of PAVM to pack the memory footprint of

each process onto as fewer ranks as possible, the software technique will help to minimize

the number of monitor/predictor circuits that are needed inthe full power mode.

This cooperation with PAVM also has certain performance benefits. So far, we have

only discussed policies and mechanisms to power down ranks but not to power them up.

As premature power-ups waste energy, we do not consider any power-up heuristics in the

hardware. Instead, we rely on a simple but accurate power-upmechanism implemented in

PAVM. Since many memory accesses occur immediately after a context switch due to cold

cache misses, we can direct PAVM to instruct the memory controller to power up the active

ranks of the to-be-run process as early as possible so some resynchronization penalties

could be minimized or even avoided.

3.3.3 Summary

Through the new PMU design and with the cooperation from the system software, we

can partition the observed memory traffic—both spatially (by rank) and temporally (by

process)—so that the observed memory traffic can be translated easily and accurately by

67

the PMU to effective power management decisions. This requires only a small amount of

changes in the PMU hardware and the system software. Additionally, we also proposed

techniques that allow PAVM to assist the PMU in (i) amortizing the energy cost of the

additional hardware in the PMU and (ii) reducing wake-up latency due to cold cache misses,

and thus allowing more efficient use of the energy.

3.4 Evaluation

We will now evaluate the software-directed technique (labeled as HW–SW for short)

and compare it against some of the previously-proposed techniques. We use the same

simulation environment and evaluation methodology as thatwas described in Section 2.5.1.

Section 3.4.1 and Section 3.4.2 provide detailed simulation results from running a synthetic

and some SPEC benchmarks (SPECjbb2000 and SPECcpu2000), respectively.

3.4.1 Synthetic Workload

We first use a synthetic workload consisted of two streaming processes. Assume all the

memory accesses of the first process miss in the cache and are fetched from the main mem-

ory, and the second process’s all hit in the cache. This synthetic workload is not meant to be

realistic, but through this simple example, we can illustrate the potential benefit of making

the memory controller context-aware. Furthermore, we can also see more clearly the en-

ergy and performance implications of various power management techniques by breaking

the total power dissipated by the main memory into various components.

Synthetic Workload Results

The machine configuration we used to run the synthetic workload is shown in Table 3.1.

It is the same as that was shown in Table 2.4, except that the memory subsystem is reduced

to a single 64 MB rank. This allows us to interpret the resultsof the synthetic workload

much more easily. In this workload, we evaluated 5 power management techniques: No

Power Management, Immediate Powerdown, Immediate Self Refresh, Dynamic Hardware

68

Component Parameter

Processor 64-bit 1.6GHz PowerPCR©

DCache 64KB 2-way Set-Associative
ICache 32KB 4-way Set-Associative

L2-Cache 1.5MB 4-way Set-Associative
DTLB 512 entries 2-way Set-Associative
ITLB 512 entries 2-way Set-Associative

DERAT 128 entries 4-deep
IERAT 128 entries 4-deep
SLB 16 entries

Memory DDR-400 64MB (64Mbx1)

Linux Kernel 2.6.5-rc3 w/ PAVM patch

Table 3.1: System parameters used in Mambo for running the synthetic workload. All

cache lines are 128 Bytes long.

Technique, and Software-Directed Hardware Technique, andthey are described in the fol-

lowing section. Note, we omitted PAVM in this synthetic workload because it does not

make much sense to run PAVM on a system with only one memory rank as it would not

yield any power savings. As many small embedded systems are often equipped with only

one rank, it makes PAVM unsuitable to use for these types of systems and hardware-based

techniques more applicable.

• No Power Management (NOPM):Here, no power management technique is used,

and ranks are put to the highest ready state when idling. We use this as the baseline

for our comparison.

• Immediate Powerdown (IPD): The simplest form of hardware-controlled power

management. This is a static technique where the memory controller automatically

transitions a rank to Powerdown state immediately after allthe memory requests have

completed.

• Immediate Self Refresh (ISR):Same as IPD, but transitions to Self Refresh instead

of Powerdown.

• Dynamic Hardware Technique (HW): This is a purely hardware-controlled power

management technique. It monitors past memory accesses, and based on which, dy-

namically makes predictions on after how long of an idle period, it should transition

69

a rank to Self Refresh (threshold prediction algorithm is shown in Figure 2.9). Tran-

sition to Powerdown has a zero threshold, which was previously shown to be most

efficient [25].

• Software-Directed Hardware Technique (HW–SW):This is the software-directed

hardware technique that we have proposed in Section 3.3.

The two streaming processes are scheduled in an interleaved-manner by the Linux task

scheduler. Without any power management, a sample of the instantaneous power dissipated

by the memory is shown in Figure 3.7(a1), where one can clearly see when each process is

scheduled. Furthermore, we break the average power down to its individual components,

which is shown in Figure 3.7(a2). Power used by activation, read, write operations and

data queues are due to DRAM device doing useful work and cannot be further reduced.

Although there are means to reduce this power, e.g., open/close-page policy, rank inter-

leaving, sub-banking, etc., they are beyond the scope of ourwork. Instead, we focus on

finding ways and opportunities to reduce the amount of idle power wasted when no work is

being done, thus having less impact on performance. From theprevious figure, we can see

that most of this idle power is dissipated in the Precharge Standby mode, Active Standby

mode, and by the PLL and the registers.

First, we consider the simplest static hardware techniques, which will put memory ranks

to either Powerdown or Self Refresh mode immediately at the end of each memory request,

if and only if there are no outstanding memory accesses on anyof the banks. We call these

techniques Immediate Powerdown (IPD) and Immediate Self Refresh (ISR), respectively,

and the results are shown in Figures 3.7(b1–b2) and Figures 3.7(c1–c2). As we can see

from these figures, power reduction opportunities arise when the low memory-intensive

process starts to execute. IPD can significantly reduce power dissipated in Standby mode,

whereas ISR can achieve additional energy savings by also powering down the PLL and

the registers, although at a severe performance penalty. Wewill look at the performance

implications in more details shortly.

Next, Figure 3.7(d1) shows the effect on power when power-management decisions are

dynamically made by the hardware (e.g., PMU in the memory controller). The PMU keeps

70

0.5 1 1.5

x 10
7

0

1

2

3

4

5

6

7

8

Runtime (Processor cycle)

Po
we

r (
W

at
t)

NOPM

0

1

2

3

4

5

6

7

P
ow

er
 (

W
at

t)

Registered Buffer
PLL
Self Refresh
Active Powerdown
Precharge Powerdown
Precharge Standby
Active Standby
Refresh
DQ
Read
Write
Activation

(a1) (a2)

0.5 1 1.5

x 10
7

0

1

2

3

4

5

6

7

8

Runtime (Processor cycle)

Po
we

r (
W

at
t)

IPD

0

1

2

3

4

5

6

7

P
ow

er
 (

W
at

t)

Registered Buffer
PLL
Self Refresh
Active Powerdown
Precharge Powerdown
Precharge Standby
Active Standby
Refresh
DQ
Read
Write
Activation

(b1) (b2)

0.5 1 1.5

x 10
7

0

1

2

3

4

5

6

7

8

Runtime (Processor cycle)

Po
we

r (
W

at
t)

ISR

0

1

2

3

4

5

6

7

P
ow

er
 (W

at
t)

Registered Buffer
PLL
Self Refresh
Active Powerdown
Precharge Powerdown
Precharge Standby
Active Standby
Refresh
DQ
Read
Write
Activation

(c1) (c2)

0.5 1 1.5

x 10
7

0

1

2

3

4

5

6

7

8

Runtime (Processor time)

Po
we

r (
W

at
t)

HW

0

1

2

3

4

5

6

7

P
ow

er
 (W

at
t)

Registered Buffer
PLL
Self Refresh
Active Powerdown
Precharge Powerdown
Precharge Standby
Active Standby
Refresh
DQ
Read
Write
Activation

(d1) (d2)

0.5 1 1.5

x 10
7

0

1

2

3

4

5

6

7

8

Runtime (Processor cycle)

Po
we

r (
W

at
t)

HW−SW

0

1

2

3

4

5

6

7

P
ow

er
 (W

at
t)

Registered Buffer
PLL
Self Refresh
Active Powerdown
Precharge Powerdown
Precharge Standby
Active Standby
Refresh
DQ
Read
Write
Activation

(e1) (e2)

Figure 3.7: The first column gives the instantaneous power for a zoomed-in portion of the

synthetic workload when using (a) NOPM, (b) IPD, (c) ISR, (d)HW, and (e) HW–SW. The

second column shows the breakdown of the average power dissipated.

71

Total Simulated Cycles 1.89e9 cycles
Number of Read 7,429,188

Number of Writes 333
No Power Immediate Immediate Self

HW HW–SWManagement Powerdown Refresh

Average Power 5.80 W 4.43 W 3.81 W 3.88 W 3.45 W
Average Response Time 60.53 ns 65.59 ns 555.15 ns 66.03 ns 66.08 ns

Normalized Runtime 1.000 1.032 4.110 1.035 1.035
Delayed Accesses Due to PD 0 7,296,600 0 7,289,002 7,288,920
Delayed Accesses Due to SR 0 0 395,341 538 646

Table 3.2: Summary of the synthetic benchmark.

history information on past accesses in its internal registers which are used to dynamically

predict threshold values to determine after how long of an idle period before Self Refresh

mode should be entered. It uses a moving window size of 500µsec, which is reasonable be-

cause it can avoid over-compensation and provide good adaptability to realistic workloads.

However, our result shows that it can only save 12.29% more energy than IPD because

when the hardware tries to make power-management decisionsbased only on its observa-

tion of the past memory access behavior, it will get confusedwhen two processes with very

different access behaviors are accessing the same rank in aninterleaved-manner.

One can argue that ifThMax is reduced, we can adapt more quickly. However, shrinking

this parameter is a double-edged sword: having better adaptability minimizes the problems

caused by constant context-switching but runs at a risk of over-aggressively predicting

threshold values when there are transient behaviors at runtime. Adjusting this parameter

will have a positive effect for this synthetic workload, butfor realistic workloads, it can

cause more harm than good. Furthermore, as more and more systems are switching to

smaller scheduling quanta (e.g., from 10 ms to 1 ms or even smaller) to increase respon-

siveness in the system, it will make the hardware predictor’s job even more difficult.

Finally, Figure 3.7(e1) shows that if the system software can inform the PMU of which

process is currently running, more aggressive and accuratepower-management decisions

can be made. The PMU used here is exactly the same as that described above, but with

additional capabilities of keeping past access history foreach of the processes and sav-

ing/restoring history-keeping registers at each context switch. From this figure, we can see

that immediately after the low memory-intensive process starts to run, the PMU is able to

instantaneously put the rank to Self Refresh, thus saving more energy. Moreover, unlike

the hardware-only technique (HW), the HW–SW technique willnot be affected when the

72

scheduling quantum becomes smaller over time.

In Table 3.2, we summarize power and performance results of the different power man-

agement techniques for the synthetic workload. Even thoughISR saves the most amount

of power (34.31%), its performance impact (310.97% slowdown) makes it prohibitive to

use in practice, therefore, we do not consider this technique further. All other techniques

have similar performance degradations (IPD 3.19% slowdown, HW 3.46%, and HW–SW

3.49%), but HW–SW is the most energy efficient followed by HW technique. Specifically,

in this case, HW–SW saves 11.03% more energy than HW. The reason why HW–SW con-

sumes less energy than the HW approach is because it can more accurately predict threshold

values to go to Self Refresh due to its awareness of processes. Using this simple example,

we have shown the benefits of exporting process information from system software to the

memory controller hardware. More accurate and aggressive power management decisions

can be made as a result.

0 2 4 6 8 10 12

x 10
9

0

10

20

30

40

50

60

Runtime (Processor cycle)

P
o

w
e

r
(W

a
tt

)

NOPM
IPD
ISR
PAVM
HW
HW−SW

0 2 4 6 8 10 12

x 10
9

0

10

20

30

40

50

60

Runtime (Processor cycle)

P
o

w
e

r
(W

a
tt

)

NOPM
IPD
ISR
PAVM
HW
HW−SW

(a) (b)

Figure 3.8: (a) Instantaneous power for the low memory-intensive SPEC workload. (b)

Instantaneous power for the high memory-intensive SPEC workload.

73

0 2 4 6 8 10 12

x 10
9

0

0.2

0.4

0.6

0.8

1

Runtime (Processor cycle)

N
o

rm
a

liz
e

 P
o

w
e

r

HW
HW−SW

0 2 4 6 8 10 12

x 10
9

0

0.2

0.4

0.6

0.8

1

Runtime (Processor cycle)

N
o

rm
a

liz
e

 P
o

w
e

r

HW
HW−SW

(a) (b)

Figure 3.9: Comparing power dissipated by HW and HW–SW techniques. Power is nor-

malized to HW’s power dissipation for (a) low memory-intensive workload and (b) high

memory-intensive workload.

3.4.2 SPEC Benchmarks

In the previous section, we used a synthetic benchmark to give some basic intuitions on

why software-directed technique is superior. In this section, we use more realistic bench-

marks to evaluate how it would perform and measure up to the other techniques. We use

the same benchmarks we used for our evaluation from the last chapter (Section 2.5.2).

No Power
IPD ISR PAVM HW-only HW–SWManagement

Energy Consumption 275.02 J 143.15 J 68.26 J 152.27 J 58.35 J 50.38 J
Average Power 49.97 W 25.54 W 6.23 W 27.64 W 10.24 W 8.81 W

Average Response Time 72.01 ns 82.17 ns 697.60 ns 72.29 ns 90.14 ns 94.38 ns
Normalized Runtime 1.000 1.018 2.107 1.001 1.032 1.039

Delayed Accesses Due to PD 0 6,781,614 0 0 6,669,095 6,642,938
Delayed Accesses Due to SR 0 0 2,701,345 70 74,094 115,577

Table 3.3: Summary of the low memory-intensive workload.

SPEC Benchmarks Results

Figure 3.8(a) and Figure 3.8(b) show the instantaneous power dissipated throughout the

entire run of the low memory-intensive and high memory-intensive workloads, respectively,

using (i) no power management, (ii) IPD, (iii) ISR, (iv) PAVM, (v) HW, and (vi) HW–

74

No Power
IPD ISR PAVM HW-only HW–SWManagement

Energy Consumption 482.11 J 282.79 J 743.42 J 252.24 J 149.21 J 137.72 J
Average Power 52.15 W 28.30 W 14.47 W 27.15 W 14.79 W 13.58 W

Average Response Time 84.13 ns 92.19 ns 537.45 ns 84.59 ns 93.21 ns 93.75 ns
Normalized Runtime 1.000 1.081 5.558 1.005 1.091 1.097

Delayed Accesses Due to PD 0 20,648,953 0 0 20,603,033 20,560,901
Delayed Accesses Due to SR 0 0 4,954,357 181 27,559 56,335

Table 3.4: Summary of the high memory-intensive workload.

SW. In both workloads, ISR, HW, and HW–SW saved much more energy than the rest.

However, due to ISR’s prohibitively high performance penalty, it is not very interesting to

us. A more clear comparison between HW and HW–SW techniques is shown in Figure 3.9.

In this figure, we show the normalized power dissipation withrespect to HW. It shows a

clear power reduction from using the additional system state information to make power

management decisions in the memory controller hardware—8.18–14.02% more power can

be saved as a result. In terms of runtime, HW–SW is within 1% ofHW.

1.00

0.59

0.56

0.26

0.24

0.00

0.50

1.00

1.50

2.00

NOPM IPD ISR PAVM HW HW-SW

N
o
r
m
a
l
i
z
e
d

P
o
w
e
r

*

D
e
l
a
y
1

*

D
e
l
a
y
2

1.00

0.64

0.53

0.34

0.32

0.00

0.50

1.00

1.50

2.00

NOPM IPD ISR PAVM HW HW-SW

N
o
r
m
a
l
i
z
e
d

P
o
w
e
r

*

D
e
l
a
y
1

*

D
e
l
a
y
2

(a) (b)

Figure 3.10: Comparing power management techniques using the

Power × Delay1 × Delay2 metric for (a) the low memory-intensive workload and

(b) the high memory-intensive workload.

Several metrics have been proposed previously to evaluate the overall goodness of a

power management technique by taking into account of both energy and performance im-

pacts. Power × Delay andPower × Delay2 are the most popular metrics that have been

used. The reason for the squared term in the latter metric is to put more weight on per-

formance as in many systems performance is still the dominant metric to optimize. In this

work, we use a variant of the second metric—Power × Delay1 × Delay2, where Delay1

75

is the normalized runtime and Delay2 is the normalized average response time. The re-

sults are shown in Figures 3.10. Again, we see HW, HW–SW are better than the other

techniques.

 0

 10

 20

 30

 40

 50

 60

 0 5e+09 1e+10

P
o

w
e

r
(W

a
tt

)

Run Time (processor cycle)

Mixed Workload #1

No Power Management
IPD
ISR

SW-only (PAVM)
HW-only
HW-SW

 0

 10

 20

 30

 40

 50

 60

 0 5e+09 1e+10

P
o

w
e

r
(W

a
tt

)

Run Time (processor cycle)

Mixed Workload #2

No Power Management
IPD
ISR

SW-only (PAVM)
HW-only
HW-SW

(a) (b)

 0

 10

 20

 30

 40

 50

 60

 0 5e+09 1e+10

P
o

w
e

r
(W

a
tt

)

Run Time (processor cycle)

Mixed Workload #3

No Power Management
IPD
ISR

SW-only (PAVM)
HW-only
HW-SW

 0

 10

 20

 30

 40

 50

 60

 0 5e+09 1e+10

P
o

w
e

r
(W

a
tt

)

Run Time (processor cycle)

Mixed Workload #4

No Power Management
IPD
ISR

SW-only (PAVM)
HW-only
HW-SW

(c) (d)

Figure 3.11: (a) Instantaneous power for the Mixed #1 workload. (b) Instantaneous power

for the Mixed #2 workload. (c) Instantaneous power for the Mixed #3 workload. (d)

Instantaneous power for the Mixed #4 workload.

For completeness, we also show the results of running all other pair-wise combinations

of the four SPEC benchmarks with SPECjbb. Table 3.5 shows theruntime information of

these workloads. Figure 3.11 shows the instantaneous powerduring the entire experimental

run when different power-management techniques are applied. Tables 3.6, 3.7, 3.8, and 3.9

summerize the average power and average response time.

76

Benchmarks Total Runtime % of Total Read % of All Write % of All Context
(processor cycles) Runtime Operations Reads Operations Writes Switches

Mixed workload #1
SPECjbb process 1 710,534,166 5.8% 621,551 2.61% 188,567 1.48% 1,321
SPECjbb process 2 1,686,377,599 13.8% 1,888,701 7.93% 936,527 7.33% 793
SPECjbb process 3 764,435,400 6.3% 707,345 2.97% 288,737 2.26% 439
SPECjbb process 4 719,960,469 5.9% 693,640 2.91% 263,203 2.06% 1,106
SPECjbb process 5 500,601,192 4.1% 609,364 2.56% 184,728 1.45% 1,119
SPECjbb process 6 587,960,139 4.8% 668,505 2.81% 184,658 1.44% 1,267
SPECjbb process 7 634,488,511 5.2% 729,032 3.06% 250,955 1.96% 1,079
SPECjbb process 8 409,730,082 3.4% 622,097 2.61% 177,900 1.39% 1193
256.bzip2 2,672,678,890 21.9% 3,658,348 15.36% 2,157,427 16.88% 1,160
181.mcf 3,264,133,644 26.8% 13,323,656 55.94% 8,068,578 63.12% 1,160
Total (benchmarks) 11,950,900,092 98.0% 23,522,239 98.77% 12,701,280 99.37% 10,637
Total (all observed) 12,189,976,977 100.0% 23,816,334 100.00% 12,782,238 100% 15,572

Mixed workload #2
SPECjbb process 1 580,523,422 5.1% 773,649 1.69% 196,492 3.42% 412
SPECjbb process 2 1,582,313,571 13.96% 1,890,848 4.12% 404,719 7.05% 945
SPECjbb process 3 664,265,936 5.9% 774,605 1.69% 175,646 3.06% 1,145
SPECjbb process 4 414,782,393 3.7% 553,536 1.21% 142,946 2.49% 1,181
SPECjbb process 5 510,552,742 4.5% 627,382 1.37% 164,955 2.87% 1,108
SPECjbb process 6 883,810,143 7.8% 921,784 2.01% 218,601 3.80% 1,378
SPECjbb process 7 841,253,742 7.4% 947,265 2.06% 224,237 3.90% 973
SPECjbb process 8 590,082,292 5.2% 840,999 1.83% 203,887 3.55% 1,249
186.crafty 2,627,355,852 23.2% 1,407,925 3.07% 290,246 5.05% 1,159
179.art 2,423,214,001 21.4% 36,766,152 80.13% 3,696,418 64.35% 1,160
Total (benchmarks) 11,147,165,094 98.4% 45,504,145 99.18% 5,718,147 99.54% 10,710
Total (all observed) 11,332,601,664 100% 45,882,216 100.00% 5,744,542 100.00% 15,610

Mixed workload #3
SPECjbb process 1 547,366,485 4.8% 716,863 1.53% 192,508 2.58% 817
SPECjbb process 2 933,866,021 8.2% 1,046,746 2.25% 258,570 3.47% 1,176
SPECjbb process 3 489,136,734 4.3% 631,695 1.36% 160,219 2.15% 856
SPECjbb process 4 1,711,277,898 15.0% 1,975,128 4.24% 495,406 6.64% 867
SPECjbb process 5 413,636,931 3.6% 679,162 1.46% 167,503 2.24% 284
SPECjbb process 6 887,571,915 7.8% 1,012,084 2.17% 278,087 3.73% 1,135
SPECjbb process 7 422,697,140 3.7% 762,833 1.64% 195,442 2.62% 961
SPECjbb process 8 954,661,929 8.4% 1,151,594 2.47% 276,698 3.71% 1,071
256.bzip2 2,494,274,438 21.9% 3,499,475 7.51% 1,266,475 16.97% 1,094
179.art 2,315,027,158 20.3% 34,842,138 74.78% 4,138,620 55.46% 1,094
Total (benchmarks) 11,169,516,649 98.1% 46,317,718 99.41% 7,429,528 99.56% 9,355
Total (all observed) 11,388,771,125 100% 46,590,620 100.00% 7,462,319 100.00% 14,261

Mixed workload #4
SPECjbb process 1 529,160,789 4.4% 781,005 3.79% 232,881 2.24% 739
SPECjbb process 2 608,968,797 5.1% 717,720 3.48% 213,329 2.06% 1,134
SPECjbb process 3 899,079,878 7.5% 773,773 3.76% 252,860 2.44% 504
SPECjbb process 4 1,648,886,947 13.7% 2,000,809 9.71% 962,684 9.28% 783
SPECjbb process 5 636,026,872 5.3% 623,331 3.03% 191,727 1.85% 488
SPECjbb process 6 854,446,496 7.1% 862,621 4.19% 254,023 2.45% 662
SPECjbb process 7 612,802,410 5.1% 687,737 3.33% 196,147 1.89% 930
SPECjbb process 8 549,496,460 4.6% 739,180 3.59% 204,938 1.98% 906
186.crafty 2,496,272,177 20.7% 1,015,078 4.93% 581,945 5.61% 1,077
181.mcf 2,976,933,794 24.7% 12,123,533 58.86% 7,216,094 69.57% 1,077
Total (benchmarks) 11,712,074,620 97.1% 20,324,787 98.68% 10,317,628 99.47% 8,300
Total (all observed) 12,056,225,959 100% 20,596,848 100.00% 10,372,137 100.00% 13,159

Table 3.5: Summary of the mixed workloads. SPECjbb is ran with 8 warehouses, each

spawned as a separate Java thread.

77

No Power
IPD ISR

SW-only
HW-only HW–SW

Management (PAVM)

Energy Consumption 419.13 J 234.84 J 72.16 J 140.87 J 128.88 J 109.88 J
Average Power 55.01 W 30.82 W 9.47 W 18.49 W 16.92 W 14.42 W

Average Response Time 123.62 135.58 959.17 137.21 137.25 138.98
Delayed Accesses Due to PD 0 14,513,726 0 12,477,003 14,480,901 12,465,340
Delayed Accesses Due to SR 0 0 4,209,023 905 14,314 6,069

Table 3.6: Summary of Mixed workload #1. All timings are in unit of cycles.

