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Exploiting Unused Storage Resources to Enhance Systeresdin

Efficiency, Performance, and Fault-Tolerance
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Hai Huang

Chair: Kang G. Shin

The invention of better fabrication materials and procgseesolid-state devices has
led to unprecedented technological breakthroughs in ctenpiardware. Today’s system
software, however, often cannot take full advantage of #mel\ware’s rapidly improving
capabilities, thus resulting in idling resources, e.ggagupied memory and disk space. To
make hardware operate more efficiently and to reduce the minadudle resources, this
thesis proposes several techniques that can harness soainoes to the benefit of users.

Although there are many different types of hardware resesjrthis thesis focuses on
the reclamation of idle resources in the storage hierarélingt, we implemented a pure
software technique to reduce the power dissipation of mamaory. By aggregating un-
mapped and unused memory pages and powering down unusedynamks, a signifi-

cant amount of energy can be saved with little or no perfoceategradation. Next, we



explored several architectural-level solutions that canenaggressively reduce energy, but
at the expense of performance.

We also developed techniques to exploit unused disk capadinprove disks’ perfor-
mance and energy-efficiency. These techniques are reafizad implementation of the
Free Space File System (FS2). Unlike traditional file systermnere extra disk space is not
used, FS2 actively makes use of it to hold replicas of tenilyeralated data blocks that
were poorly placed by the underlying file system. Using aprdus regions of free disk
space to place related data blocks closer to one anothelesr@ibk heads to work more
efficiently.

Free disk space may also be used to enhance the fault-todepédisks. The placement
of replicas is shown to be critical to both the fault-tolesaand performance of file systems
that make use of replicas. However, without a thorough wstdeding of how disks fail
and how data become corrupted when failures occur, goodpttament strategies are
difficult to devise. We studied a large number of failed disksl analyzed their failure
characteristics. This characterization study will helpige more fault-tolerant file systems

that can take advantage of today’s large capacity hardsirive
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CHAPTER 1

Introduction

In 1981, the first IBM Personal Computer was introduced ancdraa 4.77 MHz Intel
8088 microprocessor with 16 KB of memory and one floppy driveost $1,565, which
would be nearly $4,000 today after inflation. We have comeng leay since then. Con-
tinual innovation in computer hardware, at a rate closelpfang Moore’s Law, has made
high-performance / low-cost computers widely availables @result, computers of all
forms—ranging from small cellphones and PDAs to large s&arens and mainframes—
have integrated into every aspect of our daily lives.

Hardware’s progress generally exceeds that of softwatétdorapabilities are often far
from being fully utilized. As a result, the additional resoes made available in modern
hardware are sometimes wasted. This thesis will preserthdeey and practice of man-
aging idle resources in systems. Before | describe how thessie hardware resources
can be utilized, | will first recap the significant progresattis made in computer hardware
during the past two decades and the amount of additionaliress that are made available

as a result.

1.1 Resource-Rich Hardware

Leading the way is the microprocessor. In the past two decadi&roprocessor core
frequency has increased by three orders-of-magnitudeoriaat architectural innovations

such as pipelining, superscalar, speculative executramdh prediction, hyper-threading,
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[Year | 1082 | 1985 | 1989 | 1993 | 1997 [ 2001 | 2005 |

CPU 16-bit 32-hit 5-stage, FPU,| 2-way superscalarl 3-way superscalail Superpipelined| SMT, multi-core
addr/bus | addr/bus| on-chip I&D 64-bit bus Out-of-Order on-chip L2 64-bit addr/bus
Freq | 12.5MHz | 16 MHz 25 MHz 66 MHz 200 MHz 1500 MHz 3200 MHz

Table 1.1: Processor trend [95].

and multi-core are the driving forces behind putting higitfprmance and low-cost pro-
cessors in modern systems. However, these architecta@lations would not be possible
without having much smaller transistors (half a billionnsétors on a single die). In Ta-
ble 1.1, we summarize various generations of microprocesso

During the time when the microprocessor was progressingdyyd and bounds, storage
devices, e.g., cache memory, dynamic RAM, magnetic deyveaned flash memory, have
also made large strides. Dynamic random access memory (DFS*dvie of the most active
and volatile areas in the IT industry. Hundreds of compangse and went, which has
made this technology sector highly competitive. This @dat natural spawning ground
for innovation, shown in Table 1.2. With the recent pricepdio DRAM devices, today’s
consumer-grade PC machines are commonly installed withZL @B of main memory.
Such large amount of memory is usually more than enough facayusers, but any unused

portion is often let idle and cannot benefit users in any way.

[ Year | 1980 | 1983 | 1986 | 1993 | 1997 | 2000 | 2005 |
Memory DRAM Page Mode| Fast Page 324 Fast Page 64 SDRAM DDR DDR2
Mbits/chip 0.06 0.25 1 16 64 256 1024
Bandwidth | 13 MB/s 40 MB/s 160 MB/s 267 MB/s 640 MB/s | 1600 MB/s | 3200 MB/s

Table 1.2: DRAM trend [95].

Itis impressive how densely today’s memory devices aregahdbut compared to disks,
their density still trails behind. We show the trend of vas@enerations of magnetic disks
in Table 1.3. In terms of capacity, the first IBM PC had only 18 BFf storage space, but
nowadays, a single disk drive is capable of storing close 1@ lof data. Transitioning
from horizontal recording to perpendicular recording,disk industry is expecting at least
another two orders-of-magnitude increase in recordingitierConstant decrease in price-
per-gigabyte, at a rate of 60% per year, for the last 25 yders,made mass-storage in
small form-factor widely available to common users. Corgpaio 10 years ago, we are

much less constrained by the available disk capacity arehdéave a significant amount
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of disk capacity idle. As we will see later in this chapterused disk capacity is actually
a valuable resource that can be easily exploited and titedsiato a significant amount of

benefits perceivable to users.

| Year | 1983 | 1990 | 1994 | 1994 | 2003 | 2006 |
Hard Disk 3600 RPM | 5400 RPM | 7200 RPM | 10000 RPM| 15000 RPM| 7200 RPM
Capacity 0.03GB 1.4GB 4.3GB 9.1GB 73.4GB 750.0 GB
Access Time| 48.3ms 17.1 ms 12.7 ms 8.8 ms 5.7ms 12.3 ms

Table 1.3: Magnetic disk trend [95].

Introduced in the early 90’s, flash memory was offered as tarradtive to magnetic
disks in persistent storage. Having higher density than PIRFevices and better shock
resistance than magnetic disks has created a unique markigish memory devices to
thrive. Additionally, as information can be stored withalissipating any power, flash
memory devices are especially attractive to small batpenyered devices. However, it
is unlikely for flash memory to replace magnetic disks in teamfuture as there is still
a significant gap in capacity (more than two orders-of-mtagie) between the technolo-
gies. The same argument also applies when comparing to DR&Ntek as there is a
five orders-of-magnitude difference between their access.t Despite the flash mem-
ory’s small capacity, it is still rare for users to consumiela¢ disk space. However, with
its unique 1/0 access characteristics and low-power ptgptre unused portion of flash

memory’s capacity can potentially be exploited for intéiresapplications.

| Year [ 1978 | 1995 | 1999 [ 2003 |

Local Area Network | Ethernet | Fast Ethernet| Gigabit Ethernet| 10 Gigabit Ethernet
Bandwidth 10 Mbps 100 Mbps 1 Gbps 10 Gbps
Delay 3000 ms 500 ms 340 ms 190 ms

Table 1.4: Local Area Network trend [95].

The Internet boom has brought over a billion people onlinkeene most of them are
from countries in Asia, Europe, and North America [117]ehniet users can access any in-
formation imaginable and chat with friends from thousand®ides away in real-time, all
from the convenience of their home computer. As a resulteiiternet boom, home net-
working equipments, e.g., Ethernet and wireless 802.1icesvquickly became low-price
commodity items. The upward trend of Ethernet devices’ badih and downward trend

of their latency are shown in Table 1.4. Many homes with iméaccess are switched from
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Plain Old Telephone Switches to Cable, ISDN, and DSL seswuaih plenty of network
bandwidth. It makes us wonder how much of this bandwidth taaly getting utilized?
25%7? 10%7? 5%? Or less than 1%? Can network bandwidth be bétized while not
interfering with other users on the Internet?

In addition to the previously mentioned hardware, thera@aay other types of under-
utilized hardware resources, and the most noticeable of théhe graphics processing unit
(GPU). GPUs are used for texture mapping and polygon remglari3D applications. With
their core frequency doubling roughly every 6 months [38¢(efaster than the CPU'’s rate
of improvement), these operations can be done at a blazeggspglowever, as GPUs are
utilized by only a small number of 3-D applications, they thosit idle in the background.
Various interest groups are pushing for GPU manufactuoevartd more general-purpose
GPU architectures with an easier programming model. THiddeially allow GPUs to be
used for general-purpose computation, but up-to-datg, @mkery specific set of scientific
applications is able to take advantage of these GPUs [26, Th{s is still a research area
with many open questions and plenty of low-hanging fruits.atldition to the GPU, an
ample amount of video memory is often found in today’s vidaads. Half of a gigabyte
of video memory is common, which is comparable to the sizénefrhain memory. It is
not difficult to imagine having system software that can aofypustically take advantage
of the idle video memory as a part of the main memory when nghniemory-intensive
applications.

It is the aim of this thesis to reclaim unused resources fertnefit of users with a
minimal amount of their effort and interaction. Today's t&yss are built from powerful
hardware components operated by fine-tuned system softhatrean efficiently allocate
resources to running tasks. But if the running tasks arelyigiiatile and require a unpre-
dictable amount of resources, as in mobile devices and alegkdrkstations, inefficient use
of hardware resources may result. Today’s system softwaee dot cope well with many
unused (inactive) resources. We will show in this thesis ithia critically important for
system software to manage both #dwtive resourceand thenactive resourceand that the
potential benefit of utilizing the inactive resources cambie high with low overheads.

There are some previous works done in this area, and the nidsiyvknown work is
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the SETI@Home project [111]. SETI stands for Search for&Xerrestrial Intelligence,
which, as its name suggests, is used to detect life outsideath by analyzing radio
signals collected by the Arecibo radio telescope. In thiggmt, a massive amount of data
is sent to 5.2 million participants around the world conedcby the Internet and then
processed by their idle CPU cycles. Besides harnessing®edycles, projects such as
Farsite [28], Pastiche [16], and Samsara [17] exploit fres& dpace from participating
clients for distributing data across geographically défe locations to implement a highly
available, reliable, and secure data storage system.

Although there are many different types of hardware resesjrthis thesis focuses on
the utilization of wasted resources in the storage hieyaiaid namely, memory and disk.
Using unused memory pages and disk blocks, we will show hey tan be used to im-
prove systems’ energy-efficiency, performance, and faldtrance, with energy manage-

ment being our main focus.

1.2 Primary Research Contributions

In Section 1.2.1, we will first introduce energy managemaeutits importance. Here,
we will briefly discuss how unused memory pages and disk lsleek be used for reducing
hardware’s energy consumption. Next, in Section 1.2.2, Wedigcuss how the unused
disk space can also be used for improving performance. lifinalSection 1.2.3, fault-

tolerance techniques designed to opportunistically usetlused disk space are described.

1.2.1 Energy Management

Faster, denser, and highly integrated hardware compomaeatseadily available, but
unfortunately, they also dissipate a good amount of poweis Gauses problems in a wide
variety of systems ranging from small battery-powered etdbd devices to large-scale
servers. Some of the most pressing problems in this areaismesded in the following
paragraphs.

The need to be mobile in today’s society has created a hugeetrfar battery-powered
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devices, e.g., cellphones, PDAs, and laptops, but this Iihols severely constrained by

the amount of battery energy these devices can carry. [dsgiing more power-efficient

hardware, today’s mobile devices do not necessarily hawegel operating time than some
of the older devices. Driven to meet consumers’ ever inangaseeds and having to run
bloated software, vendors are packing more, and more poltefdware into smaller and
smaller devices. Designed often for peak loads, these mdbilices are provisioned with
much more hardware resources than needed for typical ugagg the fact that battery

technology has always trailed behind hardware will only en#tke gap between energy
supply and demand increasingly larger.

On large-scale server systems, we are faced with a diffesgmf problems. These sys-
tems, including data centers, Internet service providerd,telecommunication switches,
can have a power density ranging fram0W /ft?> — 300W /{t2[6], which is ten to forty
times more than the power density of typical commercial efbiaildings. Data from sev-
eral sources [4, 59] have indicated that the cost of eletgtnepresents a significant portion
of the Total Cost of Ownership (TCO) in such systems. In onthefstudies [4], it was
estimated that as much as 30-40% of the TCO in a particular citer is due to the
cost of electricity used for powering computational andlicmpequipments. Furthermore,
as power dissipation becomes heat, hardware will tend torbedess reliable and cause
systems to become more prone to failures.

To reduce power dissipation and improve energy-efficierfey ystem—whether for
the purpose of elongating battery lifetime or for allevigtiheat-related problems—we
must first have a thorough understanding of each of its stdasgsso that effective power
reducing mechanisms can be deployed to target the mostermrguming parts. The stor-
age subsystem is by far one of the most power-hungry sulmgstnd reducing its energy

consumption is one of our focuses in this thesis.

Storage Hierarchy Overview

A storage system is organized hierarchically as shown iareig.1. Within this hier-
archy, magnetic disk and main memory are often responsiblmbst of its power drain.

Using custom-made circuits, it was reported in [8] that digkone can consume more
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Figure 1.1: This figure shows a hierarchy of storage compsn&@omponents at the top are
fast to access and small in size. Towards the bottom, conmp®have lower performance,

however with larger capacity and lower cost.

than 50% of the total system power. This translates to as ms@v% [100] of the total
electricity cost in a data center.

Main memory also dissipates a significant amount of powenefsrted in [75], 40%
of the total system power (excluding the power drawn by diska mid-range IBM eServer
system is dissipated by the main memory. Even on small ygttewered devices, memory
and disk can also consume a significant portion of the totalepe-up to 20% as reported
by [84].

Main Memory

To reduce the power dissipated by main memory, we firstimphded a purely software-
controlled technique, calldebwer-Aware Virtual MemorgChapter 2), where all the power-
control mechanisms are implemented in the operating sydteweraging the rich amount
of information available in an operating system to managegoowe have shown that
power can be reduced with little or no effect on performarides approach has the benefit
of requiring no additional hardware support beyond whalressaly implemented in typical
PCs, and therefore, can be easily implemented in todaytersygs However, due to some
inherent limitations of the operating system, only a coapsened level of monitor and
power-control can be achieved if the power is managed sbigtiie system software. As a

result, many energy saving opportunities are lost. To pgura some of the missed oppor-
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tunities, we next implemented a software-directed hardvwakver management technique
(Chapter 3) in which the system software is able to provigentiemory controller with a
small amount of information about the current state of tretesy. This enables the hard-
ware to more accurately react to the changing state of thersyfer the purpose of power
management. Fine-grained monitor and power-control nmeshes available only at the
hardware level are exploited. However, using only the haréwo manage power is not
sufficient as hardware has only a bottom-up and narrow viethie@tntire system. In our
design, we have the system software provide it with somediaddi information to prevent
it from making bad power management decisions when they eaavbided and to allow
it to make more aggressive decisions when they are safe to.dastly, we implemented
a memory-traffic reshaping technique (Chapter 4) to agyelgsexpose idle time in main
memory with little impact on performance. This technique camplement some existing

power management techniques that rely on having long idieg®in memory devices.

Magnetic Disk

Reducing power for magnetic disks requires a very diffegrategy from that of
the main memory. Memory has a constant access time regamlflése data’s location,
whereas a disk has access times that can vary by a few ortderagmitude. Additionally,
memory devices can transition to a ready state from a lowep®tate in a few nanosec-
onds, whereas disks would take seconds or tens of seconé@stoRese differences, we
must take a different approach when designing power managetechniques for disks.

It has been shown in [57,132] that idle periods in disks ateroshort and scarce,
especially in server systems, thus rendering many traitipower management tech-
niques [20, 21] not applicable sometimes, as they rely oexistence of long idle periods.
We took a different approach—an active approach to imprasiestenergy-efficiency. By
reducing the number and the travel distance of head-sedlatapes, which dissipate a
large amount of power, we can lower disks’ energy consumpflo do so, we selectively
replicate disk blocks that were observed to have frequemtiyrred long access times and
place their replicas to strategic disk locations. As rggdican be accessed in place of their

original data, head movements are minimized, in both thainlmer and distance.
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1.2.2 Performance Improvement

As mentioned in the last section, maintaining performasagitically important when
power management techniques are applied. In additionamtainingperformance, we
will show unused hardware resources can also be usechfpovingperformance. Specif-
ically, we studied how the free disk space can be used to wepdsk performance. As
disks are often identified as one of the slowest hardware oaerds in many systems—
with access times that can take up to tens of millisecondspreming their performance
will significantly increase the overall performance of ateys by shortening critical I/0
paths.

The same replication technique we introduced in Sectiorillcan also be used to
improve disks’ access time. By ways of reducing seek timeratation delay, we can
significantly cut down on the average access time. Expetahessults using real-world
workloads have shown that disk drives can be much bettéredilwhen system software

can dynamically monitor and utilize the unused disk spaeeanduuntime.

1.2.3 Fault-Tolerance Enhancement

Besides energy consumption and performance, fault-tobers also an important area
to improve as losing data can be extremely costly. In missidtical applications, unpro-
tected hardware failures can even lead to more serious goesees.

In this thesis, we are mainly concerned with disk hardwaitertss and any data loss
that may result. It is one of the most commonly occurring hend failures in today’s
computer systems. Disk failures come in four different ftavdirmware failure, electronic
failure, mechanical failure, and logical failure. Firmwamd electronic failures are usually
completely recoverable as data are often kept intact infileenaath. Logical failures are
usually caused by human errors or file system bugs, which areammonly found in
production-grade operating systems. The type of diskreslihat is the most destructive
and the most difficult to protect against is a mechanicalfailwhich often lead to a partial
and sometimes a complete loss of data on disk.

In systems with multiple disks, there are some existingtfanlérance solutions, such
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as Redundant Array of Inexpensive Disks (RAID) [94], whiem¢olerate a certain number
of disk failures without losing data by keeping additionatify information and mirroring
technigues. However, for some systems, e.g., laptops add Riaving multiple disks is
usually not an option due to form-factor constraints. Wedvel replicating important user
data and file system’s meta-data and placing the replicdseotisk itself (using its unused
disk space) is a possible method to avert unexpected data ldewever, determining
which data blocks to replicate, where to place these repliaad how many replicas we
should maintain are all difficult decisions to make, esgbcvwehen disk failures are poorly
understood.

We characterized 60 failed disks. From our observation, @ieve replication should
be implemented as an integral part of file systems. This i ¢mly when performance
and space overheads of maintaining the replicas are téder@®ur study has shown some
interesting results that can do exactly that. Similar té&pes may also be extended to
systems with multiple disks to provide additional faullet@nce orthogonal to existing

fault-tolerance techniques.

1.3 Thesis Overview and Organization

This thesis focuses on the development of software tecbsitpudynamically monitor
and utilize unused storage resources for benefiting usdrs.adivantage of this approach
is that users can more efficiently use their hardware ressuit/e will show benefits, such
as energy savings, performance improvements, and fdalatece enhancements, can be
easily attained with our approach.

In Chapter 2, we consider how to identify and aggregate whasd unmapped memory
pages in an operating system for power savings. Power-Aviaigal Memory [62] is a
software technique realized in a Linux kernel, and it isfpla-independent. Only a small
amount of code revision is needed to have it ported to anagerating system, machine
architecture, or memory architecture. This is the first wbek we know to consider the ef-
fects of multi-tasking, virtual memory, and low-level oping system behaviors on power

management.
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There are many benefits associated with this software tqabnbut its coarse-grained
power-control and monitor mechanisms do not save as muaigyeas some of the pro-
posed hardware solutions (although with their own set offdeecks). Chapter 3 discusses a
cooperative hardware-software power management teck i@l for main memory. This
cooperative technique can leverage the best of both woritke-grained power-control
and monitor mechanisms available only in the memory coetraind the high-level state
information about processes from the system software.

The power management techniques that we have proposedtindlpgevious chapters
are all passive-monitoring techniques, which act upon theitared state of main memory.
In Chapter 4, we describe an active technique [61] to agtimebdify memory request
streams so memory devices can be allowed to go to deepelrgjestptes for a longer
period of time to achieve additional energy savings.

In Chapter 5, we propose and implement the Free Space Fiker8y60] that can
actively make use of the unused portions of disks for storamdicated data blocks. This
technique allows disks to be utilized much more efficienlygrms of energy consumption
and 1/0 performance by reducing seek distance and rotatietay.

We believe intra-disk replication can improve the fauletance of disks in systems
with a single disk, but the lack of information on disk fasrmay result in an inefficient
use of disk space for replication. We believe the charaaan of disk failures described
in Chapter 6 can help design more fault-tolerant data anliceeplacement strategies and

allow file systems to make better use of today’s large-caydcsks.
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CHAPTER 2

Power-Aware Virtual Memory

2.1 Motivation

Current hardware technologies allow various system comps{(e.g., microprocessor,
memory, hard disk) to operate at different power levels (emdesponding performance
levels). Previous research has demonstrated that by quiigi managing power states for
each of the components subject to the workload, a signifiaardunt of energy can be
saved. Such findings are based on the fact that many systendesigned for providing
continuous service even when they are stressed at theieteretinedpeakload. This
is usually accomplished by over-allocating resourcesésdtsystems. However, when the
system is operating attgpicalload, some system resources will be under-utilized, thets cr
ating opportunities to put some components to low-poweestar even power them off.
Subsequently, when the load increases, the relevant systemponents are then restored
to higher performance / power levels. Effectively, this\pdes performance on-demand
while conserving energy during the non-peak periods. Hewedue to non-negligible
delays in transitioning between an energy-saving stateaanmperational state, both sys-
tem performance and energy-efficiency may degrade if thragsitions are not controlled
properly.

A large body of previous research concentrates on redubagower dissipation of
processing elements in computer systems due to their higk-pewer. However, using

existing techniques, a Mobile Pentium 4 processor dissgpanly 1-2 W on average when
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running typical office applications despite having a highv8(@eak-power [66]. From a
software perspective, further effort to reduce power inropecocessors is likely to yield
only a diminishing marginal return. On the other hand, thee been relatively little work
done on reducing power used by the memory. As applicatiomdacoming more data-
centric, more power is needed to sustain a higher-cappeityprmance memory system.
Unlike microprocessors, a fairly substantial amount of eoig continuously dissipated by
the memory in the background independent of the currentlwvadk Therefore, the energy
consumed by the memory is usually as much as, and sometintestinam, that of the mi-
croprocessor. In this chapter, we propose a purely softa@nérolled power management
technique, called Power-Aware Virtual Memory (PAVM). Ireptenting Power-Aware Vir-
tual Memory (PAVM) allows us to significantly reduce powesslpated by the memory but
with almost no impact on performance. Additionally, thisheique requires no additional
hardware support beyond what existing hardware alreadyiges.

The rest of this chapter is organized as follows. Sectiopgides some background
information on various memory technologies. Here we alge tlie memory system model
that we use in the rest of the thesis. Section 2.3 descrilr@ritial design of PAVM, while
Section 2.4 describes the limitations of this prototypdgieand the necessary modifica-
tions needed to handle the complexity of memory managemmehtask interactions in
a real working implementation. Section 2.5 presents dmtasimulation results. In Sec-
tion 2.6, we discuss limitations of the proposed technique \says to get around them.

Finally, we conclude this chapter in Sections 2.7.

2.2 Memory System Model

Since the 1980's, the performance gap between memory (DRa#id)processor has
been widening continuously—DRAM speed has been improvirapannual rate of only
7% while processor speed has been leaping at an annual rd@of129]. Frequent
interactions between memory and other I/O components,dsis, networking hardware,
and video devices (shown in Figure 2.1), are making it a allw@mponent in the overall

performance of the system. However, since memory’s poweondy be reduced whenitis
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Figure 2.1: Interaction of memory with the rest of the system

operating at lower performance states, it is important suemthat either this performance
degradation can be hidden or that the energy saved in the mgustifies the performance
degradation that it had caused. Before illustrating theéeodfs between performance and

energy, we will first briefly describe the basics in DRAM teolagy.

2.2.1 Dynamic Random Access Memory

Dynamic Random Access Memory (DRAM) core consists largayarof cells, each
of which is a transistor-capacitor pair as shown in Figu Zo prevent electric current
leakage, each capacitor must be periodically refreshegtarits state, making memory a
continuous energy consumer. In reality, however, energgwmed by periodic refresh is
very small as refresh rate is fairly low. Instead, most oféhergy is actually consumed by
row and column decoders, sense amplifiers, and externakivess] as well as the internal
drivers needed to propagate signals across large arrayalsfaver very long and high
capacitance internal bit lines. To reduce power, one or rabteese subcomponents are
disabled by switching a device to a low-power state whennbisbeing actively accessed.
To keep things simple, memory controller implements a sinmierface that we can use to
transition memory devices to various power states, andlitakie care of all the power-up

and power-down operations, and their timing constraihtss tontrolling memory’s power
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Figure 2.2: An overview of DRAM architecture with a magnifigéw of a single DRAM

cell composed of a transistor-capacitor pair.

states in the software layer is trivial. However, if a devieeccessed while it is still in
a low-power state, a certain performance penalty, callegsgnchronization cosis in-
curred to transition the device to an active-ready staterbef can be accessed again. This
non-negligible delay is the cause of performance degrad&hen power management is
applied to main memory, and masking it is vitally importaatmerformance is still often
the primary metric for many systems.

The above holds true for all types of Synchronous DRAM (SDRAMIuding single-
data-rate (SDR), double-data-rate (DDR), and Rambus (RIDR A this work, we mainly
focus on DDR as it is becoming the most-widely used memorgitacture. Nevertheless,

our technique is architecture-independent and can beyeguplied to other memory types.

2.2.2 Double-Data Rate DRAM

Double-Data Rate (DDR) memory is usually packaged as medaidDIMMs, each of
which usually contains either 1, 2, omdemory rankswhich are commonly composed of
4, 8 or 16 physical devices (shown in Figure 2.3). Each timéMNDis accessed, 64 bits
of data are read or written. Since each device, dependingsigmal can only supply 4, 8,

or 16 bits at a time, multiple devices are grouped togetheéiogerate in unison to satisfy a
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Figure 2.3: A memory module, or a DIMM, composed of 2 rankse@icks per rank, and

each of which is quad-banked.

64-bit memory access. This group of simultaneously acdedseéces constitute a memory
rank. A rank is then divided into multiple banks (logical ams, usually 4 or 8), each of
which may be accessed individually, but cannot be poweraged separately. Therefore,
the smallest physical unit for which we can independentlpage power is a single rank.
DDR architecture has many power states defined and even ross@fe transitions be-
tween these states [69, 88]. These states and transitiersligrsimulated in our memory
simulator, which we will discuss in Section 2.5. However, $anplicity of presentation,
we only show four of these power states here—Read/Writedbig Powerdown, and Self
Refresh—Ilisted in a decreasing order of power dissipatidre power dissipated in each
state and the transitional delays between them are showigume=2.4(a). Note that the
power numbers shown here are per single device. Therefomaltulate the total power
dissipated by a rank, we need to multiply this power by the Inemof device parts used
for each rank (for ECC DIMMSs, one additional device is usedrpak to hold parity bits).
For example, in a 512MB registered DIMM consisting of 8 degin a rank, the expected
power draw values are 4.2 W, 2.2 W, 1.2 W, and 0.167 W, respagtifor the four power

states considered here. Details of these power states foas.

e Read/Write: Dissipates the most amount of power, and this state is onéflyr

entered when a read/write operation is in progress.
e Standby: When a rank is neither reading nor writing, Standby is thénég power
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State Power
tysrp =1000ns 10 Read/Write | 1200 m\
PRE Precharge | 137.5n]
PD Powerdown] 12.5m
SR Self Refresh 10 m
(a)
PLL Power Register Power
Low-power 0.05 mWy Low-power 0.025 m
High-power 750 mWy/ High-power 1175 m

(b)
Figure 2.4: (a) Power dissipation at each power state andelagy to transition between
these states for a single 512-Mbit DDR device. (b) Poweriphs®n of a TI CDCVF857
PLL device (one per DIMM) and a TI SN74SSTV32867 register.

state, or the most-ready state, in which read and write tipesacan be initiated

immediately at the next clock edge.

e Powerdown: When this state is entered, the input clock signal is gatedpmbfor the
periodic refresh signal. I/O buffers, sense amplifiers avdcolumn decoders are

all deactivated in this state.

e Self refresh: In addition to all the subcomponents on a DIMM that are deatsd
in Powerdown, phase-lock loop (PLL) device and registegsadso put to their cor-
responding low-power state to maximize energy savings asdPid registers (Fig-
ure 2.4(b)) can consume a significant portion of the totatrggnen each DIMM.
However, when exiting Self Refresh, au$ delay is needed to resynchronize both
the PLL and the registers.

1Registered memory is almost always used in server systernstter meet timing needs and provide
higher data integrity, and the PLL and registers are alloalitomponents to take into account when evaluat-
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As there is a large power difference between Standby and fdowe / Self Refresh,
we want to minimize the time a rank stays in Standby and madrthie time it spends in
either Powerdown or Self Refresh. However, at the same tiveeglso want to minimize
performance degradation caused by accessing ranks thafpneriously put to one of the
low-power states. Therefore, determining which ranks tawggodown, when to power
them down, and into which low-power state to transition wilynificantly impact both
energy and performance. For the time-being, we refer todbtaas the high-power state,
and both Powerdown and Self Refresh as the low-power staiem#ke the distinction
between these two low-power states in Section 2.5 andriditeshow to best utilize each to

maximize energy savings while minimizing performance iotpa

2.3 Power-Aware Virtual Memory

Prior research on reduction of power dissipation in the mamory primarily focused
on power management at a very low hardware level, where theamyecontroller is respon-
sible for monitoring activity on each of the ranks and pujtthem to lower power states
based on certain power-management policy. This has thdibeheeing completely trans-
parent to processes, but because the controller is totadlyware of the running processes,
which actually are the entities responsible for all the mgnazcesses in the system, per-
forming power management at such a low level can often le@ddo decisions which, in
turn, degrade performance. In the design of Power-AwaridiMemory (PAVM), we el-
evate this decision making to the operating system levedre/more information is readily
available to make better state transitioning decisionsitomze performance degradation
and reap greater energy savings. By elevating this decmgking to the software level,
this approach also has the advantage of not relying on amaae support beyond what
most existing systems already provide, and therefore, eaabily ported to other systems.
Since a rank is the smallest unit of power management in mgmear now describe how

to manage these ranks from the system software layer.

ing registered memory in terms of performance and energy.
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2.3.1 Tracking Active Ranks

Since each rank’s power state can be individually contipi®wer can be reduced by
selectively having ranks operating at lower power stateswvévVer, selecting which ranks
to put into a low-power state is critical to both a system’sfgmenance and its memory
subsystem’s power dissipation since accessing a rankstivatilow-power state will incur
resynchronization cost and stall execution, and, as atresay increase energy consump-
tion and offset any prior savings.

