
System Architectures with Virtualized
Resources in a Large-Scale Computing

Infrastructure

by

Chang-Hao Tsai

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2009

Doctoral Committee:
Professor Kang Geun Shin, Chair
Professor Atul Prakash
Professor Dawn M. Tilbury
Assistant Professor Jason Nelson Flinn

c© Chang-Hao Tsai

All Rights Reserved

2009

To my family

ii

Acknowledgments

This thesis cannot be completed without help from many people. All of them are very

important to me.

First of all, I would like to thank Professor Shin for his constant guidance, encourage-

ment, and support. He patiently allowed me to explore many different fields while seeking

for my own topic. He also continuously fostered my work with his wisdom and years of

experience. His fatherly advice goes beyond research work and prepares me to take on

bigger challenges in my career.

I am also grateful to my family. Their endless love and support always enable me to

boldly deal with obstacles in the Ph.D. journey. They believe in me all times and they are

always there when I need them. In particular, I want to express my deepest gratitude to

my dear wife, Jessie, for her enduring love, encouragement,and understanding during my

study. This thesis is dedicated to my family.

I would also like to thank Professors Prakash, Flinn, and Tilbury for their invaluable

suggestions and comments to strengthen the dissertation.

My colleagues at the Real-Time Computing Lab also enriched my study and my life. I

would like to thank John Reumann, Hani Jamjoom, Chun-Ting Chou, and Hai Huang for

their mentoring, insights, and countless help since my firstday here. Mohamed El-Gendy,

Songkuk Kim, Abhijit Bose, Jian Wu, Zhigang Chen, Kyu-Han Kim, Jisoo Yang, Pradeep

Padala, Karen Hou, and all other members also provided me suggestions and priceless

friendship. I also thank BJ Monahgan and Stephen Reger for their administrative support.

Finally, I would like to thank my daughter, Maddie, for her giggles and smiles.

iii

Table of Contents

Dedication . ii

Acknowledgments . iii

List of Tables . viii

List of Figures . ix

Chapter 1 Introduction . 1
1.1 Evolution of Server Infrastructures 2

1.1.1 Data Centers . 2
1.1.2 Utility Computing . 3
1.1.3 Virtualization . 4
1.1.4 Cloud Computing . 5

1.2 Applications in Data Centers .. . 6
1.2.1 Web Services . 6
1.2.2 Scientific Computing . 7
1.2.3 On-line Game Servers . 7

1.3 Challenges . 8
1.3.1 Legacy Software Architecture .9
1.3.2 Naı̈ve Redundancy Design . 10
1.3.3 Incomplete VM Abstraction . 10

1.4 Contributions . 11
1.4.1 Assumptions . 11
1.4.2 Flexibility in Resource Allocation 12
1.4.3 Filling Architectural Gap .14

1.5 Thesis Structure . 15

Chapter 2 Related Work . 16
2.1 Utility Computing . 16
2.2 Platform Virtualization .. . 18

2.2.1 Classification . 18
2.2.2 Resource Management . 19
2.2.3 Fault Tolerance . 20

iv

2.3 Web Server Clusters . 20
2.4 Consistent Hashing . 24
2.5 Distributed Parallel Computing 25

2.5.1 Data Parallelism . 25
2.5.2 Task Parallelism . 26

2.6 Cluster Scheduling . 26
2.7 On-line Game Servers . 28

Chapter 3 Vibra: Virtualization-Based Resource Allocation for High-Availability
Web Server Clusters . 29
3.1 Introduction . 29
3.2 Vibra VM Hosting . 32

3.2.1 Physical Server Clusters . 32
3.2.2 Virtualization in Data Centers 33
3.2.3 Vibra VM Clusters . 34

3.3 Vibra-Enabled Web Cluster .. 35
3.3.1 URL-Hashing Dispatching of Requests 35
3.3.2 Resource-Allocation Agent .37

3.4 Implementation . 39
3.4.1 Xen VM Hosting . 39
3.4.2 VM Directory . 39
3.4.3 URL-Hashing Request Dispatcher40
3.4.4 Traffic Classification and Policing 41
3.4.5 Bandwidth-Usage Measurement 41
3.4.6 Estimation of Working Set Size 42
3.4.7 Resource-Allocation Agent .43

3.5 Evaluation . 43
3.5.1 Trace Analysis . 45
3.5.2 Overhead Analysis . 47
3.5.3 Trace-Based Evaluation . 49
3.5.4 YouTube Workload . 53
3.5.5 Dynamic Memory Allocation . 54

3.6 Discussion . 55
3.6.1 Alternative Hash-Based Approach 56
3.6.2 Comparing to Dynamo . 57
3.6.3 Limitations . 58

3.7 Summary . 58

Chapter 4 Redundancy in Vibra . 60
4.1 Introduction . 60
4.2 Models . 62

4.2.1 Request Dispatcher Redundancy62
4.2.2 Local Network Redundancy . 63
4.2.3 Hardware and VMM Redundancy 63
4.2.4 OS and Software Failure . 64

v

4.2.5 Fault Model . 65
4.3 Redundancy in Vibra Web . 65

4.3.1 Resource Compensation . 66
4.3.2 Adapting Conventional Algorithms 66
4.3.3 Adapting URL-Hashing Algorithm 67

4.4 Evaluation . 69
4.5 Related Work . 71
4.6 Summary . 72

Chapter 5 DPS: A Distributed Proportional-Share Schedulerin Computing
Clusters . 73
5.1 Introduction . 73
5.2 Design . 77

5.2.1 Cluster Design . 78
5.2.2 Scheduler Design . 81

5.3 Share-Exchange Models . 85
5.3.1 Cluster Model . 85
5.3.2 Program Model . 86
5.3.3 Fully-Distributed Share-Exchange 87
5.3.4 Bank-Assisted Share-Exchange88

5.4 Implementation . 89
5.4.1 The Xen Cluster . 89
5.4.2 VM Cluster Infrastructure . 91
5.4.3 The DPS Daemon . 92
5.4.4 Upstream Inference . 93

5.5 Experimental Evaluation .. 95
5.5.1 Testbed Setup . 95
5.5.2 VM Hosting Overhead . 97
5.5.3 Live-Migration . 98
5.5.4 DPS Scheduling . 100
5.5.5 Workload Redistribution . 102
5.5.6 Large-Scale Simulation Results 103

5.6 Summary . 106

Chapter 6 Accurate Packet Timestamping for Game Servers 108
6.1 Introduction . 108
6.2 Model . 110

6.2.1 Overview of FPS Games . 111
6.2.2 Game Server Hosting . 112
6.2.3 Problem Statement . 114

6.3 Timing in Game Servers . 114
6.3.1 Packet Delivery Delay . 114
6.3.2 Scheduling Delay . 115
6.3.3 Timestamping Methods . 116
6.3.4 Effects of Inaccurate Timestamps 117

vi

6.4 Augmented Virtual Network Interface 118
6.5 Implementation . 119

6.5.1 Xen Virtual NIC . 120
6.5.2 Model FPS Game . 120
6.5.3 Measuring Packet Delivery Delay122

6.6 Evaluation . 122
6.6.1 Testbed . 122
6.6.2 Packet Loss Rate-Based Scalability 123
6.6.3 Packet Delivery Delay-Based Scalability 124

6.7 Summary . 125

Chapter 7 Conclusion . 126

Bibliography . 128

vii

List of Tables

Table

3.1 Statistics of each subset of requests or sub-namespacesusing different dis-
patching algorithms. 44

3.2 The CPU and memory overheads of dispatching algorithms.. 48

viii

List of Figures

Figure

3.1 Comparison of a physical server cluster, customer-initiated virtualization,
and data center-managed virtualization. 32

3.2 The architecture of a URL-hashing web server cluster. The mapping be-
tween different layers is shown in dotted lines and an example is drawn
with bold lines. 36

3.3 Dynamic resource allocation using an agent with the helpof a data center-
managed VM directory. 37

3.4 The CDF of total throughput by objects sorted by their contributions. 46
3.5 The throughput of each sub-namespace using Charsum. Thehot spot

moves from sub-namespace 2 to sub-namespace 1. 47
3.6 The effect of different smoothing factors and the frequency of bandwidth

allocation. 49
3.7 Average response time with different request dispatch algorithms. 50
3.8 Total number of disk blocks read when different request dispatch algo-

rithms are used. 51
3.9 Comparing the throughput of different algorithms at different concurrency

levels using the World Cup trace . 52
3.10 Comparison of the throughput of different algorithms at different concur-

rency levels using YouTube-like workload 52
3.11 The impact on average response time by deactivating pages periodically. . . 55
3.12 Working set size estimation by deactivating pages periodically. 55

4.1 Comparison of the average locality loss of different approaches 68
4.2 The possible location of cached objects before and afterrecovering from a

failed server in a cluster. 68
4.3 Comparison of the throughput of different algorithms for different de-

graded scenarios. 70
4.4 An example of failure recovery in a Vibra-enabled web server cluster. . . . 71

5.1 A comparison between traditional computing node and VM hosting machine. 77
5.2 Two share-exchange strategies in DPS. 82

ix

5.3 Parallel programs are packed together while DPS ensuresresource alloca-
tion. Previously wasted resources (dashed boxes) are now utilized and a
new program “D” is placed for execution. 85

5.4 The architecture of a VM hosting cluster. 89
5.5 Xen virtualization overhead. 97
5.6 Xen VM migration overhead. .99
5.7 DPS reduced the program response time by up to 38%. 101
5.8 CPU share redistribution. Each node was given 0.2 CPU share initially and

DPS with fully-distributed share-exchange strategy was able to redistribute
CPU shares to match workload distribution in 3 cycles. 102

5.9 DPS reduces program response times in a cluster of increasing number of
parallel programs. 104

5.10 The speed-up of program response time by utilizing DPS.. 105

6.1 The interaction between game players and a server in a time frame. 111
6.2 The packet delivery path for an incoming user-input packet. 115
6.3 A comparison between two different timestamping approaches. 118
6.4 Packet loss ratio for different number of game-server VMs in different con-

figurations. 123
6.5 Average packet delivery delay for different number of game-server VMs

using different timestamping approaches. 124
6.6 95-percentile of packet delivery delay for different number of game-server

VMs using different timestamping approaches. 125

x

Chapter 1

Introduction

Over the last couple of decades, the functions of the Internet have evolved from providing

a simple text-only email service to information retrieval,multi-media streaming, on-line

advertising, shopping, auction, banking, trading, and many other business/mission-critical

tasks. Both businesses and people have now become relying heavily on the Internet for their

everyday lives and activities. In order to provide these sophisticated services, new server ar-

chitectures have been developed and more servers are deployed to provide scalable, highly

available and reliable services.

When building a server system, designers usually over-provision its capacity to meet

the peak demand in the foreseeable future. When multiple servers are needed, a server

architecture is designed and then each server machine is configured. Early planning is

necessary as server procurement may take days or even weeks.These servers are usually in-

stalled in designated rooms/areas in each server owner’s premises. In order to achieve high

availability, both backup power sources and redundant network connections are provided.

However, this practice suffers from several problems. First, for small businesses, the

cost of having redundant network connections and backup power sources can be unafford-

able. Besides, future server workloads are usually estimated very conservatively during

capacity planning, yielding much larger servers than needed in practice. Workload fluctu-

ations and long resource procurement delays in addition to the over-provisioning usually

cause many of the servers to be severely under-utilized. Consequently, service providers

need to pay a high initial cost and a higher operating cost to run Internet services even for

1

the under-utilized servers.

1.1 Evolution of Server Infrastructures

Many data centers have been built and there have been numerous efforts to reduce the

cost of operating Internet servers. Customers move serversinto data centers to lower the

infrastructure cost. Some data centers also provide the customers resources on demand.

Customers request resources only when needed, and pay for the resources they have actu-

ally used. Furthermore, virtualization allows for flexibleresource partitioning. Recently,

cloud computing removes the burden of resource management by providing high-level ser-

vices instead of raw computing resources. The evolution of server infrastructures is briefly

described next.

1.1.1 Data Centers

Internet data centers facilitate server hosting. Some datacenters are fully owned and op-

erated by a single organization while others provide infrastructures and services to their

customers. Inside a data center, racks of servers are organized into rows to increase server

density on the limited floor space while allowing sufficient air flows for heat dissipation.

Data center customers may rent rack spaces and mount their own server machines. They

may also obtain pre-configured servers inside a data center.Typically, pre-configured

servers are available in few different configurations only and the lease duration ranges from

months to years. However, they reduce the resource procurement delay to hours or a few

days and allow a server system to grow or shrink with the services they provide.

Data centers also provide a common network and electricity infrastructure to its cus-

tomers. A data center usually connects to the Internet via multiple networks to improve

redundancy. The electricity infrastructure of a data center may connect to one or several

power grids via multiple power lines, and provide backups with uninterruptible power sup-

2

plies (UPSs) and diesel power generators. In addition, bothtemperature and humidity are

controlled inside a data center and the physical access to data centers is usually restricted

to ensure physical security.

Since these infrastructures are shared among many servers and customers, data centers

can benefit from statistical multiplexing by providing an infrastructure that is smaller than

the sum of all customers’ maximal demands. In addition, the economics of scale also en-

ables data centers to provide these resources at a lower cost. By moving servers to a data

center, a customer can reduce the infrastructure and operating costs.

1.1.2 Utility Computing

Although acquiring pre-configured servers from data centers allows a service to expand its

capacity in a shorter time, idle resources cannot be returned to the data center or utilized

otherwise easily. One approach to improving resource utilization is to allow more flexible

resource allocation. When a customer needs more computing resources, the data center

allocates unused resources to the customer. These new resources become ready for use

very quickly (in minutes or hours.) If the resource need diminshes, the customer can return

excessive resources to the data center. Customers are motivated to do this because they are

only charged for the amount of resources for the duration they have held. This is similar

to the usage of other utilities such as power and water. So, itis calledutility computing

and the data centers that support this scheme are calledutility data centers. Examples of

utility data centers include HP Utility Data Center (UDC), Sun Grid, and Amazon Elastic

Compute Cloud (EC2).

In an utility data center, a complete physical machine, including CPU, memory, net-

work bandwidth, and so on, can become the unit of computing resource allocation. If a

data center operator runs an operating system (OS) that supports resource partitioning and

metering on its servers, the operator can also divide its servers into partitions and allocate

a subset of partitions to customers. A current trend in data centers is to use virtualization

3

technologies for partitioning physical resources, which we will discuss next. Storage space

is also another type of resources that is commonly seen in utility data centers (e.g., Amazon

Simple Storage Service.)

1.1.3 Virtualization

Server virtualization creates an illusion of having multiple server hardware, calledvirtual

machines(VMs), on top of a single physical machine. Each VM has one or more CPUs,

some memory space, disk storage, network interfaces, and soon. Each VM also needs a

complete OS to operate. In data centers, VMs can be used as resource containers that pro-

vide more fine-grained resource allocation than physical machines. Data center operators

then allocate VMs to their customers, not physical machines. Because of its simpler ab-

straction, VMs can also be migrated from a physical machine to another without suspending

their execution.

Virtual machine monitors (VMMs), also called hypervisors,are the piece of software

that partitions physical resources and coordiates their use by VMs. Some VMMs depend

on an underlying OS, calledhost OS, to manage physical resources. Other VMMs sit di-

rectly on the physical hardware and control the access to theunderlying hardware. More

advanced VMMs also support resource overbooking. For example, multiple VMs can share

one CPU core and the total amount of memory space of all VMs mayexceed the amount of

physical memory installed on the physical hardware. For time-shared resources, schedulers

are used to coordinate resource usage by VMs. While the resource utilization is improved,

this may increase response time and decrease fault-tolerance. Usually, a high-level perfor-

mance monitoring approach is used to detect performance issues and use VM migration to

alleviate the problem.

Similar to the resource-partitioning facilities providedby certain OSes, VMs can be

created in seconds and the amount of resource allocated to each VM can be adjusted to

fit each customer’s need at run-time. However, the abstraction of a VM gives its user the

4

flexibility to choose an appropriate OS. Since customers have full control over the soft-

ware running within their VMs, they can migrate their existing servers into VMs easily.

Because of the flexibility in resource allocation, customers can operate their server VMs

with a smaller headroom and enhance the utilization ratio. With an adequate performance

monitoring strategy, data center operators can overbook resources to improve utilization

further.

1.1.4 Cloud Computing

Cloud computing provides computing resources at a higher abstraction level in order to

further reduce the cost of computation. Software-as-a-Service (SaaS) is a paradigm where

software customers subscribe to a software package insteadof buying and deploying a soft-

ware by themselves. Typical examples include customer relationship management (CRM),

enterprise resource planning (ERP), and other business software. These software packages

usually support multi-tenancy, where a single instance of software installation can support

multiple customers who subscribe to the service. Therefore, customers can share the cost of

a larger infrastructure. SaaS service providers install SaaS-capable software in data centers

and end-users access these software via the Internet by using a client program or simply

web browsers. In addition to providing computing resources, data center operators may

also provide cloud computing applications themselves.

As cloud computing moves more and more applications into data centers, the work-

load in data centers grows even higher. Although cloud computing customers do not need

to manage computing resources themselves, the increased workload still translates to ad-

ditional resource demand in data centers. In this dissertation, we focus on utility data

centers that use virtualization technologies to partitionand allocate virtualized computing

resources to their customers or cloud computing applications.

5

1.2 Applications in Data Centers

Many different services and applications can benefit from the extensive computing re-

sources in data centers. Web services can take advantage of their scalable and reliable

infrastructure. Scientific computing can also use the resources in data centers for its com-

putation needs. Furthermore, data centers can also host on-line game servers that demand a

low-latency environment. We briefly discuss the requirements of these applications in this

section.

1.2.1 Web Services

Web services are one of the most common applications in data centers. Examples in-

clude all sorts of Internet web sites that people use everyday and software repositories

that distribute software updates automatically. A web service is usually implemented

with a multi-tier server architecture, comprising front-end web servers, application servers,

database servers, file servers, and so on. Web services are usually throughput-oriented with

a response time requirement ranging from hundreds of milliseconds to seconds.

For web services that are accessed directly by end-users, their workload heavily de-

pends on the number of users accessing it concurrently. The time-of-day and day-of-week

effects can be easily observed in web server traces. The peakdemand is often many times

greater than the minimum demand. On the other hand, the workload of a software distri-

bution web site usually coincides with new software releases, resulting in an even higher

maximum-to-minimum demand ratio. If a service is provisioned for the peak demand and

frequently running at its minimum capacity, the servers will be severely under-utilized most

of the time during its operation. The high variation in demand makes utility data centers

appealing to host web services.

6

1.2.2 Scientific Computing

For the scientific computing world, one common use of large clusters is to conduct scien-

tific and engineering simulations in order to reduce the timeand cost of conducting real

experiments. Other applications include, but not limit to,data analysis and visualization,

image manipulation, and so on. Typically, most scientific computing jobs are executed on

dedicated computer clusters. However, with recent improvements in computation power,

network bandwidth, and reduced interconnect latency, manycomputing clusters are built

with the same technology used in data centers, such as multi-core processors and gigabit

Ethernet.

Instead of building dedicated computer clusters, users cantap into the resources in data

centers for scientific computing jobs. They may rely solely on data centers for all their

needs or offload some jobs when their dedicated systems are overloaded. While those jobs

may require a lot of resources for a long period of time, they usually have a relaxed re-

sponse time requirement and do not need to be started immediately. Therefore, data center

operators can postpone the execution when the resource demand is high.

1.2.3 On-line Game Servers

On-line game servers represent another type of workload in data centers. Similar to web

servers, on-line games also employ a client/server architecture to connect all players in a

game. First-person shooter (FPS) games, one of the most popular genre of computer games,

are highly interactive during an active game session. Also,to be reliable, FPS game servers

are expected to be responsive in order to provide satisfactory gaming experience.

The reliable infrastructure and high bandwidth Internet connections in data centers pro-

vide an adequate environment for game servers. A group of geographically-distributed

game players can rent a server from a data center to host theirown game sessions. Unlike

web servers, those game servers only need to be run when players want to set up a game

7

session. As network latency also factors in server responsiveness, choosing a data center

that is closer to all players is preferred. Furthermore, in autility data center, they only need

to pay for the duration of the game session, making this approach more economic.

1.3 Challenges

While the underlying infrastructure provides a large amount of computing resource, de-

veloping software systems that can fully realize its potential is not straightforward. Over-

provisioning is the most common cause of low resource utilization. Typically, an amount

of computing resource is allocated to a server and the amountis fixed during the course of

its execution. With a long resource acquisition time and a conservative prediction of future

demand, service providers tend to build over-sized serversin order to avoid service degra-

dation due to insufficient resources. However, it also results in low resource utilization and

a higher operating cost.

Utility data centers and the adoption of virtualization technologies reduce the time it

takes to add or remove resources from servers. Given a resource on-demand infrastruc-

ture, researchers have built adaptive controllers that manage the resource allocation to meet

a pre-defined service level objective. Servers can be operated at higher utilization and

resources can be utilized more efficiently.

When an application is spread across a cluster of servers, the application may also di-

vide its work into smaller units and make a balanced workloaddistribution to improve

utilization. However, as the scale of applications increases, using resources efficiently gets

more difficult. In this section, we discuss several potential causes of inefficient resource

usage.

8

1.3.1 Legacy Software Architecture

In multi-tier Internet web servers, each tier typically comprises a cluster of servers and

a front-end load-balancer that dispatches the incoming workload to one of the back-end

servers. Servers at the same tier usually provide identicalor similar services, so a failed

server can easily be replaced by other servers. The design ofload-balancing algorithms not

only needs to balance the workload on the servers and increase throughput, but the algo-

rithms themselves also need to be scalable and fault-tolerant. Unfortunately, these goals

are usually contradictory to each other and hard to be met. When the load in a cluster is not

balanced, one needs more resources to handle peak demands, resulting in lower utilization.