No Power
IPD ISR

SW-only
HW-only HW–SW

Management (PAVM)

Energy Consumption 394.68 J 223.91 J 115.95 J 129.07 J 121.34 J 107.14 J
Average Power 55.72 W 31.61 W 16.37 W 18.22 W 17.13 W 15.13 W

Average Response Time 143.28 152.90 931.37 154.57 155.07 155.17
Delayed Accesses Due to PD 0 12,324,762 0 10,993,260 12,293,860 10,981,748
Delayed Accesses Due to SR 0 0 3,934,854 238 15,032 5,599

Table 3.7: Summary of mixed workload #2. All timings are in unit of cycles.

3.4.3 Sensitivity Analysis

In the previous section, we set the window size of the threshold predictor to 500µsec.

In this section, we will study how window size affects performance and energy in the HW-

only and HW–SW techniques. Since PAVM does not rely on any hardware monitor and

predictor, it is not affected by this parameter. In Table 3.10, we show results when varying

the window size to be 10, 500, and 5000µsec.

As expected, if we decrease the window size, we can adapt moreclosely to the current

memory access pattern, which results in more power savings.However, because we are

looking within a smaller time window, we are more prone to over-compensate or to more

aggressively set threshold values. This results in a significant increase in response time

when we shrink the window size from 500µsecto 10µsec.

As we have shown previously, at the window size of 500µsec, the HW–SW technique

uses 11.7–16.7% less power than HW-only. When we shrink the window size to 10µsec,

the hardware can more quickly adapt, and therefore, the benefit of communicating informa-

tion from the system software diminishes. Our result shows that HW–SW saves only 6.6–

10.3% more power than the HW-only approach after reducing the window size to 10µsec.

However, this additional power reduction comes at a hefty performance penalty—an addi-

tional performance degradation of 13.4–74.8%, which most likely will not be acceptable in

many systems. On the other hand, there is not much performance benefit in increasing the

78

No Power
IPD ISR

SW-only
HW-only HW–SW

Management (PAVM)

Energy Consumption 397.15 J 225.84 J 91.03 J 137.11 J 125.15 J 110.08 J
Average Power 55.80 W 31.73 W 12.79 W 19.26 W 17.58 W 15.47 W

Average Response Time 139.64 149.42 932.27 150.23 151.31 152.58
Delayed Accesses Due to PD 0 14,760,164 0 12,651,574 14,721,606 12,637,407
Delayed Accesses Due to SR 0 0 4,297,173 348 16,944 6,091

Table 3.8: Summary of Mixed workload #3. All timings are in unit of cycles.

No Power
IPD ISR

SW-only
HW-only HW–SW

Management (PAVM)

Energy Consumption 413.21 J 230.49 J 108.75 J 135.02 J 124.49 J 108.24 J
Average Power 54.84 W 30.59 W 14.43 W 17.92 W 16.52 W 14.36 W

Average Response Time 123.05 134.75 975.69 136.72 136.26 137.35
Delayed Accesses Due to PD 0 12,318,649 0 10,961,327 12,292,630 10,951,530
Delayed Accesses Due to SR 0 0 3,961,286 838 12,178 5,453

Table 3.9: Summary of Mixed workload #4. All timings are in unit of cycles.

window size to 5000µsec, where we actually increased the average power dissipationby

12.5–18.7% while only improved the average response time by0.3–1.2%.

3.5 Conclusions

In this chapter, we proposed a novel power management technique that makes use of

cooperation between the system software and the memory controller hardware. It can sig-

nificantly improve the accuracy of the PMU’s threshold prediction logics. Using a full-

system simulator, our HW–SW cooperative approach is shown to consume 8.18–14.02%

less energy than the hardware-only approach with similar performance. It is also shown to

consume 49.98–68.13% less energy than the software-only approach.

Alternative to this software-directed hardware power management technique, the hard-

ware can provide feedback to the system software to create additional energy saving oppor-

tunities. For example, the hardware can inform the OS how frequently (hot) or infrequently

(cold) each of the physical pages is being accessed, and the OS can use this information to

re-arrange memory pages within each process’s address space. This allows us to either (1)

run hot ranks hotter and cold ranks colder to create more energy saving opportunities in the

cold ranks, or (2) balance power dissipation on each rank andremove hot spots. This is the

main focus of Chapter 4.

Additionally, we would also like to explore direct cooperation between applications

79

Window HW-only HW–SW
Size Avg Power Avg Rsp Time Avg Power Avg Rsp Time
10µs 8.68 W 225.43 cycles 7.84 W 216.61 cycles

Low-Mem 500µs 16.18 W 128.96 cycles 13.48 W 130.47 cycles
5000µs 19.00 W 131.64 cycles 17.00 W 128.88 cycles
10µs 12.65 W 165.45 cycles 11.35 W 167.03 cycles

High-Mem 500µs 18.71 W 145.94 cycles 16.07 W 148.64 cycles
5000µs 21.05 W 145.01 cycles 18.39 W 148.22 cycles
10µs 10.14 W 175.32 cycles 9.21 W 173.22 cycles

Mixed#1 500µs 16.92 W 137.25 cycles 14.42 W 138.93 cycles
5000µs 20.09 W 136.65 cycles 17.83 W 138.27 cycles
10µs 11.05 W 180.16 cycles 10.32 W 177.36 cycles

Mixed#2 500µs 17.13 W 155.07 cycles 15.13 W 155.17 cycles
5000µs 19.35 W 154.46 cycles 17.73 W 154.62 cycles
10µs 11.16 W 176.25 cycles 10.31 W 175.53 cycles

Mixed#3 500µs 17.58 W 151.31 cycles 15.47 W 152.58 cycles
5000µs 20.47 W 151.48 cycles 18.67 W 152.03 cycles
10µs 10.09 W 182.30 cycles 9.35 W 179.58 cycles

Mixed#4 500µs 16.52 W 136.26 cycles 14.36 W 137.35 cycles
5000µs 18.56 W 136.09 cycles 17.32 W 136.78 cycles

Table 3.10: Comparing HW-only against HW–SW when varying the window size.

and the PMU. As applications themselves know more about their future memory access

behavior than the OS. Such information will be valuable to the memory controller in its

prediction logics, and thus, can be used to further enhance the proposed system.

80

CHAPTER 4

Active Memory-Traffic Reshaping

4.1 Motivation

In the previous chapter, we have shown that hardware techniques can save a significant

amount of energy by using fine-grained monitoring and power-control mechanisms to ob-

serve and take advantage of the idle periods in memory ranks.However, not all idle periods

can be exploited because state transitions take a non-negligible amount of time and energy.

Only idle periods longer than thebreak-even time[45] are beneficial to transition to lower

power states. The break-even times of different low-power states can vary significantly,

and deeper power-saving states usually have longer break-even times as more components

are disabled in these states and would take more time and energy to re-enable them be-

fore any new memory requests can be serviced. Therefore, to efficiently utilize the deeper

power-saving states, having long and contiguous idle periods in memory traffic is essential.

Unfortunately these long idle periods are not commonly found in realistic workloads

as physical memory is usually randomly accessed and driven completely by the current

process’s execution. As existing power-management techniques only passively monitor

memory traffic, the deeper power-saving states are rarely fully exploited. In this chapter,

we propose a new technique that minimizes short and unusableidle periods for power sav-

ings by aggregating them to create longer ones. As a result ofreshaping the memory traffic

in such a way, existing power management techniques are ableto make better use of the

idleness in the memory, thus saving more energy. Lebecket al. [25] briefly mentioned

81

Rank

bank 0

bank 3

bank 2

bank 1

CL 0 CL 3CL 2CL 1 CL 4

CL 7CL 6

CL 5

CL 8

Rank

bank 0

bank 3

bank 2

bank 1

CL 0

CL 3

CL 2

CL 1

CL 4

CL 7

CL 6

CL 5

CL 8

(a) (b)

Figure 4.1: (a) Bank-fill interleave: consecutive cache lines (CL) are sequenced on the

same bank until the bank is full. (b) Bank-spread interleave: consecutive cache lines are

round-robined across the banks.

a frequency-based technique that is similar to our work, butthey failed to recognize how

such technique can be used to complement existing power-management techniques. Fur-

thermore, unlike their work, we propose a practical technique that could be implemented in

real systems using conventional operating systems and hardware. A more thorough evalu-

ation is also presented here to fully assess the benefits and problems of this technique.

The rest of this chapter is organized as follows. Section 4.2first discusses memory

interleave schemes and their effect on power management. Section 4.3 gives some general

intuitions about why passive power management is inefficient and how we can benefit from

active management. Section 4.4 describes a practical technique that we can use to reshape

memory traffic to our benefits. In Section 4.5, we evaluate thepros and cons of this tech-

nique using SPEC benchmarks. Finally, in Section 4.6, we conclude and highlight some

possible future works.

4.2 Memory Interleaving

In this section, we describe how different interleave schemes can be applied to various

levels of the memory hierarchy. We look at two types of interleave schemes—spreadand

fill , which are already implemented in many existing server systems. Bank is the lowest

level where memory interleave can be applied. The two ways tointerleave,bank-fill and

bank-spread, are shown in Figure 4.1. In bank-fill interleave, consecutive cache lines are

placed sequentially next to each other to fill up the whole bank. Once a bank is full, the

next cache line is placed at the beginning of the next bank. Inbank-spread interleave,

82

Rank 0

Rank 3

Rank 2

Rank 1

CL 0 CL 5CL 4CL 3CL 2CL 1

CL 7CL 6 CL 8

Rank 0

Rank 3

Rank 2

Rank 1

CL 0

CL 5

CL 4

CL 3

CL 2

CL 1

CL 7

CL 6

CL 8

(a) (b)

Figure 4.2: (a) Rank-fill interleave: consecutive cache lines (CL) are sequenced on the

same rank until the rank is full. (b) Rank-spread interleave: consecutive cache lines are

round-robined across the ranks.

consecutive cache lines are placed round-robin across all banks within a rank. In terms of

performance, bank-spread is generally better than bank-fill. The reason is that due to data

locality, sequential accesses are very common (i.e., affinitive cache lines are likely to be

accessed closely in time). Bank-spread performs much better than bank-fill in sequential

accesses because in the case of bank-spread, these sequential accesses can be serviced

simultaneously by all the banks in the rank, whereas in the case of bank-fill, these sequential

accesses will be serviced by only a single bank, thus resulting in longer queuing delays and

larger average response time. Furthermore, since the smallest unit in power management

in the memory is a rank, we cannot exploit these idle banks to save additional energy.

Therefore, not only bank-fill negatively impacts performance due to its inability to use the

all banks efficiently, but it also has no energy benefits. In the rest of the chapter, we will

only consider bank-spread interleave.

Similarly, spread and fill interleave schemes can also be applied at the rank level, and

they are orthogonal to the interleave schemes used at the bank level. Rank-fillandRank-

spreadinterleaves are shown in Figure 4.2. Again, spread interleave is generally better in

performance as it can more efficiently utilize all the ranks.However, in terms of power, fill

tends to be more efficient. This can be shown in an example in Figure 4.3. We show the

83

Rank 0

Rank 1

Rank 2

Rank 3

Rank-fill Interleaving Rank-spread Interleaving

Figure 4.3:An example that shows two bursts of sequential accesses in a memory system with 4

ranks. Using rank-fill interleave, there are usually more and longer idle periods between memory

accesses that can be used for saving energy, whereas in the rank-spread case, each time a burst of

sequential memory requests occurs, all the ranks are touched, thus making the average idle time

smaller. However, when performing power management, longer idle times are crucial to have for

entering some of the deep power-saving states.

performance and energy tradeoff using different rank interleave schemes in Section 4.5.

4.3 Active vs. Passive Power Management

Even though read and write operations dissipate the most amount of power, they do not

consume a significant amount of energy due to their short duration. Instead, most of the

energy are consumed when memory is idling. We show in Figure 4.4 that for a SPECjbb

workload, energy is mostly consumed in the Precharge state and by peripheral components,

i.e., PLL and registers. This power can be significantly reduced by transitioning memory

ranks and the peripheral components to a low-power state during idle periods.

Powerdown is one of the two low-power states implemented in the DDR memory ar-

chitecture, and it uses 31% of the Precharge power. Having only a 5 ns resynchronization

latency, using Powerdown, power can be reduced even with short idle periods; however, it

is not nearly as power-efficient as the Self Refresh state where we can also put the PLL and

the registers to their low-power state. Its potential benefit is clearly shown in Figure 4.4.

However, due to having a much longer resynchronization latency when exiting from Self

Refresh, idle periods of at least 19µsecare needed just to break even. This is more than

84

Precharge
52.57%

PLL
38.90%

Write
0.08%

Register
5.23%

Read
0.25%

Data Queue
0.05%

Auto Refresh
2.08%

Activation
0.47%

Active
0.38%

Figure 4.4: Breakdown of the energy consumed by DRAM.

three orders-of-magnitude longer than the break-even timefor entering Powerdown. We

calculate the break-even time using the Energy×Delay metric as described in [45].

time

time

Powerdown Standby

Memory accesses

Self Refresh

Existing memory traffic

Altered memory traffic

Figure 4.5: In the first case (above figure), the gaps between consecutive memory accesses

are too short for entering low-power states to have any benefits. In the second case, by

delaying and batching memory accesses, we can create longeridle periods, thus allowing

power management to take advantage of some deeper power-saving states.

Due to the randomness in memory accesses, long idle periods are rarely observed in

realistic workloads. As a result, it often inhibits the use of Self Refresh, which severely

limits the amount of power that can be saved from using existing power-management tech-

niques. This is illustrated by an example shown in Figure 4.5, where we show that simply

making power-management decisions based on the monitored memory traffic is often not

85

time

Memory accesses

Powerdown StandbySelf Refresh

time

time

time

Rank 0

Rank 3

Rank 1

Rank 2

Figure 4.6: An example showing that if memory traffic is left unshaped, power management

cannot take full advantage of deeper power-saving states since most idle periods are too

short.

enough—the observed memory traffic might not present the necessary energy-saving op-

portunities. However, if we can alter the traffic pattern in acertain way, it is possible to

create longer idle periods, from which power can be more effectively reduced. Unfortu-

nately, the particular technique we show in Figure 4.5 is notvery useful in practice as we

cannot control memory accesses at such a fine granularity. Additionally, by delaying and

batching memory accesses, we will pay a severe performance penalty. In the following sec-

tion, we illustrate a more practical and low-overhead method of reshaping memory traffic

to improve energy-efficiency.

4.4 Memory Traffic Reshaping

To reshape the memory traffic to our benefit, we must make memory accesses less

random and more controllable. Conventional memory traffic often seems random because

(1) the operating system arbitrarily maps virtual pages to physical pages, and (2) different

pages are often accessed very differently at run-time. As a result of such randomness, the

observed interarrival characteristic of memory requests is often not favorable for reducing

power.

86

time

Memory accesses

Powerdown StandbySelf Refresh

time

time

time

Rank 0

Rank 3

Rank 1

Rank 2

Figure 4.7: An example showing that if memory traffic can be loosely controlled (e.g., by

migrating pages), some ranks will, as a result, have much longer idle periods, thus allowing

the use of the deeper power-saving states.

To give an example, we use a 4-rank system shown in Figure 4.6.Due to the arbitrary

OS’s page mapping, memory requests will be randomly distributed across the 4 ranks. This

creates a large number of small and medium-sized idle periods. The smaller idle periods are

often completely useless and cannot be used for saving energy. As for the medium-sized

ones, we can transition memory devices to Powerdown and obtain a moderate amount of

power savings. However, to significantly reduce power, we need to take advantage of Self

Refresh’s ultra low-power property. Unfortunately, as it can be seen from this example, due

to the lack of long idle periods, Self Refresh is very infrequently utilized.

4.4.1 Hot Ranks and Cold Ranks

To elongate idle periods, we introduce the concepts ofhot andcold ranks. Hot ranks

are used to hold frequently accessed pages, which leaves infrequently used and unmapped

pages on cold ranks. Hot ranks are ranks created by migratingfrequently accessed memory

pages onto from the cold ranks. The mechanism to migrate pages from one rank to another

was previously described in full detail in [62]. The result of making this differentiation

among ranks is shown in Figure 4.7. Here we assume that Rank 0 and 1 are used as hot

87

ranks and Rank 2 and 3 are used as cold ranks. Essentially, we are increasing the utilization

of hot ranks and decreasing the utilization of cold ranks. Asa result, the additional memory

requests imposed upon these hot ranks will “fill-in” betweenthe existing idle gaps. As most

of these gaps were small and could not be used for saving poweranyways, by servicing ad-

ditional requests during such time, we can make more efficient use of the power dissipated

by the hot ranks. This might cause hot ranks to lose some energy-saving opportunities to

use Powerdown (e.g., Rank 1 shown in Figure 4.6 and Figure 4.7), but as a result of that,

more valuable opportunities are created on cold ranks wherethe deeper power-saving state,

Self Refresh, can be more utilized. In our experiments, we found that we can save much

more energy on cold ranks than the additional energy that we consume on hot ranks. We

were able to observe that the average interarrival time on cold ranks were elongated by

almost two orders-of-magnitude.

75 90 95 99
Percentile Percentile Percentile Percentile

LowMem Workload 5.68% 14.27% 18.60% 25.81%
HighMem Workload 0.53% 1.49% 4.98% 16.38%

Table 4.1: Shows what percentage of memory pages is responsible for 75%, 90%, 95% or

99% of all memory accesses.

4.4.2 Reducing Migration Overhead

Migrating pages causes additional memory traffic, which results in more queuing delays

and contentions. Therefore, only a small number of pages canbe moved without causing

noticeable overheads. Fortunately, empirical observations from our experiments gave us

some hints that allow us to do just that and still be able to reshape the memory traffic

according to our needs. Memory traces collected from several workloads indicate that only

a small percentage of pages are responsible for a majority ofthe memory traffic. This is

shown in Figure 4.8, and we summarize the results in Table 4.1. From this table, it is

clear that we can reshape the memory traffic to meet our needs by migrating only a very

small percentage of pages. For example, if we want to control90% of all memory traffic,

we only need to control 1.5–14.3% of all pages. Only half of these pages would need to

88

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50000 100000 150000 200000

N
um

be
r

of
 A

cc
es

se
s

Page Number

Low Memory Intensive Workload

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50000 100000 150000 200000

N
um

be
r

of
 A

cc
es

se
s

Page Number

High Memory Intensive Workload

Figure 4.8: Number of times each physical page in the memory is accessed for low

memory-intensive workload and high memory-intensive workload. These workloads are

described in Section 4.5.

be migrated because pages are randomly allocated, and on average, 50% of the frequently

accessed pages should have already been allocated on the hotranks and do not need to move

(this assumes that 50% of the memory ranks are used as hot ranks and 50% as cold ranks).

Furthermore, since migration overhead is only a one-time cost, the longer a migrated page

stays hot, the more we can amortize its migration cost over time. We can also think of other

heuristics that we can use to further reduce the number of migrations and the migration

overheads. For example, we can use process profiling to better predict the appropriate

initial location where we should allocate pages for each process so that the number of page

migrations can be reduced. Additionally, we can reduce migration overhead by avoiding

moving heavily-shared pages, page-cache pages, and buffer-cache pages as there are more

89

overheads in moving these types of pages. In particular, to move a shared page, we would

need to change the page table entries of each of the processessharing this page; the more

processes sharing this page, the more page tables we would need to modify. Therefore, the

best candidate pages to migrate are frequently accessed private pages.

4.4.3 Implementation

To determine which page to migrate, we keep a count of how manytimes each page

was accessed. This is used by a kernel thread to find frequently access pages on cold ranks

so these pages can be migrated. Currently, the page access-count table is maintained by

the memory controller in our simulator. Alternatively, thesame can be achieved by using

software page faults to avoid hardware modification—sampling may be used to reduce page

fault overheads.

4.5 Evaluation

We use the same simulation environment, analysis tools (Section 2.5.1), and work-

loads (Section 2.5.2) that we have used in the previous chapters. In Section 4.5.1, we first

compare power and performance implications between rank-fill and rank-spread interleave

schemes. Then Section 4.5.2 describes how memory traffic reshaping can significantly

improve performance and energy.

Our memory simulator can simulate various power-management techniques. To com-

pare our technique with the previously-proposed ones, we evaluate five techniques in power

and performance, which are listed as follows.

• No Power Management (NOPM):Here, no power management is used, and ranks

are transitioned to Precharge when they are idle.

• Immediate Powerdown (IPD): This is the simplest form of hardware power man-

agement. It is a static technique where the memory controller immediately transitions

a rank to Powerdown when all memory requests on this rank havecompleted.

90

• Immediate Self Refresh (ISR):Same as IPD, but transitions to Self Refresh instead

of to Powerdown.

• Dynamic Hardware Technique (HW): This is a dynamic hardware power-management

technique and is similar to the History-Based Predictor described in [41]. It moni-

tors past memory accesses, and based on which, predicts after how long of an idle

period should it transition a rank to Self Refresh (the threshold prediction algorithm

is shown in Figure 2.9). Transitions to Powerdown have a zerothreshold, which was

previously shown to be the most efficient [25].

• HW with Reshaped Memory Traffic (HW
x
): Using the same HW technique as

above but with a reshaped memory traffic. The x inHWx represents the percentage

of memory pages that we migrate when reshaping the memory traffic, i.e., HW0 is

the same as HW.

4.5.1 Rank Interleaving

When no power management is performed, results are shown in Table 4.2. As ex-

pected, power stays the same when varying the rank interleave scheme. However, as was

mentioned previously, rank-spread is better than rank-fillin terms of performance. Specifi-

cally, rank-spread has a 9.0% and 14.3% faster average response time than rank-fill for the

low memory-intensive and the high memory-intensive workloads, respectively.

Rank-spread’s performance benefit comes from higher utilization of all the ranks. How-

ever, this leaves the interarrival time between consecutive memory requests smaller than the

rank-spread interleave, thus having negative impact when power management is applied. In

Table 4.3, we compare rank-spread and rank-fill under HW. It shows, despite some perfor-

mance benefits, rank-spread is 80.8% and 72.5% less effective than rank-fill when power

management is applied. Therefore, unless performance is critical in a system, the rank-fill

interleave scheme should be used to maximize energy savings.

91

(a)

(b)

Figure 4.9: Part (a) shows idle time characteristic of a hot rank before (left) and after (right)

migrating frequently accessed pages. Part (b) shows idle time characteristic of a cold rank before

(left) and after (right) migrating frequently accessed pages. These are derived from the low memory-

intensive workload. High memory-intensive workload givessimilar result, thus is omitted here.

92

Interleaving
Low memory intensive workload High memory intensive workload

Power Norm Runtime Avg Resp Time Power Norm Runtime Avg Resp Time

Rank-fill 49.97 W 1.00 72.01 ns 52.15 W 1.00 84.13 ns
Rank-spread 49.97 W 0.99 65.55 ns 52.15 W 0.93 72.09 ns

Table 4.2: Comparing rank interleave schemes for NOPM.

Interleaving
Low memory intensive workload High memory intensive workload

Power Norm Runtime Avg Resp Time Power Norm Runtime Avg Resp Time

Rank-fill 10.24 W 1.00 90.14 ns 14.79 W 1.00 93.21 ns
Rank-spread 18.51 W 0.98 80.69 ns 24.47 W 0.91 78.66 ns

Table 4.3: Comparing rank interleave schemes when power is managed by HW.

4.5.2 Memory Traffic Reshaping

Results for the low memory-intensive and the high memory-intensive workloads are

shown in Tables 4.4 and 4.5, respectively. In these tables, we show the average power

dissipation, normalized runtime (with respect to no power management), and the average

response time of memory accesses for each of the power-management techniques. We

can see that even with the simplest static power management technique, IPD, a significant

amount of power (45.73–48.89%) can be reduced without causing much impact on the

performance (1.8–5.0%). Using ISR, additional power can bereduced. However, due to

having a static policy to transition into Self Refresh and a much higher resynchronization

latency when exiting from Self Refresh, ISR’s overwhelmingperformance penalty (99.2–

279.5%) makes it almost impractical to use in realistic workloads. On the other hand,

using the dynamic hardware technique (HW), we show that if Self Refresh is utilized more

carefully, a significant amount of power can be reduced (71.64–78.57%) but without sig-

nificantly affecting the performance (3.5–5.6%).