To avoid such costs, we need to ensure that all the ranks aggocay access (i.e., its
active rank3in near future are kept in a high-power ready state durgxecution. More
specifically, we define a rank to be an active rank of pro¢edsnoted a$>;, if and only if
there is at least one page within this rank that is mappétfsanemory address space, and
we denote the set of active ranks fBrasa;. By promoting all ranks iny; to the highest
ready state and demoting all other ranks (i.e., thosg;)rto a low-power state wher,

IS running, we not only can reduce power but also can ensate?}tdoes not suffer any
performance degradation since none of the low-power rankdgaaccessed whilé; is
executing. In this work, we assume uniprocessor systemghilsutechnique can also be
applied to multiprocessor systems. In such systems, idsiEasing the active ranks of
the current running process, we need to use the union of tineeaanks of all running
processes.

Of course, this assumes that can be easily tracked to accurately reflect the active
ranks for each proces8. Delaluzet al. [42] used repeated page faults and page table
scans to keep track of the active set, but this involves vepgesive, high overhead oper-
ations. Instead, we take a different approach: we maintaiareay of counters for each
process, and have each counter associated with each of thersneanks in the system.
The kernel is then modified such that on all possible exeoytaths in which a page is
mapped intaP;’s address space, the counter associated with the rankahiatics this page
is incremented. Similarly, when a page is unmapped, thistesus decremented. From
these counters, the active set, is trivially derived: a rank is iny; if and only if P;’s

counter for this rank is greater than zero. The overhead @iftaiaing« is only one extra
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instruction per each mapping/unmapping operation, arfteiefore negligible.

2.3.2 Reducing Active Set Size

By performing power management based on active sets, weramesthat none of
processes will suffer any performance loss during theicetien. However, this approach
does not necessarily guarantee any energy savings. lrcydartiif the number of ranks
in (i.e., size of) the active sefy|, of each process is close to the total number of ranks in
the system, power cannot be significantly reduced. So, todureduce power, we need
to minimize the total number of active ranks used by eachgs®cThis can be formally
expressed as a minimization problem. Specifically, we wambinimize the summation,
(O_wilay| - i € all processes), where the number of active rankg, of P; is weighted
by its CPU utilization (fraction of processing capacitylé spent executing the process),
denoted by;. However, allocating pages for all processes among alkthkesrto minimize
this sum is a very difficult and high-overhead problem to salirruntime, even with a static
set of tasks, let alone in a dynamic system.

For simplicity, we assume that an approximate solution @aliained by minimizing
the number of active ranks for each process. To this end, plsineuristic can be applied
by using the concept of thereferred rankand by maintaining a set of preferred ranks,
pi, for eachP;. A preferred rank is defined as follows. All processes sttt an empty
set of preferred ranks. Wheh allocates its first page, this page is taken from the rank
with the most free memory space available, which is then @édde;. Future memory
allocations requested by this process are first tried onsramk;. If all ranks inp; are full
(which happens very rarely), the allocation is made fromréimk which currently has the
most free memory space available, and this rank is then adgedBy using this worst-fit
algorithm to generatg, each process’s memory footprint is packed onto a small euwib

ranks, thereby decreasing each process’s energy footprint
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2.3.3 A NUMA Management Layer

Implementing PAVM based on the above approach is not easyamem operating
systems, where virtual memory (VM) is extensively used. éinihe VM abstraction,
all processes and many parts of the OS only need to be awaleiofowvn virtual ad-
dress space, and can be totally oblivious to the actual palysages used. Effectively, the
VM decouples page allocation requests from the underlymgsigal page allocator, hid-
ing much of the complexities of memory management from tigidni layers. Similarly,
the decoupling of layers works in the other direction as wlie physical page allocator
does not distinguish from which process a page requestnatigg, and simply returns a
random physical page that is free, treating all memory umfg. However, when perform-
ing power management for the memory, we cannot treat allsragkally since accessing a
rank that was previously put to a low-power state will incighter latencies and consume
more energy. Therefore, we need to eliminate this decogalid make the page alloca-
tor aware of which process has made a page allocation regegtcan non-uniformly
allocate pages based pnto minimize|q;| for eachp,.

This unequal treatment of multiple sections of memory dudifferent access latencies
and overheads is not limited only to power-managed memathdR, it is a distinguishing
characteristic of the Non-Uniform Memory Access (NUMA) many architecture, where
there is a distinction between low-latency local memory higth-latency remote memory.
In a traditional NUMA system, the physical location of a paged by a process is critical
to its performance since local and remote memory access tarediffer by a few orders-
of-magnitude. Therefore, a strong emphasis has been piacalibcating and keeping the
working set of a process localized.

In this work, by treating each rank as if it were physicallgdted on a unique node in
a large multi-node computer, we can employ a NUMA manageraget to simplify the
non-uniform treatment of the physical memory. This createslusion that each process is
running under a different NUMA system, even though these Mlyistems are consisted
of the same set of memory ranks. With a NUMA layer placed bedlmwwirtual Memory

(VM) system, the physical memory is essentially partitibigy ranks. Each rank has a
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separate physical page allocator, to which page allocagguoests are redirected by the
NUMA layer. The VM is modified such that, when it requests agag behalf ofP;,

it passes a hint (i.ep;) to the NUMA layer indicating the preferred ranks from which
the physical page should be allocated. If this optional ilengiven, the NUMA layer
simply invokes the physical page allocator that correspdndthe hinted ranks. If the
allocation fails,p; must be expanded as discussed previously. By using a NUMg, laye
can implement PAVM with preferential rank allocation withidaving to re-implement the

complex low-level physical page allocator.

2.3.4 Hiding Latency

The techniques described in the previous sections ensatgtbcesses will not ex-
perience any performance loss during their execution. Wewet each context switch
time, a resynchronization delay is incurred when there isast one rank that needs to be
transitioned from a low-power state to a high-power statas iappens fairly commonly
as different processes usually have different active mgmamks. As mentioned earlier,
the transition from Self Refresh to Standby takes 1000 reswxls, which, although not
a long time, is non-negligible if incurred at every contewitsh. This problem will only
become worse as more operating systems are transitiomngX® ms scheduling quanta
to 1 ms quanta to increase system responsiveness. If tlaig idatot properly handled and
masked, it could, as a result of increased runtime, erode @niergy savings and undermine
the effectiveness of our technique.

One possible solution is that at every scheduling point, meriot only the best process
(£;) to run, but also the next best proces$3)( Before making a context switch 8, we
transition the ranks in the union set@fandq; to Standby mode. The idea here is that with
a high probability, at the next scheduling point, we wilheit continue execution a?; or
switch toP;. Effectively, the execution time of the current executimggess will mask the
resynchronization latency for the next process. Of coubhsecost here is that we will need
to have more ranks idling in Standby mode than needed foruhermt running process,

thus consuming more energy, but, with a high probabilityfgrenance degradation (i.e.,
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long state transition latencies) can be completely eliteitha

We also proposed an alterative solution, which is easienfément, has lower com-
putational and energy overhead, but might not be able to tasignchronization latency
as well as the first approach. The intuition behind this sotuis that context switching
takes time, e.g., load new page tables, flush TLB and cacliemadify internal kernel
data structures to get ready for executing the next schegutecess, and these operations
are all done even before the next process’s memory pages@ssad. We instrumented
a Linux kernel to measure the context switching time in theedaler function—from the
time immediately after the scheduler has decided whichge®¢s to be executed next un-
til the time when this process actually starts running. Timaalative distribution of the
context switching time on a 1.6 GHz Intel Penti@m processor is shown in Figure 2.5.
Given that DDR takes 1000 nanoseconds to transition frohFBaftesh to Standby, we
can see that at every context switch, we will pay a resynchation penalty equal to the
time difference between 1000 nanoseconds and the actuaixt@witching time. This al-
ready allows us to mask hundreds of nanoseconds in resymizhtion penalty. Moreover,
because there might be overlaps in the active ranks of cotigely executing processes,
memory accesses (made by the newly scheduled process)yehaitlain the range of any
overlapped ranks will not incur any performance penaltyh&sée ranks are already in a
high-power ready state (previously used by the last scleedptocess). Not only these
memory accesses do not incur any performance penalty, tbeyalp us further mask the
perceived resynchronization latency until the time whenftist memory access lands in
a non-overlapping active rank that has not been comple¢siynchronized to full power.
However, as we have mentioned before, its effectiveneseisapilistic as there is no way
to guarantee a high degree of overlapping between actiks @Erconsecutively-scheduled
processes.

With faster processors in the future, the cumulative distion function of the context
switching time shown in Figure 2.5 may shift toward left, nmgkthe second solution less
attractive as latencies will less likely be masked. The $iodtition proposed is more general
and may be applied without any hardware constraints, buthagl@er energy overhead.

In practice, however, even as processor frequencies hareibereasing rapidly, context
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switching time improves rather slowly, so the second sotushould remain viable and

more energy efficient under most circumstances.

2.4 PAVM Implementation

In this section, we describe our experience in implemenaing deploying PAVM in
a real system. Due to numerous complexities in real systamdgect realization of the
PAVM design described in the previous sections did not parfop to our original expec-
tation. Further investigation into how memory is used andagad in the Linux operating
system revealed insights that led us to further refinemeatiobriginal system, and we fi-
nally succeeded in conserving a substantial amount of gmermemory running complex

real-world workloads.

2.4.1 Initial Implementation

Our first attempt to reduce memory’s power dissipation israalimplementation of
the PAVM design (described in Section 2.3) in a Linux kerndle extend the memory
management data structures in the kernel to include vacimusters that are needed to keep
track of the active ranksy, per process. Furthermore, in the task scheduler, as sdbe as
next process is scheduled to execute, we transition alkremiks active set to Standby, and

all others to Self Refresh. This way, power is reduced, relssonization time is masked,
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and the performance loss is minimized.

We also modify the page allocation code to use the prefeetg,sto reduce the size
of the active sets for each process. Linux relies on the Buydyem [72] to handle the
underlying physical page allocations. Like most other palgeators, it treats all memory
equally, and is only responsible for returning a free pagad is available, so the physical
location of the returned page is generally nondetermmistor our purpose, the physical
location of the returned page is not only critical to the perfance but also to the en-
ergy footprint of the requesting process. Instead of addinge complexity to an already-
complicated Buddy system, a NUMA management layer (desdrib Section 2.3.3) is
placed between the Buddy system and the VM, to handle thenerdfal treatment of
ranks.

The NUMA management layer logically partitions the physim@mory and permits
independent management and allocation to each segmentLiiire kernel already has
data structures defined to accommodate architectures WittiANsupport. To ensure the
NUMA layer partitions memory according to memory ranks aranpts rank-granular
control of allocation, we populate these data structureéis thie memory geometry, which
includes the number of ranks in the system as well as the $igaah rank. As this infor-
mation is needed before the physical page allocator (he Buddy system) is instantiated,
determining the memory geometry is one of the first things watdhe system initializa-
tion time. On almost all architectures, memory geometrylmaobtained by probing a set
of internal registers on the memory controller.

Unfortunately, at the time when we implemented PAVM, NUMApport for the x86
architecture in Linux was not complete. In particular, sitlce x86 architecture is strictly
non-NUMA, some architecture-dependent kernel code watsenrwith the underlying as-
sumption of having only uniformly accessed memory. We reanthese hard-coded as-
sumptions and add NUMA support for x86. With this modificatipage allocation is now
a two-step process: (i) determine from which rank to alle@page, and (ii) perform the
actual page allocation steps within that rank. Rank seleds implemented trivially by
using a hint, passed from the VM layer, indicating the preféranks. If no hint is given,

the behavior defaults to a sequential allocation. The skabdep is handled simply by
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instantiating a separate Buddy system on each rank.

With the NUMA layer in place, the VM is modified such that on p#ige allocation
requests, it passesof the requesting process down to the NUMA layer as a hint.s Thi
ensures that allocations tend to be localized to a minimalber of ranks for each process.
In addition, on all possible execution paths, we ensurettiea/M updates the appropriate
counters to accurately bookkeepand p for each process with a minimal overhead, as

discussed in Section 2.3.

2.4.2 Shared Memory Issues

Having debugged the the initial implementation and ensthmatthe system is stable
with the new page allocation method in place, we evaluateNPA\éffectiveness in reduc-
ing the energy footprint of processes. We expect that thefsedtive ranks¢, of each task
will tend to localize to the task’s preferred sgt,However, this is far from what we have
observed.

Table 2.1 shows a partial snapshot of the processes in angisgstem, and, for each
processF;, indicates the ranks in sets and«;, as well as the number of pages allocated
on each rankK.It is clear from this snapshot that eahhas a large number of ranks in its
active set, andy;| is much larger than the correspondiipg|. This causes a significantly
larger energy footprint for each process than what we hagenaily anticipated. Never-
theless, since most pages are allocated on the preferrksd, ramd none of the processes
use all the ranks in the system, we still have opportunitggait some ranks into low-power
states and conserve energy. However, it is not as effediveeavould like, due to the fact
that for each process, there is a significant number of pagesatescatteredacross a large
number of ranks.

To understand thisstattering effect, we need to investigate how memory is used in
a Linux system. As in most systems, a majority of the systermang is used by user
processes. Most of these pages are, in turn, used to hold menapped files, which in-

clude binary images of processes, dynamically-loadedries (DLL), as well as memory-

2We only show a partial list of processes running in the systerhother processes behave similarly.
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Process p «

syslog 14 Q3) 8(5) 951) 101) 11(1) 13(3) 14(76)

login 11 Q12) 8(7) 9(112) 11(102)12(5) 14(20)1%1)

startx 13 QR21) 7(12) 8(3) 9(7) 10(12) 11(25)13(131) 14(43)

X 12 Q125)7(23) 8(47) 9(76) 10(223) 11(19)12(1928)13(82) 14(77)1%182)
sawfish 10 Q180)7(5) 8(12) 9(1) 10(278) 13(25)14(5) 15233)

vim 10,15 @12) 9(218)10(5322)14(22) 15(4322)

Table 2.1: A snapshot of processes’ rank usage pattern thengimitive implementation

of PAVM. The notatiora(b) indicates a process has b pages allocated on an actkra.ran

mapped data files. To reduce the size of the executable ésani disk and the processes’
cores in memory, DLLs are extensively used in Linux and mdséiomodern operating
systems. The scattering effect of pages that we observecsul of this extensive use of
DLLs combined with the behavior of the kernel-controlledjp&ache.

The page cache is used to buffer blocks previously read frendisk, so on subsequent
accesses, they can be served without going to the disk, tfacsieely reducing file access
latencies. This causes complications for our techniquer ekample, when a process
requests a block that is already in the page cache, the keimely maps that page to
the requesting process’s address space without allocatingw page. However, since
this block may have been previously requested by any arpipcess, it can be on any
arbitrary rank, resulting in an increased memory footpiantthe process. Unfortunately,
this is not limited to shared data files, but also to DLLs, asé&hare basically treated as
memory-mapped, read-only files. The pages used for DLLsamiéy lloaded, through
demand paging. So, when two processes with disjoint pedderanks access the same
shared library, demand-loaded pages in this shared libvdlrgcatter across the union of
the two preferred sets, depending on the access patterre afvth processes and which
process first incurred the page-fault to load a particulatigno of the library into the page
cache. An example is shown in Figure 2.6.

In what follows, we describe how to reduce the memory/enégtprint for each pro-
cess by using DLL aggregation and page-migration techsigifée then discuss how to

reduce the overhead of these new techniques.
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Figure 2.6: (a) Process P1 tries to access a page in libchvidiwot currently in memory.

(b) Demand paging in P1’'s context brings the accessed pagenemory and into P1’s
active rank (Rank 0). (c) When process P2 tries to accessithe page, the page is simply
mapped to P2’s address space without going through the plagatar. As a result, P2’s

active set now will need to also include Rank 0.

2.4.3 Aggregation of Shared Libraries

Due to the many benefits of using shared libraries, or dyraliyiloaded libraries (e.qg.,
libc), most, if not all, processes make use of them, eithpliei®y or implicitly. Therefore,
a substantial number of pages within each process’s adsjpese may be shared through
the use of shared libraries. As discussed above, this ghaw@vitably causes pages to be
littered across the entire memory range, resulting in atidraize-increase o for every
process.

The cause of this scattering effect is that we are trying&d lshared library pages onto
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Process p «

syslog 14 (Q108)1(2) 11(13) 14(17)

login 11 (Q148)1(4) 11(98) 159)

startx 13 (217) 1(12) 13(25)

X 12 ((125) 1(417)9(76) 11(793) 12(928)13(169)14(15)
sawfish 10 ((193) 1(281)10(179) 13(25) 14(11) 15(50)

vim 10,15 @12) 1(240)10(5322)15(4322)

Table 2.2: Effect of aggregating pages used by DLLs.

the preferred ranks of processes which first initiated the-ia from disk, as if these were
private pages. To alleviate the scattering effect on thbkaeesl library pages, we need to
treat them differently in the NUMA management layer. We iermpént this by ignoring
the hint (i.e.,p) that is passed down from the VM layer when allocating a pagstiared
libraries, and instead, resorting to a sequential firsthaoaolicy, where we try to allocate
pages linearly starting with rank 0, and fill up each rank befooving onto the next rank.
This ensures that all shared pages are aggregated togeter, than scattered across a
large number of ranks. Table 2.2 shows a snapshot of the setroé grocesses under the
same workload as in Table 2.1, but with DLL aggregation erygdo

As expected, aggregating DLL pages reduces the numberioé aahks used per pro-
cess. However, a new problem is introduced. Due to the extense of DLLs, by group-
ing pages used for libraries onto the low-address memoistave allocate a large number
of pages onto these ranks and quickly fill them. As a resulhynpaocesses will now need
to have several of these low-address ranks in their actitgetseaccess all the needed li-
braries without performance penalties. In the two snasstodwn, this is apparent: after
aggregating all the shared library pages (shown in Table 2a2h ranks 0 and 1 are mapped
in all processes’ active sets, whereas only rank 0 was neeitlealut aggregation (shown in
Table 2.1). With many libraries loaded, we would use up tleester ranks fairly quickly,
and may unnecessarily increase the memory footprint of gomeesses. We will give
a detailed account of this in the next section and also desdrow to relieve the extra

pressure on these earlier ranks.
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2.4.4 Page Migration

Even after aggregating these shared library pages, thstit 8&>me scattering of pages
across ranks outside f Some of these are due to actual sharing of pages, but the rest
are due to previous sharing and residual effects of pastditesses in the page cache.
Furthermore, even though aggregating all the shared jilpages ensures shared pages are
kept on a few ranks, not all libraries are shared, or remaameshas the system execution
progresses. It is better to keep these pages in the prefem&d of the processes that are
actively using them, rather than polluting ranks that aredusr library aggregation and
unnecessarily increasing the energy footprints of praes$Ve can address all of these
issues by migrating pages dynamically.

In a NUMA system, page migration is used to keep the workirigoba process local
to the execution node in order to reduce average accessyaded improve performance,
particularly when the running processes are migrated t@mtemodes for load-balancing
purposes. In the context of PAVM, there is no concept of pgsarigration, or remote
and local nodes, but we can use page migration to localizevtitking set of a process
down to a fewer number of ranks and overcome the scatterfegtaif shared pages and
other objects in the page cache during runtime. This withvalus to have more ranks in
low-power states, thereby conserving more energy.

In our implementation, page migration is handled by a ketimedad calleckmigrated
running in the background. As with other Linux kernel threail wakes up periodically
(every 3 seconds). Every time it wakes up, it first checks &ifsthe system is busy, and
if so, it goes back to sleep to avoid causing performanceadiegion to the foreground
processes. Otherwise, it scans the pages used by eachgamckstarts migrating pages
that meet certain conditions. We further limit performamogact due to migration by
setting a limit on the number of pages that may be migrateddt mvocation okmigrated
to avoid spikes in memory traffic. Effectively, by avoidingrformance overheads, the only
penalty we pay from using this technique is a fixed energy fosstach page migrated.

A page is migrated if any of the following conditions holds:

e If a page igrivate(i.e., used only by one process, which is determined by the’pa
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Process p «

syslog 14 (Q15) 14(125)

login 11 Q76) 11(183)

startx 13 (Q172)13(82)

X 12 (Q225)1(2) 12(2220)
sawfish 10 0207)1(56) 10(436)

vim 10,15 @12) 1(240) 10(5322)15(4322)

Table 2.3: Effect of DLL aggregation with page migration.

reference count), and it is not located on a rank that is mighocess’s preferred set,
p, then the page is migrated to any rankinThis will not affect the size of the active

set of any other processes.

e If a page issharedbetween multiple processes, and the rank that it resides on i
outside of at least one of these processes’ preferred ketstlie page is migrated to
an earlier rank so it can be aggregated with the other shagelpif and only if this
migration does not cause the sizecofo increase for any of the processes sharing

the page.

Migrating a process’s private page is straightforward. Vigo$y allocate a new page
from any active ranks of that process, copy the content fiwrotd page to the new page,
redirect the corresponding page table entry in that précpage table to point to the new
page, and finally free the old page.

Migrating a shared page is more difficult. First, from the gibgl address of the page
alone, we need to quickly determine which processes arengithis page so we can check
if it meets the migration criterion given above. Secondgrafopying the page, we need a
quick way to find the page table entry for each of the sharinggsses, so we can remap
these entries to point to the new page. If any of the above twaliions cannot be met,
an expensive full-range scan of the page tables of all pseseis needed for migrating a
single shared page.

To meet both conditions, we use tireap[102] kernel patch, a reverse page mapping

facility. It is included in the default kernel of the RedHaBZLinux distribution and the
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recent stable Linux kernel releases. Withap, if a page is used by at least one process, it
will have a chain of back pointerpte chain) that indicates the page table entries among
all processes that point to this page (meets the secondeeggnt). In turn, for each page
table containing the above page table entries, there iskagmanter indicating the process
that uses this page mapping (satisfying the first requirém&wo, when trying to migrate
a shared page, we first allocate a new page, and find all thegses sharing this page to
determine whether migrating this page will cause memorypiaat to increase for any of
the processes. If not, we copy the page content from the @d fmthe new page, replace
all page entries that point to the old page with ones thattgoithe new page, update the
reverse mappings in the new page, and finally free the old.page

With kmigratedrunning, processes use much fewer ranks (as shown in T&)léhan
in the initial implementation of PAVM. As a result, memoryper is significantly reduced.
However, for each page migrated, we still incur a fixed enexgst for performing the

memory-to-memory copy.

2.4.5 Reducing Migration Overhead

Although page migration greatly reduces the energy footpiof processes, it triggers
additional memory activity, which may undermine energyirsgs. Thus, we must consider
ways to limit the number of migration operations to have éadfits without incurring too

much energy cost. We propose two solutions to reduce the euaflpage migrations.
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Solution 1: The DLL aggregation technique described previously assuiberies tend
to be shared. Any library that is not shared will later be raigd to the process’s preferred
ranks. This is not efficient for those applications that ussgppetary dynamic libraries.
We can keep track of the processes that cause a large nunyige@migrations, and then
classify them either aprivate-page dominatedr shared-page dominatedA process is
private-page dominated/hen the number of private pages migrated is much larger than
the number of shared pages migrated. It indicates that thespthis process uses are not
likely to be shared, meaning that we should allocate pagésisprocess’s preferred ranks
from the beginning and not automatically aggregate thatippages that it uses.

On the other hand, if a processsisared-page dominated means that many shared pages
were initially wrongly migrated and then later moved backr these processes, we want
to inhibit the number of migrations for shared pages to prefrtgure migrations to reverse

the initial migration decision.

Solution 2: It is well-known that a majority of processes are shortdiverocess lifetime
is similar to what is shown in Figure 2.7 [81], where only 2%atifprocesses live more
than 30 seconds. Instead of performing page migration f@ratesses, we only migrate
pages of long-lived processes, since the energy spent omtmigy pages for short-lived
processes does not justify the resulting energy savingte that the current implementa-
tion of kmigratedimplicitly avoids migrating pages for many short-lived pesses, as it

checks the system only once every 3 seconds and only whegdtesrsis not busy.

2.5 Evaluation

We now evaluate PAVM and compare it against some of the pusiyeproposed tech-
niques. Section 2.5.1 describes the simulation enviromet the methodology that we
used to collect and analyze data. Section 2.5.2 descrilmedahchmarks used in our
evaluation—SPECjbb2000 and SPECcpu2000. In Section,2ve Briefly describe each
of the power management techniques we evaluate here. B&cbal provides detailed

simulation results.
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trec = 70nsec 1/0 burst

>tgpp =15ns

tek = 5ns
> trre =10n¢

tek = 5ns

State Power

PRE Precharge 137.5 mWw
PPD Precharge-Powerdowh  12.5 mWwW
ACT Active 150 m
APD Active-Powerdown 1125 m
SR Self-refresh 10 m
AR Auto-refresh 27.5m

10 Read/Write 1200 m

Figure 2.8: Detailed DDR state machine that we simulate rmmoemory simulator. Some

minor states and transitions are omitted from this graptédter viewing.

2.5.1 Simulation Setup

PAVM was initially implemented on a real machine runningu.4.18 kernel. How-
ever, to compare it with other power management techniguegort it to run on a sim-
ulated machine as some of the other power management teesnc@nnot yet be imple-
mented on real machines due to lack of hardware support. \a& Mambo [36] as our
simulated machine. It is a full-system simulator for Pow&tAmachine architectures and
is currently in active use by multiple research and devekaprgroups in IBM. It emulates
both 32-bit and 64-bit PowerRCprocessors and also supports system configurations and
hardware components, including a multi-tiered cache htega SLBs, TLBs, disks, Ether-
net controllers, UART devices, etc. The simulated machsreasily configurable, and very
different system configurations can be quickly set up andikited by simply changing a

few parameters. We used a modified 2.6.5-rc3 Linux kernelinghon a Mambo-simulated
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machine (parameterized as shown in Table 2.4) in this work.

| Component | Parameter |
Processor 64-bit 1.6GHz PowerP®
DCache 64KB 2-way Set-Associative
ICache 32KB 4-way Set-Associative

L2-Cache 1.5MB 4-way Set-Associative
DTLB 512 entries 2-way Set-Associative

ITLB 512 entries 2-way Set-Associative
DERAT 128 entries 4-deep
IERAT 128 entries 4-deep
SLB 16 entries
Memory DDR-400 768MB (64Mbx8)
| Linux Kernel | 2.6.5-rc3 w/ PAVM patch |

Table 2.4: System parameters used in Mambo. All cache liree$28 Bytes long.

To evaluate various power-management techniques, we $esmMambo to record the
main memory traffic (i.e., filtered by the L1 and L2 cachesygsato a trace file, and then
feed it to a trace-driven main memory simulator to simulagous power-management
decisions that could have been made by the memory contadlilemtime. This memory
simulator is written using CSIM [86] library. It can accugbt model performance and
power dissipation of the memory by simulating a detailed Df2&e machine (shown in
Figure 2.8). Furthermore, it can also simulate the effecjuuing and contention occur-
ring at the memory controller, at synchronous memory iae$ (SMIs), and on various
buses. Power dissipation of memory devices is calculateklelping track of the state

information for each bank on a per-cycle basis, as was destin [87].

2.5.2 SPEC Benchmarks

One of the benchmarks we used in our evaluation is the SPRQib[115] bench-
mark. It is implemented as a Java program emulating a 3-tiees system with an em-
phasis on the middle tier. The tiers simulate a typical bessrapplication, where users in
Tier 1 generate inputs that result in the execution of bissihegic in the middle tier (Tier
2), which calls a database on the third tier. In a benchmark ene can instantiate mul-
tiple warehouses, each with a 3-tier system. Each warehexesgites as a separate Java

thread within the Java Virtual Machine (JVM), and each is pspto a different Linux
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process thread. However, since all warehouses are edgentizning the same type of
workload and they all share the same memory address spdua thieé JVM, we will only
observe a small amount of variation in how memory is accelBstgleen context switches
among these SPECjbb processes. Such setup does not refleptduesses on real sys-
tems would use memory as they do not extensively share tthéieas spaces. Additionally,
in real systems, where the processor time is often sharedg@maltiple users and their
applications, system processes, and various daemon pes;&ge can expect memory ac-
cess behavior in a typical system to change constantly whatext switching between
different processes at a fine granularity. All of these bairavare not found in running the
SPECjbb benchmark alone. To simulate these behaviors, eidetkto run a few SPEC-
cpu2000 [116] benchmarks that have well-known executidrabier in parallel with the
SPECjbb workload. We classify these workloads as eitlhégH' memory-intensiveor
“low memory-intensivebased on the L2 miss rates [106]. For the low memory-intens
workload, we run SPECjbb having 8 warehouses in paralldl 2866.bzip2and186.crafty
and for the high memory-intensive workload, we run SPECjarallel with181.mcfand
179.art Referencenput sets are used for all the SPECcpu2000 benchmarks.

The runtime statistics of the two previously described Waakls are shown in Table 2.5.
For each process in our workload, we keep track of the amdu@P time it consumed,
the number of memory read and write operations, and the nuaiflismes it was sched-
uled by the task scheduler. In our experiment, we keep themsyslle at the start of each
run. To verify that the non-benchmark processes in the sy$éeg., shell, background
daemons and interrupt service routines) did not interfath wur benchmarks and their
results, we compare the total CPU time, the total number ad @nd write operations
and the total number of context switches incurred by our berack with the total num-
ber that was observed during the entire run. For the low megnmbensive workload, the
benchmark processes used 97.7% of the total CPU time, anegpensible for 97.2%
of all read requests and 91.6% of all write requests in theesysFor the high memory-
intensive workload, the benchmark processes consumeé9¥.&he total CPU time, and
are responsible for 99.2% of all read requests, 99.5% of alewequests in the system.

However, in both workloads, the total number of context shas caused by benchmark
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Benchmarks Total Runtime | % of Total ‘ Read ‘ % of All ‘ Write % of Al | Context
(CPU cycles) Runtime | Operations| Reads | Operations| Writes Switches

Low memory-intensive workload
SPECjbb process 1| 470,662,157 4.5% 495,849 5.95% 148,964 4.67% 283
SPEC]jbb process 2 430,865,647 4.1% 463,402 5.56% 150,847 4.73% 233
SPECjbb process 3 614,658,695 5.9% 500,704 6.01% 151,581 4.75% 350
SPECjbb process 4 389,326,169 3.7% 499,898 6.00% 146,077 4.58% 218
SPECjbb process 5§ 544,571,120 5.2% 511,707 6.14% 141,688 4.44% 309
SPEC]jbb process § 330,170,302 3.2% 421,781 5.06% 110,106 3.45% 197
SPECjbb process 7 1,694,958,880 16.3% 1,281,690 | 15.39% 212,097 6.65% 921
SPECjbb process § 396,145,352 3.8% 333,236 4.00% 100,222 3.14% 255
256.bzip2 2,591,125,601 24.9% 2,899,595 | 38.81% | 1,467,012 | 46.00% 1,258
186.crafty 2,714,572,432 26.1% 692,731 8.32% 293,069 9.19% 1,259

Total (benchmarks)| 10,177,056,355 97.7% 8,100,593 | 97.24% | 2,921,633 | 91.61% 5,283
Total (all observed)| 10,416,416,544 100.0% 8,330,756 | 100.00% | 3,189,337 100% 10,148

High memory-intensive workload

SPEC]jbb process 1] 510,607,464 4.6% 704,477 1.29% 194,867 1.31% 734
SPEC]jbb process 2 535,188,637 4.8% 772,954 1.41% 223,225 1.51% 478
SPECjbb process 3 510,438,599 4.6% 581,688 1.06% 186,979 1.26% 465
SPEC]jbb process 4 529,700,398 4.7% 768,019 1.40% 221,891 1.50% 420
SPECjbb process 5 941,338,844 8.5% 1,167,305 2.13% 303,557 2.05% 550
SPEC]jbb process 6 473,391,039 4.2% 776,669 1.42% 309,628 2.09% 715

SPEC]jbb process 7] 808,101,475 7.3% 1,041,908 1.90% 277,971 1.88% 508

SPEC]jbb process § 1,716,733,458 15.5% 2,092,407 3.82% 1,016,140 6.86% 1,379
181.mcf 2,853,500,163 25.8% 13,953,894| 25.50% | 7,004,631 | 47.26% 1,089
179.art 2,163,757,139 19.6% 32,453,738| 59.31% | 5,012,884 | 33.82% 1,089
Total (benchmarks)| 11,042,757,216] 99.8% 54,313,059| 99.25% | 14,751,773| 99.53% 7,427
Total (all observed)| 11,065,594,944| 100% 54,721,075| 100.00% | 14,820,760| 100.00% | 12,342

Table 2.5: Summary of the low memory-intensive and high nrgantensive workloads.