Simple load-balancing algorithms such as round-robin or least-connection, simply con-

sider each server as equally powerful. When servers have different processing capacity,

each server is usually assigned a weight, which is used in theweighted version of such al-

gorithms (weighted round-robin, weighted least-connection). These algorithms are highly

scalable but they do not take locality into consideration. Hence, frequently-accessed files

can be cached on all servers, resulting in inefficient use of memory.

Locality-aware algorithms, such as locality-aware request distribution (LARD) or URL

hashing, improve cache efficiency in servers. However, theyalso assume each server has

a fixed capacity, or the workload can be uniformly distributed to all servers. In addition,

LARD keeps a request distribution history which is looked upand modified for each re-

quest. The history is a centralized and stateful component in LARD. It can become the

bottleneck in large web sites and renders LARD unscalable. Although some load-balancing

algorithms use a feedback control approach to adapt their approaches, no one has consid-

ered adapting server capacity, which is enabled by virtualization, as an alternative approach.

Another example is highly-parallel scientific computing programs, which are designed

to balance the workload on all computing nodes. However, thescalability of each parallel

program depends on the speed of CPU, network bandwidth and latency, and so on. If a

computing node is waiting for the result from other nodes to continue its computation, the

9

node can only sit idle, also resulting in lower utilization.For example, if the function of

a computing job is to create a video stream and an audio streamconcurrently, the audio

creation program may wait for the video creation program to finish before continuing the

process, resulting in idle cycles.

1.3.2 Näıve Redundancy Design

In a large data center, ten thousands or more computers are packed in a limited floor

space with air conditioning and proper ventilation to keep the environment within these

computers’ limitations. Although each component may be rated for a long mean-time-

between-failure (MTBF), failures are still likely to happen frequently in data centers.

Hence, redundancy is also required to be integrated in software design. Without an ap-

propriate plan against failures, Internet service provider may suffer significant monetary

loss due to violation of service-level agreements.

Replication has been used extensively to improve reliability of computer systems. How-

ever, replication also uses more computing resources and reduces efficiency. For example,

for a server cluster employingN + 1 redundancy, the resource efficiency is reduced by

1/(N+1). Furthermore, when failures occur, not only some resourcesbecome unavailable

to the server cluster, but existing locality may also becomeineffective. Currently, data cen-

ter customers usually acquire redundancy by adding spare resources but do not utilize the

agility of resource allocation provided by virtualization.

1.3.3 Incomplete VM Abstraction

Each VM has a set of virtual resources and the OS within a VM also keeps a virtual sys-

tem time, which applications utilize to learn the current time or achieve precise timing of

certain events. When there are multiple VMs sharing a CPU, VMs that are not running

cannot handle soft interrupts promptly. Therefore, the system time in each VM becomes

10

non-contiguous and has a lower resolution. Events that apply to VMs can only be processed

after starting the receiving VM, resulting in longer queuing delays.

While online game servers are not resource-intensive applications, they are required to

be highly responsive so their users can enjoy good game-playing experience. One may use

an admission-control-based approach to determine an appropriate level of consolidation

such that the timeliness requirements can be met. However, it may also leave the system

under-utilized if increasing the system load further may reduce its responsiveness. Asso-

ciating timestamps with each event delivered to a VM provides the OS in the VM more

information about the actual timing but such functionalityis not included in existing VM

abstraction.

1.4 Contributions

In this dissertation, we re-visit the system architecture in a large-scale computing infras-

tructure. Specifically, we assume that the infrastructure utilizes virtualization extensively

for resource allocation, such as in utility data centers. Multiple VMs are consolidated to a

single physical machine to improve resource utilization. In this section, we first describe the

infrastructure with some assumptions and then outline the contributions of the dissertation.

1.4.1 Assumptions

There are many virtual machine monitor (VMM) implementations, each of which is differ-

ent in one way or another. In this dissertation, we assume that the VMM can provide the

following functions. First, the VMM is able to provide an accurate resource consumption

reading on each resource for each VM. Second, for resources that are time-shared between

VMs, the VMM utilizes a scheduler that can guarantee the minimal amount of resources

that a VM can use even with the fiercest resource contention. These two requirements are

the essentials to our resource-allocation design.

11

In addition, when multiple VMs are hosted on a physical machine and the unallocated

physical resources cannot meet additional resource requirements of certain VMs, these

VMs can be migrated to other physical hosts in the infrastructure. The VMM must support

VM live migration, where the migrated VM is only unavailableto the users for a very short

while (< 100ms).

1.4.2 Flexibility in Resource Allocation

Most of today’s applications are designed for traditional,non-virtualized infrastructures.

Therefore, they do not take advantage of the flexibility in resource allocation in a virtualized

infrastructure. With this flexibility, some traditional software system design assumptions

can be relaxed and resources can be utilized more efficiently.

We first use this flexibility to re-design Internet web serverclusters in Chapter 3. As we

have discussed in Section 1.3.1, existing front-end load-balancer designs assume that back-

end servers each have a fixed capacity. There are two goals of the front-end load-balancer in

a web server cluster, namely balancing the workload and increasing resource efficiency by

improving locality. LARD improved cluster throughput and scalability by improving the

locality at each server, but it also introduced a request distribution history, a centralized and

stateful component in the server architecture, which can become a scalability bottleneck.

Instead of balancing server load, we separate the function of locality-aware server se-

lection and load-balancing when the web server cluster is hosted on a VM cluster, called

virtualization-based resource allocation web (Vibra Web). The front-end uses a scalable

URL-hashing approach to select the destination server for each incoming request. The

unbalanced workload among the cluster of server VMs is then compensated by virtual

resource transfer. In this work, we focus on the network bandwidth allocation while consid-

ering memory utilization. We applied the World Cup ’98 web server trace and a synthetic

YouTube-like workload to our design, which achieves betterthroughput and higher scala-

bility.

12

We also design Vibra Web with fault-tolerance in mind. The redundancy feature of

Vibra Web is described in Chapter 4. Redundancy in Vibra is considered in two parts:

front-end load balancer and back-end server VMs. The front-end load balancer carries

only little state information on ongoing connections so it can be easily arranged in a high-

availability configuration. When a back-end server VM fails, we minimize the changes in

the load-balancer configuration in order to retain existinglocality. After a failure is de-

tected, its workload and its virtual resources are immediately transferred to other surviving

VMs. With these additional resources, the additional workload can be handled. Our evalu-

ation shows that this approach maintains a higher throughput during the degraded operation

than other load-balancing algorithms.

In Chapter 5, we propose a new CPU scheduling algorithm,distributed proportional

share (DPS) scheduling, to allocate CPU shares to parallel programs. Instead of requesting

a fixed number of nodes to be dedicated to a parallel program, the programmer only spec-

ifies the number of nodes and a minimum set of resources that the program needs. When

a job is submitted to a computing cluster, the submitter alsospecifies a set of resource

budgets, such as the maximum number of CPU shares that the program can use during its

execution. When the job is scheduled to run, the cluster firstcreates a VM cluster that has

the same number of nodes as the programmer specified, and execute the parallel program

in VMs. During the execution, DPS monitors the actual CPU consumption at each VM and

dynamically adapts the CPU share allocation.

In this scheme, the resource required by a parallel program is separated from the struc-

ture of a parallel program. Programmers are also relieved from optimizing algorithms to

balance the workload. When workload imbalance is detected,DPS dynamically adapts

the CPU-share allocation based on actual resource demand and conducts either afully-

distributed share exchangeor a bank-assisted share exchange. We demonstrate that DPS

can reduce the execution time of parallel programs and increase cluster utilization.

13

1.4.3 Filling Architectural Gap

Another reason for ineffective resource usage is due to the architectural gap between a VM

and the hosting physical server. A VM shares many resources with other VMs on the phys-

ical server. In a non-virtualized environment, the OS handles physical resources directly

and can optimize their usage. For example, an OS can use the elevator algorithm to im-

prove disk I/O throughput. However, the OS in a VM, called theguest OS, does not have

direct control of the disk hardware. Similarly, a guest OS typically shares a CPU with other

VMs, and cannot schedule CPU time alone as in a real-time system.

As more game sessions are held on the Internet, the demand of alow-cost but highly-

responsive game server also increases. While game servers can be consolidated on a

virtualized platform, virtualization also reduces the responsiveness of a game server. For

first-person shooting (FPS) games, a latency of less than 100ms is typically required for

satisfactory gaming experience. Typically, game server hosting service providers employ

an admission control system to meet the response time requirements.

In Chapter 6, we identified that an important piece of information, the packet arrival

time at the physical NIC, is unavailable for a VM. For online game servers, an accurate

timestamp is very important as the time is used as the user input time in dead reckoning

calculation. Inaccurate timestamps can lead to a low-fidelity game state that does not reflect

users’ inputs.

We augment the virtual NIC design and allow timestamps to be taken in the host OS.

The timestamp is then delivered to a guest OS with the incoming packet itself. In this

approach, the packet delivery time, the time it takes to deliver a packet to a guest OS, is

not included in dead reckoning calculation so the resultinggame state reflect users’ inputs

better. Therefore, the data center operator can consolidate more game-server VMs on a

physical server and provide services at a lower cost.

14

1.5 Thesis Structure

The rest of the dissertation is organized as follows. Chapter 3 discusses the application

of flexible virtual resource allocation on Vibra Web. The hash value of the URL string in

an HTTP request is used to select a subset of server VMs in the cluster. The least-loaded

server in the subset is then chosen as the dispatch destination. Vibra Web is evaluated using

the World Cup ’98 trace and a YouTube workload generator. Theredundancy enhancement

in Vibra Web is detailed in Chapter 4, where the advantage of our approach is compared

against other methods. In Chapter 5, we introduce the model of a VM hosting cluster for

parallel computing programs and the design of DPS, including the inference of upstream

VM in fully-distributed share exchangeand theback-assisted share exchangealgorithms.

We evaluate the performance of DPS on a Xen VM cluster with MPIprograms. In Chap-

ter 6, we present the packet delivery path of a game-server VMand detail our modified

virtual NIC design with evaluation results. Finally, Chapter 7 presents future directions

and conclusions.

15

Chapter 2

Related Work

In this chapter, we review previous work in the areas relatedto this dissertation. The

discussion starts with utility computing models and continues with platform virtualization

technology, especially its applications in utility data centers. We then revisit load-balancing

algorithms for web server clusters and the use of consistenthashing for similar systems. We

also look at parallel computing models and CPU scheduling incomputing clusters. Last

but not least, on-line gaming and game server hosting are briefly discussed.

2.1 Utility Computing

Many data centers have been built in recent years with widelydifferent usage models.

Some data centers are built to meet a single company’s computing needs while some others,

calledutility data centers, partition their computing resources and allocate these resources

to their customers on demand. In some cases, data center operators allow customer appli-

cations running in their data centers and charge for actual resource usage. This scheme is

calledcloud computingbecause the computation is happened in data centers or the network,

which is typically drawn as a cloud in various illustrations.

An example of utility computing is Amazon’s Elastic ComputeCloud (EC2)1. Ama-

zon virtualizes and partitions its servers into VMs and allocates VMs to EC2 customers,

who request VMs on-line and pay for them when the VMs are turned on. Each VM comes

with a pre-installed OS and a set of applications. EC2 customers can modify the existing

1http://aws.amazon.com/ec2/

16

installation or install new applications to fit their needs.However, currently there are only

5 different virtual hardware configurations (small, large,extra large, high-CPU medium,

and high-CPU extra large) and one cannot change the VM configuration on the fly. While

the fixed configuration eases resource management, it may also lower resource utilization

and limit the flexibility provided by virtualization.

There are also other utility computing services, such as SunGrid Compute Utility [39]

and HP Utility Data Center [68]. Sun Grid Compute Utility provides a billing model similar

to Amazon EC2 while HP Utility Data Center mainly works with large companies. Unfor-

tunately, although the development of these services expands the knowledge on resource

modeling, allocation, autonomic computing, and other fields, the commercial operations of

these services have ceased [51].

Google App Engine2 is an example cloud computing infrastructure that allows cus-

tomer applications running on Google’s infrastructure. Unlike EC2, Google App Engine

users do not need to manage VMs or OSes and can focus on the deployment of their ap-

plications. However, the applications must be programmed in Python and use a set of

pre-defined application programming interfaces (APIs) to interact with other parts of the

system. While its pricing has not been announced, the infrastructure monitors a list of

metrics, including the number of (HTTP) requests served, CPU time, network bandwidth,

the number of requests and the amount of data transfer to a data-store, the number of ac-

cesses to supporting services (e.g., mail, URL-fetching, image manipulation), and so on.

The actual placement of user applications, load-balancing, security model are all managed

by Google and not revealed to the public at present.

Translating high-level operations to actual resource consumption can be difficult and

non-intuitive. Therefore, this dissertation assumes a data center allocating resources to its

customers because its economy model is easier to understand.

2http://code.google.com/appengine/

17

2.2 Platform Virtualization

While platform virtualization was first introduced to execute multiple OSes concurrently on

expensive mainframes, in data centers, it is commonly used to partition resources and con-

solidate multiple servers on a fewer number of host machinesto improve physical resource

utilization. There are a number of different approaches to realizing system virtualization.

In this section, we first briefly describe these approaches and then discuss two of the appli-

cations of virtualization, namely resource management andfault-tolerance, in data centers.

2.2.1 Classification

Many different types of platform virtualization have been implemented. They differ in VM

abstraction and the layer of virtualization. Full virtualization creates an abstraction that

has the full instruction set as the underlying hardware. Virtual machine monitors (VMMs),

also called hypervisors, may employ a binary translation ora hardware-assisted method to

achieve this goal. Some VMMs run on bare-metal directly (called Type 1 VMM) and some

other VMMs are hosted inside an OS (called Type 2 VMM). Notable full virtualization

VMMs include VMware, Microsoft Hyper-V, and QEMU.

The OS within a fully-virtualized VM, called aguest OS, does not require any modifi-

cation as the VM has the same architecture as the underlying hardware. However, it incurs

some overhead when privileged instructions are executed. Para-virtualization is another

type of platform virtualization, where guest OSes are modified before being loaded in a

VM. Privileged instructions in a guest OS are replaced by system calls to the VMM, called

hypercalls, and consume less resources. Xen is the hypervisor that is best-known for using

this approach. Modified Linux kernels and other OS kernels are provided with Xen. Newer

version of Xen can also use hardware assistance and works in full virtualization mode.

Virtualization can also be realized in OSes, calledOS-level virtualization. Instead of

virtualizing the platform, the OS system-call interface isvirtualized. One instance of OS

18

kernel is shared by many VMs, and each has its own root file system, user ID space,

process ID space, routing table, and so on. When a system callis invoked, the OS first

determines which VM the caller process is within and then processes the system call ac-

cordingly. Clearly, one cannot mix VMs of different OSes in OS-level virtualization but

it also incurs the least run-time overhead. Examples of OS-level virtualization include

Virtuozzo/OpenVZ, Linux-VServer, and Solaris Zones.

All of these types of virtualization can be seen in data centers. The performance of dif-

ferent virtualization approaches have been compared [11, 71]. In this dissertation we adopt

Xen and a modified Linux kernel as the virtualization platform because of their cleaner

resource abstraction. However, our design is not VMM-specific and our implementation

can be adapted to other types of VMM as well.

2.2.2 Resource Management

In a utility data center, VMs can be used as resource containers where hypervisors are re-

sponsible for enforcing resource allocations and monitoring actual resource utilization [21].

CPU is usually time-shared between VMs and there are many CPUschedulers that can al-

locate CPU cycles to VMs [1, 31]. Main memory is typically space-shared by VMs, but

some VMMs, such as VMware, may swap out memory pages and allowmemory over-

booking. While it is easy to allocate memory to VMs, finding the actual needs is usually a

guessing game. VMware ESX Server employs page sharing to reduce the actual mem-

ory footprints of VMs and utilizes a sampling approach to estimating the working set

size [75]. Idle memory pages are reclaimed and reallocated to VMs that can make use

of them. Geiger [49] assumes that the guest OS uses an unified buffer cache to manage its

memory. By monitoring file system traffic, the working set size can be inferred even when

the VM is thrashing. Disk and network I/O can also be regulated by I/O schedulers and

network traffic shapers [41].

Monitoring and diagnostic tools have also been introduced to virtualization [43, 55].

19

While the CPU virtualization overhead is low in para-virtualization and OS-level virtualiza-

tion, software-virtualized I/O operations have been identified as the bottleneck in hardware-

and para-virtualizations [11, 55]. The high cost of I/O operations may be reduced with

emerging hardware-assisted I/O virtualization, such as Intel’s Virtualization Technology for

Directed I/O (VT-d) or AMD’s IOMMU. When physical resourcesbecome the bottleneck,

one can migrate a VM from one physical host to another. Major VMMs also support live

migrations, where VMs are only suspended for a very short while during migration [65].

2.2.3 Fault Tolerance

VM fault-tolerance techniques can be classified as either guest-OS-level or VMM-level

approaches. Guest-OS-level products, such as Microsoft Cluster Service and Veritas Clus-

ter Server, manage service availability by monitoring the applications and restarting failed

VMs. Our approach is tailored for Web server clusters and integrates front-end dispatch-

ing algorithms and flexible resource allocation to improve performance during degraded

operation.

VMM-level approaches, such as VMware HA (High-Availability) and everRun VM

from Marathon Technologies, synchronize the execution of multiple VMs and tolerate

physical server failures. These approaches are agnostic ofguest OSes and may have a

shorter recovery time. However, both the overhead in normalexecution and the required

amount of resource are also higher. Typically, web servers do not require the highest single-

server availability because the integrity of higher-levelsemantics (like processing credit

cards) are usually provided by other approaches.

2.3 Web Server Clusters

Since the emergence of the World Wide Web, there has been extensive research into the

scalability and availability of web server clusters [29, 36]. The architecture of a web clus-

20

ter can be classified by its request-dispatching and packet-routing algorithms. The survey

paper [14] provides a detailed taxonomy and summarizes previous studies.

The goals of load-balancing algorithms include, but not limit to, increasing the through-

put of the cluster and lowering the average response time. Moreover, most algorithms

assume that the amount of computing resources of each back-end server is fixed during

execution. Algorithms such as round-robin, least-connections, and their weighted counter-

parts are simple and scalable. However, they are not locality-aware, so the total throughput

does not scale with the cluster size.

One can also use the URL hashing to select a server in a locality-aware fashion. For

each incoming request, the URL string is examined and fed to ahash function. According

to its hash value, a server is chosen to serve the request. Essentially, the URL namespace is

partitioned by the hash function, creating an N-to-1 mapping where each URL is mapped to

a server. The mapping is typically fixed unless the configuration of the cluster has changed.

Because each time a request to a certain object can only be dispatched to a certain

server, the locality of the request dispatching is greatly improved as compared to non-

locality-aware algorithms. If a previous request to a certain object already loads and caches

the object in the memory, successive requests to the same object can be served from mem-

ory and achieve the goal of reducing response time and increasing throughput. The cache

hit ratio is improved and the amount of disk I/O, which is veryexpensive compared to

serving requests from memory, is reduced. Otherwise, if theobject has nevered been en-

countered before, or if the object has been evicted from memory, the object will be loaded

from disk or other storage device. Since no other servers could have the same object in

memory, loading the object from disks is inevitable.

Since the hash function is stateless, URL-hashing itself ishighly scalable—multiple

front-ends using the same hash function can be deployed independently. However, URL-

hashing itself does not have any replication capability norload-balancing capability. There-

fore, when a failure occurs, existing locality might be lostdue to an inferior hash function.

21

Moreover, when the hash function does not distribute the workload evenly across active

servers, some servers may be overloaded while others are notfully utilized.

Some locality-aware algorithms also balance the workload across active servers.

LARD, locality-aware request distribution, improves locality by keeping a request-

dispatching history [6]. Similar to URL-hashing, LARD improves the cache hit ratio in

back-end servers by dispatching a request to the server thatmight have served a request of

the same object before. In order to know which server has served a certain object before,

LARD keeps a dispatching history in the front-end load-balancer. For each incoming re-

quest, a history look-up operation is performed to see whether the object has been served.

If so, the previous dispatching destination is used again. If the object has not been seen

before, the currently least-loaded server is chosen.

Unlike URL-hashing, the mapping between an object to a back-end server may change

during the operation. In order to achieve load-balancing among back-end servers, LARD

monitors the load of each back-end server in terms of the number of active connections.

If the load of a server exceeds a certain threshold, the server is considered over-loaded

and incoming requests toward that server will be re-dispatched and bound to the currently

least-loaded server unless all servers are over-loaded. Ifa higher threshold is also vio-

lated at a certain server, incoming requests toward that server will be re-dispatched to the

currently least-loaded server no matter what. By changing the mapping between objects to

servers, LARD sheds load from over-loaded servers and movesit to other servers, achieving

load-balancing.

LARD/R, a variant with replication capability, associatesmultiple servers with an ob-

ject, and the least-loaded one is chosen as the dispatch destination. The set of servers for

an object increases when even the least-loaded one in the setis considered over-loaded. On

the other hand, a server is removed from the set if the currentset of multiple servers does

not need more, or has not been recently reduced for a certainperiod of time. This scheme

can distribute the requests of one single hot object to multiple servers. It also improves

22

fault-tolerance because an object may still be served from memory if multiple servers are

associated with it and one vanishes due to server failure.