Effect of Reshaping on Memory Traffic

Among these four techniques, HW is by far the most effective because it can dynami-

cally adapt its power-management decisions as memory traffic’s characteristic changes. To

understand the implications of memory traffic reshaping, were-evaluated HW with a re-

shaped memory traffic. However, before we delve into that, wewill first look at the effects

of migrating frequently accessed pages from cold ranks to hot ranks on memory traffic.

In Figure 4.9, we show how the idle time characteristic (i.e., the distribution of the total

93

Normalized Normalized Average
Power Management Power Runtime Runtime Response Time

NOPM 49.97 W 1.000 49.97 72.01 ns
IPD 25.54 W 1.018 26.00 82.17 ns
ISR 6.23 W 1.992 12.41 697.60 ns
HW 10.24 W 1.035 10.60 90.14 ns

NOPM5 49.99 W 1.025 51.24 59.78 ns
IPD5 25.55 W 1.051 26.85 70.47 ns
ISR5 6.17 W 1.959 12.09 448.49 ns
HW5 6.26 W 1.056 6.61 95.91 ns

Table 4.4: Summary of the energy and performance results forthe low memory-intensive

workload.

Normalized Normalized Average
Power Management Power Runtime Runtime Response Time

NOPM 52.15 W 1.000 52.15 84.13 ns
IPD 28.30 W 1.050 29.72 92.18 ns
ISR 14.47 W 3.795 54.92 537.45 ns
HW 14.79 W 1.056 15.62 93.21 ns

NOPM5 52.16 W 1.105 57.63 64.85 ns
IPD5 28.24 W 1.187 33.52 74.49 ns
ISR5 13.16 W 3.556 46.80 384.99 ns
HW5 9.52 W 1.190 11.33 106.25 ns

Table 4.5: Summary of the energy and performance results forthe high memory-intensive

workload.

idle time among different-sized idle periods) on a hot rank and a cold rank has changed

after we reshaped the memory traffic. Due to having to servicemore memory requests,

the average idle period on hot ranks has decreased from 3630 ns to 472 ns. This causes

memory devices to lose opportunities to enter low-power states, but since we can benefit

from entering Powerdown even with short idle periods, not much is really lost here. By

redirecting a significant number of memory accesses away from cold ranks to these hot

ranks, much longer idle periods are created on cold ranks. Wefound that after the migra-

tion of frequently accessed pages, the average idle period on cold ranks has increased from

1520 ns to 122210 ns (Figure 4.9(b)). This created more valuable opportunities where Self

Refresh can be exploited.

The result of applying the HW technique to a reshaped memory traffic is shown in

Tables 4.4 and 4.5, labeled asHW5, for the low memory-intensive and the high memory-

intensive workloads, respectively. Here, we migrated 5% ofall memory pages to reshape

the memory traffic. By doing so, we achieved 35.63–38.87% additional power savings

than the original HW technique. However, due to the additional contention created on

94

�� � �� ��� ��� ����� �

� � �� � �� 	 � � ��
 ��
 � � �� � � � � �� �� �� � �
 �
 � �
 � � �� � � � �� ��

�� � �� � �� � �� � !!� �

" # " # ! "# $ "# !�% &' () * + , - . / - 01 & 2 0 - 3 +(- % &' () * + , - . 4 &5 -'
Figure 4.10: Effects of actively reshaping memory traffic bymigrating 1%, 5%, and 10%

of pages for the low memory-intensive workload (above) and high memory-intensive work-

load (below).

the hot ranks and the extra memory accesses needed to migratepages, the performance

is degraded. In the low memory-intensive workload, the performance degradation is only

2.0% compared to HW. However, in the high memory-intensive workload, performance is

degraded by 12.7%. The reason for this is that pages are much more frequently accessed

in the high memory-intensive workload,1 and as a result of migrating frequently accessed

pages onto the hot ranks, the additional contention createdon hot ranks is much more

severe in the high memory-intensive workload.

1Both workloads run for the same amount of time, but the high memory-intensive workload has 6 times
more memory accesses than the low memory-intensive workload.

95

Now, we look at the effect of reshaping memory traffic on static power management

techniques. Results are shown in the bottom half of Tables 4.4 and 4.5, for the low memory-

intensive and the high memory-intensive workloads, respectively. Here we use the notation

of Xy to denote that power is managed by using technique X to managepower with the

memory traffic that is reshaped by migrating y% of all pages. First, we compare NOPM

with NOPM5, and we can see that power dissipation is virtually unchanged. The very small

amount of increase in power dissipation is caused by page migration, which as we can see

if negligible. This makes us more confident that the overheadof page migration can be

neglected, as we initially expected. With all the frequently accessed pages aggregated to a

small number of hot ranks, performance, on the other hand, ismore affected (2.0–10.0%)

due to contention. When comparingIPD5 and ISR5 with IPD and ISR, we can see that

they performed comparably. Without the ability to adapt dynamically, it is difficult for

these static techniques to take advantage of the newly created longer idle periods.

To study the effect of memory traffic reshaping in more detail, we compare the results

of migrating 1%, 5%, and 10% of pages. These are shown in Figure 4.10, where we

normalized the average power and average runtime to that of HW with a unshaped memory

traffic. Here we can see, migrating only 1% of pages gives onlylimited benefits in power

reduction. On the other hand, migrating 10% of pages does notgive any additional energy

benefit beyond that of migrating 5%. In addition, it also suffers from more performance

penalty due to having to migrate more pages. Therefore, migrating 5% of pages gives the

best result for the workloads we ran.

Discussion

When memory is frequently accessed, as in the high memory-intensive workload, per-

formance degradation due to contention on hot ranks can be more of a concern. However,

this can be alleviated by implementing a detection mechanism that stops migration or even

triggers a “reverse migration” when excessive contention is observed on hot ranks. How-

ever, this only minimally alleviates the problem. As we can see from Figure 4.10, migrating

1% as opposed to 5% of pages does not give much benefit in reducing performance penalty.

To solve the problem at its root, it calls for an alternative main memory design, where

96

we should use high-performance, highly parallel memory forhot ranks and low-performance

/ power memory for cold ranks. This allows for faster access time for more frequently

accessed pages and minimizes contentions on hot ranks. It also allows for more energy

savings with the use of low-power memory devices to build cold ranks. Additionally, by

using low-performance / power memory as cold ranks, such heterogenous main memory

design can potentially lower the monetary cost of building the main memory subsystem.

4.6 Conclusions

In this chapter, we propose a technique to actively reshape memory traffic to produce

longer idle periods so we can more effectively exploit idleness in the memory. Our exten-

sive simulation in a multitasking system shows that a 35.63–38.87% additional energy can

be saved by complementing existing power-management techniques with reshaped mem-

ory traffic. Our result also indicates that an alternative main memory design could be more

efficient than today’s homogenous design in terms of power efficiency, performance, and

cost.

97

CHAPTER 5

FS2: Free Space File System

5.1 Motivation

Magnetic disks have been the primary means of storing digital information on comput-

ers since 1957 when IBM first introduced RAMAC. Various aspects of magnetic disk tech-

nology, such as recording density, cost, and reliability, have been significantly improved

over the years—the disk recording density has increased by more than 60% annually and

the price-per-gigabyte has dropped by 35-40% annually [121]. However, due to the slowly-

improving mechanical positioning components (i.e., arm assembly and rotating platters) of

the disk, disks’ performance is falling behind the rest of the system and has become a major

bottleneck to overall system performance.

To reduce the head positioning latencies (i.e., seek time and rotational delay), we pro-

pose a novel technique thatdynamicallyplaces copies of data in file system’sfree blocks

according to the disk access patterns observed at runtime. As one or more replicas can

now be accessed in addition to their original data block, choosing the “nearest” replica that

provides fastest access can reduce the amount of time disk I/O operations take.

We implemented and evaluated a prototype file system based onthe popular Ext2 file

system. In our prototype, since the file system layout is modified only by using the free /

unused disk space (hence the nameFree Space File System, or FS2), users are completely

oblivious to how the file system layout is modified in the background; they will only notice

performance improvements over time. For several workloadswe ran under Linux, FS2 is

98

shown to have reduced disk access time by 41–68% (as a result of a 37–78% shorter seek

time and a 31–68% shorter rotational delay) resulting in a 16–34% overall user-perceived

performance improvement. The reduced disk access time alsoled to a 40–71% per-disk-

access energy reduction.

5.1.1 Motivating Example

To minimize mechanical delays in magnetic disks, traditional file systems tend to place

objects that are likely to be accessed together so that they are close to one another on the

disk. For example, BSD UNIX Fast File System (FFS) [34] uses the concept ofcylinder

group (one or more physically-adjacent cylinders) to cluster related data blocks and their

meta-data together. For some workloads, this method can significantly improve both disks’

I/O latency and throughput. But for many other workloads in which the disk access pattern

deviates from that was assumed by the file system, it may result in significantly degraded

performance. This problem occurs because the file system is unable to take into account

the disk access patterns at runtime when making disk layout decisions. This inability to use

theobserveddisk access patterns to make data placement decisions will lead to poor disk

utilization.

Using a simple example, we now show how traditional file systems can sometimes per-

form poorly even for common workloads. In this example, we monitored disk accesses

during the execution of a CVSupdatecommand in a local CVS directory containing the

Linux 2.6.7 kernel source tree. As Figure 5.1(a) shows, almost all accesses are concen-

trated in two narrow regions of the disk, corresponding to the locations at which the local

CVS directory and the central CVS repository are placed by the file system (Ext2). By

using file directory structures, Ext2 is shown to do well in clustering files that are statically

related. Unfortunately, when accesses to files from two regions are interleaved, the disk

head will have to move back and forth constantly between the different regions (as shown

in Figure 5.1(b)), resulting in poor disk performance in spite of the efforts that were made

by Ext2 for reasonable placements. Consequently, user willexperience longer delays and

the disk will consume more energy. In our experiment, the CVSupdate command took 33

99

0

5e+07

1e+08

1.5e+08

8000 8200 8400 8600 8800 9000

D
is

k
S

e
ct

o
r

N
u

m
b

e
r

Runtime (msec)

Disk Head Movement

(a) (b)

Figure 5.1: Part (a) shows disk sectors that were accessed when executing acvs -q update

command within a CVS local directory containing the Linux 2.6.7 source code. Part (b)

shows the disk head movement within a 1-second window of the disk trace shown in part

(a).

seconds to finish on an Ext2 file system using the anticipatoryI/O scheduler. By managing

the disk layout dynamically, the same update command took only 22 seconds to complete

in our implementation of FS2.

Traditional file systems perform well for most types of workloads and not so well for

others. We must, therefore, be able to first identify the types of workloads and environments

that traditional file systems generally perform poorly (listed below), and then develop good

performance-improving solutions for them.

Shared systems:File servers, mail servers, and web servers are all examplesof a shared

system, on which multiple users are allowed to work and consume system resources

independently of each other. Problems arise when multiple users are concurrently

accessing the storage system (whether it is a single disk or an array of disks). As far

as the file system is concerned, files of one particular user are completely indepen-

dent of those of other users, and therefore, are unlikely to be stored physically close

to those belong to other users. However, having concurrent disk accesses from mul-

tiple users can potentially cause the storage system to become heavily multiplexed

(therefore less efficiently utilized) between several statically unrelated, and poten-

100

tially distant, disk regions. A PC is also a shared system with similar problems; its

disk, instead of being shared among multiple users, is shared among concurrently

executing processes.

Database systems:In database systems, data and indices are often stored as large files

on top of existing file systems. However, as file systems are well-known to be in-

efficient in storing large files when they are not sequentially accessed (e.g., transac-

tion processing), performance can be severely limited by the underlying file system.

Therefore, for many commercial database systems [50, 65], they often manage disk

layout themselves to achieve higher performance. However,this increases complex-

ity considerably in their implementation, and for this reason, many database sys-

tems [50, 65, 92, 113] still rely on file systems for data storage and retrieval.

Systems using shared libraries:Shared libraries have been used extensively by most OSs

as they can significantly reduce the size of executable binaries on disk and in mem-

ory [93]. As large applications are increasingly dependenton shared libraries, placing

shared libraries closer to application images on disk can result in a shorter load time.

However, since multiple applications can share the same setof libraries, determin-

ing where on disk to place these shared libraries can be problematic for existing file

systems as positioning a library closer to one application may increase its distance to

others that make use of it.

5.1.2 Dynamic Management of Disk Layout

Many components of an operating system—those responsible for networking, mem-

ory management, and CPU scheduling—will re-tune their internal policies/algorithms as

system state changes so they can most efficiently utilize available resources. Yet, the file

system, which is responsible for managing a slow hardware device, is often allowed to op-

erate inefficiently for the entire life span of the system, relying only on very simple static

heuristics. We argue, like other parts of the OS, the file system should also have its own

runtime component. This allows the file system to detect and compensate for any poorly-

placed data blocks it has made statically. To achieve this, various schemes [2, 51, 104, 123]

101

have been proposed in the past. Unfortunately, there are several major drawbacks in these

schemes, which limited their usefulness to be mostly withinthe research community. Be-

low, we summarize these drawbacks and discuss our solutions.

• In previous approaches, when disk layout is modified to improve performance, the

most frequently-accessed data are always shuffled toward the middle of the disk.

However, as frequently-accessed data may change over time,this would require re-

shuffling the layout every time the disk access pattern changes. We will show later

that this re-shuffling is actually unnecessary in the presence of good reference local-

ity and merely incurs additional migration overheads without any benefit. Instead,

blocks should be rearranged only when they are accessed together but lack spatial

locality, i.e., those that cause long seeks and long rotational delays between accesses.

This can significantly reduce the number of replications forimproving disk layout.

• When blocks are moved from their original locations they maylose useful data se-

quentiality. Instead, blocks should bereplicatedso as to improve both random and

sequential accesses. Improving performance for one workload at the expense of an-

other is something we would like to avoid. However, replication consumes additional

disk capacity and introduces complexities in maintaining consistency between origi-

nal disk blocks and their replicas. These issues will be addressed in the next section.

• Using only a narrow region in the middle of the disk to rearrange disk layout is

not always practical if the rearrangement is to be done online, because interference

with foreground tasks has to be considered. Interference can be significant when

foreground tasks are accessing disk regions that are far away from the middle region.

We will demonstrate ways to minimize this interference by using the available free

disk space near current disk head position.

• Some previous techniques reserve a fixed amount of storage capacity just for rear-

ranging disk layout. This is intrusive, as users can no longer utilize the full capacity

of their disk. By contrast, using only free disk space is completely transparent to

users, and instead of being wasted, free disk space can now beutilized to our ben-

efit. To hide from users the fact that some of their disk capacity is being used to

102

0 %

1 00 %

Hitachi
Ultrastar

WD
Raptor

WD
Caviar

WD
Scorpio

Seek Time Transfer Time Rotational Delay

Figure 5.2: Breakdown of the disk access time in 4 drives, ranging from a top-of-the-line

15000-RPM SCSI drive to a slow 5400-RPM IDE laptop drive.

hold replicas, we need to invalidate and free replicas quickly when free disk capacity

becomes limited. As the amount of free disk space can vary, this technique provides

a variable quality of service, where the degree of performance improvement we can

achieve depends on the amount of free disk space that is available. However, empir-

ical evidence shows that plenty of free disk space can be found in today’s computer

systems, so this is rarely a problem.

• Most of previous work is either purely theoretical or based on trace analysis. We

implemented a real system and evaluated it using both server-type workloads and

common day-to-day single-user workloads, demonstrating significant benefits of us-

ing FS2.

Reducing disk head positioning latencies can make a significant impact on disk per-

formance. This is illustrated in Figure 5.2, where the disk access time of 4 different disk

drives is broken down to components: transfer time, seek time, and rotational delay. This

figure shows that transfer time—the only time during which disk is doing useful work—is

dwarfed by seek time and rotational delay. In a random disk workload (as shown in this

figure), seek time is by far the most dominating component. However, rotational delay

can become the dominating component when disk access locality reaches 70% (Lumbet

al. [83] studied this in more detail). In addition to improving performance, reduction in

103

seek time (distance) also saves energy as disk dissipates a substantial amount of power

when seeking (i.e., accelerating and decelerating disk heads at 30–40g).

The rest of this chapter is organized as follows. In Section 5.2, we first give some

background in magnetic storage technology and discuss its inherent implications on per-

formance, reliability, and energy-efficiency. Section 5.3gives an overview of our system

design. Section 5.4 discusses implementation details of our prototype based on the Ext2

file system. Section 5.5 presents and analyzes experimentalresults of FS2 and compares

it with Ext2. Future research directions are discussed in Section 5.6, and the chapter con-

cludes with Section 5.7.

5.2 Background

In this section, we dissect a disk drive to understand how itsinternal components work

together to accomplish basic I/O operations. Disk drives contain both mechanical and

electronic parts. The mechanical portion is consisted of recording components (i.e., disk

platters and read / write heads) and positioning components(i.e., an arm assembly that

moves the heads into the correct position and a track-following system that keeps it in

place). The controller portion contains a microprocessor,cache memory, and an I/O bus

interface. The disk controller manages the storage and retrieval of data to and from the

disk and performs mappings between the logical address requested by the CPU or DMA

controller and the physical disk location. We now detail themechanical components and

the controller components, each in turn, in the following sections.

5.2.1 Mechanical Components

Modern disks range in size from 1 to 8 inches in diameter: 2.5,3.5, and 5.25 inches

are the most common sizes. Smaller disks have less surface area and thus cannot store as

much data as their larger counterparts; however, they consume less power, can spin up and

down faster, and have smaller distances to seek. These disksare particularly popular in

mobile devices, e.g., laptops and PDAs. As for their larger counterparts, these disks offer

104

additional capacity, more resistance to shocks, and more I/O bandwidth, which are essential

to large server systems.

Storage density is one of the most rapidly advancing areas inmagnetic storage technol-

ogy, and its rapid growth is allowing us to store an ever increasing amount of digital data

being generated. This rapid increase in storage density comes as a result of improvements

in two areas. The first is linear recording density, which is determined by the maximum rate

of flux change that can be recorded and read back, and the second is track-to-track distance.

Being able to squeeze more bits per track and more tracks per inch significantly increased

disks’ areal density. However, before the 90’s, disks’ areal density was only improving at a

rate of 25% annually. At that time, semiconductor (DRAM) wasadvancing at a faster pace

of 40% annually, and due to which, was about to replace magnetic disks as a cheaper and

higher density alternative. It never happened. In 1991, theareal density of magnetic disks

had a sudden jump. Since then, it has sustained an amazing annual growth rate of 60%.

This dramatic increase in areal density has allowed large-capacity drives to be manufac-

tured with fewer platters and actuators, and consequently,reduced the price-per-gigabyte

by 35–40% annually.

In spite of the rapid increase in disk density, large-capacity disks built from a large

number of platters are sometimes needed. More platters offers higher capacity, but they

also require more time to spin up and down, and more power to keep them spinning. Each

platter may have either one or two recording surfaces, with each having a head responsible

for writing and reading magnetic flux variations to store andretrieve data. However, there

can only be one active head at any instant in time since there is only a single read-write data

channel that is shared among all the heads. This channel is used for encoding and decoding

data streams into or from a series of magnetic phase changes.This limits disk performance

somewhat, but its impact on disks’ performance is fairly minor when compared to other

factors.

Disks have always been one of the slowest components in computer systems. Over the

years, its access time has improved by only 7–10% per year [105]. Compared to the rate of

improvement in solid-state devices (e.g., microprocessor, cache, and DRAM), which has

been following Moore’s Law closely in the past two decades, disk is actually becoming

105

relatively slower over time. This causes an alarming rate ofdisparity between the speed

of accessing elements (e.g., microprocessor) and the accessed elements (e.g., disk). This

widening disparity between components’ speeds is often thesource of performance ineffi-

ciency in many systems.

Disks are slow and hard to speed up because it is very difficultto speed up its mechan-

ical positioning delays—seek time and rotational delay. A seek operation is composed of

the following phases.

• Speedup:When the disk arm is accelerating and has not reached half of the seek

distance or its maximum velocity.

• Coast:When the disk arm is moving at a constant speed of its maximum velocity.

• Slowdown:When the disk arm is decelerating until it rests close to the desired track.

• Settle:When the disk arm slightly adjusted itself among few neighboring track and

finally brought itself to rest close to the desired track.

Very short seeks (less than 2 to 4 cylinders) are dominated bythe settle time. In fact, a

seek may not even occur; the head may justresettleitself into position on the destination

track. Short seeks (less than 200 to 400 cylinders) spend almost all their time in the accel-

eration and deceleration phase, and the time is proportional to the square root of the seek

distance plus the settle time. Long seek operations spend most of their time moving at a

constant speed, taking an amount of time that is linearly proportional to the seek distance

plus a constant overhead.

Once the disk arm is positioned over the track that contains the data of interest (i.e.,

at the completion of a seek), the disk waits for arotation latency, which can vary from

zero to a full disk rotation time, before the head is positioned directly above the first sector

of the data to be accessed. With disk platters rotating in lockstep on a central spindle,

7200 RPM is the most common rotational speed among modern disks, however, 10000

and 15000 RPM disks are also becoming more common in high-endsystems. The median

rotation speed is increasing at a compound rate of about 12 percent per year. This allows

106

a higher transfer rate and shortens the rotation latency. Unfortunately, power dissipation is

also increased.

We will see shortly, it is due to these mechanical and electro-magnetic components that

disk is slow compared to other components in the system. Morespecifically, this slowness

is mainly due to seeking and waiting for rotation delay. We will discuss ways to reduce

them shortly.

5.2.2 Controller Components

The disk controller mediates access to the mechanical components, runs the track-

following system, transfers data between the disk and its clients, and, in many cases,

manages an embedded cache. Controllers are built around specially designed embedded

processors, which often have digital signal processing capability and special interfaces that

let them control hardware directly. The trend is toward morepowerful controllers for han-

dling increasingly sophisticated interfaces and for reducing costs by replacing previously

dedicated electronic components with firmware.

5.2.3 Performance, Fault-Tolerance, and Power

In the following subsections, we will briefly discuss the three majors areas of disk

drives—performance, fault-tolerance, and energy-efficiency. We delve into techniques for

improving these areas in Section 5.3.

Performance

Magnetic disk is much slower to access than solid-state devices. DRAM takes tens of

nanoseconds to access, whereas magnetic disk would take tens of milliseconds to access—

almost six orders-of-magnitude slower. The primary reasonit is slow is that disk access

time can be overwhelmingly dominated by overheads. Disk access time is consisted of (i)

seek timeTs, (ii) rotation delayTr, and (iii) transfer timeTt, but it is only during the transfer

time, is the disk doing any useful work; bothTs andTr are overheads. As demonstrated

in [83], for a random workload,Tt is usually minuscule compared toTs or Tr, thus often

107

resulting in poor disk utilization and slow disk access time. Therefore, to improve disk

performance, we need to either reduce seek time or rotation delay, or both.

Fault-Tolerance

Disk’s performance plays a critical role in the overall system’s performance, and there-

fore, is important to optimize. However, protecting data against corruption and loss is

equally important, if not more. Ideally, we would like our storage components to have

100% availability and never fail. However, in reality, harddisk failures are fairly common,

which is mainly due to its mechanical parts. The two most common types of failures in

hard disk are electronic failures and mechanical failures.An electronic failure occurs when

the controller board on the disk dies. This is most commonly caused by a transient elec-

trical surge. Luckily, in most cases, data are recoverable in the aftermath as disk platters

are usually left unscathed. To recover, it is often sufficient to replace the controller board

with an identical one from another drive. Mechanical failures, on the other hand, have

more serious consequences. They can often render all data ondisk unrecoverable. Some

common causes of this type of failures include mechanical shocks, contamination, conden-

sation, servo errors, and head crashes (cause approximately 45% of the cases where data is

lost [56]). Mechanical failures occur fairly frequently, and without means to guard against

them, all data on disk can disappear in a few seconds and beyond recovery.

Various fault-tolerance techniques have been proposed previously to protect against

data loss. Redundant Array of Inexpensive Disks, or RAID [94], is widely used by large

data centers, Internet service providers, corporations, and even individuals. It provides a

flexible way to tradeoff between performance, fault-tolerance, and cost. However, we feel

that additional fault-tolerance can be gained without sacrificing the other dimensions.

