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Chapter 1

Introduction

Over the last couple of decades, the functions of the Intdrane evolved from providing
a simple text-only email service to information retrievaulti-media streaming, on-line
advertising, shopping, auction, banking, trading, andyraher business/mission-critical
tasks. Both businesses and people have now become relhaudyhen the Internet for their
everyday lives and activities. In order to provide theséhssifrated services, new server ar-
chitectures have been developed and more servers are ddptogrovide scalable, highly
available and reliable services.

When building a server system, designers usually overigimvits capacity to meet
the peak demand in the foreseeable future. When multipleeseare needed, a server
architecture is designed and then each server machine igjemd. Early planning is
necessary as server procurement may take days or even Wéelse servers are usually in-
stalled in designated rooms/areas in each server owneriges. In order to achieve high
availability, both backup power sources and redundantetaonnections are provided.

However, this practice suffers from several problems. tFics small businesses, the
cost of having redundant network connections and backugpsaurces can be unafford-
able. Besides, future server workloads are usually estidneéry conservatively during
capacity planning, yielding much larger servers than nééad@ractice. Workload fluctu-
ations and long resource procurement delays in additiohgmver-provisioning usually
cause many of the servers to be severely under-utilized s€prently, service providers

need to pay a high initial cost and a higher operating costndmternet services even for



the under-utilized servers.

1.1 Evolution of Server Infrastructures

Many data centers have been built and there have been nusneffouts to reduce the
cost of operating Internet servers. Customers move seiverslata centers to lower the
infrastructure cost. Some data centers also provide th®rmmess resources on demand.
Customers request resources only when needed, and pagfardgburces they have actu-
ally used. Furthermore, virtualization allows for flexiksource partitioning. Recently,
cloud computing removes the burden of resource managememohiding high-level ser-
vices instead of raw computing resources. The evolutiorfes infrastructures is briefly

described next.

1.1.1 Data Centers

Internet data centers facilitate server hosting. Some a&iters are fully owned and op-
erated by a single organization while others provide itftectures and services to their
customers. Inside a data center, racks of servers are agghimto rows to increase server
density on the limited floor space while allowing sufficientfiows for heat dissipation.
Data center customers may rent rack spaces and mount theisewer machines. They
may also obtain pre-configured servers inside a data cerfigpically, pre-configured
servers are available in few different configurations omlgl the lease duration ranges from
months to years. However, they reduce the resource proemtetielay to hours or a few
days and allow a server system to grow or shrink with the sesvihey provide.

Data centers also provide a common network and electrioftastructure to its cus-
tomers. A data center usually connects to the Internet vikipreinetworks to improve
redundancy. The electricity infrastructure of a data aemtay connect to one or several

power grids via multiple power lines, and provide backuphwiinterruptible power sup-



plies (UPSs) and diesel power generators. In addition, testiperature and humidity are
controlled inside a data center and the physical accessdocdaters is usually restricted
to ensure physical security.

Since these infrastructures are shared among many sengecsistomers, data centers
can benefit from statistical multiplexing by providing afrastructure that is smaller than
the sum of all customers’ maximal demands. In addition, t@emics of scale also en-
ables data centers to provide these resources at a lowerBystoving servers to a data

center, a customer can reduce the infrastructure and opgasts.

1.1.2 Utility Computing

Although acquiring pre-configured servers from data cerd#ows a service to expand its
capacity in a shorter time, idle resources cannot be redutmé¢he data center or utilized
otherwise easily. One approach to improving resourcezatibn is to allow more flexible
resource allocation. When a customer needs more compugsumyirces, the data center
allocates unused resources to the customer. These newaesdecome ready for use
very quickly (in minutes or hours.) If the resource need dshies, the customer can return
excessive resources to the data center. Customers areatedtto do this because they are
only charged for the amount of resources for the duratiop tiae held. This is similar
to the usage of other utilities such as power and water. Ss,célledutility computing
and the data centers that support this scheme are aglléy data centers Examples of
utility data centers include HP Utility Data Center (UDCurSGrid, and Amazon Elastic
Compute Cloud (EC2).

In an utility data center, a complete physical machine,udiclg CPU, memory, net-
work bandwidth, and so on, can become the unit of computieguee allocation. If a
data center operator runs an operating system (OS) thabgappsource partitioning and
metering on its servers, the operator can also divide iteesginto partitions and allocate

a subset of partitions to customers. A current trend in deteers is to use virtualization



technologies for partitioning physical resources, whigwil discuss next. Storage space
is also another type of resources that is commonly seenlityakata centers (e.g., Amazon

Simple Storage Service.)

1.1.3 Virtualization

Server virtualization creates an illusion of having muéiperver hardware, calledrtual
machineqVMSs), on top of a single physical machine. Each VM has one orenCPUs,
some memory space, disk storage, network interfaces, and.sBhach VM also needs a
complete OS to operate. In data centers, VMs can be usedascesontainers that pro-
vide more fine-grained resource allocation than physicalhimes. Data center operators
then allocate VMs to their customers, not physical machifecause of its simpler ab-
straction, VMs can also be migrated from a physical macli@bther without suspending
their execution.

Virtual machine monitors (VMMSs), also called hypervisoase the piece of software
that partitions physical resources and coordiates theitysvMs. Some VMMs depend
on an underlying OS, calleldost OS$to manage physical resources. Other VMMs sit di-
rectly on the physical hardware and control the access tanlderlying hardware. More
advanced VMMs also support resource overbooking. For el@muiltiple VMs can share
one CPU core and the total amount of memory space of all VMsereged the amount of
physical memory installed on the physical hardware. Foeighared resources, schedulers
are used to coordinate resource usage by VMs. While the resatilization is improved,
this may increase response time and decrease fault-toteréisually, a high-level perfor-
mance monitoring approach is used to detect performangessnd use VM migration to
alleviate the problem.

Similar to the resource-partitioning facilities providby certain OSes, VMs can be
created in seconds and the amount of resource allocatedo\dd can be adjusted to

fit each customer’s need at run-time. However, the abstract a VM gives its user the



flexibility to choose an appropriate OS. Since customer lial control over the soft-
ware running within their VMs, they can migrate their exigtiservers into VMs easily.
Because of the flexibility in resource allocation, custosnean operate their server VMs
with a smaller headroom and enhance the utilization ratiih Ah adequate performance
monitoring strategy, data center operators can overbogdurees to improve utilization

further.

1.1.4 Cloud Computing

Cloud computing provides computing resources at a highstradtion level in order to
further reduce the cost of computation. Software-as-ai&efSaaS) is a paradigm where
software customers subscribe to a software package instéaging and deploying a soft-
ware by themselves. Typical examples include custometisakhip management (CRM),
enterprise resource planning (ERP), and other businesgasef These software packages
usually support multi-tenancy, where a single instancetifvare installation can support
multiple customers who subscribe to the service. Thergbugtomers can share the cost of
a larger infrastructure. SaaS service providers instaBSeapable software in data centers
and end-users access these software via the Internet by aigilient program or simply
web browsers. In addition to providing computing resourckega center operators may
also provide cloud computing applications themselves.

As cloud computing moves more and more applications inta danhters, the work-
load in data centers grows even higher. Although cloud cdimgeustomers do not need
to manage computing resources themselves, the increag&tbaa still translates to ad-
ditional resource demand in data centers. In this dissemtatve focus on utility data
centers that use virtualization technologies to partidad allocate virtualized computing

resources to their customers or cloud computing applicatio



1.2 Applications in Data Centers

Many different services and applications can benefit from eRktensive computing re-
sources in data centers. Web services can take advantapeiottalable and reliable
infrastructure. Scientific computing can also use the nessuin data centers for its com-
putation needs. Furthermore, data centers can also hdisteogame servers that demand a
low-latency environment. We briefly discuss the requiretmenthese applications in this

section.

1.2.1 Web Services

Web services are one of the most common applications in datters. Examples in-
clude all sorts of Internet web sites that people use evgratha software repositories
that distribute software updates automatically. A web iservs usually implemented
with a multi-tier server architecture, comprising fromteeveb servers, application servers,
database servers, file servers, and so on. Web servicesaty dlsroughput-oriented with
a response time requirement ranging from hundreds of exdiiads to seconds.

For web services that are accessed directly by end-useis,whbrkload heavily de-
pends on the number of users accessing it concurrently. ifteedf-day and day-of-week
effects can be easily observed in web server traces. Thedealnd is often many times
greater than the minimum demand. On the other hand, the vantkdf a software distri-
bution web site usually coincides with new software relsasesulting in an even higher
maximum-to-minimum demand ratio. If a service is provigidrior the peak demand and
frequently running at its minimum capacity, the servers belseverely under-utilized most
of the time during its operation. The high variation in dehamakes utility data centers

appealing to host web services.



1.2.2 Scientific Computing

For the scientific computing world, one common use of largstelrs is to conduct scien-
tific and engineering simulations in order to reduce the tand cost of conducting real
experiments. Other applications include, but not limitdata analysis and visualization,
image manipulation, and so on. Typically, most scientifimpating jobs are executed on
dedicated computer clusters. However, with recent imprer@s in computation power,
network bandwidth, and reduced interconnect latency, ntanyputing clusters are built
with the same technology used in data centers, such as couétiprocessors and gigabit
Ethernet.

Instead of building dedicated computer clusters, usersagamto the resources in data
centers for scientific computing jobs. They may rely solatydata centers for all their
needs or offload some jobs when their dedicated systems aragted. While those jobs
may require a lot of resources for a long period of time, theyally have a relaxed re-
sponse time requirement and do not need to be started imtalydiBherefore, data center

operators can postpone the execution when the resourcendasiaigh.

1.2.3 On-line Game Servers

On-line game servers represent another type of workloa@ta centers. Similar to web
servers, on-line games also employ a client/server acthite to connect all players in a
game. First-person shooter (FPS) games, one of the modgpgenre of computer games,
are highly interactive during an active game session. Atsbe reliable, FPS game servers
are expected to be responsive in order to provide satisfagtoming experience.

The reliable infrastructure and high bandwidth Internetrezctions in data centers pro-
vide an adequate environment for game servers. A group ajrgpbically-distributed
game players can rent a server from a data center to hosbilirigame sessions. Unlike

web servers, those game servers only need to be run whenrplagat to set up a game



session. As network latency also factors in server respensss, choosing a data center
that is closer to all players is preferred. Furthermore, utilgy data center, they only need

to pay for the duration of the game session, making this ambranore economic.

1.3 Challenges

While the underlying infrastructure provides a large antafncomputing resource, de-
veloping software systems that can fully realize its po&iig not straightforward. Over-
provisioning is the most common cause of low resource atitim. Typically, an amount
of computing resource is allocated to a server and the ametired during the course of
its execution. With a long resource acquisition time andresseovative prediction of future
demand, service providers tend to build over-sized seimeysder to avoid service degra-
dation due to insufficient resources. However, it also tesallow resource utilization and
a higher operating cost.

Utility data centers and the adoption of virtualizationhealogies reduce the time it
takes to add or remove resources from servers. Given a mEsourdemand infrastruc-
ture, researchers have built adaptive controllers thatwgpathe resource allocation to meet
a pre-defined service level objective. Servers can be kit higher utilization and
resources can be utilized more efficiently.

When an application is spread across a cluster of servergpplication may also di-
vide its work into smaller units and make a balanced workldestribution to improve
utilization. However, as the scale of applications incesasising resources efficiently gets
more difficult. In this section, we discuss several potem@ses of inefficient resource

usage.



1.3.1 Legacy Software Architecture

In multi-tier Internet web servers, each tier typically quises a cluster of servers and
a front-end load-balancer that dispatches the incomingkioad to one of the back-end
servers. Servers at the same tier usually provide identicaimilar services, so a failed
server can easily be replaced by other servers. The desigadbalancing algorithms not
only needs to balance the workload on the servers and iretbesughput, but the algo-
rithms themselves also need to be scalable and fault-tdalekdnfortunately, these goals
are usually contradictory to each other and hard to be meertie load in a cluster is not
balanced, one needs more resources to handle peak denesudisng in lower utilization.

Simple load-balancing algorithms such as round-robinastleonnection, simply con-
sider each server as equally powerful. When servers haferatit processing capacity,
each server is usually assigned a weight, which is used iwéighted version of such al-
gorithms (weighted round-robin, weighted least-conmenti These algorithms are highly
scalable but they do not take locality into consideratioenég, frequently-accessed files
can be cached on all servers, resulting in inefficient useeshory.

Locality-aware algorithms, such as locality-aware retjdesribution (LARD) or URL
hashing, improve cache efficiency in servers. However, tiey assume each server has
a fixed capacity, or the workload can be uniformly distrilolte all servers. In addition,
LARD keeps a request distribution history which is lookedamal modified for each re-
guest. The history is a centralized and stateful compomehARD. It can become the
bottleneck in large web sites and renders LARD unscaladtboAgh some load-balancing
algorithms use a feedback control approach to adapt thpnoaphes, no one has consid-
ered adapting server capacity, which is enabled by vizatbn, as an alternative approach.

Another example is highly-parallel scientific computinggrams, which are designed
to balance the workload on all computing nodes. Howeverstagability of each parallel
program depends on the speed of CPU, network bandwidth &ercia and so on. If a

computing node is waiting for the result from other nodesaotiniue its computation, the



node can only sit idle, also resulting in lower utilizatioRor example, if the function of
a computing job is to create a video stream and an audio steeacurrently, the audio
creation program may wait for the video creation programriisii before continuing the

process, resulting in idle cycles.

1.3.2 Ndve Redundancy Design

In a large data center, ten thousands or more computers akega a limited floor
space with air conditioning and proper ventilation to kele@ €énvironment within these
computers’ limitations. Although each component may beddobr a long mean-time-
between-failure (MTBF), failures are still likely to happdrequently in data centers.
Hence, redundancy is also required to be integrated in aoftwesign. Without an ap-
propriate plan against failures, Internet service praviday suffer significant monetary
loss due to violation of service-level agreements.

Replication has been used extensively to improve religlmficomputer systems. How-
ever, replication also uses more computing resources autes efficiency. For example,
for a server cluster employin + 1 redundancy, the resource efficiency is reduced by
1/(N+1). Furthermore, when failures occur, not only some resoureesme unavailable
to the server cluster, but existing locality may also becomé#ective. Currently, data cen-
ter customers usually acquire redundancy by adding spaceirees but do not utilize the

agility of resource allocation provided by virtualization

1.3.3 Incomplete VM Abstraction

Each VM has a set of virtual resources and the OS within a VM kéeps a virtual sys-
tem time, which applications utilize to learn the currentdior achieve precise timing of
certain events. When there are multiple VMs sharing a CPUs\hat are not running

cannot handle soft interrupts promptly. Therefore, theéesygtime in each VM becomes
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non-contiguous and has a lower resolution. Events thayappMs can only be processed
after starting the receiving VM, resulting in longer quandelays.

While online game servers are not resource-intensive @gpns, they are required to
be highly responsive so their users can enjoy good gameénglaxperience. One may use
an admission-control-based approach to determine an ppai® level of consolidation
such that the timeliness requirements can be met. Howevegy also leave the system
under-utilized if increasing the system load further majuee its responsiveness. Asso-
ciating timestamps with each event delivered to a VM progittee OS in the VM more
information about the actual timing but such functionaigynot included in existing VM

abstraction.

1.4 Contributions

In this dissertation, we re-visit the system architectura large-scale computing infras-
tructure. Specifically, we assume that the infrastructtitees virtualization extensively

for resource allocation, such as in utility data centersltidle VMs are consolidated to a
single physical machine to improve resource utilizatiorthis section, we first describe the

infrastructure with some assumptions and then outline ¢inéributions of the dissertation.

1.4.1 Assumptions

There are many virtual machine monitor (VMM) implementatipeach of which is differ-
ent in one way or another. In this dissertation, we assumehla/MM can provide the
following functions. First, the VMM is able to provide an acate resource consumption
reading on each resource for each VM. Second, for resouraeaite time-shared between
VMs, the VMM utilizes a scheduler that can guarantee the mahiamount of resources
that a VM can use even with the fiercest resource contentibasd two requirements are

the essentials to our resource-allocation design.
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In addition, when multiple VMs are hosted on a physical maeland the unallocated
physical resources cannot meet additional resource mmeints of certain VMs, these
VMs can be migrated to other physical hosts in the infrastmec The VMM must support
VM live migration, where the migrated VM is only unavailalbdtethe users for a very short

while (< 100m9.

1.4.2 Flexibility in Resource Allocation

Most of today’s applications are designed for traditiomaln-virtualized infrastructures.
Therefore, they do not take advantage of the flexibility sogrce allocation in a virtualized
infrastructure. With this flexibility, some traditional ff@are system design assumptions
can be relaxed and resources can be utilized more efficiently

We first use this flexibility to re-design Internet web serdeisters in Chapter 3. As we
have discussed in Section 1.3.1, existing front-end laadrTer designs assume that back-
end servers each have a fixed capacity. There are two goals fvbnt-end load-balancer in
a web server cluster, namely balancing the workload an@&sing resource efficiency by
improving locality. LARD improved cluster throughput anchsability by improving the
locality at each server, but it also introduced a requestibligion history, a centralized and
stateful component in the server architecture, which caoine a scalability bottleneck.

Instead of balancing server load, we separate the funcfitotality-aware server se-
lection and load-balancing when the web server cluster $¢dabon a VM cluster, called
virtualization-based resource allocation web (Vibra Webhe front-end uses a scalable
URL-hashing approach to select the destination serverdoh éncoming request. The
unbalanced workload among the cluster of server VMs is tlmmpensated by virtual
resource transfer. In this work, we focus on the network hadiith allocation while consid-
ering memory utilization. We applied the World Cup '98 welpvee trace and a synthetic
YouTube-like workload to our design, which achieves betieoughput and higher scala-

bility.
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We also design Vibra Web with fault-tolerance in mind. Thdurdancy feature of
Vibra Web is described in Chapter 4. Redundancy in Vibra iss@ered in two parts:
front-end load balancer and back-end server VMs. The femwtload balancer carries
only little state information on ongoing connections saaih ®e easily arranged in a high-
availability configuration. When a back-end server VM fail& minimize the changes in
the load-balancer configuration in order to retain existowglity. After a failure is de-
tected, its workload and its virtual resources are immedjdtansferred to other surviving
VMs. With these additional resources, the additional waekl can be handled. Our evalu-
ation shows that this approach maintains a higher throughping the degraded operation
than other load-balancing algorithms.

In Chapter 5, we propose a new CPU scheduling algorittiistributed proportional
share (DPS) schedulintp allocate CPU shares to parallel programs. Instead olestqng
a fixed number of nodes to be dedicated to a parallel progtapriogrammer only spec-
ifies the number of nodes and a minimum set of resources tegirdgram needs. When
a job is submitted to a computing cluster, the submitter afsecifies a set of resource
budgets, such as the maximum number of CPU shares that thepraan use during its
execution. When the job is scheduled to run, the clusterdiesites a VM cluster that has
the same number of nodes as the programmer specified, anatexiee parallel program
in VMs. During the execution, DPS monitors the actual CPUscmmption at each VM and
dynamically adapts the CPU share allocation.

In this scheme, the resource required by a parallel progsasaparated from the struc-
ture of a parallel program. Programmers are also relieva foptimizing algorithms to
balance the workload. When workload imbalance is deted®£ dynamically adapts
the CPU-share allocation based on actual resource demahdoawlucts either &ully-
distributed share exchang® abank-assisted share exchang#fe demonstrate that DPS

can reduce the execution time of parallel programs andasereluster utilization.
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1.4.3 Filling Architectural Gap

Another reason for ineffective resource usage is due torttietactural gap between a VM
and the hosting physical server. A VM shares many resouribther VMs on the phys-
ical server. In a non-virtualized environment, the OS hasgihysical resources directly
and can optimize their usage. For example, an OS can useevet@l algorithm to im-
prove disk 1/0 throughput. However, the OS in a VM, called guest OSdoes not have
direct control of the disk hardware. Similarly, a guest O8dglly shares a CPU with other
VMs, and cannot schedule CPU time alone as in a real-timesyst

As more game sessions are held on the Internet, the demanidwfcst but highly-
responsive game server also increases. While game semerbecconsolidated on a
virtualized platform, virtualization also reduces thepmssiveness of a game server. For
first-person shooting (FPS) games, a latency of less thamd @ typically required for
satisfactory gaming experience. Typically, game servstihg service providers employ
an admission control system to meet the response time ezqgeirts.

In Chapter 6, we identified that an important piece of infaiorg the packet arrival
time at the physical NIC, is unavailable for a VM. For onlinenge servers, an accurate
timestamp is very important as the time is used as the usat tipe in dead reckoning
calculation. Inaccurate timestamps can lead to a low-fidgéme state that does not reflect
users’ inputs.

We augment the virtual NIC design and allow timestamps tcakert in the host OS.
The timestamp is then delivered to a guest OS with the incgrpacket itself. In this
approach, the packet delivery time, the time it takes tovdela packet to a guest OS, is
not included in dead reckoning calculation so the resuliagne state reflect users’ inputs
better. Therefore, the data center operator can conselidate game-server VMs on a

physical server and provide services at a lower cost.
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1.5 Thesis Structure

The rest of the dissertation is organized as follows. Chaptdiscusses the application
of flexible virtual resource allocation on Vibra Web. The haslue of the URL string in
an HTTP request is used to select a subset of server VMs inuktec The least-loaded
server in the subset is then chosen as the dispatch destingtbra Web is evaluated using
the World Cup '98 trace and a YouTube workload generator.rédandancy enhancement
in Vibra Web is detailed in Chapter 4, where the advantageuofapproach is compared
against other methods. In Chapter 5, we introduce the mddeMM hosting cluster for
parallel computing programs and the design of DPS, inclytle inference of upstream
VM in fully-distributed share exchangend theback-assisted share exchanglgorithms.
We evaluate the performance of DPS on a Xen VM cluster with ptBgrams. In Chap-
ter 6, we present the packet delivery path of a game-serveradtdetail our modified
virtual NIC design with evaluation results. Finally, Chap¥ presents future directions

and conclusions.
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Chapter 2
Related Work

In this chapter, we review previous work in the areas relatethis dissertation. The
discussion starts with utility computing models and camgis with platform virtualization
technology, especially its applications in utility datataxs. We then revisit load-balancing
algorithms for web server clusters and the use of consikaasiting for similar systems. We
also look at parallel computing models and CPU schedulingpmputing clusters. Last

but not least, on-line gaming and game server hosting aeflyodiscussed.

2.1 Utility Computing

Many data centers have been built in recent years with widdfgrent usage models.
Some data centers are built to meet a single company’s camymeeds while some others,
calledutility data centerspartition their computing resources and allocate theseurees
to their customers on demand. In some cases, data centetanseallow customer appli-
cations running in their data centers and charge for acésalurce usage. This scheme is
calledcloud computindpecause the computation is happened in data centers ortinarke
which is typically drawn as a cloud in various illustrations

An example of utility computing is Amazon’s Elastic Comp@mud (EC2)!. Ama-
zon virtualizes and partitions its servers into VMs andadles VMs to EC2 customers,
who request VMs on-line and pay for them when the VMs are tiore Each VM comes

with a pre-installed OS and a set of applications. EC2 custeroan modify the existing

Ihttp://aws.amazon.com/ec2/
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installation or install new applications to fit their neettwever, currently there are only
5 different virtual hardware configurations (small, larg&tra large, high-CPU medium,
and high-CPU extra large) and one cannot change the VM caoafiga on the fly. While
the fixed configuration eases resource management, it mayoaler resource utilization
and limit the flexibility provided by virtualization.