As the size of the cluster increases, LARD and LARD/R are morescalable than ear-

lier designs. Its later developments improved scalabilityfurther by supporting persistent

connections and separating network-layer connection distribution from request dispatch-

ing [8]. However, the request-dispatching history, which every front-end device must look

up and update frequently, is still a centralized component.As the request rate increases,

the frequent operations on the history may become the bottleneck in the system. Moreover,

load-balancing in LARD depends on appropriate setting of thresholds. Setting the thresh-

olds too high results in poor load-balancing. On the other hand, LARD degenerates into the

regular least-connection algorithm if the thresholds are set too low. One may also improve

the cache-hit ratio by employing cooperative caching middleware [13]. A simulation-based

study [25] shows a comparable performance to LARD, but it also required a centralized

component.

Hash-based load-balancing techniques have also been used in a cluster of proxy servers

in local area networks. With adaptable controlled replication (ACR) [78], each proxy server

is responsible for a partition of URL space, which is dividedby a hash function. In addi-

tion, some space can be used for caching any objects. When a client request arrives at a

proxy server, the server first checks its local cache and forward the request to the respon-

sible server. In this design, frequently-accessed objectscan be cached in all proxy servers,

which may not be necessary. In addition, the space for caching any object must be large

enough to be effective.

There are also algorithms that adjust the size of a cluster oruse request-batching in

order to improve energy efficiency [19, 33, 60, 74]. In these cases, each server’s capacity

is proportional to its CPU clock frequency and the number of servers in the cluster may

vary with the workload. These methods use simple load-balancing algorithms in their de-

sign. When multiple services are hosted on a cluster, a resource-allocation mechanism has

23

also been used to manage server performance [7]. Virtualization provides an alternative

approach to partition and manage computing resource and canbe used to improve some of

these earlier designs.

2.4 Consistent Hashing

Simple hash-based designs do not handle the addition or the removal of servers well. A

large number of requests can be reassigned to different servers, and the benefit of locality

is lost. Consistent hashing is a technique that minimizes the change of the mapping with

respect to server arrivals and departures. The domain of hash values is divided into parti-

tions. Partitions may be of different sizes. When a new server is added, one partition is

divided into two. Similarly, when a server departed, its partition is merged with either one

of its two adjacent neighbors [50].

Using consistent hashing, one deals with the frequent arrival and departure of nodes

in a peer-to-peer network. Both Chord and Pastry use consistent hashing to map keys to

peer-to-peer nodes [63, 72]. While they adopt different message routing protocols, the

look-up operation completes in predictable time in both networks. Other similar designs

include Tapestry and CAN [61, 82]. On top of these networks, several applications, such

as cooperative persistent storage and event notification systems, have been built and evalu-

ated [15, 26, 30, 62].

Peer-to-peer networks generally have a much larger number of nodes than server clus-

ters. In addition, server clusters usually do not change their size frequently. While a good

hash function spreads keys evenly over all nodes, hot spots are usually not a concern in

peer-to-peer networks. For example, frequent look-up of a hot key may overload the node

that stores its value and results in a longer response time oreven partial service outage. If

the number of hot keys is smaller than the number of nodes, load imbalance may occur.

Amazon also uses consistent hashing to create a key-value storage, Dynamo, but all its

24

nodes are owned by one organization, Amazon [28]. New servers can be deployed on de-

mand to handle extra workloads. Its replication scheme spreads the load to a fixed number

of nodes. Furthermore, load-balancing is improved by usingvirtual nodes (tokens) as an-

other layer of indirection. A node can shed its workload by transferring some of its tokens

and the associated data to another node. Our work differs from Dynamo in that we use the

resource-allocation flexibility in the infrastructure to improve resource utilization. As we

allow a larger extent of workload imbalance between nodes, our hashing design becomes

simpler.

2.5 Distributed Parallel Computing

As the amount of data and the complexity of algorithms increases, multiple computers are

frequently used in parallel to solve a single problem in shorter time. When running a dis-

tributed computing program, each compute node may run the same or different programs

and they may communicate to each other while working toward aresult. Depending on the

nature of the problem to solve, one can use data and task parallelism to speed up a program.

2.5.1 Data Parallelism

When the data to be processed can be partitioned into large chunks and each chunk can

be handled independently of each other, one can exploit dataparallelism to achieve paral-

lel processing. Each compute node can handle one chunk independently and the results,

which are usually much smaller than the chunk size, are combined in a later stage. There

are several systems that assist large-scale data parallelism program development such as

Map-Reduce [27], Hadoop3, and Dryad [48].

Since each data chunk can be processed independently, one can simply assign each idle

compute node a chunk of data until all data are processed. Each node runs as fast as pos-

3http://hadoop.apache.org/

25

sible to process the data. Except in the final stage where all chunks have been dispatched,

the workload is balanced in a compute cluster.

2.5.2 Task Parallelism

If data parallelism cannot be easily realized, one may divide the problem by its functions

into several programs and run each program on a separate compute node. These programs

may communicate frequently during their execution. For example, the data set of computer

simulation of fluid dynamics or fast Fourier transforms cannot be divided into disjoint sub-

sets, so these problems are usually implemented with a message passing library, such as

the Message Passing Interface (MPI).

Since the execution of one compute node may depend on the datagenerated at another

node, a node may become idle if the data that it depends on are not available. Moreover,

each program may require a different amount of resource. Theslowest node in a cluster can

easily become the bottleneck of the system. Generally, it ismuch more difficult to place

balanced workload and fully utilize all resources in a cluster in MPI programs. Our work

is for the task parallelism programs that communicate and synchronize frequently during

their execution. Virtualization and consolidation make idle cycles available to other VMs

on the same physical host. DPS adapts the CPU cycle allocation so parallel programs can

finish faster.

2.6 Cluster Scheduling

Improving the utilization of multiprocessor systems has been investigated extensively. In

1982, Ousterhout first introducedcoschedulingwhere busy waiting was suggested instead

of blocking at synchronization [57]. It was then calledgang schedulingamong researchers

and the performance was analyzed by Feitelson [35]. It has been shown that scheduling

multiple processes (or threads within a process) in a gang with busy waiting can reduce

26

program response time for fine-grain synchronization activities. On the other hand, for

coarse-grain synchronization processes, or for processesthat have unbalanced workload be-

tween synchronizations, coordinated scheduling is not beneficial. Feitelson also proposed

space-sharing packing schemes to improve utilization, where process migration between

processors was also used to reduce fragmentation [34]. Morerecently, gang scheduling is

also used in clusters as well [37, 47].

However, gang scheduling is not scalable, especially in a loosely-coupled environ-

ment where communication and synchronization costs are high. Instead, multiple implicit

scheduling approaches are proposed to synchronize the execution of a parallel program

across local schedulers using activities such as message send and receive, which imply

synchronization [2, 22, 32, 56, 70]. These approaches use a combination of strategies to

determine what to do while waiting for messages and when messages have been received.

Optimizations are also being done in lower levels. By prudently selecting processes to co-

schedule on a symmetric multiprocessor system or within a simultaneous multi-threading

processor, contention on memory bandwidth or functional units can be avoided, and thus,

utilization can be improved [4, 69].

Proportional-share schedulers, such as borrowed virtual-time (BVT) scheduling, lottery

scheduling, and stride scheduling, are used to provide fairness in a resource-competing

environment [31, 76, 77]. While proportional-share scheduling has also been applied to

a network of workstations with implicit scheduling [9, 10],its use was limited to sup-

port fairness across a cluster. Tickets are not dynamicallytransferred at run-time. Tickets

for multiple resources are discussed and exchanging resources with competing process is

proposed [73].

Scheduling VMs is a much less explored issue, although it hasa great deal of similarity

to normal CPU scheduling. VSched tackled this problem by utilizing a real-time process

scheduler and a controlling daemon tweaking scheduler parameters to schedule VMs run-

ning as processes in Linux [54]. While they applied VSched toparallel programs, the result

27

showed that the actual computation rate is very sensitive toscheduling parameter choices

(slice/period) and the real-time scheduler can provide performance isolation to VMs. We

extend the concept by dynamically transferring CPU shares among peer VMs and also

migrating VMs to further reduce program response time and cluster utilization.

2.7 On-line Game Servers

The game server workload and its traffic characteristics have been detailed in various stud-

ies [17, 18, 24, 52]. The online games under these studies range from first-person shooter

(FPS) games, role-playing games (RPG), and massively multiplayer RPGs (MMORPG).

Online gaming traffic patterns contain bursts of small packets with predictable long-term

rates. The game server workload also exhibits the time-of-day and day-of-week effects.

There are also several studies on the effect of loss, latencyand jitter on user experience in

FPS, racing, and a highly-interactive games [12, 45, 59, 79]. Both subjective and objective

metrics have been used in these studies. They found that while a<5% packet loss and the

existence of jitter have no impact on the quality of game play, a latency as low as 100ms

can significantly degrade precision shooting performance in FPS games. For MMORPGs,

the effect of latency is not as stringent as in FPS games. A game can still run smoothly

with a 1250ms latency [38].

Hosting game servers in data centers has been proposed in [64, 66]. A provisioning

manager is used to decide how resources should be allocated.They studied the quality of

several metrics as workload estimators and concluded that smoothed metrics cannot accu-

rately track server utilization when the session arrival rate is high. Although several CPU

and network resource utilization-based metrics have been compared to each other, it is un-

clear whether the game server faces fierce competition from other hosted workload and its

implication on responsiveness. Our work uses virtualization to consolidate game servers

and monitors the time it takes to deliver user input packets to game servers.

28

Chapter 3

Vibra: Virtualization-Based Resource
Allocation for High-Availability Web

Server Clusters

3.1 Introduction

World Wide Web is undoubtedly the most important application of the Internet. Individuals

increasingly rely on it for their daily lives and companies conduct various types of business

with it. After nearly 20 years of development, web server clusters have become the standard

means for deploying scalable, high-availability web services. A web server cluster usually

consists of a number of servers and a dispatcher of incoming requests. Typically, each web

server is hosted on a separate physical server and a dispatching mechanism is designed to

reduce the average response time, improve the throughput, and ensure the availability of

the web service. Frequently, web server clusters are hostedin large data centers, where re-

dundant power facilities and network connections are provided for uninterrupted operation

and service.

By hosting web servers on physical servers, one may easily control the amount of re-

sources that a service can utilize. However, the resources allocated to, but left unused by

the service cannot be easily re-allocated for other purposes, thereby resulting in low re-

source utilization, high costs, and energy waste. As virtualization provides the flexibility

of resource allocation that physical servers lack, it is becoming popular to deploy servers

in virtual machines (VMs).

29

Instead of allocating physical servers to customers, data center operators can virtual-

ize the servers and allocate virtual resources to the customers. Unlike physical resources,

virtual resources like CPU, memory, network and disk bandwidths, can be divided into

smaller units and dynamically (re)allocated to VMs. When one owns multiple VMs in a

data center, virtual resources can also be transferred between his VMs. In other words,

resources can be allocated in a hierarchical fashion: virtual resources are allocated to a cus-

tomer who then creates VMs and assigns the virtual resourcesto them. We call this scheme

VIrtualization-Based Resource Allocation(Vibra).

A VM server cluster—where each server is a VM and shares a pool of resources with

other servers in the cluster—is akin to a typical physical server cluster (e.g., both use redun-

dancy for fault-tolerance and load-balancing). Each physical server has a fixed amount of

resources, whereas the resource allocated to a VM can be adjusted dynamically at run-time.

With the new flexibility empowered by virtualization, workload-distribution algorithms can

be re-designed for VM server clusters. Specifically, we re-design a web server cluster,

called aVibra Web, to make existing systems utilize resources better and morescalable

with virtualization.

Request-dispatching algorithms can be classified ascontent-unawareor content-aware.

Content-unaware algorithms, such as round-robin and least-connection, are scalable but

less efficient. For example, a popular file may be cached in every server, taking up ex-

tra memory space. On the other hand, content-aware algorithms, such as LARD [58] and

HACC [81], improve resource efficiency and cluster throughput. However, they use acen-

tralizedrequest dispatcher in order to balance the workload among servers within a cluster

while keeping track of locality. Such a request dispatcher is not scalable and can become a

performance and reliability bottleneck within the cluster.

In Vibra Web, two key functions of a content-aware request dispatching algorithm—

namely, improving locality and load-balancing—are cleanly decoupled from each other.

In the front-end, a hash function applying to the URL in each request is used to parti-

30

tion the workload into disjoint subsets. This approach is called URL-Hashingin some

load-balancers, albeit the actual hash functions used by commercial products are usually

obscured on public documents. We use a very simple algorithm—the sum of the character

code of the URL modulo the number of back-end servers—as the hash function. We call

this algorithmCharsum. Each subset is only dispatched to one or a small number of servers

to improve the locality. Since the hash function is stateless, the URL-Hashing scheme is

scalable because multiple independent front-ends can be deployed simultaneously.

While URL-hashing is scalable, each subset may impose a different resource demand

on each server. Instead of balancing the workload of subsets, we balance the resource uti-

lization of servers. A resource-allocation agent is used tomonitor the resource usage of

each VM and signal resource transfers to the data center operator. The goal is to keep the

resources utilized as evenly as possible. While the agent isalso a centralized component, it

is more scalable due to much fewer states and much less computation it requires. Making

the agent fault-tolerant is also much easier than LARD for the same reasons.

The performance of Vibra Web is evaluated by using the trace from the World Cup’98

web site and a synthetic YouTube-like workload generator. Vibra Web is compared against

other request-distribution policies, including round-robin, least-connection, LARD, and

LARD/R. With the URL-hashing front-end in conjunction withthe proposed resource-

allocation agent, the average response time is reduced by upto 51% compared to LARD.

Alternatively, the same service quality can be achieved with 20% less bandwidth than

LARD. The throughput of the cluster is also as good as LARD when there is no hot-spot

in the cluster and 32% faster than LARD when the concurrency level is high. The front-

end also uses much less CPU and memory resources. Other than a0.03µs overhead of

calculating hash values, the front-end does not use more resources than simple dispatching

algorithms.

This chapter is organized as follows. We describe the architecture of a VM-hosting data

center and Vibra Web in Section 3.2. The URL-hashing scheme and the resource-allocation

31

Figure 3.1 Comparison of a physical server cluster, customer-initiated virtualization, and data
center-managed virtualization.

agent are described in Section 3.3. Our implementation of Vibra Web is detailed in Sec-

tion 3.4 and the experimental evaluation results are presented in Section 3.5. We discuss

an alternative approach and the limitation of Vibra in Section 3.6 before summarizing this

chapter in Section 3.7.

3.2 Vibra VM Hosting

Clustering is commonly used for Internet servers to providescalable and high-availability

services. This section first presents the model of a traditional physical server cluster and

then discusses the rationale behind the hierarchical allocation of virtual resources in large

data centers.

3.2.1 Physical Server Clusters

Using a physical server cluster for each Internet service isthe simplest way for a data center

operator to make resource-allocation guarantees for theircustomers. A number of physical

servers and a front-end request distribution device are allocated for each service. The op-

erator may also impose an egress network bandwidth limit foreach cluster. The model of

a physical server cluster is depicted in Figure 3.1(a).

The number of physical servers in a cluster is usually determined based on the es-

32

timation of peak demand. In addition to this peak-load-based cluster sizing, the server

redundancy requirement for fault-tolerance makes the server cluster utilization usually very

low, especially for small services. In an extreme case wherethe workload can be handled

by just one server, this redundancy requires the addition ofanother identical server, re-

sulting in a 50% reduction of server utilization. While sharing physical servers between

clusters for handling peak demand and meeting the redundancy requirements (albeit to a

less extent) can improve utilization, these setups are rarely used due to long re-targeting

time and complicated (re)configuration. As a result, excessive resources cannot be easily

utilized.

3.2.2 Virtualization in Data Centers

Server virtualization allows resource-allocation guarantees while providing security bound-

aries and performance isolation between VMs. Each VM is assigned a fraction of CPU, a

portion of main memory, a virtual storage, virtual network interfaces, and so on. Some vir-

tualized systems also allow resource-allocation adjustments without power-cycling VMs.

Data center customers running multiple services can virtualize their servers and deploy

VMs of different services on top of a physical server cluster. We call this schemecustomer-

initiated virtualization(Figure 3.1(b)).

In addition to sharing hardware resources, a cluster’s egress network bandwidth is also

shared among hosted services, which can be regulated by shaping traffic in either VMs or

VM monitor (VMM). With proper VM sizing and placement, the redundancy can be pre-

served at a lower cost while benefits on utilization are limited by the number of services

and the demand of each service.

Alternatively, data center operators can virtualize physical serversa priori and allocate

VMs to customers. Essentially, the VMM becomes an extensionof the data center’s in-

frastructure and manages physical resources on the physical server. We call this scheme

data center-managed virtualization(see Figure 3.1(c)). As long as each VM is placed on

33

a different physical server, the redundancy level for a VM cluster is the same as that for

a physical server cluster. In this scheme, excessive resources can be returned to the data

center if customers are given incentives to do so. When the resource demand increases,

customers can also ask for more resources, which can be allocated to, and used by VMs.

If a physical server cannot meet the resource demand, live VMmigration can be used to

change VM placements inside a data center and create more headroom without service

interruption.

3.2.3 Vibra VM Clusters

When a customer owns multiple VMs in a data center, virtual resources can also be trans-

ferred between his VMs. VMs that execute his service(s) can share a common pool of

resources, and the resources in a data center are allocated in a hierarchical manner: the

data center operator first allocates an aggregate amount of resource to a customer which is

then distributed to his VMs. In other words, when acquiring computing resources from a

data center, a customer only needs to specify the total amount of resource and the number

of VMs that he needs for his application(s). Since this allocation is based on virtualized

resources, we call itVIrtualization-Based Resource Allocation(Vibra).

In Vibra, the aggregated amount of resources allocated to a customer or a service is

fixed. Compared to a service-level-oriented contract, the data center operator can easily

make a commitment to a resource-allocation-contract. On the other hand, a customer still

has the flexibility to distribute resources according to hisneeds. We use this flexibility to

design a web server cluster in the next section.

This scheme also frees customers from packing multiple VMs into fewer physical hosts

to reduce cost. Moreover, if the demand grows beyond a cluster’s capacity, one can merely

increase the resource pool and allocate the newly-acquiredresources without incurring any

downtime. This scheme can also remove the need for over-provisioning servers.

Although the insertion of a VMM may incur some overhead of running servers, its

34

advantages—namely, a secure and flexible way of resource allocation, and decoupling

server system design from resource provisioning—can better utilize data center resources

and better control server performance.

3.3 Vibra-Enabled Web Cluster

We use the Vibra hosting model to build a scalable and resource-efficient web server cluster,

Vibra Web. Today’s web server workload is mainly composed of two parts: CPU-intensive

dynamic content creation andbandwidth-intensivestatic content service. In this chapter,

we build a web cluster that serves static content to exemplify the use of Vibra on a typi-

cal load-balancing application. We focus on two resource types: network bandwidth and

memory. CPU utilization is not considered here because it isusually not a bottleneck when

static files are served.

The design of a content-aware cluster can be simplified by using Vibra. Instead of

moving the workload among servers for load-balancing, Vibra transfers resource alloca-

tions among VMs and balances the utilization of VMs. Vibra Web composed of two

main components: (1) URL-hashing, a stateless and scalablerequest dispatcher, and (2)

a resource-allocation agent. The design of the two components are detailed next.

3.3.1 URL-Hashing Dispatching of Requests

The goal of the locality-aware request dispatcher is simplyredirecting requests for high

locality affinity. Imbalance in VM workloads is handled by the resource-allocation agent

which moves virtual resources among VMs.

Due to the usually enormous number of requests that a popularweb site has to process,

the dispatching algorithm must be scalable. This requirement is similar to that of CPU

cache design, where the cache look-up algorithm needs to scale with large cache size and

high clock frequency.Statefulalgorithms—whether they keep track of currently-cached

35

Figure 3.2 The architecture of a URL-hashing web server cluster. The mapping between different
layers is shown in dotted lines and an example is drawn with bold lines.

objects or previous dispatching history—are unsuitable for handling an excessive number

of requests to popular web sites.

Our design consists of three steps as depicted in Figure 3.2.It first divides the names-

pace of incoming requests into multiple mutually-exclusive sub-namespaces. Each sub-

namespace is then mapped to a subset of back-end VMs, where the least-loaded VM is

selected to serve an incoming request. Cache affinity is improved because requests of the

same sub-namespace are always handled by one subset of back-end VMs.

In case of HTTP requests, hashing the URL string is an effective and scalable way of

dividing the namespace. A low-cost hash function is preferred as the imbalance caused

by an uneven hash value distribution can be compensated by adaptive resource alloca-

tion/migration. Assuming that the cluster consists ofN VMs (VM1, . . . ,VMN), we use

a hash function that returnsN different hash values, and therefore, createsN URL sub-

namespaces.

After a URL string has been sorted into a sub-namespace, there is a 1-to-1 correspon-

dence between a sub-namespace and a subset of back-end VMs. In order to improve

scalability, we make all server subsets contain an identical number of VMs and have a

fixed mapping. We choose a simple, stateless function to create server subsets. Assuming

there areR VMs in subseti (i = 1, . . . ,N), we simply placeVMi and the nextR−1 servers

into subseti (with wrap-around). We callR the replication factor. The dispatcher then

simply looks at the load of theseRVMs and choose the least-loaded to assign an incoming

request. The number of active connections is used to estimate a VM’s load.

36

Figure 3.3 Dynamic resource allocation using an agent with the help of adata center-managed
VM directory.