SPECjbb is ran with 8 warehouses, each spawned as a seEaatbrkad.

processes is significantly smaller than the total numbémia observed in the entire run.
This behavior is caused by a polling keyboard device driweade specifically for running

Linux in Mambo), which periodically wakes up and then goeskida sleep. This does not
happen in real systems, but having it in our system does heatféme with the fidelity of

our benchmarks and our results. The runtime informatioegyiss more confidence in our
results as these benchmark processes are minimally affegtéhe system’s background
noise. Itis interesting to note that from the runtime statss SPECjbb is shown to be more

memory-intensive thahzip2andcrafty, but much less thamcfandart.

2.5.3 Power Management Techniques

In our evaluation, we compare 5 different power managenesftrtiques in terms of

performance and power. They are listed as follows.

e No Power Management (NOPM):Here, no power management technique is used,

and ranks are put to the highest ready state when idling. \&/ehiss as the baseline
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in our study.

e Immediate Powerdown (IPD): This is the simplest form of hardware-controlled
power management. It is a static power-management technvhere the memory
controller immediately transitions a rank to Powerdown wlh# memory requests

on this rank have completed.

¢ Immediate Self Refresh (ISR):Same as IPD, but transitions to Self Refresh instead

of to Powerdown.

e Dynamic Hardware Technique (HW): This is a dynamic, epoch-based, hardware-
controlled power management technique. It monitors pashong accesses, and
based on which, makes predictions on after how long of arpeld it should tran-
sition a rank to Self Refresh (threshold prediction aldontis shown in Figure 2.9).
Transition to Powerdown has a zero threshold, which wasqusily shown to be the

most efficient [25].

e Power-Aware Virtual Memory (PAVM): This is the software technique that we

have proposed in Section 2.3 and Section 2.4.

2.5.4 Results

Figures 2.10(a) shows the instantaneous power dissipfatidine entire duration of the
low memory-intensive workload for different power-managgnt techniques. These results
are then summarized in Table 2.6. In this table, we show gegpawer, average response
time, normalized runtime and the number of delayed memagyests due to ranks being
put to Self Refresh or Powerdown. We use two metrics to etalp@rformance—average
response time and normalized runtime. Average respongagioseful to measure exactly
how much impact power management has on the main memory,@anthhzed runtime
shows impact on overall system’s performance due to slowmdowthe memory. The more
important metric of the two is the normalized runtime as firessents the user-perceived

system performance. For the less memory-intensive wadkloge can be more aggressive
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trer = Auto refreshinterval (7.8usec)

T,,  =Timeintervalbetweeri™ and(i +1)™ refreshinterval
iNi;1[X] =Numberof memoryaccesseswithin ;T;,; onrank x
Th[x] = =Thresholdto enterSelf Refreshonrank x

Thya  =Maximumthresholdvalue

ThresholdPredictionAlgorithm:

At theendof thei'™ refreshinterval
Foreachrank x
if (;N;41[X] ==0)then
if (Th[x]<trgg) then
Th[x]=Th[x]/2
elseTh[x]=Th[X] - treg
else
Thix]=Th[x] + ;N;.a[X] Otger
if (Th[x]>Thy)
Th[x] =Thy.
if (rank xis notcurrentlyin Self Refresh)
enter(Powsalown)
if (idle timehasexceededh[x]) then
enter(SelfRefresh)

Figure 2.9: Description of the threshold prediction algori. Threshold value of each
rank is determined periodically based on previously obsdraemory access patterns. For
convenience, we choose this periodicity to be/ &8¢ i.e., memory refresh interval for the

memory devices we are simulating in this studi,.. is currently set to 64 timesgrr.

in making power management decisions. Even though thistméglalt in higher average
response time, this slowdown in the memory will likely to baanly a small impact on the
system performance. On the other hand, when memory is nexadntly accessed, higher
average response time will result in more significant degfiad in the overall system
performance. We will show these effects in our experimenistly.

For the low memory-intensive workload, from Table 2.6, wa sae that without any
power management, memory dissipates 49.97 W of power, angsgthis and its runtime
as the baseline in our evaluation. We first look at the simplasiware power management
technique, Immediate Powerdown (IPD), where power is reduo 25.54 W—a 48.89%

power saving. Even though many memory requests are delayetbdanks being put to
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Figure 2.10:(a) Instantaneous power dissipation for the low memorgrisive SPEC workload.

(b) Instantaneous power dissipation for the high memotgrsive SPEC workload.

Powerdown state, the total runtime has only increased 19¢4 [8cause the resynchroniza-
tion latency of exiting from Powerdown is so small. With Inaiege Self Refresh (ISR),
power is further reduced since both PLL and registers camutred off. ISR dissipates
only 6.23 W of power—a 87.54% power saving—but it is achiewaty with a heavy hit
on performance. It runs 110.70% slower than the baseline edsich makes it very im-
practical to use in real systems. Using the HW (dynamic hardveontrolled) technique,
we can achieve a similar amount of power savings comparegRdout with much less per-
formance degradation. It dissipates only 10.24 W in power3-81% saving (comparable
to ISR)—and it runs only 3.21% slower than the baseline dasne case of PAVM, even
though it dissipates more power than the other power managgechniques, nevertheless,
it has achieved what we had in mind originally. First of alisicompletely software con-
trolled and requires no additional hardware support. Se&goower can be saved (44.70%)
without any noticeable sacrifice in performance (in thisgagntime increased by less than
0.1%), thus making PAVM one of a kind. These are all desirédaéures to have in power
management of real systems. Furthermore, we are overasighe amount of power
saved in the hardware techniques as we do not take into acobtime additional power

dissipated to support the extra hardware components thaiesded to implement these
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techniques, thus making software-controlled technigues enore favorable.

In term of average response time, IPD has a 14.1% higher gevgessponse time,
ISR 868.74%, HW 25.18%, and PAVM only 0.4%. Even though IPDIS1% and HW's
25.18% increase in average response time did not impa&mystrformance significantly
(1.80% and 3.21%, respectively), we will see in the high memmotensive workload that
its effect is more severe. However, with PAVM, system perfance can still be preserved.

Despite its performance advantage, PAVM does not saveyresrhuch power as some
of the hardware techniques. This can be improved, howevap@ace of performance. The
reason that PAVM does not save as much power as the otheideelsns because it only
manages power for the inactive ranks and leaves active iartke highest power state,
which is somewhat wasteful. To limit performance degrametvhen managing power for
the active ranks, we decided to use IPD. As we have seen pdyjdPD can save a sub-
stantial amount of power without significantly impactingfoemance and only requires
a minimal amount of hardware support. We label this techaigsi PAVM+IPD in Fig-
ure 2.10. It dissipates 14.72 W in power and increases renkiynonly 1.86%. Which
technique is more appropriate to deploy will vary from sgste system. For example, on
a system where performance is of the uttermost importanceitiu energy conservation
as another important metric, the generic PAVM techniquébdimore favorable as it can
save power without disturbing performance.

The instantaneous power dissipated for the high memognaNe workload is shown
in Figure 2.10(b) and is summarized in Table 2.7. Here, sintbnclusion can be drawn,
but there are a couple of things worth noticing. Because mmgnisomuch more inten-
sively accessed, managing power results in more perforendegradation—IPD imposes
a 8.10% slowdown in runtime, ISR 555.82%, and HW 7.16%. Orother hand, PAVM’s
performance impact is still under 0.5%. This allows PAVM @ dieployed in situations
where other power management techniques are not appepluatto their performance

impact.
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M'\;?];J%V‘rfém IPD ISR HW PAVM | PAVM+IPD
Energy Consumption 275.02J 143.15J 68.26 J 58.35J 152.27J 81.09
Average Power 49.97 W 25.54 W 6.23 W 10.24 W | 27.64 W 14.72 W
Average Response Time 72.01ns 82.17ns | 697.60ns| 90.14ns | 72.29 ns 82.52 ns
Normalized Runtime 1.000 1.018 2.107 1.032 1.001 1.019
Delayed Accesses Due to PD 0 6,781,614 0 6,693,095 0 6,720,072
Delayed Accesses Due to SR 0 0 2,701,345 74,094 70 70

Table 2.6: Summary of the low memory-intensive workload.

M'\'a?]%%"rfém IPD ISR HW PAVM | PAVM+IPD
Energy Consumption 482.11J 282.79J 743.42J 149.21J | 252.24J 150.42J
Average Power 52.15W 28.30 W 14.57 W 14.79 W 27.15W 16.19 W
Average Response Time 84.13 ns 92.19ns | 537.45ns| 93.21ns | 84.59ns 92.83 ns
Normalized Runtime 1.000 1.081 5.558 1.091 1.005 1.087
Delayed Accesses Due to PD 0 20,648,953 0 20,603,033 0 20,280,402
Delayed Accesses Due to SR 0 0 4,954,357 27,559 181 182

Table 2.7: Summary of the high memory-intensive workload.

RDRAM

RDRAM is a new memory architecture that has recently emengées some interest-
ing power-management features. A question one might astviswould the result differ
if RDRAM is used instead of DDR in this study. We believe thiatitar results can be
achieved, as RDRAM has a similar set of power states and anagd with multiple en-
tities that may be independently power managed. In fact, RIARower states can be
controlled at the device level, rather than at the rank |gwreliding a finer grained level of
control than DDR. This finer-grained level of control giveBRAM a significant advantage
over DDR and SDR in embedded and PC systems, where the nufrdmver-controllable
memory units (i.e., DDR ranks or RDRAM devices) is small,&sitve increase the number
of power-controllable memory entities in a system (as inddee of large server systems),
there is a diminishing return. Very few number of things reeal be changed and the

proposed techniques can be directly applied to the RDRAM amg@rchitecture.

2.6 Discussion: DMA and Kernel Threads

In the current implementation, there are three limitatitihvag we do not fully address.
First, we do not consider direct memory access (DMA). UsitdgA) hardware compo-

nents can more efficiently transfer data between themsathshe main memory without
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CPU intervention. However, without knowing whether a rardsyut to a low state, DMA
operations may suffer performance degradation. Forthyydtes problem can be easily
mitigated by ensuring that DMA operations use only pagekiwia pre-defined physical
memory range (e.g., the first rank), which, due to the use df Bggregation, is almost
always in the Standby ready mode, which will not result in lsg in performance.

Second, kernel threads that run in the background may t@ndom pages belonging to
any process in the system. Since these maintenance threadsaked fairly infrequently,
a simple solution is to treat these as special processesiemdn all ranks when they are
invoked to avoid performance degradation.

Third, PAVM is very inefficient in managing power for the agtiranks. A rank is active
simply means that there is at least one process that has paggsed onto it and may
potentially access these pages in near future. Howeverfrieopently or how infrequently
an active rank is being accessed is unknown to the OS. Withalt valuable information,
the best one can do at the OS level is to either put active ttartkigh power state or to use
IPD, and both ways are wasteful in terms of both power andp@idnce. This problem is
more pronounced on dedicated server systems where alrhtst ahemory in the system
is used by a single process, e.g., database server, fila,JeNS server, etc. Most likely,
the active set of this process will contain all the ranks endjzstem, and thus PAVM will not
be able to save much power. A much finer-grained level of cbigmeeded to effectively
manage power. In the next chapter, we propose a softwageteld hardware technique

that will allow us to do just that.

2.7 Conclusions

Due to better processing technology and a highly competitnarket, systems are
equipped with bigger-capacity and higher-performancennmaeémory as workloads are
becoming more data-centric. As a result, power dissipayeth® memory is becoming

increasingly significant. In this work, we have presentexidbsign, implementation, and

3Note that due to the address space limitation in older ISAcgsy Linux for x86 already limits DMA
operations to use only the first 16 MB of memory (i.e., withia first rank).
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analysis of Power-Aware Virtual Memory (PAVM) to reduceaiinemory energy expendi-
ture by managing power states of individual memory rankshees also shown a working
implementation of PAVM in the Linux kernel, and describedvhib was later evolved to
handle complex memory sharing among multiple processebeimeken the processes and
the kernel in a modern operating system.

Using PAVM, we show that from software alone, 44.70-47.94%he power can be
reduced. This technique can be directly applied to manyadys systems without addi-
tional hardware support and has negligible performancaanwell less than 1%)—thus
this power saving comes almost for free. Combining PAVM witimediate Powerdown
(IPD), we show that 68.96—70.54% of the power can be reductdonly 1.9-8.7% per-
formance penalty. It would only require as much additioreidware as IPD alone, but
it saves much more power than IPD (45.74-48.89%) can achigvself. Compared to
a more complex dynamic hardware technique, where it savé6+82.71% in power and
causes 3.2-9.1% performance degradation, PAVM and itsalee certainly have many

advantages and can be more generally deployed.
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CHAPTER 3

Software-Directed Memory Power Management

3.1 Motivation

In the previous chapter, we proposed a purely softwarersided power management
technique called PAVM. lt is different from previously paged techniques because it can
save energy without impacting performance. However, dessi performance advantage,
it is not as power efficient as some of the hardware technigliedways puts the active
ranks to the highest power state as it can neither diffextna frequently accessed rank
from an infrequently accessed rank, nor detect any memamgsacpatterns that may be
exploited. The software technique treats all active rahkssame, and due to which, many
energy saving opportunities are lost. To re-capture theissan opportunities, we will
propose a software-directed power-management techniti@evill show that with a mini-
mal amount of cooperation between the system software antbnyecontroller hardware,
power can be more aggressively reduced.

The rest of this chapter is organized as follows. We begih wibrief design overview
in Section 3.2. Hardware and software control mechanismsl@scribed in Section 3.3.
Results from detailed evaluation using both synthetic aRBG workloads are given in

Section 3.4, and finally we conclude in Section 3.5.
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Figure 3.1: Architectural overview of the software-diestppower-management system.
3.2 Overview

Power management implemented in hardware (i.e., memonyatlan) has some ob-
vious advantages over software techniques, but it has itssewof deficiencies. On one
hand, as the memory controller is able to observe all memaffydin real-time, it allows
for implementation of a very fine-grained and highly-adaptiontrol mechanism that can
be used to ideally glean all possible energy-saving oppdai#s. On the other hand, the ef-
fectiveness of using hardware to manage power is heavilgrtignt on how accurately the
memory controller is able to predict future memory refeemnfrom its past observations.
Unfortunately, accurate prediction is often difficult tacamplish by the hardware alone,
especially in systems with multiple active processes mmneach with its own memory
access behavior.

As the memory controller has no understanding of neithecgsses nor the operating
system, it can get easily confused from its observation ahorg traffic. This is especially
true during context switching time when memory access patten suddenly change. To

avoid making bad power management decisions during suah tiardware will need to
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adapt to the newly invoked process’s memory access pattgchklyg but in reality, it takes

a non-negligible amount of time to do so. Even after the mgnsontroller has adapted
itself to the access pattern of the newly invoked process aftwhile, it will need to re-
adapt itself again at the next context switch, which will pap shortly afterwards. This
problem will only get worse as systems are making use of @mafid smaller scheduling
guanta (higher context switching frequency) to increasé tesponsiveness. 5 to 10 years
ago, most Linux systems were using 10 ms scheduling quantoday, 1 ms quantum is
becoming the standard scheduling interval. However, aschding quantum keeps getting
smaller, hardware will spend more time re-adapting andtiess making the right power
management decisions.

As hardware-controlled and software-controlled techegjooth have their own set of
problems, we will propose a software-directed hardwareggawanagement technique. In
this approach, memory controller will respond to low-lew&mory access patterns not
visible to the system software, while the system softwaremavide the hardware with
high-level information about the current system statemiging aggressive but accurate
power management decisions to be made at the hardware IEigre 3.1 depicts the
system architecture used in this software-assisted povagagement approach. We will
elaborate on this design shortly.

In the next section, we first describe the architecture ofreede power management
unit (PMU) implemented in the memory controller. The PMUdsponsible for monitoring
memory traffic and controlling power for DRAM devices. In 8en 3.3.1 we describe
how to minimally modify this PMU so it can communicate withsggm software to gain
additional information about the current state of the systdhen, in Section 3.3.2, we
describe what system and process state information aralusehe modified PMU and

how system software can convey this information down to #relfvare.

3.3 PMU Architecture

Hardware power management performed at the memory carthas been previously

proposed in [25, 45, 46]. Fine-grained monitoring and peagartrol mechanisms are ac-
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Figure 3.2: Architecture of a generic PMU.

complished by a separate power-management unit (PMU) witle memory controller.
The PMU is typically implemented as a set of simple logic desithat (i) monitor mem-
ory accesses, (ii) predict threshold values to determirervid power down, (iii) determine
which low-power state to transition, and (iv) instruct themory controller to perform the
actual power-down operations when certain conditions at m

We show the schematic diagram of a generic PMU in a memoryaigettin Figure 3.2.
It monitors memory accesses by snooping the address lindse@ps track of past memory
access behavior in an internal register file, where the numiegisters depends on how
accurate we need the prediction logic to be and also theadlaithip area on the memory
controller for laying out the PMU. Based on the observed mmrtraffic, a threshold value
can then be derived to determine how much idle time shoufzbel&rom the time of the last
memory access before putting a rank to a lower power statenWtultiple energy-saving
states are defined, one can derive multiple thresholds, @saxh to transition a rank to a
different low-power state. In Figure 3.3, we show an exangblbow threshold value is
used to transition a rank to a low-power state.

For each memory rank, the PMU will individually monitor memaccesses, keep

access history and manage power. The reason for keepingasateset of logics for
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Figure 3.4: Inter-arrival time observed on two differentka (or nodes).

each rank is that one may be accessed very differently frdraret To give an example,
Figure 3.4 shows a histogram (in log scale) of interarrivmles (in log scale) between
consecutive memory accesses observed on two differens rdinis clear from this figure
that the access characteristics observed on these two aemkisstinct. On rank 0, we can
observe that with most interarrival times being very shodarly every memory access
comes within 1 second after the previous one. On rank 1, hexyvéwere are many larger
gaps (indicated by the heavier-tailed distribution) betweonsecutive memory accesses,
suggesting that on this rank we have more energy-savingrappties and also the fact

that different power-down thresholds should be used fasdt@o ranks to maximize en-
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ergy savings on each. However, tipisr-rankimplementation in the PMU would require
additional circuitry which not only would increase manutaog costs but also consume
more energy. Later, we will show how to use the process-stemation exported by the

system software to reduce these additional costs.

3.3.1 Design of a Context-Aware PMU

In the previous section, we illustrated the traditional Plsitdhitecture. However, by
monitoring memory traffic and performing power managemergugh a low level, we
often lose sight on entities that are responsible for algtwdilizing the memory—running
processes and the operating system. This loss of informeggults in hardware frequently
making short-sighted power management decisions, whicthage significant impact on
performance and energy consumption.

Our solution to this problem is to export process-statermgdion down to the PMU
layer so we can make dontext-awareThis allows the PMU to monitor memory accesses
on a per-process basis, and using which, it can customizempmanagement policies tai-
lored specifically to the currently executing process. T&isery important as different
processes may exhibit vastly different memory access befsaand therefore, customiz-
ing power management decisions for each process can sagrilfiéncrease the decisions’
effectiveness in conserving power. Furthermore, even ihaxse processes with similar
memory access behavior, the way they access each of the meands can be quite dif-
ferent (shown in Figure 3.5(a)). This is especially truerfavdern systems where virtual
memory is extensively used and virtual pages can be map@atitoary physical pages by
the operating system.

Without having any understanding of the running procesbesybserved memory traf-
fic by the PMU is essentially “polluted”, by all the procest®s have accessed this rank in
rapid successions (at a 10 ms or even an 1 ms quantum) as kxhbguhe task scheduler.
Therefore, the PMU will likely make inefficient power-marmsgent decisions based on an
“average” access behavior observed from all the concuprecesses. We illustrate this by

an example shown in Figure 3.6. In this example, Processlyraccesses rank 0, whereas
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Figure 3.5: (a) Inter-arrival time between consecutive mgnrequests observed in two

different processes on the same memory rank. (b) Architectithe process-aware PMU.
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Figure 3.6: An example that gives some intuitions about why beneficial to make the

memory controller context-aware.

Process 2 accesses this rank very frequently. If the PMU toi@nihe memory traffic on
this rank without differentiating between the two procassewill conclude that this rank
is accessed “moderately”, and thus, might make less-tpimal power-management de-
cisions. However, by making the memory controller contextre, the PMU can easily
detect that Process 1(2) rarely(frequently) accessesattiks and therefore, can select more
suitable thresholds depending on which process is cuyrerélcuting. The problem, how-
ever, is that unlike in the case of the per-rank power managegrthe memory controller is
totally oblivious to the concept of a process, which irotlicdnas a strong impact on how
the memory is being accessed and how it should be power ménage

The improvement to make the PMU context-aware can be verly eagmented with
a small amount of hardware modifications and with some miha@nges to the system
software. On the software side, when context switchingduiteon to saving the proces-
sor context (i.e., CPU registers) onto the stack of the $wieout process, we must, in
parallel, also save the value of the history-keeping reggstised by the PMU as shown in
Figure 3.5(b) (Ignore th®€AVM | i ne for now). When this process is context switched
back at a later time, we will need to restore both the procemsd the PMU context as-
sociated with this process. The PMU context saving and mest@perations can either
be done synchronously by the processor, or asynchronoydlyebPMU itself when the
processor sends it a context-switching signal and givespltyasical memory region for

saving/restoring the PMU context. On the hardware sideg;, @simple 1/O interface needs
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to be implemented for saving and restoring the PMU contegsehtially, this design will
allow the memory controller to manage power tailored speadiff to each process because
the PMU is now capable of making power management decisiaasdopurely on each

process’s own memory access behavior.

3.3.2 Cooperation with PAVM

As indicated in Section 3.3, even though only a small amotmmialifications is needed
to implement the aforementioned energy-conserving meshemnin hardware, the addi-
tional hardware does not come for free—a non-negligible amhof additional power is
dissipated as a result. To amortize this cost, PAVM can imftime PMU which ranks
are actively used by the running process so the PMU can coehpbgate off all the moni-
tor/predictor circuits and history-keeping registerstfarse inactive ranks without affecting
its effectiveness. This information is passed down fromRA¥M cont r ol line shown
in Figure 3.5(b). Since it is the characteristic of PAVM tackdhe memory footprint of
each process onto as fewer ranks as possible, the softweargdae will help to minimize
the number of monitor/predictor circuits that are needettiéfull power mode.

This cooperation with PAVM also has certain performanceefienn So far, we have
only discussed policies and mechanisms to power down ramksdh to power them up.
As premature power-ups waste energy, we do not consider@mgrpup heuristics in the
hardware. Instead, we rely on a simple but accurate powenaghanism implemented in
PAVM. Since many memory accesses occur immediately aftentegt switch due to cold
cache misses, we can direct PAVM to instruct the memory otlatrto power up the active
ranks of the to-be-run process as early as possible so s@yecteonization penalties

could be minimized or even avoided.

3.3.3 Summary

Through the new PMU design and with the cooperation from yiséesn software, we
can partition the observed memory traffic—both spatially Bnk) and temporally (by

process)—so that the observed memory traffic can be tradséstsily and accurately by
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the PMU to effective power management decisions. This requinly a small amount of
changes in the PMU hardware and the system software. Additip we also proposed
technigues that allow PAVM to assist the PMU in (i) amortgithe energy cost of the
additional hardware in the PMU and (ii) reducing wake-uptat due to cold cache misses,

and thus allowing more efficient use of the energy.

3.4 Evaluation

We will now evaluate the software-directed technique (lth@s HW-SW for short)
and compare it against some of the previously-proposeciggbs. We use the same
simulation environment and evaluation methodology aswiaatdescribed in Section 2.5.1.
Section 3.4.1 and Section 3.4.2 provide detailed simulagsults from running a synthetic
and some SPEC benchmarks (SPECjbb2000 and SPECcpu2Gp@gtreely.

3.4.1 Synthetic Workload

We first use a synthetic workload consisted of two streaminggsses. Assume all the
memory accesses of the first process miss in the cache aretered from the main mem-
ory, and the second process’s all hit in the cache. This s¥iattvorkload is not meant to be
realistic, but through this simple example, we can illustthe potential benefit of making
the memory controller context-aware. Furthermore, we ¢sm see more clearly the en-
ergy and performance implications of various power managerechniques by breaking

the total power dissipated by the main memory into variousmanents.

Synthetic Workload Results

The machine configuration we used to run the synthetic warkie shown in Table 3.1.
It is the same as that was shown in Table 2.4, except that theonyesubsystem is reduced
to a single 64 MB rank. This allows us to interpret the resaftthe synthetic workload
much more easily. In this workload, we evaluated 5 power mgament techniques: No

Power Management, Immediate Powerdown, Immediate SeteRefDynamic Hardware
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| Component | Parameter |

Processor 64-bit 1.6GHz PowerP®
DCache 64KB 2-way Set-Associative
ICache 32KB 4-way Set-Associative

L2-Cache 1.5MB 4-way Set-Associative
DTLB 512 entries 2-way Set-Associative

ITLB 512 entries 2-way Set-Associative
DERAT 128 entries 4-deep
IERAT 128 entries 4-deep
SLB 16 entries
Memory DDR-400 64MB (64Mbx1)
| Linux Kernel | 2.6.5-rc3 w/ PAVM patch |

Table 3.1: System parameters used in Mambo for running théhetic workload. All

cache lines are 128 Bytes long.

Technique, and Software-Directed Hardware Techniquetladare described in the fol-
lowing section. Note, we omitted PAVM in this synthetic wioéd because it does not
make much sense to run PAVM on a system with only one memoty aant would not
yield any power savings. As many small embedded systemdftare equipped with only
one rank, it makes PAVM unsuitable to use for these types stesys and hardware-based

techniques more applicable.

e No Power Management (NOPM):Here, no power management technique is used,
and ranks are put to the highest ready state when idling. Wehis as the baseline

for our comparison.

e Immediate Powerdown (IPD): The simplest form of hardware-controlled power
management. This is a static technique where the memoryatientautomatically
transitions a rank to Powerdown state immediately aftehalmemory requests have

completed.

e Immediate Self Refresh (ISR):Same as IPD, but transitions to Self Refresh instead

of Powerdown.

e Dynamic Hardware Technique (HW): This is a purely hardware-controlled power
management technique. It monitors past memory accesskbaard on which, dy-

namically makes predictions on after how long of an idle gebrit should transition
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a rank to Self Refresh (threshold prediction algorithm vemin Figure 2.9). Tran-
sition to Powerdown has a zero threshold, which was prelyais®wn to be most
efficient [25].

e Software-Directed Hardware Technique (HW-SW):This is the software-directed

hardware technique that we have proposed in Section 3.3.

The two streaming processes are scheduled in an interleasader by the Linux task
scheduler. Without any power management, a sample of ttenitasmeous power dissipated
by the memory is shown in Figure 3.7(al), where one can gisad when each process is
scheduled. Furthermore, we break the average power dovis itadividual components,
which is shown in Figure 3.7(a2). Power used by activatieadr write operations and
data queues are due to DRAM device doing useful work and ¢dmndurther reduced.
Although there are means to reduce this power, e.g., opmgigdage policy, rank inter-
leaving, sub-banking, etc., they are beyond the scope ofvouk. Instead, we focus on
finding ways and opportunities to reduce the amount of idiegravasted when no work is
being done, thus having less impact on performance. Frompreheous figure, we can see
that most of this idle power is dissipated in the Prechargadiy mode, Active Standby
mode, and by the PLL and the registers.

First, we consider the simplest static hardware techniguleieh will put memory ranks
to either Powerdown or Self Refresh mode immediately at tigeoé each memory request,
if and only if there are no outstanding memory accesses oofine banks. We call these
techniques Immediate Powerdown (IPD) and Immediate SdleRle (ISR), respectively,
and the results are shown in Figures 3.7(b1-b2) and Figurés13-c2). As we can see
from these figures, power reduction opportunities arisenathe low memory-intensive
process starts to execute. IPD can significantly reduce poissipated in Standby mode,
whereas ISR can achieve additional energy savings by alserpw down the PLL and
the registers, although at a severe performance penaltywilM®ok at the performance
implications in more details shortly.

Next, Figure 3.7(d1) shows the effect on power when poweragament decisions are

dynamically made by the hardware (e.g., PMU in the memoryrotiar). The PMU keeps

70



8l NOPM 1
6
T 7] D [ Registered Buffer
oL 1 5 ___OPLL
— W Self Refresh
Bl 4 El A M Active Powerdown
B = OPrecharge Powerdown
% 4 E < mPrecharge Standby
.l | § 37 B Active Standby
/ mRefresh
al | 2 ~ ODQ
£ ORead
it — . —  mwit
___ DActivation
o P
05 1 15 0
Runtime (Processor cycle) X107
(al) (a2)
7
8t PD 1
6
T i 7] D Registered Buffer
' s / oOPLL
m Self Refresh
g El 4 M Active Powerdown
= = OPrecharge Powerdown
§ g B Precharge Standby
& 3 HActive Standby
& / HRefresh
2 / obpQ
©— ORead
1k 4 1 — W Write
. —— BActivation
%5 1 15 0
Runtime (Processor cycle) X107

(bl) (b2)

7
6
ORegistered Buffer
5 oPLL
W Self Refresh
g ’(Q“‘ W Active Powerdown
= E 4 OPrecharge Powerdown
g 5 W Precharge Standby
4 g 3 @Active Standby
a W Refresh
2 obQ
~_ ORead
1 — = Write
- @ Activation
0

1
Runtime (Processor cycle)

(cl) (c2)

8t HW 1
i 6
" Y O Registered Buffer
‘ 5 oPLL
| Self Refresh
g %‘ M Active Powerdown
ES E 4 O Precharge Powerdown
% 5 W Precharge Standby
< g 3 @ Active Standby
a / W Refresh
2 ]
/// ORead
4 1 - | Write
__ BActivation
1
X 10

Runtime (Processor time)

(d1) (d2)

7
8 HW-SW 1
i 6 @ Registered Buffer
T oPLL
5 W Self Refresh
= = M Active Powerdown
g g 4 O Precharge Powerdown
g g B Precharge Standby
8 g 3 B Active Standby
a M Refresh
2 obQ
ORead
1 B Write
. DActivation
0

Runtime (Processor cycle)

(e1) (e2)
Figure 3.7: The first column gives the instantaneous powes fmmomed-in portion of the
synthetic workload when using (a) NOPM, (b) IPD, (c) ISR, ¥y, and () HW-SW. The

second column shows the breakdown of the average powepatiedi
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Total Simulated Cycles 1.89€9 cycles
Number of Read 7,429,188
Number of Writes 333
P iat | iate Self
MAREeTe| omsdaie ] Medas SO | wesw
Average Power 5.80 W 4.43 W 3.81wW 3.88W 3.45W
Average Response Time 60.53 ns 65.59 ns 555.15 ns 66.03ns | 66.08 ns
Normalized Runtime 1.000 1.032 4.110 1.035 1.035
Delayed Accesses Due to PD 0 7,296,600 0 7,289,002| 7,288,920
Delayed Accesses Due to SR 0 0 395,341 538 646

Table 3.2: Summary of the synthetic benchmark.

history information on past accesses in its internal regssivhich are used to dynamically
predict threshold values to determine after how long of &m period before Self Refresh
mode should be entered. It uses a moving window size of/s@@ which is reasonable be-
cause it can avoid over-compensation and provide good aloidipyt to realistic workloads.
However, our result shows that it can only save 12.29% moegggrthan IPD because
when the hardware tries to make power-management decisasesl only on its observa-
tion of the past memory access behavior, it will get confuglen two processes with very
different access behaviors are accessing the same rankntedeaved-manner.