Energy Efficiency

In both small mobile devices and large data centers, magnetic disks can dissipate a

significant percentage of the total power. This is also true for data centers, where a large

number of high-performance and high-power disk drives are always kept in the full power

108

mode. According to [4, 89], cost of electricity for poweringcomputing and cooling equip-

ments can be as much as 30% of the total cost of ownership (TCO)in data centers. Among

various components of a data center, disk is one of the largest consumers of energy. A

recent industry report [12] shows that storage devices account for almost 27% of the total

energy consumed in a data center. This problem is exacerbated by the availability of faster

disks that consume more power, as well as the recent shift from tape backup systems to

disk backup to speed up storage and retrieval operations.

Power management techniques that exploit idle periods havebeen previously proposed

for magnetic disks. However, it was recently shown that for server-type workload, most

idle periods are too small to be exploited for saving energy [57, 132].

5.3 Design

This section details the design of FS2 on a single-disk system. Most of the techniques

used in building FS2 on a single-disk can be directly applied to an array of disks (e.g.,

RAID), yielding a performance improvement similar to that can be achieved on a single

disk (in addition to the performance improvements that can be achieved by RAID). More

on this will be discussed in Section 5.6.

FS2 differs from other dynamic disk layout techniques due mainly to its exploitation of

free disk space, which has a profound impact on our design andimplementation decisions.

In the next section, we first characterize the availability of free disk space in a large uni-

versity computing environment and then describe how free disk space can be used for our

purpose. Details on how to choose candidate blocks to replicate and how to use free disk

space to facilitate the replication of these blocks are given in the following section. Then,

we describe the mechanisms we used to keep track of replicas both in memory and on disk

so that we can quickly find all alternative locations where data is stored, and then choose

the “nearest” one that can be accessed fastest.

109

0

5

10

15

20

25

30

35

5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

65
%

70
%

75
%

80
%

85
%

90
%

95
%

10
0%

Percentage of Disk Full

H
is

to
gr

am

0%

20%

40%

60%

80%

100%

120%

C
D

F

Frequency
Cumulative %

Figure 5.3: This figure shows the amount of free disk space available on 242 disks from 22

public server machines.

5.3.1 Availability of Free Disk Space

Due to the rapid increase in disk recording density, much larger disks can be built with

a fewer number of platters, reducing their manufacturing cost significantly. With bigger

and cheaper disks being widely available, we are much less constrained by disk capacity,

and hence, are much more likely to leave a significant portionof our disk unused. This is

shown from our study of the 242 disks installed on the 22 public servers maintained by the

University of Michigan’s EECS Department in April 2004. Theamount of unused capacity

that we have found on these disks is shown in Figure 5.3. As we have expected, most of

the disks had a substantial amount of unused space—60% of thedisks had more than 30%

unused capacity, and almost all the disks had at least 10% unused capacity. Furthermore,

as file systems may reserve additional disk space for emergency / administrative use, which

we did not account for in this study, our observation gives only a lower bound of how much

free disk space there really was.

Our observation is consistent with the study done by Douceuret al.[19] who reported

an average use of only 53% of disk space among 4801 Windows personal computers in a

commercial environment. This is a significant waste of resource because, when disk space

110

is not being used, it usually contributes nothing to users / applications. So, we argue that

free disk space can be used to dynamically change disk layoutso as to increase disk I/O

performance.

Free disk space is commonly maintained by file systems as a large pool of contigu-

ous blocks to facilitate block allocation requests. This makes the use of free disk space

attractive for several reasons. First, the availability ofthese large contiguous regions al-

lows discontiguous disk blocks which are frequently accessed together, to be replicated

and aggregated efficiently using large sequential writes. By preserving replicas’ adjacency

on disk according to the order in which their originals were accessed at runtime, future

accesses to these blocks will be made significantly faster. Second, contiguous regions of

free disk blocks can usually be found throughout the entire disk, allowing us to place repli-

cas to the location closest to current disk head’s position.This minimizes head positioning

latencies when replicating data, and only minimally affects the performance of foreground

tasks. Third, using free disk space to hold replicas allows them to be quickly invalidated

and their used space to be converted back to free space whenever disk capacity becomes

limited. Therefore, users can be completely oblivious to how the “free” disk capacity is

used, and will only notice performance improvements when more free disk space becomes

available.

The use of free disk space to hold replicas is not without costs. First, as multiple copies

of data may be kept, we will have to keep data and their replicas consistent. Synchroniza-

tion can severely degrade performance if for each write operation, we have to perform an

additional write (possibly multiple writes) to keep its replicas consistent. Second, when the

user demands more disk space, replicas should be quickly invalidated and their occupied

disk space returned to the file system so as to minimize user-perceived delays. However,

as this would undo some of the work done previously, it shouldbe avoided as much as

possible. Moreover, as the amount of free disk space can varyover time, deciding how to

make use of the available free disk space is also important, especially when there is only a

small amount of it left. These issues will be addressed in thefollowing subsections.

111

Disk LayoutFile 0 File 2 File 1

Sector 0

1

Sector 0

1

2

2

File 0 File 2 File 1
Dup
File 1

Figure 5.4: Files are accessed in the order of 0, 1, and 2. Due to the long inter-file distance

between File 1 and the other files, long seeks would result if accesses to these files are

interleaved. In the bottom figure, we show how the seek distance (time) could be reduced

when File 1 is replicated using the free disk space near the other two files.

5.3.2 Block Replication

We now discuss how to choose which blocks to replicate so as tomaximize the improve-

ment of disk I/O performance. We start with an example shown in Figure 5.4, describing a

simple scenario where three files—0, 1, and 2—are accessed, in this order. One can imag-

ine that Files 0 and 2 are binary executables of an application, and File 1 is a shared library,

and therefore, may be placed far away from the other two files,as shown in Figure 5.4. One

can easily observe that File 1 is placed poorly if it is to be frequently accessed together with

the other two files. If the files are accessed sequentially, where each file is accessed com-

pletely before the next, the overhead of seeking is minimal as it would only result in two

long seeks—one from 0 to 1 and another from 1 to 2. However, if the accesses to the files

are interleaved, performance will degrade severely as manymore long-distant seeks would

result. The use of I/O prefetching can alleviate some unnecessary head movements in case

of sequential accesses, but its benefit is limited when the files are accessed simultaneously

with random I/Os. To improve performance, one can try to reduce the seek distance be-

tween the files by replicating File 1 closer to the other two asshown in the bottom part of

Figure 5.4. Replicating File 1 also reduces rotational delay when its meta-data and data

are placed onto the disk consecutively according to the order in which they were accessed.

This is illustrated in Figure 5.5. Reducing rotational delay in some workloads (i.e., those

112

already with a high degree of disk access locality) can be more effective than reducing

seek time in improving disk performance. The algorithm we used in our implementation

to select candidate blocks to replicate and decide where to place the replicas is described

in 5.4.1.

Sequential I/O

Inode Data 0

File 1

Data 1 Data 2

Dup File 1

Inode Data 0Data 1 Data 2
Dup

Inode

Dup

Data 0

Dup

Data 1

Dup

Data 2

1
3

2

1 2 3

File 1

Figure 5.5: This figure shows a more detailed disk layout of File 1 shown in Figure 5.4. As

file systems tend to place data and their meta-data (and also related data blocks) close to

one another, intra-file seek distance (time) is usually short. However, as these disk blocks

do not necessarily have to be consecutive, rotational delaywill become a more important

factor. In the lower portion of the figure, we show how rotational delay can be reduced by

replicating File 1 and placing its meta-data and data in the order that they were accessed at

runtime.

In real systems, the disk access pattern is more complicatedthan that shown in the

above examples. The examples are mainly to provide an intuition for how seek time and

rotational delay can be reduced via replication. We presentmore practical heuristics used

in our implementation in Section 5.4.

5.3.3 Keeping Track of Replicas

To benefit from having replicas, we must be able to find them quickly and decide

whether it is more beneficial to access one of the replicas or the original data. This is

accomplished by keeping a hash table in memory as shown in Figure 5.6. It occupies only

a small amount of memory: assuming 4 KB file system data blocks, a 4 MB hash table

suffices to keep track of 1 GB of replicas on disk. As most of today’s computer systems

113

have hundreds of megabytes of memory or more, it is usually not a problem to keep all

the hash entries in the memory. For each hash entry, we maintain 4 pieces of information:

the location of the original block, the location of its replica, the time when the replica was

last accessed, and the number of times that the replica was accessed. When free disk space

drops below a low watermark (at 10%), the last two items are used to find and invalidate

replicas that have not been frequently accessed and were notrecently used. At this point,

we suspend the replication process. It is resumed only when ahigh watermark (at 15%)

is reached. We also define a critical watermark (at 5%), whichtriggers a large number of

replicas to be invalidated in a batched fashion so a contiguous range of disk blocks can be

quickly released to users. This is done by grouping hash entries of replicas that are close to

one another on disk to be linked to one another in memory, as shown in Figure 5.6. When

the number of free disk blocks drops below the critical watermark, we simply invalidate

all the replicas of an entire disk region, one region at a time, until the number of free disk

blocks is above the low watermark or when there are no more replicas. During the process,

we could have potentially invalidated more valuable replicas and kept less valuable ones.

This is acceptable since our primary concern under such a condition is to provide users

with the needed disk capacity as quickly as possible.

Given that we can find replicas quickly using the hash table, deciding whether to use

an original disk block or one of its replicas is as simple as finding the one closest to the

current disk head location. The location of the disk head canbe predicted by keeping track

of the last disk block that was accessed in the block device driver.

As a result of replication, there may be multiple copies of a data block placed at different

locations on disk. Therefore, if a data block is modified, we need to ensure that all of its

replicas remain consistent. This can be accomplished by either updating or invalidating the

replicas. In the former (updating) option, modifying multiple disk blocks when a single

data block is modified can be expensive. Not only it generatesmore disk traffic, but it also

incurs synchronization overheads. Therefore, we chose thelatter option because both data

invalidation and replication operations can be done cheaply and in the background.

114

Disk Layout

Disk

Memory

Hash entries

Hash entries

Region 0 Region 1

next
page

Hash Entry Details

next
region Hash entries

Block # Dup #

TS Ref Cnt

Block #: Original block number
Dup #: Duplicated block number
TS: Time stamp of the last access
Ref Cnt: Reference count

Figure 5.6: A detailed view of the hash data structure used tokeep track of replicas. Hash-

ing is used to speed up the lookup of replicas. Replicas that are close to one another on

disk also have their hash entries close to one another in memory, so a contiguous range of

replicas can be quickly invalidated and released to users when needed.

5.4 Prototype

Our implementation of FS2 is based on the Ext2 file system [11]. In our implemen-

tation, the functionality of Ext2 is minimally altered. It is modified mainly to keep track

of replicas and to maintain data consistency. The low-leveltasks of monitoring disk ac-

cesses, scheduling I/Os between original and replicated blocks, and replicating data blocks

are delegated to the lower-level block device driver. Implementation details of that in the

block device driver and the file system are discussed in Section 5.4.1 and Section 5.4.2, re-

spectively. Section 5.4.3 describes some of the user-leveltools we developed to help users

manage the FS2 file system.

5.4.1 Block Device Implementation

Before disk requests are sent to the block device driver to beserviced, they are first

placed onto an I/O scheduler queue, where they are queued, merged, and rearranged so the

disk may be better utilized. Currently, the Linux 2.6 kernelsupports multiple I/O schedulers

115

that can be selected at boot time. It is still highly debatable which I/O scheduler performs

best, but for workloads that are highly parallel in disk I/Os, the anticipatory scheduler [67]

is clearly the winner. It is used in both the base case Ext2 filesystem and our FS2 file

system.

In our implementation, the anticipatory I/O scheduler is slightly modified so a replica

can be accessed in place of its original if the replica can be accessed faster. A disk request is

represented by a starting sector number, the size of the request, and the type of the request

(read or write). For each read request (write requests are treated differently) that the I/O

scheduler passes to the block device driver, we examine eachof the disk blocks within the

request. There are several different cases we must consider. In the simplest case, where

none of the blocks have replicas, we have no choice but to access the original blocks. In

case where all disk blocks within a request have replicas, weaccess the replicas instead

of their originals when (i) the replicas are physically contiguous on disk, and (ii) they are

closer to the current disk head’s location than their originals. If both criteria are met, to

access the replicas instead of their originals, we would need to modify only the starting

block number of that disk request. If only a subset of the blocks has replicas, they should

not be used as it would break up a single disk request into multiple ones, and in most

cases, would take more time. For write accesses, replicas ofmodified blocks are simply

invalidated, as it was explained in Section 5.3.3.

Aside from scheduling I/Os between original and replicatedblocks, the block device

driver is also responsible for monitoring disk accesses so it can decide which blocks we

should replicate and where the replicas should be placed on disk. We first show how to

decide which blocks should be replicated. As mentioned earlier, good candidates are not

necessarily frequently-accessed disk blocks, but rather,temporally-related blocks that lack

good spatial locality. However, it is unnecessary to replicate all the candidate blocks. This

was illustrated previously by the example shown in Figure 5.4. Instead of replicating all

three files, it is sufficient to replicate only File 1—we wouldlike to do a minimal amount

of work to reduce mechanical movements.

To do so, we partition disks into multiple regions.1 Among them, we find a singlehot

1For convenience, we define a region to be a multiple of Ext2 block groups.

116

region, which is an area on the disk where the disk head has been most active. As workload

changes, the hot region may also change from time to time. Itslocation is estimated in

our implementation by keeping track of the number of disk I/Os serviced from each region

for each time epoch. This is only an approximation because some disk accesses are faster

than others—(i) some disk blocks can be directly accessed using the on-disk cache, thus

not involving any mechanical movements, and (ii) some read accesses can trigger 2 seek

operations if it causes a cache entry conflict and the cache entry is dirty. However, in

the disk traces we have collected (described in Section 5.5), this heuristic is found to be

sufficient for our purpose.

Ideally, we would like to keep the disk head from moving out ofthe hot region to min-

imize positioning latencies. Inefficiency happens when thedisk head has to move outside

of the target region to service a disk request. To prevent or minimize the chance of this

happening, we identify all the disk blocks accessed outsideof the target region as candi-

date blocks for replication. By placing their replicas to the available free space within the

target region, similar disk access patterns can be servicedmuch faster in future; we achieve

shorter seek times due to shorter seek distances and smallerrotational delays because repli-

cas are laid out on disk in the same order as they were previously accessed.

Although the block device driver can easily find a list of candidate blocks to replicate

and the hot region to place these replicas, it cannot performreplication by itself because it

cannot determine how much free disk space is there, nor can itdecide which blocks are free

and which are in use by the file system. Implicit detection of data liveness from the block

device level was shown by Sivathanuet al. [35] to be impossible in the Ext2 file system.

Therefore, replication requests, include which blocks to replicate and which disk region

to replicate them to, are forwarded from the block device driver to the file system, where

free disk space can be easily located. Contiguous free disk space is used if possible so that

replicas can be written sequentially to disk. When choosinga region to place replicas, not

only is the free space in the target region searched, severalneighboring disk regions (within

5% of the total disk capacity) are also searched if the targetregion is completely full. In case

even the neighboring regions are completely full, we simplydiscard replication requests

to this region. To avoid completely using a single disk region, we place more weight

117

on regions with more free disk space for placing replicas. This naive approach seems to

work well from our observation, but one can imagine implementing a replica-replacement

policy to discard rarely used replicas to make room for new (and potentially more valuable)

replicas. Lastly, we rely on the default I/O scheduler for committing replicas to disk. As

replicas are often placed to contiguous disk regions, the overhead of replication can be

amortized.

5.4.2 File System Implementation

Ext2 is a direct descendant of BSD UNIX FFS [34], and it is commonly chosen as

the default file system by many Linux distributions. Ext2 splits a disk into one or more

block groups, each of which contains its own set of inodes (meta-data) and data blocks to

enhance data locality and fault-tolerance. More recently,journaling capability was added

to Ext2, to produce the Ext3 file system [122], which is backward-compatible to Ext2. We

could have based our implementation on other file systems, but we chose Ext2 because

it is the most popular file system used in today’s Linux systems. As with Ext3, FS2 is

backward-compatible with Ext2.

First, we modified Ext2 so it can assist the block device driver to find free disk space

near the current disk head’s location for placing replicas.As free disk space of each Ext2

block group is maintained by a bitmap, large regions of free disk space can be easily found.

We also modified Ext2 to assist the block device driver in maintaining data consistency. In

Section 5.4.1, we discussed how data consistency is maintained for write accesses in the

block device level. However, not all data consistency issues can be observed and addressed

in the block device level. For example, when a disk block withone or more replicas is

deleted or truncated from a file, all of its replicas should also be invalidated and released.

As the block device driver is completely unaware of block deallocations, we modified the

file system to explicitly inform the block device driver of such events so it can invalidate

these replicas and remove them from the hash table.

To allow replicas to persist across restarts, we flush the in-memory hash table to the disk

when the system shuts down. When the system starts up again, the hash table is read back

118

into the memory. We keep the hash table as a regular Ext2 file using a reserved inode #9

so it cannot be accessed by regular users. To minimize the possibility of data inconsistency

that may result from a system crash, we flush modified hash entries to disk periodically.

We developed a set of user-level tools (discussed in Section5.4.3) to restore the FS2 file

system back to a consistent state when data consistency is compromised after a crash. An

alternative solution is to keep the hash table in flash memory. Flash memory provides a

persistent storage medium with low-latency so the hash table can be kept consistent even

when the system unexpectedly crashes. Given that the size oftoday’s flash memory devices

usually ranges between a few hundred megabytes to tens of gigabytes, a hash table of a few

megabytes can be easily stored.

Ext2 is also modified to monitor the amount of free disk space to prevent replication

from interfering with user’s normal file system operations.We defined a high (15%), a

low (10%), and a critical (5%) watermark to monitor the amount unused disk space and

to respond with appropriate actions when a watermark is reached. For instance, when

the amount of free disk space drops below the low watermark, we will start reclaiming

disk space by invalidating replicas that have been used neither recently nor frequently.

If the amount of free disk space drops below the critical watermark, we start batching

invalidations for entire disk regions as described in Section 5.3.3. Moreover, replication is

suspended when the amount of free disk space drops below the low watermark, and it is

resumed only when the high watermark is reached again.

5.4.3 User-level Tools

We created a set of user-level tools to help system administrators manage the file sys-

tem. mkfs2is used to convert an existing Ext2 file system to an FS2 file system, and vice

versa. Normally, this operation takes less than 10 seconds.Once an FS2 file system is

created and mounted, it will automatically start monitoring disk traffic and replicating data

on its own. However, users with higher-level knowledge about workload characteristics

can also help make replication decisions by askingmkfs2to statically replicate a set of disk

blocks to a specified location on disk. It gives users a knob tomanually tune how free disk

119

space should be used.

As mentioned earlier, a file system may crash, resulting in data inconsistency. During

system startup, the tool chkfs2 restores the file system to a consistent state if it detects that

the file system was not cleanly unmounted, similarly to what Ext2’s e2fsck tool does. The

time to restore an FS2 file system back to a consistent state is only slightly longerthan that

of Ext2, and the time it takes depends on the number of replicas in the file system.

5.5 Experimental Evaluation

We now evaluate FS2 under some realistic workloads. By dynamically modifying disk

layout according to the disk access pattern observed at runtime, seek time and rotational

delay are shown to be reduced significantly, which translates to a substantial amount of

performance improvement and energy savings. Section 5.5.1describes our experimental

setup and Section 5.5.2 details our evaluation methodology. Experimental results of each

workload are discussed in each of the subsequent subsections.

Figure 5.7: The testbed consists a testing machine for running workloads and a monitoring

machine for collecting disk traces. Each machine is equipped with 2 Ethernet cards—one

for running workloads and one for collecting disk traces usingnetconsole.

120

5.5.1 Experimental Setup

Our testbed is set up as shown in Figure 5.7. The IDE device driver on the testing

machine is instrumented, so all of its disk activities are sent vianetconsoleto the monitoring

machine, where the activities are recorded. We use separatenetwork cards for running

workloads and for collecting disk traces to minimize interference. System configuration of

the testing machine and the specification of its disk are provided in Table 5.1.

Components Specification

CPU Athlon 1.343 GHz
Memory 512MB DDR2700
Network cards 2x3COM 100-Mbps
Disk Western Digital

Bus interface IDE
Capacity 78.15 GB
Rotational speed 7200 RPM
Average seek time 9.9 ms
Track-to-track seek time 2.0 ms
Full-stroke seek time 21 ms
Average rotational delay 4.16 ms
Average startup power 17.0 W
Average read/write/idle power 8.0 W
Average seek power 14.0 W

Table 5.1: System specification of the testing machine.

Several stress tests were performed to ensure that the system performance is not signif-

icantly affected by using netconsole to collect disk traces. We found that the performance

was degraded by 5% in the worst case. For typical workloads, performance should only be

minimally affected. For example, the time to compile a Linux2.6.7 kernel was not affected

at all when its disk activities were recorded via netconsole. As this overhead is imposed on

both the base case (Ext2) and FS2, we believe our tracing mechanism had only a negligible

effect on our results.

5.5.2 Evaluation Methodology

For each request in a disk trace, we recorded its start and endtimes, the starting sector

number, the number of sectors requested, and whether it is a read or a write access. The

121

interval between the start and end times is the disk access time, denoted byTA, which is

defined as:

TA = Ts + Tr + Tt,

whereTs is the seek time,Tr is the rotational delay, andTt is the transfer time. Decompos-

ing TA is necessary for us to understand the implications of FS2 on each of these compo-

nents. If the physical geometry of the disk is known (e.g., number of platters, number of

cylinders, number of zones, sector per track, etc.), this can be easily accomplished with the

information that was logged. Unfortunately, due to increasingly complex hard drive designs

and fiercer market competition, disk manufacturers are no longer disclosing such informa-

tion to the public. They present only a logical view of the disk, which, unfortunately, bears

no resemblance to the actual physical geometry; it providesjust enough information to al-

low BIOS and drivers to function correctly. As a result, it isdifficult to decompose a disk

access into its different components. Various tools [1, 44,107, 119] have been implemented

to extract the physical disk geometry experimentally, which usually takes a very long time.

Using the same empirical approach, we show that a disk can be characterized in seconds

for us to accurately decomposeTA into its various components.

Figure 5.8: This figure shows logical seek distance versus access time for a Western Digital

SE 80GB 7200 RPM drive. Each point in the graph represents a recorded disk access.

Using the same experimental setup as described previously,a random disk trace is

recorded from the testing machine. From this trace, we observed a clear relationship be-

122

tween logical seek distance (i.e., the distance between consecutive disk requests in unit of

sectors) andTA, which is shown in Figure 5.8. The vertical band in this figureis an artifact

of the rotational delay’s variability, which, for a 7200 RPMdisk, can vary between 0 and

8.33 msec (exactly the height of this band). A closer examination of this figure reveals an

irregular bump in the disk access time when seek distance is small. This bump appears to

reflect the fact that the seek distance is measured in number of sectors, but the number of

sectors per track can vary significantly from the innermost cylinder to the outermost cylin-

der. Thus, the same logical distance can translate to different physical distances, and this

effect is more pronounced when the logical seek distance is small.

As TA is composed ofTs, Tr, andTt, by removing the variation caused byTr, we are

left with the sum ofTs andTt, which is represented by the lower envelope of the band

shown in Figure 5.8. AsTt is negligible compared toTs for a random workload (shown

previously in Figure 5.2), the lower envelope essentially represents the seek profile curve of

this disk. This is similar to the seek profile curve, in which,the seek distance is measured

in the number of cylinders (physical distance) as opposed tothe number of sectors (logical

distance). As shown in Figure 5.8, the seek time is usually linearly related to the seek

distance, but for very short distances, it can be approximated as a third order polynomial

equation. We observed that for a seek distance ofx sectors,Ts (in unit of msec) can be

expressed as:

Ts =







8E-21x3 − 2E-13x2 + 1E-6x + 1.35 x < 1.1 × 107

9E-8x + 4.16 otherwise.