The purpose of having multiple VMs to serve a URL sub-namespace is two-fold. First,

it creates another layer of load-balancing for each sub-namespace. Second, it also facili-

tates failure recovery because a frequently-accessed object can be cached in more than one

VM. If R= 1, while the cache affinity is the highest, the cluster solelydepends on Vibra

to balance resource usage. Also, note that whenR = N, this architecture reduces to the

least-connection dispatching algorithm and loses all benefits from locality. This design is

akin to the associativity in CPU cache design.

3.3.2 Resource-Allocation Agent

Having a small replication factor inevitably introduces some imbalance in back-end re-

source demands. For example, a popular video file in YouTube can generate much more

traffic than other larger but less popular files, which may even force more frequently-

accessed files to be paged out. We would like to re-distributeresources in order to balance

the utilization of back-end VMs.

For each type of resource, a resource-usage monitor periodically reports the current de-

mand level. The resource-usage monitor can reside either atthe VMM or within each VM.

Depending on the monitoring approach used, different sample frequencies and a smoothing

function can be used for a different type of resource. The reason for applying a smoothing

function is to obtain a more stable reading instead of transient demands.

Combined with the current resource allocation, the agent then determines a new allo-

37

cation and then informs VMMs to take appropriate actions (Figure 3.3). We use network

bandwidth allocation as an example. Assuming that a web cluster consists ofN VMs and

has been allocated a total bandwidth ofBW Mbps, the customer can arbitrarily allocate

bwi > 0 Mbps out of the total bandwidth toVMi(i = 1, . . .N,), as long as∑N
i=1bwi ≤ BW.

Assuming that the recent resource demand can be used to predict resource demand in

the near future, we use a simple policy that aims to achieve anequal bandwidth utilization

across all VMs. In other words, excessive bandwidth, if any,is distributed to VMs pro-

portionally to their current usage. If the current bandwidth utilization of each VM isui

Mbps (i = 1, . . . ,N), we estimate current bandwidth demandd′
i by applying an exponential

moving average to previously-estimated bandwidth demanddi as:

d′
i = α ·di +(1−α)ui. (3.1)

The new bandwidthbw′
i allocated toVMi is then calculated as:

bw′
i =

d′
i

∑N
i=1d′

i/BW
. (3.2)

When making changes, the agent first reduces the bandwidth allocation from the over-

provisioned VMs, and then increases the bandwidth allocation for the rest of VMs. This

will always keep the total bandwidth within the entitled amount.

If the physical host failed to provide enough resources, theresource-allocation agent

can ask the VMM to migrate the VM to another physical host or instruct the VM owner

(the customer) to use a web cluster to replace the bottleneckserver. Unlike mere addition

of servers to the cluster, this method does not affect the files cached in other servers at the

cost of a second URL-hashing computation and request distribution.

This proportional resource-allocation policy is suitablefor typical server clusters, where

all servers are of the same value. If a customer provides different classes of services to

end-users, resource distribution can be skewed toward high-valued services as well.

38

3.4 Implementation

We implemented Vibra using Xen [11] along with a custom-madeVM directory service,

which keeps track of cluster-wide VM placements and resource allocations. We have also

built an application-layer HTTP request dispatcher and a bandwidth-allocation agent to

realize Vibra Web. The implementation details are discussed next.

3.4.1 Xen VM Hosting

There are many different VMMs available for x86 hardware. Wechose Xen (version 3.0.2)

for its physical resource abstraction, low overhead, and open source. However, the concept

of Vibra can also be applied to any other VMM.

Xen-modified Linux kernel 2.6.16 is used as both the host OS (domain 0) and the guest

OS. The size of main memory allocated to each VM can also be changed on-the-fly, al-

though at present the new memory size cannot be larger than the initial allocation at the

time of its creation. Virtual Ethernet interfaces (ethn) created in VMs are connected to vir-

tual interfaces (vifn.m, wheren is a Xen domain ID andm is an interface ID) in domain 0,

where virtual interfaces are bridged. While we do not manageCPU time allocation in this

chapter, Xen also implemented various CPU schedulers.

3.4.2 VM Directory

The VM directory is set up as a centralized repository for (1)customers’ resource bounds,

(2) VM resource allocation and utilization, (3) physical host capacity and utilization, and

(4) VM-to-physical host mapping.

Physical hosts and VMs periodically report their current resource utilization to the VM

directory. Agents make allocation decisions based on the information available in the di-

rectory. An agent manipulates resource allocations by modifying the corresponding entries

in the VM directory. The directory validates each change by checking the customer’s

39

resource bound and physical host utilization. It then looksup the VM location for the

VM-to-physical mapping and sends out the allocation request to the VMM on behalf of the

agent. Although not discussed in this chapter, a data centercan also use the directory to

identify physical hosts that become bottlenecks or adjust VM placements to save power.

VM migration can then be initiated to change the VM placements.

3.4.3 URL-Hashing Request Dispatcher

The URL-hashing HTTP request dispatcher is built as a user-space process. It listens on a

TCP port and waits for incoming connection requests. For each HTTP request, it reads the

header and parses the URL. Based on the object name (not including the search part, i.e.,

anything after the question mark ‘?’ in a URL), a hash value iscalculated. We use a very

simple hash function—the sum of the character code values ofthe URL modulo the number

of back-end servers—to sort a URL into one of the sub-namespaces and its corresponding

VM subset, where the least-loaded server is chosen as the dispatching destination. We call

the simple algorithmCharsumand also incorporate the commonly used MD5 and SHA-1

algorithms1 for comparison. The dispatcher implements HTTP/1.1 and maintains persis-

tent connections to back-end VMs. If all connections to the destination VM are in use,

it will create a new connection before relaying the request and the response between the

two ends. Otherwise, it simply reuses existing connections. It also keeps the client-side

connections open as defined in HTTP/1.1 and each HTTP requestin a TCP connection can

be dispatched to a different server.

We use theepoll I/O event notification facility in modern Linux kernels for its high

scalability. Higher performance can be achieved by portingthe dispatcher into kernel and

using TCP splicing or experimental TCP connection hand-offprotocols [6, 46, 58]. A

detailed analysis of these techniques can be found in [14]. For the purpose of compari-

son, we also implemented round-robin, least-connection, LARD and LARD/R in the same

1We use the MD5 and SHA-1 implementation in LGPL Crypto library.

40

program.

3.4.4 Traffic Classification and Policing

As mentioned in Section 3.2, besides CPU, memory, and other resources, the VMM

also needs to manage the network bandwidth of each VM. We use the netfilter

(a.k.a.iptables) to implement traffic classification and policing.

We first classify network traffic as egress or intra-datacenter (internal) traffic. We use

the source IP address to identify the sending VM and the destination address to classify

traffic. Once packets are classified, they are placed into different queues created by thetc

(traffic control) command. Each class of traffic is put into a different token bucket to limit

its bandwidth utilization.

3.4.5 Bandwidth-Usage Measurement

Ideally, the agent would like to know the actual resource demand of each VM with some

degree of accuracy. Unfortunately, for example, a transport layer protocol such as TCP

can adapt its transmission rate to the available bandwidth and, therefore, conceal the real

need. One possible method to estimate the actual demand is tolook into the per-connection

TCP transmission queue and the NIC buffer in the guest OS. Although this approach might

give us a better estimate of bandwidth demand of an existing traffic source, it is not al-

ways possible to instrument in a guest OS to gather such information. We therefore use the

egress traffic matching rule at the VMM and take the packet-enqueuing rate as the current

bandwidth demand. Intranet traffic is not counted because bandwidth within a data center

is much cheaper and abundant. The statistics, including thenumber of packets and bytes

that a VM has sent, are polled using theiptables command every second and logged in

the VM directory, where the exponential moving average function is applied. There is also

an API to traverse rules if a lower overhead is desired.

41

3.4.6 Estimation of Working Set Size

It is non-trivial to measure the working set size. In Linux, the virtual memory system uses

two lists, active and inactive page lists, to approximate the least-recently-used (LRU) strat-

egy. While the total number of active pages is supposed to estimate the working set size, in

reality it does not—the default virtual memory system tendsto keep a large active list and

moves active pages to the inactive list only when memory space is needed.

We modify the Linux kernel such that the active list size can be used to estimate the

working set size. In a static-content web server workload, we expect that most memory

pages, and also most memory pages in the active list, are usedto store web objects. These

files are only mapped into a virtual address space when they are being accessed. On the

other hand, web server programs are mapped into one or more virtual address spaces for

most of the time.

Similar to the/proc/sys/vm/drop caches function, we created a function,

nameddeactivate caches, that moves active but non-mapped memory pages into

the inactive list. We also marked those pages as “referenced” so that the next time they

are accessed they will be moved back into the active list (otherwise, they will only be

marked as “referenced”). At that time, all memory pages in the active list must be mapped

into some virtual address space. In addition, the “swappiness” factor (/proc/sys/vm-

/swappiness) is set to 0 to slow down the process of moving pages from the active list

to the inactive list.

We then wait for a short period of time. The size of active listincreases as cached

blocks are referenced and used as an indicator of the workingset size. If we read the size

of active list too soon after deactivating caches, the result might be biased toward a transient

behavior. On the other hand, the default active list management may kick in if we wait too

long. The effect of this wait time and also the overhead of moving pages between active

and inactive lists are evaluated in Section 3.5.

42

3.4.7 Resource-Allocation Agent

We implemented the proportional resource-allocation agent described in Section 3.3.2. The

agent runs in one of the customer’s VMs and connects to the VM directory for all neces-

sary information. Note that the communication with the VM directory is treated as intranet

traffic and hence, is not limited by the egress bandwidth quota.

The frequency of adapting resource allocation depends on how frequently the workload

pattern changes. While frequent bandwidth adaptation accelerates the speed of draining

the packets queued due to the lack of bandwidth, it may also affect TCP window size adap-

tation adversely. We tried different adaptation frequencies and the results are reported in

Section 3.5.

On the other hand, adapting memory allocation is a much more expensive operation.

Newly-added memory pages show up as free space in a VM and waitfor uncached objects

to be loaded. Removing memory pages usually signals the virtual memory manager in

the VM for page-out activities. Although most memory pages are clean in a web server,

scanning page lists and modifying page tables are still not cheap. Therefore, memory page

transfers should be invoked less frequently. In the next section, we evaluate the overhead

of different invocation frequencies.

3.5 Evaluation

We have built a testbed to evaluate the performance of Vibra Web. The VM cluster con-

sists of 4 PCs as host machines, each equipped with a Pentium-4 2.66GHz CPU and 1GB of

main memory. Another machine (P4 2.26GHz) acts as the request dispatcher and also hosts

the VM directory service. All of them are interconnected viaa gigabit Ethernet switch. A

second network interface on the request distributor is connected to a machine that generates

clients’ traffic.

43

Dispatching algorithm Round-robin Charsum Hash MD5 Hash SHA-1 Hash
% of requests processed 25/25/25/25 27/27/20/26 29/17/28/26 27/22/24/27
% of total transfer size 25/25/25/25 14/64/10/12 39/25/16/19 45/15/25/15
of distinct objects 2821/2766/2833/28031167/1159/1143/11871179/1156/1164/11571170/1159/1198/1129
Total size of distinct objects 34/34/33/27 MB 15/13/14/14 MB 11/12/16/17 MB 20/13/13/11 MB

Table 3.1 Statistics of each subset of requests or sub-namespaces using different dispatching algorithms.

4
4

3.5.1 Trace Analysis

We first use the server log from the 1998 FIFA World Cup web site[5], which is still the

most extensive and publicly available web server logs. The workload is mostly composed

of static files. We first choose a 10-minute trace (6:10pm-6:20pm GMT+2, June 30, 1998),

during which the peak demand of the Romania–Croatia game took place. This specific

clip is chosen because, as our trace analysis shows, it represents a worst-case scenario for

URL-hashing in real life.

We first statically analyze various aspects of the trace using different request distri-

bution algorithms (round-robin and URL-hashing with Charsum, MD5, and SHA-1 al-

gorithms) to compare different hash functions and justify the need of dynamic resource

allocation in a cluster. LARD and the least-connection algorithms are not included here be-

cause their results depend on run-time state and actual server configuration. For the same

reason, we set the replication factorR to 1 in URL-hashing.

From Table 3.1, we can see that while URL-hashing approachesgreatly reduces the

number and the total size of distinct objects on each sub-namespace, the requests are not

distributed evenly, no matter which hash function is being used. In terms of number of

requests in each sub-namespace, SHA-1 distributes the requests most evenly while the sub-

namespace 1 in MD5 has 75% more requests than sub-namespace 2. However, in term of

total transfer size, the distribution by MD5 is more even than the ones by Charsum and

SHA-1. The total transfer size of sub-namespace 2 is more than 6 times greater than the

one of sub-namespace 3 when Charsum is used. The ratio is alsoas much as 2.4 times

when MD5 is used. This indicates the need of dynamic resourceallocation.

Moreover, the URL-hashing reduces the number and the total size of distinct objects

significantly. We note that the total size of distinct objects is most evenly distributed when

Charsum is used. As there is no one hash function outperformsothers in all measures, and

also that the results are likely to be specific to the trace we use, we cannot dismiss any hash

function after the analysis.

45

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1

C
um

ul
at

iv
e

tr
af

fic
 c

on
tr

ib
ut

io
n

Proportion of distinct objects at each server

Server 1
Server 2
Server 3
Server 4

R-R/Random
Original

Figure 3.4 The CDF of total throughput by objects sorted by their contributions.

While the average object sizes (not weighted by their accessfrequency) do not dif-

fer significantly after hashing, differences in bandwidth demand suggest the existence of

hot objectsin this trace. We use the Charsum algorithm as an example. Foreach sub-

namespace, we first sort the objects by their contributions to network traffic (number of

bytes transferred), and plot a cumulative distribution in Figure 3.4. From the figure, we

can see that a very small percentage of files on sub-namespace2 contribute to most of the

server’s bandwidth usage. The distribution is different for each sub-namespace, suggest-

ing that the workload model becomes different after hashing. In contrast, if round-robin is

used, the shape is the same for all servers and is very similarto the original workload.

A closer examination shows that merely 8 files contribute to 90% of traffic in sub-

namespace 2. They are splash screens, the program and statistics (or status)2 of the ongoing

game in both English and French, and two embedded images. In particular, the English ver-

sion of splash screen contribute to about 37% of traffic in sub-namespace 2, or 24% of total

traffic. Coincidentally, two pairs of words, “prog”/“stat”and “english”/“french,” have the

same hash value using Charsum, so the four most frequently-accessed files of a game all

fall into the same sub-namespace. When SHA-1 and MD5 are used, 4 and 3 out of these 8

URLs are hashed to the same server, respectively.

As different games were being played, thehot spotin a workload may also shift from

2We can only guess the content from file names.

46

 0

 1

 2

 3

 4

 5

 6

4pm 5pm 6pm 7pm 8pm 9pm 10pm 11pm 12am

T
hr

ou
gh

pu
t (

M
B

/s
)

Local time

Server 1
Server 2
Server 3
Server 4

Figure 3.5 The throughput of each sub-namespace using Charsum. The hotspot moves from
sub-namespace 2 to sub-namespace 1.

one server to another. This effect can be seen easily with an 8-hour throughput history

that covers both games played on June 30, 1998 (Figure 3.5). The Charsum algorithm

makes both splash screens and information about the first game on sub-namespace 2, which

started at 4:30pm. The second game started at 9pm and its gameinformation is hashed to

sub-namespace 1 instead, while the splash screens are stillserved from sub-namespace 2.

This strong evidence confirmed the need for dynamic bandwidth allocation.

3.5.2 Overhead Analysis

In addition, we also compare the cost of different dispatching algorithms. We apply each

hash function to the 90,000 URLs in the World Cup trace and measure the average time

it takes to hash a URL string and make a dispatching decision.Round-robin serves as

the control group here as it simply loads URLs into memory andsimply discards them.

Although Charsum generates undesirable collisions, it only takes 0.28µs in hashing, or a

merely 0.03µs more than round-robin. Comparing to 1.79µs and 2.39µs for MD5 and

SHA-1 (or 1.54µs and 2.14µs more than round-robin), Charsum is significantly cheaper.

For LARD, we preloaded all 90,000 URLs into its dispatching history and its takes 1.86µs

for each look-up.

In addition, the memory overhead of LARD is much more significant. It uses more than

47

Dispatching algorithm Round-robin LARD Charsum MD5 SHA-1
Cost per hash/look-up (µs) 0.25 1.86 0.28 1.79 2.39
Increases in memory resident set size (4K memory pages) 6 1413 6 20 21

Table 3.2 The CPU and memory overheads of dispatching algorithms.

4
8

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 1 2 3 4 5 6

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(m

s)
Allocation frequency (1/Hz)

alpha=0.1
alpha=0.6
alpha=0.9

Figure 3.6 The effect of different smoothing factors and the frequencyof bandwidth allocation.

5600KB memory to store all 90,000 URLs in main memory,i.e., about 64 bytes for each

distinct object. Comparing to round-robin, Charsum does not use any additional memory.

MD5 and SHA-1 only use a few more memory pages because of the library we used. In a

production system, the number of distinct objects can be several orders-of-magnitude more

than that in this test case, resulting in even higher memory and CPU overhead. We argue

that a cheaper hash function is favorable as workload imbalance can be handled by dynamic

resource allocation. Therefore, for the rest of evaluations, only Charsum algorithm is used

in URL-hashing.

3.5.3 Trace-Based Evaluation

Before applying dynamic bandwidth allocation and comparing URL-hashing with other

algorithms, we first evaluate the effect of the smoothing factor α in Eq. (3.1) for calculat-

ing the bandwidth demand and the frequency of bandwidth allocation. In this evaluation,

the dispatcher is running the URL-hashing algorithm withR= 2. Each server is allocated

48MB of memory and 2.7MB/s of available bandwidth. These numbers are so chosen that

dynamic allocation is necessary to run the workload. Experiments are run repetitively such

that the 95% confidence interval is within 5% of mean value. The results are plotted in

Figure 3.6.

49

 0

 5

 10

 15

 20

 25

 30

 35

 40

 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(m

s)
Initial BW allocation per VM (MB/s)

Round-robin
LARD/R

Least-connection
URL-hashing(R=2)

Figure 3.7 Average response time with different request dispatch algorithms.

We tried different settings but the difference in average response time is found to be

within 10%. With frequent bandwidth allocations, using a largerα is found to result in a

shorter average response time. The opposite trend is less obvious in the graph. A large

α is also less likely to generate dramatic but transient changes in resource allocation. For

α = 0.9, an adaptation interval of 3s is found to be optimal. We chooseα = 0.9 and adapt

bandwidth allocation every 3s for our evaluation.

We compare URL-hashing in a Vibra-enabled web cluster with other approaches, in-

cluding LARD, least-connection, and round-robin in a fixed bandwidth web cluster. LARD

is configured with the parameters published in its original paper [58]. We first compare

them in terms of average response time using the 10-minute trace described above. From

Figure 3.7, given the same amount of bandwidth, URL-hashingwith R = 2 is shown to

be able to reduce response time, on average, by 35% and 51%, over least-connection and

LARD, respectively. In addition, round-robin does not workif less than 3.0MB/s is given to

each VM. LARD and least-connection do not work with less than2.7MB/s, either. URL-

hashing not only can work with 2.4MB/s, but also performs better than the others. On

the other hand, the average response time of URL-hashing with 2.4MB/s is very similar to

least-connection with 3.0MB/s. That is, URL-hashing achieves the same performance level

with a 20% reduction in bandwidth need.

We have also measured disk read activities during the 10-minute evaluation period.

50

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 2.3 2.5 2.7 2.9 3.1 3.3

T
ot

al
 d

is
k

bl
oc

ks
 r

ea
d

(m
ill

io
ns

)
Initial BW allocation per VM (MB/s)

Round-robin
LARD/R

Least-connection
URL-hashing(R=2)

Figure 3.8 Total number of disk blocks read when different request dispatch algorithms are used.

Figure 3.8 shows that both the content-unaware dispatchingalgorithms read in a simi-

lar number of disk blocks. URL-hashing withR = 2 and LARD read in 33% and 49%

fewer blocks, respectively. When bandwidth is scarce, diskactivities are slightly increased

because, with a prolonged service time, the number of concurrent connections is also in-

creased and more memory is used for process images and network buffers (instead of disk

cache).

While fewer disk activities imply better cache hit ratio andscalability, LARD has a

centralized statefuldispatcher which may eventually become the bottleneck. By contrast,

content-unaware approaches have the most scalable front-end but result in lower cache hit

ratio and higher disk activities, whereas the URL-hashing is a balanced approach and can

make a trade-off with the replication factor.

Throughput Comparison

In another experiment, we measured the throughput of the cluster with different levels of

concurrency. Instead of replaying the trace according to the recorded request arrival times,

the client opens a fixed number of connections to the request distributor concurrently and

issues requests as fast as possible. Each VM is allocated 64MB memory and 6MB/s band-

width initially for this experiment. The number of concurrent connections is increased from

140 to 220 and the throughput is plotted in Figure 3.9.

51

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 140 160 180 200 220

T
hr

ou
gh

pu
t (

re
q/

s)
Concurrency (#threads)

Least-connection
LARD

LARD/R
URL-hashing(R=2)

Figure 3.9 Comparing the throughput of different algorithms at different concurrency levels using
the World Cup trace

 5

 5.5

 6

 6.5

 7

 7.5

 8

 400 450 500 550 600

T
hr

ou
gh

pu
t (

re
q/

s)

Concurrency (#threads)

Least-connection
LARD

LARD/R
URL-hashing(R=1)
URL-hashing(R=2)

Figure 3.10 Comparison of the throughput of different algorithms at different concurrency levels
using YouTube-like workload

As shown in the figure, the throughput of the least-connection algorithm decreases as

the load increases, and the least-connection is the slowestamong all algorithms we tested

due to its excessive disk activities. With 140 concurrent connections, LARD and URL-

hashing outperform the least-connection by 26% and 23%, respectively. While LARD is

slightly better than URL-hashing at low concurrency levels, its performance degrades sig-

nificantly with increasing loads, because the hot objects generate significantly more traffic

than others and the network link becomes the bottleneck.