One can argue that'ifhy,,, is reduced, we can adapt more quickly. However, shrinking
this parameter is a double-edged sword: having better algipt minimizes the problems
caused by constant context-switching but runs at a risk ef-aggressively predicting
threshold values when there are transient behaviors atrentAdjusting this parameter
will have a positive effect for this synthetic workload, Wat realistic workloads, it can
cause more harm than good. Furthermore, as more and mosmsyate switching to
smaller scheduling quanta (e.g., from 10 ms to 1 ms or evelles)ntd increase respon-
siveness in the system, it will make the hardware predgjob even more difficult.

Finally, Figure 3.7(el) shows that if the system softwareioéorm the PMU of which
process is currently running, more aggressive and accpoater-management decisions
can be made. The PMU used here is exactly the same as thaibeédsabove, but with
additional capabilities of keeping past access historyetrh of the processes and sav-
ing/restoring history-keeping registers at each contexth. From this figure, we can see
that immediately after the low memory-intensive proceaststo run, the PMU is able to
instantaneously put the rank to Self Refresh, thus saving ranergy. Moreover, unlike

the hardware-only technique (HW), the HW-SW technique moll be affected when the
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scheduling quantum becomes smaller over time.

In Table 3.2, we summarize power and performance resultseedditferent power man-
agement techniques for the synthetic workload. Even thd8&hsaves the most amount
of power (34.31%), its performance impact (310.97% slowadlomakes it prohibitive to
use in practice, therefore, we do not consider this tectenfgrther. All other techniques
have similar performance degradations (IPD 3.19% slowddWwhi 3.46%, and HW-SW
3.49%), but HW-SW is the most energy efficient followed by HMHhnique. Specifically,
in this case, HW-SW saves 11.03% more energy than HW. Therredsy HW-SW con-
sumes less energy than the HW approach is because it can ccarately predict threshold
values to go to Self Refresh due to its awareness of procedsey this simple example,
we have shown the benefits of exporting process informatmm Bystem software to the
memory controller hardware. More accurate and aggressweipmanagement decisions

can be made as a result.
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Figure 3.8: (a) Instantaneous power for the low memorynsitee SPEC workload. (b)

Instantaneous power for the high memory-intensive SPEGload.
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Figure 3.9: Comparing power dissipated by HW and HW-SW tegles. Power is nor-
malized to HW'’s power dissipation for (a) low memory-intaesworkload and (b) high

memory-intensive workload.

3.4.2 SPEC Benchmarks

In the previous section, we used a synthetic benchmark toggimne basic intuitions on
why software-directed technique is superior. In this s&ctwe use more realistic bench-
marks to evaluate how it would perform and measure up to therd@echniques. We use

the same benchmarks we used for our evaluation from theHagter (Section 2.5.2).

M’;ﬂ %%"xfgm IPD ISR PAVYM | HW-only | HW-SW
Energy Consumption 275.02J 143.157 68.26J | 152.27J| 58.357] 50.38J
Average Power 49.97 W 25.54 W 6.23W 27.64W | 10.24W 8.81W
Average Response Time 72.01ns 82.17ns | 697.60ns| 72.29ns| 90.14ns | 94.38ns
Normalized Runtime 1.000 1.018 2.107 1.001 1.032 1.039
Delayed Accesses Due to PD 0 6,781,614 0 0 6,669,095 | 6,642,938
Delayed Accesses Due to SR 0 0 2,701,345 70 74,094 115,577

Table 3.3: Summary of the low memory-intensive workload.

SPEC Benchmarks Results

Figure 3.8(a) and Figure 3.8(b) show the instantaneous pdisgpated throughout the
entire run of the low memory-intensive and high memory+stee workloads, respectively,
using (i) no power management, (ii) IPD, (iii) ISR, (iv) PAVMv) HW, and (vi) HW-
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M'\;?];J%V‘rfém IPD ISR PAVYM | HW-only | HW-SW
Energy Consumption 482.11J 282.79J 743.42J | 252.24J| 149.21J 137.72J
Average Power 52.15W 28.30 W 14.47W | 27.15W | 14.79W 13.58 W
Average Response Time 84.13 ns 92.19ns | 537.45ns| 84.59ns| 93.21ns 93.75 ns
Normalized Runtime 1.000 1.081 5.558 1.005 1.091 1.097
Delayed Accesses Due to PD 0 20,648,953 0 0 20,603,033| 20,560,901
Delayed Accesses Due to SR 0 0 4,954,357 181 27,559 56,335

Table 3.4: Summary of the high memory-intensive workload.

SW. In both workloads, ISR, HW, and HW-SW saved much moreggnitan the rest.
However, due to ISR’s prohibitively high performance pépat is not very interesting to
us. A more clear comparison between HW and HW-SW technigussown in Figure 3.9.
In this figure, we show the normalized power dissipation wéspect to HW. It shows a
clear power reduction from using the additional systemestabrmation to make power
management decisions in the memory controller hardwar&8-84.02% more power can

be saved as a result. In terms of runtime, HW-SW is within 1%\
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Figure  3.10: Comparing power management techniques usifge t
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Power x Delayl x Delay2 metric for (a) the low memory-intensive workload and

(b) the high memory-intensive workload.

Several metrics have been proposed previously to evalbhateverall goodness of a
power management technique by taking into account of baghggrand performance im-
pacts. Power x Delay andPower x Delay? are the most popular metrics that have been
used. The reason for the squared term in the latter metr p&it more weight on per-
formance as in many systems performance is still the dorhimeaitric to optimize. In this

work, we use a variant of the second metriPewer x Delayl x Delay2, where Delayl
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Power (Watt)

Power (Watt)

is the normalized runtime and Delay?2 is the normalized aerasponse time. The re-

sults are shown in Figures 3.10. Again, we see HW, HW-SW atterognan the other

techniques.
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Instantaneous power for the Mixed #4 workload.

For completeness, we also show the results of running ar @thir-wise combinations
of the four SPEC benchmarks with SPECjbb. Table 3.5 showasuthieme information of

these workloads. Figure 3.11 shows the instantaneous ghwieg the entire experimental

run when different power-management techniques are applables 3.6, 3.7, 3.8, and 3.9

summerize the average power and average response time.
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Benchmarks Total Runtime )‘ % of Total Read % of All Write % of All | Context
(processor cycles) Runtime | Operations| Reads | Operations| Writes Switches
Mixed workload #1
SPECjbb process 1| 710,534,166 5.8% 621,551 2.61% 188,567 1.48% 1,321
SPECjbb process 2|  1,686,377,599 13.8% 1,888,701 | 7.93% 936,527 7.33% 793
SPECjbb process 3| 764,435,400 6.3% 707,345 2.97% 288,737 2.26% 439
SPEC]jbb process 4 719,960,469 5.9% 693,640 2.91% 263,203 2.06% 1,106
SPECjbb process 5| 500,601,192 4.1% 609,364 2.56% 184,728 1.45% 1,119
SPEC]jbb process 6 587,960,139 4.8% 668,505 2.81% 184,658 1.44% 1,267
SPECjbb process 7| 634,488,511 5.2% 729,032 3.06% 250,955 1.96% 1,079
SPEC]jbb process 8§ 409,730,082 3.4% 622,097 2.61% 177,900 1.39% 1193
256.bzip2 2,672,678,890 21.9% 3,658,348 | 15.36% | 2,157,427 | 16.88% 1,160
181.mcf 3,264,133,644 26.8% 13,323,656| 55.94% | 8,068,578 | 63.12% 1,160
Total (benchmarks)| 11,950,900,092 98.0% 23,5622,239| 98.77% | 12,701,280 99.37% | 10,637
Total (all observed)| 12,189,976,977 | 100.0% | 23,816,334| 100.00% | 12,782,238| 100% 15,572
Mixed workload #2
SPECjbb process 1| 580,523,422 5.1% 773,649 1.69% 196,492 3.42% 412
SPECjbb process 2| 1,582,313,571 13.96% 1,890,848 | 4.12% 404,719 7.05% 945
SPECjbb process 3| 664,265,936 5.9% 774,605 1.69% 175,646 3.06% 1,145
SPECjbb process 4 414,782,393 3.7% 553,536 1.21% 142,946 2.49% 1,181
SPEC]jbb process 5| 510,552,742 4.5% 627,382 1.37% 164,955 2.87% 1,108
SPECjbb process 6 883,810,143 7.8% 921,784 2.01% 218,601 3.80% 1,378
SPECjbb process 7| 841,253,742 7.4% 947,265 2.06% 224,237 3.90% 973
SPEC]jbb process 8§ 590,082,292 5.2% 840,999 1.83% 203,887 3.55% 1,249
186.crafty 2,627,355,852 23.2% 1,407,925 | 3.07% 290,246 5.05% 1,159
179.art 2,423,214,001 21.4% 36,766,152| 80.13% | 3,696,418 | 64.35% 1,160
Total (benchmarks)| 11,147,165,094 98.4% 45,504,145| 99.18% | 5,718,147 | 99.54% | 10,710
Total (all observed)| 11,332,601,664 100% 45,882,216| 100.00% | 5,744,542 | 100.00% | 15,610
Mixed workload #3
SPECjbb process 1| 547,366,485 4.8% 716,863 1.53% 192,508 2.58% 817
SPECjbb process 2 933,866,021 8.2% 1,046,746 | 2.25% 258,570 3.47% 1,176
SPECjbb process 3| 489,136,734 4.3% 631,695 1.36% 160,219 2.15% 856
SPEC]jbb process 4 1,711,277,898 15.0% 1,975,128 | 4.24% 495,406 6.64% 867
SPECjbb process 5| 413,636,931 3.6% 679,162 1.46% 167,503 2.24% 284
SPECjbb process 6| 887,571,915 7.8% 1,012,084 | 2.17% 278,087 3.73% 1,135
SPECjbb process 7| 422,697,140 3.7% 762,833 1.64% 195,442 2.62% 961
SPECjbb process 8§ 954,661,929 8.4% 1,151,594 | 2.47% 276,698 3.71% 1,071
256.bzip2 2,494,274,438 21.9% 3,499,475 | 7.51% 1,266,475 | 16.97% 1,094
179.art 2,315,027,158 20.3% 34,842,138 74.78% | 4,138,620 | 55.46% 1,094
Total (benchmarks)| 11,169,516,649 98.1% 46,317,718| 99.41% | 7,429,528 | 99.56% 9,355
Total (all observed)| 11,388,771,125 100% 46,590,620| 100.00% | 7,462,319 | 100.00% | 14,261
Mixed workload #4
SPECjbb process 1| 529,160,789 4.4% 781,005 3.79% 232,881 2.24% 739
SPECjbb process 2 608,968,797 5.1% 717,720 3.48% 213,329 2.06% 1,134
SPECjbb process 3| 899,079,878 7.5% 773,773 3.76% 252,860 2.44% 504
SPEC]jbb process 4  1,648,886,947 13.7% 2,000,809 | 9.71% 962,684 9.28% 783
SPECjbb process 5| 636,026,872 5.3% 623,331 3.03% 191,727 1.85% 488
SPEC]jbb process 6| 854,446,496 7.1% 862,621 4.19% 254,023 2.45% 662
SPECjbb process 7| 612,802,410 5.1% 687,737 3.33% 196,147 1.89% 930
SPECjbb process 8§ 549,496,460 4.6% 739,180 3.59% 204,938 1.98% 906
186.crafty 2,496,272,177 20.7% 1,015,078 | 4.93% 581,945 5.61% 1,077
181.mcf 2,976,933,794 24.7% 12,123,533| 58.86% | 7,216,094 | 69.57% 1,077
Total (benchmarks)| 11,712,074,620 97.1% 20,324,787| 98.68% | 10,317,628 99.47% 8,300
Total (all observed)| 12,056,225,959 100% 20,596,848| 100.00% | 10,372,137| 100.00% | 13,159

Table 3.5: Summary of the mixed workloads. SPECjbb is ram ®itvarehouses, each

spawned as a separate Java thread.
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No Power SW-only
Management IPD ISR (PAVM) HW-only HW-SW
Energy Consumption 419.131] 234.84J 72.16J 140.87 J 128.88J 109.88J
Average Power 55.01 W 30.82 W 9.47TW 18.49 W 16.92 W 14.42 W
Average Response Time 123.62 135.58 959.17 137.21 137.25 138.98
Delayed Accesses Due to PD 0 14,513,726 0 12,477,003| 14,480,901| 12,465,340
Delayed Accesses Due to SR 0 0 4,209,023 905 14,314 6,069

Table 3.6: Summary of Mixed workload #1. All timings are intusf cycles.

No Power SW-only
Management IPD ISR (PAVM) HW-only HW-SW
Energy Consumption 394.68 J 223.91J 115.95J 129.07 J 121.34J 107.14J
Average Power 55.72 W 31.61W 16.37 W 18.22 W 17.13 W 15.13wW
Average Response Time 143.28 152.90 931.37 154.57 155.07 155.17
Delayed Accesses Due to PD 0 12,324,762 0 10,993,260| 12,293,860| 10,981,748
Delayed Accesses Due to SR 0 0 3,934,854 238 15,032 5,599

Table 3.7: Summary of mixed workload #2. All timings are intuf cycles.

3.4.3 Sensitivity Analysis

In the previous section, we set the window size of the threlspiedictor to 50Qusec
In this section, we will study how window size affects penmf@nce and energy in the HW-
only and HW-SW techniques. Since PAVM does not rely on angware monitor and
predictor, it is not affected by this parameter. In Table€d3we show results when varying
the window size to be 10, 500, and 50@€ec

As expected, if we decrease the window size, we can adapt ciagely to the current
memory access pattern, which results in more power saviHgsvever, because we are
looking within a smaller time window, we are more prone tores@mpensate or to more
aggressively set threshold values. This results in a sggmifiincrease in response time
when we shrink the window size from 5@@ecto 10 usec

As we have shown previously, at the window size of p3@¢ the HW-SW technique
uses 11.7-16.7% less power than HW-only. When we shrink thdow size to 1Quseg
the hardware can more quickly adapt, and therefore, thdibeheommunicating informa-
tion from the system software diminishes. Our result shdwas HW-SW saves only 6.6—
10.3% more power than the HW-only approach after reduciagvindow size to 1Qisec
However, this additional power reduction comes at a heftjopmance penalty—an addi-
tional performance degradation of 13.4—74.8%, which mkeshy will not be acceptable in

many systems. On the other hand, there is not much perfoerasreefit in increasing the
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No Power SW-only
Management IPD ISR (PAVM) HW-only HW-SW
Energy Consumption 397.157 225.84J 91.03J 137.11J 125.15J 110.08J
Average Power 55.80 W 3173 W 12.79 W 19.26 W 17.58 W 15.47 W
Average Response Time 139.64 149.42 932.27 150.23 151.31 152.58
Delayed Accesses Due to PD 0 14,760,164 0 12,651,574| 14,721,606| 12,637,407
Delayed Accesses Due to SR 0 0 4,297,173 348 16,944 6,091

Table 3.8: Summary of Mixed workload #3. All timings are intusf cycles.

No Power SW-only
Management IPD ISR (PAVM) HW-only HW-SW
Energy Consumption 413.21J 230.49J 108.75J 135.02J 124.49J 108.24J
Average Power 54.84 W 30.59 W 14.43 W 17.92 W 16.52 W 14.36 W
Average Response Time 123.05 134.75 975.69 136.72 136.26 137.35
Delayed Accesses Due to PD 0 12,318,649 0 10,961,327| 12,292,630| 10,951,530
Delayed Accesses Due to SR 0 0 3,961,286 838 12,178 5,453

Table 3.9: Summary of Mixed workload #4. All timings are intusf cycles.

window size to 500Q:se¢ where we actually increased the average power dissiphyion

12.5-18.7% while only improved the average response tinte®yl.2%.

3.5 Conclusions

In this chapter, we proposed a novel power management tpoltihat makes use of
cooperation between the system software and the memorgotlentardware. It can sig-
nificantly improve the accuracy of the PMU’s threshold petidn logics. Using a full-
system simulator, our HW-SW cooperative approach is showronsume 8.18-14.02%
less energy than the hardware-only approach with simildopeance. It is also shown to
consume 49.98-68.13% less energy than the software-optpagh.

Alternative to this software-directed hardware power nggmaent technique, the hard-
ware can provide feedback to the system software to credtgathl energy saving oppor-
tunities. For example, the hardware can inform the OS hoguiatly (hot) or infrequently
(cold) each of the physical pages is being accessed, andStoause this information to
re-arrange memory pages within each process’s address. spas allows us to either (1)
run hot ranks hotter and cold ranks colder to create moreggisaving opportunities in the
cold ranks, or (2) balance power dissipation on each rankemdve hot spots. This is the
main focus of Chapter 4.

Additionally, we would also like to explore direct coopeoat between applications
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Window HW-only HW-SW
Size | Avg Power| Avg Rsp Time| Avg Power| Avg Rsp Time
10 us 8.68W | 225.43 cycles| 7.84W | 216.61 cycles
Low-Mem | 500us 16.18 W | 128.96 cycles| 13.48 W | 130.47 cycles
5000pus | 19.00W | 131.64 cycles| 17.00 W | 128.88 cycles
10 us 12.65W | 165.45 cycles| 11.35W | 167.03 cycles
High-Mem | 500 us 18.71 W | 145.94 cycles| 16.07 W | 148.64 cycles
5000pus | 21.05W | 145.01 cycles| 18.39 W | 148.22 cycles
10 us 10.14 W | 175.32 cycles| 9.21 W 173.22 cycles
Mixed#1 | 500us 16.92W | 137.25 cycles| 14.42 W | 138.93 cycles
5000pus | 20.09W | 136.65cycles| 17.83W | 138.27 cycles
10 us 11.05W | 180.16 cycles| 10.32W | 177.36 cycles
Mixed#2 | 500us 17.13W | 155.07 cycles| 15.13W | 155.17 cycles
5000ps | 19.35W | 154.46 cycles| 17.73W | 154.62 cycles
10 us 11.16 W | 176.25 cycles| 10.31W | 175.53 cycles
Mixed#3 | 500us 1758 W | 151.31 cycles| 15.47 W | 152.58 cycles
5000pus | 20.47 W | 151.48 cycles| 18.67 W | 152.03 cycles
10 us 10.09 W | 182.30 cycles| 9.35W 179.58 cycles
Mixed#4 | 500us 16.52 W | 136.26 cycles| 14.36 W | 137.35 cycles
5000pus | 18.56 W | 136.09 cycles| 17.32 W | 136.78 cycles

Table 3.10: Comparing HW-only against HW-SW when varyirghindow size.

and the PMU. As applications themselves know more about thiire memory access
behavior than the OS. Such information will be valuable ® ttremory controller in its

prediction logics, and thus, can be used to further enhdrecproposed system.
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CHAPTER 4

Active Memory-Traffic Reshaping

4.1 Motivation

In the previous chapter, we have shown that hardware tegbsigan save a significant
amount of energy by using fine-grained monitoring and povegrtrol mechanisms to ob-
serve and take advantage of the idle periods in memory r&ddwever, not all idle periods
can be exploited because state transitions take a norgitdglamount of time and energy.
Only idle periods longer than tHaeak-even tim@5] are beneficial to transition to lower
power states. The break-even times of different low-povates can vary significantly,
and deeper power-saving states usually have longer breaktienes as more components
are disabled in these states and would take more time andyeteere-enable them be-
fore any new memory requests can be serviced. Therefor#fjdiemetly utilize the deeper
power-saving states, having long and contiguous idle gderilmmemory traffic is essential.

Unfortunately these long idle periods are not commonly tbunrealistic workloads
as physical memory is usually randomly accessed and drigarpletely by the current
process’s execution. As existing power-management tqakesi only passively monitor
memory traffic, the deeper power-saving states are rarély duploited. In this chapter,
we propose a new technique that minimizes short and unustbleeriods for power sav-
ings by aggregating them to create longer ones. As a residsbfping the memory traffic
in such a way, existing power management techniques ard@bbake better use of the

idleness in the memory, thus saving more energy. LeletcK. [25] briefly mentioned
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Figure 4.1: (a) Bank-fill interleave: consecutive cachedifCL) are sequenced on the
same bank until the bank is full. (b) Bank-spread interleaansecutive cache lines are

round-robined across the banks.

a frequency-based technique that is similar to our work ttoey failed to recognize how
such technique can be used to complement existing poweageament techniques. Fur-
thermore, unlike their work, we propose a practical techeitipat could be implemented in
real systems using conventional operating systems andvaegd A more thorough evalu-
ation is also presented here to fully assess the benefitsrabtéms of this technique.

The rest of this chapter is organized as follows. Sectionfils discusses memory
interleave schemes and their effect on power managemerttosd.3 gives some general
intuitions about why passive power management is ineffi@ad how we can benefit from
active management. Section 4.4 describes a practicalitpehthat we can use to reshape
memory traffic to our benefits. In Section 4.5, we evaluateptios and cons of this tech-
nique using SPEC benchmarks. Finally, in Section 4.6, welode and highlight some

possible future works.

4.2 Memory Interleaving

In this section, we describe how different interleave sab&oan be applied to various
levels of the memory hierarchy. We look at two types of irdavie schemesspreadand
fill, which are already implemented in many existing serveresgst Bank is the lowest
level where memory interleave can be applied. The two waystésleave bank-filland
bank-spreadare shown in Figure 4.1. In bank-fill interleave, conse@itache lines are
placed sequentially next to each other to fill up the wholekbance a bank is full, the

next cache line is placed at the beginning of the next bankbalmk-spread interleave,
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Figure 4.2: (a) Rank-fill interleave: consecutive cachedifCL) are sequenced on the
same rank until the rank is full. (b) Rank-spread interleas@nsecutive cache lines are

round-robined across the ranks.

consecutive cache lines are placed round-robin acrosamkshwithin a rank. In terms of
performance, bank-spread is generally better than bankFfie reason is that due to data
locality, sequential accesses are very common (i.e., @fgncache lines are likely to be
accessed closely in time). Bank-spread performs muchrkibeie bank-fill in sequential
accesses because in the case of bank-spread, these sHoperdsses can be serviced
simultaneously by all the banks in the rank, whereas in tke ofbank-fill, these sequential
accesses will be serviced by only a single bank, thus reguhilonger queuing delays and
larger average response time. Furthermore, since theesnhahit in power management
in the memory is a rank, we cannot exploit these idle banksave sdditional energy.
Therefore, not only bank-fill negatively impacts perforroamue to its inability to use the
all banks efficiently, but it also has no energy benefits. mrést of the chapter, we will
only consider bank-spread interleave.

Similarly, spread and fill interleave schemes can also bé&eappt the rank level, and
they are orthogonal to the interleave schemes used at theldaai. Rank-filland Rank-
spreadinterleaves are shown in Figure 4.2. Again, spread integlé&agenerally better in
performance as it can more efficiently utilize all the rartkewever, in terms of power, fill

tends to be more efficient. This can be shown in an exampleguar€i4.3. We show the
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Figure 4.3:An example that shows two bursts of sequential accesses gn@orny system with 4
ranks. Using rank-fill interleave, there are usually mord kmger idle periods between memory
accesses that can be used for saving energy, whereas imiispgeead case, each time a burst of
sequential memory requests occurs, all the ranks are tduthes making the average idle time
smaller. However, when performing power management, loitie times are crucial to have for

entering some of the deep power-saving states.

performance and energy tradeoff using different rank ieéae schemes in Section 4.5.

4.3 Active vs. Passive Power Management

Even though read and write operations dissipate the mostiainod power, they do not
consume a significant amount of energy due to their shorttidaralnstead, most of the
energy are consumed when memory is idling. We show in Figutehat for a SPECjbb
workload, energy is mostly consumed in the Precharge statbyaperipheral components,
i.e., PLL and registers. This power can be significantly oediuby transitioning memory
ranks and the peripheral components to a low-power stategligie periods.

Powerdown is one of the two low-power states implementetiénDDR memory ar-
chitecture, and it uses 31% of the Precharge power. Havitygeoh ns resynchronization
latency, using Powerdown, power can be reduced even witth she periods; however, it
is not nearly as power-efficient as the Self Refresh stat@envle can also put the PLL and
the registers to their low-power state. Its potential beéngitlearly shown in Figure 4.4.
However, due to having a much longer resynchronizatiomtatevhen exiting from Self

Refresh, idle periods of at least 18ecare needed just to break even. This is more than
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Figure 4.4: Breakdown of the energy consumed by DRAM.

three orders-of-magnitude longer than the break-even fimentering Powerdown. We
calculate the break-even time using the Ener@glay metric as described in [45].

Memory accesses

S— N N N O O O O

I (e
Altered memory traffic u u >
H = "

| Self Refresh M Powerdown W Standby|

Figure 4.5: In the first case (above figure), the gaps betweesecutive memory accesses
are too short for entering low-power states to have any kenefi the second case, by
delaying and batching memory accesses, we can create lahg@eriods, thus allowing

power management to take advantage of some deeper poweg-states.

Due to the randomness in memory accesses, long idle peniedarely observed in
realistic workloads. As a result, it often inhibits the ugeSelf Refresh, which severely
limits the amount of power that can be saved from using exggtower-management tech-
niques. This is illustrated by an example shown in Figure wWiere we show that simply

making power-management decisions based on the monitceatbry traffic is often not
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Figure 4.6: An example showing that if memory traffic is lafshaped, power management
cannot take full advantage of deeper power-saving statee snost idle periods are too

short.

enough—the observed memory traffic might not present thessaecy energy-saving op-
portunities. However, if we can alter the traffic pattern ineatain way, it is possible to
create longer idle periods, from which power can be morectifely reduced. Unfortu-
nately, the particular technique we show in Figure 4.5 isveoy useful in practice as we
cannot control memory accesses at such a fine granularitgitiéually, by delaying and
batching memory accesses, we will pay a severe performaradtp. In the following sec-
tion, we illustrate a more practical and low-overhead metboreshaping memory traffic

to improve energy-efficiency.

4.4 Memory Traffic Reshaping

To reshape the memory traffic to our benefit, we must make memmresses less
random and more controllable. Conventional memory traffieroseems random because
(1) the operating system arbitrarily maps virtual pageshysical pages, and (2) different
pages are often accessed very differently at run-time. Asaltrof such randomness, the
observed interarrival characteristic of memory requestdten not favorable for reducing

power.
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Figure 4.7: An example showing that if memory traffic can baskly controlled (e.g., by
migrating pages), some ranks will, as a result, have mudaieloidle periods, thus allowing

the use of the deeper power-saving states.

To give an example, we use a 4-rank system shown in FigureDué.to the arbitrary
OS'’s page mapping, memory requests will be randomly digkeitbacross the 4 ranks. This
creates a large number of small and medium-sized idle peritide smaller idle periods are
often completely useless and cannot be used for savingyena&sgfor the medium-sized
ones, we can transition memory devices to Powerdown andnodtaoderate amount of
power savings. However, to significantly reduce power, wedrte take advantage of Self
Refresh’s ultra low-power property. Unfortunately, asaihde seen from this example, due

to the lack of long idle periods, Self Refresh is very infregtly utilized.

4.4.1 HotRanks and Cold Ranks

To elongate idle periods, we introduce the conceptisadfandcold ranks. Hot ranks
are used to hold frequently accessed pages, which leaveguantly used and unmapped
pages on cold ranks. Hot ranks are ranks created by migfagiggently accessed memory
pages onto from the cold ranks. The mechanism to migratesgemy@ one rank to another
was previously described in full detail in [62]. The resultroaking this differentiation

among ranks is shown in Figure 4.7. Here we assume that Rank @ are used as hot
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ranks and Rank 2 and 3 are used as cold ranks. Essentiallyeweceeasing the utilization
of hot ranks and decreasing the utilization of cold ranksaesult, the additional memory
requests imposed upon these hot ranks will “fill-in” betwdenexisting idle gaps. As most
of these gaps were small and could not be used for saving powerays, by servicing ad-
ditional requests during such time, we can make more efficise of the power dissipated
by the hot ranks. This might cause hot ranks to lose some wisargng opportunities to
use Powerdown (e.g., Rank 1 shown in Figure 4.6 and Figuije ldu7 as a result of that,
more valuable opportunities are created on cold ranks wtherdeeper power-saving state,
Self Refresh, can be more utilized. In our experiments, wadathat we can save much
more energy on cold ranks than the additional energy thatomewme on hot ranks. We
were able to observe that the average interarrival time dah amks were elongated by

almost two orders-of-magnitude.

75
Percentile

90
Percentile

95
Percentile

99
Percentile

LowMem Workload

5.68%

14.27%

18.60%

25.81%

HighMem Workload

0.53%

1.49%

4.98%

16.38%

Table 4.1: Shows what percentage of memory pages is respp@ifai 75%, 90%, 95% or

99% of all memory accesses.

4.4.2 Reducing Migration Overhead

Migrating pages causes additional memory traffic, whichlte$n more queuing delays
and contentions. Therefore, only a small number of pagedeanoved without causing
noticeable overheads. Fortunately, empirical obsematfcom our experiments gave us
some hints that allow us to do just that and still be able thhaps the memory traffic
according to our needs. Memory traces collected from sewenkloads indicate that only
a small percentage of pages are responsible for a majorttyeofnemory traffic. This is
shown in Figure 4.8, and we summarize the results in Table Brbm this table, it is
clear that we can reshape the memory traffic to meet our needsdvating only a very
small percentage of pages. For example, if we want to co80% of all memory traffic,

we only need to control 1.5-14.3% of all pages. Only half efstihpages would need to
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Figure 4.8: Number of times each physical page in the mem®rgccessed for low
memory-intensive workload and high memory-intensive waall. These workloads are

described in Section 4.5.

be migrated because pages are randomly allocated, and agay&0% of the frequently
accessed pages should have already been allocated on taakeénd do not need to move
(this assumes that 50% of the memory ranks are used as hstaadlb0% as cold ranks).
Furthermore, since migration overhead is only a one-tinsg, ¢be longer a migrated page
stays hot, the more we can amortize its migration cost owe.tMWe can also think of other
heuristics that we can use to further reduce the number ofatigs and the migration
overheads. For example, we can use process profiling tor etdict the appropriate
initial location where we should allocate pages for eacle@se so that the number of page
migrations can be reduced. Additionally, we can reduce atign overhead by avoiding

moving heavily-shared pages, page-cache pages, and-batfee pages as there are more
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overheads in moving these types of pages. In particulargwera shared page, we would
need to change the page table entries of each of the procdss@sg this page; the more
processes sharing this page, the more page tables we waddmmodify. Therefore, the

best candidate pages to migrate are frequently accessedeypages.