As seek distance can be calculated by taking the difference between the starting sector

numbers of consecutive disk requests, seek time,Ts, can be easily computed from the above

equation. With the knowledge ofTs, we only have to find eitherTr or Tt to completely

decomposeTA. We found it easier to deriveTt thanTr. To deriveTt, we first measured

the effective I/O bandwidth for each of the bit recording zones on the disk using large

sequential I/Os (i.e., so we can eliminate seek and rotational delays). For example, on the

outer-most zone, the disk’s effective bandwidth was measured to be 54 MB/sec. With each

sector being 512 bytes long, it would take 9.0µsecto transfer a single sector from this zone.

123

From a disk trace, we know exactly how many sectors are accessed in each disk request,

and therefore, the transfer time of each can be easily calculated by multiplying the number

of sectors in the request by the per-sector transfer time. Once we have bothTs andTt, we

can trivially deriveTr. Due to disk caching, some disk accesses will have an access time

below the seek profile curve, in which case, since there is no mechanical movement, we

treat all of their access time as transfer time.

The energy consumed to service a disk request, denoted asEA, can be calculated from

the values ofTs, Tr andTt as:

EA = Ts × Ps + (Tr + Tt) × Pi,

wherePs is the average seek power andPi is the average idle/read/write power (shown in

Table 5.1). The total energy consumed by a disk can be calculated by adding the sums of

all EA’s to the idle energy consumed by the disk.

5.5.3 The TPC-W Benchmark

The TPC-W benchmark [15], specified by the Transaction Processing Council (TPC),

is a transactional web benchmark that simulates an E-commerce environment. Customers

browse and purchase products from a web site composed of multiple servers including an

application server, a web server and a database server. In our experiment, we use a MySQL

database server and an Apache web server on a single machine,simulating a very small

web server with limited traffic. We simulate 25 simultaneouscustomers accessing this web

server for 20 minutes on a separate machine. Complying with the TPC-W specification,

we assume a mean session time of 15 minutes and a mean think time of 7 seconds for

each client. Now we will compare FS2 and Ext2 with respect to performance and energy

consumption.

Ext2: Base System

Figure 5.9(a1) shows a disk trace collected from an Ext2 file system when running the

TPC-W benchmark. Almost all disk accesses are concentratedin several distinct regions

124

(a1) Ext2 Disk Trace (a2) Ext2 Disk Access Time

(b1) FS2-static Disk Trace (b2) FS2-static Disk Access Time

(c1) FS2-dynamic Disk Trace (c2) FS2-dynamic Disk Access Time

Figure 5.9: Plots (a1–c1) show the disk sectors that were accessed for the duration of a

TPC-W run. Plots (a2–c2) show the measured access times for each request with respect

to the seek distance for the TPC-W benchmark. Plots a, b, and ccorrespond to the results

collected on Ext2, FS2-static, and FS2-dynamic file systems.

125

of the disk, containing a mixture of the database’s data filesand index files, and the web

server’s image files. The database files can be large, and a single file sometimes can span

multiple block groups. Because Ext2 uses a quadratic hash function to choose the next

block group from which to allocate disk blocks when the current block group is full, a

single database file is often split into multiple segments with each being stored at a different

location on the disk. When the file is later (randomly) accessed, the disk head would have

to travel frequently between multiple regions. This is illustrated in Figure 5.9(a2), showing

a large number of disk accesses having long seek times.

0

0.2

0.4

0.6

0.8

EXT2 FS2-
Static

FS2-
DynamicA

v
g

.
re

s
p

o
n

s
e

 t
im

e
 (

s
)

0

2

4

6

8

10

EXT2 FS2-
Static

FS2-
Dynamic

T
im

e
 (

m
s
)

/A
cc

e
s
s Transfer

Rotational
Seek

z

0

20

40

60

80

100

EXT2 FS2-
Static

FS2-
Dynamic

E
n
e
rg

y
 (

m
J
)

/A
c
c
e
s
s

Transfer
Rotational
Seek

(a) (b) (c)

Figure 5.10: For the TPC-W benchmark, part (a) shows the average response time of each

transaction perceived by clients. Part (b) shows the average disk access time and its break-

down. Part (c) shows the average energy consumed by each diskaccess and its breakdown.

Disk Performance Improvement Energy
Busy TA Ts Tr Improvement

FS2-static 23% 24% 53% -1.6% 31%
FS2-dynamic 17% 50% 72% 31% 55%

Table 5.2: For the TPC-W benchmark, this table shows percentage improvement in perfor-

mance and energy-consumption for each disk access, with respect to the Ext2 file system,

where the disk was busy 31% of the time.

We observed that the average response time perceived by TPC-W’s clients is 750 msec

when the benchmark is ran on an Ext2 file system. The average disk access time is found to

be 8.2 msec, in which 3.8 msec is due to seek time and 4.3 msec isdue to rotational delay.

The average energy consumed by each disk access is calculated to be 90 mJ, in which 54

126

(a) (b)

(c)

Figure 5.11: For the TPC-W benchmark, parts (a–c) show disk access time for the 1st, the

2nd, and the 7th FS2-dynamic run.

mJ is due to seek and 36 mJ (including a small amount of energy consumed for transferring

data) is due to disk rotation. These results are plotted in Figure 5.10 and then summarized

in Table 5.2.

FS2-Static

From the TPC-W disk trace shown previously, an obvious method to modify the disk

layout would be to group all the database and web server files closer to one another on the

disk so as to minimize seek distance. To do so, we first find all the disk blocks belong

to the database and web server, and thenstaticallyreplicate these blocks (using themkfs2

127

tool) toward the middle of the disk.2 After the disk layout is modified, we ran the TPC-W

workload again, and the resulting disk trace and the access time distribution are plotted in

Figures 5.9(b1) and (b2), respectively. One can see from these figures that as replicas can

now be accessed in addition to their originals, most disk accesses are concentrated within

a single region. This significantly reduces the range of motion of the disk heads.

As shown in Figure 5.10, by statically replicating, the average response time perceived

by the TPC-W clients is improved by 20% over Ext2. The averagedisk access time is

improved by 24%, which is completely due to having shorter seek time (53%). Rotational

delay remains mostly unchanged (-1.6%) for reasons to be given shortly. Due to having

shorter average seek distance, the energy consumed per-disk-access is reduced by 31%.

FS2-Dynamic

We call the technique described in the previous sectionFS2-staticbecause it statically

modifies the data layout on disks. Using FS2-static, seek time is significantly reduced.

However, this method has no practical use because expectingusers to hand-pick candidate

blocks to replicate for tuning their file system’s data layout is not very realistic. This process

needs to be automated. Additionally, static replication isshown to be ineffective in reducing

rotational delay. But as we will see for workloads with repeated disk I/O patterns, rotational

delay can be reduced. The ineffectiveness in reducing rotational delay is attributed to FS2-

static’s rigid aggregation ofall the database and web server files. Even though relevant disk

blocks are much closer to one another, as long as consecutively-accessed data blocks are

not placed to the same track with small distance between eachpair, reduction in rotational

delay is not guaranteed.

As discussed in Section 5.3.2, replicating data and placingthemadjacentto one another

according to the order in which they were accessed not only reduces seek time but can also

reduce rotational delay. This technique is calledFS2-dynamicas we dynamically monitor

disk accesses and replicate candidate blocks on-the-fly without any user interactions. It

is implemented as described in Sections 5.3 and 5.4. Starting with no replicas, multiple

2We could have chosen any region, but the middle region of the disk is chosen simply because most of
the relevant disk blocks were already placed there. Choosing this region, therefore, would result in the fewest
number of replications.

128

(a) (b)

Figure 5.12: Plots (a) and (b) show the zoom-in section of Figures 5.9 (b1) and (c1), re-

spectively.

runs are needed for the system to determine which blocks to replicate before getting any

benefit from the replicas. The replication overhead was observed to be minimal. Even in

the worst case (the first run), the average response time perceived by the TPC-W clients was

only 1.7% longer (a 0.8% additional energy was consumed). This is due to the additional

disk accesses needed for replicating data, which has causedthe disk to become 2.5% more

utilized. Since the workload is small and has ran for only 20 minutes, none of the replicas

made in the first run were accessed during this run; otherwise, the replication cost would

be somewhat amortized. To compare FS2-dynamic with FS2-static in a workload with

repeated disk I/O patterns, we use the same random seed for each TPC-W run. With most

replicas being made in the first run, the replication overhead of subsequent runs is almost

negligible. The 7th run of FS2-dynamic is shown in Figures 5.9(c1) and (c2). To illustrate

the progression between consecutive runs, we show disk access time distributions of the

1st, the 2nd, and the 7th run in Figure 5.11. During each run, because the middle region

of the disk is accessed most, those disk blocks that were accessed in other regions will get

replicated here. Consequently, the resulting disk trace looks very similar to that of FS2-

static (shown in Figures 5.9(b1) and (b2)). There are, however, subtle differences between

the two, which enable FS2-dynamic to out-perform its static counterpart.

Figures 5.12(a) and (b) provide a zoom-in view of the first 150seconds of the FS2-static

129

disk trace and the first 100 seconds of the FS2-dynamic disk trace, respectively. In these

two cases, the same amount of data was accessed from the disk,giving a clear indication

that the dynamic technique is more efficient in replicating data and placing them onto the

disk than the static counterpart. As mentioned earlier, thestatic technique indiscriminately

replicates all statically-related disk blocks together without any regard to how the blocks are

temporally related. As a result, the distance between temporally-related blocks becomes

smaller but often not small enough for them to be located on the same track. On the

other hand, as the dynamic technique places replicas onto the disk in the same order that

the blocks were previously accessed, it substantially increases the chance for temporally-

related data blocks to be on the same cylinder, or even on the same track. From Figure 5.12,

we can clearly see that under FS2-dynamic, the range of the accessed disk sectors is much

narrower than that of FS2-static.

As a result, FS2-dynamic makes a 34% improvement in the average response time per-

ceived by the TPC-W clients compared to Ext2. The average disk access time is improved

by 50%, which is due to a 72% improvement in seek time and a 31% improvement in ro-

tational delay. FS2-dynamic reduces both seek time and rotational delay more significantly

than FS2-static. Furthermore, it reduces the average energy consumed by each disk access

by 55%. However, because the TPC-W benchmark always runs fora fixed amount of time

(i.e., 20 minutes), faster disk access time does not reduce this workload’s run time, and

hence, the amount of energy savings is limited to only 6.7% asidle energy will dominate.

In other workloads, when measured over a constant number of disk accesses, as opposed

to constant time, the energy savings is more significant.

In this section we introduced FS2-static and compared it with FS2-dynamic mainly to

illustrate the importance of using online monitoring to reduce mechanical delays and al-

leviating users from manually choosing candidate blocks toreplicate. As the dynamic

technique was shown to perform better than the static counterpart, we will henceforth con-

sider only FS2-dynamic and refer to it simply as FS2 unless specified otherwise. Moreover,

only the 7th run of each workload is used when we present results for FS2 as we want to

give enough time for our system to learn frequently-encountered disk access patterns and

to modify the disk layout.

130

Caveats

In the previous section, we used the same random seed for eachTPC-W run, which

might have put FS2-dynamic in more favorable light than what really happen forthis par-

ticular workload. Using different random seeds for each runwould result in less predictable

disk I/O patterns, thus reducing replication benefits. Thiswould especially affect the effec-

tiveness of our technique in reducing rotational latency asit is highly depended on having

repeated disk I/O patterns. Nevertheless, we believe that given enough training runs in the

TPC-W workload, FS2-dynamic should do as well as FS2-static minus having to hand-pick

blocks to replicate.

As most of the database and web server files are placed at the center of the disk, if we

assume random disk accesses in the TPC-W workload, each FS2-dynamic run would “pull”

more data (relevant to the TPC-W workload) that were previously allocated to other disk

locations toward the center of the disk. With more and/or longer runs, temporally-related

data will be aggregated closer to one another on the disk overtime.

In this work, we focus mostly on those workloads with repeated I/O patterns, e.g, start-

ing X server, booting the kernel, CVS operations, etc. We encounter many such workloads

on a daily basis, and for such workloads, FS2-dynamic can seamlessly improve their I/O

response time and bandwidth. We will study a few of these workloads in the following

sections.

0

10

20

30

40

EXT2 FS2-Dynamic

R
u
n
tim

e
 (

s)

0

0.2

0.4

0.6

0.8

1

EXT2 FS2-Dynamic

T
im

e
 (

m
s
)

/A
c
c
e

s
s

Transfer
Rotational
Seek

0

3

6

9

12

EXT2 FS2-Dynamic

E
n

e
rg

y
(m

J)
 /
A

cc
e
ss

Transfer
Rotational
Seek

(a) (b) (c)

Figure 5.13: Results for the CVS update command: (a) total runtime, (b) average access

time, and (c) energy consumed per access.

131

Disk Performance Improvement Energy
Busy TA Ts Tr Improvement

FS2 73% 41% 38% 53% 40%

Table 5.3: A summary of results for the CVS update command. The disk was busy 82% of

the time on Ext2.

5.5.4 CVS

CVS is a versioning control system commonly used in softwaredevelopment environ-

ments. It is especially useful for multiple developers who work on the same project and

share the same code base. CVS allows each developer to work with his own local source

tree and later merge the finished work with a central repository.

CVS update command is one of the most frequently-used commands when working

with a CVS-managed source tree. In this benchmark, we ran thecommandcvs -q updatein

a local CVS directory containing the Linux 2.6.7 kernel source tree. The results are shown

in Figure 5.13. On an Ext2 file system, it took 33 seconds to complete. On FS2, it took only

23 seconds to complete, a 31% shorter runtime. Even on the first run of FS2, the workload

took only 35 seconds to finish, and the additional 2 seconds (6%) is due to replicating a lot

of data blocks during this run. A 7% additional energy is consumed.

The average disk access time is improved by 41% as shown in Figure 5.13(b). Ro-

tational delay is improved by 53%. Seek time is also improved(37%), but its effect is

insignificant as the disk access time in this workload is mostly dominated by rotational

delay.

In addition to the performance improvement, FS2 also saves energy in performing disk

I/Os. Figure 5.13(c) plots the average energy-consumptionper disk access for this work-

load. As shown in Table 5.3, FS2 reduces the energy-consumption per access by 46%.

The total energy dissipated on Ext2 and FS2 during the entire execution of the CVS update

command is 289 J and 199 J, respectively, making a 31% energy savings.

132

0

7

14

21

28

EXT2 FS2-Dynamic

R
u
n
tim

e
 (

s)

0

1

2

3

4

EXT2 FS2-Dynamic

T
im

e
 (

m
s
)

/A
c
c
e

s
s

Transfer
Rotational
Seek

0

10

20

30

40

EXT2 FS2-Dynamic

E
n

e
rg

y
(m

J)
 /
A

cc
e
ss

Transfer
Rotational
Seek

(a) (b) (c)

Figure 5.14: Results for starting X server and KDE windows manager: (a) total runtime,

(b) average access time, and (c) energy consumed per access.

Disk Performance Improvement Energy
Busy TA Ts Tr Improvement

FS2 26% 44% 53% 47% 46%

Table 5.4: A summary of results for starting X server and KDE windows manager. The

disk was busy 37% of the time on Ext2.

5.5.5 Starting X Server and KDE

Thestartxcommand starts the X server and the KDE windows manager on ourtesting

machine. As shown in Figure 5.14(a), the startx command finished 4.6 seconds faster on

FS2 than Ext2, yielding a 16% runtime reduction. Even though theaverage disk access time

in this workload is significantly improved (44%), which comes as a result of a 53% shorter

average seek time and 47% shorter rotational delay (shown inTable 5.4), the runtime is

only moderately improved. The reason is that this workload is not disk I/O-intensive, i.e.,

much less than the CVS workload. For the CVS workload, the disk was busy for 82% of

the time, whereas for this workload, the disk was busy for only 37% of the time. Even

on the first run of FS2, it took 1.5 seconds less time and 4.3% less energy, despite having

incurred additional disk accesses. We believe this is due toa change in I/O scheduling

when additional replicas are made.

In addition to improving performance, FS2 also reduces the energy consumed per disk

access for the startx command as shown in Figure 5.14(c). Starting the X server is calcu-

lated to dissipate a total energy of 249 J on Ext2 and 201 J on FS2, making a 19% savings

in energy.

133

5.5.6 SURGE

SURGE is a network workload generator designed to simulate web traffic by imitating

a collection of users accessing a web server [5]. To best utilize the available computing

resources, many web servers are supporting multiple virtual hosts. To simulate this type of

environment, we set up an Apache web server supporting two virtual hosts servicing static

contents on ports 81 and 82 of the testing machine. Each virtual host supports up to 200

simultaneous clients in our experiment.

FS2 reduced the average response time of the Apache web server by18% compared

to Ext2 as illustrated in Figure 5.15(a). This improvement in the average response time

was made possible despite the fact that the disk was utilizedfor only 13% of the time.

We tried to increase the number of simultaneous clients to 300 per virtual host to observe

what would happen if the web server was busier, but the network bandwidth bottleneck on

our 100 Mb/sec LAN did not allow us to drive up the workload. With more simultaneous

clients, we expect to see more performance improvements. However, we show that even

for non-disk-bound workloads, performance can still be improved reasonably well. As far

as we could see, the first run of FS2 had little overhead and was comparable with Ext2 runs.

On average, a disk access takes 68% less time on FS2 than on Ext2. In this particu-

lar workload, reductions in seek time and rotational delay contributed almost equally in

lowering the disk access time, as shown in Table 5.5.

The total energy consumed was reduced by merely 1.9% on FS2 because this workload

always runs for a fixed amount time like the TPC-W workload. There might be other

energy-saving opportunities. In particular, FS2 allows disk to become idle more often—

in the TPC-W workload, the disk was idle 70% of the time on Ext2and 83% on FS2,

while in the CVS workload, the disk was idle 18% of the time on Ext2 and 27% on FS2.

Combined with traditional disk power-management techniques, which save energy during

idle intervals, more energy-saving opportunities can be exploited.

134

0

0.5

1

1.5

2

2.5

EXT2 FS2-DynamicA
v
g

.
re

s
p

o
n

s
e
 t
im

e
 (

s
)

0

2

4

6

8

EXT2 FS2-Dynamic

T
im

e
 (

m
s
)

/A
cc

e
s
s

Transfer
Rotational
Seek

0

20

40

60

80

EXT2 FS2-Dynamic

E
n
e

rg
y
 (

m
J
)

/A
c
c
e

s
s

Transfer
Rotational
Seek

(a) (b) (c)

Figure 5.15: Results for SURGE: (a) average response time, (b) average access time, and

(c) energy consumed per access.

Disk Performance Improvement Energy
Busy TA Ts Tr Improvement

FS2 4.2% 69% 78% 68% 71%

Table 5.5: A summary of results for running SURGE. The disk was busy 13% of the time

on Ext2.

5.6 Discussion

5.6.1 Degree of Replication

Our implementation of FS2 allows system administrators to set the maximum degree

of replication; in ann-replica system, a disk block can be replicated at mostn times. Ac-

cording to this definition, traditional file systems are 0-replica systems. There are certain

tradeoffs in choosing the parametern. Obviously, with a largen, replicas can potentially

consume more disk space. However, allowing a larger degree of replication may more

significantly improve performance under certain situations. One simple example is the

placement of shared libraries. Placing multiple copies of ashared library close to each

application image that makes use of it, application startuptime can be reduced. It is inter-

esting to find the “optimal” degree of replication for a certain disk access pattern. However,

in the workloads that we have studied, due to lack of data/code sharing, the additional ben-

efit from having multiple replicas per disk block would be minimal, and therefore, we

simply used a 1-replica system in our evaluation. Lo [78] explored the effect of degree of

replication in more details through a trace-driven analysis.

135

5.6.2 Reducing Replication Overhead

Placing replicas of data in free space near the current disk head location minimizes

the interference with foreground tasks. Usingfreeblock scheduling[82, 83], it is possible

to further reduce this overhead by writing replicas to disk only during rotational delay.

However, as indicated by our experimental results, our heuristic is already fairly effective

in keeping the replication overhead low.

5.6.3 Multi-Disk Issues

The most straightforward way to improve disk performance isto spread data across

more disks. Redundant Array of Inexpensive Disks (RAID) wasfirst introduced by Patter-

sonet al. [94] as a way to improve aggregated I/O performance by exploiting parallelism

between multiple disks, and since then it has become widely used.

FS2 is operating orthogonally to RAID. The techniques that we have used to improve

performance on a single disk can be directly applied to each of the disks in a RAID. There-

fore, the same amount of performance improvement that we have seen before can still be

achieved here. The problem gets more interesting when free disk space from multiple disks

can be utilized. It can be used not only to improve performance, but also to enhance the

fault-tolerance of data, complementing RAID. For example,a traditional RAID-5 system

can sustain only one disk failure before data loss. However,if we are able to use free disk

space on one disk to hold recently-modified data on other disks, it may be possible that

even with more than one disk failure, all data can still be recovered—recently-modified

data can be recovered from replicas on non-faulty disks and older data can be recovered

from a nightly or weekly backup system.

This introduces another dimension where free disk space canbe utilized to our advan-

tage. Now, we can use free space of a disk to hold either replicas of its own blocks or

replicas from other disks. Both have performance benefits, but holding replicas for other

disks can also improve fault-tolerance. These issues are beyond the scope of this work. We

are currently investigating these issues and building a RAID-based prototype.

136

5.6.4 Journaling File System

Journaling file systems, e.g., Ext3, are likely to replace traditional file systems, e.g.,

Ext2, in the near future as they can quickly convert a crashedfile system back to a con-

sistent state. This is done by committing data and meta-datato a journal file in an orderly

fashion and having them written to disk twice. The concept ofFS2 can be potentially ap-

plied to a journaling file system. The advantage of applying FS2 ideas to a journaling file

system is that replicas already exist in the journal and we donot need to make additional

replications. If the journal is persistently kept, we will always have two copies of every-

thing, both data and meta-data. In which case, the problem ofselecting candidate blocks

to replicate becomes the problem of invalidating excessivereplicas. Additionally, by clas-

sifying the hash table as another type of meta-data and committing it to the journal in an

orderly fashion, some of the consistency problems caused bysystem crashing discussed in

Section 5.4.3 can be avoided.

Despite these advantages, there are several difficulties related to this approach. First,

using the journal to hold replicas intrinsically limits thefile system to an 1-replica system

(unless the implementation of the journal is extensively modified.) Second, disk blocks

used by the journal are best kept sequential to optimize for write operations. Sequentially

placing replicas at a single location on disk, however, willnot effectively minimize head

positioning latencies. Finally, keeping a large number of replicas persistently in the journal

can slow down operations on directory indexes that are used to keep track of the journal’s

data. As we can see, realizing FS2 ideas in a journaling file system has some practical

challenges. Therefore, additional analysis is needed before these ideas can be integrated

seamlessly with a journaling file system.

5.7 Conclusions

In this chapter, we presented the design, implementation and evaluation of a new file

system, called FS2, which contains a runtime component responsible for dynamically re-

organizing disk layout. The use of free disk space allows a flexible way to improve disks’

I/O performance and energy-efficiency, while being nonintrusive to users.

137

To evaluate the effectiveness of FS2, we conducted experiments using a range of work-

loads. FS2 is shown to improve the client-perceived response time by 34% in the TPC-W

workload. In SURGE, the average response time is improved by18%. Even for everyday

tasks, FS2 is shown to provide significant performance benefits: the time to complete a

CVS update command is reduced by 31% and the time to start an X server and a KDE win-

dows manager is reduced by 16%. As a result of reducing seek distance, energy dissipated

due to seeking is also reduced. Overall, FS2 is shown to have reduced the total energy

consumption of the disk by 1.9–15%.

138

CHAPTER 6

Disk Failure Characterization

6.1 Motivation

In the previous chapter, we described the design, implementation, and evaluation of the

Free Space File System (FS2). By means of replicating disk blocks and placing the replicas

in unused disk regions, we have shown both energy and performance benefits while keep-

ing overheads to a minimum. In addition to improving energy-efficiency and performance,

we believe replication is also an effective method to increase data fault-tolerance and can

be practically implemented in existing file systems. Replication is already a common tech-

nique used by RAID in multi-disk environments, but it has notbeen successfully applied

to systems with only a single disk.