52

3.5.4 YouTube Workload

Besides the World Cup trace, we built a YouTube workload generator and fed the Vibra

Web cluster with much larger file sizes and bandwidth demands. There have been a num-

ber of previous studies on YouTube traffic characterization[16, 20, 40]. The workload

generator first creates a number of files with random IDs, eachof which represents a video

clip. The bit-rate and length of each video clip follow the statistical model reported in [20].

The accesses to these files follow Zipf’s law withβ = 0.56 [40]. We use a different source

for the popularity distribution because the result was derived from areal trace, instead of a

data set generated by a crawler. The crawler follows the related video links so the data set

may be biased toward popular videos. Since the relationshipbetween popularity and video

size (or length) is unknown, we assume they are uncorrelated.

Using the workload generator, 2,000 video files, which take up a total of 12GB disk

space, are generated. The workload consists of 4,000 requests and the size of total data

transfer is 25GB. To serve much larger workloads like this, we allocate 768MB memory

to each VM and a total of 80MB/s bandwidth to the cluster. Since no request inter-arrival

time statistics were available, we could only benchmark thethroughput of the cluster. The

number of concurrent connections is increased from 400 to 600 and the results are plotted

in Figure 3.10.

Since the video IDs are randomized and encoded in URL strings, URL-hashing simply

divided all videos in equal-sized bins. Each bin also has similar popularity and file size

distribution. In other words, there is no obvious hot-spot in the cluster. Both URL-hashing

and LARD, and their replication derivatives take advantageof reduced disk accesses and

are able to achieve a higher throughput than the least-connection algorithm. LARD and

LARD/R are about 40% faster than the least-connection algorithm, while URL-hashing

(whereR= 1) and URL-hashing/R (whereR= 2) are about 30% and 14% faster, respec-

tively. Since the working set size is much larger than the memory size, URL-hashing

performs better as more videos can be cached in memory. WhileLARD/R also has a repli-

53

cation logic, none of the servers in the cluster is underloaded, so no replica was created in

this experiment.

When the number of concurrent connections increased to 515,both LARD and

LARD/R start to degrade dramatically. By the time it reaches525, both of them performed

like the least-connection algorithm, and URL-hashing/R is32% faster than LARD. It is

because LARD and LARD/R simply choose the least-loaded server for dispatching a re-

quest when the destination server is overloaded. When all servers are overloaded, LARD

and LARD/R simply degrade to the least-connection. This experiment shows that the per-

formance of LARD and LARD/R depends on correct adjustment ofthe under-load and

overload threshold parameters. Adjusting the replicationfactor in URL-hashing is straight-

forward because the ratio of working set size to memory size is easier to estimate.

3.5.5 Dynamic Memory Allocation

Since the overhead of estimating working set size is much higher than that of estimating

bandwidth demand, we first evaluate our approach by changingthe measurement frequency.

From Figure 3.11, we can see that increasing the deactivating period from 10s to 60s does

not have any impact on average response time, meaning that our approach has a very low

overhead while a periodic spike of 5ms in average response time can be observed. On the

other hand, dropping caches is extremely expensive and hence infeasible.

Longer sampling periods, however, result in larger active list sizes because more objects

are touched during the period. In Figure 3.12, we plotted thenumber of memory pages in

the active list as a server handling web workload. Irrespective of the sampling frequency,

the active list size does not oscillate much. This means thatdynamic memory allocation

can be performed less frequently and a lower sampling frequency is sufficient.

We applied dynamic memory allocation to our testbed, but found that the active list size

difference between servers was not significant. The reason for this is actually simple: while

hot objects require a lot of bandwidth, they don’t take up much of memory space. It can

54

 0

 20

 40

 60

 80

 100

 120

 10 20 30 40 50 60

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(m

s)
Deactivate/drop frequency (1/HZ)

Deactivate
Drop

Figure 3.11 The impact on average response time by deactivating pages periodically.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30

A
ct

iv
e

lis
t s

iz
e

(M
B

)

Time (minute)

deactivate every 10s
deactivate every 30s
deactivate every 60s

drop every 60s

Figure 3.12 Working set size estimation by deactivating pages periodically.

also be seen from Table 3.1, where the numbers of distinct objects are not much different

among servers. With proper tuning of parameters, disk activities are reduced on three of

four servers. While a better cache hit ratio is achieved, thebenefit cannot be translated into

a reduction in average response time. Thus we do not combine it with dynamic bandwidth

allocation and perform any further evaluation.

3.6 Discussion

In this section, we consider an alternative hash-based approach to design a locality-aware

web server cluster. We also compared it to Amazon’s Dynamo, ahash-based key-store

system which has some similarities with our work. Before concluding this chapter, the

55

limitations of Vibra is discussed.

3.6.1 Alternative Hash-Based Approach

In this work, we divide the URL namespace into equal-sized pieces where the number of

sub-namespaces is equal to the number of back-end server VMswe have. When there is

a imbalance in resource demand of each sub-namespace, we transfer virtual resource allo-

cation between VMs to improve resource efficiency and performance. Another approach

is dividing the URL namespace into many pieces, much more than the number of back-

end servers, and dynamically mapping each sub-namespace toback-end servers to achieve

load-balancing. Since the hot spots are usually consistingof very few objects, one might

need to divide the URL namespace into very small partitions to reduce the peak of a hot

spot.

In order to realize the alternative approach, the back-end servers need to measure the

resource demand of each sub-namespace. To measure throughput, the web server process

can apply the same hash function again to each URL and report throughput for each sub-

namespace separately. However, both CPU time and memory space demand are difficult to

measure in the web server process itself. Another option is to serve each sub-namespace

in a different logical partition in an OS, where the throughput of each logical partition can

be measured. CPU time usage can also be measured easily if logical partitions are used.

However, it is still difficult to measure working set size foreach sub-namespace as the

buffer cache is shared between all partitions. After knowing the resource demand of each

sub-namespace, one may adapt the sub-namespace-to-servermapping at the front-end to

achieve load-balancing,e.g., by moving one or more sub-namespaces from the most-loaded

server to the least-loaded one.

Comparing to our approach, the front-end load-balancer needs to keep a small number

of state, which does not reduce its scalability as the state is not updated frequently. Multiple

front-end load-balancers operating with a slightly out-of-sync mapping is also acceptable

56

as the locality is only reduced during the synchronizing period. However, as the infrastruc-

ture may already be virtualized by the data center operator,hosting each sub-namespace

inside a logical partition only increases overhead. In addition, in Vibra each type of re-

sources can be adapted independently, but all types of resources are coupled together when

fitting multiple sub-namespaces on a server. In the future, we would like to implement this

alternative approach and compare it with Vibra quantitatively.

3.6.2 Comparing to Dynamo

As we have briefly introduced in Chapter 2, Amazon’s Dynamo isa key-value store that

also uses hashing to partition its key space and distribute the workload among a cluster of

servers. Similar to the alternative approach that we discussed above, the key space is di-

vided up to 30 times more than the number of servers,i.e., each server is handling 30 small

partitions. The number of partitions in an instance of Dynamo (a cluster of servers) is fixed

during the operation. The partitions are always evenly distributed to all servers. In other

words, only the addition or removal of servers changes the number of partitions assigned

to each server.

This design is adequate for Dynamo because they assumed there are enough hot spots

in key space that through hashing and partitioning hot spotscan be evenly distributed to

all servers. Clearly, the distribution of their workload presents enough diversity so the load

imbalance can be handled. However, an instance of Dynamo is dedicated to a very simple

task, such as shopping carts, session management, or product catalog. For these services,

the size variation of each key-value pair and the resource demand of each look-up request

are much more moderate than a typical web site, where the large objects can easily take

up more than 100MB of memory space and creating dynamic content can use much more

resources than serving static content.

57

3.6.3 Limitations

Vibra also has its own limitations. First of all, in this workwe only address the imbalance

in network throughput, our workload does not manifest enough variation in working set

size. As we only deal with static content, we simply assume that CPU demand does not

create a bottleneck.

We also assume that the underlying physical server can provide enough computing re-

sources for a VM. If one server VM is the only VM running on the physical server and

the physical server cannot satisfy its resource demand, thephysical server becomes a bot-

tleneck. In this case, we can migrate the VM to a larger physical server, or increase the

replication factor to shed some workload to other server VMs.

Our goal is to balance the demand, and the utilization, of network bandwidth across a

cluster of server VM. However, the proportional distribution is not optimal when we put

other considerations, such as the interaction of upper layer protocols or file size distribution

in the workload, into the picture. While Vibra Web serves as the framework of virtual re-

source transfer and we have showed promising results by transferring bandwidth allocation,

further research is needed to improve the distribution strategy.

3.7 Summary

While load-balancing web clusters have been studied for a long time, virtualizing data cen-

ters and deploying web servers on VMs create many new challenges and opportunities. The

resource allocation to VMs can be adapted dynamically and hierarchically as we described

in the Vibra architecture. We then use this new flexibility tore-design a web server cluster.

With the Vibra Web server cluster proposed in this chapter, we showed that a locality-

aware request dispatcher can be more scalable. Higher cacheaffinity is achieved by using

the hash values of URL strings to select a subset of back-end servers. A cluster’s per-

formance is improved further by transferring resources between VMs to compensate for

58

unbalanced resource demands.

We use both the World Cup trace and a YouTube-like workload generator to evaluate

Vibra Web. Our experimental results have shown that the average response time is reduced

by up to 51% and Vibra Web can achieve the same service level asothers with 20% less

bandwidth. We also showed that URL-hashing incurs less overhead than LARD. In future,

we would like to apply the Vibra architecture to more and other cluster applications.

59

Chapter 4

Redundancy in Vibra

4.1 Introduction

People rely on many Internet services in their everyday lives. E-mails, instant messages,

on-line trading, shopping, and even gaming, all these services require very high availability

and consistent performability. Otherwise, service providers may incur huge monetary loss

and their users may flock to competitors’ services ruthlessly. While the servers are hosted

within data centers that have redundant power facilities and network connections, failures

can still occur even to the most reliable hardware. In large server installations, failures may

happen everyday.

In a virtualized server-hosting infrastructure like Vibra, a hardware failure can result in

a wider impact than in a traditional infrastructure as it canbring down all VMs running on

top of it, which may involve multiple customers. Although virtualization cannot directly

prevent any hardware failure, in this work we show that it canassist in building a more

resilient server architecture.

Hypervisor, the software that enables virtualization in a system, can isolate certain types

of faults in a server environment. While operating systems (OSes) and server programs

have tens of years of development, their large code bases make them difficult to become

error-free. When a software error happens and results in a degradation in performability,

the hypervisor can simply destroy the problematic VM and restart it. Although hypervisor

itself is also a piece of software, its simpler functionality and smaller code base make it

60

easier to be verified and become more reliable.

When a hardware failure is detected, all VMs running on top ofit need to be restarted.

To accelerate the recovery, each VM can be restarted on a different physical server because

the boot-up process is usually resource-intensive. However, while booting up a VM is usu-

ally quicker than booting up a physical server due to fewer hardware auto-detections and

self-tests, the VM cannot provide any service and results ina lost of productivity.

In the previous chapter, we re-designed a web server cluster, Vibra Web, to provide

scalable and efficient web services. In this chapter, we propose a reconfiguration scheme

to improve the performance of a Vibra Web server cluster during the failure recovery stage.

Upon the detection of a failed VM, its workload can be transferred and the resources allo-

cated to it can be re-allocated to one or more VMs in the same VMcluster, calledsurviving

VMs, given the destination physical host has enough unallocated resources. With additional

resources, surviving VMs can handle additional workload and compensate for the lost of

productivity.

In addition, instead of naı̈vely changing the hash functionin the URL-hashing request

dispatcher to match the number of operational nodes in the cluster, we modify the mapping

between hash values to server subsets to retain the existinglocality in surviving VMs and

share the faulty server’s workload among a number of surviving VMs. This approach im-

proves the throughput during the recovery stage. While it issimilar to consistant hashing

schemes, previous works simply assume load imbalance is harmless and do not address hot

spots at the same time [50, 63, 72].

When a replacement VM is started, it can regain the faulty VM’s resources. The orig-

inal hash value assignment in URL-hashing can be restored. With all these approaches

combined, the impact on service level can be minimized. We demonstrate the effectiveness

of our redundancy scheme by showing that its throughput degradation is minimal.

The rest of the chapter is organized as following. We first review the Vibra service

model and discuss various points of failures in Section 4.2.In Section 4.3, the en-

61

hancements to the URL-hashing algorithm are detailed. The performance is evaluated in

Section 4.4 before we summarize the chapter in Section 4.6.

4.2 Models

Data centers can employ virtualization technology to consolidate servers and improve phys-

ical server utilization. In addition, virtualized resources can be easily added to and removed

from virtual machines (VMs). With these flexibilities, we created a framework, called

VIrtualization-Based Resource Allocation(Vibra) and built a web server cluster,Vibra Web,

which consists of a front-end request dispatcher, back-endweb servers that hosted in VMs,

and a resource-allocation agent. Incoming HTTP requests are dispatched to one of the VM

according to the URL-hashing algorithm. Imbalanced workload is then handled by virtual

resource re-allocation.

However, virtualization itself does not prevent failures from happening. Placing VMs

blindly to physical servers can even deteriorate availability. In the presence of poten-

tial failures, adding service redundancy to improve service availability is usually more

cost-effective than building a more reliable physical server. We next discuss common re-

dundancy approaches for each component in a Vibra Web.

4.2.1 Request Dispatcher Redundancy

The request dispatcher has a stateless design. To improve front-end redundancy, multiple

request dispatchers can be deployed with typical high-availability approaches. For exam-

ple, when two request dispatchers are being used, one can be designated as the master node

and the other one as the slave node. The master node then periodically sends heartbeat

signals to the slave node. If the heartbeat signals are not correctly received by the slave

node in a timely fashion, the slave node can superseded the master node by cutting off its

power supply and taking over its MAC and IP addresses.

62

During the transition, active HTTP connections are disrupted as the TCP connection

states are lost. While the fault is exposed to end-user, it isnot a problem because the in-

tegrity of higher level abstractions, such as an on-line shopping session, can be designed

to tolerate interrupted HTTP connections,e.g., by rolling back a transaction. Since the

redundancy design in URL-hashing request dispatchers is nodifferent from other stateless

load-balancing algorithms, we do not discuss this type of failure any further.

4.2.2 Local Network Redundancy

While servers in data centers can only be physically accessed by a limited number of

personnel, local networks can still suffer from hardware failures, loose connectors, and,

unfortunately, cable-biting mice. Redundancy in local networks is usually implemented by

deploying redundant network links and switching devices.

Both request dispatchers and physical servers can connect to multiple switches with

one or more links each. Switches can also connect to each other and form a loop or other

topologies that provide redundancy. Configuration protocols such as spanning tree protocol

(STP) are able to respond to link failures and keep the network connected. Local network

redundancy is already extensively implemented. Because the failures are transparent to

upper layers, we simply assume local networks are reliable.

4.2.3 Hardware and VMM Redundancy

Although physical server are usually equipped with redundant power supplies and fans,

failures can still happen. For example, most chip-sets do not have a redundant design. If a

chip-set failed, the system may become unusable. Similarly, when an uncorrectable mem-

ory error is detected, most servers cannot mask the fault andneed to stop. When a hardware

failure is detected, all hosted VMs also failed while the problem (such as failed memory)

may only affect one of them.

63

Virtualized server also need to guard against failures in the virtual machine monitor

(VMM). VMM is the software that virtualizes the hardware andallows multiple OSes to

run simultaneously on top of it. Since it provides simpler functionality than traditional

OSes, its code base is much smaller and easier to verify. However, a software bug can

cause protection error which also stops all VMs running on top of it.

Clustering is a common technique to guard against hardware and VMM failures. In

particular, each VM in a VM cluster needs to be placed on a different physical server. Oth-

erwise, redundancy is compromised. Data-center operatorscan only consolidate VMs from

different clusters on a physical server.

Recovering a failed physical server is also easier if the server is virtualized. Tradi-

tionally, a failed physical server can only be substituted by another physical server of the

same or better (or, at least, similar) configuration. However, a failed VM-hosting physical

server can be recovered by restarting individual VMs on multiple working physical servers.

Therefore, it is not necessary to have a single spare host that has a computing power equal

to, or larger than the utilization of the failed server. Also, it is also faster if multiple VMs

are booting up concurrently on multiple physical servers.

4.2.4 OS and Software Failure

In a hosting framework like Vibra, both the OS and server software are provided by data

center customers. While modern OSes are more extensively tested, a bug in server soft-

ware can result in interrupted service. Fortunately, both OS and server software are running

within a VM and VMM is able to contain this kind of failure.

Recovering from software errors in Vibra is not different from that in physical server

cluster settings. One can simply restart the VM to reset it from the faulty state. One can

also use multi-version programming to reduce the chance of the same error happening on

other servers. During a reboot, the resource-allocation agent can transfer some of the VM’s

resources to other VMs of the cluster.

64

4.2.5 Fault Model

For the rest of this chapter, we assume that failures are fromfaulty hardware or VMM.

Since each VM in a cluster is placed on a different physical server, each failure may render

at most one VM in each VM cluster inoperable. We also assume that failures are of the

fail-stop type and can be detected in a timely and reliable manner (e.g., by detecting the

absence of heartbeat signals). We do not discuss the detection mechanism in this work.

Multiple failures may happen simultaneously. Although this work is focused on a single

failure, our enhancements can be easily extended for multi-failure scenarios.

4.3 Redundancy in Vibra Web

In a typical physical cluster setting, once a server failureoccurs, the cluster simply loses

part of its processing power. The performance of the clusterremains degraded until the

failed server is restored. Service-level degradation, however, is unfair to the customers if

the failure is caused by unstable hardware or VMM, because the customers may not get

what they paid for. Unallocated server resources in a data center are not easily accessible,

either.

We propose two mechanisms in Vibra Web to reduce service degradation caused by

server failures. First, upon occurrence of a server failure(hence loss of a customer’s VM on

that server), the data center operator can allow the customer to allocate additional resources,

if available, to his surviving VMs. The amount of additionalresources the customer can

allocate is commensurate with what the failed VM had before its failure. The resource-

allocation agent can then issue resource-allocation commands so that the VM cluster for

the customer can regain all its resources on the failed VM. Second, the request dispatcher

can be adapted to use the transferred resource more efficiently. We augment the URL-

hashing algorithm such that existing locality in back-end servers is preserved. Although

we only consider egress network bandwidth in the following discussion, the scheme can

65

also apply to other types of resource.

4.3.1 Resource Compensation

If a failure occurred to a physical server whereVMj is currently hosted,VMj becomes

non-operational and cannot provide any service. The amountof bandwidthBWj currently

assigned toVMj becomes unavailable to the VM cluster. The data center can credit BWj

Mbps back to the resource-allocation agent, which can, in turn, allocate that bandwidth to

any of surviving VMs in the cluster, given the physical servers hosting the surviving VMs

have enough unallocated resources.

When the data center operator recreatesVMj , possibly on a different physical server,

the failed VM initially hasBWj Mbps to use. While most servers do not require egress

bandwidth during boot-up, other types of resources, like CPU shares and memory, are

mandatory in booting up a new server. To allow the newly-created VM to warm up, the

data center operator can reclaim the extra bandwidth only after a certain period of time.

4.3.2 Adapting Conventional Algorithms

For simple load-balancing algorithms like round-robin or least-connection, dealing with a

failed server is as simple as removing a server from its configuration, resulting in a clus-

ter with one less servers. In locality-aware algorithms, however, requests destined for the

failed VM cannot be delivered.

For example, in LARD (and LARD/R), upon detection of a serverfailure, one can tra-

verse the dispatching history and remove all entries with the failed server as (one of) its

destination. Another approach is to treat the failed serveras deceased and invalidate entries

when the failed server is referenced. Since a replacement VMwill not contain any state

(cached files) when it is newly created if the latter approachis used, the dispatcher should

treat the replacement VM as a new server and continue to invalidate old entries until all

66

references are accounted for.

Since the design of LARD and LARD/R assumes all back-end servers to have the same

processing power, the resource allocated to the failed VM can simply be re-distributed

evenly to the surviving VMs (assuming that the physical servers hosting them have enough

unallocated resources).

4.3.3 Adapting URL-Hashing Algorithm

The URL-hashing algorithm also needs to be changed in order to respond to a server failure.

However, unlike LARD, URL-hashing algorithm is stateless,and thus, need not invalidate

any state.

One way to avoid sending requests to the failed server is to choose another hash func-

tion returningN−1 different values that correspond toN−1 sub-namespaces. Similarly,

N−1 back-end server subsets are also created with replicationfactorR and have a 1-to-1

mapping to each sub-namespace. We call this thenäıveapproach. However, this approach

does not respond well to a failure. For example, in case ofR= 1, the naive approach will

lose 50% of locality for all cluster sizes in the worst case which happens when either the

VM that was handling the first sub-namespace or the VM that washandling the last sub-

namespace fails. The average locality loss decreases as thesize of a cluster increases. If

we assume that all back-end servers have an identical failure probability, for a cluster of

10 servers, the average loss of locality is 37%. Obviously, this naive approach does not

perform well during the degraded operation.