There are also other utility computing services, such as@iohCompute Utility [39]
and HP Utility Data Center [68]. Sun Grid Compute Utility prdes a billing model similar
to Amazon EC2 while HP Utility Data Center mainly works witirge companies. Unfor-
tunately, although the development of these services ebgte knowledge on resource
modeling, allocation, autonomic computing, and other ietde commercial operations of
these services have ceased [51].

Google App Enginé is an example cloud computing infrastructure that allows-cu
tomer applications running on Google’s infrastructure.likthEC2, Google App Engine
users do not need to manage VMs or OSes and can focus on tlwgy/ehepit of their ap-
plications. However, the applications must be programnmeByithon and use a set of
pre-defined application programming interfaces (APIs)teract with other parts of the
system. While its pricing has not been announced, the iméretsire monitors a list of
metrics, including the number of (HTTP) requests served) @me, network bandwidth,
the number of requests and the amount of data transfer tcassttae, the number of ac-
cesses to supporting servicesg, mail, URL-fetching, image manipulation), and so on.
The actual placement of user applications, load-balans@curity model are all managed
by Google and not revealed to the public at present.

Translating high-level operations to actual resource gomion can be difficult and
non-intuitive. Therefore, this dissertation assumes a danter allocating resources to its

customers because its economy model is easier to understand

2http://code.google.com/appengine/
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2.2 Platform Virtualization

While platform virtualization was first introduced to exéemultiple OSes concurrently on
expensive mainframes, in data centers, it is commonly usedrtition resources and con-
solidate multiple servers on a fewer number of host machimasprove physical resource
utilization. There are a number of different approaches#dizing system virtualization.

In this section, we first briefly describe these approachddtan discuss two of the appli-

cations of virtualization, namely resource managemenfaultttolerance, in data centers.

2.2.1 Classification

Many different types of platform virtualization have beemplemented. They differ in VM
abstraction and the layer of virtualization. Full virtution creates an abstraction that
has the full instruction set as the underlying hardwaretudirmachine monitors (VMMS),
also called hypervisors, may employ a binary translatioa bardware-assisted method to
achieve this goal. Some VMMs run on bare-metal directlylécbType 1 VMM) and some
other VMMs are hosted inside an OS (called Type 2 VMM). Natatolll virtualization
VMMs include VMware, Microsoft Hyper-V, and QEMU.

The OS within a fully-virtualized VM, called guest OSdoes not require any modifi-
cation as the VM has the same architecture as the underlgirtydare. However, it incurs
some overhead when privileged instructions are executada-Wrtualization is another
type of platform virtualization, where guest OSes are medifiefore being loaded in a
VM. Privileged instructions in a guest OS are replaced byesyscalls to the VMM, called
hypercalls and consume less resources. Xen is the hypervisor thastikbewn for using
this approach. Modified Linux kernels and other OS kernedpaovided with Xen. Newer
version of Xen can also use hardware assistance and workB wirfualization mode.

Virtualization can also be realized in OSes, cal@8-level virtualization Instead of

virtualizing the platform, the OS system-call interfacevidualized. One instance of OS
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kernel is shared by many VMs, and each has its own root fileesystiser ID space,
process ID space, routing table, and so on. When a systensaalloked, the OS first
determines which VM the caller process is within and thercesses the system call ac-
cordingly. Clearly, one cannot mix VMs of different OSes is-@vel virtualization but
it also incurs the least run-time overhead. Examples of @8}lvirtualization include
Virtuozzo/OpenVZ, Linux-VServer, and Solaris Zones.

All of these types of virtualization can be seen in data asnf€he performance of dif-
ferent virtualization approaches have been compared []1]7this dissertation we adopt
Xen and a modified Linux kernel as the virtualization platiobecause of their cleaner
resource abstraction. However, our design is not VMM-dgeand our implementation

can be adapted to other types of VMM as well.

2.2.2 Resource Management

In a utility data center, VMs can be used as resource comtaimieere hypervisors are re-
sponsible for enforcing resource allocations and momigpaictual resource utilization [21].
CPU is usually time-shared between VMs and there are manyseRedulers that can al-
locate CPU cycles to VMs [1, 31]. Main memory is typically speshared by VMs, but
some VMMSs, such as VMware, may swap out memory pages and atlemory over-
booking. While it is easy to allocate memory to VMs, finding tictual needs is usually a
guessing game. VMware ESX Server employs page sharing t@weeithe actual mem-
ory footprints of VMs and utilizes a sampling approach tareating the working set
size [75]. Idle memory pages are reclaimed and reallocatedMs that can make use
of them. Geiger [49] assumes that the guest OS uses an unifitedl bache to manage its
memory. By monitoring file system traffic, the working setestan be inferred even when
the VM is thrashing. Disk and network 1/0O can also be regudlddg I/0O schedulers and
network traffic shapers [41].

Monitoring and diagnostic tools have also been introducedrtualization [43, 55].
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While the CPU virtualization overhead is low in para-vittmation and OS-level virtualiza-
tion, software-virtualized I/O operations have been idenat as the bottleneck in hardware-
and para-virtualizations [11, 55]. The high cost of I/O @giems may be reduced with
emerging hardware-assisted I/O virtualization, such &d'sriirtualization Technology for
Directed 1/O (VT-d) or AMD’s IOMMU. When physical resourcbscome the bottleneck,
one can migrate a VM from one physical host to another. MajdiMé also support live

migrations, where VMs are only suspended for a very shorteahiring migration [65].

2.2.3 Fault Tolerance

VM fault-tolerance techniques can be classified as eithesg0S-level or VMM-level
approaches. Guest-OS-level products, such as Microso$t€l Service and Veritas Clus-
ter Server, manage service availability by monitoring thpli@ations and restarting failed
VMs. Our approach is tailored for Web server clusters anegirgtes front-end dispatch-
ing algorithms and flexible resource allocation to improeef@rmance during degraded
operation.

VMM:-level approaches, such as VMware HA (High-Availalji)itand everRun VM
from Marathon Technologies, synchronize the execution oftiple VMs and tolerate
physical server failures. These approaches are agnostgoest OSes and may have a
shorter recovery time. However, both the overhead in noeratution and the required
amount of resource are also higher. Typically, web serversadirequire the highest single-
server availability because the integrity of higher-lesemantics (like processing credit

cards) are usually provided by other approaches.

2.3 Web Server Clusters

Since the emergence of the World Wide Web, there has beensaxteresearch into the

scalability and availability of web server clusters [29].3Bhe architecture of a web clus-
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ter can be classified by its request-dispatching and paokeitag algorithms. The survey
paper [14] provides a detailed taxonomy and summarizesquestudies.

The goals of load-balancing algorithms include, but nottlioy increasing the through-
put of the cluster and lowering the average response timereder, most algorithms
assume that the amount of computing resources of each Iackegver is fixed during
execution. Algorithms such as round-robin, least-corioest and their weighted counter-
parts are simple and scalable. However, they are not lgeaare, so the total throughput
does not scale with the cluster size.

One can also use the URL hashing to select a server in a lpealre fashion. For
each incoming request, the URL string is examined and fedhimsh function. According
to its hash value, a server is chosen to serve the requesntizdly, the URL namespace is
partitioned by the hash function, creating an N-to-1 magmhere each URL is mapped to
a server. The mapping is typically fixed unless the configomaif the cluster has changed.

Because each time a request to a certain object can only patci®d to a certain
server, the locality of the request dispatching is greatiproved as compared to non-
locality-aware algorithms. If a previous request to a éertdject already loads and caches
the object in the memory, successive requests to the sammet@an be served from mem-
ory and achieve the goal of reducing response time and isiag#roughput. The cache
hit ratio is improved and the amount of disk I/O, which is vexpensive compared to
serving requests from memory, is reduced. Otherwise, ibthject has nevered been en-
countered before, or if the object has been evicted from nngrtiee object will be loaded
from disk or other storage device. Since no other serverkldmave the same object in
memory, loading the object from disks is inevitable.

Since the hash function is stateless, URL-hashing itsdtighly scalable—multiple
front-ends using the same hash function can be deployegendently. However, URL-
hashing itself does not have any replication capabilityload-balancing capability. There-

fore, when a failure occurs, existing locality might be Idae to an inferior hash function.
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Moreover, when the hash function does not distribute theklwad evenly across active
servers, some servers may be overloaded while others afellyattilized.

Some locality-aware algorithms also balance the workloebss active servers.
LARD, locality-aware request distribution, improves lotga by keeping a request-
dispatching history [6]. Similar to URL-hashing, LARD ingwes the cache hit ratio in
back-end servers by dispatching a request to the servamigghat have served a request of
the same object before. In order to know which server hasdea\certain object before,
LARD keeps a dispatching history in the front-end load-be&. For each incoming re-
guest, a history look-up operation is performed to see vérdtie object has been served.
If so, the previous dispatching destination is used agdithel object has not been seen
before, the currently least-loaded server is chosen.

Unlike URL-hashing, the mapping between an object to a lamkserver may change
during the operation. In order to achieve load-balancingragrback-end servers, LARD
monitors the load of each back-end server in terms of the eummbactive connections.
If the load of a server exceeds a certain threshold, the se\vensidered over-loaded
and incoming requests toward that server will be re-disgt@nd bound to the currently
least-loaded server unless all servers are over-loaded.higher threshold is also vio-
lated at a certain server, incoming requests toward thaéeseiill be re-dispatched to the
currently least-loaded server no matter what. By chandiegiapping between objects to
servers, LARD sheds load from over-loaded servers and nittessther servers, achieving
load-balancing.

LARD/R, a variant with replication capability, associatesltiple servers with an ob-
ject, and the least-loaded one is chosen as the dispatdhatest. The set of servers for
an object increases when even the least-loaded one in tlsecegisidered over-loaded. On
the other hand, a server is removed from the set if the cusetndf multiple servers does
not need more, or has not been recently reduced for a ceetémapof time. This scheme

can distribute the requests of one single hot object to plalServers. It also improves
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fault-tolerance because an object may still be served framany if multiple servers are
associated with it and one vanishes due to server failure.

As the size of the cluster increases, LARD and LARD/R are nsoedable than ear-
lier designs. Its later developments improved scalabilityher by supporting persistent
connections and separating network-layer connectiomildigion from request dispatch-
ing [8]. However, the request-dispatching history, whighrg front-end device must look
up and update frequently, is still a centralized componéstthe request rate increases,
the frequent operations on the history may become the bettlein the system. Moreover,
load-balancing in LARD depends on appropriate setting adgholds. Setting the thresh-
olds too high results in poor load-balancing. On the othedhaARD degenerates into the
regular least-connection algorithm if the thresholds até@ low. One may also improve
the cache-hit ratio by employing cooperative caching nadalre [13]. A simulation-based
study [25] shows a comparable performance to LARD, but ib aéjuired a centralized
component.

Hash-based load-balancing techniques have also beennuaetlister of proxy servers
in local area networks. With adaptable controlled repicca(ACR) [78], each proxy server
is responsible for a partition of URL space, which is dividsda hash function. In addi-
tion, some space can be used for caching any objects. Wheana idquest arrives at a
proxy server, the server first checks its local cache anddahe request to the respon-
sible server. In this design, frequently-accessed obgntide cached in all proxy servers,
which may not be necessary. In addition, the space for cgdmy object must be large
enough to be effective.

There are also algorithms that adjust the size of a clusteriserrequest-batching in
order to improve energy efficiency [19, 33, 60, 74]. In theases, each server’s capacity
is proportional to its CPU clock frequency and the numberest/ars in the cluster may
vary with the workload. These methods use simple load-loatgralgorithms in their de-

sign. When multiple services are hosted on a cluster, a resallocation mechanism has
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also been used to manage server performance [7]. Virtti@lizarovides an alternative
approach to partition and manage computing resource andecased to improve some of

these earlier designs.

2.4 Consistent Hashing

Simple hash-based designs do not handle the addition oethewval of servers well. A
large number of requests can be reassigned to differerdrseand the benefit of locality
is lost. Consistent hashing is a technique that minimizescttange of the mapping with
respect to server arrivals and departures. The domain bfvases is divided into parti-
tions. Partitions may be of different sizes. When a new sdasvadded, one partition is
divided into two. Similarly, when a server departed, itstipan is merged with either one
of its two adjacent neighbors [50].

Using consistent hashing, one deals with the frequentaraimd departure of nodes
in a peer-to-peer network. Both Chord and Pastry use cemsibashing to map keys to
peer-to-peer nodes [63, 72]. While they adopt differentsage routing protocols, the
look-up operation completes in predictable time in bothwoeks. Other similar designs
include Tapestry and CAN [61, 82]. On top of these networkserl applications, such
as cooperative persistent storage and event notificat&tersy, have been built and evalu-
ated [15, 26, 30, 62].

Peer-to-peer networks generally have a much larger nunflmerdes than server clus-
ters. In addition, server clusters usually do not change $iee frequently. While a good
hash function spreads keys evenly over all nodes, hot spetasaally not a concern in
peer-to-peer networks. For example, frequent look-up adtékby may overload the node
that stores its value and results in a longer response tireeanr partial service outage. If
the number of hot keys is smaller than the number of noded,ilobalance may occur.

Amazon also uses consistent hashing to create a key-vaisget Dynamo, but all its
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nodes are owned by one organization, Amazon [28]. New sepaer be deployed on de-
mand to handle extra workloads. Its replication schemessisréhe load to a fixed number
of nodes. Furthermore, load-balancing is improved by usirtgal nodes (tokens) as an-
other layer of indirection. A node can shed its workload lansferring some of its tokens
and the associated data to another node. Our work diffems B'gnamo in that we use the
resource-allocation flexibility in the infrastructure taprove resource utilization. As we
allow a larger extent of workload imbalance between nodeshashing design becomes

simpler.

2.5 Distributed Parallel Computing

As the amount of data and the complexity of algorithms ineesamultiple computers are
frequently used in parallel to solve a single problem in gdraime. When running a dis-
tributed computing program, each compute node may run time sa different programs
and they may communicate to each other while working towassalt. Depending on the

nature of the problem to solve, one can use data and taskgharalto speed up a program.

2.5.1 Data Parallelism

When the data to be processed can be partitioned into largekshand each chunk can
be handled independently of each other, one can exploitpdatdlelism to achieve paral-
lel processing. Each compute node can handle one chunkendeptly and the results,
which are usually much smaller than the chunk size, are coedbin a later stage. There
are several systems that assist large-scale data pamallphogram development such as
Map-Reduce [27], Hadoof) and Dryad [48].

Since each data chunk can be processed independently,osrrgay assign each idle

compute node a chunk of data until all data are processed riate runs as fast as pos-

Shttp://hadoop.apache.org/
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sible to process the data. Except in the final stage wherdaiiks have been dispatched,

the workload is balanced in a compute cluster.

2.5.2 Task Parallelism

If data parallelism cannot be easily realized, one may ditite problem by its functions
into several programs and run each program on a separatait®@mgude. These programs
may communicate frequently during their execution. Fonaie, the data set of computer
simulation of fluid dynamics or fast Fourier transforms aatrive divided into disjoint sub-
sets, so these problems are usually implemented with a gegsessing library, such as
the Message Passing Interface (MPI).

Since the execution of one compute node may depend on thgela¢aated at another
node, a node may become idle if the data that it depends oroaeevailable. Moreover,
each program may require a different amount of resource slveest node in a cluster can
easily become the bottleneck of the system. Generally,nmush more difficult to place
balanced workload and fully utilize all resources in a adush MPI programs. Our work
is for the task parallelism programs that communicate amdtspnize frequently during
their execution. Virtualization and consolidation makkeidycles available to other VMs
on the same physical host. DPS adapts the CPU cycle allocsdiparallel programs can

finish faster.

2.6 Cluster Scheduling

Improving the utilization of multiprocessor systems hasrbavestigated extensively. In
1982, Ousterhout first introducedschedulingvhere busy waiting was suggested instead
of blocking at synchronization [57]. It was then callgahg schedulingmong researchers
and the performance was analyzed by Feitelson [35]. It has BRown that scheduling

multiple processes (or threads within a process) in a gatiy bvisy waiting can reduce
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program response time for fine-grain synchronization digs; On the other hand, for

coarse-grain synchronization processes, or for procésadsave unbalanced workload be-
tween synchronizations, coordinated scheduling is notti@al. Feitelson also proposed
space-sharing packing schemes to improve utilization revpeocess migration between
processors was also used to reduce fragmentation [34]. Mosntly, gang scheduling is

also used in clusters as well [37, 47].

However, gang scheduling is not scalable, especially inoadly-coupled environ-
ment where communication and synchronization costs ate hingtead, multiple implicit
scheduling approaches are proposed to synchronize thetexeof a parallel program
across local schedulers using activities such as messagdeasel receive, which imply
synchronization [2, 22, 32, 56, 70]. These approaches usenbination of strategies to
determine what to do while waiting for messages and when agesshave been received.
Optimizations are also being done in lower levels. By priigeselecting processes to co-
schedule on a symmetric multiprocessor system or withimaukaneous multi-threading
processor, contention on memory bandwidth or function@bwan be avoided, and thus,
utilization can be improved [4, 69].

Proportional-share schedulers, such as borrowed vitimal{BVT) scheduling, lottery
scheduling, and stride scheduling, are used to providedas in a resource-competing
environment [31, 76, 77]. While proportional-share schieduhas also been applied to
a network of workstations with implicit scheduling [9, 10fs use was limited to sup-
port fairness across a cluster. Tickets are not dynamitahsferred at run-time. Tickets
for multiple resources are discussed and exchanging res®with competing process is
proposed [73].

Scheduling VMs is a much less explored issue, although ialgasat deal of similarity
to normal CPU scheduling. VSched tackled this problem byzirig a real-time process
scheduler and a controlling daemon tweaking schedulenpeteas to schedule VMs run-

ning as processes in Linux [54]. While they applied VSchegki@llel programs, the result

27



showed that the actual computation rate is very sensitige@duling parameter choices
(slice/period) and the real-time scheduler can providéopeance isolation to VMs. We
extend the concept by dynamically transferring CPU shanesng peer VMs and also

migrating VMs to further reduce program response time austet utilization.

2.7 On-line Game Servers

The game server workload and its traffic characteristice feen detailed in various stud-
ies [17, 18, 24, 52]. The online games under these studige faom first-person shooter
(FPS) games, role-playing games (RPG), and massivelyptaygr RPGs (MMORPG).
Online gaming traffic patterns contain bursts of small ptekeéth predictable long-term
rates. The game server workload also exhibits the timeagfahd day-of-week effects.
There are also several studies on the effect of loss, lat@ndyitter on user experience in
FPS, racing, and a highly-interactive games [12, 45, 59, B8{h subjective and objective
metrics have been used in these studies. They found that wkib% packet loss and the
existence of jitter have no impact on the quality of game dalatency as low as 100ms
can significantly degrade precision shooting performandelS games. For MMORPGs,
the effect of latency is not as stringent as in FPS games. Aegaan still run smoothly
with a 1250ms latency [38].

Hosting game servers in data centers has been proposed,i6gp4A provisioning
manager is used to decide how resources should be allocEteg.studied the quality of
several metrics as workload estimators and concluded thabthed metrics cannot accu-
rately track server utilization when the session arrivée fa high. Although several CPU
and network resource utilization-based metrics have beeipared to each other, it is un-
clear whether the game server faces fierce competition fitbwer dosted workload and its
implication on responsiveness. Our work uses virtualirato consolidate game servers

and monitors the time it takes to deliver user input pacletmine servers.
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Chapter 3

Vibra: Virtualization-Based Resource
Allocation for High-Availability Web
Server Clusters

3.1 Introduction

World Wide Web is undoubtedly the most important applicatbthe Internet. Individuals
increasingly rely on it for their daily lives and companiesaduct various types of business
with it. After nearly 20 years of development, web servestdus have become the standard
means for deploying scalable, high-availability web sezsi A web server cluster usually
consists of a number of servers and a dispatcher of incoreipgests. Typically, each web
server is hosted on a separate physical server and a disgatbchanism is designed to
reduce the average response time, improve the throughpdierasure the availability of
the web service. Frequently, web server clusters are hostatye data centers, where re-
dundant power facilities and network connections are pl@yifor uninterrupted operation
and service.

By hosting web servers on physical servers, one may eagilyaldhe amount of re-
sources that a service can utilize. However, the resoutt®sated to, but left unused by
the service cannot be easily re-allocated for other pugpdbereby resulting in low re-
source utilization, high costs, and energy waste. As Jizaton provides the flexibility
of resource allocation that physical servers lack, it isobeiag popular to deploy servers

in virtual machines (VMSs).
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Instead of allocating physical servers to customers, datéec operators can virtual-
ize the servers and allocate virtual resources to the custonUnlike physical resources,
virtual resources like CPU, memory, network and disk baxithg, can be divided into
smaller units and dynamically (re)allocated to VMs. Whee owns multiple VMs in a
data center, virtual resources can also be transferredekeativis VMs. In other words,
resources can be allocated in a hierarchical fashion:alirasources are allocated to a cus-
tomer who then creates VMs and assigns the virtual resotm¢eem. We call this scheme
Virtualization-Based Resource Allocati¢vibra).

A VM server cluster—where each server is a VM and shares a pool of resources with
other servers in the cluster—is akin to a typical physicateecluster €.g, both use redun-
dancy for fault-tolerance and load-balancing). Each platserver has a fixed amount of
resources, whereas the resource allocated to a VM can b&ediplynamically at run-time.
With the new flexibility empowered by virtualization, woddd-distribution algorithms can
be re-designed for VM server clusters. Specifically, we esigh a web server cluster,
called aVibra Welh to make existing systems utilize resources better and swakable
with virtualization.

Request-dispatching algorithms can be classifiembatent-unawarer content-aware
Content-unaware algorithms, such as round-robin and-teastection, are scalable but
less efficient. For example, a popular file may be cached inyeserver, taking up ex-
tra memory space. On the other hand, content-aware algwjtbuch as LARD [58] and
HACC [81], improve resource efficiency and cluster througthplowever, they use @en-
tralizedrequest dispatcher in order to balance the workload amawngrsewithin a cluster
while keeping track of locality. Such a request dispatcherat scalable and can become a
performance and reliability bottleneck within the cluster

In Vibra Web, two key functions of a content-aware requespdaliching algorithm—
namely, improving locality and load-balancing—are clgatécoupled from each other.

In the front-end, a hash function applying to the URL in eaefuest is used to parti-
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tion the workload into disjoint subsets. This approach edaJRL-Hashingin some
load-balancers, albeit the actual hash functions used byr@rcial products are usually
obscured on public documents. We use a very simple algottima sum of the character
code of the URL modulo the number of back-end servers—asdhk function. We call
this algorithmCharsum Each subset is only dispatched to one or a small numberwdiser
to improve the locality. Since the hash function is statlése URL-Hashing scheme is
scalable because multiple independent front-ends cangieye& simultaneously.