Unlike FS2, in which it is fairly easy to determine which disk blocks to replicate (those

with long access time), where to replicate (the unused disk regions close or adjacent to the

temporally-related blocks), and when to commit replicas todisk (anytime the replicas are

still in memory) to improve performance and energy-efficiency, replicating disk blocks to

improve fault-tolerance involves more complex decision-making.

Determining the candidate blocks to replicate for improving fault-tolerance involves

higher level knowledge than what can be observed at the blockdevice level, making ac-

cess frequency information meaningless (more frequently accessed data does not imply

higher importance). This process should happen at the file system level by mining the

file system’s meta-data or getting direct inputs from users.For example, knowing that

139

files in /etc and /homedirectories are more valuable than those in/tmp or /opt directory,

we could give higher priority to replicate the first set of files than the second. We could

also use files’ meta-data to determine their relative importance, e.g., give higher priority

to non-executable files (word documents and source files) than executable (programs and

shared libraries) as the latter can often be recovered (e.g., re-installed) or regenerated (e.g.,

re-compiled) fairly easily.

However, automatically mining the file system to find candidate blocks is not always

sufficient; user’s involvement can sometimes significantlyimprove the effectiveness of this

process. A user can write rules to specify replication strategy for his / her private files

and directories, e.g., give higher priority to replicate *.c files and the files in theworks

directory. Additionally, sometimes common sense can also help us find candidate blocks

and calculate their relative importance. For example, as damaging a small amount of file

system’s meta-data could render the entire file system inaccessible, it makes sense to give

higher priority to replicate the meta-data than user data.

Both system-wide and user-specific rules can drive and give hints to the replication

engine on which disk blocks to replicate and the blocks’ relative importance. These rules

can be easily specified by system administrators and users, and the rules are highly tolerable

of errors. In case where an error is made in these rules, only the effectiveness of replication

will be affected, and the system will continue to function correctly.

A more critical decision than determining which disk blocksto replicate is of which

location we should place their replicas. Determining the relative location of the replicas

with respect to the location of the original block is crucialto the performance and fault-

tolerance of any file system that makes use of replication. Toensure high fault-tolerance,

we would like to keep replicas as far away as possible from thelocation of the original

data to decrease the probability of a permanent data loss when the original data and all

its replicas are simultaneously compromised. However, by placing replicas far away from

their original data, changing the content of the original data would require synchronizing

all its replicas, which can result in long mechanical delaysand unnecessarily hurt disk I/O

performance when the replicas are placed far away. Even if wecan avoid performance

penalties when placing replicas far away from each other andtheir original (e.g., by using

140

asynchronous update operations), it is unclear how we can place disk blocksfar awayfrom

each other as the physical geometry of today’s disks is oftenhidden from us and abstracted

using logical addresses. For example, on a particular disk,two sectors that are separated by

1,000,000 sectors (logical address) might be located on different zones, different surfaces,

and different platters, but on another disk, the same two sectors that are 1,000,0000 sectors

apart might be located on the same zone, same surface, and thesame platter. Therefore,

using logical address to place replicasfar away from each other might not necessarily

achieve the expected result.

To provide an effective way to improve the fault-tolerance of a single disk, there are

several challenges to overcome. First, we must be able to accurately and quickly detect

the physical geometry of disks and expose this information so that the file system can use

these physical attributes to better safeguard data. Havingprecise information about disk’s

physical geometry allows file system to accurately place data and their replicas to minimize

the probability of a permanent data loss. For example, if we know that the correlation of

disk blocks located on different platters are simultaneously destroyed is extremely low, we

should avoid placing a replica on the same platter as its original data block. Our second

challenge is to find ways to better understand disk failure characteristics as this is still

an area where disk manufacturers are holding back a lot of information. We do not have

precise data on how disk drives commonly fail or how data become lost or corrupted in

the process. In other words, whether placing a replica on a different platter, or a different

track, or a different surface from the location of its original data is the most effective way

to improve data fault-tolerance is difficult to determine. Even more difficult is the fact that

we do not know whether the most effective method to replicatedata is the same or different

among disks of different manufacturers and generations.

Understanding disk failure characteristics is the goal of this chapter. With a better un-

derstanding, future file systems can more efficiently utilize unused disk capacity for repli-

cation to better guard against unexpected data loss. Section 6.2, we discuss the algorithm

we used to probe for disk’s physical geometry. Section 6.3 describes our study of 60 failed

hard drives, and finally, Section 6.4 concludes this chapter.

141

6.2 Probing for Physical Geometry

A disk is consisted of one or more platters, which rotate in lockstep fashion at a fixed

rotational speed. A platter has either one or two recording surfaces, each with a read / write

head. A surface is divided into multiple zones with each containing consecutive tracks that

have the same number of sectors. Cylinders on the outer zoneshave more sectors per track,

and thus, can achieve a higher I/O throughput. A cylinder is avertical set of tracks (one per

surface) that are the same distance away from the center of the disk.

Despite disk manufacturers’ usual unwillingness to publish information about their

disks’ physical geometry, some physical attributes are always published, e.g., rotational

speed and the number of platters and recording surfaces. However, to accurately determine

the physical location of any given sector, we need to know some additional information

about the disk. Namely, we need to know the number of zones andthe number of sectors

per track. The former can be obtained if the latter is known assectors-per-track is distinct

for each zone.

There are several previously-proposed techniques [1, 29, 44, 107, 119] to extract disks’

physical features. Worthington and Schindler [29, 107] relied on interrogative SCSI com-

mands for extraction, but unfortunately, this technique isnot applicable to IDE disks. Ex-

perimental methods using empirical observations were firstproposed by Aboutablet al.[1]

and later improved by Talagalaet al. [119] and Dimitrijevicet al. [44]. The probing algo-

rithm we propose here is also based on observing empirical results. However, unlike the

previous work, which tires to extract as much information aspossible about disks (even

though some information is already published), we only needto extract the sectors-per-

track information for our purpose.

When extracting the sectors-per-track information, we want to do it as quickly as pos-

sible if the extraction happens offline or want to incur as small number of I/O operations as

possible if it is done online. We believe our technique performs well in both modes. The

probing algorithm is presented in Figure 6.1.

Essentially, our algorithm is similar to the technique proposed by Dimitrijevic [44]—

sequentially write to disk, two sectors at a time, and compare its access time with the access

142

#Definitions
DEFINE SECTORSIZE 512
DEFINE SETTLETIME 500
DEFINE BACKTRACK SECTORS 5
DEFINE REQUIREDCONFIRMS 10
DEFINE FULL ROTATION 8333

Initialization
i save = 0;
confirmed = 0;
warp location = 0;
warp multiplier = 1;
last spt = 0xbeefbeef;
last atime = FULL ROTATION;

FOR (i = 0; i<= endsector; i++)
Seek to the next sector and write 2 sectors
lseek(i * SECTORSIZE);
gettimeofday(&t1);
write(2 * SECTORSIZE);
gettimeofday(&t2);
atime = t2− t1;
diff = abs(atime− last atime);
True when this might be a track/cylinder boundary
IF ((diff > SETTLE TIME) AND

(i saved = i OR confirmed = 0))
IF (++confirmed = REQUIREDCONFIRMS)

We have confirmed multiple times this is a track/cylinder
boundary and we modify warpmultiplier to skip ahead
IF (warp multiplier > 1)

IF ((i − warp location + 1) MOD lastspt = 0)
warp multiplier *= 2;

ELSE
Warped to a wrong location so we go back
warp multiplier = 1;
i = warp location + lastspt− BACKTRACK SECTORS;
continue;

ELSE
IF (i − warp location + 1 == lastspt)

warp multiplier = 2;
ELSE lastspt = i− warp location + 1;

From warplocation to i, sectorsper track is lastspt
warp location = i + 1;
confirmed = 0;
i += last spt * warp multiplier − BACKTRACK SECTORS;

ELSE
We backtrack multiple times to make sure that sector i
is really a track/cylinder boundary
i saved = i;
backtracksectors = BACKTRACKSECTORS;
i −= BACKTRACK SECTORS;

Sector i does not seem to be a track/cylinder boundary
ELSE

IF (confirmed &&−−backtracksectors == 0)
After backtracked, we failed to confirm
confirmed = 0;

last atime = atime;

Figure 6.1: The proposed algorithm to quickly and accurately probe for the sectors-per-
track information. Some boundary cases are not included to make the algorithm more
succinct and readable.

143

Sectors Tracks SPT

0–503 1 504 per track
504–1007 1 504 per track
1008–2015 2 504 per track
2016–4031 4 504 per track
4032–8063 8 504 per track
8064–16127 16 504 per track
16128–32255 32 504 per track
32256–64511 64 504 per track
...

Table 6.1: Sectors-per-track probed for an IBM Ultrastar disk. From sector 0 to 503, we

write 2 sectors at a time and find that sector 503 is a track boundary. We then make the

assumption that the following tracks also have 504 sectors.Instead of writing sequentially,

we write only to the assumed boundary region. If we guessed correctly, we can leap ahead

and quickly finish the probing process.

time of the two previously-accessed sectors. If the difference between the two access times

is greater than a certain threshold, it is marked as a cylinder or a track boundary. In our

algorithm, when we find a boundary, we try to backtrack and re-probe multiple times to

make certain that the boundary found is really a boundary because transient behaviors,

especially in IDE disks, are fairly common. By backtrackingand rewriting multiple times,

we can eliminate inaccuracies in our result. Additionally,to speed up the probing process

and minimize the number of I/O operations, we take advantageof the fact that there is a very

high probability that the following tracks will have the same number of sectors on them as

the track we just probed. This allows us toskip aheadby hundreds of sectors and probe

only the disk region where we think the next boundary is located. If we have guessed these

boundaries correctly multiple times, we will startwarping aheadin multiples of tracks,

which can further speed up the probing process. When we guessed correctly, especially in

the latter case, which happens often, we only need a few disk accesses to probe hundreds

of tracks as opposed to hundreds of accesses for a single track. If we guessed wrong, we

can always backtrack. This rarely happens, and even if it does happen, the overhead of

making the necessary correction is very small. A sample of the extracted sectors-per-track

information for an IBM Ultrastar disk is shown in Table 6.1.

144

 250

 300

 350

 400

 450

 500

 550

 0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07 8e+07

S
e
c
to

rs
 P

e
r

T
ra

c
k

Sector

Figure 6.2: A complete extraction of sectors-per-track forthe entire IBM Ultrastar disk.

The sectors-per-track information we extracted from the IBM disk is shown in Fig-

ure 6.2. From this figure, we can clearly see that the disk has 11 zones. On each zone,

most of the tracks have the same number of sectors, but there are some variations. These

variations are caused by slip sectors and spare sectors. Slip sectors are used to skip physical

defects on media surfaces created during manufacturing time, and they reduce the number

of usable sectors on the affected tracks. Spare sectors are used to remap bad sectors cre-

ated at runtime. In case a good sector becomes defective, disk firmware will automatically

remap the defective sector to one of the closeby spare sectors. Spare sectors also cause

the number of usable sectors to decrease on the tracks where they are pre-allocated. As

we will see in the next section, these variations are important to take into account when

characterizing disk failures.

6.3 A Case Study of Failed Disks

To study failed disks, we must first have a large number of themin our possession,

which is a challenge by itself. Privacy is a major concern in the process of obtaining

such disks as data can sometimes be recovered partially or even completely from these

disks. After promising a safe and complete disposal of all content on disk and signing the

required paperwork, we received 60 failed disks—10 from EECS’s Department Computing

145

0

5

10

15

Max
to

r
W

D

Qua
nt

um IB
M

Sea
ga

te

Con
ne

r

App
le

Fuji
tsu

Figure 6.3: Categorizing the 60 failed disks by their manufacturers.

Organization (DCO) and another 50 from University of Michigan’s Property Disposition

(PD).

6.3.1 Overview

The 60 failed disks we are studying in this chapter are shown in Figure 6.3 grouped

by their manufacturers. Not surprisingly, most are produced by some of the larger disk

manufacturers, i.e., Maxtor, Western Digital, Seagate, Quantum, and IBM, simply because

these companies have a much larger market share than the smaller companies. However,

the relative number of these disks does not accurately reflect their manufacturer’s true mar-

ket share as (i) the sample size used in our study is small, and(ii) disks made by some

companies are more prone to failures than others.

We categorize these failed disks into three groups—non-bootable disks, disks with bad

sectors, and perfectly healthy disks. We now describe each of the three categories in more

details.

• Non-bootable: These are disks not recognizable by BIOS at the machine power-on

time, and they account for more than half of our disks (37). This observation initially

led us to believe that a disk will become useless when a failure occurs. However,

after studying these non-bootable disks in more details, wenegated our hypothesis.

Instead, we believe the reason these disks are now in an non-bootable state is highly

unlikely the same reason they were initially taken out of commission. All 37 disks

146

came from the batch of disks we obtained from Property Disposition (PD) with most

having apparent external physical damages (e.g., dents andbroken interface pins).

Having external damage on a disk is highly unusual as disks are internal components

that are always physically protected by a sturdy external computer case. We believe

these external damages should have happened after the diskswere diagnosed as hav-

ing problems and were taken out of the system. Therefore, it is most likely these

damages were incurred during the handling process at PD. As disks in this condition

cannot be accessed without using specialized equipment, itis impossible for us to

assess the extent of damage on their recording surfaces to characterize such failures.

Therefore, we have to exclude this type of failures from our analysis.

• Bad-sectors: These are bootable disks (9) with at least one detected bad sector.

Having one bad sector out of billions of sectors on a disk is not that uncommon.

However, losing 512 bits of information can either be harmless if the affected sector

is not currently mapped to any data or can be very destructiveif the affected sector

contains important file system meta-data. A sector can become corrupted for various

reasons: material degeneration (caused by overuse or old age) and head crash. By

identifying and mapping the exact physical location of bad sectors, we hope to gain

a better understanding of how data became corrupted due to disk problems. With

this knowledge, we can build file systems that can place data on disk in a more

fault-tolerant manner and use data replication techniquesto better guard against the

unexpected.

• Healthy: Ironically, some “failed” disks (14) are actually perfectly healthy, but for

some reason, were identified as bad and taken out of commission. These disks have

no bad sectors nor any anomalies in their SMART status. SMARTstands for Self-

Monitoring Analysis and Reporting Technology, and it monitors mechanical and

electronic components on disk to give advance warnings to predictable failures. We

believe there are several possibilities for which these healthy disks were falsely iden-

tified. One possibility is bit flipping, which happens approximately once for every

1014 bits accessed. Another possibility is bad writes—sometimea write operation

147

Capacity 75 GB
Zones 15
Cylinders 27724
Platters 5
Surfaces 10
RPM 7200
Interface IDE

Table 6.2: IBM 75GXP: Disk specification.

can be carried out at a wrong location or in between two tracks. Besides these hard-

ware errors, bugs in the file system and human errors could also have caused healthy

disks to be falsely identified. But as file system code is becoming very mature and

good management software is becoming more commonly deployed to minimize hu-

man errors, we believe concentrating on disk hardware errors is more fruitful and

beneficial. Using replication can also help alleviate this type of disk failures.

Our focus is to analyze the disks with bad sectors. Among the 9disks, there are 2 IBM,

2 Western Digital, 2 Quantum, 2 Maxtor, and 1 Seagate disks. The Seagate disk has only 1

defective sector and is not interesting to discuss, and therefore, it will not be included in our

discussion. We will now characterize and dissect the extentof damage on the 8 remaining

disks.

6.3.2 IBM Deskstar 75GXP

One of the disks we studied is an IBM 75GXP. Its specification is listed in Table 6.2

showing its capacity, revolutions per second (RPM), interface type, and its number of zones,

cylinders, platters, and recording surfaces. This information (except zones) is generally

made public for modern disks and does not require probing. Byusing commercial software

to scan its recording surfaces, we are able to pin-point all its bad sectors. The location of

these corrupted sectors is critical in determining how databecome lost or damaged.

Figure 6.4 shows a list of (575) bad sectors we found on the IBMdisk. They are located

in only low-address regions on the disk, which indicates that by simply separating replicas

from their original data block by a reasonably large logicaldistance (in unit of sectors),

the data can be stored more safely. This is the conventional and the most straight-forward

148

Bad Sectors

P
hy

si
ca

l L
oc

at
io

n
(S

ec
to

r)

Figure 6.4: IBM 75GXP: The disk’s list of bad sectors.

way of placing replicas to improve fault-tolerance on a single disk. As we have pointed out

earlier, placing related data far away from each other can significantly hurt performance.

We hope, from studying disk failures in more details, we can devise better strategies in

placing data and their replicas.

Zones Cyl start Cyl end Sectors/Track
0 0 1375 702
1 1376 2831 684
2 2832 4239 666
3 4240 6975 648
4 6976 9759 612
5 9760 11551 594
6 11552 13631 567
7 13632 16239 540
8 16240 18319 504
9 18320 19567 486
10 19568 21199 459
11 21200 23519 432
12 23520 25215 396
13 25216 26319 378
14 26320 27724 351

Table 6.3: IBM 75GXP: disk physical geometry.

Analyzing the physical locations of bad sectors (as opposedto logical locations and

distances) is the key in gaining a better understanding of disk failures. Mapping the logical

address of bad sectors to their physical location would require a detailed map of the disk’s

physical geometry. Fortunately, the physical geometry (shown in Figure 6.3) of this partic-

ular disk model has already been made available in the publicdomain, and no additional

149

work is needed to probe for it. Using the published physical geometry information, it is

straight-forward to map bad sectors to their physical location so we know exactly which

platter, surface, zone, cylinder, and track on which each ofthe defective sectors is located.

Bad Sectors

S
ur

fa
ce

Figure 6.5: IBM 75GXP: A mapping of bad sectors to recording surfaces using the pub-

lished physical geometry.

Using the published specification of the disk, we first mappedeach of the bad sectors

to its recording surface, which is shown in Figure 6.5. This figure indicates that surface

#7 has suffered the most amount of damage with 352 bad sectors. Other damaged sectors

are scattered across surfaces #2, #3, #4, #5, #6, #8, and #9, indicating that bad sectors ex-

hibit very poor physical locality. This observation was disappointing and counter-intuitive

because it makes sense that some disk regions, such as the outer-most recording surfaces,

are more prone to damage than others due to a difference in airpressure within the disk’s

enclosure that pushes free particles toward the outer-mostrecording surfaces. Or regions

that had been previously-damaged are more prone to failuresthan others. None of these

hypotheses are supported in our observation from the previous figure.

A closer look at our result led us to find a critical mistake in our calculation by placing

too much trust in the published disk geometry. As it turns out, the real disk geometry is

actually different, although not by much, from the published data. However, the small

difference between the two, shown in Figure 6.6, made a huge difference in our analysis.

This difference is caused by slip sectors and spare sectors that are not taken into account

when the disk’s geometry is specified in its data sheet. Theiromission is understandable

150

Sector

S
e

ct
o

rs
 P

er
 T

ra
ck

Figure 6.6: IBM 75GXP: Comparing theactual physical geometry (Probed) of the disk

with its published data (Spec).

S
ur

fa
ce

Sector

Figure 6.7: IBM 75GXP: A mapping of bad sectors to recording surfaces using the actual

physical geometry of the disk.

as each disk is different. To obtain the disk’sactualphysical geometry, we used the probe

method described in the previous section. The mapping of thebad sectors to recording

surfaces using the disk’s actual geometry is shown in Figure6.7.

Using the actual physical geometry of the disk to map out bad sectors we found that

surface #8 had the most number of damaged sectors (467). Additionally, other bad sectors,

instead of being scattered across many different recordingsurfaces, are now localized to

only two neighboring surfaces #7 and #9. This finding impliesthat it is not necessary to

have replicas to be placed far apart to store data more safely. Sometimes, it is sufficient to

place the replicas to a close-by track as long as they are on a different surface from the loca-

151

tion of their original data. This allows data to be stored as safely as the traditional method

(i.e., placing replicas far apart from their original) while keeping performance degradation

to a minimum for keeping replicas consistent.

Sector Track
813160 1158
819801 1168
827144 1178
833786 1188
841128 1198
847770 1208
855112 1218
862455 1229
869096 1238
876439 1248
883080 1258
890423 1268
897064 1278
904407 1288
911048 1298
918391 1308
925032 1318
932375 1328
939017 1338
946359 1348
953702 1359
960343 1368
967686 1378
974327 1388

… …

10 tracks

10 tracks

10 tracks

…

Table 6.4: IBM 75GXP: A sample mapping of bad sectors to theirtrack.

We next mapped the defective sectors to tracks, and a sample of this mapping is shown

in Table 6.4. A closer examination of this table shows many ofthese sectors are often 10

tracks apart from each other. The fact this disk has 5 platters and 10 recording surfaces

implies these sectors are on neighboring tracks of the same surface. Plotting their sector

offset (within a track), as shown in Figure 6.8, we can see there is a clear pattern. We

immediately suspected the regular pattern in the sector offsets is an artifact of head skews

and cylinder skews. It is also an indication that these sectors might be located closely to

one another on neighboring tracks, e.g., as part of a scratchor a hole on a surface.

To verify our hypothesis is correct, we first obtained the disk’s head skew (HS) time

(1.2 ms) and cylinder skew (CS) time (1.7 ms) from its specification sheet. Instead of using

the actual time, we converted the time unit to the number of sectors that would pass under

the disk head for that amount of time, as shown below.

Head Skewsectors =
Head Skewtime

Full Rotationtime

× SPT

152

T
ra

ck
 O

ffs
et

Bad Sectors

Figure 6.8: IBM 75GXP: A sample of bad sectors’ sector offsets.

Cylinder Skewsectors =
Cylinder Skewtime

Full Rotationtime

× SPT.

A full rotation takes 8.33 ms on a 7200 RPM disk, and SPT standsfor sectors per

track. HS and CS are found to be 102 and 144 sectors, respectively. Next, we calculate the

skewness of neighboring tracks on the same surface, called surface skew, as shown below.

Surface Skewsectors = (HSsectors × (Surfaces − 1) + CSsectors)%SPT.

center

Bad Sectors

center center

Bad Sectors Bad Sectors�
Track Offset = 360

�
Track Offset > 360

�
Track Offset < 360

Figure 6.9: Using sector offset difference to predict sectors’ relative location.

The surface skew (SS) of this disk is approximately 360 sectors. This means if two

sectors (on neighboring tracks of the same surface) have a sector offset difference of 360

sectors, they will fall on the same radius line passing through the center of the disk. An

example illustrating different variations of this scenario is shown in Figure 6.9.

The sector offset difference between bad sectors of neighboring tracks is shown in

Figure 6.10. Their offset difference lies consistently around 375–380 sectors—a strong

153

� T
ra

ck
 O

ff
se

t
Tracks

Figure 6.10: IBM 75GXP: Difference between bad sectors’ sector offsets.

indication of surface scratches. This might be caused by a head crash as a head will leave

a regular scratch pattern on the recording surface every time it crashes. The analysis of

sector offset allows us to propose an alternative and potentially better method to replicate

data—placing replicas almost physically adjacent (i.e., on a neighboring track of the same

surface) to the original data, as long as the sector offset istaken into account. Therefore,

an update operation that synchronously modifies the original data and all its replicas can

be completed with a very small amount of mechanical delays. This method of replication

allows replicas to be placed much closer to their original data while data are kept as fault-

tolerant as the previous method.

The analysis of the bad sectors’ physical location found on the IBM 75GXP disk shows

evidence that suggests the existence of better placement strategies of replicas than the con-

ventional method, which is to place replicas far away from each other and the original data.

By placing replicas on a neighboring track (of the same cylinder or the same surface) of the

original data, we can achieve the same level of fault-tolerance as the conventional method

but with much less performance overhead in maintaining replicas.

On this IBM disk, all its bad sectors are found on zone #0. Thiscan be caused by

either head crash or an overuse of this disk region. Some file systems, e.g., NTFS, try

to place more frequently used files on the outer edge (low-address zones) of the disk to

achieve higher I/O bandwidth. However, this causes some parts of the disk to be used

much more frequently than others, and the excessive wear cancause damage over time. A

file system that makes more balanced use of different disk regions, e.g., Ext2, can alleviate

154

Capacity 36.7 GB
Zones 11
Cylinders 15110
Platters 6
Surfaces 12
RPM 10000
Interface SCSI

Zones Cyl start Cyl end Sectors/Track
0 0 378 504
1 379 2069 476
2 2070 3416 462
3 3417 6788 420
4 6789 7493 406
5 7494 8863 392
6 8864 10167 378
7 10168 11195 364
8 11196 11999 352
9 12000 13714 336
10 13715 15109 308

Table 6.5: IBM 36LZX: Disk specification.

such problems. In the following sections, we will study and characterize other failed disks.