4.4.3 Implementation

To determine which page to migrate, we keep a count of how ntiargs each page
was accessed. This is used by a kernel thread to find frequeartiéss pages on cold ranks
so these pages can be migrated. Currently, the page acnasistable is maintained by
the memory controller in our simulator. Alternatively, tb@me can be achieved by using
software page faults to avoid hardware modification—samgphiay be used to reduce page

fault overheads.

4.5 Evaluation

We use the same simulation environment, analysis toolsti®e2.5.1), and work-
loads (Section 2.5.2) that we have used in the previous elaph Section 4.5.1, we first
compare power and performance implications between rdlrdatl rank-spread interleave
schemes. Then Section 4.5.2 describes how memory traftfi@pesy can significantly
improve performance and energy.

Our memory simulator can simulate various power-manageteehniques. To com-
pare our technique with the previously-proposed ones, akiate five techniques in power

and performance, which are listed as follows.

¢ No Power Management (NOPM):Here, no power management is used, and ranks

are transitioned to Precharge when they are idle.

e Immediate Powerdown (IPD): This is the simplest form of hardware power man-
agement. Itis a static technique where the memory contiioti@ediately transitions

a rank to Powerdown when all memory requests on this rank t@vpleted.
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e Immediate Self Refresh (ISR):Same as IPD, but transitions to Self Refresh instead

of to Powerdown.

e Dynamic Hardware Technique (HW): This is a dynamic hardware power-management

technique and is similar to the History-Based Predictocdeed in [41]. It moni-
tors past memory accesses, and based on which, prediathaftdong of an idle
period should it transition a rank to Self Refresh (the thoéd prediction algorithm
is shown in Figure 2.9). Transitions to Powerdown have a teeshold, which was

previously shown to be the most efficient [25].

e HW with Reshaped Memory Traffic (HW): Using the same HW technique as
above but with a reshaped memory traffic. The HiW, represents the percentage
of memory pages that we migrate when reshaping the memdfig tize., HW, is

the same as HW.

4.5.1 Rank Interleaving

When no power management is performed, results are showahle B.2. As ex-
pected, power stays the same when varying the rank interlsgveme. However, as was
mentioned previously, rank-spread is better than rankaftitrms of performance. Specifi-
cally, rank-spread has a 9.0% and 14.3% faster averagensgime than rank-fill for the
low memory-intensive and the high memory-intensive woakl®, respectively.

Rank-spread’s performance benefit comes from higher atiitin of all the ranks. How-
ever, this leaves the interarrival time between conseeuatiemory requests smaller than the
rank-spread interleave, thus having negative impact wberepmanagement is applied. In
Table 4.3, we compare rank-spread and rank-fill under HWdws, despite some perfor-
mance benefits, rank-spread is 80.8% and 72.5% less e#de¢bt@wn rank-fill when power
management is applied. Therefore, unless performancéicatm a system, the rank-fill

interleave scheme should be used to maximize energy savings
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Figure 4.9: Part (a) shows idle time characteristic of a hot rank beftet)(and after (right)

migrating frequently accessed pages. Part (b) shows itlke ¢tharacteristic of a cold rank before

(left) and after (right) migrating frequently accessedgmadrhese are derived from the low memory-

intensive workload. High memory-intensive workload gigasilar result, thus is omitted here.
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. Low memory intensive workload High memory intensive workload
Interleaving
Power | Norm Runtime| Avg Resp Time| Power | Norm Runtime | Avg Resp Time
Rank-fill 49.97 W 1.00 72.01ns 52.15 W 1.00 84.13 ns
Rank-spread| 49.97 W 0.99 65.55 ns 52.15W 0.93 72.09 ns

Table 4.2: Comparing rank interleave schemes for NOPM.

. Low memory intensive workload High memory intensive workload
Interleaving
Power [ Norm Runtime [ Avg Resp Time| Power [ Norm Runtime [ Avg Resp Time
Rank-fill 10.24 W 1.00 90.14 ns 1479 W 1.00 93.21ns
Rank-spread| 18.51 W 0.98 80.69 ns 2447 W 0.91 78.66 ns

Table 4.3: Comparing rank interleave schemes when poweamaged by HW.

4.5.2 Memory Traffic Reshaping

Results for the low memory-intensive and the high memotgrisive workloads are
shown in Tables 4.4 and 4.5, respectively. In these tablessivow the average power
dissipation, normalized runtime (with respect to no powanagement), and the average
response time of memory accesses for each of the power-maesg techniques. We
can see that even with the simplest static power managee@mtijue, IPD, a significant
amount of power (45.73-48.89%) can be reduced without ogusiuch impact on the
performance (1.8-5.0%). Using ISR, additional power cameloeiced. However, due to
having a static policy to transition into Self Refresh andw@mhigher resynchronization
latency when exiting from Self Refresh, ISR’s overwhelmpegformance penalty (99.2—
279.5%) makes it almost impractical to use in realistic imaikls. On the other hand,
using the dynamic hardware technique (HW), we show thatlfffSefresh is utilized more
carefully, a significant amount of power can be reduced @478.57%) but without sig-

nificantly affecting the performance (3.5-5.6%).

Effect of Reshaping on Memory Traffic

Among these four techniques, HW is by far the most effectednse it can dynami-
cally adapt its power-management decisions as memoryctsadhiaracteristic changes. To
understand the implications of memory traffic reshaping revevaluated HW with a re-
shaped memory traffic. However, before we delve into thatwildirst look at the effects
of migrating frequently accessed pages from cold ranks taditks on memory traffic.

In Figure 4.9, we show how the idle time characteristic (itkee distribution of the total
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Normalized | Normalized Average
Power Management  Power Runtime Runtime | Response Time
NOPM 49.97 W 1.000 49.97 72.01ns
IPD 25.54 W 1.018 26.00 82.17 ns
ISR 6.23 W 1.992 12.41 697.60 ns
HW 10.24 W 1.035 10.60 90.14 ns
NOPM5 49.99 W 1.025 51.24 59.78 ns
IPDs 25.55 W 1.051 26.85 70.47 ns
ISRs 6.17 W 1.959 12.09 448.49 ns
HW5 6.26 W 1.056 6.61 95.91 ns

Table 4.4: Summary of the energy and performance resulthi&low memory-intensive

workload.
Normalized | Normalized Average
Power Management  Power Runtime Runtime | Response Time
NOPM 52.15W 1.000 52.15 84.13 ns
IPD 28.30 W 1.050 29.72 92.18 ns
ISR 14.47 W 3.795 54.92 537.45ns
HW 14.79 W 1.056 15.62 93.21 ns
NOPMs5 52.16 W 1.105 57.63 64.85 ns
IPDs5 28.24 W 1.187 33.52 74.49 ns
ISR5 13.16 W 3.556 46.80 384.99 ns
HW5 9.52W 1.190 11.33 106.25 ns

Table 4.5: Summary of the energy and performance resulthéinigh memory-intensive

workload.

idle time among different-sized idle periods) on a hot ranll a cold rank has changed
after we reshaped the memory traffic. Due to having to semioee memory requests,
the average idle period on hot ranks has decreased from 368D4v2 ns. This causes
memory devices to lose opportunities to enter low-poweestaut since we can benefit
from entering Powerdown even with short idle periods, notimis really lost here. By

redirecting a significant number of memory accesses away frold ranks to these hot
ranks, much longer idle periods are created on cold rankstow®l that after the migra-

tion of frequently accessed pages, the average idle pena@dld ranks has increased from
1520 nsto 122210 ns (Figure 4.9(b)). This created more bia@pportunities where Self
Refresh can be exploited.

The result of applying the HW technique to a reshaped menraffictis shown in
Tables 4.4 and 4.5, labeled H3V;, for the low memory-intensive and the high memory-
intensive workloads, respectively. Here, we migrated 5%llofnemory pages to reshape
the memory traffic. By doing so, we achieved 35.63-38.87%tiaddl power savings

than the original HW technique. However, due to the add#iaontention created on
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Figure 4.10: Effects of actively reshaping memory trafficrbigrating 1%, 5%, and 10%
of pages for the low memory-intensive workload (above) agt memory-intensive work-

load (below).

the hot ranks and the extra memory accesses needed to npagds, the performance
is degraded. In the low memory-intensive workload, thegrentince degradation is only
2.0% compared to HW. However, in the high memory-intensieekload, performance is
degraded by 12.7%. The reason for this is that pages are madh frequently accessed
in the high memory-intensive workloddand as a result of migrating frequently accessed
pages onto the hot ranks, the additional contention createlot ranks is much more

severe in the high memory-intensive workload.

1Both workloads run for the same amount of time, but the higmomg-intensive workload has 6 times
more memory accesses than the low memory-intensive watkloa
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Now, we look at the effect of reshaping memory traffic on statbwer management
techniques. Results are shown in the bottom half of Tableard 4.5, for the low memory-
intensive and the high memory-intensive workloads, resypedy. Here we use the notation
of X, to denote that power is managed by using technique X to mapager with the
memory traffic that is reshaped by migrating y% of all pagesstFwe compare NOPM
with NOPMj5;, and we can see that power dissipation is virtually unchdangee very small
amount of increase in power dissipation is caused by pageatiog, which as we can see
if negligible. This makes us more confident that the overh&fgaage migration can be
neglected, as we initially expected. With all the frequgattcessed pages aggregated to a
small number of hot ranks, performance, on the other handpig affected (2.0-10.0%)
due to contention. When compariigD5; andISR5 with IPD and ISR, we can see that
they performed comparably. Without the ability to adapt awically, it is difficult for
these static techniques to take advantage of the newlyecréatger idle periods.

To study the effect of memory traffic reshaping in more deted compare the results
of migrating 1%, 5%, and 10% of pages. These are shown in &igur0, where we
normalized the average power and average runtime to tha\ohiih a unshaped memory
traffic. Here we can see, migrating only 1% of pages gives bmlfged benefits in power
reduction. On the other hand, migrating 10% of pages doegiwetany additional energy
benefit beyond that of migrating 5%. In addition, it also stéffrom more performance
penalty due to having to migrate more pages. Therefore,atigy 5% of pages gives the

best result for the workloads we ran.

Discussion

When memory is frequently accessed, as in the high memaeoeynsive workload, per-
formance degradation due to contention on hot ranks can bbe ai@ concern. However,
this can be alleviated by implementing a detection mechathst stops migration or even
triggers a “reverse migration” when excessive contentsoobiserved on hot ranks. How-
ever, this only minimally alleviates the problem. As we caa om Figure 4.10, migrating
1% as opposed to 5% of pages does not give much benefit in redoerformance penalty.

To solve the problem at its root, it calls for an alternativeimmemory design, where
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we should use high-performance, highly parallel memorp&aranks and low-performance
/ power memory for cold ranks. This allows for faster accése tfor more frequently
accessed pages and minimizes contentions on hot rankssolafibws for more energy
savings with the use of low-power memory devices to buildlcahks. Additionally, by
using low-performance / power memory as cold ranks, sucerbgeénous main memory

design can potentially lower the monetary cost of buildimg main memory subsystem.

4.6 Conclusions

In this chapter, we propose a technique to actively reshagraory traffic to produce
longer idle periods so we can more effectively exploit idiesin the memory. Our exten-
sive simulation in a multitasking system shows that a 3538387% additional energy can
be saved by complementing existing power-managementitpamwith reshaped mem-
ory traffic. Our result also indicates that an alternativémmaemory design could be more
efficient than today’s homogenous design in terms of powlaiefcy, performance, and

cost.
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CHAPTERS

FS’: Free Space File System

5.1 Motivation

Magnetic disks have been the primary means of storing digfiarmation on comput-
ers since 1957 when IBM first introduced RAMAC. Various asp@t magnetic disk tech-
nology, such as recording density, cost, and reliabiligyenbeen significantly improved
over the years—the disk recording density has increaseddrg than 60% annually and
the price-per-gigabyte has dropped by 35-40% annually][X2dwever, due to the slowly-
improving mechanical positioning components (i.e., arseatbly and rotating platters) of
the disk, disks’ performance is falling behind the rest efslgstem and has become a major
bottleneck to overall system performance.

To reduce the head positioning latencies (i.e., seek tirde@tational delay), we pro-
pose a novel technigue thdynamicallyplaces copies of data in file systenfree blocks
according to the disk access patterns observed at runtinseon& or more replicas can
now be accessed in addition to their original data blockpshay the “nearest” replica that
provides fastest access can reduce the amount of time Qiskpkérations take.

We implemented and evaluated a prototype file system baséuequopular Ext2 file
system. In our prototype, since the file system layout is fieationly by using the free /
unused disk space (hence the ndfmee Space File Systerar FS), users are completely
oblivious to how the file system layout is modified in the backond; they will only notice

performance improvements over time. For several worklegglsan under Linux, FSis
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shown to have reduced disk access time by 41-68% (as a résuB76-78% shorter seek
time and a 31-68% shorter rotational delay) resulting in-a3%86 overall user-perceived
performance improvement. The reduced disk access timdeadso a 40—71% per-disk-

access energy reduction.

5.1.1 Motivating Example

To minimize mechanical delays in magnetic disks, tradaidite systems tend to place
objects that are likely to be accessed together so that tieegi@se to one another on the
disk. For example, BSD UNIX Fast File System (FFS) [34] usesdoncept otylinder
group (one or more physically-adjacent cylinders) to clusteatedd data blocks and their
meta-data together. For some workloads, this method caifisantly improve both disks’
I/0O latency and throughput. But for many other workloads ich the disk access pattern
deviates from that was assumed by the file system, it maytressignificantly degraded
performance. This problem occurs because the file systemaisle to take into account
the disk access patterns at runtime when making disk layemisins. This inability to use
the observedlisk access patterns to make data placement decision®adlltb poor disk
utilization.

Using a simple example, we now show how traditional file aystean sometimes per-
form poorly even for common workloads. In this example, wenitared disk accesses
during the execution of a CV8pdatecommand in a local CVS directory containing the
Linux 2.6.7 kernel source tree. As Figure 5.1(a) shows, atratl accesses are concen-
trated in two narrow regions of the disk, corresponding ®lttations at which the local
CVS directory and the central CVS repository are placed leyfilk system (Ext2). By
using file directory structures, Ext2 is shown to do well instering files that are statically
related. Unfortunately, when accesses to files from twooregare interleaved, the disk
head will have to move back and forth constantly between iffiereint regions (as shown
in Figure 5.1(b)), resulting in poor disk performance intsgf the efforts that were made
by Ext2 for reasonable placements. Consequently, useexpkrience longer delays and

the disk will consume more energy. In our experiment, the Q@&ate command took 33

99



Disk Sector Number

1.5e+08

1e+08

5e+07

Disk Sloector Acceslsed

10000 20000

Runtime (msec)

(@)

30000

40000

Disk Sector Number

1.5e+08 |-

1le+08

5e+07

0
8000

T T T
Disk Head Movement ——

8200 8400 8600
Runtime (msec)

(b)

8800

9000

Figure 5.1: Part (a) shows disk sectors that were accessed edecuting &vs -q update
command within a CVS local directory containing the Linu®g.Z.source code. Part (b)

shows the disk head movement within a 1-second window of igletchce shown in part

().

seconds to finish on an Ext2 file system using the anticipat@rgcheduler. By managing
the disk layout dynamically, the same update command tobkashseconds to complete
in our implementation of F5

Traditional file systems perform well for most types of warkdls and not so well for
others. We must, therefore, be able to first identify the $ygfevorkloads and environments
that traditional file systems generally perform poorlytéisbelow), and then develop good

performance-improving solutions for them.

Shared systems:File servers, mail servers, and web servers are all exarpkeshared
system, on which multiple users are allowed to work and coresslystem resources
independently of each other. Problems arise when multipégsuare concurrently
accessing the storage system (whether it is a single disk array of disks). As far
as the file system is concerned, files of one particular ugec@mpletely indepen-
dent of those of other users, and therefore, are unlikeletstbred physically close
to those belong to other users. However, having concurishtatcesses from mul-
tiple users can potentially cause the storage system tarbebeavily multiplexed

(therefore less efficiently utilized) between severalissdly unrelated, and poten-
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tially distant, disk regions. A PC is also a shared systerh siinilar problems; its
disk, instead of being shared among multiple users, is dramong concurrently

executing processes.

Database systemsin database systems, data and indices are often storedgasfilas
on top of existing file systems. However, as file systems alekmewn to be in-
efficient in storing large files when they are not sequentiaticessed (e.g., transac-
tion processing), performance can be severely limited byutiderlying file system.
Therefore, for many commercial database systems [50, 68}, aften manage disk
layout themselves to achieve higher performance. How#vierincreases complex-
ity considerably in their implementation, and for this @asmany database sys-

tems [50, 65,92, 113] still rely on file systems for data gjerand retrieval.

Systems using shared libraries:Shared libraries have been used extensively by most OSs
as they can significantly reduce the size of executable ieiman disk and in mem-
ory [93]. As large applications are increasingly dependarghared libraries, placing
shared libraries closer to application images on disk canltrén a shorter load time.
However, since multiple applications can share the samefddtraries, determin-
ing where on disk to place these shared libraries can begmudilc for existing file
systems as positioning a library closer to one applicatiag mcrease its distance to

others that make use of it.

5.1.2 Dynamic Management of Disk Layout

Many components of an operating system—those respongibleetworking, mem-
ory management, and CPU scheduling—will re-tune theirnakpolicies/algorithms as
system state changes so they can most efficiently utilizéaéa resources. Yet, the file
system, which is responsible for managing a slow hardwareegs often allowed to op-
erate inefficiently for the entire life span of the systentyirg only on very simple static
heuristics. We argue, like other parts of the OS, the fileegsgsthould also have its own
runtime component. This allows the file system to detect amdpensate for any poorly-

placed data blocks it has made statically. To achieve thrspus schemes [2,51,104,123]
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have been proposed in the past. Unfortunately, there aszaenajor drawbacks in these
schemes, which limited their usefulness to be mostly withearesearch community. Be-

low, we summarize these drawbacks and discuss our solutions

¢ In previous approaches, when disk layout is modified to im@noerformance, the
most frequently-accessed data are always shuffled towardnitidle of the disk.
However, as frequently-accessed data may change overttimeyould require re-
shuffling the layout every time the disk access pattern cbangve will show later
that this re-shuffling is actually unnecessary in the preserf good reference local-
ity and merely incurs additional migration overheads withany benefit. Instead,
blocks should be rearranged only when they are accessethéodmit lack spatial
locality, i.e., those that cause long seeks and long ratatidelays between accesses.

This can significantly reduce the number of replicationgriguroving disk layout.

e When blocks are moved from their original locations they riese useful data se-
quentiality. Instead, blocks should beplicatedso as to improve both random and
sequential accesses. Improving performance for one wadkdd the expense of an-
other is something we would like to avoid. However, repimatonsumes additional
disk capacity and introduces complexities in maintainiogsistency between origi-

nal disk blocks and their replicas. These issues will beesd#rd in the next section.

e Using only a narrow region in the middle of the disk to reagamisk layout is
not always practical if the rearrangement is to be done enlecause interference
with foreground tasks has to be considered. Interferennebeasignificant when
foreground tasks are accessing disk regions that are farfa@ra the middle region.
We will demonstrate ways to minimize this interference bingghe available free

disk space near current disk head position.

e Some previous techniques reserve a fixed amount of storggeitajust for rear-
ranging disk layout. This is intrusive, as users can no longéze the full capacity
of their disk. By contrast, using only free disk space is clatgly transparent to
users, and instead of being wasted, free disk space can natilibed to our ben-

efit. To hide from users the fact that some of their disk cdpasibeing used to
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Figure 5.2: Breakdown of the disk access time in 4 driveggirapfrom a top-of-the-line
15000-RPM SCSi drive to a slow 5400-RPM IDE laptop drive.

hold replicas, we need to invalidate and free replicas duieken free disk capacity
becomes limited. As the amount of free disk space can vasytebhnique provides
a variable quality of service, where the degree of perfocaamprovement we can
achieve depends on the amount of free disk space that isblailHowever, empir-
ical evidence shows that plenty of free disk space can bedfoutoday’s computer

systems, so this is rarely a problem.

e Most of previous work is either purely theoretical or basedtace analysis. We
implemented a real system and evaluated it using both sgperworkloads and
common day-to-day single-user workloads, demonstratgrgfecant benefits of us-
ing FS.

Reducing disk head positioning latencies can make a signifienpact on disk per-
formance. This is illustrated in Figure 5.2, where the disgess time of 4 different disk
drives is broken down to components: transfer time, seek,tand rotational delay. This
figure shows that transfer time—the only time during whicskds doing useful work—is
dwarfed by seek time and rotational delay. In a random disklwad (as shown in this
figure), seek time is by far the most dominating componentwéi@r, rotational delay
can become the dominating component when disk accesstioradiches 70% (Lumbt

al. [83] studied this in more detail). In addition to improvingrppormance, reduction in
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seek time (distance) also saves energy as disk dissipatadsstastial amount of power
when seeking (i.e., accelerating and decelerating disthat30-40g).

The rest of this chapter is organized as follows. In Sectidh #e first give some
background in magnetic storage technology and discusshtrént implications on per-
formance, reliability, and energy-efficiency. Section §ides an overview of our system
design. Section 5.4 discusses implementation details opaiotype based on the Ext2
file system. Section 5.5 presents and analyzes experimestats of F$ and compares
it with Ext2. Future research directions are discussed ¢ti@e5.6, and the chapter con-

cludes with Section 5.7.

5.2 Background

In this section, we dissect a disk drive to understand homiésnal components work
together to accomplish basic I/O operations. Disk drivestaio both mechanical and
electronic parts. The mechanical portion is consisted adnging components (i.e., disk
platters and read / write heads) and positioning comporn(@ets an arm assembly that
moves the heads into the correct position and a track-faligwsystem that keeps it in
place). The controller portion contains a microprocessache memory, and an 1/O bus
interface. The disk controller manages the storage anebvatrof data to and from the
disk and performs mappings between the logical addresestep by the CPU or DMA
controller and the physical disk location. We now detail thechanical components and

the controller components, each in turn, in the followingtems.

5.2.1 Mechanical Components

Modern disks range in size from 1 to 8 inches in diameter: 2.5, and 5.25 inches
are the most common sizes. Smaller disks have less surfeaead thus cannot store as
much data as their larger counterparts; however, they coasess power, can spin up and
down faster, and have smaller distances to seek. These atisksarticularly popular in

mobile devices, e.g., laptops and PDAs. As for their largemterparts, these disks offer
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additional capacity, more resistance to shocks, and mOredhdwidth, which are essential
to large server systems.

Storage density is one of the most rapidly advancing areamgnetic storage technol-
ogy, and its rapid growth is allowing us to store an ever iasieg amount of digital data
being generated. This rapid increase in storage densitgs@® a result of improvements
in two areas. The firstis linear recording density, whichatedmined by the maximum rate
of flux change that can be recorded and read back, and thedsisdoack-to-track distance.
Being able to squeeze more bits per track and more tracksigesignificantly increased
disks’ areal density. However, before the 90’s, disks’ bdeasity was only improving at a
rate of 25% annually. At that time, semiconductor (DRAM) vaalwancing at a faster pace
of 40% annually, and due to which, was about to replace magdisks as a cheaper and
higher density alternative. It never happened. In 1991atkal density of magnetic disks
had a sudden jump. Since then, it has sustained an amazinglagnowth rate of 60%.
This dramatic increase in areal density has allowed laggaaty drives to be manufac-
tured with fewer platters and actuators, and consequemetlyced the price-per-gigabyte
by 35-40% annually.

In spite of the rapid increase in disk density, large-cagadisks built from a large
number of platters are sometimes needed. More platterssdifgher capacity, but they
also require more time to spin up and down, and more powerdp #&m spinning. Each
platter may have either one or two recording surfaces, vathdaving a head responsible
for writing and reading magnetic flux variations to store agitieve data. However, there
can only be one active head at any instant in time since teengly a single read-write data
channel that is shared among all the heads. This channeddsfaisencoding and decoding
data streams into or from a series of magnetic phase chahigisdimits disk performance
somewhat, but its impact on disks’ performance is fairly onivhen compared to other
factors.

Disks have always been one of the slowest components in demgyestems. Over the
years, its access time has improved by only 7-10% per ye&if.[Odmpared to the rate of
improvement in solid-state devices (e.g., microprocessmhe, and DRAM), which has

been following Moore’s Law closely in the past two decadask s actually becoming
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relatively slower over time. This causes an alarming ratdigparity between the speed
of accessing elements (e.g., microprocessor) and thesattetements (e.qg., disk). This
widening disparity between components’ speeds is oftesdlece of performance ineffi-
ciency in many systems.

Disks are slow and hard to speed up because it is very diffcsibeed up its mechan-
ical positioning delays—seek time and rotational delay.eAksoperation is composed of

the following phases.

Speedup:When the disk arm is accelerating and has not reached halfeo$eek

distance or its maximum velocity.

Coast:When the disk arm is moving at a constant speed of its maxinmelocity.

Slowdown:When the disk arm is decelerating until it rests close to tsred track.

Settle:When the disk arm slightly adjusted itself among few neighigptrack and

finally brought itself to rest close to the desired track.

Very short seeks (less than 2 to 4 cylinders) are dominatebéogettle time. In fact, a
seek may not even occur; the head may jasettleitself into position on the destination
track. Short seeks (less than 200 to 400 cylinders) spenadsalati their time in the accel-
eration and deceleration phase, and the time is propottioriae square root of the seek
distance plus the settle time. Long seek operations spersti @hdheir time moving at a
constant speed, taking an amount of time that is linearlp@tonal to the seek distance
plus a constant overhead.

Once the disk arm is positioned over the track that contdiasdata of interest (i.e.,
at the completion of a seek), the disk waits forogation latency which can vary from
zero to a full disk rotation time, before the head is posgiudirectly above the first sector
of the data to be accessed. With disk platters rotating iksi®p on a central spindle,
7200 RPM is the most common rotational speed among modeks, diswever, 10000
and 15000 RPM disks are also becoming more common in higlsgstdms. The median

rotation speed is increasing at a compound rate of about k2ipeper year. This allows
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a higher transfer rate and shortens the rotation latencfortimately, power dissipation is
also increased.

We will see shortly, it is due to these mechanical and electagnetic components that
disk is slow compared to other components in the system. Bjoeeifically, this slowness
is mainly due to seeking and waiting for rotation delay. W4 discuss ways to reduce

them shortly.

5.2.2 Controller Components

The disk controller mediates access to the mechanical coemts, runs the track-
following system, transfers data between the disk and ientd, and, in many cases,
manages an embedded cache. Controllers are built arous@ibpeesigned embedded
processors, which often have digital signal processinglaiiify and special interfaces that
let them control hardware directly. The trend is toward nuoeerful controllers for han-
dling increasingly sophisticated interfaces and for raugicosts by replacing previously

dedicated electronic components with firmware.

5.2.3 Performance, Fault-Tolerance, and Power

In the following subsections, we will briefly discuss theetrmajors areas of disk
drives—performance, fault-tolerance, and energy-efimye We delve into techniques for

improving these areas in Section 5.3.

Performance

Magnetic disk is much slower to access than solid-statecdeviDRAM takes tens of
nanoseconds to access, whereas magnetic disk would takeftelliseconds to access—
almost six orders-of-magnitude slower. The primary reas@slow is that disk access
time can be overwhelmingly dominated by overheads. Disksgxtime is consisted of (i)
seek timéTl’, (ii) rotation delay?’,., and (iii) transfer timd;, but it is only during the transfer
time, is the disk doing any useful work; boify and7, are overheads. As demonstrated

in [83], for a random workloadJ; is usually minuscule compared 1Q or 7., thus often
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resulting in poor disk utilization and slow disk access tinTéderefore, to improve disk

performance, we need to either reduce seek time or rotaélay,dor both.

Fault-Tolerance

Disk’s performance plays a critical role in the overall gysts performance, and there-
fore, is important to optimize. However, protecting dataiagt corruption and loss is
equally important, if not more. ldeally, we would like ouosige components to have
100% availability and never fail. However, in reality, hatigk failures are fairly common,
which is mainly due to its mechanical parts. The two most camnypes of failures in
hard disk are electronic failures and mechanical failuteselectronic failure occurs when
the controller board on the disk dies. This is most commoalysed by a transient elec-
trical surge. Luckily, in most cases, data are recoverabtée aftermath as disk platters
are usually left unscathed. To recover, it is often sufficterreplace the controller board
with an identical one from another drive. Mechanical fairon the other hand, have
more serious consequences. They can often render all datslonnrecoverable. Some
common causes of this type of failures include mechaniaatlsty contamination, conden-
sation, servo errors, and head crashes (cause approxmagel of the cases where data is
lost [56]). Mechanical failures occur fairly frequentlyygawithout means to guard against
them, all data on disk can disappear in a few seconds and Begoavery.

Various fault-tolerance techniques have been proposedopiy to protect against
data loss. Redundant Array of Inexpensive Disks, or RAID,[#&widely used by large
data centers, Internet service providers, corporatioms,exen individuals. It provides a
flexible way to tradeoff between performance, fault-tahee and cost. However, we feel

that additional fault-tolerance can be gained withoutifiaitrg the other dimensions.

Energy Efficiency

In both small mobile devices and large data centers, magdetks can dissipate a
significant percentage of the total power. This is also taredfta centers, where a large

number of high-performance and high-power disk drives Bvays kept in the full power
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mode. According to [4, 89], cost of electricity for poweriogmputing and cooling equip-
ments can be as much as 30% of the total cost of ownership (TfCf2fa centers. Among
various components of a data center, disk is one of the laopesumers of energy. A
recent industry report [12] shows that storage deviceswatdor almost 27% of the total
energy consumed in a data center. This problem is exacdrbgtie availability of faster
disks that consume more power, as well as the recent shift fape backup systems to
disk backup to speed up storage and retrieval operations.

Power management techniques that exploit idle periods e@e previously proposed
for magnetic disks. However, it was recently shown that fwer-type workload, most

idle periods are too small to be exploited for saving enebdy 132].

5.3 Design

This section details the design of ¥&n a single-disk system. Most of the techniques
used in building F&on a single-disk can be directly applied to an array of diskg.(
RAID), yielding a performance improvement similar to thandbe achieved on a single
disk (in addition to the performance improvements that camadhieved by RAID). More
on this will be discussed in Section 5.6.

FS differs from other dynamic disk layout techniques due maialits exploitation of
free disk space, which has a profound impact on our desiginaplé mentation decisions.
In the next section, we first characterize the availabilitfree disk space in a large uni-
versity computing environment and then describe how frek sipace can be used for our
purpose. Details on how to choose candidate blocks to egpliand how to use free disk
space to facilitate the replication of these blocks aremginehe following section. Then,
we describe the mechanisms we used to keep track of replthsromemory and on disk
so that we can quickly find all alternative locations whertada stored, and then choose

the “nearest” one that can be accessed fastest.
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Figure 5.3: This figure shows the amount of free disk spaciede on 242 disks from 22

public server machines.