We plotted the average locality loss for different cluster sizes and different replication

factors in Figure 4.1. The average loss of locality is reduced if R is greater than 1. However,

it is still much worse than the optimal case, as described below.

With a cluster ofN servers and replication factorR, each server handlesR/N of the

entire URL namespace when the URL-hashing algorithm is used. Ideally, only thoseR

instances (each replica is counted as a different instance)need to be moved to other surviv-

67

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 lo
ca

lit
y

lo
ss

 (
%

)
Cluster size (# of servers)

R=1 Naive
R=2 Naive
R=3 Naive

Optimal

Figure 4.1 Comparison of the average locality loss of different approaches

VM1 VM2 VM3 VM4

VM4VM2 VM3VM1
Assignments of

sub-namespaces

3,41,2,31,2,4(failed)After VM1 failed

3,42,31,24,1No failure

50% of VM1’s
resource to each of the next 2 VMs

Figure 4.2 The possible location of cached objects before and after recovering from a failed server
in a cluster.

ing VMs in the cluster. Since there are a total ofR·N instances of sub-namespaces, in the

optimal case, onlyR/(R·N) = 1/N of locality is lost. That is, only the states (cached files)

on the failed server become unavailable.

To achieve the optimality, we again exploit the flexibility of resource allocation in Vibra,

and create an uneven namespace distribution among the surviving VMs. WhenVMj failed,

instead of choosing a hash function that hasN−1 values, we simply skipVMj in the gen-

eration of server subsets. In other words, subseti now contains the nextR availableservers

starting fromVMi. For example, subsetsj and j +1 both containVMj+1, . . . ,VMj+R, and

subsetj −1 containsVMj−1,VMj+1, . . . ,VMj+R−1.

An example of this optimized approach is presented in Figure4.2 under the assumption

that a cluster contains 4 VMs (VM1, . . . ,VM4) and uses a hash function that returns values

68

between 1 to 4 to select a subset of VMs. WhenVM1 failed, it is marked as unavailable,

and therefore, requests in namespace 4 will be dispatched tothe least-loaded ofVM4 or

VM2, and requests in both namespace 1 and 2 will be dispatched to the least-loaded ofVM2

or VM3. Namespace 3 remains unaffected. The difference between this alternative server

selection and the original selection is shown in bold in the figure. In this case, only 2 out

of 8 sub-namespace instances are changed, which turns out tobe optimal.

TheR VMs next to the failed VM in the ordered list of VMs will each have one more

sub-namespace than what they have before the server failure, in order to take over the work-

load of the failed VM. Since we do not keep track of resource usage at the sub-namespace

level, we simply assume that each sub-namespace consumes the same amount of resource

on the failed server. To accelerate the recovery, 1/R of the resource held by the failed VM

is transferred to each of the nextR VMs. The resource-allocation agent still moves virtual

resources between live VMs as usual, to cope with workload imbalance. Once the failed

VM is restored, its original workload and resources can be transferred back to it.

Similar to that in [80], the recovery of ongoing requests on the failed VM can be han-

dled by making partial requests (using the “Range” HTTP header) to the newly-assigned

VM. Partial responses are then concatenated and returned tothe clients.

4.4 Evaluation

We reuse the same testbed in Chapter 3 to evaluate the performance of various request

dispatching algorithms during degraded operations. We first use the World Cup trace to

evaluate the throughput of the cluster during normal operation, where the 4 VMs in the

cluster are all in operational state. Each VM is hosted on a different physical server and

configured with 72MB of main memory and 6Mbps of network bandwidth. The client is

configured to initiate 250 concurrent connections to the cluster. A comparison of through-

put for different scenarios is plotted in Figure 4.3.

69

0

1000

2000

3000

4000

5000

6000

Normal Degraded -
No resource

transfer

Degraded -
Network

bandwidth
transfer

Degraded -
Memory
transfer

Degraded -
Both

Memory and
Network

T
h

ro
u

g
h

p
u

t
(r

eq
/s

)

Least-Connection
LARD
LARD/R
URL-Hashing

Figure 4.3 Comparison of the throughput of different algorithms for different degraded scenarios.

During normal operation, URL-hashing/R outperforms LARD,LARD/R, and least-

connection by 15–27%. The performance gain came from the bandwidth reallocation

between VMs and fewer disk accesses. When one of the four servers failed, all algorithms

took a significant performance hit. Without transferring any of the failed VM’s resource

to the surviving VMs, the disk I/O is found to become the performance bottleneck. While

URL-hashing/R still outperforms the others, its lead was cut to 8–27%.

Since the bottleneck was in disk I/O, when the network bandwidth of the failed VM was

made available to the surviving VMs, there was only a 1–3% performance gain in through-

put. On the other hand, if the memory of the failed VM was transferred to the surviving

VMs, we observed a 37–73% performance gain over the case without any resource transfer.

The least-connection algorithm gained most from the additional memory as more files can

be cached in the memory. The number of disk I/O accesses was reduced significantly with

the additional memory, and hence, network bandwidth becamethe bottleneck.

When both network bandwidth and memory of the failed VM were transferred to the

surviving VMs, the performance became comparable to that ofnormal operation. Least-

connection, LARD, and LARD/R actually outperform themselves even in normal operation

by 11%, 14%, and 16%, respectively, due to the larger per-VM memory size. URL-

hashing/R achieved 97% of its normal throughput. While it became slightly (1–2%) slower

than LARD and LARD/R, URL-hashing is observed to be able to adapt itself in case of

70

 0

 1

 2

 3

 4

 5

 6

 7

9075604530

B
an

dw
id

th
 a

llo
ca

tio
n

(M
B

/s
)

Time (s)

Server 1
Server 2
Server 3
Server 4

Figure 4.4 An example of failure recovery in a Vibra-enabled web servercluster.

degraded operation. No matter how many VMs are available in acluster, URL-hashing/R

can always provide the highest throughput.

We then evaluate the redundancy scheme by injecting faults into our testbed, where

each VM is allocated 2.7MB/s at first. As one can see from Figure 4.4, four servers were

serving requests initially before server 2 was killed att = 60s. According to our design,

the workload of failed server 2 was then moved to servers 3 and4. The increased workload

on server 4 also resulted in an increased workload on server 1, albeit at a lesser degree.

With one less server in the cluster for the remaining 9 minutes of evaluation, the disk read

activity level was increased by 14%. The average response time was increased from 19ms

to 23ms, which is still lower than any other dispatching algorithms we tested. Moreover,

to survive server failures, the fixed resource-allocation schemes (e.g., LARD) require ad-

ditional resource for each VM. For example, we need to allocate 3.6MB/s for each VM to

survive the loss of 1 server and maintain the same service quality (average response time of

32ms). In this case, Vibra Web saves 25% of bandwidth and performs better than LARD.

4.5 Related Work

VM fault-tolerance techniques can be classified as either guest-OS level or VMM-level

approaches. Guest-OS-level products such as Microsoft Cluster Service and Veritas Clus-

71

ter Server manage service availability by monitoring the application and restarting failed

VMs. Our approach is tailored for Web server clusters and integrates front-end dispatch-

ing algorithms and flexible resource allocation to improve performance during degraded

operation.

VMM-level approaches such as VMware HA (High-Availability) and everRun VM

from Marathon Technologies synchronize the execution of multiple VMs with tolerant

physical server failures. These approaches are agnostic toguest OSes and shorten recov-

ery time but have higher overhead in normal execution and resource commitments. Web

servers do not require the highest single-server availability because the integrity of higher-

level semantics (like processing credit cards) are usuallyprovided elsewhere in a multi-tier

system.

4.6 Summary

In large-scale computer system deployments, hardware failures are becoming more and

more frequent and unavoidable. Instead of simply creating redundancy to achieve high-

availability, we showed that by integrating fault-tolerance into the system design, we can

achieve better performance in degraded operation. Data center customers can benefit from

it by using fewer resources to achieve their service-level demand.

In this work, we first discussed various types of failures andapproaches to making the

Vibra infrastructure and the Vibra Web more reliable. With the flexibility in dynamic re-

source allocation, we enhanced Vibra Web to respond to server failures better. The design

conserves as much locality as possible and adapts resource allocation to modified workload

distribution. It can handle multiple failures as well. Evaluation results showed that Vibra

Web can keep up to 97% of its throughput when 1 of the 4 server isfailed. Comparing to

LARD in a fixed resource-allocation cluster, Vibra Web allows a customer to request 25%

less bandwidth resource while being able to survive the lostof 1 server in a 4-server cluster.

72

Chapter 5

DPS: A Distributed Proportional-Share
Scheduler in Computing Clusters

5.1 Introduction

Recently, cluster computing has become a popular means of realizing a growing number

of applications to lower prototyping and experimentation time and cost. Scientists and

engineers use computing clusters to simulate the effects ofa large number of application

design choices and operating parameters. Computer animations, financial operations, bio-

informatics studies, space exploration, and many other fields all require precise modeling

and extensive computation on models to obtain accurate and detailed results. Without enor-

mous computing power, recent advances in these applicationareas would not have been

possible.

In order to meet the aforementioned computing needs, largerand larger computing clus-

ters are being built. A computing cluster may consist of morethan 100,000 nodes while

each node may contain one or more single- or multi-core CPUs.Coupled with high-speed,

low-latency interconnects, a cluster provides unprecedented computing power in a limited

space and enables the realization of even more complex applications. Many companies,

including Google, Microsoft, Amazon, and Sun, also built data centers, where even more

servers are hosted in a building, and allow their customers to obtain computing resources

and run their applications. As the architecture of a data center and a computing cluster has

many similarities and shares more and more components, datacenter can also be used to

73

carry out the tasks that were usually run on computing clusters. For example, data centers

have been involved in rendering computer generated graphics in movies1. Private compa-

nies also invest in building large computer clusters and data centers and offer its computing

powers to other companies2.

Parallel programs, which may simultaneously utilize more than one node, are frequently

used to solve large-scale complex problems. When users submit parallel programs for exe-

cution, they usually specify resource requirements, such as the number of computing nodes,

amount of memory and disk space. Although large clusters maysometimes devote all their

computing power to a single large parallel program, they often employ a space-sharing

schedule of multiple parallel programs in order to improve their utilization and throughput.

If each parallel program can always utilize all the resources allocated to it, the resource

utilization of the entire cluster would be very high. Unfortunately, as the problem size

scales up and more detailed models are used, it becomes very difficult to create parallel

programs that place balanced loads on all of the allocated nodes.

Depending on the type of application and how parallel programs are constructed, un-

balanced resource utilization can result for several reasons. First, a parallel program may

comprise a few smaller collaborative parallel sub-programs, each optimized for a specific

purpose and running in parallel with others. When they are put together, the demands for

executing different sub-programs are likely to be different and vary with time. Therefore,

one sub-program may have to wait for the result from another sub-program (thus staying

idle). The synchronization cost would also increase with the problem size. Moreover, both

extensive use of program libraries and rapid application-development requirements force

the programmers to spend less time on optimization of the program structure, producing

less-balanced and lower-quality programs.

SinceSpace-sharingalone cannot provide satisfactory overall utilization,time-sharing

1HP and DreamWorks Give Innovation a Starring Role in ”Shrek 2.”
http://www.hp.com/hpinfo/newsroom/press/2004/040419a.html

2Tata’s supercomputer Eka is fastest in Asia. http://economictimes.indiatimes.com/articleshow/msid-
2539368,prtpage-1.cms

74

becomes an obvious alternative. In a time-sharing environment, gang scheduling and many

other co-scheduling schemes have been proposed to reduce the program response time (the

wall-clock time it takes to complete the program’s execution) by implicitly synchronizing

send and receive processes [2, 22, 32, 34, 35, 56, 57, 70]. However, they either suffer

from high overhead, or require protocol-specific kernel modifications. Also, computing

resources allocated to a parallel program are usually distributed to all nodes in a uniform

fashion, and idle CPU cycles will result if the sub-programsplace unbalanced resource

requirements on the allocated nodes. Although the low utilization itself may not be a se-

rious problem in research-oriented clusters, it is important to commercial utility clusters.

If users are charged even for unused resources in a cluster, the cluster would be neither

cost-competitive nor attractive to the users.

Instead of optimizing parallel programs over all possible inputs, we manage resource

allocations to reduce idle cycles and improve overall utilization. Specifically, we enable

programmers to decoupleprogram specification—the number of nodes the program re-

quires to run on—fromresource specification—the maximum run-time resource usage—of

a parallel program. For example, one program can use 4 single-CPU nodes but no more

than 2.5 CPUs at any time. Time-sharing CPU schedulers can then be utilized to optimize

resource usage.

In this chapter, we proposes adistributed proportional-share(DPS) CPU scheduling

mechanism for parallel programs in a cluster computing environment. When a parallel

program is submitted for execution, a process is created at each node and each process is

initially given a certain share of CPU time. A proportional-share CPU scheduler is utilized

at each node and the total share does not exceed the specified maximum. To deal with the

intrinsic workload imbalance, part of the CPU share can be “transferred” at run-time from

one process to another. We determine workload imbalance by monitoring CPU usage and

the communication between processes. When a process A does not consume all its allo-

cated CPU share and its continuing execution depends on other processes, we transfer part

75

of A’s CPU share to its peer processes. By periodically transferring CPU shares, the CPU

share of each process becomes proportional to its relative load (to other processes’). It can

also capture dynamic workload shifting. The program response time is, therefore, reduced,

and the resources that were allocated to, but left unused by aprocess, can be utilized by

other processes without affecting its performance.

During the course of transferring CPU shares as described above, bottleneck nodes can

be easily identified. Schedulers can avoid creating new processes on bottleneck nodes.

If there are more than one parallel program running on the bottleneck node, a migration

mechanism can be triggered to alleviate the bottle-neckingproblem.

However, migrating processes of parallel programs is not trivial. Typical operating sys-

tems may not be able to provide enough isolation for security-minded customers, either.

For these reasons, we encapsulate parallel programs in virtual machines (VMs). Instead of

simply creating processes on each node, a VM is created first and a process of the paral-

lel program is spawned within. Each node may host many VMs andsuch nodes are called

host machines. The hypervisor is then responsible for scheduling CPU and other resources.

VMs are also much easier to migrate between hosts [65]. This design ensures a high degree

of performance isolation between resource-competing programs. On this platform, we im-

plemented the DPS CPU-scheduling mechanism. Compared to uniform static CPU-share

allocation, DPS is shown to reduce program response time significantly, while improving

cluster utilization. Although the actual improvement depends on the real workload, we

demonstrate that computing clusters can be utilized much better by separating program

specification (required number of nodes) from maximal resource allocation and utilizing

the share-transferring scheduler.

Our main contributions are (i) separating the maximum resource usage from program

specification and (ii) using the proposed DPS scheduling mechanism to improve both

program response time and cluster utilization. Two DPS scheduling strategies, namely

fully-distributed share-exchangeandbank-assisted share-exchange, are proposed and im-

76

Traditional Computing Node VM Hosting Machine

Physical Resources
(CPU, memory, disk, network)

Physical Resources
(CPU, memory, disk, network)

Operating System
(Linux, Windows)

Virtual Machine Monitor
(Xen w/ DPS scheduling)

System Libraries
(MPI)

Operating System
(Linux)

OS
(FreeBSD)

Libraries
(PVM)

System Libraries
(MPI, PVM)

Parallel
Program

A

Parallel
Program B

competing

Parallel
Program

A

Parallel
Program

B

adjustable

Figure 5.1 A comparison between traditional computing node and VM hosting machine.

plemented on a specifically-designed VM hosting cluster that provides secure and flexible

resource allocation and performance isolation. These schemes not only lower the cost of

running a parallel program on the cluster, but also ease the creation of parallel programs.

The chapter is organized as follows. We start with the designof DPS in Section 5.2

which is followed by the share-exchange models in Section 5.3. The implementation of

the proposed schemes is detailed in Section 5.4 and evaluated in Section 5.5. Section 5.6

summarized the chapter.

5.2 Design

A cluster supportingdistributed proportional-share(DPS) scheduling is designed in two

tiers. We first introduce a virtual machine (VM) hosting cluster, which enables performance

isolation and security enhancement for running parallel programs. Each computing node is

transformed into ahost machine(see Figure 5.1). On the hosting cluster, we then build the

DPS scheduler to provide coordinated resource scheduling across all nodes. This two-tier

architecture is similar to a normal operating system (OS), where the lower-tier manages

the underlying resources and the upper-tier schedules processes to coordinate usage of

resources. We next elaborate on the design of DPS.

77

5.2.1 Cluster Design

Traditional cluster design relies on many caveats which make flexible resource-allocation

difficult. We first discuss the shortcomings of the traditional design and the advantages of

VM hosting clusters.

Traditional Design

In a traditional computing cluster, each node is loaded withan OS (e.g., Linux or Win-

dows), some parallel computing middleware (e.g., PVM, MPI), and user programs. User

programs are stored in a network-accessible storage while each node is also equipped with

some scrub disk space for temporary storage.

When a user submits a program to a cluster, he usually provides a specification of the

program, such as the number of nodes, the amount of memory, and scrub disk space on

each node. He also specifies an estimated program execution time (the CPU time it takes

to complete the program), so the cluster scheduler can reserve enough resources for its

execution.

When a parallel program is executing in a cluster that only employs space-division mul-

tiplexing, it is entitled to utilize all memory and scrub disk space on the nodes it acquired,

even if it doesn’t require all the resources for its execution. It is very difficult to make the

idle resources usable by others until the program completesits execution at which point

mechanisms, such as back-filling, can kick in.

When there are more than one parallel program running on a node, the OS must sched-

ule them on the CPU according to a certain policy like FCFS (First-Come-First-Serve).

With a proportional-share CPU scheduler, each program can be guaranteed to receive a

given share of CPU time. However, even when the total memory demand on a node doesn’t

exceed its physical capacity, a program still competes withothers for buffer cache and

network usage. Moreover, configuration or software versionconflicts may even render

time-sharing impossible. In a commercial cluster, parallel programs also require strict pro-

78

tection from others to prevent any information leak betweenthem.

VM Hosting Cluster

In order to provide better protection between multiple resource-competing parallel pro-

grams running on a single node, one can use OS-level virtualization or similar OS facilities

to logically “partition” the node, as is commonly done in very large servers or mainframes.

It creates an illusion of having multiple smaller servers, each with a share of CPU, memory,

and other resources. Although each partition can have its own software configuration, all

partitions may be required to use the same kernel and typically share a buffer cache. In

addition, partitions usually do not ‘migrate.’ Consequently, the partitioning itself does not

provide the level of flexibility we would like to have.

Instead of using partitions, we decide to use platform virtualization as a vehicle to ex-

ecute parallel programs. Similar to partitioning, each VM can be configured to have a

portion of CPU time, a fixed amount of memory, local disk space, and network interfaces.

Parallel programs execute on a cluster of VMs, instead of physical hosts. In a VM hosting

cluster, standardized VM images can be packaged to provide common program execution

environments; customized VM images can also be made to include proprietary software

packages.

In addition to the ability of assigning CPU shares to VMs without tweaking the OS

scheduler, for some hypervisors, we can even re-allocate memory on-the-fly. VMs can also

be migrated between host machines. Two or more VMs can be hosted on a single host; they

may even be assigned to the same parallel program. With theseschemes, idle resources

can be re-assigned, and hence, more parallel programs can behosted/accommodated at the

same time.

By running parallel programs on VMs, we can also provide better performance isola-

tion and security measures. From a parallel program’s pointof view, it is the only program

running within the VM, and hence, no other programs would compete for any of its ac-

79

quired resources. The guest OS can also be configured to provide a very minimum set of

services, so its security can be enhanced.

Once resources are virtualized, the specification of a parallel program also needs to

be adapted accordingly. Since VMs are dedicated to a single parallel program, the speci-

fied number of nodes a parallel program requires only reflectsthe structure of the program.

When submitting a parallel program, one can separately specify its maximum instantaneous

CPU usage. Moreover, he need not break down the CPU allocation into each VM as the

cluster resource scheduler—which we introduce below—can dynamically move resources

between all VMs as needed to match the relative resource needs.

This scheme also frees programmers from the job of optimizing the program structure

for load-balancing among the nodes. This may sometimes not even be possible because the

input and, therefore, the workload may change dynamically.The load-balancing problem is

actually translated into the problem of dynamically allocating resources. Upon completion

of a program’s execution, the history of resource allocation can also provide programmers

a hint on potential bottlenecks, so he can improve the program.

In addition, dynamic resource allocation also enables users with a limited resource

budget to execute unmodified large-scale parallel programs. He only needs to submit the

program with a low CPU-usage cap and the resource scheduler will optimize resource al-

location subject to the limited resource. While the programexecution is prolonged, the

resource utilization is improved (getting the best bang for the buck!).

Although the insertion of a hypervisor may incur some overhead while executing par-

allel programs, the advantages it provides—namely, more flexible and secure resource

allocation and decoupling program structure from resourceusage—can better utilize cluster

resources and enhance throughput.

80

5.2.2 Scheduler Design

A DPS scheduler is composed of two levels. A cluster resourcemanager (CRM) controls

cluster-wide resource allocation, and each host machine has a local resource scheduler. Al-

though we only implement CPU scheduling in this chapter, ourapproach can be extended

to the scheduling of other resources such as memory and network I/O. Each guest OS also

has its own resource scheduler, where each parallel programcan adopt any policy as the

CPU time slots and memory space given by the node-level scheduler are under its full con-

trol. In what follows, we first present the design of a node-level CPU scheduler and then

discuss the role of CRM.