S
ec

to
r

Figure 6.11: IBM 36LZX: A list of bad sectors.

6.3.3 IBM Ultrastar 36LZX

In this section, we will analyze another failed IBM disk—an Ultrastar 36LZX. Its spec-

ification is shown in Table 6.5. We found 3 times more number ofbad sectors on this disk

than the first IBM disk (1799 in total). Similar to the first IBMdisk, all bad sectors are

found on zone #0 (shown in Figure 6.11, which, as we have suggested previously, may

have been caused by an overuse of that region. Additionally,bad sectors had a high con-

centration on only one of the surfaces (shown in Figure 6.12,and the rest was found on a

neighboring surface, which suggests a strong surface locality of defective sectors.

On both IBM disks, the most badly damaged recording surface is the inner surface of

the outer-most platter. It is not clear whether or not this isa failure characteristic of only

155

S
ur

fa
ce

Figure 6.12: IBM 36LZX: Mapping of bad sectors to recording surfaces using the actual

physical geometry of the disk.

IBM disks or disks in general as our sample size is not big enough to make such a general

statement. Although it does suggest that by exploiting the surface locality of defective

sectors when placing replicas, data might be more safely stored on IBM disks.

T
ra

ck
 O

ff
se

t

Track

Figure 6.13: IBM 36LZX: Sector offsets of defective sectors.

Despite many similarities in failure characteristics between the two disks, there are also

some differences. Unlike the first IBM disk, where we found regular patterns in sector

offsets of defective sectors, we did not find similar patterns on the second disk. Sector

offsets of the bad sectors found on the second disk are shown in Figure 6.13. This figure

shows most defective sectors have a small sector offset within their track. This is more

clearly shown in Figure 6.14. However, it is not clear what might have caused it. To guard

against such failures, file systems should refrain from placing meta-data and important user

data towards the beginning of tracks.

156

T
ra

ck
 O

ff
se

t
Track

Figure 6.14: IBM 36LZX: A histogram of sector offsets—smaller ones dominate.

6.3.4 Western Digital Caviar 205BA

Caviar 205BA is the first of two Western Digital (WD) disks we will study in this

subsection. Its specification is shown in Table 6.6. The significant difference between WD

and IBM disks from our perspective is that WD disks have more zones than IBM disks.

Capacity 20.5 GB
Zones 20
Platters 3
Surfaces 6
RPM 7200
Interface IDE

Table 6.6: WD 205BA: Disk specification.

We found 2835 bad sectors on this disk. These sectors are plotted in Figure 6.15(a).

Among them, 2832 are consecutive. Long streams of consecutive defective sectors are

commonly found on failed WD disks. As a result, all platters and surfaces are likely to have

some damaged regions (shown in Figure 6.15(b)). Thus, the technique we have proposed

for IBM disks, which is to place replicas on the same cylinderas or a neighboring track

of the original data, will not be effective for WD disks. Defective sectors on WD disks

usually have long runs, but in terms of affected tracks or cylinders, only a few are affected.

Therefore, placing replicas a few cylinders away can be a good simple solution.

157

S
e
ct

o
r

S
ur

fa
ce

(a) (b)

Figure 6.15: WD 205BA: (a) A list of bad sectors. (b) Mapping of the bad sectors to

recording surfaces.

6.3.5 Western Digital Caviar WD400BB

This is another WD disk but of a different generation as its platters have a much higher

recording density than the previous WD disk. Its specification is given in Table 6.7. This

disk also has more zones than the IBM disks.

Capacity 40 GB
Zones 18
Platters 2
Surfaces 4
RPM 7200
Interface IDE

Table 6.7: WD 400BB: disk specification.

We found a list of 1069 defective sectors on this disk. More than half of them (692)

are consecutive, similar to the first WD disk. This is shown inFigure 6.16(a) around sector

#7.5e7. Other than these consecutive sectors, there are also 4 smaller defective regions.

These are mapped to all 4 surfaces of the disk, as shown in the beginning part of Fig-

ure 6.16(b). A closer examination of these defective sectors exposed some regular patterns

in their physical location. A sample mapping of these sectors to their track and surface is

shown in Table 6.8. It is apparent from this table that the badsectors are all one track apart.

Partitioning these sectors by surface, this is the exactly the same type of damage that we

have seen on the IBM 75GXP disk. As opposed to having scratches on only one of the

surfaces, the WD 400BB disk seems to have scratches on all surfaces. The sector offset

158

S
ec

to
r

S
ur

fa
ce

(a) (b)

Figure 6.16: WD 400BB: (a) A list of bad sectors. (b) Mapping of the bad sectors to

recording surfaces.

differences of these sectors are shown in Figure 6.17. The consistency in the sector offset

differences (indication of having a scratch) is apparent from this figure.

Sector Track Surface
28888401 31438 2
28889142 31439 3
28889882 31440 0
28890623 31441 1
28891363 31442 2
28892987 31443 3
28893728 31444 0
28894468 31445 1
28895209 31446 2
28895949 31447 3
28896690 31448 0
28898314 31449 1
28899054 31450 2
28899795 31451 3
28900535 31452 0
28901276 31453 1
28902016 31454 2
28902757 31455 3
28904381 31456 0
28944372 31502 2
28945996 31503 3
28946736 31504 0

Table 6.8: WD 400BB: A sample mapping of bad sectors to their track and surface.

6.3.6 Maxtor 4K020H1

We have two failed Maxtor 4K020H1 disks with exactly the same(published) physical

geometry, and both will be covered in this section. The specification of these disks is shown

159

� T
ra

ck
 O

ffs
et

Figure 6.17: WD 400BB: Sector offset differences of bad sectors.

in Table 6.9. These disks are simpler and slower than the previously discussed ones, and

they have only one platter with one recording surface. Theirrotational speed is only 5400

RPM as opposed to 7200 or 10000 RPM.

Capacity 20 GB
Zones 15
Platters 1
Surfaces 1
RPM 5400
Interface IDE

Table 6.9: Maxtor 4K020H1: Disk specification.

The list of bad sectors found on the two disks are shown in Figure 6.18. It is common

on the two disks that most of the defective sectors are very close to one another. On one of

the disks, 63 out of a total of 84 defective sectors are co-located on the same track with at

least one other defective sector. On the other disk, 93 out of214 defective sectors are co-

located on the same track with at least one other defective sector. All the defective sectors

are localized within 3 or 4 zones on these disks. These observed failure characteristics are

fairly similar to the failed Western Digital disks.

6.3.7 Quantum Fireball LCT10

Fireball LCT10 is one of the two Quantum disks we will study inthis subsection. Its

specification is given in Table 6.10. We plotted all defective sectors in Figure 6.19 The fail-

ure characteristic of this Quantum disk is fairly similar tothe Maxtor and Western Digital

160

S
ec

to
r

S
ec

to
r

Figure 6.18: Maxtor 4K020H1: A list of bad sectors on each of the Maxtor disks.

disks. It has 31 bad sectors located on only 2 zones, and 27 of them are consecutive. Ad-

ditionally, only 2 out of 4 surfaces are affected. The same replication techniques proposed

for Maxtor and WD disks should be applicable here.

Capacity 36.7 GB
Zones 8
Platters 2
Surfaces 4
RPM 10000
Interface SCSI

Table 6.10: Quantum LCT10: Disk specification.

S
ec

to
r

S
ur

fa
ce

(a) (b)

Figure 6.19: Quantum LCT10: (a) A list of bad sectors. (b) Mapping of the bad sectors to

recording surfaces.

161

6.3.8 Quantum Fireball CX10.2A

Fireball CX10.2A is a slightly older disk. Its specificationis shown in Table 6.11.

112 defective sectors (shown in Figure 6.20) were found and appeared to be randomly

distributed on the disk—on all 3 recording surfaces and on 7 out of 15 zones. Only 21

sectors are co-located on the same track with at least one other defective sector.

Capacity 10.2 GB
Zones 15
Platters 2
Surfaces 3
RPM 5400
Interface IDE

Table 6.11: Quantum CX10.2A: Disk specification.

S
ec

to
r

S
ur

fa
ce

(a) (b)

Figure 6.20: Quantum CX10.2A: (a) A list of bad sectors. (b) Mapping of the bad sectors

to recording surfaces.

A closer examination of the defective sectors revealed something that we did not see in

the other disks. A sample mapping of sectors to their track and recording surface is shown

in Table 6.12. In this table, we can see a large percentage of these sectors are mapped

to surfaces #0 and #2, and the failed sectors are often separated by exactly 6 tracks (or 2

cylinders). This is not likely to have been caused by mechanical problems, e.g., head crash,

as the damaged sectors do not resemble a scratch of any kind. It is more likely to have

caused by a problem in the servo system. Simply placing replicas to a few cylinders away

from the original data or on a different surface will not be sufficient.

162

6.4 Conclusions

Replication appears to be an effective method to enhance data fault-tolerance on a single

disk and can be practically implemented in existing file systems. We focus our attention on

single-disk systems as there are no existing solutions. To use replication to improve fault-

tolerance, there are several challenges to overcome. First, we must be able to accurately

and quickly detect the physical geometry of the disk and expose this information to the file

system for it to be used to better safeguard data. Second, having a good understanding of

disk drives’ failure characteristics is crucial in making the right replication decision, but

there is a lack of such study.

Sector Track Surface
13951235 30189 0
13953247 30194 2
13953571 30195 0
13955583 30200 2
13955907 30201 0
13957919 30206 2
13958243 30207 0
13960255 30212 2
13960579 30213 0
13962591 30218 2
13963319 30219 0
13965329 30224 2
13965330 30224 2
13965654 30225 0
13967666 30230 2
13967990 30231 0
13970002 30236 2
13970326 30237 0
13972338 30242 2
13972662 30243 0
13974674 30248 2
13975401 30249 0
13977413 30254 2
13977737 30255 0
13979749 30260 2

6 tracks

6 tracks

6 tracks

6 tracks

6 tracks

6 tracks

Table 6.12: Quantum CX10.2A: a sample mapping of defective sectors to their track and

recording surface.

We attacked both of these challenges, first by developing a set of tools to probe for

disk physical geometry, and using which, we then analyzed the failure characteristics of

60 failed disks. Our experimental results confirmed that thesimple method of placing

replicas far away from their original data will work, but notvery effectively. Our empirical

observation indicates that placing replicas to be very near(on the same cylinder or on a

neighboring track) their original data can often provide the same level of fault-tolerance

and will only require a minimal amount of resynchronizationoverheads to keep replicas

163

consistent.

Despite only 9 out of 60 disks were in condition to be analyzedin our study, we ob-

served some interesting phenomena that concurred with somecommon practices and raised

the possibility of potentially better approaches. We foundthat disks made by different man-

ufacturers sometimes have different failure characteristics. Therefore, the best way to place

replicas on a disk will depend on who has manufactured it, andthis information is readily

available from disks’ firmware. Taking advantage of the rapidly increasing disk density,

these observations can be exploited by future file systems tomake better placement of data

to increase data fault-tolerance. This can protect againstsome data corruption scenarios

and give early warnings to users to minimize the probabilityof permanent data loss.

164

CHAPTER 7

Related Work

There has been a significant amount of previous work in utilizing unused resources

for a variety of purposes, which can be broadly classified into three categories—energy

management, performance improvement, and fault-tolerance enhancement. Next, we will

discuss each of these areas in more detail.

7.1 Energy

7.1.1 Microprocessor

Recent research has demonstrated that a significant amount of energy can be saved

by exploiting the power management capabilities of unused hardware. In the early 90’s,

Weiseret al. [125] first demonstrated the effectiveness of using DynamicVoltage Scaling

(DVS) to reduce power dissipation of microprocessors. DVS allows system software to

direct microprocessor to dynamically change its operatingfrequency and voltage. Almost

all mobile microprocessors support this feature. Some earliest work [10, 54, 96, 125] using

DVS techniques simply used average processor utilization to direct voltage and frequency

scaling. Later work [48, 79] improved these techniques by applying prediction techniques

and soft deadlines in their DVS algorithms. This allowed DVSto be applied to general-

purpose systems while maintaining good interactive performance. DVS techniques are

finally applied to real-time systems [55, 90, 97, 99], where tasks have more strict execution

165

behavior and deadlines.

7.1.2 Disk

Due to having higher rotational speed and heavier platters,new disk drives are consum-

ing an ever-increasing amount of energy. Numerous energy conserving techniques [20, 21,

39, 53, 58, 73, 76, 126] have been proposed by exploiting diskidleness. In these techniques,

power is reduced by switching disks to one of the lower energymodes after observing a

certain period of disk inactivity. However, due to increasing utilization of disk drives, most

idle periods are becoming too small to be exploited in such ways [57, 132]. Gurumurthiet

al. [57] proposed a Dynamic RPM (DRPM) disk design. In their simulation, this design

was shown to be effective in saving energy even when the disk is busy. However, as DRPM

disks are not currently pursued by any disk manufacturers, we cannot yet benefit from this

new architecture. In this thesis, we lowered energy consumption by reducing seek distance.

This is similar to the DRPM design, where power can be reducedeven when disk is busy.

However, unlike DRPM, our work in FS2 does not suffer any performance degradation. On

the contrary, FS2 actually improves performance while saving energy.

Techniques to conserve energy in multi-disk arrays have also been proposed. Popu-

lar Data Concentration (PDC) [98] and Massive Array of Idle Disks (MAID) [14] have

been implemented to use either caching or data migration to increase disk traffic skewness

among the disks in the array. This skewness allows some disksto have longer idle periods

than others so they can be exploited for energy saving purpose. In [38], traditional RAID

systems are studied in detail in the aspects of energy and performance by varying various

RAID parameters.

7.1.3 Memory

Among power-management techniques proposed for main memory, there are currently

two main approaches—hardware- and software-controlled. Among the software-controlled

approach, Delaluzet al.[40] proposed a compiler-directed approach, where power-state

transition instructions are automatically inserted into compiled code based on offline code

166

profiling. The major drawback of this approach is that compiler only works with one pro-

gram at a time and has no information about other processes that may be present at run-

time. Therefore, it has to be conservative in managing poweror else it can trigger large

performance and energy overheads when used in a multitasking system. Nevertheless, this

technique may be applicable in embedded systems where workloads are more determin-

istic. Delaluzet al.[42] later demonstrated a simple scheduler-based power-management

policy. The basic idea is similar to our PAVM approach, but isof much more limited

scope. First, we put much more effort into having the underlying physical page allocator

allocate pages by collaborating with the VM through a NUMA management layer so that

the memory footprint of each process is reduced, whereas they rely on the default behav-

ior of the page allocator and VM. As we have seen in Section 2.4, a substantial amount

of power-saving opportunities still remained unexploitedeven with our rudimentary im-

plementation of PAVM, let alone when pages are randomly allocated by the default page

allocator. In [25], it was also noted that the default page-allocation behavior has a detrimen-

tal effect on the memory footprint of processes. Second, we have explored more advanced

techniques such as aggregation of shared pages and page migration which are necessary

for reducing memory footprints when complex sharing between processes in real systems

is involved. Page migration techniques [43, 74] have been extensively explored in NUMA

systems to reduce I/O latencies. We used a similar migrationtechnique in this thesis but

for the purpose of reducing energy consumption. Finally, they determined the active ranks

by using page faults and repeated scans of processes’ page tables. Although this ensures

only the truly active ranks are detected, it is intrusive andinvolves high operational over-

heads. In contrast, we take every precaution to avoid performance overheads and hide any

avoidable latencies in our design.

Among the hardware-controlled approach, Lebecket al. [25, 45] studied the effects

of various static and dynamic memory controller policies toreduce power with extensive

simulation in a single-process environment. In another paper [46], they used stochastic

Petri Nets to explore more complex policies. Delaluzet al. took a similar approach in

[40], where they studied various flavors of threshold predictors and evaluated their energy

implications. The software-directed hardware technique proposed in this thesis is orthogo-

167

nal to the techniques described above and can be used to improve the prediction accuracy

in some of these previously-proposed threshold predictionmechanisms. However, unlike

these previous approaches, the techniques proposed in thisthesis are specifically designed

and optimized for a multitasking environment, as are most oftoday’s systems. In other

research contexts, using software and hardware collaboration [9, 22, 77, 110] has also been

shown to be beneficial in terms of improving performance and security, and providing new

functionalities.

We have also shown that memory traffic reshaping can complement these existing

hardware-controlled techniques by creating larger idle periods from smaller ones, thus al-

lowing power management to become more effective in reducing power. Similar techniques

have been proposed by [132] in the context of disk drives.

7.1.4 Wireless Device

Due to the rapid increase in the number of mobile devices, e.g., laptops, PDAs, and

cellphones, wireless communication is becoming an important area. Wireless devices can

consume a significant amount of power [47], and therefore, can severely limit the battery

lifetime of mobile systems. For an IEEE 802.11 WLAN device, it can be in one of several

states: transmit, receive, idle, and doze. It has been shownthat by taking advantage of

the doze mode adaptively at appropriate moments [24, 112, 118], battery energy can be

conserved. Energy can also be conserved by applying Transmit Power Control [27, 30, 32,

70], which is orthogonal to the techniques that make use of the doze mode.

7.1.5 System

As opposed to saving energy for individual components, there are also some propos-

als [49, 80, 131] that explored system-level approaches to extend/target the battery lifetime

of the system. Flinnet al.’s work on Odyssey [49] changes the fidelity of data objects in

response to the available resources to meet user-specified goals of battery duration. Zenget

al. proposed ECOSystem [131] to provide a model for fair allocation of energy resources to

competing applications. In [80], Luet al. monitor processes’ requests to hardware compo-

168

nents. The operating system can slow down or shut off hardware components to conserve

power depending on which process is currently executing.

7.2 Performance

7.2.1 Microprocessor

The most widely-known work that takes advantage of idle processor cycles to do more

work is the SETI@Home project [111]. SETI stands for Search for Extra-Terrestrial In-

telligence, which, as its name suggests, is used to detect life outside of Earth by analyzing

radio signals collected by the Arecibo radio telescope. In this project, a massive amount

of data is sent to 5.2 million participants around the world connected by the Internet and

processed by their unutilized CPU cycles without interfering with the normal tasks of the

participants.

7.2.2 Disk

File System: FFS [34] and its successors [11, 122] improved disk bandwidth and la-

tency by placing related data objects (e.g., data blocks andinodes) near each other on disk.

Although it can be effective in initial data placement, it takes no notice of dynamic access

patterns. Therefore, its improvement is fairly limited [2,104]. Based on FFS, Gangeret

al. [52] optimized performance for small objects by improving their adjacency rather than

just locality, to make better use of disk bandwidth. Unfortunately, they also suffer the same

set of problems as FFS.

In Log-structured File System (LFS) [103], disk write performance can be significantly

improved by delaying and writing in large segments. Tuning LFS by putting active seg-

ments on high-bandwidth outer cylinders can further improve write performance [124].

However, due to segment-cleaning overheads and its inability to improve read performance,

there is no clear indication that it can outperform file systems in the FFS family.

The closest related works to FS2 are the Hot File Clustering used in the Hierarchical

File System (HFS) [51] and the Smart File System [114]. Thesefile systems monitor file

169

access patterns at runtime and move frequently accessed files to a reserved area on disk.

FS2 has several major advantages over these. First, the use of block granularity allows us

to optimize for all files instead of only the smaller ones. It also gives us opportunities to

place meta-data and data blocksadjacentto one another as opposed to justclose-by. As

indicated in [52], this can significantly improve performance. Second, moving data can

potentially break sequentiality. We use data replication so both sequential and random disk

I/Os can benefit. Third, using a fixed location on disk to rearrange disk layout will only

have benefit under a light load [71]. Using free disk space that may be at arbitrary locations,

we show that even under heavy loads, significant benefits can still be attained while keeping

replication overhead low. Fourth, reserving a fixed amount of disk space to rearrange disk

layout is intrusive, and this can be prevented in our approach by using only the available

disk space.

Adaptive Disk Layout: Early adaptive disk layout techniques have been mostly stud-

ied either theoretically [128] or via simulation [23, 91, 104, 123]. It has been shown for

random disk access,organ pipeheuristic, which places the most frequently-accessed data

in the middle of the disk, is optimal [128]. However, as real workloads do not generate ran-

dom disk accesses, the organ pipe placement is not always optimal, and for various reasons,

far from practical. To adapt the organ pipe heuristic to realistic workloads, Vongsathorn and

Carson [123] proposedcylinder shuffling. In their approach, the access frequency of each

cylinder is maintained, and based on their frequencies, cylinders are reordered using the or-

gan pipe heuristic at the end of each day. Similarly, Ruemmler and Wilkes [104] suggested

shuffling in units of blocks instead of cylinders, and it was shown to be more effective. In

all these techniques, it was assumed that the disk geometry is known and can be easily sim-

ulated. This might be true at that time, but due to increasingly complex hard drive designs

and fiercer competition between disk manufacturers, disk geometry is now mostly hidden.

Of course, there are tools [1, 44, 107, 119] that can be used toextract the physical disk ge-

ometry experimentally, but such an extraction usually takes a long time. Furthermore, the

extracted information can be too tedious to be used at runtime.

Akyurek and Salem [2] were the first who actually implementedblock shuffling in a real

system. Other than its use of block granularity instead of file granularity, this technique is

170

very similar to HFS and Smart File System, and therefore, suffers the same pitfalls as HFS

and Smart File System.

I/O Scheduling: Disk performance can also be improved by means of better I/O

scheduling. Seek time can be reduced by using SSTF and SCAN [18], C-SCAN [108],

and LOOK [85]. Rotational delay can be reduced by using the approaches as described

in [64, 68, 101, 109]. An anticipatory I/O scheduler [67] is used to avoid hasty I/O schedul-

ing decisions by introducing additional wait time. These techniques are orthogonal to the

adaptive disk layout techniques.

7.2.3 Graphics Processor

Today’s GPUs are highly parallel vector processors that canhandle texture mapping

and polygon rendering at a blazing speed. In fact, their corefrequency has been doubling

roughly every 6 months [33], even faster than CPU’s rate of improvements. However,

GPUs are utilized only by a small number of 3-D applications,so most of the time, they

just sit idle in the background. Various interest groups arepushing for GPU manufacturers

towards more general-purpose GPU architectures with easier programming models. This

will ideally allow GPUs to be used for general-purpose computation, but up to date, only

a very small number of specialized scientific computations has been compiled to run on

GPUs [26, 120]. This is still a research area with many low-hanging fruits. Furthermore,

video memory has become an ample resource in today’s video cards due to the recent drop

in memory price. Video cards with half of a gigabyte of memoryare fairly common, which

is comparable to the size of main memory. It is not difficult toimagine system software

that can opportunistically take advantage of the idling video memory to augment the size

of main memory when running memory-intensive applications.

171

7.3 Fault-Tolerance

7.3.1 Disk

An adequate level of fault-tolerance against data loss and data corruption is a must

in mission-critical environments. Redundant Array of Inexpensive Disks (RAID) [94] is

the most widely used storage volume manager that makes tradeoffs between the storage

system’s performance, fault-tolerance, cost, and energy consumption. Data loss can be

deterred by using either mirroring (RAID-0) or parity information (RAID-5), or a combi-

nation of both depending on the performance and fault-tolerance requirement of a particular

system. However, in a RAID system, when improving one dimension, one or more other

dimensions are usually degraded. For example, if we want to upgrade an existing RAID

system so that it can tolerate more failures, then we would need to buy more disks just

so we can store the same amount of data as before. This increases hardware cost, admin-

istration cost, and energy cost. These tradeoffs between various dimensions in a RAID

system are studies here [3, 7, 13, 37, 127, 130]. For backup systems, not only it requires

additional equipments to hold backup data, but it also givesadditional chores to system

administrators.

The Elephant Filesystem [31] uses free disk space to automatically store old versions

of files to avoid explicit user-initiated version control. In their system, a cleaner is used to

free older file versions to reclaim disk space, but it is not allowed to freeLandmarkfiles.