While URL-hashing is scalable, each subset may impose erdiff resource demand
on each server. Instead of balancing the workload of subsetbalance the resource uti-
lization of servers. A resource-allocation agent is usethémitor the resource usage of
each VM and signal resource transfers to the data centeatopef he goal is to keep the
resources utilized as evenly as possible. While the ageidasa centralized component, it
is more scalable due to much fewer states and much less catigouit requires. Making
the agent fault-tolerant is also much easier than LARD ferdhme reasons.

The performance of Vibra Web is evaluated by using the trem® the World Cup’98
web site and a synthetic YouTube-like workload generatdiraAVeb is compared against
other request-distribution policies, including roundbirg least-connection, LARD, and
LARD/R. With the URL-hashing front-end in conjunction withe proposed resource-
allocation agent, the average response time is reduced by %496 compared to LARD.
Alternatively, the same service quality can be achievedh \20% less bandwidth than
LARD. The throughput of the cluster is also as good as LARD mtiere is no hot-spot
in the cluster and 32% faster than LARD when the concurreaegllis high. The front-
end also uses much less CPU and memory resources. Other th@Bua overhead of
calculating hash values, the front-end does not use mooeness than simple dispatching
algorithms.

This chapter is organized as follows. We describe the achite of a VM-hosting data

center and Vibra Web in Section 3.2. The URL-hashing scherdétee resource-allocation
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a) Each service (A, B1, B2) is hosted on a ) Services from customer B (B1,B2) c) Services can be encapsulated in
dedicated physical server cluster. can share B’s physical cluster VMs and share a physical cluster.

Figure 3.1 Comparison of a physical server cluster, customer-ieitiatirtualization, and data
center-managed virtualization.

agent are described in Section 3.3. Our implementation bbfa/iVeb is detailed in Sec-
tion 3.4 and the experimental evaluation results are pteden Section 3.5. We discuss
an alternative approach and the limitation of Vibra in Sat8.6 before summarizing this

chapter in Section 3.7.

3.2 Vibra VM Hosting

Clustering is commonly used for Internet servers to progiciable and high-availability
services. This section first presents the model of a trawditiphysical server cluster and
then discusses the rationale behind the hierarchicalatltmt of virtual resources in large

data centers.

3.2.1 Physical Server Clusters

Using a physical server cluster for each Internet servitdeaisimplest way for a data center
operator to make resource-allocation guarantees fort¢hstomers. A number of physical
servers and a front-end request distribution device aceatiéd for each service. The op-
erator may also impose an egress network bandwidth limiééah cluster. The model of
a physical server cluster is depicted in Figure 3.1(a).

The number of physical servers in a cluster is usually detexdhbased on the es-
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timation of peak demand. In addition to this peak-load-Hdadester sizing, the server
redundancy requirement for fault-tolerance makes theesetuster utilization usually very

low, especially for small services. In an extreme case wtiexravorkload can be handled
by just one server, this redundancy requires the additioanother identical server, re-
sulting in a 50% reduction of server utilization. While shgrphysical servers between
clusters for handling peak demand and meeting the redugdaqairements (albeit to a

less extent) can improve utilization, these setups ardyrased due to long re-targeting
time and complicated (re)configuration. As a result, exeesgsources cannot be easily

utilized.

3.2.2 Virtualization in Data Centers

Server virtualization allows resource-allocation guéeas while providing security bound-
aries and performance isolation between VMs. Each VM igyassl a fraction of CPU, a
portion of main memory, a virtual storage, virtual netwamterrfaces, and so on. Some vir-
tualized systems also allow resource-allocation adjustsneithout power-cycling VMs.
Data center customers running multiple services can Vireidheir servers and deploy
VMs of different services on top of a physical server clusfée call this schemeustomer-
initiated virtualization(Figure 3.1(b)).

In addition to sharing hardware resources, a cluster'sssgretwork bandwidth is also
shared among hosted services, which can be regulated binghegdfic in either VMs or
VM monitor (VMM). With proper VM sizing and placement, thedwndancy can be pre-
served at a lower cost while benefits on utilization are kaliby the number of services
and the demand of each service.

Alternatively, data center operators can virtualize ptgisservers priori and allocate
VMs to customers. Essentially, the VMM becomes an extensfahe data center’s in-
frastructure and manages physical resources on the phgsicaer. We call this scheme

data center-managed virtualizatigeee Figure 3.1(c)). As long as each VM is placed on
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a different physical server, the redundancy level for a VMstér is the same as that for
a physical server cluster. In this scheme, excessive resswan be returned to the data
center if customers are given incentives to do so. When theuree demand increases,
customers can also ask for more resources, which can batbto, and used by VMs.
If a physical server cannot meet the resource demand, livemigfation can be used to
change VM placements inside a data center and create modeolea without service

interruption.

3.2.3 Vibra VM Clusters

When a customer owns multiple VMs in a data center, virtusbueces can also be trans-
ferred between his VMs. VMs that execute his service(s) ¢amesa common pool of
resources, and the resources in a data center are allocatetieérarchical manner: the
data center operator first allocates an aggregate amouesadirce to a customer which is
then distributed to his VMs. In other words, when acquiriogn@uting resources from a
data center, a customer only needs to specify the total anobwesource and the number
of VMs that he needs for his application(s). Since this @tmmn is based on virtualized
resources, we call ¥irtualization-Based Resource Allocatigvibra).

In Vibra, the aggregated amount of resources allocated testbmer or a service is
fixed. Compared to a service-level-oriented contract, @it denter operator can easily
make a commitment to a resource-allocation-contract. @mther hand, a customer still
has the flexibility to distribute resources according torfeeds. We use this flexibility to
design a web server cluster in the next section.

This scheme also frees customers from packing multiple \fitsfewer physical hosts
to reduce cost. Moreover, if the demand grows beyond a clsisi@pacity, one can merely
increase the resource pool and allocate the newly-acquessairces without incurring any
downtime. This scheme can also remove the need for oveigiooing servers.

Although the insertion of a VMM may incur some overhead ofning servers, its

34



advantages—namely, a secure and flexible way of resourgeasithn, and decoupling
server system design from resource provisioning—can tetiteze data center resources

and better control server performance.

3.3 Vibra-Enabled Web Cluster

We use the Vibra hosting model to build a scalable and reseefifccient web server cluster,
Vibra Web Today’s web server workload is mainly composed of two p&U-intensive
dynamic content creation armhndwidth-intensivetatic content service. In this chapter,
we build a web cluster that serves static content to exeyngild use of Vibra on a typi-
cal load-balancing application. We focus on two resourpesy network bandwidth and
memory. CPU utilization is not considered here becauseuguglly not a bottleneck when
static files are served.

The design of a content-aware cluster can be simplified bygu¥ibra. Instead of
moving the workload among servers for load-balancing, &itrpansfers resource alloca-
tions among VMs and balances the utilization of VMs. VibrabAM®mposed of two
main components: (1) URL-hashing, a stateless and scalefjieest dispatcher, and (2)

a resource-allocation agent. The design of the two compsraea detailed next.

3.3.1 URL-Hashing Dispatching of Requests

The goal of the locality-aware request dispatcher is simetirecting requests for high
locality affinity. Imbalance in VM workloads is handled byethesource-allocation agent
which moves virtual resources among VMs.

Due to the usually enormous number of requests that a popelasite has to process,
the dispatching algorithm must be scalable. This requirgrigesimilar to that of CPU
cache design, where the cache look-up algorithm needs ke with large cache size and

high clock frequency.Statefulalgorithms—whether they keep track of currently-cached

35



URL Server Y\ | Back-end
namespace | subset 4 server
-

URL Namespace- Lowest-load
hashing server mapping server selection

Figure 3.2 The architecture of a URL-hashing web server cluster. Theping between different
layers is shown in dotted lines and an example is drawn wilth looes.

objects or previous dispatching history—are unsuitabtdhéndling an excessive number
of requests to popular web sites.

Our design consists of three steps as depicted in FigurdtJigst divides the names-
pace of incoming requests into multiple mutually-exclessub-namespaces. Each sub-
namespace is then mapped to a subset of back-end VMs, wleeteatst-loaded VM is
selected to serve an incoming request. Cache affinity isaowgal because requests of the
same sub-namespace are always handled by one subset arimhbhvs.

In case of HTTP requests, hashing the URL string is an effe@nd scalable way of
dividing the namespace. A low-cost hash function is prefkm@s the imbalance caused
by an uneven hash value distribution can be compensated dptiae resource alloca-
tion/migration. Assuming that the cluster consistsNofVMs (VMy,...,VMy), we use
a hash function that returns different hash values, and therefore, credtesRL sub-
namespaces.

After a URL string has been sorted into a sub-namespace ibar 1-to-1 correspon-
dence between a sub-namespace and a subset of back-end ViMsder to improve
scalability, we make all server subsets contain an identicenber of VMs and have a
fixed mapping. We choose a simple, stateless function tdecssmver subsets. Assuming
there areRVMs in subset (i = 1,...,N), we simply placé/ M; and the nexR— 1 servers
into subsei (with wrap-around). We calR the replication factor The dispatcher then
simply looks at the load of thes@VMs and choose the least-loaded to assign an incoming

request. The number of active connections is used to egtianeM'’s load.
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Figure 3.3 Dynamic resource allocation using an agent with the help déta center-managed
VM directory.

The purpose of having multiple VMs to serve a URL sub-namesatwo-fold. First,
it creates another layer of load-balancing for each subesgarce. Second, it also facili-
tates failure recovery because a frequently-accessedtasje be cached in more than one
VM. If R= 1, while the cache affinity is the highest, the cluster sotidpends on Vibra
to balance resource usage. Also, note that wRenN, this architecture reduces to the
least-connection dispatching algorithm and loses all fiesnfieom locality. This design is

akin to the associativity in CPU cache design.

3.3.2 Resource-Allocation Agent

Having a small replication factor inevitably introducesrsimbalance in back-end re-
source demands. For example, a popular video file in YouTabegenerate much more
traffic than other larger but less popular files, which maynet@ce more frequently-
accessed files to be paged out. We would like to re-distritegeurces in order to balance
the utilization of back-end VMs.

For each type of resource, a resource-usage monitor pesibdieports the current de-
mand level. The resource-usage monitor can reside eitllee MM or within each VM.
Depending on the monitoring approach used, different safngdjuencies and a smoothing
function can be used for a different type of resource. Theaedor applying a smoothing
function is to obtain a more stable reading instead of tearisiemands.

Combined with the current resource allocation, the agest tletermines a new allo-
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cation and then informs VMMs to take appropriate actiongFe 3.3). We use network
bandwidth allocation as an example. Assuming that a welierlgsnsists oN VMs and
has been allocated a total bandwidthBW Mbps, the customer can arbitrarily allocate
bw > 0 Mbps out of the total bandwidth ¥M;(i =1,...N,), as long aii'\‘zl bw < BW.
Assuming that the recent resource demand can be used tetpresthurce demand in
the near future, we use a simple policy that aims to achievemjaal bandwidth utilization
across all VMs. In other words, excessive bandwidth, if amyistributed to VMs pro-
portionally to their current usage. If the current bandWidtilization of each VM isy;
Mbps ( = 1,...,N), we estimate current bandwidth dematidby applying an exponential

moving average to previously-estimated bandwidth denuaad:

d =a-di+(1-a)uy. (3.1)

The new bandwidtibw/ allocated td/M,; is then calculated as:

d

we__ 4%
- SN, d/BW

(3.2)

When making changes, the agent first reduces the bandwldttaabn from the over-
provisioned VMs, and then increases the bandwidth allondtr the rest of VMs. This
will always keep the total bandwidth within the entitled ama

If the physical host failed to provide enough resources réseurce-allocation agent
can ask the VMM to migrate the VM to another physical host atrinct the VM owner
(the customer) to use a web cluster to replace the bottlesmsier. Unlike mere addition
of servers to the cluster, this method does not affect the ¢dehed in other servers at the
cost of a second URL-hashing computation and requestlalision.

This proportional resource-allocation policy is suitafoletypical server clusters, where
all servers are of the same value. If a customer providesrdifit classes of services to

end-users, resource distribution can be skewed towardvafyled services as well.
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3.4 Implementation

We implemented Vibra using Xen [11] along with a custom-m&dé directory service,
which keeps track of cluster-wide VM placements and resmatocations. We have also
built an application-layer HTTP request dispatcher and radbadth-allocation agent to

realize Vibra Web. The implementation details are disodisext.

3.4.1 Xen VM Hosting

There are many different VMMs available for x86 hardware. dlese Xen (version 3.0.2)
for its physical resource abstraction, low overhead, arh@ource. However, the concept
of Vibra can also be applied to any other VMM.

Xen-modified Linux kernel 2.6.16 is used as both the host @&in 0) and the guest
OS. The size of main memory allocated to each VM can also begathon-the-fly, al-
though at present the new memory size cannot be larger tiaimitial allocation at the
time of its creation. Virtual Ethernet interfaces (@tlreated in VMs are connected to vir-
tual interfaces (vii.m, wheren is a Xen domain ID andhis an interface ID) in domain O,
where virtual interfaces are bridged. While we do not mar@ge time allocation in this

chapter, Xen also implemented various CPU schedulers.

3.4.2 VM Directory

The VM directory is set up as a centralized repository foro{igtomers’ resource bounds,
(2) VM resource allocation and utilization, (3) physicakhcapacity and utilization, and
(4) VM-to-physical host mapping.

Physical hosts and VMs periodically report their curresorgce utilization to the VM
directory. Agents make allocation decisions based on tfoenration available in the di-
rectory. An agent manipulates resource allocations by fyiodi the corresponding entries

in the VM directory. The directory validates each change bgoking the customer’s
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resource bound and physical host utilization. It then loogsthe VM location for the
VM-to-physical mapping and sends out the allocation retieethe VMM on behalf of the
agent. Although not discussed in this chapter, a data ceatealso use the directory to
identify physical hosts that become bottlenecks or adjudtplacements to save power.

VM migration can then be initiated to change the VM placeraent

3.4.3 URL-Hashing Request Dispatcher

The URL-hashing HTTP request dispatcher is built as a ys&tesprocess. It listens on a
TCP port and waits for incoming connection requests. Fon €8CTP request, it reads the
header and parses the URL. Based on the object name (nadiimglthe search part, i.e.,
anything after the question mark ‘?’ in a URL), a hash valuesisulated. We use a very
simple hash function—the sum of the character code valug®dIRL modulo the number
of back-end servers—to sort a URL into one of the sub-nantespand its corresponding
VM subset, where the least-loaded server is chosen as thatdisng destination. We call
the simple algorithnCharsumand also incorporate the commonly used MD5 and SHA-1
algorithms? for comparison. The dispatcher implements HTTP/1.1 andhtaizis persis-
tent connections to back-end VMs. If all connections to thstithation VM are in use,
it will create a new connection before relaying the request the response between the
two ends. Otherwise, it simply reuses existing connectidhalso keeps the client-side
connections open as defined in HTTP/1.1 and each HTTP reiquee3iCP connection can
be dispatched to a different server.

We use thespol | 1/O event notification facility in modern Linux kernels fdsihigh
scalability. Higher performance can be achieved by pottiregdispatcher into kernel and
using TCP splicing or experimental TCP connection handsaftocols [6, 46, 58]. A
detailed analysis of these techniques can be found in [1df.tHe purpose of compari-

son, we also implemented round-robin, least-connectidiR and LARD/R in the same

IWe use the MD5 and SHA-1 implementation in LGPL Crypto lilyrar
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program.

3.4.4 Traffic Classification and Policing

As mentioned in Section 3.2, besides CPU, memory, and o#saurces, the VMM
also needs to manage the network bandwidth of each VM. We hesedt filter
(a.k.a.i pt abl es) to implement traffic classification and policing.

We first classify network traffic as egress or intra-dataeefinternal) traffic. We use
the source IP address to identify the sending VM and the rigtn address to classify
traffic. Once packets are classified, they are placed inferdiit queues created by the
(traffic control) command. Each class of traffic is put intoffedent token bucket to limit

its bandwidth utilization.

3.4.5 Bandwidth-Usage Measurement

Ideally, the agent would like to know the actual resource aetnof each VM with some
degree of accuracy. Unfortunately, for example, a traridpger protocol such as TCP
can adapt its transmission rate to the available bandwiadh therefore, conceal the real
need. One possible method to estimate the actual demankbaktmto the per-connection
TCP transmission queue and the NIC buffer in the guest O&oAfh this approach might
give us a better estimate of bandwidth demand of an existaffjct source, it is not al-
ways possible to instrument in a guest OS to gather suchnvation. We therefore use the
egress traffic matching rule at the VMM and take the packqtiening rate as the current
bandwidth demand. Intranet traffic is not counted becausdvaiath within a data center
is much cheaper and abundant. The statistics, includinguhgber of packets and bytes
that a VM has sent, are polled using ihet abl es command every second and logged in
the VM directory, where the exponential moving average fionds applied. There is also

an API to traverse rules if a lower overhead is desired.
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3.4.6 Estimation of Working Set Size

It is non-trivial to measure the working set size. In Linuxg tvirtual memory system uses
two lists, active and inactive page lists, to approximateléast-recently-used (LRU) strat-
egy. While the total number of active pages is supposed iimats the working set size, in
reality it does not—the default virtual memory system tetalkeep a large active list and
moves active pages to the inactive list only when memoryesgaceeded.

We modify the Linux kernel such that the active list size canused to estimate the
working set size. In a static-content web server workloagl,expect that most memory
pages, and also most memory pages in the active list, aretaiséore web objects. These
files are only mapped into a virtual address space when tlepang accessed. On the
other hand, web server programs are mapped into one or nmwahéddress spaces for
most of the time.

Similar to the/ proc/ sys/ vm dr op_caches function, we created a function,
nameddeact i vat e_caches, that moves active but non-mapped memory pages into
the inactive list. We also marked those pages as “referérgmethat the next time they
are accessed they will be moved back into the active listefottse, they will only be
marked as “referenced”). At that time, all memory pages édttive list must be mapped
into some virtual address space. In addition, the “swagsinfactor ( pr oc/ sys/ vm
/ swappi ness) is set to 0 to slow down the process of moving pages from theedist
to the inactive list.

We then wait for a short period of time. The size of active ilistreases as cached
blocks are referenced and used as an indicator of the woddngize. If we read the size
of active list too soon after deactivating caches, the tesight be biased toward a transient
behavior. On the other hand, the default active list managemay kick in if we wait too
long. The effect of this wait time and also the overhead of impypages between active

and inactive lists are evaluated in Section 3.5.
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3.4.7 Resource-Allocation Agent

We implemented the proportional resource-allocation edescribed in Section 3.3.2. The
agent runs in one of the customer’s VMs and connects to the Watiry for all neces-
sary information. Note that the communication with the VIVedtory is treated as intranet
traffic and hence, is not limited by the egress bandwidthajuot

The frequency of adapting resource allocation depends wrifeguently the workload
pattern changes. While frequent bandwidth adaptationl@@tes the speed of draining
the packets queued due to the lack of bandwidth, it may afsotafCP window size adap-
tation adversely. We tried different adaptation freques@nd the results are reported in
Section 3.5.

On the other hand, adapting memory allocation is a much mqrereive operation.
Newly-added memory pages show up as free space in a VM andowvamcached objects
to be loaded. Removing memory pages usually signals thealimemory manager in
the VM for page-out activities. Although most memory pages@ean in a web server,
scanning page lists and modifying page tables are still neap. Therefore, memory page
transfers should be invoked less frequently. In the nexi@eowe evaluate the overhead

of different invocation frequencies.

3.5 Evaluation

We have built a testbed to evaluate the performance of Vibed.\WWhe VM cluster con-
sists of 4 PCs as host machines, each equipped with a Peatu66GHz CPU and 1GB of
main memory. Another machine (P4 2.26GHz) acts as the redispatcher and also hosts
the VM directory service. All of them are interconnected aigigabit Ethernet switch. A
second network interface on the request distributor is eotad to a machine that generates

clients’ traffic.
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14%

Dispatching algorithm Round-robin Charsum Hash MD5 Hash SHA-1 Hash

% of requests processed 25/25/25/25 27/27/20/26 29/17/28/26 27122/24/27

% of total transfer size 25/25/25/25 14/64/10/12 39/25/16/19 45/15/25/15

# of distinct objects 2821/2766/2833/28081167/1159/1143/118) 1179/1156/1164/115)7 1170/1159/1198/112
Total size of distinct objects  34/34/33/27 MB 15/13/14/14 MB 11/12/16/17 MB 20/13/13/11 MB

Table 3.1 Statistics of each subset of requests or sub-namespacesdifferent dispatching algorithms.




3.5.1 Trace Analysis

We first use the server log from the 1998 FIFA World Cup web [&ilewhich is still the
most extensive and publicly available web server logs. Tokklwad is mostly composed
of static files. We first choose a 10-minute trace (6:10pn®en2 GMT+2, June 30, 1998),
during which the peak demand of the Romania—Croatia gameptaze. This specific
clip is chosen because, as our trace analysis shows, itseaigea worst-case scenario for
URL-hashing in real life.

We first statically analyze various aspects of the tracegudifferent request distri-
bution algorithms (round-robin and URL-hashing with Chans MD5, and SHA-1 al-
gorithms) to compare different hash functions and justify heed of dynamic resource
allocation in a cluster. LARD and the least-connection athms are not included here be-
cause their results depend on run-time state and actuarssomfiguration. For the same
reason, we set the replication fac®to 1 in URL-hashing.

From Table 3.1, we can see that while URL-hashing approagtesdly reduces the
number and the total size of distinct objects on each subespate, the requests are not
distributed evenly, no matter which hash function is beisgds In terms of number of
requests in each sub-namespace, SHA-1 distributes thestsgquost evenly while the sub-
namespace 1 in MD5 has 75% more requests than sub-namesgdo@ever, in term of
total transfer size, the distribution by MD5 is more evemitlif@e ones by Charsum and
SHA-1. The total transfer size of sub-namespace 2 is more @hanes greater than the
one of sub-namespace 3 when Charsum is used. The ratio iaflsmch as .2 times
when MD5 is used. This indicates the need of dynamic resalloeation.

Moreover, the URL-hashing reduces the number and the tiz&lod distinct objects
significantly. We note that the total size of distinct obgeistmost evenly distributed when
Charsum is used. As there is no one hash function outperfotiness in all measures, and
also that the results are likely to be specific to the trace see we cannot dismiss any hash

function after the analysis.
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Figure 3.4 The CDF of total throughput by objects sorted by their ctuitiions.

While the average object sizes (not weighted by their acfreggiency) do not dif-
fer significantly after hashing, differences in bandwidénthnd suggest the existence of
hot objectsin this trace. We use the Charsum algorithm as an example.e&ar sub-
namespace, we first sort the objects by their contributionsetwork traffic (number of
bytes transferred), and plot a cumulative distribution iguiFe 3.4. From the figure, we
can see that a very small percentage of files on sub-name2maceribute to most of the
server’s bandwidth usage. The distribution is differemtdach sub-namespace, suggest-
ing that the workload model becomes different after hashimgontrast, if round-robin is
used, the shape is the same for all servers and is very simmilae original workload.