Node-level CPU Scheduler

The CPU scheduler on each host machine utilizes a proportional-share scheduling algo-

rithm, such as lottery scheduling [76] or borrowed virtual time (BVT) scheduling [31], to

assign time slots to VMs. We choose a work-conserving CPU scheduler so that idle slots

are also distributed proportionally to runnable VMs. The node-level scheduler is also re-

sponsible for keeping track of each VM’s CPU shares and actual CPU utilization, and for

creating and migrating VMs when the CRM instructs it to do so.

If a VM does not fully utilize the CPU shares it owns, the node-level scheduler may

transfer its excess CPU shares to other VMs of the same parallel program. We will hence-

forth call the other VMspeer virtual machines. Each parallel program can employ different

strategies to decide the amount of each transfer and its timing. We have designed distributed

and centralized share-exchange strategies. Both strategies are illustrated in Figure 5.2 and

discussed below.

Distributed Strategy In the fully-distributed share-exchangestrategy, a node-level

scheduler transfers CPU shares directly to another node-level scheduler. The target of

the CPU-share transfer can be determined by analyzing the network traffic between VMs.

81

Virtual
Machine

1

Virtual
Machine

2

Virtual
Machine

3

Virtual
Machine

4

Virtual
Machine

1

Virtual
Machine

2

Virtual
Machine

3

Virtual
Machine

4

Resource
Bank

(a) Fully-Distributed Share Exchange

(b) Bank-Assisted Share Exchange

Message Passing

Share Transfer

Figure 5.2 Two share-exchange strategies in DPS.

Specifically, if a packet from a remote peer VM (VMr) unblocks the execution a locally-

hosted VM (VMl), the execution ofVMl is said to depend onVMr, called anupstream

virtual machineof VMl . For example, a process in a VM may wait for a result from a

process in another VM to continue its execution.

If excess CPU-shares are available for a VM, the node-level scheduler solely deter-

mines the amount of share to be transferred and initiates thetransfer to its upstream VMs

that do not have excess shares. Another node-level scheduler (receiver) can either accept

or reject the transfer. The receiver usually accepts any CPU-share transfer, unless its CPU

has been fully booked. When this happens, the receiver recognizes that the host machine is

a bottleneck and notifies the CRM to seek for migration.

Centralized Strategy Another approach is to create a centralized CPU-share bank for a

parallel program, called abank-assisted share-exchange. Node-level CPU schedulers de-

posit excess resources into an account that represents unallocated CPU shares of a parallel

program. If a VM fully utilized its CPU share and the host machine is not fully booked,

the node-level scheduler requests more CPU shares from the bank. Otherwise, if the host

machine is fully booked, it notifies the CRM and seeks migration. A banker process, which

is supplied with a parallel program, is responsible for redistributing banked shares to all

82

VMs of the parallel program.

Comparison The fully-distributed share-exchange strategy is more robust than the cen-

tralized counterpart. A node-level CPU scheduler that fails to participate in share-

exchanges only renders a limited amount of CPU shares unavailable to other VMs of the

same parallel program. On the other hand, the fully-distributed strategy only transfers

shares between peer VMs, so it will take more time to propagate excess shares to where

they are needed while the bank-assisted strategy can alwaysrelay shares by one hop. Also,

if the imposed workload fluctuates among distant peer VMs (interms of their dependency),

the bank-assisted strategy is more likely to achieve the global optimum of share distribu-

tion, where the fully-distributed strategy may only find local optima. We have evaluated

these two strategies under different parallel program topologies in Section 5.5.

Effects on other VMs When there are multiple VMs running on one physical host, due

to our choice of a work-conserving CPU scheduler, unallocated CPU time slots are also

distributed proportionally to runnable VMs (for free). When one VM gains CPU shares,

not only the guaranteed CPU time is increased for the VM, the VM will also get more CPU

time from the unallocated CPU time slot pool (in terms of the portion of unallocated slots).

Note that the minimum CPU time for other VMs on the same host are still guaranteed by

the scheduler according to the CPU shares these VMs have. However, these VMs will lose

free CPU time from the unallocated time slot pool. The throughput of these VMs may be

reduced but the minimum CPU time agreement is not violated. If the reduction of CPU

time makes other VMs the bottleneck of the corresponding cluster, they can also obtain

shares from their peer VMs or bank accounts.

83

Cluster Resource Manager

The role of CRM is to manage the parallel programs that are currently executing in the clus-

ter. Each host machine periodically reports its actual resource utilization to the resource

manager. Based on the complete picture of current resource usage, the CRM may initiate

VM migration to redistribute workload among host machines.A cluster scheduler, which

manages the submission of parallel programs and selects programs to execute from a wait

queue, may also decide to squeeze more programs into the cluster to improve utilization.

The design of a cluster scheduler, however, is not the focus of this chapter.

A workload redistribution can be triggered by the identification of bottleneck host ma-

chines. A bottleneck host can be identified by a node-level scheduler that rejects incoming

CPU shares due to its insufficient capacity. CRM can also declare a fully-utilized host ma-

chine to be a bottleneck host. Once a bottleneck host has beenidentified, the CRM can

migrate the hosted VMs on the host to a less utilized node or a more powerful host. As

migration either needs to suspend a VM for a short while or incurs some CPU overhead

(see the evaluation results in Section 5.5.3), we propose a simple heuristic to determine

which VM to migrate to which destination.

To select a VM to be removed from the bottleneck host, one can choose either a smaller

VM (that takes up less memory and disk space) or a less-utilized VM (that uses fewer CPU

cycles). If using normal (suspend-and-resume) migration,a smaller VM is easier to move.

However, the suspended VM may also block the execution of itspeer VMs and prolong

the program execution. On the other hand, live-migration keeps a VM running and only

suspends it while moving the remaining dirty memory pages [23]. Since a less-utilized VM

usually modifies its memory pages less frequently and is easier to fit into idle resources, we

opt to migrate the least-utilized VM.

We considered two strategies to choose a migration destination. The first one is to

migrate the least-utilized VM to the least-utilized host machine; the second is to find the

best-fit host machine such that the predicted CPU utilization is closest to 1. We choose to

84

A1

A2

A3 A4

B1

B2

B3

C1

C2

C3

1 2 3 4 5 6 7 8 9 10Host #

R
el

at
iv

e
U

til
iz

at
io

n

A1

A2

A3 A4

B1

B2

B3

C1

C2

C3

1 2 3 4 5 6 7 8 9 10Host #

R
el

at
iv

e
U

til
iz

at
io

n

D1

D2

A

A A B C

C

(a) Without DPS Scheduling

(b) Optimized by DPS Scheduling with Migration

Figure 5.3 Parallel programs are packed together while DPS ensures resource allocation. Pre-
viously wasted resources (dashed boxes) are now utilized and a new program “D” is placed for
execution.

migrate to the least-utilized host so it can obtain more CPU shares if needed.

To further improve cluster utilization, the cluster scheduler can allocate more programs

to the cluster. For this, the CRM may repack current running parallel programs into fewer

host machines. An example is provided in Figure 5.3 to demonstrate the process. It is sim-

ilar to the traditional bin-packing problem, which is NP-hard. A better heuristics, which

takes migration cost and past utilization history into consideration, is needed in order to

improve host utilization and avoid frequent migrations.

5.3 Share-Exchange Models

We now formalize the cluster and program models we will use and then introduce the

fully-distributed and bank-assisted share-exchange models. 3

5.3.1 Cluster Model

We consider a VM hosting cluster ofM host machines that are connected to each other

via a high-speed low-latency switched network. A storage infrastructure is attached to the

3For simplicity, the subscript for each program and the time index are omitted in the discussion. Subscripts
i and j indicate a specific VM and a specific host machine, respectively.

85

cluster and can be accessed from anywhere. A server node is also attached to the cluster

and is powerful enough to perform services such as CRM or banker processes. Here, we

assume that there are sufficient network and storage bandwidths, and the execution time of

a program is not affected by its placement.

The computing capacityCj(j = 1. . .M) of each node is defined as the number of CPUs

installed. The virtualization overhead can be incorporated by slightly reducingCj . For

example, to compensate a 5% CPU overhead in virtualization on a dual-CPU SMP node,

one can advertise a computing capacity of 1.9 CPU instead of 2. The computing capacity

is divided into CPU shares. If a VM can utilize multiple CPUs,the size of a CPU share can

range between 0 andCj . Otherwise, the share size lies between 0 andmin(1,Cj). Without

loss of generality, we assume the cluster is homogeneous so that, when a CPU share is

transferred between any two hosts, theexchange rateof CPU share is always 1. For hetero-

geneous clusters, an exchange rate needs to be establisheda priori to account for relative

computing power.

5.3.2 Program Model

When a user submits a program for execution, he must supply the program specification

andresource specification. Among other things, program specification includes the num-

ber of nodesN, which can be smaller than, equal to, or larger thanM. Virtual machines,

VM1 . . .VMN, are created when a program starts its execution.

Resource specification includes the maximum instantaneousCPU usageW and the

selection of a share-exchange strategy—fully-distributedor bank-assisted. Initially, for

VMi(i = 1. . .N), a CPU sharewi = W/N is assigned. Other resource specifications such as

maximum execution time and utility specification such as deadline and reward are not used

in the model for share-exchange.

EachVMi may be hosted in different host machines. Distributed node-level sched-

ulers report the incremental CPU timeti used byVMi every T seconds and conduct a

86

fully-distributed or bank-assisted share-exchange. The reporting process need not be syn-

chronized among all VMs. The CPU utilizationui by VMi during the last sampling period

is then defined asti/T. The proportional-share node-level scheduler is configured to guar-

anteeui is at leastwi if T is large enough andVMi can fully utilize its CPU time. Note that

the scheduler is also work-conserving and, therefore,ui may be much larger thanwi . An

excess shareei for VMi is defined asei = max(wi −ui ,0). For example, when two CPU-

intensive VMs having 0.5 and 0.25 CPU share, the actual CPU utilization will be 0.67 and

0.33, respectively, and there is no excess share. On the other hand, if a VM has 0.5 CPU

share and results in 0.1 CPU utilization in the last samplingperiod, there is 0.4 excess CPU

share.

5.3.3 Fully-Distributed Share-Exchange

In the fully-distributed share-exchange, we redistributeexcess shares to the upstream VM,

which is inferred from network packets (as discussed in Section 5.4). A list is maintained

to contain the current upstream VMs for eachVMi, and old entries expire after a certain

period of time. We assume the upstream VMs list containsP VM.

For eachVMi, the node-level scheduler on its host machine redistributes its excess

sharesei to all P upstream VMs at the end of each sampling period.VMi can also withhold

part of the excess shares. The purpose of withholding is to leave some room for workload

fluctuation since a VM does not proactively ask for shares from its peer VMs. Given a

withholding factorwhi(0≤ whi ≤ 1), the number of sharessi that node-level scheduler will

send to each upstream VM is calculated as:

si =
ei · (1−whi)

P
. (5.1)

Note that when the withholding factorwhi is set to 1/(P+1), VMi withholds the same

amount of share as it will transfer to each upstream VM. Aftereach successful share trans-

87

fer, si is deducted fromwi . In the above example, if the VM having 0.4 excess CPU share

has 3 upstream VMs and withholds 1/(P+1) of excess shares, it will initiate a share trans-

fer of 0.1 share to the 3 VMs and, if all transfers are successful, retain 0.2 CPU share at the

end of re-distribution.

5.3.4 Bank-Assisted Share-Exchange

In the bank-assisted share-exchange, all excess sharesei , if ei > 0, are transferred to the

bank. These shares are deducted fromwi immediately. Otherwise, if the capacity of the

host machine is not fully allocated, the node-level scheduler notifies the bank of the CPU

share required to match a VM’s allocation to its utilization. This amount is also limited

by the remaining share of the host machiner j . We call this amountthe share shortage fi ,

which can be written asfi = min(ui −wi , r j). For example, a VM having 0.5 CPU share

but utilizing 0.67 CPU has 0.17 CPU-share shortage.

The banker process redistributes all the excess shares deposited by node-schedulers ev-

eryB seconds.B can also be smaller than, equal to, or larger thanT. However,B is usually

an integer multiple ofT. Assuming the bank has a balance ofE shares at the end of a

redistribution period andF = ∑ fi share shortage, the sharessi that the banker process will

send to each VM are calculated as:

si = max(fi , fi ·
E
F

). (5.2)

For example, if the banker process has a total of 0.3 excess share and a total share

shortage of 0.6, the VM that needs 0.17 share will be given 0.085 CPU share.

If the total amount of excess shares are greater than the total amount of share shortage,

remaining excess shares are proportionally distributed toall VMs. VMs do not withhold

CPU shares in this scheme because they can explicitly ask thebanker for more shares.

88

dom0

DPS
Daemon

domU

U

DPSd

Common L2 Network

UIA

domU

UIA

Upstream VM inference

Xen Hypervisor

U

Xen

Share exchange
UIA UIA

DPSd

U

Xen

UIA

U

UIA

VM live migration

VM
Directory

Scheduling decision

VM
Repository

Banker

Update utilization/
Migration request

Rapid disk image cloning

Figure 5.4 The architecture of a VM hosting cluster.

5.4 Implementation

We implemented the VM hosting cluster and DPS scheduler on Xen. We first discuss the

construction of a Xen VM cluster and auxiliary services, namely, the VM repository and

the VM directory. Then, we describe the implementation of the DPS daemon, which runs

on each host machine to perform many DPS functions, and the details of the upstream

inference system. The VM directory and the banker process implement the cluster re-

source manager (CRM), and the Xen scheduler and the DPS daemon cover the function

of node-level scheduler discussed in Section 5.2. An overview of the VM hosting cluster

implementation is illustrated in Figure 5.4.

5.4.1 The Xen Cluster

There are several virtual machine monitors (VMM) that can beused to build a VM hosting

cluster on x86 hardware, which is most commonly used in computing clusters. Among

them, we choose the Xen VMM because of its low CPU overhead andlive-migration ca-

pability. Live-migration can make the downtime very short (less than 1 second for most

workloads [23]), and we evaluate its impact on parallel program execution in Section 5.5.

We use Xen 2 instead of Xen 3 as the newer version was not stablewhen we started this

89

project.

Platform virtualization provides a flexible and secure method for allocating resources

to parallel programs. Although virtualization inevitablyincurs overhead, the para-

virtualization approach adopted by Xen keeps the overhead at minimum [11]. Instead of

inspecting binary code and rewriting privileged instructions before program execution, Xen

requires the guest OS kernel to use Xen hypercalls. Considering the emerging hardware

virtualization, we expect the overhead to be reduced even further in future.

To schedule CPU usage for multiple VMs, Xen provides three different schedulers:

borrowed virtual time (BVT), Atropos, and round-robin. BVTis a proportional-share

scheduling algorithm, which also yields low response timesfor interactive processes [31].

Atropos is a soft real-time scheduler which can set aside a specified amount of CPU time

and manage latency for each VM [53]. It can also distribute the slack CPU time between

real-time and best-effort VMs. Round-robin changes turn toexecute all runnable VMs.

Among these schedulers, both BVT and Atropos can provide a CPU-share guarantee. Since

BVT is simpler than Atropos, we use BVT to schedule VMs.

Xen provides three different interfaces to interact with. At the lowest level is a C library

xc, which issues hypercalls to communicate with the Xen VMM. The Xen daemonxend,

which is built on the library, exports information and creates a control interface via HTTP.

The command line toolxm accessesxend and provides similar functionalities.

We use the simplerxm command to create and migrate VMs. On the other hand, we use

the low-overheadxc library to periodically extract actual CPU-usage information from the

hypervisor and set scheduling parameters in the DPS daemon,as described below. How-

ever, some information, such as the mapping between VM name/ip and Xen domain ID

(which is a unique identifier within the Xen VMM) is only available inxend. As we need

to look up the domain ID for each CPU share transfer, we accessthe data files created by

xend directly to avoid the protocol overhead.

Xen VMs are connected to the network via virtual Ethernet interfaces. A virtual inter-

90

face can be bridged to the Ethernet that the driver domain is connected to, or routed via the

IP layer in the driver domain. For easy VMs migration, we adopt the bridging approach.

After a VM migration, the Linux virtual bridge in the destination host machine can learn

the change. Since the VM is still connected to the same Ethernet, all VMs can send packets

to it without any change in configuration.

5.4.2 VM Cluster Infrastructure

Other than running the Xen VMM in each host machine, we also need a few infrastructure

services to operate a VM hosting cluster. We created a VM repository to enable migration,

a VM directory to support resource management, and a banker process while using the

bank-assisted mode.

VM Repository

One limitation of VM migration is that the disk image must be accessible via the net-

work. We create a RAID-0 disk array to store all VM disk imagesand make them available

network-wide via NFS. We also create a standard VM disk imagefor executing PVM ap-

plications. The size of the disk image is 1GB and it does not contain any configuration

information, so cloning a VM only needs to copy a disk image inplace. Once a VM boots

up, it configures itself via DHCP and NIS. After all VMs of a parallel program are ready,

user programs are loaded from the network and start their execution. In larger installations,

a storage-area network and a directory service can be used instead.

VM Directory

When transferring shares, the node-level schedulers and the banker processes only know

the address of the share-receiving VM, but not the address ofthe host machine that hosts

the VM. To deal with this issue, we create a VM directory to provide a mapping between

91

the IP address of a VM, its host machine’s name/IP address, and the Xen domain ID of the

VM.

Xen domain ID is the unique ID of a VM. However, its uniquenessis valid only within

a host machine and it cannot be specified while creating or migrating VMs. To deal with

this deficiency, we use the data files created byxend to map a domain ID to VM’s MAC

address and then uses theethers map in NIS/YP to find the hostname and IP of the VM

(the DHCP server is configured to assign IP addresses according to theethersmap.) The

mapping is stored in the VM directory once a VM is created and after a VM migration.

Besides the mapping, the DPS daemon periodically updates a host machine’s overall

utilization to the VM directory. The VM directory also serves as the bank to store excess

CPU shares of each parallel program. The banker process, which is discussed below, is

also part of the VM directory.

The Banker Process

We implemented the banker process as a thread of the VM directory service to reduce the

communication overhead. A pluggable interface is defined for user-supplied banker pro-

cesses (routines). Banker processes wake up periodically to redistribute excess CPU shares

to their VMs. Each banker process may have a different wake-up frequency which is con-

figurable by the user. Since banker processes require very little resource, any reasonable

hardware can host the VM directory and many banker processes(threads) easily.

5.4.3 The DPS Daemon

At the core of the DPS scheduling is the DPS daemon running within the host OS (do-

main 0) on every host machine. Its function includes creating VMs, interacting with the

node-level scheduler within Xen, reporting utilization tothe VM directory, receiving the

upstream inference result from hosted VMs, and conducts share exchanges in the Xen

92

cluster. We implemented it in C and use thexc library to control the scheduler.

In the fully-distributed mode, the DPS daemon periodicallyretrieves the information

on each VM’s CPU utilization from Xen. According to the current CPU-share allocation, it

calculates the excess share each VM has by using Eq. (5.1) in Section 5.3. The excess CPU

shares are then evenly distributed to the corresponding VM’s upstream. The DPS daemon

looks up the host machines of each upstream in the VM directory and connects to the re-

mote DPS daemons directly. It may also receive CPU shares from remote DPS daemons

at any time. After each successful share-exchange, the DPS daemon changes scheduling

parameters to reflect the changes in resource allocation.

In the bank-assisted mode, the DPS daemon sends and receivesshares to and from the

banker process, and the scheduler parameters are then changed accordingly.

5.4.4 Upstream Inference

In order to identify the upstream of a hosted VM, we need to correlate the packets received

by a VM and how it affects the processes running in a VM.

Every packet received by a hosted VM is actually redirected via the driver domain. Af-

ter the device driver in the driver domain received a packet destined for a VM, the host OS

either bridges or routes the packet to the back-end of the receiving VM’s virtual interface,

which then uses Xen hypercalls to re-map the received packetand send an event (a virtual

IRQ) to the receiving VM via a Xen event channel. The event maywake up the guest OS if

it was blocked (idle), and the guest kernel receives the packet from the front-end of the vir-

tual interface. Standard protocol processing is then applied and wake up parallel processes,

if necessary.

Given the path of packet delivery, we can intercept every packet in and out of VMs

at the driver domain, Xen VMM, or each guest OS. Inferring upstream VMs in the driver

domain or Xen VMM is a more generic approach as it is VM-neutral. However, either in-

side Xen VMM or the driver domain (by issuing hypercalls), wecan only learn the virtual

93

processor’s state (running or blocked) but not the parallelprocess’ state inside a VM.

The virtual processor’s state is different from the parallel process’ state as not every

incoming packet may wake up the blocked parallel processes.For example, data packets

may not wake up the receiver process that is not waiting for the input. On the other hand,

a data-less TCP ACK packet may indicate a successful data transmission or a connection

establishment, and unblocks a process. Unless the protocolis well understood, it is very

difficult, if not impossible, to infer dependency outside a VM.

We instrument the Linux kernel in unprivileged domains to infer the upstream relation-

ship. After a packet is delivered to user space, the kernel will wake up all processes waiting

for it. The sending host’s ID is passed with wake-up functions. If the receiver process

isn’t running nor already in the run-queue, we declare the sending host is an upstream VM,

and report its IP address and port number in the kernel log. A user-space program, the

upstream inference agent (UIA), is then reading from the logperiodically and proxies such

information back to the DPS daemon running in the host OS (domain 0).

Some filtering has to be applied on the upstream VM in UIA. For example, locally-

generated packets via a loop-back interface are ignored. Packets between CRM, DPS

daemon and UIA are also not part of a parallel program. Messages to and from infras-

tructure services (e.g., DHCP, NIS, NFS, NTP,etc.) also need to be excluded. Note that

our scheme can also detect I/O dependency. When the exchangerate between CPU shares

and I/O throughput is clearly defined, we can also trade excess CPU shares to improve I/O

performance.