In FS2, all free space used for duplication can be reclaimed as replicas are used only for

enhancing performance and invalidating them will not compromise the correctness of the

system.

Additionally, distributed storage systems such as Farsite[28], Pastiche [16], and Sam-

sara [17] exploit free disk capacity in participating clients to distribute data across ge-

ographically different locations to implement highly available, reliable, and secure data

storage systems.

172

CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

The aim of this thesis is to show how unused hardware resources can be effectively

utilized to the benefit of users while keeping all the additional complexity due to harnessing

such resources hidden from them. One main focus is to exploitidle resources for energy

savings.

To reduce power dissipated by the main memory, we first implemented a purely software-

controlled power-management technique. This technique isimplemented both on a real

system and a simulated system, and we were able to demonstrate a significant amount

of power savings. Besides the energy benefit, this techniqueis platform independent and

can be easily ported to different machine and memory architectures. However, having

power-control and monitoring mechanisms implemented in the system software inheri-

tantly limited the effectiveness of this approach, and as a result, many power-saving op-

portunities cannot be exploited. To improve upon this technique, we then implemented

a software-directed hardware power-management technique, which takes advantage of (i)

finer-grained power-control mechanisms available at the hardware level and (ii) system in-

formation available at the operating system level. In addition to these two techniques, we

also demonstrated the usefulness of actively reshaping memory traffic in reducing mem-

ory’s power dissipation and how this technique can be used tocomplement some existing

hardware power-management techniques.

173

In the area of magnetic disks, we have shown the usefulness offree disk capacity in FS2.

The use of free disk space allows a flexible way to improve disks’ I/O performance and re-

duce their power dissipation, while being nonintrusive to users. We have also demonstrated

the potential usefulness of using replication and unused disk capacity to improve data fault-

tolerance in a detailed analysis of disk failure characteristics and strategies to better place

data and replicas on disk.

8.2 Future Work

In the area of memory power-management, our main focus is on uniprocessor systems,

with an explicit assumption that there is only one running process at any instant of time.

PAVM is specifically designed and optimized for such systems. It will be interesting to

consider extending PAVM to systems with multiple processing units, e.g., multi-core and

multi-processor, of which many of today’s systems are equipped. To implement PAVM in

such systems, we would need to consider a combination of running processes instead of a

single process, and thus, task scheduling will play an important role in power management.

In FS2, there are still many interesting areas to explore. For example, replication can be

done either at the file system level or at the block device level. If it is done at the file system

level, implementation is much easier, but it will be very file-system-specific and need to be

re-implemented for each file system we want to extend and evaluate. If it is done at the

block device level, we can generally apply it to any file system. The problem with this

approach is that the block device driver does not know whether a disk block is free or used,

as this information is available only at the file system level. To have replication done at the

block device level, it would require the file system to exportsome information to the the

block device driver.

Several other design aspects of FS2 are also interesting to explore in the future. First,

we have only implemented a working 1-replica system, but there are scenarios where an

n-replica system, where n> 1, might perform better. Second, we have only explored repli-

cation techniques, but migration sometimes can be more appropriate. Further investigation

is needed to determine under which scenario is migration or replication the better method

174

to reorganize data layout. Third, extending the techniqueswe have developed for single-

disk systems to multi-disk systems can potentially improveexisting multi-disk solutions,

e.g., RAID, in terms of performance, fault-tolerance, and energy-efficiency.

175

BIBLIOGRAPHY

176

BIBLIOGRAPHY

[1] M. Aboutabl, A. Agrawala, and J. Decotignie. Temporallydeterminate disk access:
An experimental approach. InTechnical Report, CS-TR-3752, 1997.

[2] Sedat Akyurek and Kenneth Salem. Adaptive block rearrangement.Computer Sys-
tems, 13(2):89–121, 1995.

[3] E. Anderson, R. Swaminathan, A. Veitch, G. Alverez, and J. Wilkes. Selecting RAID
levels for disk arrays. InConference on File and Storage Technologies (FAST), pages
189–201, 2002.

[4] APC—American Power Conversion. Determining total costof onwership for data
centers and network room infrastructure, December 2003.

[5] P. Barford and M. Crovella. Generating representative web workloads for network
and server performance evaluation. InProceedings of the 1998 ACM Measurement
and Modeling of Computer Systems (SIGMETRICS), pages 151–160, 1998.

[6] Fred Beck. Energy smart data centers: Applying energy efficient design and technol-
ogy to the digital information sector. InRenewable Energy Policy Project, November
2001.

[7] Dina Bitton and Jim Gray. Disk shadowing. InProceedings of the International
Conference on Very Large Data Bases, pages 331–338, 1998.

[8] Pat Bohrer, Mootaz Elnozahy, Tom Keller, Mike Kistler, Charles Lefurgy, Chandler
McDowell, and Ram Rajamony. The case for power management inweb servers. In
Power Aware Computing, January 2002.

[9] Edouard Bugnion andet al. Compiler-directed page coloring for multiprocessors.
In Architectural Support for Programming Languages and Operating Systems (AS-
PLOS), 1996.

[10] T. D. Burd and R. W. Brodersen. Energy efficient CMOS microprocessor design.
In Proceedings of the 28th Annual Hawaii International Conference on System Sci-
ences. Volume 1: Architecture, pages 288–297. IEEE Computer Society Press, 1995.

[11] R. Card, T. Ts’o, and S. Tweedle. Design and implementation of the second extended
filesystem. InFirst Dutch International Symposium on Linux, 1994.

177

[12] Data Centre. http://www.max-t.com/downloads/whitepapers/sl edgehammerpower-
heat20411.pdf.

[13] Peter M. Chen and Edward K. Lee. Stripping in a RAID 5 diskarray. InProceedings
of the ACM SIGMETRICS, 1995.

[14] D. Colarelli and D. Grunwald. Massive arrays of idle disks for storage archives. In
Proceedings of the 15th Supercomputing (SC), 2002.

[15] Transactional Processing Performance Council. http://www.tpc.org/tpcw.

[16] Landon Cox, Christopher D. Murray, and Brian Noble. Pastiche: Making backup
cheap and easy. InThe 5th Proceedings of Operating Systems Design and Implmen-
tation, 2002.

[17] Landon Cox and Brian Noble. Samsra: Honor among thievesin peer-to-peer storage.
In The 19th Symposium of Operating Systems Principles, 2003.

[18] P. J. Denning. Effects of scheduling on file memory operations. InAFIPS Spring
Joint Computer Conference, pages 9–21, 1967.

[19] John Douceur and William Bolosky. A large-scale study of file-system contents. In
ACM SIGMETRICS Performance Review, pages 59–70, 1999.

[20] F. Douglis, P. Krishnan, and B. Bershad. Adaptive disk spin-down policies for mo-
bile computers. InProc. 2nd USENIX Symp. on Mobile and Location-Independent
Computing, 1995.

[21] F. Douglis, P. Krishnan, and B. Marsh. Thwarting the power-hungry disk. In
USENIX Winter, pages 292–306, 1994.

[22] D. Engler, M. Kaashoek, and J. O’Toole Jr. Exokernel: Anoperating system ar-
chitecture for application-level resource management. In15th ACM Symposium on
Operating Systems Principles (SOSP), 1995.

[23] Robert English and Stephnov Alexander. Loge: A self-organizing disk controller. In
Proceedings of the Winter 1992 USENIX Conference, 1992.

[24] E.S.Jung and N.H.Vaidya. An energy efficient mac protocol for wireless lans. In
IEEE INFOCOM, pages 1756–1764, 2002.

[25] A. R. Lebecket al. Power aware page allocation. InArchitectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 105–116, 2000.

[26] Aaron Lefohnet al. Glift: Generic, efficient, random-access gpu data structures. In
ACM Transaction on Graphics, 2006.

[27] A.E.Gamalet al. Energy-efficient scheduling of packet transmission over wireless
networks. InIEEE INFOCOM, pages 1773–1782, 2002.

178

[28] Atul Adya et al. Farsite: Federated, available, and reliable storage for anincom-
pletely trusted environment. InThe 5th Proceedings of Operating Systems Design
and Implementation, 2002.

[29] B. L. Worthingtonet al. Online extraction of SCSI disk drive parameters. InPro-
ceedings of the ACM SIGMETRICS, pages 146–156, 1995.

[30] Daji Qiao et al. Miser: An optimal low-energy transmission strategy for IEEE
802.11a/h. InACM MobiCom, 2003.

[31] Douglas Santryet al. Deciding when to forget in the elephant file system. InACM
Symposium on Operating Systems Principles, pages 110–123, 1999.

[32] J. Gomezet al. Conserving transmission power in wireless ad hoc networks.In
IEEE ICNP, pages 24–34, 2001.

[33] John Owenset al. A survey of general-purpose computation on graphics hardware.
In Eurographics, 2005.

[34] M. K. McKusick et al. A fast file system for unix.ACM Transactions on Computing
Systems (TOCS), 2(3), 1984.

[35] Muthian Sivathanuet al. Life or death at block level. InProceedings of the 6th Sym-
posium on Operating Systems Design and Implementation, pages 379–394, 2004.

[36] P. Bohreret al. Mambo — a full system simulator for the powerpc archtecture.ACM
SIGMETRICS Performance Evaluation Review, 31(4), 2004.

[37] P. Chenet al. Raid: High-performance, reliable secondary storage.ACM Computing
Survyes, 26(2):145–185, 1994.

[38] S. Gurumurthiet al. Interplay of energy and performance for disk arrays running
transaction processing wokloads. InProceedings of the International Symposium on
Performance Analysis of Systems and Software, 2003.

[39] T. Heathet al. Application transformations for energy and performance-aware de-
vice management. InProceedings of International Conference on Parallel Architec-
tures and Compilation Techniques, pages 121–130, 2002.

[40] V. Delaluzet al. DRAM energy management using software and hardware directed
power mode control. InInternational Symposium on High-Performance Computer
Architecture, pages 159–170, 2001.

[41] V. Delaluz et al. Hardware and software techniques for controlling dram power
modes.IEEE Transactions on Computers, 50(11):1154–1173, 2001.

[42] V. Delaluzet al. Scheduler-based DRAM energy power management. InDesign
Automation Conference 39, pages 697–702, 2002.

179

[43] W. J. Boloskyet al. Numa policies and their relation to memory architecture. In
Proceedings of the Fourth International Conference on Architectural Support for
Programming languages and Operating Systems, pages 212–221, 1991.

[44] Zoran Dimitrijevic et al. Diskbench: User-level disk feature extraction tool. In
Technical Report, UCSB, 2004.

[45] X. Fan, C. S. Ellis, and A. R. Lebeck. Memory controller policies for DRAM power
management. InInternational Symposium on Low Power Electronics and Design
(ISLPED), pages 129–134, 2001.

[46] X. Fan, C. S. Ellis, and A. R. Lebeck. Modeling of DRAM power control policies us-
ing deterministic and stochastic petri nets. InWorkshop on Power-Aware Computer
Systems, 2002.

[47] L. M. Feeney and M. Nilsson. Investigating the energy consumption of a wireless
network interface in an ad hoc networking environment. InIEEE INFOCOM, 2001.

[48] K. Flautner, S. Reinhardt, and T. Mudge. Automatic performance-setting for dy-
namic voltage scaling. InProceedings of the 7th Conference on Mobile Computing
and Networking (MOBICOM), pages 260–271, 2001.

[49] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications.
In 17th ACM Symposium on Operating Systems Principles (SOSP), pages 48–63,
1999.

[50] Linux Filesystem Performance Comparison for OLTP. http://oracle.com/technology/
tech/linux/pdf/linux-fs-performance-comparison.pdf.

[51] HFS Plus Volume Format. http://developer.apple.com/technotes/tn/tn1150.html.

[52] Greg Ganger and Frans Kaashoek. Embedded inodes and explicit groups: Exploiting
disk bandwidth for small files. InUSENIX Annual Technical Conference, pages 1–
17, 1997.

[53] R. A. Golding, P. Bosch, C. Staelin, T. Sullivan, and J. Wilkes. Idleness is not sloth.
In USENIX Winter, pages 201–212, 1995.

[54] K. Govil, E. Chan, and H. Wassermann. Comparing algorithms for dynamic speed-
setting of a low-power CPU. InProceedings of the 1st Conference on Mobile Com-
puting and Networking (MOBICOM), 1995.

[55] F. Gruian. Hard real-time scheduling for low energy using stochastic data and DVS
processors. InProceedings of the International Symposium on Low-Power Electron-
ics and Design (ISLPED), 2001.

[56] PC Guide. http://www.pcguide.com/ref/power/index.htm.

180

[57] S. Gurumurthi, A. Sivasubramaniam, K. Kandemir, and H.Franke. DRPM: Dy-
namic speed control for power management in server class disks. InProceedings of
the International Symposium on Computer Architecture (ISCA), 2003.

[58] D. Helmbold, D. Long, T. Sconyers, and B. Sherrod. Adaptive disk spin-down
for mobile computers.ACM/Balazer Mobile Networks and Applications (MONET)
Journal, 5(4):285–297, 2000.

[59] Mike Hopkins. The onsite energy generation options. InThe Data Center Journal,
Feburary 2004.

[60] H. Huang, W. Hung, and K. G. Shin. Fs2: Dynamic disk replication in free disk
space for improving disk performance and energy consumption. In Symposium of
Operating Systems Principles, pages 263–276, 2005.

[61] H. Huang, C. Lefurgy, T. Keller, and K. G. Shin. Memory traffic reshaping for
energy-efficient memory. InInternational Symposium on Low Power Electronics
and Design, pages 393–398, 2005.

[62] H. Huang, P. Pillai, and K. G. Shin. Design and implementation of power-aware
virtual memory. InUSENIX Annual Technical Conference, pages 57–70, 2003.

[63] H. Huang, K. G. Shin, C. Lefurgy, K. Rajamani, T. Keller,E. V. Hensbergen, and
F. Rawson. Cooperative software-hardware power management for main memory.
In Power-Aware Computing Systems, pages 61–77, 2004.

[64] L. Huang and T. Chiueh. Implementation of a rotation latency sensitive disk sched-
uler. InTechnical Report, ECSL-TR81, 2000.

[65] IBM DB2. http://www-306.ibm.com/software/data/db2.

[66] Intel. http://www.intel.com/design/mobile/perfbref/250725.htm.

[67] Sitaram Iyer and Peter Druschel. Anticipatory scheduling: A disk scheduling frame-
work to overcome deceptive idleness in synchronous I/O. In18th ACM Symposium
on Operating Systems Principles (SOSP), 2001.

[68] D. Jacobson and J. Wilkes. Disk scheduling algorithms based on rotational position.
In HP Technical Report, HPL-CSP-91-7, 1991.

[69] Y. Joo andel al. Energy exploration and reduction of SDRAM memory systems.In
DAC, pages 892–897, 2003.

[70] J.P.Ebert and A. Wolisz. Combined tuning of RF power andmedium access control
for wlans. InMobile Networks and Applications, pages 417–426, 2001.

[71] Richard King. Disk arm movement in anticipation of future requests. InACM
Transaction on Computer Systems, pages 214–229, 1990.

181

[72] Donald E. Knuth.The Art of Computer Programming, volume 1. Addison-Wesley,
1968.

[73] P. Krishnan, P. Long, and J. Vitter. Adaptive disk spin-down via optimal rent-to-
buy in probabilistic environments. InProc. of International Conference on Machine
Learning, pages 322–330, 1995.

[74] R. P. Larowe and C. S. Ellis. Experimental comparison ofmemory management
policles for numa multiprocessors. InACM Transactions on Computer Systems,
1991.

[75] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and Tom Keller. Energy
management for commercial servers. InIEEE Computer, pages 39–48, Dec 2003.

[76] K. Li, R. Kumpf, P. Horton, and T. E. Anderson. A quantitative analysis of disk
drive power management in portable computers. InUSENIX Winter, pages 279–
291, 1994.

[77] David Lie, Chandramohan A. Thekkath, and Mark Horowitz. Implementing an un-
trusted operating system on trusted hardware. In19th ACM Symposium on Operating
Systems Principles (SOSP), 2003.

[78] Sai-Lai Lo. Ivy: a study on replicating data for performance improvement. InHP
Technical Report, HPL-CSP-90-48, 1990.

[79] J. Lorch and A. J. Smith. Improving dynamic voltage scaling algorithms with PACE.
In Proceedings of the ACM SIGMETRICS 2001 Conference, pages 50–61, 2001.

[80] Y. H. Lu, L. Benini, and G. De Micheli. Operating-systemdirected power reduction.
In International Symposium on Low Power Electronics and Design (ISLPED), pages
37–42, 2000.

[81] Y. H. Lu, L. Benini, and G. De Michelli. Power-aware operating systems for inter-
active systems.IEEE transactions on very large scale integration (VLSI) systems,
10(2), 2002.

[82] C. Lumb, J. Schindler, and G. Ganger. Freeblock scheduling outside of disk
firmware. InConference on File and Storage Technologies (FAST), pages 275–288,
2002.

[83] C. Lumb, J. Schindler, G. Ganger, D. Nagle, and E. Riedel. Towards higher disk
head utilization: Extracting free bandwidth from busy diskdrives. InProceedings
of the Symposium on Operating Systems Design and Implementation, 2000.

[84] Aqeel Mahesri and Vibhore Vardhan. Power consumption breakdown on a modern
laptop. InPower-Aware Computer System, December 2004.

[85] A. G. Merten. Some quantitative techniques for file organization. InPh.D. Thesis,
1970.

182

[86] Mesquite Software. http://www.mesquite.com.

[87] Micron. http://download.micron.com/pdf/technotes/tn4603.pdf.

[88] Micron. http://www.micron.com.

[89] Bob Moore. http://www.energyusernews.com/cda/articleinformation/features/bnp
features item/0,2584,82916,00.html.

[90] D. Mosse, H. Aydin, B. Childers, and R. Melhem. Compiler-assisted dynamic
power-aware scheduling for real-time applications. InWorkshop on Compilers and
Operating Systems for Low-Power, 2000.

[91] David Musser. Block shuffling in loge. InHP Technical Report CSP-91-18, 1991.

[92] MySQL. http://www.mysql.com.

[93] Douglas Orr, Jay Lepreau, J. Bonn, and R. Mecklenburg. Fast and flexible shared
libraries. InUSENIX Summer, pages 237–252, 1993.

[94] D. Patterson, G. Gibson, and R. Katz. A case for redundant arrays of inexpensive
disks (raid). InProceedings of ACM SIGMOD, pages 109–116, 1988.

[95] David Patterson. Latency lags bandwidth. InCommunications of the ACM, 2004.

[96] T. Pering, T. Burd, and R. Brodersen. Voltage scheduling in the lpARM micro-
processor system. InProceedings of the International Symposium on Low-Power
Electronics and Design (ISLPED), 2000.

[97] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embed-
ded operating systems. In18th ACM Symposium on Operating Systems Principles
(SOSP), pages 89–102, 2001.

[98] E. Pinheiro and R. Bianchini. Energy conservation techniques for disk array-based
servers. InTechnical Report, DCS-TR-525, 2003.

[99] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage scaling on a low-power
microprocessor. InProceedings of the 7th Conference on Mobile Computing and
Networking (MOBICOM), pages 251–259, 2001.

[100] Power, Heat, and Sledgehammer, 2004.

[101] Lars Reuther and Martin Pohlack. Rotational-position-aware real-time disk schedul-
ing using a dynamic active subset (DAS). InIEEE Real-Time Systems Symposium,
2003.

[102] Rik V. Riel. http://www.surreal.com.

[103] M. Rosenblum and J. Ousterhout. The design and implementation of a log-structured
file system. InACM Transactions on Computer Systems, pages 26–52, 1992.

183

[104] C. Ruemmler and J. Wilkes. Disk shuffling. InHP Technical Report, HPL-CSP-91-
30, 1991.

[105] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE Com-
puter, 27(3):17–28, 1994.

[106] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim,
Jaehyuk Huh, Doug Burger, Stephen Keckler, and Charles Moore. Exploiting ilp,
tlp, and dlp with the polymorphous trips architecture. InISCA, 2003.

[107] J. Schindler and G. Ganger. Automated disk drive characterization. InTechnical
Report CMU-CS-99-176, 1999.

[108] P. H. Seaman, R. A. Lind, and T. L. Wilson. An analysis ofauxiliary-storage activity.
IBM System Journal, 5(3):158–170, 1966.

[109] M. Seltzer, P. Chen, and J. Ousterhout. Disk scheduling revisited. InUSENIX Winter,
pages 313–324, 1990.

[110] T. Sherwood, B. Calder, and J. Emer. Reducing cache misses using hardware and
software page placement. InACM International Conference on Supercomputing,
pages 155–164, 1999.

[111] S. Shostak. Sharing the universe: Perspectives of extraterrestrial life. InBerkley
Hills Books, 1998.

[112] T. Simunic, L. Benini, P. Glynn, and G. De Micheli. Dynamic power management
for portable systems. InInternational Conference on Mobile Computing and Net-
working, pages 11–19, 2000.

[113] SQL Server. http://www.microsoft.com/sql/default.mspx.

[114] C. Staelin and H. Garcia-Molina. Smart filesystems. InUSENIX Winter, pages
45–52, 1991.

[115] Standard Performance Evaluation Corporation. http://www.specbench.org/jbb2000/.

[116] Standard Performance Evaluation Corporation. http://www.specbench.org/osg/
cpu2000/.

[117] Internet World Statistics. www.internetworldstats.com/stats.htm.

[118] M. Stemm and R. H. Katz. Measuring and reducing energy consumption of network
interfaces in hand-held devices.IEICE Transactions on Communications, vol.E80-
B, no.8, p. 1125–31, E80-B(8):1125–31, 1997.

[119] N. Talagala, R. Arpaci-Dusseau, and D. Patterson. Microbenchmark-based extrac-
tion of local and global disk characteristics. InTechnical Report CSD-99-1063,
1999.

184

[120] Chris Thompson, Sahngyun Hahn, and Mark Oskin. Using modern graphics archi-
tectures for general-purpose computing: A frameword and analysis. InThe 35th
International Symposium on Microarchitecture, 2002.

[121] D. A. Thompson and J. S. Best. The future of magnetic data storage technology.
IBM Journal of Research Development, 44(3), 2000.

[122] Stephen Tweedie. Journaling the linux ext2fs filesystem, 1998.

[123] P. Vongsathorn and S. D. Carson. A system for adaptive disk rearrangement.Soft-
ware Practice Experience, 20(3):225–242, 1990.

[124] J. Wang and Y. Hu. Profs – performance-oriented data reorganization for log-
structured file system on multi-zone disks. In9th International Symposium on Mod-
eling, Analysis and Simulation on Computer and Telecommunication Systems, pages
285–293, 2001.

[125] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU
energy. InProceedings of the First Symposium on Operating Systems Design and
Implementation (OSDI), pages 13–23, 1994.

[126] A. Weissel, B. Beutel, and F. Bellosa. Cooperative i/o— a novel i/o semantics
for energy-aware applications. InProceedings of Symposium on Operating Systems
Design and Implementation (OSDI), 2002.

[127] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. Thehp autoraid hierarchical
storage system. InHigh Performance Mass Storage and Parallel I/O: Technologies
and Applications, pages 90–106, 2001.

[128] C. K. Wong. Algorithmic studies in mass storage systems. In Computer Sciences
Press, 1983.

[129] W. Wulf and S. McKee. Hitting the memory wall: Implications of the obvious.
Computer Architecture News, 23(1):20–24, 1995.

[130] Xiang Yu, Benjamin Gum, Yuqun Chen, Randolph Y. Wang, Kai Li, Arvind Krish-
namurthy, and Thomas E. Anderson. Trading capacity for performance in a disk
array. InProceedings of Symposium on Operating Systems Design and Implementa-
tion, pages 243–258, 2000.

[131] H. Zeng, X. Fan, C. Ellis, A. Lebeck, and A. Vahdat. Ecosystem: Managing energy
as a first class operating system resource. InInternational Conference on Archtec-
tural Support for Programming Languages and Operating Systems, 2002.

[132] Qingbo Zhu, Francis M. David, Christo F. Devaraj, Zhenmin Li, Yuanyuan Zhou,
and Pei Cao. Reducing energy consumption of disk storage using power-aware
cache management. InThe Tenth International Symposium on High Performance
Computer Architecture (HPCA-10), February 2004.

185