A closer examination shows that merely 8 files contribute @&0%f traffic in sub-
namespace 2. They are splash screens, the program aniitstéisstatus$ of the ongoing
game in both English and French, and two embedded imageartinyar, the English ver-
sion of splash screen contribute to about 37% of traffic irsaimespace 2, or 24% of total
traffic. Coincidentally, two pairs of words, “prog’/“stadind “english”/“french,” have the
same hash value using Charsum, so the four most frequestfssed files of a game all
fall into the same sub-namespace. When SHA-1 and MD5 are dsetl 3 out of these 8
URLSs are hashed to the same server, respectively.

As different games were being played, tia spotin a workload may also shift from

2We can only guess the content from file names.
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Figure 3.5 The throughput of each sub-namespace using Charsum. Thspbbmoves from
sub-namespace 2 to sub-namespace 1.

one server to another. This effect can be seen easily with-tawu8 throughput history
that covers both games played on June 30, 1998 (Figure 318. Charsum algorithm
makes both splash screens and information about the firs garsub-namespace 2, which
started at 4:30pm. The second game started at 9pm and itsigiomeation is hashed to
sub-namespace 1 instead, while the splash screens asestiéld from sub-namespace 2.

This strong evidence confirmed the need for dynamic bandvailitbcation.

3.5.2 Overhead Analysis

In addition, we also compare the cost of different dispatglalgorithms. We apply each
hash function to the 90,000 URLs in the World Cup trace andsunmeathe average time

it takes to hash a URL string and make a dispatching decisRound-robin serves as
the control group here as it simply loads URLs into memory sinaply discards them.
Although Charsum generates undesirable collisions, i takes 0.2@s in hashing, or a
merely 0.03ts more than round-robin. Comparing to 1ti&and 2.3@s for MD5 and
SHA-1 (or 1.54us and 2.14s more than round-robin), Charsum is significantly cheaper.
For LARD, we preloaded all 90,000 URLSs into its dispatchimgidry and its takes 1.6

for each look-up.

In addition, the memory overhead of LARD is much more sigaiiic It uses more than
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Dispatching algorithm Round-robin| LARD | Charsum| MD5 | SHA-1
Cost per hash/look-ugué) 0.25 1.86 0.28 1.79 | 2.39
Increases in memory resident set size (4K memory pages) 6 1413 6 20 21

Table 3.2 The CPU and memory overheads of dispatching algorithms.
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Figure 3.6 The effect of different smoothing factors and the frequenicgandwidth allocation.

5600KB memory to store all 90,000 URLs in main memary, about 64 bytes for each
distinct object. Comparing to round-robin, Charsum dodsuse any additional memory.
MD5 and SHA-1 only use a few more memory pages because oftttayiwe used. In a

production system, the number of distinct objects can beraéwrders-of-magnitude more
than that in this test case, resulting in even higher memiody@PU overhead. We argue
that a cheaper hash function is favorable as workload imicalean be handled by dynamic
resource allocation. Therefore, for the rest of evaluationly Charsum algorithm is used

in URL-hashing.

3.5.3 Trace-Based Evaluation

Before applying dynamic bandwidth allocation and compatifRL-hashing with other
algorithms, we first evaluate the effect of the smoothingdiaa in Eq. (3.1) for calculat-
ing the bandwidth demand and the frequency of bandwidtltation. In this evaluation,
the dispatcher is running the URL-hashing algorithm viRtl: 2. Each server is allocated
48MB of memory and 2.7MB/s of available bandwidth. These bers are so chosen that
dynamic allocation is necessary to run the workload. Expenits are run repetitively such
that the 95% confidence interval is within 5% of mean valuee Tésults are plotted in

Figure 3.6.
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Figure 3.7 Average response time with different request dispatchrlgos.

We tried different settings but the difference in averagmomse time is found to be
within 10%. With frequent bandwidth allocations, using ey a is found to result in a
shorter average response time. The opposite trend is lessughin the graph. A large
a is also less likely to generate dramatic but transient cesiig resource allocation. For
a = 0.9, an adaptation interval of 3s is found to be optimal. We sle@o= 0.9 and adapt
bandwidth allocation every 3s for our evaluation.

We compare URL-hashing in a Vibra-enabled web cluster witieioapproaches, in-
cluding LARD, least-connection, and round-robin in a fixeshwidth web cluster. LARD
is configured with the parameters published in its origiregbgr [58]. We first compare
them in terms of average response time using the 10-mirate ttescribed above. From
Figure 3.7, given the same amount of bandwidth, URL-hashiitly R = 2 is shown to
be able to reduce response time, on average, by 35% and 5&¥dgeagt-connection and
LARD, respectively. In addition, round-robin does not wdtless than 3.0MB/s is given to
each VM. LARD and least-connection do not work with less tRBafMB/s, either. URL-
hashing not only can work with 2.4MB/s, but also performsdrethan the others. On
the other hand, the average response time of URL-hashimg2wMB/s is very similar to
least-connection with 3.0MB/s. That is, URL-hashing acesgthe same performance level
with a 20% reduction in bandwidth need.

We have also measured disk read activities during the lQieniavaluation period.
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Figure 3.8 Total number of disk blocks read when different requestatdpalgorithms are used.

Figure 3.8 shows that both the content-unaware dispatciliggyithms read in a simi-
lar number of disk blocks. URL-hashing wiR= 2 and LARD read in 33% and 49%
fewer blocks, respectively. When bandwidth is scarce, ddtivities are slightly increased
because, with a prolonged service time, the number of cosiguconnections is also in-
creased and more memory is used for process images and kdwftars (instead of disk
cache).

While fewer disk activities imply better cache hit ratio aschlability, LARD has a
centralized statefullispatcher which may eventually become the bottleneck. @yrast,
content-unaware approaches have the most scalable fndritg result in lower cache hit
ratio and higher disk activities, whereas the URL-hashéng balanced approach and can

make a trade-off with the replication factor.

Throughput Comparison

In another experiment, we measured the throughput of theteslwvith different levels of
concurrency. Instead of replaying the trace accordingeaeicorded request arrival times,
the client opens a fixed number of connections to the requstsibditor concurrently and
issues requests as fast as possible. Each VM is allocate® @éd&mory and 6MB/s band-
width initially for this experiment. The number of concunteonnections is increased from

140 to 220 and the throughput is plotted in Figure 3.9.

51



5000

4500

0

g 4000

3 3500 |

<

g

© 3000 F  Least-connection —e—

< LARD -=

= LARD/R —&—
2500 | URL-hashing(R=2) &~
2000

140 160 180 200 220
Concurrency (#threads)

Figure 3.9 Comparing the throughput of different algorithms at difierconcurrency levels using
the World Cup trace

Least-connection —%—
8t LARD —=-
LARD/R —e—
0 URL-hashing(R=1) —=—
= 75+ URL-hashing(R=2) —e—
£
- 7 B
=]
o
5 65}
S
o
< 6
'_
55
5

400 450 500 550 _ 600
Concurrency (#threads)

Figure 3.10 Comparison of the throughput of different algorithms atedtént concurrency levels
using YouTube-like workload

As shown in the figure, the throughput of the least-connaatigorithm decreases as
the load increases, and the least-connection is the sl@amestg all algorithms we tested
due to its excessive disk activities. With 140 concurrentnextions, LARD and URL-
hashing outperform the least-connection by 26% and 23%euotively. While LARD is
slightly better than URL-hashing at low concurrency leydtsperformance degrades sig-
nificantly with increasing loads, because the hot objeatege significantly more traffic

than others and the network link becomes the bottleneck.
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3.5.4 YouTube Workload

Besides the World Cup trace, we built a YouTube workload ggne and fed the Vibra
Web cluster with much larger file sizes and bandwidth demamtere have been a num-
ber of previous studies on YouTube traffic characterizafidd 20, 40]. The workload
generator first creates a number of files with random IDs, e&ahich represents a video
clip. The bit-rate and length of each video clip follow thatsdtical model reported in [20].
The accesses to these files follow Zipf's law with= 0.56 [40]. We use a different source
for the popularity distribution because the result waswerfrom areal trace, instead of a
data set generated by a crawler. The crawler follows theéeehdeo links so the data set
may be biased toward popular videos. Since the relatiorstipeen popularity and video
size (or length) is unknown, we assume they are uncorrelated

Using the workload generator, 2,000 video files, which tageauotal of 12GB disk
space, are generated. The workload consists of 4,000 rscared the size of total data
transfer is 25GB. To serve much larger workloads like this,alfocate 768MB memory
to each VM and a total of 80MB/s bandwidth to the cluster. 8ino request inter-arrival
time statistics were available, we could only benchmarkhiheughput of the cluster. The
number of concurrent connections is increased from 400 @oa®@ the results are plotted
in Figure 3.10.

Since the video IDs are randomized and encoded in URL strivB&-hashing simply
divided all videos in equal-sized bins. Each bin also haslaimpopularity and file size
distribution. In other words, there is no obvious hot-spahie cluster. Both URL-hashing
and LARD, and their replication derivatives take advantafyeeduced disk accesses and
are able to achieve a higher throughput than the least-ctinnealgorithm. LARD and
LARD/R are about 40% faster than the least-connection dhgor while URL-hashing
(whereR = 1) and URL-hashing/R (wheile = 2) are about 30% and 14% faster, respec-
tively. Since the working set size is much larger than the orgnsize, URL-hashing

performs better as more videos can be cached in memory. WARD/R also has a repli-

53



cation logic, none of the servers in the cluster is undeddado no replica was created in
this experiment.

When the number of concurrent connections increased to ba# LARD and
LARD/R start to degrade dramatically. By the time it reach®s, both of them performed
like the least-connection algorithm, and URL-hashing/RB2%6 faster than LARD. It is
because LARD and LARD/R simply choose the least-loadedesdor dispatching a re-
guest when the destination server is overloaded. Whenrakiseare overloaded, LARD
and LARD/R simply degrade to the least-connection. Thisexpent shows that the per-
formance of LARD and LARD/R depends on correct adjustmerthefunder-load and
overload threshold parameters. Adjusting the replicaaotor in URL-hashing is straight-

forward because the ratio of working set size to memory sisasier to estimate.

3.5.5 Dynamic Memory Allocation

Since the overhead of estimating working set size is muchdrighan that of estimating
bandwidth demand, we first evaluate our approach by chatiggnmeasurement frequency.
From Figure 3.11, we can see that increasing the deactivpirniod from 10s to 60s does
not have any impact on average response time, meaning thapptoach has a very low
overhead while a periodic spike of 5ms in average responsedan be observed. On the
other hand, dropping caches is extremely expensive ancehefeasible.

Longer sampling periods, however, result in larger actstesizes because more objects
are touched during the period. In Figure 3.12, we plottechtimaber of memory pages in
the active list as a server handling web workload. Irrespedf the sampling frequency,
the active list size does not oscillate much. This meansdiiaamic memory allocation
can be performed less frequently and a lower sampling frequis sufficient.

We applied dynamic memory allocation to our testbed, butébinat the active list size
difference between servers was not significant. The reasdhis is actually simple: while

hot objects require a lot of bandwidth, they don’t take up matmemory space. It can
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Figure 3.12 Working set size estimation by deactivating pages peralgic

also be seen from Table 3.1, where the numbers of distinectbare not much different

among servers. With proper tuning of parameters, disk itiesvare reduced on three of

four servers. While a better cache hit ratio is achievedbtreefit cannot be translated into

a reduction in average response time. Thus we do not comtbinthidynamic bandwidth

allocation and perform any further evaluation.

3.6 Discussion

In this section, we consider an alternative hash-basedapprto design a locality-aware

web server cluster. We also compared it to Amazon’s Dynantgsh-based key-store

system which has some similarities with our work. Beforeatoding this chapter, the
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limitations of Vibra is discussed.

3.6.1 Alternative Hash-Based Approach

In this work, we divide the URL namespace into equal-sizestgs where the number of
sub-namespaces is equal to the number of back-end serveméMismve. When there is
a imbalance in resource demand of each sub-namespace hstetrartual resource allo-
cation between VMs to improve resource efficiency and perémrce. Another approach
is dividing the URL namespace into many pieces, much mone the number of back-
end servers, and dynamically mapping each sub-namespbhaekeend servers to achieve
load-balancing. Since the hot spots are usually consistingry few objects, one might
need to divide the URL namespace into very small partitiongetuce the peak of a hot
spot.

In order to realize the alternative approach, the back-emgess need to measure the
resource demand of each sub-namespace. To measure thububkpveb server process
can apply the same hash function again to each URL and rdporighput for each sub-
namespace separately. However, both CPU time and memarg dpanand are difficult to
measure in the web server process itself. Another option $£tve each sub-namespace
in a different logical partition in an OS, where the throughpf each logical partition can
be measured. CPU time usage can also be measured easilic#llpgrtitions are used.
However, it is still difficult to measure working set size feach sub-namespace as the
buffer cache is shared between all partitions. After kngythre resource demand of each
sub-namespace, one may adapt the sub-namespace-torsap@ng at the front-end to
achieve load-balancing,g, by moving one or more sub-namespaces from the most-loaded
server to the least-loaded one.

Comparing to our approach, the front-end load-balancedseekeep a small number
of state, which does not reduce its scalability as the statetiupdated frequently. Multiple

front-end load-balancers operating with a slightly ousghc mapping is also acceptable
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as the locality is only reduced during the synchronizingqeerHowever, as the infrastruc-
ture may already be virtualized by the data center operhtsting each sub-namespace
inside a logical partition only increases overhead. In toldj in Vibra each type of re-
sources can be adapted independently, but all types ofnasoare coupled together when
fitting multiple sub-namespaces on a server. In the futueayauld like to implement this

alternative approach and compare it with Vibra quantiedyiv

3.6.2 Comparing to Dynamo

As we have briefly introduced in Chapter 2, Amazon’s Dynama key-value store that

also uses hashing to partition its key space and distrilngt&brkload among a cluster of
servers. Similar to the alternative approach that we dgaisbove, the key space is di-
vided up to 30 times more than the number of seniegs each server is handling 30 small
partitions. The number of partitions in an instance of Dyndmcluster of servers) is fixed

during the operation. The partitions are always evenlyitisted to all servers. In other

words, only the addition or removal of servers changes tmebau of partitions assigned

to each server.

This design is adequate for Dynamo because they assumedateeenough hot spots
in key space that through hashing and partitioning hot spatsbe evenly distributed to
all servers. Clearly, the distribution of their workloaapents enough diversity so the load
imbalance can be handled. However, an instance of Dynanedisated to a very simple
task, such as shopping carts, session management, or poadalog. For these services,
the size variation of each key-value pair and the resourosadd of each look-up request
are much more moderate than a typical web site, where the tgects can easily take
up more than 100MB of memory space and creating dynamic oboss use much more

resources than serving static content.
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3.6.3 Limitations

Vibra also has its own limitations. First of all, in this wonke only address the imbalance
in network throughput, our workload does not manifest emovariation in working set
size. As we only deal with static content, we simply assuna¢ @PU demand does not
create a bottleneck.

We also assume that the underlying physical server cange@nough computing re-
sources for a VM. If one server VM is the only VM running on thieypical server and
the physical server cannot satisfy its resource demangysical server becomes a bot-
tleneck. In this case, we can migrate the VM to a larger playserver, or increase the
replication factor to shed some workload to other server VMs

Our goal is to balance the demand, and the utilization, oot bandwidth across a
cluster of server VM. However, the proportional distriloutiis not optimal when we put
other considerations, such as the interaction of upper [agtocols or file size distribution
in the workload, into the picture. While Vibra Web servestas framework of virtual re-
source transfer and we have showed promising results bsféraimg bandwidth allocation,

further research is needed to improve the distributioriexsa

3.7 Summary

While load-balancing web clusters have been studied fongtime, virtualizing data cen-
ters and deploying web servers on VMs create many new clggtesind opportunities. The
resource allocation to VMs can be adapted dynamically aahtghically as we described
in the Vibra architecture. We then use this new flexibilityeéedesign a web server cluster.
With the Vibra Web server cluster proposed in this chapterstowed that a locality-
aware request dispatcher can be more scalable. Higher effofity is achieved by using
the hash values of URL strings to select a subset of back-eners. A cluster’s per-

formance is improved further by transferring resourcesvbeh VMs to compensate for
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unbalanced resource demands.

We use both the World Cup trace and a YouTube-like workloategeor to evaluate
Vibra Web. Our experimental results have shown that theagveresponse time is reduced
by up to 51% and Vibra Web can achieve the same service levahass with 20% less
bandwidth. We also showed that URL-hashing incurs lessh@aet than LARD. In future,

we would like to apply the Vibra architecture to more and otflester applications.
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Chapter 4

Redundancy in Vibra

4.1 Introduction

People rely on many Internet services in their everydayslie-mails, instant messages,
on-line trading, shopping, and even gaming, all these sesviequire very high availability
and consistent performability. Otherwise, service prexédnay incur huge monetary loss
and their users may flock to competitors’ services ruthjessihile the servers are hosted
within data centers that have redundant power facilitiesratwork connections, failures
can still occur even to the most reliable hardware. In laggees installations, failures may
happen everyday.

In a virtualized server-hosting infrastructure like Vipeahardware failure can result in
a wider impact than in a traditional infrastructure as it bang down all VMs running on
top of it, which may involve multiple customers. Althouglrtuialization cannot directly
prevent any hardware failure, in this work we show that it easist in building a more
resilient server architecture.

Hypervisor, the software that enables virtualization igstem, can isolate certain types
of faults in a server environment. While operating syste@®Sds) and server programs
have tens of years of development, their large code bases thakn difficult to become
error-free. When a software error happens and results igeadation in performability,
the hypervisor can simply destroy the problematic VM andareét. Although hypervisor

itself is also a piece of software, its simpler functionakind smaller code base make it
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easier to be verified and become more reliable.

When a hardware failure is detected, all VMs running on top néed to be restarted.
To accelerate the recovery, each VM can be restarted onaaetiff physical server because
the boot-up process is usually resource-intensive. Hokvesrele booting up a VM is usu-
ally quicker than booting up a physical server due to fewedWare auto-detections and
self-tests, the VM cannot provide any service and resuléslast of productivity.

In the previous chapter, we re-designed a web server cludtaa Weh to provide
scalable and efficient web services. In this chapter, weqe®p@ reconfiguration scheme
to improve the performance of a Vibra Web server clustendyitie failure recovery stage.
Upon the detection of a failed VM, its workload can be transfé and the resources allo-
cated to it can be re-allocated to one or more VMs in the samecMlter, calledurviving
VMs given the destination physical host has enough unalldeasources. With additional
resources, surviving VMs can handle additional workload emmpensate for the lost of
productivity.

In addition, instead of naively changing the hash funciiothe URL-hashing request
dispatcher to match the number of operational nodes in tisterl we modify the mapping
between hash values to server subsets to retain the exigtality in surviving VMs and
share the faulty server’s workload among a number of surgi¥Ms. This approach im-
proves the throughput during the recovery stage. Whilestrislar to consistant hashing
schemes, previous works simply assume load imbalancenddéss and do not address hot
spots at the same time [50, 63, 72].

When a replacement VM is started, it can regain the faulty ¥ Msources. The orig-
inal hash value assignment in URL-hashing can be restoreith & these approaches
combined, the impact on service level can be minimized. Weahestrate the effectiveness
of our redundancy scheme by showing that its throughputadiegion is minimal.

The rest of the chapter is organized as following. We firsteww\the Vibra service

model and discuss various points of failures in Section 4l8. Section 4.3, the en-
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hancements to the URL-hashing algorithm are detailed. Enfpnance is evaluated in

Section 4.4 before we summarize the chapter in Section 4.6.

4.2 Models

Data centers can employ virtualization technology to cbdate servers and improve phys-
ical server utilization. In addition, virtualized resoasccan be easily added to and removed
from virtual machines (VMs). With these flexibilities, weeated a framework, called
Virtualization-Based Resource Allocati¢vibra) and built a web server clust&fipra Weh
which consists of a front-end request dispatcher, backagridservers that hosted in VMs,
and a resource-allocation agent. Incoming HTTP requestdigpatched to one of the VM
according to the URL-hashing algorithm. Imbalanced waaklds then handled by virtual
resource re-allocation.

However, virtualization itself does not prevent failuresmh happening. Placing VMs
blindly to physical servers can even deteriorate availgbilln the presence of poten-
tial failures, adding service redundancy to improve senagailability is usually more
cost-effective than building a more reliable physical serWWe next discuss common re-

dundancy approaches for each component in a Vibra Web.

4.2.1 Request Dispatcher Redundancy

The request dispatcher has a stateless design. To impvednd redundancy, multiple
request dispatchers can be deployed with typical highlaidity approaches. For exam-
ple, when two request dispatchers are being used, one caslgndted as the master node
and the other one as the slave node. The master node thedipaifipsends heartbeat
signals to the slave node. If the heartbeat signals are mogatty received by the slave
node in a timely fashion, the slave node can superseded tstermede by cutting off its

power supply and taking over its MAC and IP addresses.
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During the transition, active HTTP connections are diszdps the TCP connection
states are lost. While the fault is exposed to end-user,nbisa problem because the in-
tegrity of higher level abstractions, such as an on-lingophay session, can be designed
to tolerate interrupted HTTP connectioresg, by rolling back a transaction. Since the
redundancy design in URL-hashing request dispatchersdfieoent from other stateless

load-balancing algorithms, we do not discuss this type ibfrfi@aany further.

4.2.2 Local Network Redundancy

While servers in data centers can only be physically acdebgea limited number of
personnel, local networks can still suffer from hardwai&ifas, loose connectors, and,
unfortunately, cable-biting mice. Redundancy in localvweks is usually implemented by
deploying redundant network links and switching devices.

Both request dispatchers and physical servers can commeatltiple switches with
one or more links each. Switches can also connect to eachatdegorm a loop or other
topologies that provide redundancy. Configuration prawsoch as spanning tree protocol
(STP) are able to respond to link failures and keep the né&tamnnected. Local network
redundancy is already extensively implemented. Becauwsdailures are transparent to

upper layers, we simply assume local networks are reliable.

4.2.3 Hardware and VMM Redundancy

Although physical server are usually equipped with redahg@wer supplies and fans,
failures can still happen. For example, most chip-sets ddvaee a redundant design. If a
chip-set failed, the system may become unusable. SimilaHgn an uncorrectable mem-
ory error is detected, most servers cannot mask the faulheed to stop. When a hardware
failure is detected, all hosted VMs also failed while thelppeon (such as failed memory)

may only affect one of them.
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Virtualized server also need to guard against failures ewintual machine monitor
(VMM). VMM is the software that virtualizes the hardware aaltbws multiple OSes to
run simultaneously on top of it. Since it provides simplendtionality than traditional
OSes, its code base is much smaller and easier to verify. Vowa software bug can
cause protection error which also stops all VMs running g@nafit.

Clustering is a common technique to guard against hardwaatevéM failures. In
particular, each VM in a VM cluster needs to be placed on &ufit physical server. Oth-
erwise, redundancy is compromised. Data-center operediorenly consolidate VMs from
different clusters on a physical server.