5.3.1 Availability of Free Disk Space

Due to the rapid increase in disk recording density, mudleladisks can be built with
a fewer number of platters, reducing their manufacturingt sagnificantly. With bigger
and cheaper disks being widely available, we are much lasstr@ned by disk capacity,
and hence, are much more likely to leave a significant podfayur disk unused. This is
shown from our study of the 242 disks installed on the 22 pud#rvers maintained by the
University of Michigan’s EECS Department in April 2004. Tamount of unused capacity
that we have found on these disks is shown in Figure 5.3. Asave bBxpected, most of
the disks had a substantial amount of unused space—60% distkeehad more than 30%
unused capacity, and almost all the disks had at least 10%ednzapacity. Furthermore,
as file systems may reserve additional disk space for emgydeniministrative use, which
we did not account for in this study, our observation giveyg arlower bound of how much
free disk space there really was.

Our observation is consistent with the study done by Doueeat[19] who reported
an average use of only 53% of disk space among 4801 Windowsmarcomputers in a

commercial environment. This is a significant waste of resebecause, when disk space
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is not being used, it usually contributes nothing to useggplieations. So, we argue that
free disk space can be used to dynamically change disk lsmas to increase disk I/O
performance.

Free disk space is commonly maintained by file systems agje [awol of contigu-
ous blocks to facilitate block allocation requests. Thiskesathe use of free disk space
attractive for several reasons. First, the availabilityle#se large contiguous regions al-
lows discontiguous disk blocks which are frequently aceddsgether, to be replicated
and aggregated efficiently using large sequential writgspri@serving replicas’ adjacency
on disk according to the order in which their originals weceessed at runtime, future
accesses to these blocks will be made significantly fastecoi®1, contiguous regions of
free disk blocks can usually be found throughout the entsle, @llowing us to place repli-
cas to the location closest to current disk head’s posifitiis minimizes head positioning
latencies when replicating data, and only minimally afdbie performance of foreground
tasks. Third, using free disk space to hold replicas alldvest to be quickly invalidated
and their used space to be converted back to free space vératisk capacity becomes
limited. Therefore, users can be completely oblivious tw llee “free” disk capacity is
used, and will only notice performance improvements wherenfree disk space becomes
available.

The use of free disk space to hold replicas is not withoutscdstst, as multiple copies
of data may be kept, we will have to keep data and their repkoasistent. Synchroniza-
tion can severely degrade performance if for each writeaipar, we have to perform an
additional write (possibly multiple writes) to keep its lieps consistent. Second, when the
user demands more disk space, replicas should be quicldlidated and their occupied
disk space returned to the file system so as to minimize w=eejved delays. However,
as this would undo some of the work done previously, it shdichvoided as much as
possible. Moreover, as the amount of free disk space canoxanytime, deciding how to
make use of the available free disk space is also importapgagally when there is only a

small amount of it left. These issues will be addressed irfidhe@wing subsections.
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Figure 5.4: Files are accessed in the order of 0, 1, and 2. ®tetiong inter-file distance
between File 1 and the other files, long seeks would resultgésses to these files are
interleaved. In the bottom figure, we show how the seek distémme) could be reduced

when File 1 is replicated using the free disk space near tier divo files.

5.3.2 Block Replication

We now discuss how to choose which blocks to replicate somsitamize the improve-
ment of disk I/O performance. We start with an example showFigure 5.4, describing a
simple scenario where three files—0, 1, and 2—are accesstdsiorder. One can imag-
ine that Files 0 and 2 are binary executables of an applitatiod File 1 is a shared library,
and therefore, may be placed far away from the other two leshown in Figure 5.4. One
can easily observe that File 1 is placed poorly if it is to lagjfrently accessed together with
the other two files. If the files are accessed sequentiallgreveach file is accessed com-
pletely before the next, the overhead of seeking is miniraat would only result in two
long seeks—one from 0 to 1 and another from 1 to 2. Howevengifdccesses to the files
are interleaved, performance will degrade severely as mramg long-distant seeks would
result. The use of I/O prefetching can alleviate some ursszgg head movements in case
of sequential accesses, but its benefit is limited when teg &ife accessed simultaneously
with random I/Os. To improve performance, one can try to cedine seek distance be-
tween the files by replicating File 1 closer to the other twsla®wvn in the bottom part of
Figure 5.4. Replicating File 1 also reduces rotational yi@laen its meta-data and data
are placed onto the disk consecutively according to therandghich they were accessed.

This is illustrated in Figure 5.5. Reducing rotational gella some workloads (i.e., those
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already with a high degree of disk access locality) can beenaffiective than reducing
seek time in improving disk performance. The algorithm wedus our implementation
to select candidate blocks to replicate and decide wheréte fthe replicas is described

in5.4.1.

m

Sequentlal /0 (D

Dup Dup Dup Dup

Figure 5.5: This figure shows a more detailed disk layout & Fishown in Figure 5.4. As

@

file systems tend to place data and their meta-data (and elsted data blocks) close to
one another, intra-file seek distance (time) is usuallytshidowever, as these disk blocks
do not necessarily have to be consecutive, rotational delhjpecome a more important
factor. In the lower portion of the figure, we show how rotatibdelay can be reduced by
replicating File 1 and placing its meta-data and data in therathat they were accessed at

runtime.

In real systems, the disk access pattern is more complichtgdthat shown in the
above examples. The examples are mainly to provide anionuidor how seek time and
rotational delay can be reduced via replication. We present practical heuristics used

in our implementation in Section 5.4.

5.3.3 Keeping Track of Replicas

To benefit from having replicas, we must be able to find thentkdqyiand decide
whether it is more beneficial to access one of the replicas®rmwotiginal data. This is
accomplished by keeping a hash table in memory as shown urd=f6. It occupies only
a small amount of memory: assuming 4 KB file system data blogks MB hash table

suffices to keep track of 1 GB of replicas on disk. As most ohtdsl computer systems
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have hundreds of megabytes of memory or more, it is usualiyamoblem to keep all
the hash entries in the memory. For each hash entry, we nmathtaeces of information:
the location of the original block, the location of its ragalj the time when the replica was
last accessed, and the number of times that the replica wassed. When free disk space
drops below a low watermark (at 10%), the last two items aesl s find and invalidate
replicas that have not been frequently accessed and werecwsitly used. At this point,
we suspend the replication process. It is resumed only whHaghawatermark (at 15%)
is reached. We also define a critical watermark (at 5%), wtriggers a large number of
replicas to be invalidated in a batched fashion so a contiguange of disk blocks can be
quickly released to users. This is done by grouping haslesrif replicas that are close to
one another on disk to be linked to one another in memory, @asrsin Figure 5.6. When
the number of free disk blocks drops below the critical watnk, we simply invalidate
all the replicas of an entire disk region, one region at a tiomtil the number of free disk
blocks is above the low watermark or when there are no motieasp During the process,
we could have potentially invalidated more valuable regdiand kept less valuable ones.
This is acceptable since our primary concern under such dito@m is to provide users
with the needed disk capacity as quickly as possible.

Given that we can find replicas quickly using the hash taldejding whether to use
an original disk block or one of its replicas is as simple adifig the one closest to the
current disk head location. The location of the disk headbmapredicted by keeping track
of the last disk block that was accessed in the block deviverdr

As a result of replication, there may be multiple copies cditadblock placed at different
locations on disk. Therefore, if a data block is modified, vedto ensure that all of its
replicas remain consistent. This can be accomplished bgraifpdating or invalidating the
replicas. In the former (updating) option, modifying mplé disk blocks when a single
data block is modified can be expensive. Not only it genermaita® disk traffic, but it also
incurs synchronization overheads. Therefore, we choskattez option because both data

invalidation and replication operations can be done clyeapd in the background.
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Figure 5.6: A detailed view of the hash data structure usé@éep track of replicas. Hash-
ing is used to speed up the lookup of replicas. Replicas tieatlase to one another on
disk also have their hash entries close to one another in mygswa contiguous range of

replicas can be quickly invalidated and released to useeswkeded.
54 Prototype

Our implementation of FSis based on the Ext2 file system [11]. In our implemen-
tation, the functionality of Ext2 is minimally altered. & modified mainly to keep track
of replicas and to maintain data consistency. The low-lé&gks of monitoring disk ac-
cesses, scheduling 1/0Os between original and replicatezkb) and replicating data blocks
are delegated to the lower-level block device driver. Impatation details of that in the
block device driver and the file system are discussed in @ebti4.1 and Section 5.4.2, re-
spectively. Section 5.4.3 describes some of the userdeutd we developed to help users

manage the Ffile system.

5.4.1 Block Device Implementation

Before disk requests are sent to the block device driver tedpeiced, they are first
placed onto an I/O scheduler queue, where they are queueget)@nd rearranged so the

disk may be better utilized. Currently, the Linux 2.6 kersigbports multiple I/O schedulers
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that can be selected at boot time. It is still highly debagatzhich I/O scheduler performs
best, but for workloads that are highly parallel in disk I/@e anticipatory scheduler [67]
is clearly the winner. It is used in both the base case ExtXfiktem and our Pfile
system.

In our implementation, the anticipatory I/O scheduler igl#ly modified so a replica
can be accessed in place of its original if the replica carcbessed faster. A disk requestis
represented by a starting sector number, the size of thesgcand the type of the request
(read or write). For each read request (write requests aatettl differently) that the 1/0
scheduler passes to the block device driver, we examineaddhbk disk blocks within the
request. There are several different cases we must consrdére simplest case, where
none of the blocks have replicas, we have no choice but tcsadbe original blocks. In
case where all disk blocks within a request have replicasaaeess the replicas instead
of their originals when (i) the replicas are physically agnbus on disk, and (ii) they are
closer to the current disk head’s location than their oatgn If both criteria are met, to
access the replicas instead of their originals, we wouldiieanodify only the starting
block number of that disk request. If only a subset of the kddtas replicas, they should
not be used as it would break up a single disk request intoiplailbnes, and in most
cases, would take more time. For write accesses, replicasodified blocks are simply
invalidated, as it was explained in Section 5.3.3.

Aside from scheduling 1/0Os between original and replicdtfmtks, the block device
driver is also responsible for monitoring disk accessed san decide which blocks we
should replicate and where the replicas should be placedsén tiVe first show how to
decide which blocks should be replicated. As mentionedezagood candidates are not
necessarily frequently-accessed disk blocks, but ratieporally-related blocks that lack
good spatial locality. However, it is unnecessary to regécll the candidate blocks. This
was illustrated previously by the example shown in Figure 3nstead of replicating all
three files, it is sufficient to replicate only File 1—we wolike to do a minimal amount
of work to reduce mechanical movements.

To do so, we partition disks into multiple regioh®dmong them, we find a singleot

For convenience, we define a region to be a multiple of Ext2ktpoups.
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region which is an area on the disk where the disk head has been otivst aAs workload
changes, the hot region may also change from time to timelodttion is estimated in
our implementation by keeping track of the number of disksl&erviced from each region
for each time epoch. This is only an approximation becauseestisk accesses are faster
than others—(i) some disk blocks can be directly accessid tise on-disk cache, thus
not involving any mechanical movements, and (ii) some rea@dsses can trigger 2 seek
operations if it causes a cache entry conflict and the cactrg Bndirty. However, in
the disk traces we have collected (described in Section i) heuristic is found to be
sufficient for our purpose.

Ideally, we would like to keep the disk head from moving outted hot region to min-
imize positioning latencies. Inefficiency happens whendis& head has to move outside
of the target region to service a disk request. To preventiaomnize the chance of this
happening, we identify all the disk blocks accessed outsfdhe target region as candi-
date blocks for replication. By placing their replicas te tvailable free space within the
target region, similar disk access patterns can be sermemth faster in future; we achieve
shorter seek times due to shorter seek distances and srodigonal delays because repli-
cas are laid out on disk in the same order as they were prdyiacsessed.

Although the block device driver can easily find a list of calade blocks to replicate
and the hot region to place these replicas, it cannot perfepiication by itself because it
cannot determine how much free disk space is there, nor dacitle which blocks are free
and which are in use by the file system. Implicit detectionatbdiveness from the block
device level was shown by Sivathaatial. [35] to be impossible in the Ext2 file system.
Therefore, replication requests, include which blockseplicate and which disk region
to replicate them to, are forwarded from the block deviceadrto the file system, where
free disk space can be easily located. Contiguous free destesis used if possible so that
replicas can be written sequentially to disk. When chooainggion to place replicas, not
only is the free space in the target region searched, sevagtiboring disk regions (within
5% of the total disk capacity) are also searched if the tasgpon is completely full. In case
even the neighboring regions are completely full, we singhgcard replication requests

to this region. To avoid completely using a single disk regiove place more weight
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on regions with more free disk space for placing replicasis Tlaive approach seems to
work well from our observation, but one can imagine impletmana replica-replacement
policy to discard rarely used replicas to make room for newd @otentially more valuable)
replicas. Lastly, we rely on the default I/0O scheduler fomeoaitting replicas to disk. As
replicas are often placed to contiguous disk regions, theghmad of replication can be

amortized.

5.4.2 File System Implementation

Ext2 is a direct descendant of BSD UNIX FFS [34], and it is camniy chosen as
the default file system by many Linux distributions. Ext2itsph disk into one or more
block groups, each of which contains its own set of inoded4rdata) and data blocks to
enhance data locality and fault-tolerance. More recejaly;naling capability was added
to Ext2, to produce the Ext3 file system [122], which is badidseompatible to Ext2. We
could have based our implementation on other file systentsybwchose Ext2 because
it is the most popular file system used in today’s Linux systerAs with Ext3, FS is
backward-compatible with Ext2.

First, we modified Ext2 so it can assist the block device drigdind free disk space
near the current disk head’s location for placing replidas free disk space of each Ext2
block group is maintained by a bitmap, large regions of fiiek gpace can be easily found.
We also modified Ext2 to assist the block device driver in i@aimng data consistency. In
Section 5.4.1, we discussed how data consistency is magatdor write accesses in the
block device level. However, not all data consistency issias be observed and addressed
in the block device level. For example, when a disk block vaitie or more replicas is
deleted or truncated from a file, all of its replicas shoukbde invalidated and released.
As the block device driver is completely unaware of blocklideations, we modified the
file system to explicitly inform the block device driver ofduevents so it can invalidate
these replicas and remove them from the hash table.

To allow replicas to persist across restarts, we flush teemory hash table to the disk

when the system shuts down. When the system starts up againash table is read back
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into the memory. We keep the hash table as a regular Ext2 filg asreserved inode #9
so it cannot be accessed by regular users. To minimize trsdgility of data inconsistency
that may result from a system crash, we flush modified haslesritr disk periodically.
We developed a set of user-level tools (discussed in Sebti) to restore the ESile
system back to a consistent state when data consistencgngromised after a crash. An
alternative solution is to keep the hash table in flash memBlgsh memory provides a
persistent storage medium with low-latency so the hasle tedoh be kept consistent even
when the system unexpectedly crashes. Given that the siadayf’s flash memory devices
usually ranges between a few hundred megabytes to tensaifyges, a hash table of a few
megabytes can be easily stored.

Ext2 is also modified to monitor the amount of free disk spacprevent replication
from interfering with user’s normal file system operationde defined a high (15%), a
low (10%), and a critical (5%) watermark to monitor the amounused disk space and
to respond with appropriate actions when a watermark ishehc For instance, when
the amount of free disk space drops below the low watermaekywll start reclaiming
disk space by invalidating replicas that have been usedhererecently nor frequently.
If the amount of free disk space drops below the critical watgk, we start batching
invalidations for entire disk regions as described in $&ch.3.3. Moreover, replication is
suspended when the amount of free disk space drops belowvwhedtermark, and it is

resumed only when the high watermark is reached again.

5.4.3 User-level Tools

We created a set of user-level tools to help system admatiss manage the file sys-
tem. mkfs2is used to convert an existing Ext2 file system to af fi§ system, and vice
versa. Normally, this operation takes less than 10 seco@use an F5file system is
created and mounted, it will automatically start monitgrétsk traffic and replicating data
on its own. However, users with higher-level knowledge alwaorkload characteristics
can also help make replication decisions by askikfs2to statically replicate a set of disk

blocks to a specified location on disk. It gives users a knahdaually tune how free disk
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space should be used.

As mentioned earlier, a file system may crash, resulting ta oheconsistency. During
system startup, the tool chkfs2 restores the file system tmsistent state if it detects that
the file system was not cleanly unmounted, similarly to whdRE e2fsck tool does. The
time to restore an PSile system back to a consistent state is only slightly lorigan that

of Ext2, and the time it takes depends on the number of regpiicthe file system.

5.5 Experimental Evaluation

We now evaluate Punder some realistic workloads. By dynamically modifyirigkd
layout according to the disk access pattern observed atrenseek time and rotational
delay are shown to be reduced significantly, which transl&dea substantial amount of
performance improvement and energy savings. Section Bésdribes our experimental
setup and Section 5.5.2 details our evaluation methodoleggerimental results of each

workload are discussed in each of the subsequent subsgction
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Figure 5.7: The testbed consists a testing machine for ngnmnorkloads and a monitoring
machine for collecting disk traces. Each machine is equippiéh 2 Ethernet cards—one

for running workloads and one for collecting disk tracesgsietconsole
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5.5.1 Experimental Setup

Our testbed is set up as shown in Figure 5.7. The IDE deviaedadn the testing
machine is instrumented, so all of its disk activities arg se&anetconsol¢o the monitoring
machine, where the activities are recorded. We use sepaettork cards for running
workloads and for collecting disk traces to minimize inéeeince. System configuration of

the testing machine and the specification of its disk areigealin Table 5.1.

| Components | Specification |
CPU Athlon 1.343 GHz
Memory 512MB DDR2700
Network cards 2x3COM 100-Mbps
Disk Western Digital
Bus interface IDE
Capacity 78.15 GB
Rotational speed 7200 RPM
Average seek time 9.9 ms
Track-to-track seek time 2.0ms
Full-stroke seek time 21 ms
Average rotational delay 4.16 ms
Average startup power 17.0W
Average read/write/idle power 8.0wW
Average seek power 14.0W

Table 5.1: System specification of the testing machine.

Several stress tests were performed to ensure that thersgetéormance is not signif-
icantly affected by using netconsole to collect disk trad&e found that the performance
was degraded by 5% in the worst case. For typical workloagtéoppnance should only be
minimally affected. For example, the time to compile a LiruB.7 kernel was not affected
at all when its disk activities were recorded via netconsAkethis overhead is imposed on
both the base case (Ext2) and’F@®e believe our tracing mechanism had only a negligible

effect on our results.

5.5.2 Evaluation Methodology

For each request in a disk trace, we recorded its start antiraed, the starting sector

number, the number of sectors requested, and whether iteachar a write access. The
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interval between the start and end times is the disk acomess tdenoted by, which is

defined as:

TA:T3+TT+Tt7

whereT is the seek timeT’,. is the rotational delay, arif is the transfer time. Decompos-
ing T4 is necessary for us to understand the implications dfdtBeach of these compo-
nents. If the physical geometry of the disk is known (e.gmbar of platters, number of
cylinders, number of zones, sector per track, etc.), tmsbeseasily accomplished with the
information that was logged. Unfortunately, due to inchegly complex hard drive designs
and fiercer market competition, disk manufacturers are ngdodisclosing such informa-
tion to the public. They present only a logical view of thekgishich, unfortunately, bears
no resemblance to the actual physical geometry; it pro\jissgsenough information to al-
low BIOS and drivers to function correctly. As a result, idifficult to decompose a disk
access into its different components. Various tools [1184, 119] have been implemented
to extract the physical disk geometry experimentally, Wwhisually takes a very long time.
Using the same empirical approach, we show that a disk cahdracterized in seconds

for us to accurately decompogg into its various components.
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Figure 5.8: This figure shows logical seek distance verstessadime for a Western Digital

SE 80GB 7200 RPM drive. Each point in the graph representsaaded disk access.

Using the same experimental setup as described previcusndom disk trace is

recorded from the testing machine. From this trace, we obdea clear relationship be-
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tween logical seek distance (i.e., the distance betweesecoiive disk requests in unit of
sectors) and’4, which is shown in Figure 5.8. The vertical band in this figisran artifact
of the rotational delay’s variability, which, for a 7200 RRNsk, can vary between 0 and
8.33 msec (exactly the height of this band). A closer exatianaf this figure reveals an
irregular bump in the disk access time when seek distangeadl.sThis bump appears to
reflect the fact that the seek distance is measured in nunfilsectors, but the number of
sectors per track can vary significantly from the innermgbnder to the outermost cylin-
der. Thus, the same logical distance can translate to éifftgrhysical distances, and this
effect is more pronounced when the logical seek distanaaadl s

As T, is composed of’,, 7,, andT;, by removing the variation caused By, we are
left with the sum ofT, andT;, which is represented by the lower envelope of the band
shown in Figure 5.8. A4 is negligible compared t@; for a random workload (shown
previously in Figure 5.2), the lower envelope essentia@presents the seek profile curve of
this disk. This is similar to the seek profile curve, in whitie seek distance is measured
in the number of cylinders (physical distance) as opposdidetmumber of sectors (logical
distance). As shown in Figure 5.8, the seek time is usuatlgalily related to the seek
distance, but for very short distances, it can be approxathas a third order polynomial
equation. We observed that for a seek distance séctors, T, (in unit of msec) can be

expressed as:

S8E-212% — 2E-1322 4+ 1E-62 + 1.35 x<1.1x107
9E-8x + 4.16 otherwise.

As seek distance can be calculated by taking the differeateden the starting sector
numbers of consecutive disk requests, seek tie;an be easily computed from the above
equation. With the knowledge df;, we only have to find eith€f, or 7, to completely
decomposd’y. We found it easier to derivé; thanT,. To deriveT;, we first measured
the effective 1/0O bandwidth for each of the bit recording esron the disk using large
sequential I/Os (i.e., so we can eliminate seek and ro@tdelays). For example, on the
outer-most zone, the disk’s effective bandwidth was mesbto be 54 MB/sec. With each

sector being 512 bytes long, it would take 8€®cto transfer a single sector from this zone.
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From a disk trace, we know exactly how many sectors are aedesseach disk request,
and therefore, the transfer time of each can be easily @tnliby multiplying the number
of sectors in the request by the per-sector transfer timee@re have botff, and7;, we
can trivially deriveT,. Due to disk caching, some disk accesses will have an adoess t
below the seek profile curve, in which case, since there is achanical movement, we
treat all of their access time as transfer time.

The energy consumed to service a disk request, denotéd,asan be calculated from

the values off,, 7, andT; as:

Es=T, x Py+ (T, +T,) x P,

whereP; is the average seek power afidis the average idle/read/write power (shown in
Table 5.1). The total energy consumed by a disk can be cédcuby adding the sums of

all E4’s to the idle energy consumed by the disk.

55.3 The TPC-W Benchmark

The TPC-W benchmark [15], specified by the Transaction Bing Council (TPC),

Is a transactional web benchmark that simulates an E-cooenagvironment. Customers
browse and purchase products from a web site composed aptaidervers including an
application server, a web server and a database serven éxperiment, we use a MySQL
database server and an Apache web server on a single masinm#ating a very small
web server with limited traffic. We simulate 25 simultaneoustomers accessing this web
server for 20 minutes on a separate machine. Complying WahTPC-W specification,
we assume a mean session time of 15 minutes and a mean thimlotiih seconds for
each client. Now we will compare F&nd Ext2 with respect to performance and energy

consumption.

Ext2: Base System

Figure 5.9(al) shows a disk trace collected from an Ext2 yiesn when running the

TPC-W benchmark. Almost all disk accesses are concentmateeveral distinct regions
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Figure 5.9: Plots (al—c1) show the disk sectors that weresaed for the duration of a
TPC-W run. Plots (a2—c2) show the measured access timeadbrrequest with respect
to the seek distance for the TPC-W benchmark. Plots a, b, aodespond to the results

collected on Ext2, FSstatic, and F5dynamic file systems.
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of the disk, containing a mixture of the database’s data éile$index files, and the web
server's image files. The database files can be large, andjle §ile sometimes can span
multiple block groups. Because Ext2 uses a quadratic hasttifun to choose the next
block group from which to allocate disk blocks when the cotrelock group is full, a

single database file is often split into multiple segmenth wach being stored at a different
location on the disk. When the file is later (randomly) acedsshe disk head would have
to travel frequently between multiple regions. This isstiated in Figure 5.9(a2), showing

a large number of disk accesses having long seek times.
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Figure 5.10: For the TPC-W benchmark, part (a) shows theageeresponse time of each
transaction perceived by clients. Part (b) shows the aeedégk access time and its break-

down. Part (c) shows the average energy consumed by eachatie&s and its breakdown.

Disk | Performance Improvement Energy

Busy| T4 | T: | T, Improvement
FS’-static 23% | 24% | 53% -1.6% 31%
FS’-dynamic| 17% | 50% | 72% 31% 55%

Table 5.2: For the TPC-W benchmark, this table shows pegigerimprovement in perfor-
mance and energy-consumption for each disk access, witkce® the Ext2 file system,

where the disk was busy 31% of the time.

We observed that the average response time perceived byW®€lients is 750 msec
when the benchmark is ran on an Ext2 file system. The averagadcess time is found to
be 8.2 msec, in which 3.8 msec is due to seek time and 4.3 mdee i® rotational delay.

The average energy consumed by each disk access is calctddie 90 mJ, in which 54
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Figure 5.11: For the TPC-W benchmark, parts (a—c) show diskss time for the®l, the
2" and the 7 FS*-dynamic run.

mJ is due to seek and 36 mJ (including a small amount of enemgumed for transferring
data) is due to disk rotation. These results are plottedgarei5.10 and then summarized

in Table 5.2.

FS?-Static

From the TPC-W disk trace shown previously, an obvious nwtbanodify the disk
layout would be to group all the database and web server fibsgicto one another on the
disk so as to minimize seek distance. To do so, we first finchalldisk blocks belong

to the database and web server, and staticallyreplicate these blocks (using thekfs2
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tool) toward the middle of the diskAfter the disk layout is modified, we ran the TPC-W
workload again, and the resulting disk trace and the acaessdistribution are plotted in
Figures 5.9(b1) and (b2), respectively. One can see frosethigures that as replicas can
now be accessed in addition to their originals, most dislesses are concentrated within
a single region. This significantly reduces the range of amotif the disk heads.

As shown in Figure 5.10, by statically replicating, the aggs response time perceived
by the TPC-W clients is improved by 20% over Ext2. The averdigk access time is
improved by 24%, which is completely due to having shortekgane (53%). Rotational
delay remains mostly unchanged (-1.6%) for reasons to Engitortly. Due to having

shorter average seek distance, the energy consumed geaaetisss is reduced by 31%.

FS?-Dynamic

We call the technique described in the previous sedfghstaticbecause it statically
modifies the data layout on disks. Using?FSatic, seek time is significantly reduced.
However, this method has no practical use because experterg to hand-pick candidate
blocks to replicate for tuning their file system’s data latyisunot very realistic. This process
needs to be automated. Additionally, static replicati@hiswn to be ineffective in reducing
rotational delay. But as we will see for workloads with rejeeladisk 1/0 patterns, rotational
delay can be reduced. The ineffectiveness in reducingootdtdelay is attributed to FS
static’s rigid aggregation dll the database and web server files. Even though relevant disk
blocks are much closer to one another, as long as consdgeaiveessed data blocks are
not placed to the same track with small distance betweengaichreduction in rotational
delay is not guaranteed.

As discussed in Section 5.3.2, replicating data and plabieigpnadjacento one another
according to the order in which they were accessed not odlyoes seek time but can also
reduce rotational delay. This technique is calegi-dynamicas we dynamically monitor
disk accesses and replicate candidate blocks on-the-fhoutitany user interactions. It

is implemented as described in Sections 5.3 and 5.4. Sjastitih no replicas, multiple

2We could have chosen any region, but the middle region of isleig chosen simply because most of
the relevant disk blocks were already placed there. Chgdbia region, therefore, would result in the fewest
number of replications.
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Figure 5.12: Plots (a) and (b) show the zoom-in section ofifeg 5.9 (b1) and (cl), re-

spectively.

runs are needed for the system to determine which blocksptwate before getting any
benefit from the replicas. The replication overhead wasrksgeto be minimal. Even in
the worst case (the first run), the average response timeipeddy the TPC-W clients was
only 1.7% longer (a 0.8% additional energy was consumedis iStdue to the additional
disk accesses needed for replicating data, which has ctuseisk to become 2.5% more
utilized. Since the workload is small and has ran for only 20utes, none of the replicas
made in the first run were accessed during this run; othenthgereplication cost would
be somewhat amortized. To compare*fdgnamic with FS3-static in a workload with
repeated disk 1/0O patterns, we use the same random seeccfol B&£-W run. With most
replicas being made in the first run, the replication ovedh&#fasubsequent runs is almost
negligible. The 7 run of FS-dynamic is shown in Figures 5.9(c1) and (c2). To illustrate
the progression between consecutive runs, we show dislssaticee distributions of the
1°¢, the 24, and the 7 run in Figure 5.11. During each run, because the middle regio
of the disk is accessed most, those disk blocks that weresseden other regions will get
replicated here. Consequently, the resulting disk traokdoery similar to that of F5
static (shown in Figures 5.9(b1) and (b2)). There are, heweubtle differences between
the two, which enable FSdynamic to out-perform its static counterpart.

Figures 5.12(a) and (b) provide a zoom-in view of the first 46€onds of the PSstatic
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disk trace and the first 100 seconds of thé-Jdgnamic disk trace, respectively. In these
two cases, the same amount of data was accessed from thgigliak, a clear indication
that the dynamic technique is more efficient in replicatiagadand placing them onto the
disk than the static counterpart. As mentioned earlierstagc technique indiscriminately
replicates all statically-related disk blocks togetheheut any regard to how the blocks are
temporally related. As a result, the distance between teatlgerelated blocks becomes
smaller but often not small enough for them to be located @nsdime track. On the
other hand, as the dynamic technique places replicas oatdisk in the same order that
the blocks were previously accessed, it substantiallyeames the chance for temporally-
related data blocks to be on the same cylinder, or even orathe srack. From Figure 5.12,
we can clearly see that under¥&ynamic, the range of the accessed disk sectors is much
narrower than that of PSstatic.

As a result, F&dynamic makes a 34% improvement in the average responsgtm
ceived by the TPC-W clients compared to Ext2. The averadeatisess time is improved
by 50%, which is due to a 72% improvement in seek time and a 3dgsavement in ro-
tational delay. F5dynamic reduces both seek time and rotational delay mgrefgiantly
than FS-static. Furthermore, it reduces the average energy cossiiyneach disk access
by 55%. However, because the TPC-W benchmark always rurssfieed amount of time
(i.e., 20 minutes), faster disk access time does not recisemorkload’s run time, and
hence, the amount of energy savings is limited to only 6.7%llasenergy will dominate.
In other workloads, when measured over a constant numbaslofdcesses, as opposed
to constant time, the energy savings is more significant.

In this section we introduced EStatic and compared it with ESlynamic mainly to
illustrate the importance of using online monitoring toued mechanical delays and al-
leviating users from manually choosing candidate blocksefdicate. As the dynamic
technique was shown to perform better than the static cquentie we will henceforth con-
sider only FS-dynamic and refer to it simply as F8nless specified otherwise. Moreover,
only the 7" run of each workload is used when we present results férasSve want to
give enough time for our system to learn frequently-encenatt disk access patterns and

to modify the disk layout.
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Caveats

In the previous section, we used the same random seed forTéCHN run, which
might have put F5dynamic in more favorable light than what really happentfis par-
ticular workload. Using different random seeds for eachwonld result in less predictable
disk I/0O patterns, thus reducing replication benefits. Wosld especially affect the effec-
tiveness of our technique in reducing rotational latencig eshighly depended on having
repeated disk I/O patterns. Nevertheless, we believe then @nough training runs in the
TPC-W workload, F&dynamic should do as well as FStatic minus having to hand-pick
blocks to replicate.