Recovering a failed physical server is also easier if theeses virtualized. Tradi-
tionally, a failed physical server can only be substitutggbother physical server of the
same or better (or, at least, similar) configuration. Howeadailed VM-hosting physical
server can be recovered by restarting individual VMs on iplglivorking physical servers.
Therefore, it is not necessary to have a single spare hastdlsaa computing power equal
to, or larger than the utilization of the failed server. Algas also faster if multiple VMs

are booting up concurrently on multiple physical servers.

4.2.4 OS and Software Failure

In a hosting framework like Vibra, both the OS and servengaffeé are provided by data
center customers. While modern OSes are more extensivatdiea bug in server soft-
ware can result in interrupted service. Fortunately, bdde@d server software are running
within a VM and VMM is able to contain this kind of failure.

Recovering from software errors in Vibra is not differerdrfr that in physical server
cluster settings. One can simply restart the VM to resebinfthe faulty state. One can
also use multi-version programming to reduce the chanclkeo$ame error happening on
other servers. During a reboot, the resource-allocatientacpn transfer some of the VM'’s

resources to other VMs of the cluster.
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4.2.5 Fault Model

For the rest of this chapter, we assume that failures are fewity hardware or VMM.
Since each VM in a cluster is placed on a different physicaleseeach failure may render
at most one VM in each VM cluster inoperable. We also assumieféilures are of the
fail-stop type and can be detected in a timely and reliablamaag.g, by detecting the
absence of heartbeat signals). We do not discuss the aetengchanism in this work.
Multiple failures may happen simultaneously. Althouglsthiork is focused on a single

failure, our enhancements can be easily extended for riailiire scenarios.

4.3 Redundancy in Vibra Web

In a typical physical cluster setting, once a server failureurs, the cluster simply loses
part of its processing power. The performance of the clugerains degraded until the
failed server is restored. Service-level degradation,dvaw is unfair to the customers if
the failure is caused by unstable hardware or VMM, becauseulstomers may not get
what they paid for. Unallocated server resources in a datgecare not easily accessible,
either.

We propose two mechanisms in Vibra Web to reduce serviceadation caused by
server failures. First, upon occurrence of a server fa{lneace loss of a customer’s VM on
that server), the data center operator can allow the custima#ocate additional resources,
if available, to his surviving VMs. The amount of additiomakources the customer can
allocate is commensurate with what the failed VM had beftgdailure. The resource-
allocation agent can then issue resource-allocation cordmso that the VM cluster for
the customer can regain all its resources on the failed VMo&@&, the request dispatcher
can be adapted to use the transferred resource more efficiéiie augment the URL-
hashing algorithm such that existing locality in back-eedvers is preserved. Although

we only consider egress network bandwidth in the followimgcdssion, the scheme can
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also apply to other types of resource.

4.3.1 Resource Compensation

If a failure occurred to a physical server whaf#flj is currently hostedyM; becomes
non-operational and cannot provide any service. The amafusdndwidthBW, currently
assigned to/M; becomes unavailable to the VM cluster. The data center cadit&@W,
Mbps back to the resource-allocation agent, which can,rim @ilocate that bandwidth to
any of surviving VMs in the cluster, given the physical sesvieosting the surviving VMs
have enough unallocated resources.

When the data center operator recreaby, possibly on a different physical server,
the failed VM initially hasBW, Mbps to use. While most servers do not require egress
bandwidth during boot-up, other types of resources, likéJ@&Rares and memory, are
mandatory in booting up a new server. To allow the newlyte@d&/M to warm up, the

data center operator can reclaim the extra bandwidth otdy afcertain period of time.

4.3.2 Adapting Conventional Algorithms

For simple load-balancing algorithms like round-robin @adt-connection, dealing with a
failed server is as simple as removing a server from its cardigpn, resulting in a clus-
ter with one less servers. In locality-aware algorithmsyéwer, requests destined for the
failed VM cannot be delivered.

For example, in LARD (and LARD/R), upon detection of a seffadure, one can tra-
verse the dispatching history and remove all entries wighféled server as (one of) its
destination. Another approach is to treat the failed seasateceased and invalidate entries
when the failed server is referenced. Since a replacementWMiot contain any state
(cached files) when it is newly created if the latter appraaalsed, the dispatcher should

treat the replacement VM as a new server and continue toidiatalold entries until all
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references are accounted for.

Since the design of LARD and LARD/R assumes all back-endesstto have the same
processing power, the resource allocated to the failed VM stemnply be re-distributed
evenly to the surviving VMs (assuming that the physical eeswosting them have enough

unallocated resources).

4.3.3 Adapting URL-Hashing Algorithm

The URL-hashing algorithm also needs to be changed in oodespond to a server failure.
However, unlike LARD, URL-hashing algorithm is statelemsd thus, need not invalidate
any state.

One way to avoid sending requests to the failed server isdosghanother hash func-
tion returningN — 1 different values that correspondfb— 1 sub-namespaces. Similarly,
N — 1 back-end server subsets are also created with repliciibor R and have a 1-to-1
mapping to each sub-namespace. We call thistiee approach. However, this approach
does not respond well to a failure. For example, in cade ©efl, the naive approach will
lose 50% of locality for all cluster sizes in the worst casachthappens when either the
VM that was handling the first sub-namespace or the VM thatveamslling the last sub-
namespace fails. The average locality loss decreases a&éhef a cluster increases. If
we assume that all back-end servers have an identicaldgitobability, for a cluster of
10 servers, the average loss of locality is 37%. Obvioukig, naive approach does not
perform well during the degraded operation.

We plotted the average locality loss for different clusiees and different replication
factors in Figure 4.1. The average loss of locality is redut®is greater than 1. However,
it is still much worse than the optimal case, as describeovbel

With a cluster ofN servers and replication fact®, each server handld®/N of the
entire URL namespace when the URL-hashing algorithm is.useéelally, only thoseR

instances (each replica is counted as a different instaress) to be moved to other surviv-
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Figure 4.2 The possible location of cached objects before and afteveging from a failed server
in a cluster.

ing VMs in the cluster. Since there are a totaFofN instances of sub-namespaces, in the
optimal case, onlfR/(R-N) = 1/N of locality is lost. That is, only the states (cached files)
on the failed server become unavailable.

To achieve the optimality, we again exploit the flexibilifyresource allocation in Vibra,
and create an uneven namespace distribution among theisgrViMs. WhenVM; failed,
instead of choosing a hash function that has 1 values, we simply skip'M; in the gen-
eration of server subsets. In other words, subsetw contains the nexR availableservers
starting fromVM;. For example, subsefsand j + 1 both contaiVM;4,...,VM;,r, and
subsetj — 1 contains/M;_1,VMj1,...,VMj r_1.

An example of this optimized approach is presented in Figi2einder the assumption

that a cluster contains 4 VM¥WMq, . ..,VM,) and uses a hash function that returns values
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between 1 to 4 to select a subset of VMs. W, failed, it is marked as unavailable,
and therefore, requests in namespace 4 will be dispatcheueteast-loaded of M, or
VM, and requests in both namespace 1 and 2 will be dispatchkd teast-loaded afM,
or VM3. Namespace 3 remains unaffected. The difference betwéenlternative server
selection and the original selection is shown in bold in tgeri. In this case, only 2 out
of 8 sub-namespace instances are changed, which turns loeiojatimal.

The R VMs next to the failed VM in the ordered list of VMs will each\eone more
sub-namespace than what they have before the server failaneler to take over the work-
load of the failed VM. Since we do not keep track of resourcgesat the sub-namespace
level, we simply assume that each sub-namespace consuengsntie amount of resource
on the failed server. To accelerate the recovefR af the resource held by the failed VM
is transferred to each of the ndRtVMs. The resource-allocation agent still moves virtual
resources between live VMs as usual, to cope with worklodzhlance. Once the failed
VM is restored, its original workload and resources can @edferred back to it.

Similar to that in [80], the recovery of ongoing requests loa failed VM can be han-
dled by making partial requests (using the “Range” HTTP beab the newly-assigned

VM. Partial responses are then concatenated and returribd tdients.

4.4 Evaluation

We reuse the same testbed in Chapter 3 to evaluate the parfoenof various request
dispatching algorithms during degraded operations. Weudse the World Cup trace to
evaluate the throughput of the cluster during normal opmraivhere the 4 VMs in the
cluster are all in operational state. Each VM is hosted orffardnt physical server and
configured with 72MB of main memory and 6Mbps of network baitdx The client is

configured to initiate 250 concurrent connections to thetelu A comparison of through-

put for different scenarios is plotted in Figure 4.3.
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Figure 4.3 Comparison of the throughput of different algorithms fdfetient degraded scenarios.

During normal operation, URL-hashing/R outperforms LARIARD/R, and least-
connection by 15-27%. The performance gain came from thevidth reallocation
between VMs and fewer disk accesses. When one of the fougrsefailed, all algorithms
took a significant performance hit. Without transferriny a the failed VM’s resource
to the surviving VMs, the disk 1/O is found to become the parfance bottleneck. While
URL-hashing/R still outperforms the others, its lead wasta8—27%.

Since the bottleneck was in disk I/O, when the network badtiwef the failed VM was
made available to the surviving VMs, there was only a 1-3%operance gain in through-
put. On the other hand, if the memory of the failed VM was tfamsd to the surviving
VMs, we observed a 37-73% performance gain over the caseuwtigimy resource transfer.
The least-connection algorithm gained most from the aolikii memory as more files can
be cached in the memory. The number of disk I/O accesses wasa@ significantly with
the additional memory, and hence, network bandwidth bec¢ambottleneck.

When both network bandwidth and memory of the failed VM weamsferred to the
surviving VMs, the performance became comparable to thaboaial operation. Least-
connection, LARD, and LARD/R actually outperform themsseven in normal operation
by 11%, 14%, and 16%, respectively, due to the larger per-Vémiory size. URL-
hashing/R achieved 97% of its normal throughput. While damee slightly (1-2%) slower
than LARD and LARD/R, URL-hashing is observed to be able tapadtself in case of
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Figure 4.4 An example of failure recovery in a Vibra-enabled web sechester.

degraded operation. No matter how many VMs are availablecinster, URL-hashing/R
can always provide the highest throughput.

We then evaluate the redundancy scheme by injecting fantlbsaur testbed, where
each VM is allocated 2.7MB/s at first. As one can see from legu4, four servers were
serving requests initially before server 2 was killed at 60s. According to our design,
the workload of failed server 2 was then moved to servers Jlaiithe increased workload
on server 4 also resulted in an increased workload on senabéit at a lesser degree.
With one less server in the cluster for the remaining 9 mimofesvaluation, the disk read
activity level was increased by 14%. The average respomsewias increased from 19ms
to 23ms, which is still lower than any other dispatching alions we tested. Moreover,
to survive server failures, the fixed resource-allocaticmesnes €.9, LARD) require ad-
ditional resource for each VM. For example, we need to ateo8a6MB/s for each VM to
survive the loss of 1 server and maintain the same servidayg(average response time of

32ms). In this case, Vibra Web saves 25% of bandwidth andpes better than LARD.

4.5 Related Work

VM fault-tolerance techniques can be classified as eithesgOS level or VMM-level

approaches. Guest-OS-level products such as Microsot€l$ervice and Veritas Clus-
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ter Server manage service availability by monitoring thpligation and restarting failed
VMs. Our approach is tailored for Web server clusters anegirgtes front-end dispatch-
ing algorithms and flexible resource allocation to improeefgrmance during degraded
operation.

VMM-level approaches such as VMware HA (High-Availabi)itgnd everRun VM
from Marathon Technologies synchronize the execution okipie VMs with tolerant
physical server failures. These approaches are agnosiizetst OSes and shorten recov-
ery time but have higher overhead in normal execution anoures commitments. Web
servers do not require the highest single-server avaitiabicause the integrity of higher-
level semantics (like processing credit cards) are uspatlyided elsewhere in a multi-tier

system.

4.6 Summary

In large-scale computer system deployments, hardwarnerégilare becoming more and
more frequent and unavoidable. Instead of simply creataymdancy to achieve high-
availability, we showed that by integrating fault-tolecannto the system design, we can
achieve better performance in degraded operation. Datarceustomers can benefit from
it by using fewer resources to achieve their service-leeehand.

In this work, we first discussed various types of failures apgroaches to making the
Vibra infrastructure and the Vibra Web more reliable. Whie flexibility in dynamic re-
source allocation, we enhanced Vibra Web to respond to isiheres better. The design
conserves as much locality as possible and adapts resdlocatian to modified workload
distribution. It can handle multiple failures as well. Bvafion results showed that Vibra
Web can keep up to 97% of its throughput when 1 of the 4 senferles. Comparing to
LARD in a fixed resource-allocation cluster, Vibra Web altoswvcustomer to request 25%

less bandwidth resource while being able to survive thedbkiserver in a 4-server cluster.
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Chapter 5

DPS: A Distributed Proportional-Share
Scheduler in Computing Clusters

5.1 Introduction

Recently, cluster computing has become a popular meansifing a growing number

of applications to lower prototyping and experimentationet and cost. Scientists and
engineers use computing clusters to simulate the effecislage number of application
design choices and operating parameters. Computer anmsafinancial operations, bio-
informatics studies, space exploration, and many otheidiall require precise modeling
and extensive computation on models to obtain accurateetadet] results. Without enor-
mous computing power, recent advances in these applicateas would not have been
possible.

In order to meet the aforementioned computing needs, largélarger computing clus-
ters are being built. A computing cluster may consist of ntben 100,000 nodes while
each node may contain one or more single- or multi-core CRdapled with high-speed,
low-latency interconnects, a cluster provides unprecedkecomputing power in a limited
space and enables the realization of even more complexcafiphs. Many companies,
including Google, Microsoft, Amazon, and Sun, also builtadeenters, where even more
servers are hosted in a building, and allow their custonteabtain computing resources
and run their applications. As the architecture of a datéeceand a computing cluster has

many similarities and shares more and more componentscedatar can also be used to
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carry out the tasks that were usually run on computing ctastéor example, data centers
have been involved in rendering computer generated grajhimoviest. Private compa-
nies also invest in building large computer clusters and danhters and offer its computing
powers to other companiés

Parallel programs, which may simultaneously utilize mbeantone node, are frequently
used to solve large-scale complex problems. When usersisparallel programs for exe-
cution, they usually specify resource requirements, satheanumber of computing nodes,
amount of memory and disk space. Although large clusterssametimes devote all their
computing power to a single large parallel program, thegro#mploy a space-sharing
schedule of multiple parallel programs in order to imprdwatt utilization and throughput.

If each parallel program can always utilize all the resosiaéocated to it, the resource
utilization of the entire cluster would be very high. Unfamately, as the problem size
scales up and more detailed models are used, it becomes iffeaylidto create parallel
programs that place balanced loads on all of the allocatddsio

Depending on the type of application and how parallel prograre constructed, un-
balanced resource utilization can result for several reasbirst, a parallel program may
comprise a few smaller collaborative parallel sub-progra@ach optimized for a specific
purpose and running in parallel with others. When they ateéqgether, the demands for
executing different sub-programs are likely to be differ@md vary with time. Therefore,
one sub-program may have to wait for the result from anothkrmogram (thus staying
idle). The synchronization cost would also increase withgloblem size. Moreover, both
extensive use of program libraries and rapid applicatievetbpment requirements force
the programmers to spend less time on optimization of thgraro structure, producing
less-balanced and lower-quality programs.

SinceSpace-sharinglone cannot provide satisfactory overall utilizatitme-sharing

IHP  and DreamWorks Give Innovation a  Starring Role in  "Shrek.” 2
http://www.hp.com/hpinfo/newsroom/press/2004/04GAhem|

2Tata’s supercomputer Eka is fastest in Asia. http://ecdotimes.indiatimes.com/articleshow/msid-
2539368, prtpage-1.cms

74



becomes an obvious alternative. In a time-sharing envissmingang scheduling and many
other co-scheduling schemes have been proposed to redugstiram response time (the
wall-clock time it takes to complete the program’s exeauitioy implicitly synchronizing
send and receive processes [2, 22, 32, 34, 35, 56, 57, 70].evowthey either suffer
from high overhead, or require protocol-specific kernel ifications. Also, computing
resources allocated to a parallel program are usuallyiloliséd to all nodes in a uniform
fashion, and idle CPU cycles will result if the sub-prograpfesce unbalanced resource
requirements on the allocated nodes. Although the lowzatilon itself may not be a se-
rious problem in research-oriented clusters, it is impurta commercial utility clusters.
If users are charged even for unused resources in a cluséecluster would be neither
cost-competitive nor attractive to the users.

Instead of optimizing parallel programs over all possilleuts, we manage resource
allocations to reduce idle cycles and improve overall zdiion. Specifically, we enable
programmers to decouplerogram specification-the number of nodes the program re-
quires to run on—frommesource specificatiea-the maximum run-time resource usage—of
a parallel program. For example, one program can use 4 siZigl¢ nodes but no more
than 2.5 CPUs at any time. Time-sharing CPU schedulers eamité utilized to optimize
resource usage.

In this chapter, we proposesdsstributed proportional-shar¢DPS) CPU scheduling
mechanism for parallel programs in a cluster computingrenvent. When a parallel
program is submitted for execution, a process is createddt vode and each process is
initially given a certain share of CPU time. A proportiorsdlare CPU scheduler is utilized
at each node and the total share does not exceed the spedf@tum. To deal with the
intrinsic workload imbalance, part of the CPU share can kan%ferred” at run-time from
one process to another. We determine workload imbalancedoytaning CPU usage and
the communication between processes. When a process A dbesnsume all its allo-

cated CPU share and its continuing execution depends onibeesses, we transfer part
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of A's CPU share to its peer processes. By periodically feangsg CPU shares, the CPU
share of each process becomes proportional to its relatace(ko other processes’). It can
also capture dynamic workload shifting. The program respdime is, therefore, reduced,
and the resources that were allocated to, but left unuseddrgaess, can be utilized by
other processes without affecting its performance.

During the course of transferring CPU shares as describ@geabottleneck nodes can
be easily identified. Schedulers can avoid creating newgss®s on bottleneck nodes.
If there are more than one parallel program running on th#édmaick node, a migration
mechanism can be triggered to alleviate the bottle-negkrnglem.

However, migrating processes of parallel programs is mnoatr Typical operating sys-
tems may not be able to provide enough isolation for secunityded customers, either.
For these reasons, we encapsulate parallel programsuaMmiachines (VMs). Instead of
simply creating processes on each node, a VM is created fidsagrocess of the paral-
lel program is spawned within. Each node may host many VMssaicti nodes are called
host machinesThe hypervisor is then responsible for scheduling CPU diheraesources.
VMs are also much easier to migrate between hosts [65]. Hugd ensures a high degree
of performance isolation between resource-competingrprog. On this platform, we im-
plemented the DPS CPU-scheduling mechanism. Comparedftyrarstatic CPU-share
allocation, DPS is shown to reduce program response tinmafisigntly, while improving
cluster utilization. Although the actual improvement deg& on the real workload, we
demonstrate that computing clusters can be utilized mutieroley separating program
specification (required number of nodes) from maximal res®@llocation and utilizing
the share-transferring scheduler.

Our main contributions are (i) separating the maximum resousage from program
specification and (ii) using the proposed DPS schedulinghamr@em to improve both
program response time and cluster utilization. Two DPS dulgg strategies, namely

fully-distributed share-exchangedbank-assisted share-exchangee proposed and im-
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Figure 5.1 A comparison between traditional computing node and VMihgsnachine.

plemented on a specifically-designed VM hosting clustetrphavides secure and flexible
resource allocation and performance isolation. Thesensebaot only lower the cost of
running a parallel program on the cluster, but also easeréaion of parallel programs.
The chapter is organized as follows. We start with the desfgdPS in Section 5.2
which is followed by the share-exchange models in SectiBn $he implementation of
the proposed schemes is detailed in Section 5.4 and ewvdlua&ection 5.5. Section 5.6

summarized the chapter.

5.2 Design

A cluster supportinglistributed proportional-shar¢DPS) scheduling is designed in two
tiers. We first introduce a virtual machine (VM) hosting ¢krswhich enables performance
isolation and security enhancement for running parallegjpams. Each computing node is
transformed into &ost machingsee Figure 5.1). On the hosting cluster, we then build the
DPS scheduler to provide coordinated resource schedutiogsall nodes. This two-tier
architecture is similar to a normal operating system (O3 the lower-tier manages
the underlying resources and the upper-tier schedulesgses to coordinate usage of

resources. We next elaborate on the design of DPS.
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5.2.1 Cluster Design

Traditional cluster design relies on many caveats whichenfikible resource-allocation
difficult. We first discuss the shortcomings of the tradiibdesign and the advantages of

VM hosting clusters.

Traditional Design

In a traditional computing cluster, each node is loaded &ithOS €.g, Linux or Win-
dows), some parallel computing middlewaesq, PVM, MPI), and user programs. User
programs are stored in a network-accessible storage wdule @ode is also equipped with
some scrub disk space for temporary storage.

When a user submits a program to a cluster, he usually preadgpecification of the
program, such as the number of nodes, the amount of mematysanb disk space on
each node. He also specifies an estimated program execumierithe CPU time it takes
to complete the program), so the cluster scheduler canveesgrough resources for its
execution.

When a parallel program is executing in a cluster that onlglegs space-division mul-
tiplexing, it is entitled to utilize all memory and scrub klispace on the nodes it acquired,
even if it doesn’t require all the resources for its exeautikb is very difficult to make the
idle resources usable by others until the program complttescecution at which point
mechanisms, such as back-filling, can kick in.

When there are more than one parallel program running on @, leel OS must sched-
ule them on the CPU according to a certain policy like FCF$stFCome-First-Serve).
With a proportional-share CPU scheduler, each program eagularanteed to receive a
given share of CPU time. However, even when the total mememyathd on a node doesn’t
exceed its physical capacity, a program still competes witters for buffer cache and
network usage. Moreover, configuration or software versionflicts may even render

time-sharing impossible. In a commercial cluster, parallegrams also require strict pro-
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tection from others to prevent any information leak betwibem.

VM Hosting Cluster

In order to provide better protection between multiple t@se-competing parallel pro-
grams running on a single node, one can use OS-level viratadn or similar OS facilities
to logically “partition” the node, as is commonly done inydarge servers or mainframes.
It creates an illusion of having multiple smaller servees;lewith a share of CPU, memory,
and other resources. Although each partition can have itssmftware configuration, all
partitions may be required to use the same kernel and typishare a buffer cache. In
addition, partitions usually do not ‘migrate.” Consequygrthe partitioning itself does not
provide the level of flexibility we would like to have.

Instead of using partitions, we decide to use platform wiiaation as a vehicle to ex-
ecute parallel programs. Similar to partitioning, each V&h de configured to have a
portion of CPU time, a fixed amount of memory, local disk spacel network interfaces.
Parallel programs execute on a cluster of VMs, instead o$ighyhosts. In a VM hosting
cluster, standardized VM images can be packaged to prowicenon program execution
environments; customized VM images can also be made todagtwoprietary software
packages.

In addition to the ability of assigning CPU shares to VMs withtweaking the OS
scheduler, for some hypervisors, we can even re-allocateaneon-the-fly. VMs can also
be migrated between host machines. Two or more VMs can bedhosta single host; they
may even be assigned to the same parallel program. With godsenes, idle resources
can be re-assigned, and hence, more parallel programs ¢estesl/accommodated at the
same time.

By running parallel programs on VMs, we can also providedsgierformance isola-
tion and security measures. From a parallel program’s mdiview, it is the only program

running within the VM, and hence, no other programs would peta for any of its ac-
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quired resources. The guest OS can also be configured tadprawery minimum set of
services, so its security can be enhanced.

Once resources are virtualized, the specification of a lghgalogram also needs to
be adapted accordingly. Since VMs are dedicated to a siragkdlpl program, the speci-
fied number of nodes a parallel program requires only refteetstructure of the program.
When submitting a parallel program, one can separatelyfgpesomaximum instantaneous
CPU usage. Moreover, he need not break down the CPU allodcatio each VM as the
cluster resource scheduler—which we introduce below—ga¥awhically move resources
between all VMs as needed to match the relative resourcesneed

This scheme also frees programmers from the job of optimgittie program structure
for load-balancing among the nodes. This may sometimesseotlge possible because the
input and, therefore, the workload may change dynamicahlig load-balancing problem is
actually translated into the problem of dynamically allireg resources. Upon completion
of a program’s execution, the history of resource allocatian also provide programmers
a hint on potential bottlenecks, so he can improve the progra

In addition, dynamic resource allocation also enablessugéth a limited resource
budget to execute unmodified large-scale parallel progratesonly needs to submit the
program with a low CPU-usage cap and the resource schedill@ptimize resource al-
location subject to the limited resource. While the progmacution is prolonged, the
resource utilization is improvedétting the best bang for the bugk!

Although the insertion of a hypervisor may incur some ovath&hile executing par-
allel programs, the advantages it provides—namely, mosebfte and secure resource
allocation and decoupling program structure from resousege—can better utilize cluster

resources and enhance throughput.
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5.2.2 Scheduler Design

A DPS scheduler is composed of two levels. A cluster resomraeager (CRM) controls

cluster-wide resource allocation, and each host machisia kacal resource scheduler. Al-
though we only implement CPU scheduling in this chapter,approach can be extended
to the scheduling of other resources such as memory and rielif@ Each guest OS also
has its own resource scheduler, where each parallel progaanadopt any policy as the
CPU time slots and memory space given by the node-level sitdreare under its full con-

trol. In what follows, we first present the design of a nodesleCPU scheduler and then

discuss the role of CRM.

Node-level CPU Scheduler

The CPU scheduler on each host machine utilizes a propatigirare scheduling algo-
rithm, such as lottery scheduling [76] or borrowed virtuald (BVT) scheduling [31], to
assign time slots to VMs. We choose a work-conserving CPéduder so that idle slots
are also distributed proportionally to runnable VMs. Thel@devel scheduler is also re-
sponsible for keeping track of each VM’s CPU shares and &€&B& utilization, and for
creating and migrating VMs when the CRM instructs it to do so.

If a VM does not fully utilize the CPU shares it owns, the ndeleel scheduler may
transfer its excess CPU shares to other VMs of the same @lgvadigram. We will hence-
forth call the other VMgeer virtual machinesEach parallel program can employ different
strategies to decide the amount of each transfer and itsgirii/e have designed distributed
and centralized share-exchange strategies. Both steatage illustrated in Figure 5.2 and

discussed below.

Distributed Strategy In the fully-distributed share-exchangstrategy, a node-level
scheduler transfers CPU shares directly to another nad¢-$¢eheduler. The target of

the CPU-share transfer can be determined by analyzing timrietraffic between VMs.
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Figure 5.2 Two share-exchange strategies in DPS.

Specifically, if a packet from a remote peer VMN];) unblocks the execution a locally-
hosted VM ¥M,), the execution oM, is said to depend oN'M;, called anupstream
virtual machineof VM,. For example, a process in a VM may wait for a result from a
process in another VM to continue its execution.

If excess CPU-shares are available for a VM, the node-lestleduler solely deter-
mines the amount of share to be transferred and initiategdhsfer to its upstream VMs
that do not have excess shares. Another node-level schdedeiver) can either accept
or reject the transfer. The receiver usually accepts any-6fide transfer, unless its CPU
has been fully booked. When this happens, the receiver nezegjthat the host machine is

a bottleneck and notifies the CRM to seek for migration.

Centralized Strategy Another approach is to create a centralized CPU-share loairek f
parallel program, called bank-assisted share-exchandeode-level CPU schedulers de-
posit excess resources into an account that representsaatatl CPU shares of a parallel
program. If a VM fully utilized its CPU share and the host miaehis not fully booked,

the node-level scheduler requests more CPU shares fronathie therwise, if the host
machine is fully booked, it notifies the CRM and seeks migratiA banker process, which

is supplied with a parallel program, is responsible for s&thuting banked shares to all
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VMs of the parallel program.

Comparison The fully-distributed share-exchange strategy is more@isbthan the cen-
tralized counterpart. A node-level CPU scheduler thatsfal participate in share-
exchanges only renders a limited amount of CPU shares uablato other VMs of the
same parallel program. On the other hand, the fully-digtet strategy only transfers
shares between peer VMs, so it will take more time to progagatess shares to where
they are needed while the bank-assisted strategy can alelaysshares by one hop. Also,
if the imposed workload fluctuates among distant peer VMsgfims of their dependency),
the bank-assisted strategy is more likely to achieve thbajloptimum of share distribu-
tion, where the fully-distributed strategy may only finddoptima. We have evaluated

these two strategies under different parallel programltgpes in Section 5.5.

Effects on other VMs When there are multiple VMs running on one physical host, due
to our choice of a work-conserving CPU scheduler, unalet&@PU time slots are also
distributed proportionally to runnable VMs (for free). Whene VM gains CPU shares,
not only the guaranteed CPU time is increased for the VM, thiell also get more CPU
time from the unallocated CPU time slot pool (in terms of tbetipn of unallocated slots).
Note that the minimum CPU time for other VMs on the same hasséill guaranteed by
the scheduler according to the CPU shares these VMs haveet¢oyhese VMs will lose
free CPU time from the unallocated time slot pool. The thigug of these VMs may be
reduced but the minimum CPU time agreement is not violatéthel reduction of CPU
time makes other VMs the bottleneck of the correspondingtelythey can also obtain

shares from their peer VMs or bank accounts.
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Cluster Resource Manager

The role of CRM is to manage the parallel programs that anently executing in the clus-
ter. Each host machine periodically reports its actualussoutilization to the resource
manager. Based on the complete picture of current resosageythe CRM may initiate
VM migration to redistribute workload among host machin&sluster scheduler, which
manages the submission of parallel programs and seleasaons to execute from a wait
gueue, may also decide to squeeze more programs into thterdasmprove utilization.
The design of a cluster scheduler, however, is not the fottleschapter.

A workload redistribution can be triggered by the identifica of bottleneck host ma-
chines. A bottleneck host can be identified by a node-leveddaler that rejects incoming
CPU shares due to its insufficient capacity. CRM can alscaded fully-utilized host ma-
chine to be a bottleneck host. Once a bottleneck host hasitestified, the CRM can
migrate the hosted VMs on the host to a less utilized node oo mowerful host. As
migration either needs to suspend a VM for a short while ouiissome CPU overhead
(see the evaluation results in Section 5.5.3), we proposmples heuristic to determine
which VM to migrate to which destination.

To select a VM to be removed from the bottleneck host, one banse either a smaller
VM (that takes up less memory and disk space) or a lessediNaV (that uses fewer CPU
cycles). If using normal (suspend-and-resume) migraasmaller VM is easier to move.
However, the suspended VM may also block the execution qfeées VMs and prolong
the program execution. On the other hand, live-migraticgpkea VM running and only
suspends it while moving the remaining dirty memory pag8s [3ince a less-utilized VM
usually modifies its memory pages less frequently and igessfit into idle resources, we
opt to migrate the least-utilized VM.

We considered two strategies to choose a migration destmafhe first one is to
migrate the least-utilized VM to the least-utilized hostamiae; the second is to find the

best-fit host machine such that the predicted CPU utilimasalosest to 1. We choose to
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Figure 5.3 Parallel programs are packed together while DPS ensuresroesallocation. Pre-
viously wasted resources (dashed boxes) are now utilizddaamew program “D” is placed for
execution.

migrate to the least-utilized host so it can obtain more CRdtes if needed.

To further improve cluster utilization, the cluster schiedean allocate more programs
to the cluster. For this, the CRM may repack current runniaglbel programs into fewer
host machines. An example is provided in Figure 5.3 to detnatesthe process. It is sim-
ilar to the traditional bin-packing problem, which is NPrthia A better heuristics, which
takes migration cost and past utilization history into ¢desation, is needed in order to

improve host utilization and avoid frequent migrations.

5.3 Share-Exchange Models

We now formalize the cluster and program models we will use #en introduce the

fully-distributed and bank-assisted share-exchange taote

5.3.1 Cluster Model

We consider a VM hosting cluster & host machines that are connected to each other

via a high-speed low-latency switched network. A storadeastructure is attached to the

3For simplicity, the subscript for each program and the tintkek are omitted in the discussion. Subscripts
i andj indicate a specific VM and a specific host machine, respédygtive
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cluster and can be accessed from anywhere. A server nodsoistahched to the cluster
and is powerful enough to perform services such as CRM ordrgmiocesses. Here, we
assume that there are sufficient network and storage batithyahd the execution time of
a program is not affected by its placement.

The computing capacit@;(j = 1...M) of each node is defined as the number of CPUs
installed. The virtualization overhead can be incorpatdig slightly reducingC;. For
example, to compensate a 5% CPU overhead in virtualizatioa dual-CPU SMP node,
one can advertise a computing capacity of 1.9 CPU instead ©h& computing capacity
is divided into CPU shares. If a VM can utilize multiple CPltise size of a CPU share can
range between 0 ar@. Otherwise, the share size lies between O 1,Cj). Without
loss of generality, we assume the cluster is homogeneousasovwthen a CPU share is
transferred between any two hosts, #xehange ratef CPU share is always 1. For hetero-
geneous clusters, an exchange rate needs to be estalaiphiedi to account for relative

computing power.

5.3.2 Program Model

When a user submits a program for execution, he must supelgrdgram specification
andresource specificationAmong other things, program specification includes the num
ber of nodedN, which can be smaller than, equal to, or larger tManVirtual machines,
VM;...VMy, are created when a program starts its execution.

Resource specification includes the maximum instantan€®i$ usageN and the
selection of a share-exchange stratedyty-distributedor bank-assisted Initially, for
VM;(i=1...N), a CPU share; =W/N is assigned. Other resource specifications such as
maximum execution time and utility specification such agitiea and reward are not used
in the model for share-exchange.

EachVM; may be hosted in different host machines. Distributed redel sched-

ulers report the incremental CPU timteused byVM; every T seconds and conduct a
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fully-distributed or bank-assisted share-exchange. €penting process need not be syn-
chronized among all VMs. The CPU utilizationby VM; during the last sampling period
is then defined a/T. The proportional-share node-level scheduler is confijtmeyuar-
anteey; is at leasw; if T is large enough andM; can fully utilize its CPU time. Note that
the scheduler is also work-conserving and, therefgrepay be much larger tham;. An
excess sharg for VM, is defined ag = maxw; — u;,0). For example, when two CPU-
intensive VMs having 0.5 and 0.25 CPU share, the actual CRigatiton will be 0.67 and
0.33, respectively, and there is no excess share. On thelwhd, if a VM has 0.5 CPU
share and results in 0.1 CPU utilization in the last sampdiegod, there is 0.4 excess CPU

share.

5.3.3 Fully-Distributed Share-Exchange

In the fully-distributed share-exchange, we redistrilekeess shares to the upstream VM,
which is inferred from network packets (as discussed iniGe&.4). A list is maintained
to contain the current upstream VMs for eachl;, and old entries expire after a certain
period of time. We assume the upstream VMs list contRigVI.

For eachVM;, the node-level scheduler on its host machine redistribiiteexcess
sharegg to all P upstream VMs at the end of each sampling peridid; can also withhold
part of the excess shares. The purpose of withholding isateelsome room for workload
fluctuation since a VM does not proactively ask for sharemfits peer VMs. Given a
withholding factoiwh; (0 < wh; < 1), the number of sharesthat node-level scheduler will
send to each upstream VM is calculated as:

g-(1-wh)

S = — 5B (5.1)

Note that when the withholding facterh is set to ¥ (P+ 1), VM, withholds the same

amount of share as it will transfer to each upstream VM. Adach successful share trans-
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fer, 5 is deducted fronw;. In the above example, if the VM having 0.4 excess CPU share
has 3 upstream VMs and withholdg(P+ 1) of excess shares, it will initiate a share trans-
fer of 0.1 share to the 3 VMs and, if all transfers are succésstain 0.2 CPU share at the

end of re-distribution.

5.3.4 Bank-Assisted Share-Exchange

In the bank-assisted share-exchange, all excess shaitg > 0, are transferred to the
bank. These shares are deducted fignimmediately. Otherwise, if the capacity of the
host machine is not fully allocated, the node-level schexdudbtifies the bank of the CPU
share required to match a VM’s allocation to its utilizatiobhis amount is also limited
by the remaining share of the host machineWe call this amounthe share shortage,f
which can be written a$ = min(u —w;, rj). For example, a VM having 0.5 CPU share
but utilizing 0.67 CPU has 0.17 CPU-share shortage.

The banker process redistributes all the excess sharesitigpby node-schedulers ev-
ery B secondsB can also be smaller than, equal to, or larger thakloweverB is usually
an integer multiple off. Assuming the bank has a balancefb&hares at the end of a
redistribution period an& = S fi share shortage, the shasethat the banker process will

send to each VM are calculated as:

s =max(fi, - =) (5.2)

For example, if the banker process has a total of 0.3 excess simd a total share
shortage of 0.6, the VM that needs 0.17 share will be giveB®@PU share.

If the total amount of excess shares are greater than tHeatotaunt of share shortage,
remaining excess shares are proportionally distributedltgdMs. VMs do not withhold

CPU shares in this scheme because they can explicitly asiatiieer for more shares.
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Figure 5.4 The architecture of a VM hosting cluster.

5.4 Implementation

We implemented the VM hosting cluster and DPS scheduler an X¢e first discuss the
construction of a Xen VM cluster and auxiliary services, eamthe VM repository and
the VM directory. Then, we describe the implementation ef @S daemon, which runs
on each host machine to perform many DPS functions, and ttalslef the upstream
inference system. The VM directory and the banker procegdeiment the cluster re-
source manager (CRM), and the Xen scheduler and the DPS daawmaer the function
of node-level scheduler discussed in Section 5.2. An ogendf the VM hosting cluster

implementation is illustrated in Figure 5.4.

5.4.1 The Xen Cluster

There are several virtual machine monitors (VMM) that camsed to build a VM hosting
cluster on x86 hardware, which is most commonly used in cam@uclusters. Among
them, we choose the Xen VMM because of its low CPU overheadiaganigration ca-
pability. Live-migration can make the downtime very shoesé than 1 second for most
workloads [23]), and we evaluate its impact on parallel progexecution in Section 5.5.

We use Xen 2 instead of Xen 3 as the newer version was not stdigle we started this
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project.

Platform virtualization provides a flexible and secure rodtfor allocating resources
to parallel programs. Although virtualization inevitabigcurs overhead, the para-
virtualization approach adopted by Xen keeps the overheadramum [11]. Instead of
inspecting binary code and rewriting privileged instrang before program execution, Xen
requires the guest OS kernel to use Xen hypercalls. Comsgddre emerging hardware
virtualization, we expect the overhead to be reduced euveheuin future.

To schedule CPU usage for multiple VMs, Xen provides thrdéemint schedulers:
borrowed virtual time (BVT), Atropos, and round-robin. BM3 a proportional-share
scheduling algorithm, which also yields low response tifioesnteractive processes [31].
Atropos is a soft real-time scheduler which can set asidesaifspd amount of CPU time
and manage latency for each VM [53]. It can also distribueedlack CPU time between
real-time and best-effort VMs. Round-robin changes turexecute all runnable VMs.
Among these schedulers, both BVT and Atropos can providel&§lfare guarantee. Since
BVT is simpler than Atropos, we use BVT to schedule VMs.

Xen provides three different interfaces to interact withthe lowest level is a C library
xc, which issues hypercalls to communicate with the Xen VMMe ®en daemomnend,
which is built on the library, exports information and cesat control interface via HTTP.
The command line tootmaccessegend and provides similar functionalities.

We use the simplermcommand to create and migrate VMs. On the other hand, we use
the low-overheadc library to periodically extract actual CPU-usage inforrmatirom the
hypervisor and set scheduling parameters in the DPS daeasatescribed below. How-
ever, some information, such as the mapping between VM npragdl Xen domain 1D
(which is a unique identifier within the Xen VMM) is only avablle inxend. As we need
to look up the domain ID for each CPU share transfer, we adbesdata files created by
xend directly to avoid the protocol overhead.

Xen VMs are connected to the network via virtual Ethernetrifiatces. A virtual inter-
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face can be bridged to the Ethernet that the driver domaioriaected to, or routed via the
IP layer in the driver domain. For easy VMs migration, we adbp bridging approach.
After a VM migration, the Linux virtual bridge in the destiian host machine can learn
the change. Since the VM is still connected to the same Edheatth VMs can send packets

to it without any change in configuration.

5.4.2 VM Cluster Infrastructure

Other than running the Xen VMM in each host machine, we alsalrmefew infrastructure
services to operate a VM hosting cluster. We created a VMsigpy to enable migration,
a VM directory to support resource management, and a bankeegs while using the

bank-assisted mode.

VM Repository

One limitation of VM migration is that the disk image must becessible via the net-
work. We create a RAID-0 disk array to store all VM disk imagesl make them available
network-wide via NFS. We also create a standard VM disk infagexecuting PVM ap-

plications. The size of the disk image is 1GB and it does nataia any configuration

information, so cloning a VM only needs to copy a disk imagplace. Once a VM boots
up, it configures itself via DHCP and NIS. After all VMs of a pHel program are ready,
user programs are loaded from the network and start thetugs. In larger installations,

a storage-area network and a directory service can be usksdh

VM Directory

When transferring shares, the node-level schedulers antahker processes only know
the address of the share-receiving VM, but not the addretizedfiost machine that hosts

the VM. To deal with this issue, we create a VM directory toyide a mapping between
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the IP address of a VM, its host machine’s name/IP addredshanXen domain ID of the
VM.
Xen domain ID is the unique ID of a VM. However, its uniquenissgalid only within
a host machine and it cannot be specified while creating oratiigy VMs. To deal with
this deficiency, we use the data files createckbyd to map a domain ID to VM’s MAC
address and then uses titeher s map in NIS/YP to find the hosthame and IP of the VM
(the DHCP server is configured to assign IP addresses angdadiheet her s map.) The
mapping is stored in the VM directory once a VM is created dtelr a VM migration.
Besides the mapping, the DPS daemon periodically updatestantachine’s overall
utilization to the VM directory. The VM directory also ses/as the bank to store excess
CPU shares of each parallel program. The banker processhwhdiscussed below, is

also part of the VM directory.

The Banker Process

We implemented the banker process as a thread of the VM diyesérvice to reduce the
communication overhead. A pluggable interface is definedi$er-supplied banker pro-
cesses (routines). Banker processes wake up periodioakylistribute excess CPU shares
to their VMs. Each banker process may have a different wakigaguency which is con-
figurable by the user. Since banker processes require \tdeyrsource, any reasonable

hardware can host the VM directory and many banker procédsesds) easily.

5.4.3 The DPS Daemon

At the core of the DPS scheduling is the DPS daemon runniniginvihe host OS (do-
main 0) on every host machine. Its function includes crgatiMs, interacting with the
node-level scheduler within Xen, reporting utilizationttee VM directory, receiving the

upstream inference result from hosted VMs, and conducteestérechanges in the Xen
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cluster. We implemented it in C and use tte library to control the scheduler.

In the fully-distributed mode, the DPS daemon periodicadirieves the information
on each VM's CPU utilization from Xen. According to the curt€PU-share allocation, it
calculates the excess share each VM has by using Eq. (5.2tio8 5.3. The excess CPU
shares are then evenly distributed to the correspondings\idstream. The DPS daemon
looks up the host machines of each upstream in the VM ding@od connects to the re-
mote DPS daemons directly. It may also receive CPU shares fiemnote DPS daemons
at any time. After each successful share-exchange, the BB®ah changes scheduling
parameters to reflect the changes in resource allocation.

In the bank-assisted mode, the DPS daemon sends and resieares to and from the

banker process, and the scheduler parameters are therednaecprdingly.

5.4.4 Upstream Inference

In order to identify the upstream of a hosted VM, we need toatate the packets received
by a VM and how it affects the processes running in a VM.

Every packet received by a hosted VM is actually redirectadhe driver domain. Af-
ter the device driver in the driver domain received a packstided for a VM, the host OS
either bridges or routes the packet to the back-end of trevieg VM'’s virtual interface,
which then uses Xen hypercalls to re-map the received packesend an event (a virtual
IRQ) to the receiving VM via a Xen event channel. The event make up the guest OS if
it was blocked (idle), and the guest kernel receives thegtdotm the front-end of the vir-
tual interface. Standard protocol processing is then egglind wake up parallel processes,
if necessary.

Given the path of packet delivery, we can intercept evenkgiam and out of VMs
at the driver domain, Xen VMM, or each guest OS. Inferringtrgeam VMs in the driver
domain or Xen VMM is a more generic approach as it is VM-ndutimwever, either in-

side Xen VMM or the driver domain (by issuing hypercalls), @@ only learn the virtual
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processor’s state (running or blocked) but not the parphatess’ state inside a VM.

The virtual processor’s state is different from the patgli®cess’ state as not every
incoming packet may wake up the blocked parallel procedsesexample, data packets
may not wake up the receiver process that is not waiting feirput. On the other hand,
a data-less TCP ACK packet may indicate a successful dataniasion or a connection
establishment, and unblocks a process. Unless the pratowall understood, it is very
difficult, if not impossible, to infer dependency outside &IV

We instrument the Linux kernel in unprivileged domains teirthe upstream relation-
ship. After a packet is delivered to user space, the kerrkelake up all processes waiting
for it. The sending host’s ID is passed with wake-up fundioif the receiver process
isn’t running nor already in the run-queue, we declare tinelisg host is an upstream VM,
and report its IP address and port number in the kernel log.sé&-space program, the
upstream inference agent (UIA), is then reading from thepegodically and proxies such
information back to the DPS daemon running in the host OS &ilo®).

Some filtering has to be applied on the upstream VM in UIA. Baneple, locally-
generated packets via a loop-back interface are ignored¢keBabetween CRM, DPS
daemon and UIA are also not part of a parallel program. Messég and from infras-
tructure servicese(g, DHCP, NIS, NFS, NTPetc) also need to be excluded. Note that
our scheme can also detect I/O dependency. When the exchatedeetween CPU shares
and /0O throughput is clearly defined, we can also trade exC&3J shares to improve 1/0
performance.