As most of the database and web server files are placed atritex o the disk, if we
assume random disk accesses in the TPC-W workload, edetiyig@mic run would “pull”
more data (relevant to the TPC-W workload) that were preshipallocated to other disk
locations toward the center of the disk. With more and/og&rruns, temporally-related
data will be aggregated closer to one another on the disktower

In this work, we focus mostly on those workloads with repdat® patterns, e.g, start-
ing X server, booting the kernel, CVS operations, etc. Weanter many such workloads
on a daily basis, and for such workloads,*Ffynamic can seamlessly improve their 1/0

response time and bandwidth. We will study a few of these lwads in the following

sections.
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Figure 5.13: Results for the CVS update command: (a) totatime, (b) average access

time, and (c) energy consumed per access.
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Disk | Performance Improvement Energy
Busy| Ta | T, | T, Improvement
|FS || 73% | 41% | 38%| 53% | 40% |

Table 5.3: A summary of results for the CVS update command.disk was busy 82% of

the time on Ext2.

5.54 CVS

CVS is a versioning control system commonly used in softwdeseslopment environ-
ments. It is especially useful for multiple developers wharkvon the same project and
share the same code base. CVS allows each developer to wibrki&iown local source
tree and later merge the finished work with a central reposito

CVS update command is one of the most frequently-used comismahen working
with a CVS-managed source tree. In this benchmark, we racoifmenanccvs -q updatén
a local CVS directory containing the Linux 2.6.7 kernel s@utree. The results are shown
in Figure 5.13. On an Ext2 file system, it took 33 seconds topteta. On F$, it took only
23 seconds to complete, a 31% shorter runtime. Even on thediref FS, the workload
took only 35 seconds to finish, and the additional 2 secorfidg (€due to replicating a lot
of data blocks during this run. A 7% additional energy is aoned.

The average disk access time is improved by 41% as shown uré=l13(b). Ro-
tational delay is improved by 53%. Seek time is also improf@gto), but its effect is
insignificant as the disk access time in this workload is lgasdminated by rotational
delay.

In addition to the performance improvement2Eso saves energy in performing disk
I/Os. Figure 5.13(c) plots the average energy-consummpigsrdisk access for this work-
load. As shown in Table 5.3, ESeduces the energy-consumption per access by 46%.
The total energy dissipated on Ext2 andf [é8ring the entire execution of the CVS update
command is 289 J and 199 J, respectively, making a 31% enavwyos.
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Figure 5.14: Results for starting X server and KDE windowsagger: (a) total runtime,

(b) average access time, and (c) energy consumed per access.

Disk | Performance Improvement Energy
Busy| Ta | T, | T, Improvement
\ FS H 26% \ 44%\ 53%\ 47% \ 46% \

Table 5.4: A summary of results for starting X server and KDiEdews manager. The

disk was busy 37% of the time on Ext2.

5.5.5 Starting X Server and KDE

Thestartxcommand starts the X server and the KDE windows manager otestiing
machine. As shown in Figure 5.14(a), the startx commandhignist.6 seconds faster on
FS than Ext2, yielding a 16% runtime reduction. Even thoughetrerage disk access time
in this workload is significantly improved (44%), which cosres a result of a 53% shorter
average seek time and 47% shorter rotational delay (showabie 5.4), the runtime is
only moderately improved. The reason is that this workl@adat disk I/O-intensive, i.e.,
much less than the CVS workload. For the CVS workload, thle wiss busy for 82% of
the time, whereas for this workload, the disk was busy foy @1% of the time. Even
on the first run of F3 it took 1.5 seconds less time and 4.3% less energy, despitech
incurred additional disk accesses. We believe this is due ¢bange in I/O scheduling
when additional replicas are made.

In addition to improving performance, F&lso reduces the energy consumed per disk
access for the startx command as shown in Figure 5.14(citiritahe X server is calcu-
lated to dissipate a total energy of 249 J on Ext2 and 201 J énrik&king a 19% savings

in energy.
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5.5.6 SURGE

SURGE is a network workload generator designed to simulatetvaffic by imitating
a collection of users accessing a web server [5]. To besteaitihe available computing
resources, many web servers are supporting multiple Vintngts. To simulate this type of
environment, we set up an Apache web server supporting tswavihosts servicing static
contents on ports 81 and 82 of the testing machine. EachaVintst supports up to 200
simultaneous clients in our experiment.

FS reduced the average response time of the Apache web sen&8%\ycompared
to Ext2 as illustrated in Figure 5.15(a). This improvementhe average response time
was made possible despite the fact that the disk was utifimednly 13% of the time.
We tried to increase the number of simultaneous clients @ virtual host to observe
what would happen if the web server was busier, but the n&tiaandwidth bottleneck on
our 100 Mb/sec LAN did not allow us to drive up the workload.thMinore simultaneous
clients, we expect to see more performance improvementaetkr, we show that even
for non-disk-bound workloads, performance can still beriowpd reasonably well. As far
as we could see, the first run of H8ad little overhead and was comparable with Ext2 runs.

On average, a disk access takes 68% less time értHé® on Ext2. In this particu-
lar workload, reductions in seek time and rotational delagtcgbuted almost equally in
lowering the disk access time, as shown in Table 5.5.

The total energy consumed was reduced by merely 1.9% ébh&Swuse this workload
always runs for a fixed amount time like the TPC-W workload.efehmight be other
energy-saving opportunities. In particular,?F8lows disk to become idle more often—
in the TPC-W workload, the disk was idle 70% of the time on Eatl 83% on F5
while in the CVS workload, the disk was idle 18% of the time otiZEand 27% on F5
Combined with traditional disk power-management techesguhich save energy during

idle intervals, more energy-saving opportunities can heaited.
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Figure 5.15: Results for SURGE: (a) average response timeyverage access time, and

(c) energy consumed per access.

Disk | Performance Improvement Energy
Busy | Tu | Ty | T, Improvement
\ FS H 4.2%\ 69%\ 78%\ 68% \ 71% \

Table 5.5: A summary of results for running SURGE. The disk Wwasy 13% of the time
on Ext2.

5.6 Discussion

5.6.1 Degree of Replication

Our implementation of FSallows system administrators to set the maximum degree
of replication; in am-replica system, a disk block can be replicated at masies. Ac-
cording to this definition, traditional file systems are @liea systems. There are certain
tradeoffs in choosing the parameter Obviously, with a large:, replicas can potentially
consume more disk space. However, allowing a larger dedreepbcation may more
significantly improve performance under certain situaio®ne simple example is the
placement of shared libraries. Placing multiple copies shared library close to each
application image that makes use of it, application statitup can be reduced. It is inter-
esting to find the “optimal” degree of replication for a cartdisk access pattern. However,
in the workloads that we have studied, due to lack of dat@&baring, the additional ben-
efit from having multiple replicas per disk block would be mal, and therefore, we
simply used a 1-replica system in our evaluation. Lo [78]lerg the effect of degree of

replication in more details through a trace-driven analysi

135



5.6.2 Reducing Replication Overhead

Placing replicas of data in free space near the current diskl thocation minimizes
the interference with foreground tasks. Usingeblock schedulingB2, 83], it is possible
to further reduce this overhead by writing replicas to diskyaduring rotational delay.
However, as indicated by our experimental results, ouribgciis already fairly effective

in keeping the replication overhead low.

5.6.3 Multi-Disk Issues

The most straightforward way to improve disk performanceispread data across
more disks. Redundant Array of Inexpensive Disks (RAID) vuas introduced by Patter-
sonet al. [94] as a way to improve aggregated I/O performance by etiptpparallelism
between multiple disks, and since then it has become widsdy.u

FS is operating orthogonally to RAID. The techniques that weehased to improve
performance on a single disk can be directly applied to e&tieaisks in a RAID. There-
fore, the same amount of performance improvement that we s@&n before can still be
achieved here. The problem gets more interesting when fs&espgace from multiple disks
can be utilized. It can be used not only to improve perforreahat also to enhance the
fault-tolerance of data, complementing RAID. For examplésaditional RAID-5 system
can sustain only one disk failure before data loss. Howévee are able to use free disk
space on one disk to hold recently-modified data on othersdisknay be possible that
even with more than one disk failure, all data can still beoveced—recently-modified
data can be recovered from replicas on non-faulty disks &ohet dlata can be recovered
from a nightly or weekly backup system.

This introduces another dimension where free disk spacéeartilized to our advan-
tage. Now, we can use free space of a disk to hold either sespb¢ its own blocks or
replicas from other disks. Both have performance benefitishoblding replicas for other
disks can also improve fault-tolerance. These issues ganldehe scope of this work. We

are currently investigating these issues and building alRBdsed prototype.
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5.6.4 Journaling File System

Journaling file systems, e.g., Ext3, are likely to replaeglitronal file systems, e.g.,
Ext2, in the near future as they can quickly convert a crasitedystem back to a con-
sistent state. This is done by committing data and metatdatgournal file in an orderly
fashion and having them written to disk twice. The concedE®fcan be potentially ap-
plied to a journaling file system. The advantage of applyiBgifleas to a journaling file
system is that replicas already exist in the journal and waataeed to make additional
replications. If the journal is persistently kept, we wilvays have two copies of every-
thing, both data and meta-data. In which case, the probleseletting candidate blocks
to replicate becomes the problem of invalidating excessipécas. Additionally, by clas-
sifying the hash table as another type of meta-data and ctiimgnit to the journal in an
orderly fashion, some of the consistency problems causeagdigm crashing discussed in
Section 5.4.3 can be avoided.

Despite these advantages, there are several difficulfig®deto this approach. First,
using the journal to hold replicas intrinsically limits tfike system to an 1-replica system
(unless the implementation of the journal is extensivelydified.) Second, disk blocks
used by the journal are best kept sequential to optimize faewperations. Sequentially
placing replicas at a single location on disk, however, ndt effectively minimize head
positioning latencies. Finally, keeping a large numbeeeplicas persistently in the journal
can slow down operations on directory indexes that are us&ddp track of the journal’'s
data. As we can see, realizing F8leas in a journaling file system has some practical
challenges. Therefore, additional analysis is neededrdéfese ideas can be integrated

seamlessly with a journaling file system.

5.7 Conclusions

In this chapter, we presented the design, implementatidreaaluation of a new file
system, called F5 which contains a runtime component responsible for dynalfyire-
organizing disk layout. The use of free disk space allowsxabile way to improve disks’

I/0 performance and energy-efficiency, while being nonisitre to users.
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To evaluate the effectiveness of ¥ #/e conducted experiments using a range of work-
loads. F$is shown to improve the client-perceived response time 19 84the TPC-W
workload. In SURGE, the average response time is improvetBgy. Even for everyday
tasks, F&is shown to provide significant performance benefits: thettmmcomplete a
CVS update command is reduced by 31% and the time to start anvkrsand a KDE win-
dows manager is reduced by 16%. As a result of reducing se&kndie, energy dissipated
due to seeking is also reduced. Overall?FSshown to have reduced the total energy

consumption of the disk by 1.9-15%.
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CHAPTER 6

Disk Failure Characterization

6.1 Motivation

In the previous chapter, we described the design, implestient and evaluation of the
Free Space File System (BSBy means of replicating disk blocks and placing the regslic
in unused disk regions, we have shown both energy and peafarenbenefits while keep-
ing overheads to a minimum. In addition to improving eneedficiency and performance,
we believe replication is also an effective method to inseedata fault-tolerance and can
be practically implemented in existing file systems. Regtlan is already a common tech-
nique used by RAID in multi-disk environments, but it has heen successfully applied
to systems with only a single disk.

Unlike FS, in which it is fairly easy to determine which disk blocks @plicate (those
with long access time), where to replicate (the unused @iglons close or adjacent to the
temporally-related blocks), and when to commit replicadigk (anytime the replicas are
still in memory) to improve performance and energy-efficigrreplicating disk blocks to
improve fault-tolerance involves more complex decisioaking.

Determining the candidate blocks to replicate for imprgvfault-tolerance involves
higher level knowledge than what can be observed at the ldetlce level, making ac-
cess frequency information meaningless (more frequermitessed data does not imply
higher importance). This process should happen at the fdeesylevel by mining the

file system’s meta-data or getting direct inputs from usdfer example, knowing that
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files in /etc and/homedirectories are more valuable than thosétmp or /opt directory,
we could give higher priority to replicate the first set of dilkhan the second. We could
also use files’ meta-data to determine their relative ingarg, e.g., give higher priority
to non-executable files (word documents and source files) éRacutable (programs and
shared libraries) as the latter can often be recovered (e-mstalled) or regenerated (e.g.,
re-compiled) fairly easily.

However, automatically mining the file system to find cantBdalocks is not always
sufficient; user’s involvement can sometimes significaimlgrove the effectiveness of this
process. A user can write rules to specify replication sgatfor his / her private files
and directories, e.g., give higher priority to replicate files and the files in thevorks
directory. Additionally, sometimes common sense can addp tis find candidate blocks
and calculate their relative importance. For example, asaggng a small amount of file
system’s meta-data could render the entire file system @sadale, it makes sense to give
higher priority to replicate the meta-data than user data.

Both system-wide and user-specific rules can drive and givis to the replication
engine on which disk blocks to replicate and the blocks’tnedaimportance. These rules
can be easily specified by system administrators and usettharules are highly tolerable
of errors. In case where an error is made in these rules, balgftectiveness of replication
will be affected, and the system will continue to functiomreatly.

A more critical decision than determining which disk blod¢ksreplicate is of which
location we should place their replicas. Determining tHatiee location of the replicas
with respect to the location of the original block is crudialthe performance and fault-
tolerance of any file system that makes use of replicationeriBure high fault-tolerance,
we would like to keep replicas as far away as possible fromidbation of the original
data to decrease the probability of a permanent data lose tieeoriginal data and all
its replicas are simultaneously compromised. However,lagipg replicas far away from
their original data, changing the content of the originabhdaould require synchronizing
all its replicas, which can result in long mechanical delayd unnecessarily hurt disk I/O
performance when the replicas are placed far away. Even ifameavoid performance

penalties when placing replicas far away from each othettla@id original (e.g., by using
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asynchronous update operations), it is unclear how we e plisk block$ar awayfrom
each other as the physical geometry of today’s disks is dfidgelen from us and abstracted
using logical addresses. For example, on a particular thigksectors that are separated by
1,000,000 sectors (logical address) might be located derdiit zones, different surfaces,
and different platters, but on another disk, the same twmeethat are 1,000,0000 sectors
apart might be located on the same zone, same surface, asdrtteeplatter. Therefore,
using logical address to place replicas away from each other might not necessarily
achieve the expected result.

To provide an effective way to improve the fault-toleranée single disk, there are
several challenges to overcome. First, we must be able woratety and quickly detect
the physical geometry of disks and expose this informatmthat the file system can use
these physical attributes to better safequard data. Hapriexgjse information about disk’s
physical geometry allows file system to accurately place dad their replicas to minimize
the probability of a permanent data loss. For example, if n@kthat the correlation of
disk blocks located on different platters are simultangodsstroyed is extremely low, we
should avoid placing a replica on the same platter as itsraiiglata block. Our second
challenge is to find ways to better understand disk failuraratteristics as this is still
an area where disk manufacturers are holding back a lot ofrirdtion. We do not have
precise data on how disk drives commonly fail or how data bextost or corrupted in
the process. In other words, whether placing a replica offferelint platter, or a different
track, or a different surface from the location of its origjinlata is the most effective way
to improve data fault-tolerance is difficult to determineek more difficult is the fact that
we do not know whether the most effective method to replidata is the same or different
among disks of different manufacturers and generations.

Understanding disk failure characteristics is the goahaf thapter. With a better un-
derstanding, future file systems can more efficiently wilinused disk capacity for repli-
cation to better guard against unexpected data loss. 820 we discuss the algorithm
we used to probe for disk’s physical geometry. Section 6sgudees our study of 60 failed

hard drives, and finally, Section 6.4 concludes this chapter
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6.2 Probing for Physical Geometry

A disk is consisted of one or more platters, which rotate ock$pep fashion at a fixed
rotational speed. A platter has either one or two recordimtases, each with a read / write
head. A surface is divided into multiple zones with each amtg consecutive tracks that
have the same number of sectors. Cylinders on the outer banesnore sectors per track,
and thus, can achieve a higher I/0O throughput. A cylindenisrtical set of tracks (one per
surface) that are the same distance away from the centee digh.

Despite disk manufacturers’ usual unwillingness to publiformation about their
disks’ physical geometry, some physical attributes areagdapublished, e.g., rotational
speed and the number of platters and recording surfacesewéoyto accurately determine
the physical location of any given sector, we need to knowesanditional information
about the disk. Namely, we need to know the number of zoneshendumber of sectors
per track. The former can be obtained if the latter is knowseators-per-track is distinct
for each zone.

There are several previously-proposed techniques [1290%, 119] to extract disks’
physical features. Worthington and Schindler [29, 107krebn interrogative SCSI com-
mands for extraction, but unfortunately, this techniquedsapplicable to IDE disks. Ex-
perimental methods using empirical observations weredigiosed by Aboutaldt al. [1]
and later improved by Talagaé al. [119] and Dimitrijevicet al.[44]. The probing algo-
rithm we propose here is also based on observing empirisaltse However, unlike the
previous work, which tires to extract as much informatiorpassible about disks (even
though some information is already published), we only neeextract the sectors-per-
track information for our purpose.

When extracting the sectors-per-track information, wetwamlo it as quickly as pos-
sible if the extraction happens offline or want to incur aslsmanber of I/O operations as
possible if it is done online. We believe our technique penfowell in both modes. The
probing algorithm is presented in Figure 6.1.

Essentially, our algorithm is similar to the technique megd by Dimitrijevic [44]—

sequentially write to disk, two sectors at a time, and comiaraccess time with the access
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#Definitions

DEFINE SECTORSIZE 512
DEFINE SETTLETIME 500
DEFINE BACKTRACK_SECTORS 5
DEFINE REQUIREDCONFIRMS 10

DEFINE FULL_ROTATION 8333
# Initialization

i_save =0;

confirmed =0;

warp_location =0;

warpmultiplier =1,

last.spt = Oxbeefbeef;
lastatime = FULLROTATION;

FOR (i = 0; i <= endsector; i++)
# Seek to the next sector and write 2 sectors
Iseek(i * SECTORSIZE);
gettimeofday(&t1);
write(2 * SECTORSIZE);
gettimeofday(&t2);
atime = t2— t1;
diff = abs(atime— lastatime);
# True when this might be a track/cylinder boundary
IF ((diff > SETTLETIME) AND
(i_saved =i OR confirmed = 0))
IF (++confirmed = REQUIREDCONFIRMS)
# We have confirmed multiple times this is a track/cylinder
# boundary and we modify warmmultiplier to skip ahead
IF (warp-multiplier > 1)
IF ((i — warp.location + 1) MOD lastspt = 0)
warp.multiplier *= 2;
ELSE
# Warped to a wrong location so we go back
warpmultiplier = 1;
i = warp_location + lastspt — BACKTRACK_SECTORS;
continue;
ELSE
IF (i — warp.location + 1 == lasispt)
warp.multiplier = 2;
ELSE lastspt =i — warp.location + 1;
# From warplocation to i, sectorper.track is lastspt
warp.location =i + 1;
confirmed = 0;
i += lastspt * warpmultiplier — BACKTRACK_SECTORS;
ELSE
# We backtrack multiple times to make sure that sector i
# is really a track/cylinder boundary
i_saved =1i;
backtracksectors = BACKTRACKSECTORS;
i —= BACKTRACK_SECTORS;
# Sector i does not seem to be a track/cylinder boundary
ELSE
IF (confirmed && ——backtracksectors == 0)
# After backtracked, we failed to confirm
confirmed = 0;
lastatime = atime;

Figure 6.1: The proposed algorithm to quickly and accuyapebbe for the sectors-per-
track information. Some boundary cases are not includedakenthe algorithm more
succinct and readable.
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Sectors \ Tracks \ SPT \

0-503 1 504 per track|
504-1007 1 504 per track
1008-2015 2 504 per track
2016-4031 4 504 per track|
4032-8063 8 504 per track
8064-16127 16 504 per track|
16128-32255 32 504 per track
32256-64511 64 504 per track|

Table 6.1: Sectors-per-track probed for an IBM UltrastakdiFrom sector 0 to 503, we
write 2 sectors at a time and find that sector 503 is a track demyn We then make the
assumption that the following tracks also have 504 sechossead of writing sequentially,
we write only to the assumed boundary region. If we guessaécity, we can leap ahead

and quickly finish the probing process.

time of the two previously-accessed sectors. If the diffeesbetween the two access times
is greater than a certain threshold, it is marked as a cylinde track boundary. In our
algorithm, when we find a boundary, we try to backtrack angradse multiple times to
make certain that the boundary found is really a boundanalmee transient behaviors,
especially in IDE disks, are fairly common. By backtrackargl rewriting multiple times,
we can eliminate inaccuracies in our result. Additionallyspeed up the probing process
and minimize the number of I/O operations, we take advaraétie fact that there is a very
high probability that the following tracks will have the samumber of sectors on them as
the track we just probed. This allows usdkip aheadby hundreds of sectors and probe
only the disk region where we think the next boundary is ledatf we have guessed these
boundaries correctly multiple times, we will stavarping aheadn multiples of tracks,
which can further speed up the probing process. When we gdessrectly, especially in
the latter case, which happens often, we only need a few disdsaes to probe hundreds
of tracks as opposed to hundreds of accesses for a singke tfage guessed wrong, we
can always backtrack. This rarely happens, and even if it th@ppen, the overhead of
making the necessary correction is very small. A sample@gttiracted sectors-per-track

information for an IBM Ultrastar disk is shown in Table 6.1.
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Figure 6.2: A complete extraction of sectors-per-trackiierentire IBM Ultrastar disk.

The sectors-per-track information we extracted from th# I8isk is shown in Fig-
ure 6.2. From this figure, we can clearly see that the disk hazohes. On each zone,
most of the tracks have the same number of sectors, but thesome variations. These
variations are caused by slip sectors and spare sectgrsesliors are used to skip physical
defects on media surfaces created during manufacturirey amd they reduce the number
of usable sectors on the affected tracks. Spare sectorsadeto remap bad sectors cre-
ated at runtime. In case a good sector becomes defectikejmmsvare will automatically
remap the defective sector to one of the closeby spare secBmare sectors also cause
the number of usable sectors to decrease on the tracks wiesreute pre-allocated. As
we will see in the next section, these variations are impbttia take into account when

characterizing disk failures.

6.3 A Case Study of Failed Disks

To study failed disks, we must first have a large number of tirelwur possession,
which is a challenge by itself. Privacy is a major concernha process of obtaining
such disks as data can sometimes be recovered partiallyeor @mpletely from these
disks. After promising a safe and complete disposal of aiteot on disk and signing the

required paperwork, we received 60 failed disks—10 from EEOepartment Computing
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Figure 6.3: Categorizing the 60 failed disks by their maotufeers.

Organization (DCO) and another 50 from University of Miciigs Property Disposition
(PD).

6.3.1 Overview

The 60 failed disks we are studying in this chapter are showiigure 6.3 grouped
by their manufacturers. Not surprisingly, most are produicg some of the larger disk
manufacturers, i.e., Maxtor, Western Digital, Seagategr@um, and IBM, simply because
these companies have a much larger market share than thiersooshpanies. However,
the relative number of these disks does not accurately téflec manufacturer’s true mar-
ket share as (i) the sample size used in our study is small({igrdisks made by some
companies are more prone to failures than others.

We categorize these failed disks into three groups—nonabd®disks, disks with bad
sectors, and perfectly healthy disks. We now describe ebittedhree categories in more

details.

e Non-bootable: These are disks not recognizable by BIOS at the machine power
time, and they account for more than half of our disks (37)s Dhservation initially
led us to believe that a disk will become useless when a &ibacurs. However,
after studying these non-bootable disks in more detailspegated our hypothesis.
Instead, we believe the reason these disks are now in anoaakie state is highly

unlikely the same reason they were initially taken out of nussion. All 37 disks
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came from the batch of disks we obtained from Property DisipogPD) with most
having apparent external physical damages (e.g., dentbrakdn interface pins).
Having external damage on a disk is highly unusual as diskexternal components
that are always physically protected by a sturdy externadpder case. We believe
these external damages should have happened after thendisksiagnosed as hav-
ing problems and were taken out of the system. Therefors,ntaost likely these
damages were incurred during the handling process at PDisks ih this condition
cannot be accessed without using specialized equipmaastjntpossible for us to
assess the extent of damage on their recording surfaceaactérize such failures.

Therefore, we have to exclude this type of failures from malgsis.

Bad-sectors: These are bootable disks (9) with at least one detected lwdr.se
Having one bad sector out of billions of sectors on a disk isthat uncommon.
However, losing 512 bits of information can either be hassli the affected sector
is not currently mapped to any data or can be very destruigtihe affected sector
contains important file system meta-data. A sector can be@amupted for various
reasons: material degeneration (caused by overuse or e)jdaad head crash. By
identifying and mapping the exact physical location of bactars, we hope to gain
a better understanding of how data became corrupted dueskagodoblems. With
this knowledge, we can build file systems that can place datdisk in a more
fault-tolerant manner and use data replication technituégtter guard against the

unexpected.

Healthy: Ironically, some “failed” disks (14) are actually perfgctiealthy, but for

some reason, were identified as bad and taken out of commisEn@se disks have
no bad sectors nor any anomalies in their SMART status. SMat&mnds for Self-

Monitoring Analysis and Reporting Technology, and it morst mechanical and
electronic components on disk to give advance warningseddigiable failures. We
believe there are several possibilities for which thesdtimgdisks were falsely iden-
tified. One possibility is bit flipping, which happens approately once for every

10 bits accessed. Another possibility is bad writes—sometimeite operation
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Capacity 75 GB
Zones 15
Cylinders 27724
Platters 5
Surfaces 10
RPM 7200
Interface IDE

Table 6.2: IBM 75GXP: Disk specification.

can be carried out at a wrong location or in between two traBksides these hard-
ware errors, bugs in the file system and human errors coubchalge caused healthy
disks to be falsely identified. But as file system code is beegmery mature and
good management software is becoming more commonly deployminimize hu-
man errors, we believe concentrating on disk hardware sisomore fruitful and

beneficial. Using replication can also help alleviate tietof disk failures.

Our focus is to analyze the disks with bad sectors. Among ttisk&, there are 2 IBM,
2 Western Digital, 2 Quantum, 2 Maxtor, and 1 Seagate diske.Seagate disk has only 1
defective sector and is not interesting to discuss, anefbie, it will not be included in our
discussion. We will now characterize and dissect the extedamage on the 8 remaining
disks.

6.3.2 IBM Deskstar 75GXP

One of the disks we studied is an IBM 75GXP. Its specificat®hsted in Table 6.2
showing its capacity, revolutions per second (RPM), igiegftype, and its number of zones,
cylinders, platters, and recording surfaces. This infdioma(except zones) is generally
made public for modern disks and does not require probinguddyg commercial software
to scan its recording surfaces, we are able to pin-pointsabad sectors. The location of
these corrupted sectors is critical in determining how Bataome lost or damaged.

Figure 6.4 shows a list of (575) bad sectors we found on the ¢i83W. They are located
in only low-address regions on the disk, which indicates blyasimply separating replicas
from their original data block by a reasonably large logidistance (in unit of sectors),

the data can be stored more safely. This is the conventiowkiree most straight-forward
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Figure 6.4: IBM 75GXP: The disk’s list of bad sectors.

way of placing replicas to improve fault-tolerance on a Brdisk. As we have pointed out
earlier, placing related data far away from each other cgmifsgantly hurt performance.
We hope, from studying disk failures in more details, we cawigk better strategies in

placing data and their replicas.

Zones Cyl start Cylend Sectors/Track
0 0 1375 702
1 1376 2831 684
2 2832 4239 666
3 4240 6975 648
4 6976 9759 612
5 9760 11551 594
6 11552 13631 567
7 13632 16239 540
8 16240 18319 504
9 18320 19567 486
10 19568 21199 459
11 21200 23519 432
12 23520 25215 396
13 25216 26319 378
14 26320 27724 351

Table 6.3: IBM 75GXP: disk physical geometry.

Analyzing the physical locations of bad sectors (as oppdsddgical locations and
distances) is the key in gaining a better understandingsbffdilures. Mapping the logical
address of bad sectors to their physical location wouldirequdetailed map of the disk’s
physical geometry. Fortunately, the physical geometrgyshin Figure 6.3) of this partic-

ular disk model has already been made available in the pdbhgain, and no additional
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work is needed to probe for it. Using the published physiergetry information, it is
straight-forward to map bad sectors to their physical iocaso we know exactly which

platter, surface, zone, cylinder, and track on which each@ftlefective sectors is located.
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Figure 6.5: IBM 75GXP: A mapping of bad sectors to recordingfaces using the pub-

lished physical geometry.

Using the published specification of the disk, we first mapgach of the bad sectors
to its recording surface, which is shown in Figure 6.5. Thgsifé indicates that surface
#7 has suffered the most amount of damage with 352 bad seQtiter damaged sectors
are scattered across surfaces #2, #3, #4, #5, #6, #8, anud#Szting that bad sectors ex-
hibit very poor physical locality. This observation wasagipointing and counter-intuitive
because it makes sense that some disk regions, such as ¢nemmst recording surfaces,
are more prone to damage than others due to a difference mesisure within the disk’s
enclosure that pushes free particles toward the outer-raostding surfaces. Or regions
that had been previously-damaged are more prone to faitbeesothers. None of these
hypotheses are supported in our observation from the prsvigure.

A closer look at our result led us to find a critical mistake ur oalculation by placing
too much trust in the published disk geometry. As it turns the real disk geometry is
actually different, although not by much, from the publdiagata. However, the small
difference between the two, shown in Figure 6.6, made a hiffggahce in our analysis.
This difference is caused by slip sectors and spare settarste not taken into account

when the disk’s geometry is specified in its data sheet. Tdmaission is understandable
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Figure 6.7: IBM 75GXP: A mapping of bad sectors to recordingaces using the actual
physical geometry of the disk.

as each disk is different. To obtain the disa&ual physical geometry, we used the probe
method described in the previous section. The mapping ob#uesectors to recording
surfaces using the disk’s actual geometry is shown in Figufe

Using the actual physical geometry of the disk to map out leatioss we found that
surface #8 had the most number of damaged sectors (467)tiéwilly, other bad sectors,
instead of being scattered across many different recorslimces, are now localized to
only two neighboring surfaces #7 and #9. This finding imptlest it is not necessary to
have replicas to be placed far apart to store data more s&8eiyetimes, it is sufficient to

place the replicas to a close-by track as long as they are fieeedt surface from the loca-
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tion of their original data. This allows data to be storedagly as the traditional method
(i.e., placing replicas far apart from their original) wdkeeping performance degradation

to a minimum for keeping replicas consistent.

Sector Track
813160 | 1158
610801 | 1108 | 10track
827144 1178 _ 10track
833786 | 1188 | 10track
841128 | 1198

847770 1208
855112 1218
862455 1229
869096 1238
876439 1248
883080 1258

890423 1268
897064 1278
904407 1288
911048 1298
918391 1308
925032 1318
932375 1328
939017 1338
946359 1348
953702 1359
960343 1368
967686 1378
974327 1388

Table 6.4: IBM 75GXP: A sample mapping of bad sectors to ttnaak.