We have also considered identification of upstream VMs byrunsenting function
calls in user-space. However, this methods suffers froniodgeof scheduler’s contekie-
fore the reception of a packet. For example,ecv() call may cause a context switch to
other threads of the same process or other processes imtlee\8d. By the time the call
returns, the process is already in execution. If the callrnst immediately, one may use

some performance counteesd, number of context switches) to infer the CPU state of the
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past. However, the ability of predicting past CPU state disfies with time and system
complexity. Therefore, we conclude that instrumentinghi@ guest kernel is simple and

accurate in identifying upstream VMs.

5.5 Experimental Evaluation

In this section, we first introduce the testbed setup and lbaadk programs. Micro-
benchmarks are then used to evaluate the overhead asdatititéhe VM hosting cluster.
Finally, we evaluate the effectiveness of the DPS schegditina few representative sce-

narios.

5.5.1 Testbed Setup

We constructed a testbed to evaluate the performance oftipeged VM hosting cluster
and the DPS scheduler. The VM hosting cluster consists ofldmension 4550 PCs as
host machines, each equipped with a Pentium-4 2.66GHz CBU@B of main memory.
All host machines are interconnected via a Fast Ethernétiswxen 2.0.7 is installed and
takes up around 18MB of memory. About 110MB of memory is desigd to domain O,
where thexend and the DPS daemon are running. With this setup, up to 896 MBeoh-
ory can be allocated to unprivileged domains (VMs). Anobell PC (P-4 2.26GHz, 1GB
memory) is dedicated to hosting a VM repository and the VMecliory service. The VM
repository is a software RAID-0 disk array exporting via NBS The disk array is dedi-
cated to this project and the utilization of this machine astivork was very low during
the evaluation.

We primarily use a PVM parallel program callpat t er ns in the evaluation. The
programpat t er ns was developed for the Virtuoso project [42]. It models afiatk-
synchronous parallel (BSP) style applications; many pelreenchmark programs, such

as the NAS parallel benchmark (NPB), are also of this typee plogrampat t er ns
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can be configured to run with any number of nodes and produeeahous topologies
commonly used by parallel programs, such as n-D mesh, n-&dtareduction tree, n-D
hypercube, all-to-alletc The length of program execution is controlled by the nundfer
iterations. In an iteration, each node receives a messagedne of its neighbors, repeats
a simple computation for a number of elements, and sends sages$o one of its topo-
logical neighbors. Both the amount of computation and thesage size are configurable.
The amount of computation is specified in the number of miykguld, memory read, and
memory write operations for each element, while the messamgeis specified in bytes.
During the evaluation, we fixed the amount of computationdd & multiply-add opera-
tions, and read/write 1MB of memory. The message size i9sEH{B. These numbers are
chosen such that the expensive I/O virtualization overhedith we show below, is less
dominant.

The originalpat t er ns program can only generate a uniform amount of computa-
tion workload on nodes. However, this may not represent ¢laéworld workload. To
model unbalanced workloads, we modified & t er ns source code such that for node
i(i=1...N), the amount of computation is scaled tt df the specified amount (2an
the evaluation). The message size is kept unchanged. Whamgpat t er ns, for each
node we created a VM that uses 128MB memory and the standdvtldik image as its
execution environment.

We also created another serial prograat cpu to simulate a single-node CPU-
intensive application. It runs at the lowest priority to evperformance degradation of
other processes in the same scheduling domain and meredyroas all CPU time avail-
able to it. This behavior is very similar to wide-area distited computing projects such as
SETI@home [3] or Folding@home [67]. While tipat t er ns program has some CPU
share allocated for each VM, guaranteeing a minimum numb&PaJ cycles it will re-
ceived, thepat t er ns program and theat cpu program also compete for unallocated

CPU cycles. Without competitiorpat t er ns can simply take whatever CPU cycles it
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Figure 5.5 Xen virtualization overhead.

needs.

5.5.2 VM Hosting Overhead

We first examined the overhead associated with the execatiparallel programs in vir-
tualized environments. Theat t er ns program was executed in three different modes:
native Domain-Q and Domain-U. In native mode, the program was executed in Linux
without any virtualization; this mode served as the basadirour experiment. In Domain-0
and Domain-U modes, the program was executed in domain Orandivileged domain,
respectively. In all cases, no other program was competingry resource. We config-
uredpat t er ns to create a 4-node workload with the all-to-all topologyd aach VM
was hosted in a different host machine. We fixed the lengthagniam execution to a total
of 10,000 elements on each node but changed the number ofiemt each iteration to
generate different amounts of network 1/0. The programagse times in different modes
are compared and plotted in Figure 5.5.

At first, the results didn’'t match our expectation as ex@dibelow. Although running
in domain U is slightly slower than running in domain 0, thefpemance in native mode
was actuallyworsethan running in either domain 0 or domain U. Only when netwétk

is frequent (few elements per iteration), the program respaimes were longer in domain
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U, where the 1/O virtualization overhead was dominant.

After many unsuccessful attempts of identifying the ddéfece in configuration that
leads to this counter-intuitive results, we suspected #raéd timer frequency is the cul-
prit, even when there was no other task to schedule. We thegréal the frequency from
1000Hz (default in Linux 2.6) to 100Hz (default in Linux 2.AdaXen Linux in both do-
main 0 and domain U) and the program response time was dedreg2% (as plotted in
Figure 5.5.)

With this fix, we observed that the CPU virtualization ovextiés very small; it is about
0.4% and 0.6% for domain-0 and domain-U mode, respectielgquent network com-
munication and a longer network packet processing patbsde overall overhead to 14%
in domain-U mode [55]. We expect new hardware design willdotie 1/O virtualization
overhead.

Moreover, it took only 18 seconds to boot up the standard Vidge) where only 2.5
seconds CPU time was used. We concluded that the virtualizaverhead is small, and a
proper kernel configuration can make a performance imprewmtin VM hosting cluster.
By providing an optimized kernel for specific types of pabfirograms, resources can be

utilized more effectively.

5.5.3 Live-Migration

It has already been shown in [23] that live-migration canpkébee downtime of moving a
VM within a cluster in less than 1 second for most workloadg. A0 experimented with
the live-migration of Xen VMs to assess its impact on patgdtegrams, especially on a
fully-utilized host. In this experiment, we configurpdt t er ns to run on 3 VMs hosted
in 3 different host machines. The fourth machine was useti@snigration destination.
On the machine that hosts node 1pait t er ns in an unprivileged domain, we also ran a
copy ofeat cpu in domain 0. This configuration makes the host machine thiéelnetck,

and we can control the scheduler to allocate various amafii@®U shares between these
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Figure 5.6 Xen VM migration overhead.

two programs.

We compared the program response times for three cases: gnatimn, one normal
(stop-and-copy) migration, and one live-migration during program execution (10 itera-
tions of 100 elements). In order to make the result compaitaithat of “no migration,” we
also ran a copy oéat cpu within the domain 0 of the migration destination. In additio
Xen does not migrate the scheduler parameters betweenvigger, and hence, we set the
parameters as soon as the migration is completed. The repldtted in Figure 5.6.

The program response time is inversely proportional to the Ghare it has been given
(node 1 is the bottleneck node). From the figure, it can bdyessen that normal mi-
gration takes 10—12 seconds to migrate a 128MB VM. The mardime was limited by
the network bandwidth (Fast Ethernet in our case) and ptigoad to the configured VM
memory size. The effect on the program response time alsendispn how other running
VMs dealing with an unreachable node. On the other hand;nfiiggation incurs essen-
tially no overhead to the program response time. The onlgmian is that when the host
machine was dedicated pat t er ns (noeat cpu was running in domain 0). Although
live-migration did not incur any overhead to the progranpoese time, it actually took
longer, 24 seconds in this case, to migrate the VM. The tréins¢ also depends on how

frequently the memory pages become dirty. Since paraltginams tend to modify many
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memory pages in a short period of time, this supports ougdedecision of migrating the

least-utilized VM from a bottleneck host machine.

5.5.4 DPS Scheduling

The strength of the DPS scheduling can best be shown in arsesoampeting environ-
ment with unbalanced workloads. The testbed is set up in aughy that 50% of CPU
time on each node has already been booked, and only the ieg&®% of CPU time
is available for competition. In the absence of competjteren a program with a small
share of CPU time can use a full CPU under a work-conservihgdider. For the same
reason, competing with a light background workload doesmaite sense either. We de-
ployedeat cpu in domain 0 of each host machine to create this immovabledrvacdkd
workload.

On top of this background workload, we execuped t er ns to create a 4-node work-
load with the linear topology (1-D mesh). The linear topglag chosen so that we may
also compare the fully-distributed and bank-assistedeshachange strategies. The share-
exchange was configured to be performed once every 5 secondsig workload (10
iterations of 100 elements). Conducting the share exch&ogeften would make the
two strategies less distinguishable. On the other hanteqonent share-exchanges would
make the potential benefits of DPS less visible. For the fdisgributed strategy, we set the
withholding factorwh; to 1/(P+ 1), i.e., the withheld amount is the same as the amount to
transfer to each upstream VM.

The pat t er ns were submitted with a range of resource specifications, fddnto
0.5 CPU per node, to see how DPS handles different scensl®sompared the program
response times with and without DPS, and plotted the resuRgyure 5.7.

Without DPS, the CPU shares were fixed and evenly distriboteall host machines.
The program response time gets prolonged when fewer CPl@share given. Note that

a 0.1 CPU share only means that at least 10% CPU time is alaftatthis specific VM,
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Figure 5.7 DPS reduced the program response time by up to 38%.

and therefore, the response time was not 5 times that of 8rRgamith 0.5 CPU share.

With an initial CPU share of less than 0.5 per node, there wasesunallocated CPU
time that DPS can exploit. After a few share-exchanges, QRldes were redistributed to
match the workload. A CPU-share trace is plotted in Figuge 5.

From Figure 5.7, we can easily see that DPS significantlyaeslthe program response
time. The user can submit a program with less CPU time budggt & total of 1.2 CPUS)
while having a response time very close to a more costly ssfion €.g, a total of 2.0
CPUs). The performance of DPS also improves with uncomchrgsources. When only
60% of CPU time is allocated, DPS with the bank-assistedesbachange strategy cuts
down the response time by nearly 38%.

The performance of DPS also depends on the underlying €xateange strategy. The
bank-assisted share-exchange strategy can redistriitextess shares from one end of
the linear topology to the other within one redistributigetle, while the fully-distributed
strategy needs 3 cycles. This effect is pronounced, péatiguvhen only 0.1 CPU-share
was allocated to each node initially. In this case, the mestahding node 1 has enough
room to accommodate excess shares from the least utilized t@e farthest), node 4.
Therefore, the benefit of the banker process can be seen. 8a&lalso repeat the same

configuration with the all-to-all topology. Since all nod=s be reached from each other in
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Figure 5.8 CPU share redistribution. Each node was given 0.2 CPU shiialy and DPS with
fully-distributed share-exchange strategy was able testidlolite CPU shares to match workload
distribution in 3 cycles.

one hop, the benefit of the banker process disappeared. Wealstored the CPU usage
of the DPS daemon and found the overhead of DPS to be negligibl

In addition, we note that the benefit of DPS is obtained froenrdidistribution of CPU
shares. The response timepatt t er ns is reduced because the bottle-neck VM gets more
CPU cycles from the unallocated CPU time slot pool. The pegofeat cpu is slowed
during the execution gpat t er ns because it gets less “free” CPU time from the same
pool. Howevergat cpu still gets at least 0.5 CPU share so the scheduler does ratevio
any agreed arrangements. The net effect is that the timetblat used byat t er ns are

more closely-packed arght cpu gets more time slots ongeat t er ns is finished.

5.5.5 Workload Redistribution

DPS redistributes CPU shares at run-time to match reso@erulds, but each host ma-
chine has a limited capacity and may not be able to accepy ehare transfer. When this
happens, CRM (VM directory in our implementation) can sheche workload via VM
migration.

We set up two copies of theat t er ns program, each copy was configured to create

a 4-node workload. We artificially aligned the program cegsech that two VMs of the
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same node number are initially hosted in the same machineX@&uted the program for
a longer period of time (100 iterations of 100 elements) s&/GRay have enough time to
do migrations.

Without VM migration, the host that accommodates two copE¥M; quickly be-
comes the bottleneck. Both copiespmt t er ns took 430 seconds to complete. With
VM migration, one copy oVM; was migrated to the least utilized host machine (that
hosted two copies 0fM,) soon after the start of the experiment, and the two copies of
patt er ns were finished in 219 and 316 seconds, respectively. Whilevtihr&load was
not perfectly balanced at the end, this performance gairodstrates the effectiveness of

workload redistribution.

5.5.6 Large-Scale Simulation Results

In order to demonstrate the capability of DPS on a largertetusve built a simulator to
simulate running BSP-style applications on a cluster wipihaportional share CPU sched-
uler. It uses the credit CPU scheduler from Xen 3 [1]. The iapa the simulator include
the number of physical hosts and a number of BSP programs.spéafication of each
simulated BSP program includes the number of of VMs thateétdsethe initial placement,
and the actual CPU demand for each VM. The actual resourcamtkis only known to the
node-level CPU scheduler for simulation purpose but cdeddaom DPS. Dependencies
between VMs can also be given as inputs. While the simulaies chot simulate network
latency, it enables upstream VM inference in DPS. All proggastart at the same time and
the simulator reports the response time of each program.

We first use the simulator to show the benefits of time-mukplg BSP programs and
how much DPS reduces program response times. We simulate@deccluster with a vari-
able number of 16-VM programs. Each program has the samewsteu(using 16 nodes)
but different actual CPU demand. The actual CPU demand bf\éltis a random number

uniformly distributed between 10ms to 100ms per BSP itematlhe actual CPU demand
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Figure 5.9 DPS reduces program response times in a cluster of incoeasimber of parallel
programs.

of each VM is also different in each instance of the prograractEVM of a program is
also assigned 0.1 CPU share initially and is placed on ardiftephysical host, so each
16-VM program use all 16 nodes in the cluster. In other woifdse run N instances of
the 16-VM program, each physical host ¥Ms andN /10 of CPU time been assigned.
Statistically, the workload of each physical host is ideaiti WhenN = 1, the cluster is
dedicated to only one instance of the program and we norathliegsponse times to this
number.

From Figure 5.9, we can see that the response time incretaedaver rate with the
number of instances of the 16-VM program. It is because ifagis (lower CPU demand
VMSs) need to wait for slower VMs (higher CPU demand VMs) andrea fully utilize its
resources. In this experiment, the CPU time utilizationtlf@ program is 56%. Therefore,
we can overbook the cluster with 17 instances of the progtaming simultaneously and
the response time is roughly 10 times of running on a dedicaltester, which is what the
cluster user expecting when submitting the program withGQPU share for each VM. We
use the bank-assisted share exchange in this simulation.

When there are 8 or fewer VMs on each physical host, the regptime is the same
with or without DPS. It is because the CPU is not fully allezh{only 0.1-0.8 CPU is

booked) and a work-conserving scheduler is being used, \élsicactually gets more than
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Figure 5.10 The speed-up of program response time by utilizing DPS.

its share and the need of DPS is nullified. When there are nhare & instances of the
program, we can see that DPS is able to reduce program respores by up to 15%, or
speed up by up to 17%. Maximum benefits are achieved whendhed)—11 instances of
the programj.e., 0-10% overbooking or about 60—70% actual CPU utilizatidfe note
that if each instance is run one after another on a dedicausteg, for the same amount of
time only 6—7 instances can be completed instead of 10—1dnoss.

The benefit of DPS reduces as the number of instances costiouecrease. It is be-
cause there is less and less idle time in the cluster aftensixte overbooking. However,
one cannot simply rely on overbooking to improve utilizatias the capability of a pro-
gram using CPU time can also change from time to time. If agaogsuddenly can utilize
every CPU cycle it is given, it cannot recoup enough CPU time éntitled to. Penalties
might be resulted if resource provider cannot meet the aggae The appropriate amount
of overbooking depends on the workload and allocation ofh&&d. Finding the optimal
extent of overbooking is out of the scope of this work.

In another experiment, we show how the levels of multiplgxfiecting DPS. The same
program is used but each CPU is always fully allocated noenatiw many instances of
the program are running. In other words, wherninstances are running, each VM is en-

titted 1/N CPU share initially. After excess shares are transferréds \én overbooked
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physical hosts are migrated to underloaded physical hosiglance workload distribution.
From Figure 5.10, we can see that the benefit of DPS reachesgiemaora when there
are 3 instances of the program running with 0.33 CPU shatialigifor each VM. DPS is
able to speed up the execution by 34%. Similarly, as the nuofhiestances increases, the
benefit of DPS is diluted because of simple multiplexing. [pR8orms better when there
are a fewer number of programs with larger chunks of CPU atlons instead of many

programs with little CPU allocations.

5.6 Summary

Enhancing utilization as high as possible has always beealdfgr computing cluster op-
erators. While some parallel programs may place balancekleaals on computing nodes,
most of workloads do not, leaving the allocated resourckes(ltence wasted) for an ex-
tended period of time. An important source of this mismatetwieen resource allocation
and consumption is found to be the over-simplified prograbmsssion model, where pro-
gram and resource specifications are botoygther The proposed DPS scheduler makes
it possible to decouple these two aspects, and is experathesihhown to yield considerable
benefits.

The use of VM enables each hosted parallel program to be ®daou a dedicated
environment while the operator can easily move resouraasar In addition to creating
VM disk images for a specific execution environment, keroalfiguration can also be cus-
tomized to best fit the hosted application. With VM migratitre flexibility of allocating
and utilizing resources in a VM hosting cluster greatly imms the limits of a traditional
time-sharing cluster. With emerging hardware virtualatthis is also expected to benefit
even I/O-intensive programs.

Another benefit of DPS scheduling is the provision of expliesource guarantees,

which is the fundamental requirement of scheduling reaktapplications in computing
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clusters. Once a program is submitted for execution, it exrguoteed to receive the spec-
ified amount of resource, even with migration during its exien. For a utility cluster,

such an underlying characteristic is essential; otherwiseservice-level agreement can
be realized. The DPS scheduler is also distributed andldeal&Ve believe DPS can be

extended to other resources as well.
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Chapter 6

Accurate Packet Timestamping for
Game Servers

6.1 Introduction

Virtualization has been used extensively for server cadatibn in order to improve hard-
ware utilization and reduce operating cost. While someuess in a computer system
are space-partitioned and allocated to each virtual macfM), other resources are
time-shared between VMs, incurring an additional schedutielay that can reduce the
responsiveness of services running in VMs. Although théomged response time gener-
ally does not affect throughput-oriented services such &ls servers, online gaming, an
emerging Internet application, is very sensitive to sudayde

Different genres of online games have different requiredsien server responsiveness
and first-person shooter (FPS) is the type of games that i$ seositive to the latency
between a game server and its clients. In FPS games, a déadiregcmechanism is typ-
ically employed to hide the latency by predicting the movethad all entities in a game.
Previous studies have shown that players are able to ndtiggishness when the network
latency is above 75ms and the hit accuracy of precision gigpdecreases steadily when
the latency is 100ms or more [12]. Similarly, gamers are affacted by long input lags on
certain LCD monitors, which can be as high as 70ms in somariest. In other words,

by reducing the latency, online gamers can have a bettemggexiperience.

1Dell 2408WFP Review. http://www.tftcentral.co.uk/rewis/del 2408wfp.htm
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There are many game server hosting companies on the Intenmgieting to provide the
lowest cost game servers for hardcore online game playevdauak for short network re-
sponse time, fast hardware, and the ability to customizeregerver installation. With the
aforementioned response time requirement, game serveéndp@ervice providers are on
the horns of a dilemma. They want to reduce their operatistjlmpconsolidating as many
game servers in each physical host as possible withoutwiglthe service quality require-
ment. Virtualization should not only bring the ease of cdigsdion to service providers,
but also provide an adequate interface for the hosted apigic In this work, we look
into game servers hosted in a virtualized environment agdaat the VM abstraction to
improve game server performance.

When user inputs arrive at a game server as incoming packégpjcal game server
takes a timestamp immediately after receiving a packet aed the timestamp as the time
that the user makes the move. The time is then used for dekonieg calculation to de-
termine the state of the entities involved before the ugautirs applied to the game state.
Periodically, the game server sends updates of the ganegatalt clients so all users have
a consistent view of the game world. Obviously, an accuratestamp reflects the user’s
intention better, provides higher fidelity, and results éttér gaming experience.

In a virtualized environment, however, a guest OS genetaly no or very limited
access to the host platform. For example, a guest OS cansazegtual disk device pro-
vided by the host platform, but disk 1/0 scheduling in gueSti® generally ineffective as
the physical disk head location is unavailable to the gue&kt IGkewise, while all VMs
can synchronize to the host clock, the system time maindameach guest OS becomes
non-contiguous as timestamps can only be taken if the VMtisadly running on at least
one CPU.

The coarse-grained virtual time creates a couple of probliemgame servers. First,
the latency increases as it includes the time the host O8edeline packet to a guest OS

and the scheduling delay that a VM experiences. As our exyeri shows, in a loaded
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system the latency can be as high as 40ms in the worst casenddiee inter-arrival time

between user inputs becomes obscure. For example, whilpdakets may arrive at the
physical host 10ms apart, they may arrive at a VM virtuallthetsame time. Although the
arrival order can be preserved, their effect on the gamedngah be very different.

To bridge the gap between the physical host and a VM, we ppoaugment the
virtual network interface used in VMs such that the packevalrtime can be taken in the
host OS and passed to the guest OS if an application requestéei modified the Xen
virtual network device driver in the Linux kernel. Our evalion result shows that the
timestamp reflects the user input time better and is much enarerate than taking times-
tamps in the guest OS because the timestamp is taken in theady stage of network
packet processing.

The contribution of this work includes: (1) restore the dafity of taking an accurate
timestamp of packet arrival in VMs; (2) provide a prototypeXen/Linux along with a
game model for evaluation; and (3) investigate its appbostbeside online game servers.

The rest of the chapter is organized as follows. We first gl®an overview of an
FPS game model and an architecture of game-server hostigation 6.2. The packet
delivery path in a virtualized system is described in Sec6B. Our augmented virtual
network interface design and implementation is detaile@egction 6.4 and 6.5, respec-
tively. Evaluation results are presented in Section 6.61eefve summarize the chapter in

Section 6.7.

6.2 Model

In this section, we first provide a brief history of FPS games the need for hosting game
servers inside VMs. An architecture of a game server hostérgice is then described

which is following by a problem statement.

110



20-50ms (fixed)

Frame

Figure 6.1 The interaction between game players and a server in a tamasfr

6.2.1 Overview of FPS Games

While the history of FPS games can be traced back to 1973;iitsrt form became well-
known afterid SoftwareintroducedDoom the first multiplayer FPS game, in 1993. Doom
allowed two to four players against each other over a loosd-aetwork (LAN) and became
very popular. Many other popular FPS games, includdugke Unreal, andBattlefieldse-
ries, followed the same track where the newer ones allowetd @4 players in a game
session simultaneously.