We next mapped the defective sectors to tracks, and a saifgplis mmapping is shown
in Table 6.4. A closer examination of this table shows manthese sectors are often 10
tracks apart from each other. The fact this disk has 5 ptatiad 10 recording surfaces
implies these sectors are on neighboring tracks of the sanf@cs. Plotting their sector
offset (within a track), as shown in Figure 6.8, we can seeetli® a clear pattern. We
immediately suspected the regular pattern in the secteetsfiis an artifact of head skews
and cylinder skews. It is also an indication that these secatoght be located closely to
one another on neighboring tracks, e.g., as part of a scoat@lnole on a surface.

To verify our hypothesis is correct, we first obtained the&kdi®iead skew (HS) time
(1.2 ms) and cylinder skew (CS) time (1.7 ms) from its spediitn sheet. Instead of using
the actual time, we converted the time unit to the number ctiose that would pass under
the disk head for that amount of time, as shown below.

Head_Skewime

Head_Skewgecrors = _ SPT
ca Wsect Full_Rotationime :
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Figure 6.8: IBM 75GXP: A sample of bad sectors’ sector offset

Cylinder _Skewjme
Full_Rotationgme
A full rotation takes 8.33 ms on a 7200 RPM disk, and SPT stdodsectors per

Cylinder_Skewgectors = x SPT.

track. HS and CS are found to be 102 and 144 sectors, resgligctiext, we calculate the

skewness of neighboring tracks on the same surface, caliéate skew, as shown below.

Sur face_Skewseerors = (H Ssectors X (Sur faces — 1) + CSsectors) S PT.

center

b

Bad Sectors Bad Sectors Bad Sectol

A Track Offset =360 A Track Offset > 360 A Track Offset < 360
Figure 6.9: Using sector offset difference to predict sextelative location.

The surface skew (SS) of this disk is approximately 360 ssct®his means if two
sectors (on neighboring tracks of the same surface) havetar s#fset difference of 360
sectors, they will fall on the same radius line passing thothe center of the disk. An
example illustrating different variations of this scewas shown in Figure 6.9.

The sector offset difference between bad sectors of nergidparacks is shown in

Figure 6.10. Their offset difference lies consistentlyuard 375—-380 sectors—a strong
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Figure 6.10: IBM 75GXP: Difference between bad sectorst@meaffsets.

indication of surface scratches. This might be caused byd bheash as a head will leave
a regular scratch pattern on the recording surface evewy itimrashes. The analysis of
sector offset allows us to propose an alternative and patnibetter method to replicate
data—placing replicas almost physically adjacent (i.e.ameighboring track of the same
surface) to the original data, as long as the sector offdekin into account. Therefore,
an update operation that synchronously modifies the ofligiai@ and all its replicas can
be completed with a very small amount of mechanical delayss method of replication
allows replicas to be placed much closer to their originghdehile data are kept as fault-
tolerant as the previous method.

The analysis of the bad sectors’ physical location founcherlBM 75GXP disk shows
evidence that suggests the existence of better placematgges of replicas than the con-
ventional method, which is to place replicas far away frowheather and the original data.
By placing replicas on a neighboring track (of the same dgiror the same surface) of the
original data, we can achieve the same level of fault-tolegaas the conventional method
but with much less performance overhead in maintainingcagl

On this IBM disk, all its bad sectors are found on zone #0. Tais be caused by
either head crash or an overuse of this disk region. Someyitess, e.g., NTFS, try
to place more frequently used files on the outer edge (lowemddzones) of the disk to
achieve higher I/O bandwidth. However, this causes somis jphrthe disk to be used
much more frequently than others, and the excessive wearazgse damage over time. A

file system that makes more balanced use of different diskmege.g., Ext2, can alleviate
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Capacity 36.7 GB Zones Cylstart Cylend Sectors/Track
Zones 11 0 0 378 504
Cylinders 15110 1 379 2069 476
Platters 6 2 2070 3416 462
Surfaces 12 3 3417 6788 420
RPM 10000 4 6789 7493 406
Interface SCSI 5 7494 8863 392
6 8864 10167 378
7 10168 11195 364
8 11196 11999 352
9 12000 13714 336
10 13715 15109 308

Table 6.5: IBM 36LZX: Disk specification.

such problems. In the following sections, we will study ahdrmacterize other failed disks.
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Figure 6.11: IBM 36LZX: A list of bad sectors.

6.3.3 IBM Ultrastar 36LZX

In this section, we will analyze another failed IBM disk—altrdstar 36LZX. Its spec-
ification is shown in Table 6.5. We found 3 times more numbéyaaf sectors on this disk
than the first IBM disk (1799 in total). Similar to the first IBMisk, all bad sectors are
found on zone #0 (shown in Figure 6.11, which, as we have stggereviously, may
have been caused by an overuse of that region. Additiorly,sectors had a high con-
centration on only one of the surfaces (shown in Figure Gah#,the rest was found on a
neighboring surface, which suggests a strong surfaceitpcdldefective sectors.

On both IBM disks, the most badly damaged recording surfa¢kd inner surface of

the outer-most platter. It is not clear whether or not thia failure characteristic of only
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IBM disks or disks in general as our sample size is not big ghda make such a general
statement. Although it does suggest that by exploiting tivéase locality of defective

sectors when placing replicas, data might be more safefgdton IBM disks.
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Figure 6.13: IBM 36LZX: Sector offsets of defective sectors

Despite many similarities in failure characteristics betw the two disks, there are also
some differences. Unlike the first IBM disk, where we foundular patterns in sector
offsets of defective sectors, we did not find similar pateon the second disk. Sector
offsets of the bad sectors found on the second disk are showigire 6.13. This figure
shows most defective sectors have a small sector offsetrwtitieir track. This is more
clearly shown in Figure 6.14. However, it is not clear whagimihave caused it. To guard
against such failures, file systems should refrain fromiptameta-data and important user

data towards the beginning of tracks.
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Figure 6.14: IBM 36LZX: A histogram of sector offsets—snealbnes dominate.

6.3.4 Western Digital Caviar 205BA

Caviar 205BA is the first of two Western Digital (WD) disks wallvstudy in this
subsection. Its specification is shown in Table 6.6. Theiogmt difference between WD

and IBM disks from our perspective is that WD disks have morges than IBM disks.

Capacity 20.5GB
Zones 20
Platters 3
Surfaces 6

RPM 7200
Interface IDE

Table 6.6: WD 205BA: Disk specification.

We found 2835 bad sectors on this disk. These sectors afeglot Figure 6.15(a).
Among them, 2832 are consecutive. Long streams of consecdéfective sectors are
commonly found on failed WD disks. As a result, all plattand aurfaces are likely to have
some damaged regions (shown in Figure 6.15(b)). Thus, tmigue we have proposed
for IBM disks, which is to place replicas on the same cylindgror a neighboring track
of the original data, will not be effective for WD disks. Defwe sectors on WD disks
usually have long runs, but in terms of affected tracks andgrs, only a few are affected.

Therefore, placing replicas a few cylinders away can be @ gouple solution.
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Figure 6.15: WD 205BA: (a) A list of bad sectors. (b) Mappingtloe bad sectors to

recording surfaces.

6.3.5 Western Digital Caviar WD400BB

This is another WD disk but of a different generation as ittpks have a much higher
recording density than the previous WD disk. Its specifarats given in Table 6.7. This

disk also has more zones than the IBM disks.

Capacity 40 GB
Zones 18
Platters 2
Surfaces 4
RPM 7200
Interface IDE

Table 6.7: WD 400BB: disk specification.

We found a list of 1069 defective sectors on this disk. Moanthalf of them (692)
are consecutive, similar to the first WD disk. This is showRigure 6.16(a) around sector
#7.5e7. Other than these consecutive sectors, there ard aimaller defective regions.
These are mapped to all 4 surfaces of the disk, as shown inethi@rbng part of Fig-
ure 6.16(b). A closer examination of these defective se@rposed some regular patterns
in their physical location. A sample mapping of these sectortheir track and surface is
shown in Table 6.8. It is apparent from this table that thedwadors are all one track apart.
Partitioning these sectors by surface, this is the exab#ysame type of damage that we
have seen on the IBM 75GXP disk. As opposed to having scratcheonly one of the

surfaces, the WD 400BB disk seems to have scratches on fdkssr The sector offset
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Figure 6.16: WD 400BB: (a) A list of bad sectors. (b) Mappinfgtlee bad sectors to

recording surfaces.

differences of these sectors are shown in Figure 6.17. Theistency in the sector offset

differences (indication of having a scratch) is apparemtfthis figure.

Sector Track Surface
28888401 31438 2

28889142 31439
28889882 31440
28890623 31441
28891363 31442
28892987 31443
28893728 31444
28894468 31445
28895209 31446
28895949 31447
28896690 31448
28898314 31449
28899054 31450
28899795 31451
28900535 31452
28901276 31453
28902016 31454
28902757 31455
28904381 31456
28944372 31502
28945996 31503
28946736 31504

OWNOWNRFRPROWNRPFPOWNREFROWNREROW

Table 6.8: WD 400BB: A sample mapping of bad sectors to thaaktand surface.

6.3.6 Maxtor 4K020H1

We have two failed Maxtor 4K020H1 disks with exactly the sgpéblished) physical

geometry, and both will be covered in this section. The d@ation of these disks is shown
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Figure 6.17: WD 400BB: Sector offset differences of badaesct

in Table 6.9. These disks are simpler and slower than thaqusly discussed ones, and
they have only one platter with one recording surface. Tiwational speed is only 5400

RPM as opposed to 7200 or 10000 RPM.

Capacity 20 GB
Zones 15
Platters 1
Surfaces 1
RPM 5400
Interface IDE

Table 6.9: Maxtor 4K020H1: Disk specification.

The list of bad sectors found on the two disks are shown inrgi§ul8. It is common
on the two disks that most of the defective sectors are vesedio one another. On one of
the disks, 63 out of a total of 84 defective sectors are catimton the same track with at
least one other defective sector. On the other disk, 93 oRl4éfdefective sectors are co-
located on the same track with at least one other defectaterséill the defective sectors
are localized within 3 or 4 zones on these disks. These obddavlure characteristics are

fairly similar to the failed Western Digital disks.

6.3.7 Quantum Fireball LCT10

Fireball LCT10 is one of the two Quantum disks we will studythins subsection. Its
specification is given in Table 6.10. We plotted all defeegectors in Figure 6.19 The fail-

ure characteristic of this Quantum disk is fairly similarthe Maxtor and Western Digital
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Figure 6.18: Maxtor 4K020H1: A list of bad sectors on eachhefMaxtor disks.

disks. It has 31 bad sectors located on only 2 zones, and 2iewof &re consecutive. Ad-
ditionally, only 2 out of 4 surfaces are affected. The sanpéication techniques proposed

for Maxtor and WD disks should be applicable here.

Capacity 36.7 GB
Zones 8
Platters 2
Surfaces 4

RPM 10000
Interface SCSI

Table 6.10: Quantum LCT10: Disk specification.

9e+0B 1.5
B.0e4+0E b 4444+ttt bbb bbb b+
Be+06 |
?+58+05 5 o 1} LR e E R L R R LR L LR L
i} Te+0E | @
Q 6,50406 | 8 ..
0 S i
Be+0B | b
0, be+0E
Ee+iE F OF+++++4+
4. be+0E |
de+0f L—— . . . . -0,5 L . . . .
0 4] 10 15 20 20 30 0 5 10 15 20 20 a0

() (b)
Figure 6.19: Quantum LCT10: (a) A list of bad sectors. (b) klag of the bad sectors to

recording surfaces.
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6.3.8 Quantum Fireball CX10.2A

Fireball CX10.2A is a slightly older disk. Its specificatios shown in Table 6.11.
112 defective sectors (shown in Figure 6.20) were found gqmbared to be randomly
distributed on the disk—on all 3 recording surfaces and omt7od 15 zones. Only 21

sectors are co-located on the same track with at least ore déifiective sector.

Capacity 10.2 GB
Zones 15
Platters 2
Surfaces 3

RPM 5400
Interface IDE

Table 6.11: Quantum CX10.2A: Disk specification.
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Figure 6.20: Quantum CX10.2A: (a) A list of bad sectors. (l§pding of the bad sectors

to recording surfaces.

A closer examination of the defective sectors revealed fungethat we did not see in
the other disks. A sample mapping of sectors to their trackranording surface is shown
in Table 6.12. In this table, we can see a large percentagleesttsectors are mapped
to surfaces #0 and #2, and the failed sectors are often sepdra exactly 6 tracks (or 2
cylinders). This is not likely to have been caused by mea@problems, e.g., head crash,
as the damaged sectors do not resemble a scratch of any kiredmore likely to have
caused by a problem in the servo system. Simply placingaaplio a few cylinders away

from the original data or on a different surface will not béfisient.

162



6.4 Conclusions

Replication appears to be an effective method to enhanedalat-tolerance on a single
disk and can be practically implemented in existing file sgs. We focus our attention on
single-disk systems as there are no existing solutions.s&aeplication to improve fault-
tolerance, there are several challenges to overcome., Wesiust be able to accurately
and quickly detect the physical geometry of the disk and s&pbis information to the file
system for it to be used to better safeguard data. Seconmghagood understanding of
disk drives’ failure characteristics is crucial in makirgetright replication decision, but

there is a lack of such study.

Sectot Track Surface
13951235| 30189
13953247 | 30194

13953571 | 30195 6 tracks
13955583 | 30200
13955907 | 30201 6 tracks
13957919 30206
13958243 | 30207 6 tracks

13960255| 30212
13960579 | 30213
13962591 | 30218
13963319 | 30219
13965329 | 30224
13965330| 30224
13965654 | 30225
13967666 | 30230
13967990 | 30231
13970002 | 30236
13970326 | 30237
13972338 | 30242
13972662 | 30243
13974674 | 30248
13975401| 30249
13977413 | 30254
13977737 30255
13979749| 30260

I\)OI\)ONONONONONNONONOINOE\)OWO

Table 6.12: Quantum CX10.2A: a sample mapping of defectaatoss to their track and

recording surface.

We attacked both of these challenges, first by developing afdeols to probe for
disk physical geometry, and using which, we then analyzeddhure characteristics of
60 failed disks. Our experimental results confirmed thatdingple method of placing
replicas far away from their original data will work, but nary effectively. Our empirical
observation indicates that placing replicas to be very K@arthe same cylinder or on a
neighboring track) their original data can often provide #ame level of fault-tolerance

and will only require a minimal amount of resynchronizatmrerheads to keep replicas
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consistent.

Despite only 9 out of 60 disks were in condition to be analyredur study, we ob-
served some interesting phenomena that concurred with someon practices and raised
the possibility of potentially better approaches. We fothrat disks made by different man-
ufacturers sometimes have different failure charactesistherefore, the best way to place
replicas on a disk will depend on who has manufactured it,taisdnformation is readily
available from disks’ firmware. Taking advantage of the dipincreasing disk density,
these observations can be exploited by future file systermat@ better placement of data
to increase data fault-tolerance. This can protect agamsie data corruption scenarios

and give early warnings to users to minimize the probabdftgermanent data loss.
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CHAPTER 7

Related Work

There has been a significant amount of previous work in utgizinused resources
for a variety of purposes, which can be broadly classified thtee categories—energy
management, performance improvement, and fault-toleranbancement. Next, we will

discuss each of these areas in more detail.

7.1 Energy

7.1.1 Microprocessor

Recent research has demonstrated that a significant ambenengy can be saved
by exploiting the power management capabilities of unussedare. In the early 90’s,
Weiseret al. [125] first demonstrated the effectiveness of using Dynavoltage Scaling
(DVS) to reduce power dissipation of microprocessors. D& system software to
direct microprocessor to dynamically change its operditieguency and voltage. Almost
all mobile microprocessors support this feature. Someesamvork [10, 54, 96, 125] using
DVS techniques simply used average processor utilizati@hrect voltage and frequency
scaling. Later work [48, 79] improved these techniques lphapg prediction techniques
and soft deadlines in their DVS algorithms. This allowed DiéSe applied to general-
purpose systems while maintaining good interactive peréorce. DVS techniques are

finally applied to real-time systems [55, 90, 97, 99], whasks have more strict execution
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behavior and deadlines.

7.1.2 Disk

Due to having higher rotational speed and heavier plattess,disk drives are consum-
ing an ever-increasing amount of energy. Numerous enenggeceing techniques [20, 21,
39, 53,58, 73, 76, 126] have been proposed by exploitingidiskess. In these techniques,
power is reduced by switching disks to one of the lower enenggles after observing a
certain period of disk inactivity. However, due to increwgsutilization of disk drives, most
idle periods are becoming too small to be exploited in sucysWa7, 132]. Gurumurthet
al. [57] proposed a Dynamic RPM (DRPM) disk design. In their dation, this design
was shown to be effective in saving energy even when the slisksy. However, as DRPM
disks are not currently pursued by any disk manufacturees;amnot yet benefit from this
new architecture. In this thesis, we lowered energy consiompy reducing seek distance.
This is similar to the DRPM design, where power can be redeved when disk is busy.
However, unlike DRPM, our work in P3loes not suffer any performance degradation. On
the contrary, F5actually improves performance while saving energy.

Techniques to conserve energy in multi-disk arrays have ladéen proposed. Popu-
lar Data Concentration (PDC) [98] and Massive Array of Idlisk3 (MAID) [14] have
been implemented to use either caching or data migratiamctease disk traffic skewness
among the disks in the array. This skewness allows some tlidksve longer idle periods
than others so they can be exploited for energy saving pardog38], traditional RAID
systems are studied in detail in the aspects of energy afdrp@mce by varying various

RAID parameters.

7.1.3 Memory

Among power-management techniques proposed for main nyethere are currently
two main approaches—hardware- and software-controll@dorg the software-controlled
approach, Delaluet al[40] proposed a compiler-directed approach, where potate-s

transition instructions are automatically inserted imonpiled code based on offline code
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profiling. The major drawback of this approach is that coepanly works with one pro-
gram at a time and has no information about other processesnidy be present at run-
time. Therefore, it has to be conservative in managing pa~re@ise it can trigger large
performance and energy overheads when used in a multitaskstem. Nevertheless, this
technique may be applicable in embedded systems where aaoiklare more determin-
istic. Delaluzet al[42] later demonstrated a simple scheduler-based powaagament
policy. The basic idea is similar to our PAVM approach, bubfsmuch more limited
scope. First, we put much more effort into having the undieglyhysical page allocator
allocate pages by collaborating with the VM through a NUMAmagement layer so that
the memory footprint of each process is reduced, wheregsrée on the default behav-
ior of the page allocator and VM. As we have seen in Section & gubstantial amount
of power-saving opportunities still remained unexploiega@n with our rudimentary im-
plementation of PAVM, let alone when pages are randomlycatied by the default page
allocator. In [25], it was also noted that the default patheeation behavior has a detrimen-
tal effect on the memory footprint of processes. Second,ave lexplored more advanced
technigues such as aggregation of shared pages and paggiomgvhich are necessary
for reducing memory footprints when complex sharing betwgcesses in real systems
is involved. Page migration techniques [43, 74] have beéensively explored in NUMA
systems to reduce I/O latencies. We used a similar migragicmique in this thesis but
for the purpose of reducing energy consumption. Finallgyttietermined the active ranks
by using page faults and repeated scans of processes’ gags. talthough this ensures
only the truly active ranks are detected, it is intrusive anlves high operational over-
heads. In contrast, we take every precaution to avoid padoce overheads and hide any
avoidable latencies in our design.

Among the hardware-controlled approach, Lebetkal. [25, 45] studied the effects
of various static and dynamic memory controller policieseduce power with extensive
simulation in a single-process environment. In anotherepyt], they used stochastic
Petri Nets to explore more complex policies. Delagizal. took a similar approach in
[40], where they studied various flavors of threshold prexigcand evaluated their energy

implications. The software-directed hardware technigqugsed in this thesis is orthogo-
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nal to the techniques described above and can be used toventr® prediction accuracy
in some of these previously-proposed threshold predictiechanisms. However, unlike
these previous approaches, the techniques proposed théisis are specifically designed
and optimized for a multitasking environment, as are modbday’s systems. In other
research contexts, using software and hardware collaboi&, 22, 77, 110] has also been
shown to be beneficial in terms of improving performance audisty, and providing new
functionalities.

We have also shown that memory traffic reshaping can compiethese existing
hardware-controlled techniques by creating larger idkgople from smaller ones, thus al-
lowing power management to become more effective in redyaver. Similar techniques

have been proposed by [132] in the context of disk drives.

7.1.4 Wireless Device

Due to the rapid increase in the number of mobile devices, lgtops, PDAs, and
cellphones, wireless communication is becoming an impbdaeea. Wireless devices can
consume a significant amount of power [47], and therefone,seaerely limit the battery
lifetime of mobile systems. For an IEEE 802.11 WLAN devidesan be in one of several
states: transmit, receive, idle, and doze. It has been shioatrby taking advantage of
the doze mode adaptively at appropriate moments [24, 182, battery energy can be
conserved. Energy can also be conserved by applying TraRswer Control [27, 30, 32,

70], which is orthogonal to the techniques that make useetidze mode.

7.1.5 System

As opposed to saving energy for individual components etlaee also some propos-
als [49, 80, 131] that explored system-level approachestand/target the battery lifetime
of the system. Flinret al's work on Odyssey [49] changes the fidelity of data objects in
response to the available resources to meet user-speasia battery duration. Zereg
al. proposed ECOSystem [131] to provide a model for fair alliocedf energy resources to

competing applications. In [80], Let al. monitor processes’ requests to hardware compo-
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nents. The operating system can slow down or shut off haela@mponents to conserve

power depending on which process is currently executing.

7.2 Performance

7.2.1 Microprocessor

The most widely-known work that takes advantage of idle gssor cycles to do more
work is the SETI@Home project [111]. SETI stands for SeamhBxtra-Terrestrial In-
telligence, which, as its name suggests, is used to detecuiside of Earth by analyzing
radio signals collected by the Arecibo radio telescope.hls project, a massive amount
of data is sent to 5.2 million participants around the wokdmected by the Internet and
processed by their unutilized CPU cycles without interfgnwith the normal tasks of the

participants.

7.2.2 Disk

File System: FFS [34] and its successors [11, 122] improved disk bandwadid |a-
tency by placing related data objects (e.g., data blocksranttes) near each other on disk.
Although it can be effective in initial data placement, iteéa no notice of dynamic access
patterns. Therefore, its improvement is fairly limited IR4]. Based on FFS, Ganget
al. [52] optimized performance for small objects by improvihgit adjacency rather than
just locality, to make better use of disk bandwidth. Unfogtely, they also suffer the same
set of problems as FFS.

In Log-structured File System (LFS) [103], disk write perfance can be significantly
improved by delaying and writing in large segments. Tuniigslby putting active seg-
ments on high-bandwidth outer cylinders can further imprawite performance [124].
However, due to segment-cleaning overheads and its ihatalimprove read performance,
there is no clear indication that it can outperform file sgsten the FFS family.

The closest related works to F&re the Hot File Clustering used in the Hierarchical
File System (HFS) [51] and the Smart File System [114]. Thi#seystems monitor file
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access patterns at runtime and move frequently accesseddfitereserved area on disk.
FS has several major advantages over these. First, the useaf ¢wanularity allows us
to optimize for all files instead of only the smaller ones. I#ioagives us opportunities to
place meta-data and data blo@djacentto one another as opposed to jokise-by As
indicated in [52], this can significantly improve perforncen Second, moving data can
potentially break sequentiality. We use data replicatmbath sequential and random disk
I/Os can benefit. Third, using a fixed location on disk to raage disk layout will only
have benefit under a lightload [71]. Using free disk spacertizy be at arbitrary locations,
we show that even under heavy loads, significant benefitstitidresattained while keeping
replication overhead low. Fourth, reserving a fixed amotiklisk space to rearrange disk
layout is intrusive, and this can be prevented in our apgrdscusing only the available
disk space.

Adaptive Disk Layout: Early adaptive disk layout techniques have been mostlystud
ied either theoretically [128] or via simulation [23,9141023]. It has been shown for
random disk accessygan pipeheuristic, which places the most frequently-accessed data
in the middle of the disk, is optimal [128]. However, as reakioads do not generate ran-
dom disk accesses, the organ pipe placement is not alwaysabpand for various reasons,
far from practical. To adapt the organ pipe heuristic toistialworkloads, Vongsathorn and
Carson [123] proposecllinder shuffling In their approach, the access frequency of each
cylinder is maintained, and based on their frequenciesdgts are reordered using the or-
gan pipe heuristic at the end of each day. Similarly, Ruemand Wilkes [104] suggested
shuffling in units of blocks instead of cylinders, and it waswn to be more effective. In
all these techniques, it was assumed that the disk geonseknpivn and can be easily sim-
ulated. This might be true at that time, but due to incredgiogmplex hard drive designs
and fiercer competition between disk manufacturers, diskmgtry is now mostly hidden.
Of course, there are tools [1, 44,107, 119] that can be usexittact the physical disk ge-
ometry experimentally, but such an extraction usually sakéong time. Furthermore, the
extracted information can be too tedious to be used at rentim

Akyurek and Salem [2] were the first who actually implemeritietk shuffling in a real

system. Other than its use of block granularity instead efdgranularity, this technique is
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very similar to HFS and Smart File System, and therefordessithe same pitfalls as HFS
and Smart File System.

I/O Scheduling: Disk performance can also be improved by means of better I/O
scheduling. Seek time can be reduced by using SSTF and SC3INJ1SCAN [108],
and LOOK [85]. Rotational delay can be reduced by using thaarhes as described
in [64, 68,101, 109]. An anticipatory I/O scheduler [67] &ead to avoid hasty 1/0O schedul-
ing decisions by introducing additional wait time. Theseht@ques are orthogonal to the

adaptive disk layout techniques.

7.2.3 Graphics Processor

Today’s GPUs are highly parallel vector processors thathzardle texture mapping
and polygon rendering at a blazing speed. In fact, their freguency has been doubling
roughly every 6 months [33], even faster than CPU’s rate gfrovements. However,
GPUs are utilized only by a small number of 3-D applicatissmost of the time, they
just sit idle in the background. Various interest groupsparghing for GPU manufacturers
towards more general-purpose GPU architectures with repsgramming models. This
will ideally allow GPUs to be used for general-purpose cotapan, but up to date, only
a very small number of specialized scientific computatioas lbeen compiled to run on
GPUs [26,120]. This is still a research area with many lowghag fruits. Furthermore,
video memory has become an ample resource in today’s vidds dae to the recent drop
in memory price. Video cards with half of a gigabyte of memanry fairly common, which
is comparable to the size of main memory. It is not difficulirtagine system software
that can opportunistically take advantage of the idlingeaigdnemory to augment the size

of main memory when running memory-intensive applications
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7.3 Fault-Tolerance

7.3.1 Disk

An adequate level of fault-tolerance against data loss atd corruption is a must
in mission-critical environments. Redundant Array of Ipersive Disks (RAID) [94] is
the most widely used storage volume manager that makesoffadetween the storage
system’s performance, fault-tolerance, cost, and eneoggumption. Data loss can be
deterred by using either mirroring (RAID-0) or parity infoation (RAID-5), or a combi-
nation of both depending on the performance and fault-doles requirement of a particular
system. However, in a RAID system, when improving one din@msne or more other
dimensions are usually degraded. For example, if we wanpgpade an existing RAID
system so that it can tolerate more failures, then we wouédinie buy more disks just
SO we can store the same amount of data as before. This iasreasdware cost, admin-
istration cost, and energy cost. These tradeoffs betwegaugadimensions in a RAID
system are studies here [3,7,13,37,127,130]. For backstersg, not only it requires
additional equipments to hold backup data, but it also gadditional chores to system
administrators.

The Elephant Filesystem [31] uses free disk space to autcaiigtstore old versions
of files to avoid explicit user-initiated version controh their system, a cleaner is used to
free older file versions to reclaim disk space, but it is ntivedd to freeLandmarkfiles.

In FS, all free space used for duplication can be reclaimed asceepare used only for
enhancing performance and invalidating them will not coonpise the correctness of the
system.

Additionally, distributed storage systems such as Faf28g Pastiche [16], and Sam-
sara [17] exploit free disk capacity in participating clierio distribute data across ge-
ographically different locations to implement highly dadie, reliable, and secure data

storage systems.
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CHAPTER 8

Conclusions and Future Work

8.1 Conclusions

The aim of this thesis is to show how unused hardware ressurae be effectively
utilized to the benefit of users while keeping all the addiséilccomplexity due to harnessing
such resources hidden from them. One main focus is to expleiresources for energy
savings.

To reduce power dissipated by the main memory, we firstimplaed a purely software-
controlled power-management technique. This techniqum@emented both on a real
system and a simulated system, and we were able to demenatsagnificant amount
of power savings. Besides the energy benefit, this techngjpkatform independent and
can be easily ported to different machine and memory arwdoites. However, having
power-control and monitoring mechanisms implemented & dfstem software inheri-
tantly limited the effectiveness of this approach, and assallt, many power-saving op-
portunities cannot be exploited. To improve upon this tepie, we then implemented
a software-directed hardware power-management technichieh takes advantage of (i)
finer-grained power-control mechanisms available at théware level and (ii) system in-
formation available at the operating system level. In addito these two techniques, we
also demonstrated the usefulness of actively reshapingometraffic in reducing mem-
ory’s power dissipation and how this technique can be useongplement some existing

hardware power-management techniques.
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In the area of magnetic disks, we have shown the usefulndieseadisk capacity in FS
The use of free disk space allows a flexible way to improvedig® performance and re-
duce their power dissipation, while being nonintrusivegers. We have also demonstrated
the potential usefulness of using replication and unusadadipacity to improve data fault-
tolerance in a detailed analysis of disk failure charasties and strategies to better place

data and replicas on disk.

8.2 Future Work

In the area of memory power-management, our main focus is\gmacessor systems,
with an explicit assumption that there is only one runningcess at any instant of time.
PAVM is specifically designed and optimized for such systemsvill be interesting to
consider extending PAVM to systems with multiple procegsinits, e.g., multi-core and
multi-processor, of which many of today’s systems are guetip To implement PAVM in
such systems, we would need to consider a combination ofrigrmprocesses instead of a
single process, and thus, task scheduling will play an itgmbrole in power management.

In FS, there are still many interesting areas to explore. For @@meplication can be
done either at the file system level or at the block devicd ldfi¢is done at the file system
level, implementation is much easier, but it will be very-Bligstem-specific and need to be
re-implemented for each file system we want to extend anduatal If it is done at the
block device level, we can generally apply it to any file sgsteThe problem with this
approach is that the block device driver does not know whietliksk block is free or used,
as this information is available only at the file system leVel have replication done at the
block device level, it would require the file system to exmwine information to the the
block device driver.

Several other design aspects of FS2 are also interestingtore in the future. First,
we have only implemented a working 1-replica system, butetlage scenarios where an
n-replica system, wherex 1, might perform better. Second, we have only explored+epli
cation techniques, but migration sometimes can be moreppgpte. Further investigation

is needed to determine under which scenario is migratioeioation the better method
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to reorganize data layout. Third, extending the technique$ave developed for single-
disk systems to multi-disk systems can potentially imprexisting multi-disk solutions,

e.g., RAID, in terms of performance, fault-tolerance, andrgy-efficiency.
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