When a game session is being held over a LAN, one of the pkgerhputer (a PC
or a game console) is usually assigned an additional rolbeagame server. Other play-
ers connect to the game server using TCP/IP, IPX, or otheogots. As this is the most
common game-server setup, many game-server programs @opoid one session at a
time. Geographically-dispersed gamers can also connextdiedicated game server on
the Internet and play remotely. More recently, emergingsivaty multiplayer online FPS
(MMOFPS) games support more than 100 players in a battlefield

The main function of a game server is to provide a consistemw of the game world
to all players. Typically, The game time is partitioned ititoe frames. The length of each
time frame is fixed during the game play and usually range$@@s (i.e., 20-50 frames
per second.) The interaction between game players and ersemepicted in Figure 6.1.
During each time frame, the server receives packets theggept player movements from

clients. Atthe end of each frame, the server sends out uptiagach client to inform them

111



the current game state, essentially a snapshot of the ganee $dating the game world
does not involve any graphics rendering, the server prates$ does not demand much
computation resources. When a game session is hosted oveM aalrelatively powerful
computer is usually chosen to take the additional workload.

Between two updates of the game world, each game client gplalead reckoning
mechanism to bring a continuously evolving game world toy@ts. A dead reckoning
mechanism uses a pre-defined model and the current gamesstelteas an entity’s po-
sition, heading, velocity, acceleration, etc., to prethet entity’s state and its interaction
with user inputs. However, when all users input arrive arwbmeile at the game server,
some locally generated game state may be nullified.

A game server is also highly configurable. For example, itsigwport different game
types (death-match, capture-the-flag, etc.) and scen@mading third-party/customized
ones), tweak update frequency, limit the number of playadsthe selection of weapons,
anti-cheat plug-in, etc. A group of players may developrtpetferred settings and only
play accordingly. Unless two groups of players can all agneea set of settings, two

different servers are needed.

6.2.2 Game Server Hosting

As the number of players in a game session increases, it is amal more difficult to bring
all players together and connect their equipment to a LABlyiRh games over the Internet
becomes an attractive alternative. Game servers may belptblyy the original game pro-
ducer and hosted in the company’s facility. A group of ganay@is can also rent a server
in a data center and install their customized server progkaimen a player wants to join
a game, a list of available game servers is shown on the sateag with their latency,
server configuration, etc. The player then joins a servdr aighort latency and preferred
game settings.

In order to reduce the operating cost of running game serdats center operators
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want to use as few physical servers as possible to host garwerprograms. As many ex-
isting game-server programs can support only one gameogessa time, multiple copies
of a certain game may need to run on a hosting platform coectlyr However, a game
may only listen to a certain TCP/UDP port and load its configjons from a certain fixed
path. While modifying game-server source code and gamegutst can relax these restric-
tions, all gamers must download new client software in otdeontinue playing the game,
resulting in a prohibitive redistribution cost. Game deyars may also find themselves a
lack of incentives to supporting legacy games.

A simpler approach is to host each game server program iriiea/machine (VM) and
consolidate multiple VMs on top of a physical server. Viftizaion provides an illusion
that each game-server program is running on a dedicatedrssa\no redesign is required.
A group of game players can rent a game server VM and apply ¢hstomizations and
settings on it. Using virtualization also provides us thgiligity to migrate a game server
from one physical server to another. Game server hostingcseproviders can use VM
migration to balance the workload on its physical serversgafne server VM can also
migrate to a data center where all players in that sessioa égqual network delays. When
a game server is not currently being used, the data centeatopean also suspend the VM
and resume it when needed.

However, any consolidation effort must also meet the tinmerguirements imposed by
the application. FPS game players are very sensitive todheegserver’s responsiveness
because a short delay can easily influence the result of a\ddele the latency in a LAN
is very short £1ms), the latency of Internet game playing is much higherekample, the
network latency over a coast-to-coast (US) link is arouneés®tns. On top of the network
latency is the latency incurred within the game serverudicig the delivery of incoming
packets to VM and the VM scheduling delay. The goal of thislgtis to understand these

delays and improve game-server performance in a virtudlideastructure.
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6.2.3 Problem Statement

Given the popular demand of Internet gaming and the need aegserver hosting, the
goal of data centers is to host as many FPS game servers #d@ossop of a virtualized

infrastructure. The consolidation effort is constraingdabservice-level agreement that
limits the latency a user input may experience inside a datdéec. We also assume that
the workload model of each server is identical and the hagfgin has a fixed amount
of resources. Therefore, the number of hosted game sesversed as the metric in our

evaluation.

6.3 Timing in Game Servers

As a game server and its clients are geographically dispeitsse usually difficult to have

their clocks synchronized with each other. Therefore, tild master state of a game world
must depend on a single clock source, the server clock, ialigerevents generated from
all clients. In this section, we first discuss various lates a virtualized system and how

timestamps are taken in a guest OS.

6.3.1 Packet Delivery Delay

In current architecture, all network 1/0Os to and from VMs &andled by device drivers
in the host OS. The packet delivery path is illustrated inuFeg6.2. For each incoming
packet, the host OS typically uses its layer-2 MAC addresgert3 IP address, or layer-4
port number to switch or route a packet to a VM. The packet @emdverwritten on-the-
fly to reflect different network settings. The host OS thersube virtualization interface
provided by the hypervisor to make the packet available ¢odibstination VM. Once the
packet is delivered, the host OS sends an event to wake ugttieaion VM. If the VM
is not currently scheduled to run, the scheduler will scheds execution.

We define the delay between the time that a packet is receiéuebhost OS and the

114



Domain 0 Domain U

Game
Server

Guest OS 4. Deliver
kernel A

| networking |

Host OS
kernel

3 Gantmen g
2. Switch/route pass meta-data

inhost 0S| | @\

) B =D

Xen Hypervisor

1. User-input pkt arrives at physical host

pkt

Figure 6.2 The packet delivery path for an incoming user-input packet.

time that a packet is received by a guest OS agtuket delivery delayFrom the above

discussion, the packet delivery delay includes the timeckgiaspent in the protocol stack
in host OS, the mechanism that passes the packet from th©Bdsta VM, and a schedul-
ing delay before the guest OS can pick it up. Among these coemts, the scheduling

delay is the most non-deterministic and is discussed below.

6.3.2 Scheduling Delay

In a non-virtualized environment, a game-server processngeting with other processes
in an operating system (OS) for CPU time. The process scieduthe OS has full con-
trol of CPU time allocation. The@rocess scheduling delawhich is defined as the time
between a process is ready to run and the time that it actbadjjns to run, is a function
of the scheduling algorithm in use, other processes in teery, timer frequency, and so
on. Typically, a game server only co-exists with some bamkgd daemon processes so
the process scheduling delay is very short.

In a virtualized environment, a game server also needs tgpetenwith other VMs in
the physical server for CPU time, incurring an additiodd scheduling delayThe VM
scheduling delay is defined as the time between a VM, or a psaoghe VM, is ready to

run and the time that VM actually begins to run. Similar to finecess scheduling delay,
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the VM scheduling delay is also a function of the underlyiohesluling algorithm, the
workload of other VMs, timer frequency, and so on.

The CPU scheduler in a hypervisor can increase the priofigy\éM that was waiting
for incoming packets or 1/0 operations to complete. Thiggleanproves the responsive-
ness of 1/0O-intensive VMs . However, if there are many I/@ehe VMs that need to be
scheduled, a penalty is still imposed on the response timee@luation result shows that

the VM scheduling delay can be as high as 40ms in a game-derygtng scenario.

6.3.3 Timestamping Methods

Modern CPUs have a built-in timestamp counter that can subpigh-resolution times-
tamps to a OS. During boot-up, the OS first initializes thaeystime with the hardware
clock and also calibrates the timestamp counter using remgwmers. When current
system time is needed, the OS reads the current value ofntlestamp counter and con-
verts the value to the system time in a certain format, suchtasuct ti neval or
kti me_t. Time resolution might be limited in the conversion pro¢cessg., Jus for
struct tineval and 1lnsfoktine.t.

In a POSIX-compliant system, application programmers c@theget t i neof day
to learn about current system time. Therefore, one cantwaliunction immediately after
receiving a packet from the OS and associate the timestathgive packet. However, this
method suffers from both packet delivery and schedulingydellt also generates an exces-
sive number of system calls and results in higher CPU dematicha@stamps are required
for most input packets. On the other hand, it is compatibleany systems and is the most
portable approach.

In many recent OSes, one can specify 8@TI MESTAMP option to an opened socket
using theset sockopt system call. Timestamps are taken in the kernel and availabl
to user-space applications via thecvnsg system call as ancillary data (also called

control messages.) In Linux kernel, the timestamp is takémeavery beginning of device-
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independent network code. Although the time spent in nékvdavice drivers and the
scheduling of kernel tasklets are still not taken into actptine timestamp is much closer
to the packet arrival time. Both the network time protocol ) daemon and thiepdump
network packet capturing program use this option to obieegtamps.

While the option is enabled per socket, Linux kernel timegia all incoming pack-
ets if any opened socket requests timestamps. This desigesvemestamp accuracy as
one does not need to wait until a packet is associated witltleesto determine whether
a timestamp is needed. Given that a large portion of gamictraquires timestamps,
the extra time spent in timestamping all incoming packetob®es insignificant for game
servers.

However, in a VM, the thus-obtained timestamp only refleloestime that a packet is
handled by a guest OS. The packet delivery latency withinraaldized platform is not
taken into account. This presents an information gap betweéM and its host system.

For a game server, a longer latency and inaccurate timesteadpce the fidelity of game

playing.

6.3.4 Effects of Inaccurate Timestamps

When the packet delivery delay occurs between a client areheeis the dead reckon-
ing mechanism uses an inaccurate timestamp to estimate gfateebefore applying the
player's command delivered in the packet. The net effecéappthat the client took longer
to make the decision. When the total latency is large, garageps will feel sluggish as
their inputs are not processed promptly.

Furthermore, the inter-arrival time between two user ispwhether or not they come
from the same user, also becomes obscure. While the twosinpay be 10ms apart when
they arrived the host OS, they may be delivered to a VM in tineeslaatch and handled by a
guest OS almost at the same time. Although the order of paeieery can be preserved,

the result can be very different. If the two inputs were frdra $ame user, the difference in
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Figure 6.3 A comparison between two different timestamping appros.che

inter-arrival time may not reflect the user’s original irtien. If the two inputs were from
two users aiming each other with a gun, the difference irdataval time may determine
whether a gunshot hits a dodging opponent or not. Previaeareh also shows that rel-
ative delays between gamers may also impact gaming exper[&8]. Because of these

conseqguences, we need a better timestamping mechanisemnfier gervers in VM.

6.4 Augmented Virtual Network Interface

In order to reduce the packet delivery delay, one can cotttieohumber of VMs hosted
on a host platform so the VM scheduling delay can be minimiz&d admission control

mechanism can be used to determine if new game-server VMbeatarted or running
game servers need to be migrated to another host platformev, this approach simply
manages the additional latency but not fills the informagap.

To make accurate packet arrival timestamps available to ,MMs decide to record
packet arrival times in the host OS and deliver the timesttoripe destination guest OS.
A comparison of the timestamp error in these two approachrde seen in Figure 6.3.
While the packet delivery delay is not shortened with thiprapch, the timestamp error

— the difference between the reported timestamp and thalgoaicket arrival time — is
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significantly reduced, so the effects of inaccurate tinmapgacan be reduced.

Similar to theSO.TI MESTAMP socket option that a process can use to request times-
tamps from kernel, we allow the guest OS to proxy that reqtetite host OS and take
timestamps in the host OS instead. The timestamp is thee@g#&ss VM along with other
meta-data of a packet, such as the physical memory addetsbétpacket resides, whether
the packet has been check-summed in host OS, and so on. Whguoeakt OS receives a
timestamp-associated packet, it simply trusts the tinngstand passes the timestamp to
the application — the game server. While the game server mageps multiple user in-
puts in a batch, their timestamps faithfully representrthgival times in the host OS and
the resulting game state can be constructed with higheitfidel

For each game packet, the timestamp is only taken once — gigndsimply moves
the work from a guest OS to the host OS. We also value timestatyracy more by tak-
ing timestamps immediately after each incoming packetswuevice-independent network
code in the host OS. This approach avoids most of the packeededelay but additional
work is done for packets that are not destined for game-s&fiviss. We argue that it is
still a better approach as selective timestamping incorpagkets can easily incur higher

overhead.

6.5 Implementation

We implemented the augmented virtual network interface bgifging the Xen virtual ma-
chine monitor (VMM). Specifically, we modified the virtualtmerk interface card (NIC)
device driver to allow the host OS to pass timestamps to g08sis. We also created a
model FPS game to emulate the game-server workload witledling up a large number

of game servers and clients. The detail of the implememtasgidescribed next.
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6.5.1 Xen Virtual NIC

In order to reduce the cost of memory copying in deliveringkess between VMs (called
domains in Xen), the sending Xen virtual NIC typically gmmtccesses to the memory
pages that contain the packet and only passes memory agsltegbe receiving party. The
memory addresses are passed in a circular buffer share@dretavpair of virtual NICs.
The circular buffer is implemented as an array of fixed-simszbrds. The size of each
record is 8 bytes. A record may represent a packet that isipgno be received at the
other end. Additional records may be used to deliver meta-d&/e defined a new record
type and use it to deliver the arrival time of a packet.

Unfortunately, only 6 bytes of an 8-byte record can be usqzhss the timestamp, the
other 2 bytes are header fields. The timestamp in Linux 2,6:b8ch is both the host
and the guest OS in our implementation, is stored inttheeval structure. The struc-
ture stores the number of seconds since the UNIX epoch antuthéer of microseconds
passed the second, hence having a resolutiopusf In a well-formed timestamp the value
in the second field is always between 0 anfl 4@ (inclusive.)

In order to fit the timestamp into the 6-byte payload, we reduthe timestamp res-
olution to 16us (2*us) so the “microseconds” part of a timestamp needs only 16(Bit
bytes) instead oflog,10°] = 20 bits to represent all possible values. This implemenntati
is effective because only one additional record is needddlteer a timestamp and there is
no need for any prior language or any dependency betweer{sackhe 1fs resolution
provides enough details for online gaming. If a higher reSoh is needed, one can use

multiple records or use a common base timestamp betweeiptaydackets.

6.5.2 Model FPS Game

We first investigate the source code of an open-source nket®s game, Urban-Terror,

to understand the logic of a game server. The game is basde: @aime engine of Quake
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3, a very popular FPS game. The game uses UDP/IP for netwaonkngsso players can
connect to a game server and play from a remote locationI&itaiother games, the game
server supports only one session at a time.

When a user makes a move in the game, a packet is sent fromehetol the sender
to propagate the state change. Every 50ms the server sengglare of the game world
to each client. The traffic between an Urban-Terror gameesemd its clients is not en-
crypted.

While a large installation of game-server VMs can be set ugdying VMs, itis much
more difficult to set up a large number of clients and genagatee playing traffic to game
servers. Instead, according to the traffic characteristiddrban-Terror and other stud-
ies, we built a model game server and client that help us atelarge-scale deployment
scenarios.

We expect future games contain more details than currenegarRrevious studies
have shown that both the average packet size and packetedatesasing in more recent
games [44]. As the market size of serious gaming becomesr|ang also expect more so-
phisticated encryption algorithm will be used in online gagn There are already security
software add-ons for Quake 3 that encrypt game traffic togimesheating.

Based on these observations, we employed a fixed 256-bydebitatk to represent
user inputs, which are encrypted before sending to the seAleng with a few header
fields and message digest, the final UDP payload size is 288 bytsimilar to the average
packet size of 247-270 bytes reported falo 3, a newer and also popular network FPS
game [44]. The emulated user inputs follow the Poisson moaad the average rate is set
to 20 inputs per second, which is also similaHalo 3 (15—-30 inputs per second). Game-
state updates are sent out periodically and the frequersey te 20 updates per second (the

default value as in Quake 3) in our evaluation.
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6.5.3 Measuring Packet Delivery Delay

We measure the packet delivery delay by comparing the packigal time on the game
server to the user input time on the game client. Before sgnelach user input packet to
the game server, a timestamp is taken on the game client antbsihe game server in a
header field along with a sequence number. After the sergeived the packet, it subtracts
the client timestamp from the packet arrival time. Sincetthe timestamps are based on
different clocks, we synchronize the two clocks before eagseriment.

The resulting time difference is the time a packet spentiisgs protocol stack, trans-
mission delay, and the packet delivery delay at the recgieimd. Of these components, the
first two are not affected by different timestamping appheacin the game server so we

can measure the difference in the packet delivery delay.

6.6 Evaluation

In this section, we primarily use the model game server aigthicive created to evaluate
the packet delivery delay in a VM-based game server hostiagasio. The testbed setup

is described first which is followed by evaluation result.

6.6.1 Testbed

We set up a testbed that consists of two machines. Each nedchsmtwo dual-core CPUs
and 4GB memory which are connected via gigabit Ethernet. @rikem is configured
with Xen VMM and our modified virtual NIC driver. Since our melcdgame server doesn’t
use much memory, each game-server VM is only allocated witintdal CPU and 32MB
memory. Only a guest OS and our model game server are runnihgpweach VM. The
smaller memory footprint allowed us to host many VMs withowining out of memory.

The other machine runs our model game client and measuré&seney to the server.
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Figure 6.4 Packet loss ratio for different number of game-server VMdifferent configurations.

6.6.2 Packet Loss Rate-Based Scalability

We first evaluate the scalability of the game-server hostfigastructure by hosting as
many game-server VMs as possible. We created two slighffigrdint setups and used the
packet loss ratio as the metric. In the first setup, the dogimost OS) and all game-
server domains (guest OSes) are allowed to use any of the 4cGRY in the system. In
the second setup, the domain 0 is pinned to one CPU core aganaé-server domains are
allowed to use any of the 3 other CPU cores.

From Figure 6.4, we see that the packet-loss ratio shootshgmwhere are more than
40 domains if all 4 CPU cores are dynamically assigned to anyains (labeledynamic
CPU assignmenin the figure). On the other hand, if one CPU is dedicated toalor@
(labeled afRestricted CPU assignmeint the figure), 46 and 48 game-server domains can
be hosted with<1% and<3% packet loss ratio, respectively.

The restricted CPU assignment scheme works better becthusmaning packets need
to be switched or routed via domain 0 before they can readhfthal destination. When
domain 0 could not obtain enough resources, incoming paeketdropped due to limited
buffer space. If the packet-loss ratio is the only criteniaiservice-level agreement, the
hosting service provider may conclude that the system cah4t®active game sessions

after this experiment.
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Figure 6.5 Average packet delivery delay for different number of gasaerer VMs using differ-
ent timestamping approaches.

6.6.3 Packet Delivery Delay-Based Scalability

With the restricted CPU assignment, we look at the averagkgbaelivery delay obtained
by different timestamping approaches. As we can see in €i§LL, the average packet de-
livery delay increases with the number of game-server dosadf the timestamp is taken
after the packet arrives in the guest OS, the delay is mudtehidpan taking timestamp in
the host OS. When the server is loaded with 46 domains, ougrdean reduce the delay
by 3.1ms. In other words, the obtained timestamp is 3.1mseclw the actual user input
time.

If the game server requires a timestamp to be taken withinaftesa packet is arrived,
44 domains can be hosted with our new design while only 30 dmwan be hosted when
timestamps are taken in each guest OS — a 47% increase ibiitala

In addition to the average packet delivery delay, the 9sqdile of packet delivery de-
lay can also be used as an indicator of service quality. Wikguldhe results in Figure 6.6.
We note that it can take more than 20ms to deliver a packettest@®S when 46 domains
are hosted, the difference between two approaches can hghaashl5ms. When 44 or
fewer domains are hosted, the time that a packet spent ina$teds is essentially con-
stant. On the other hand, the 95-percentile of packet dglivelay distribution increases

significantly if more than 40 domains are hosted. This shbzasthe improved timestamp
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different timestamping approaches.

approach not only performs better if a certain service le/etquired, its performance is

only bounded by the speed of the CPU that domain O runs on.

6.7 Summary

In this chapter, we present a design that bridges an infoomaap between a physical
host and a virtual machine. The timestamps are particularportant to time-sensitive

applications such as online gaming, an emerging marketareftitertainment sector. We
showed that while simple consolidation approaches can3tbgame servers subject to a

timestamp accuracy constraint, with our improved intexfane can host 44 game servers.
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Chapter 7

Conclusion

Virtualization is an old concept that has brought back rédgemith the primary goal of im-
proving x86 server utilization. In this thesis, a distineafure of a virtual machine, namely
the flexibility in run-time resource allocation adjustmestutilized to improve the design
of software systems on large-scale virtualized infrastmas, such as data centers. We
showed that by incorporating this feature in software systesigns, better performance
can be achieved with the same amount of resources.

We first built Vibra Web, a web server cluster based on a Jided infrastructure.
Instead of balancing the workload of back-end web servezsjsed a scalable and locality-
aware request dispatcher at the front-end and tackled fohdlance by transferring net-
work bandwidth allocation between back-end server VMs. &atuation results showed
that average response time is reduced in Vibra Web and issrabre scalable than other
locality-aware approaches.

Resource re-allocation schemes can also be integratedawmithtolerant mechanisms
to improve system performance during degraded operatfunsiving servers in a cluster
can be granted more resources to compensate for the faiteer.s&Ve also showed that
by bridging a gap between a physical machine and a VM, theesystock can still be
available to a VM even when the VM is not running, resultingiare accurate timestamps
and better online gaming experience.

We also applied the idea of transferring virtual resourogsarallel computing appli-

cations and built a distributed proportional-share (DPB)JGcheduler. By transferring

126



CPU share allocations between computing nodes, a paralbdication can complete its
execution faster. It also relieves programmers from batgncomputing workload.

In traditional operating system designs, we have seen thaymesigns were based on
certain features at the hardware/software interface.|&ilyiin this thesis, we showed that
understanding the VM abstraction and design software systecordingly can also make
significant improvements in performance. We expect thaetheall be more systems that
can be designed and perform better in virtualized infrastmes.

In the future, we expect more cores and larger memory in coengystems of all sizes.
A more sophisticated hypervisor is needed to schedule ledsdsf VMs, each with tens
GB of main memory, on a single server with tens of cores andlteds GB of physical
memory. While the number of VMs that need to be scheduledngasi to the number of
processes in a typical system, the size of each VM is rouglbig@rs of magnitude larger
than a typical process, making memory allocation in NUMAtegss a bigger problem.

We also expect the advent of more specialized, virtuabpatiapable I/O devices, such
as newer 1Gbps and 10Gbps NICs. While their introductiohredluce the work that needs
to be done in the host OS, the NICs also become stateful andhamaper compatibility of
VM migration. New classes of computing resources, such asrgépurpose computation
graphics processing units (GPGPU) in advanced video csindslld also be made available
to VMs while complicating VM abstraction. That is, keepingraall footprint and a small
attack surface of a hypervisor will become more and morecdiffi With a richer VM
abstraction and more types of resources supporting dynalfoation at run-time, it also

brings more opportunities to optimize VM performance in tehegeneous environment.
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