We have also considered identification of upstream VMs by instrumenting function

calls in user-space. However, this methods suffers from theloss of scheduler’s contextbe-

fore the reception of a packet. For example, arecv() call may cause a context switch to

other threads of the same process or other processes in the same VM. By the time the call

returns, the process is already in execution. If the call returns immediately, one may use

some performance counters (e.g., number of context switches) to infer the CPU state of the

94

past. However, the ability of predicting past CPU state diminishes with time and system

complexity. Therefore, we conclude that instrumenting in the guest kernel is simple and

accurate in identifying upstream VMs.

5.5 Experimental Evaluation

In this section, we first introduce the testbed setup and benchmark programs. Micro-

benchmarks are then used to evaluate the overhead associated with the VM hosting cluster.

Finally, we evaluate the effectiveness of the DPS scheduling for a few representative sce-

narios.

5.5.1 Testbed Setup

We constructed a testbed to evaluate the performance of the proposed VM hosting cluster

and the DPS scheduler. The VM hosting cluster consists of 4 Dell Dimension 4550 PCs as

host machines, each equipped with a Pentium-4 2.66GHz CPU and 1GB of main memory.

All host machines are interconnected via a Fast Ethernet switch. Xen 2.0.7 is installed and

takes up around 18MB of memory. About 110MB of memory is designated to domain 0,

where thexend and the DPS daemon are running. With this setup, up to 896MB ofmem-

ory can be allocated to unprivileged domains (VMs). AnotherDell PC (P-4 2.26GHz, 1GB

memory) is dedicated to hosting a VM repository and the VM directory service. The VM

repository is a software RAID-0 disk array exporting via NFSv3. The disk array is dedi-

cated to this project and the utilization of this machine andnetwork was very low during

the evaluation.

We primarily use a PVM parallel program calledpatterns in the evaluation. The

programpatterns was developed for the Virtuoso project [42]. It models afterbulk-

synchronous parallel (BSP) style applications; many parallel benchmark programs, such

as the NAS parallel benchmark (NPB), are also of this type. The programpatterns

95

can be configured to run with any number of nodes and produce the various topologies

commonly used by parallel programs, such as n-D mesh, n-D toroid, reduction tree, n-D

hypercube, all-to-all,etc. The length of program execution is controlled by the numberof

iterations. In an iteration, each node receives a message from one of its neighbors, repeats

a simple computation for a number of elements, and sends a message to one of its topo-

logical neighbors. Both the amount of computation and the message size are configurable.

The amount of computation is specified in the number of multiply-add, memory read, and

memory write operations for each element, while the messagesize is specified in bytes.

During the evaluation, we fixed the amount of computation to be 106 multiply-add opera-

tions, and read/write 1MB of memory. The message size is set to 1KB. These numbers are

chosen such that the expensive I/O virtualization overhead, which we show below, is less

dominant.

The originalpatterns program can only generate a uniform amount of computa-

tion workload on nodes. However, this may not represent the real-world workload. To

model unbalanced workloads, we modified thepatterns source code such that for node

i(i = 1. . .N), the amount of computation is scaled to 1/i of the specified amount (106 in

the evaluation). The message size is kept unchanged. When runningpatterns, for each

node we created a VM that uses 128MB memory and the standard PVM disk image as its

execution environment.

We also created another serial programeatcpu to simulate a single-node CPU-

intensive application. It runs at the lowest priority to avoid performance degradation of

other processes in the same scheduling domain and merely consumes all CPU time avail-

able to it. This behavior is very similar to wide-area distributed computing projects such as

SETI@home [3] or Folding@home [67]. While thepatterns program has some CPU

share allocated for each VM, guaranteeing a minimum number of CPU cycles it will re-

ceived, thepatterns program and theeatcpu program also compete for unallocated

CPU cycles. Without competition,patterns can simply take whatever CPU cycles it

96

 210

 220

 230

 240

 250

 260

 270

 10 100 1000 10000

 1 10 100 1000

P
ro

gr
am

 r
es

po
ns

e
tim

e
(s

)
Number of iterations

Number of elements per iteration

Native Linux 2.6
Xen domain 0
Xen domain U

Linux 2.6 w/ 100Hz timer

Figure 5.5 Xen virtualization overhead.

needs.

5.5.2 VM Hosting Overhead

We first examined the overhead associated with the executionof parallel programs in vir-

tualized environments. Thepatterns program was executed in three different modes:

native, Domain-0, andDomain-U. In native mode, the program was executed in Linux

without any virtualization; this mode served as the baseline of our experiment. In Domain-0

and Domain-U modes, the program was executed in domain 0 and an unprivileged domain,

respectively. In all cases, no other program was competing for any resource. We config-

uredpatterns to create a 4-node workload with the all-to-all topology, and each VM

was hosted in a different host machine. We fixed the length of program execution to a total

of 10,000 elements on each node but changed the number of elements at each iteration to

generate different amounts of network I/O. The program response times in different modes

are compared and plotted in Figure 5.5.

At first, the results didn’t match our expectation as explained below. Although running

in domain U is slightly slower than running in domain 0, the performance in native mode

was actuallyworsethan running in either domain 0 or domain U. Only when networkI/O

is frequent (few elements per iteration), the program response times were longer in domain

97

U, where the I/O virtualization overhead was dominant.

After many unsuccessful attempts of identifying the difference in configuration that

leads to this counter-intuitive results, we suspected the kernel timer frequency is the cul-

prit, even when there was no other task to schedule. We then lowered the frequency from

1000Hz (default in Linux 2.6) to 100Hz (default in Linux 2.4 and Xen Linux in both do-

main 0 and domain U) and the program response time was decreased by 2% (as plotted in

Figure 5.5.)

With this fix, we observed that the CPU virtualization overhead is very small; it is about

0.4% and 0.6% for domain-0 and domain-U mode, respectively.Frequent network com-

munication and a longer network packet processing path raises the overall overhead to 14%

in domain-U mode [55]. We expect new hardware design will lower the I/O virtualization

overhead.

Moreover, it took only 18 seconds to boot up the standard VM image, where only 2.5

seconds CPU time was used. We concluded that the virtualization overhead is small, and a

proper kernel configuration can make a performance improvement in VM hosting cluster.

By providing an optimized kernel for specific types of parallel programs, resources can be

utilized more effectively.

5.5.3 Live-Migration

It has already been shown in [23] that live-migration can keep the downtime of moving a

VM within a cluster in less than 1 second for most workloads. We also experimented with

the live-migration of Xen VMs to assess its impact on parallel programs, especially on a

fully-utilized host. In this experiment, we configuredpatterns to run on 3 VMs hosted

in 3 different host machines. The fourth machine was used as the migration destination.

On the machine that hosts node 1 ofpatterns in an unprivileged domain, we also ran a

copy ofeatcpu in domain 0. This configuration makes the host machine the bottleneck,

and we can control the scheduler to allocate various amountsof CPU shares between these

98

 0

 20

 40

 60

 80

 100

 120

 0.2 0.4 0.6 0.8 1

P
ro

gr
am

 r
es

po
ns

e
tim

e
(s

)
‘patterns’ node 1 CPU share

No migration
Normal migration

Live migration

Figure 5.6 Xen VM migration overhead.

two programs.

We compared the program response times for three cases: no migration, one normal

(stop-and-copy) migration, and one live-migration duringthe program execution (10 itera-

tions of 100 elements). In order to make the result comparable to that of “no migration,” we

also ran a copy ofeatcpu within the domain 0 of the migration destination. In addition,

Xen does not migrate the scheduler parameters between hypervisors, and hence, we set the

parameters as soon as the migration is completed. The resultis plotted in Figure 5.6.

The program response time is inversely proportional to the CPU share it has been given

(node 1 is the bottleneck node). From the figure, it can be easily seen that normal mi-

gration takes 10–12 seconds to migrate a 128MB VM. The migration time was limited by

the network bandwidth (Fast Ethernet in our case) and proportional to the configured VM

memory size. The effect on the program response time also depends on how other running

VMs dealing with an unreachable node. On the other hand, live-migration incurs essen-

tially no overhead to the program response time. The only exception is that when the host

machine was dedicated topatterns (noeatcpu was running in domain 0). Although

live-migration did not incur any overhead to the program response time, it actually took

longer, 24 seconds in this case, to migrate the VM. The transit time also depends on how

frequently the memory pages become dirty. Since parallel programs tend to modify many

99

memory pages in a short period of time, this supports our design decision of migrating the

least-utilized VM from a bottleneck host machine.

5.5.4 DPS Scheduling

The strength of the DPS scheduling can best be shown in a resource-competing environ-

ment with unbalanced workloads. The testbed is set up in sucha way that 50% of CPU

time on each node has already been booked, and only the remaining 50% of CPU time

is available for competition. In the absence of competition, even a program with a small

share of CPU time can use a full CPU under a work-conserving scheduler. For the same

reason, competing with a light background workload does notmake sense either. We de-

ployedeatcpu in domain 0 of each host machine to create this immovable background

workload.

On top of this background workload, we executedpatterns to create a 4-node work-

load with the linear topology (1-D mesh). The linear topology is chosen so that we may

also compare the fully-distributed and bank-assisted share-exchange strategies. The share-

exchange was configured to be performed once every 5 seconds for this workload (10

iterations of 100 elements). Conducting the share exchangetoo often would make the

two strategies less distinguishable. On the other hand, infrequent share-exchanges would

make the potential benefits of DPS less visible. For the fully-distributed strategy, we set the

withholding factorwhi to 1/(P+1), i.e., the withheld amount is the same as the amount to

transfer to each upstream VM.

Thepatterns were submitted with a range of resource specifications, from0.1 to

0.5 CPU per node, to see how DPS handles different scenarios.We compared the program

response times with and without DPS, and plotted the resultsin Figure 5.7.

Without DPS, the CPU shares were fixed and evenly distributedon all host machines.

The program response time gets prolonged when fewer CPU shares were given. Note that

a 0.1 CPU share only means that at least 10% CPU time is available for this specific VM,

100

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0.1 0.2 0.3 0.4 0.5

P
ro

gr
am

 r
es

po
ns

e
tim

e
(s

)
Initial CPU share per node

No DPS
DPS w/ Fully-Distributed

DPS w/ Bank-Assisted

Figure 5.7 DPS reduced the program response time by up to 38%.

and therefore, the response time was not 5 times that of executing with 0.5 CPU share.

With an initial CPU share of less than 0.5 per node, there was some unallocated CPU

time that DPS can exploit. After a few share-exchanges, CPU shares were redistributed to

match the workload. A CPU-share trace is plotted in Figure 5.8.

From Figure 5.7, we can easily see that DPS significantly reduces the program response

time. The user can submit a program with less CPU time budget (e.g., a total of 1.2 CPUs)

while having a response time very close to a more costly submission (e.g., a total of 2.0

CPUs). The performance of DPS also improves with uncommitted resources. When only

60% of CPU time is allocated, DPS with the bank-assisted share-exchange strategy cuts

down the response time by nearly 38%.

The performance of DPS also depends on the underlying share-exchange strategy. The

bank-assisted share-exchange strategy can redistribute the excess shares from one end of

the linear topology to the other within one redistribution cycle, while the fully-distributed

strategy needs 3 cycles. This effect is pronounced, particularly when only 0.1 CPU-share

was allocated to each node initially. In this case, the most demanding node 1 has enough

room to accommodate excess shares from the least utilized (also the farthest), node 4.

Therefore, the benefit of the banker process can be seen easily. We also repeat the same

configuration with the all-to-all topology. Since all nodescan be reached from each other in

101

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 5 10 15 20 25 30 35 40

C
P

U
 s

ha
re

 p
er

 n
od

e
Time (s)

Node 1
Node 2
Node 3
Node 4

Figure 5.8 CPU share redistribution. Each node was given 0.2 CPU share initially and DPS with
fully-distributed share-exchange strategy was able to redistribute CPU shares to match workload
distribution in 3 cycles.

one hop, the benefit of the banker process disappeared. We also monitored the CPU usage

of the DPS daemon and found the overhead of DPS to be negligible.

In addition, we note that the benefit of DPS is obtained from the redistribution of CPU

shares. The response time ofpatterns is reduced because the bottle-neck VM gets more

CPU cycles from the unallocated CPU time slot pool. The progress ofeatcpu is slowed

during the execution ofpatterns because it gets less “free” CPU time from the same

pool. However,eatcpu still gets at least 0.5 CPU share so the scheduler does not violate

any agreed arrangements. The net effect is that the time slots that used bypatterns are

more closely-packed andeatcpu gets more time slots oncepatterns is finished.

5.5.5 Workload Redistribution

DPS redistributes CPU shares at run-time to match resource demands, but each host ma-

chine has a limited capacity and may not be able to accept every share transfer. When this

happens, CRM (VM directory in our implementation) can shed some workload via VM

migration.

We set up two copies of thepatterns program, each copy was configured to create

a 4-node workload. We artificially aligned the program copies such that two VMs of the

102

same node number are initially hosted in the same machine. Weexecuted the program for

a longer period of time (100 iterations of 100 elements) so CRM may have enough time to

do migrations.

Without VM migration, the host that accommodates two copiesof VM1 quickly be-

comes the bottleneck. Both copies ofpatterns took 430 seconds to complete. With

VM migration, one copy ofVM1 was migrated to the least utilized host machine (that

hosted two copies ofVM4) soon after the start of the experiment, and the two copies of

patterns were finished in 219 and 316 seconds, respectively. While theworkload was

not perfectly balanced at the end, this performance gain demonstrates the effectiveness of

workload redistribution.

5.5.6 Large-Scale Simulation Results

In order to demonstrate the capability of DPS on a larger cluster, we built a simulator to

simulate running BSP-style applications on a cluster with aproportional share CPU sched-

uler. It uses the credit CPU scheduler from Xen 3 [1]. The inputs to the simulator include

the number of physical hosts and a number of BSP programs. Thespecification of each

simulated BSP program includes the number of of VMs that it needs, the initial placement,

and the actual CPU demand for each VM. The actual resource demand is only known to the

node-level CPU scheduler for simulation purpose but concealed from DPS. Dependencies

between VMs can also be given as inputs. While the simulator does not simulate network

latency, it enables upstream VM inference in DPS. All programs start at the same time and

the simulator reports the response time of each program.

We first use the simulator to show the benefits of time-multiplexing BSP programs and

how much DPS reduces program response times. We simulate a 16-node cluster with a vari-

able number of 16-VM programs. Each program has the same structure (using 16 nodes)

but different actual CPU demand. The actual CPU demand of each VM is a random number

uniformly distributed between 10ms to 100ms per BSP iteration. The actual CPU demand

103

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16 18

N
or

m
al

iz
ed

 P
ro

gr
am

 R
es

po
ns

e
T

im
e

Number of Instances

No DPS
DPS

Figure 5.9 DPS reduces program response times in a cluster of increasing number of parallel
programs.

of each VM is also different in each instance of the program. Each VM of a program is

also assigned 0.1 CPU share initially and is placed on a different physical host, so each

16-VM program use all 16 nodes in the cluster. In other words,if we run N instances of

the 16-VM program, each physical host hasN VMs andN/10 of CPU time been assigned.

Statistically, the workload of each physical host is identical. WhenN = 1, the cluster is

dedicated to only one instance of the program and we normalized response times to this

number.

From Figure 5.9, we can see that the response time increases at a slower rate with the

number of instances of the 16-VM program. It is because faster VMs (lower CPU demand

VMs) need to wait for slower VMs (higher CPU demand VMs) and cannot fully utilize its

resources. In this experiment, the CPU time utilization forthe program is 56%. Therefore,

we can overbook the cluster with 17 instances of the program running simultaneously and

the response time is roughly 10 times of running on a dedicated cluster, which is what the

cluster user expecting when submitting the program with 0.1CPU share for each VM. We

use the bank-assisted share exchange in this simulation.

When there are 8 or fewer VMs on each physical host, the response time is the same

with or without DPS. It is because the CPU is not fully allocated (only 0.1–0.8 CPU is

booked) and a work-conserving scheduler is being used, eachVM actually gets more than

104

 1

 1.1

 1.2

 1.3

 1.4

 0 2 4 6 8 10 12

S
pe

ed
-u

p
by

 D
P

S
Number of Instances

Figure 5.10 The speed-up of program response time by utilizing DPS.

its share and the need of DPS is nullified. When there are more than 8 instances of the

program, we can see that DPS is able to reduce program response times by up to 15%, or

speed up by up to 17%. Maximum benefits are achieved when thereare 10–11 instances of

the program,i.e., 0–10% overbooking or about 60–70% actual CPU utilization.We note

that if each instance is run one after another on a dedicated cluster, for the same amount of

time only 6–7 instances can be completed instead of 10–11 instances.

The benefit of DPS reduces as the number of instances continues to increase. It is be-

cause there is less and less idle time in the cluster after extensive overbooking. However,

one cannot simply rely on overbooking to improve utilization as the capability of a pro-

gram using CPU time can also change from time to time. If a program suddenly can utilize

every CPU cycle it is given, it cannot recoup enough CPU time it is entitled to. Penalties

might be resulted if resource provider cannot meet the agreement. The appropriate amount

of overbooking depends on the workload and allocation of each VM. Finding the optimal

extent of overbooking is out of the scope of this work.

In another experiment, we show how the levels of multiplexing affecting DPS. The same

program is used but each CPU is always fully allocated no matter how many instances of

the program are running. In other words, whenN instances are running, each VM is en-

titled 1/N CPU share initially. After excess shares are transferred, VMs on overbooked

105

physical hosts are migrated to underloaded physical hosts to balance workload distribution.

From Figure 5.10, we can see that the benefit of DPS reaches a maximum when there

are 3 instances of the program running with 0.33 CPU share initially for each VM. DPS is

able to speed up the execution by 34%. Similarly, as the number of instances increases, the

benefit of DPS is diluted because of simple multiplexing. DPSperforms better when there

are a fewer number of programs with larger chunks of CPU allocations instead of many

programs with little CPU allocations.

5.6 Summary

Enhancing utilization as high as possible has always been a goal for computing cluster op-

erators. While some parallel programs may place balanced workloads on computing nodes,

most of workloads do not, leaving the allocated resources idle (hence wasted) for an ex-

tended period of time. An important source of this mismatch between resource allocation

and consumption is found to be the over-simplified program submission model, where pro-

gram and resource specifications are boundtogether. The proposed DPS scheduler makes

it possible to decouple these two aspects, and is experimentally shown to yield considerable

benefits.

The use of VM enables each hosted parallel program to be executed in a dedicated

environment while the operator can easily move resources around. In addition to creating

VM disk images for a specific execution environment, kernel configuration can also be cus-

tomized to best fit the hosted application. With VM migration, the flexibility of allocating

and utilizing resources in a VM hosting cluster greatly improves the limits of a traditional

time-sharing cluster. With emerging hardware virtualization, this is also expected to benefit

even I/O-intensive programs.

Another benefit of DPS scheduling is the provision of explicit resource guarantees,

which is the fundamental requirement of scheduling real-time applications in computing

106

clusters. Once a program is submitted for execution, it is guaranteed to receive the spec-

ified amount of resource, even with migration during its execution. For a utility cluster,

such an underlying characteristic is essential; otherwise, no service-level agreement can

be realized. The DPS scheduler is also distributed and scalable. We believe DPS can be

extended to other resources as well.

107

Chapter 6

Accurate Packet Timestamping for
Game Servers

6.1 Introduction

Virtualization has been used extensively for server consolidation in order to improve hard-

ware utilization and reduce operating cost. While some resources in a computer system

are space-partitioned and allocated to each virtual machine (VM), other resources are

time-shared between VMs, incurring an additional scheduling delay that can reduce the

responsiveness of services running in VMs. Although the prolonged response time gener-

ally does not affect throughput-oriented services such as web servers, online gaming, an

emerging Internet application, is very sensitive to such delays.

Different genres of online games have different requirements on server responsiveness

and first-person shooter (FPS) is the type of games that is most sensitive to the latency

between a game server and its clients. In FPS games, a dead reckoning mechanism is typ-

ically employed to hide the latency by predicting the movement of all entities in a game.

Previous studies have shown that players are able to notice sluggishness when the network

latency is above 75ms and the hit accuracy of precision shooting decreases steadily when

the latency is 100ms or more [12]. Similarly, gamers are alsoaffected by long input lags on

certain LCD monitors, which can be as high as 70ms in some instances1. In other words,

by reducing the latency, online gamers can have a better gaming experience.

1Dell 2408WFP Review. http://www.tftcentral.co.uk/reviews/dell2408wfp.htm

108

There are many game server hosting companies on the Internetcompeting to provide the

lowest cost game servers for hardcore online game players who look for short network re-

sponse time, fast hardware, and the ability to customize a game server installation. With the

aforementioned response time requirement, game server hosting service providers are on

the horns of a dilemma. They want to reduce their operating cost by consolidating as many

game servers in each physical host as possible without violating the service quality require-

ment. Virtualization should not only bring the ease of consolidation to service providers,

but also provide an adequate interface for the hosted application. In this work, we look

into game servers hosted in a virtualized environment and augment the VM abstraction to

improve game server performance.

When user inputs arrive at a game server as incoming packets,a typical game server

takes a timestamp immediately after receiving a packet and uses the timestamp as the time

that the user makes the move. The time is then used for dead reckoning calculation to de-

termine the state of the entities involved before the user input is applied to the game state.

Periodically, the game server sends updates of the game state to all clients so all users have

a consistent view of the game world. Obviously, an accurate timestamp reflects the user’s

intention better, provides higher fidelity, and results in better gaming experience.

In a virtualized environment, however, a guest OS generallyhas no or very limited

access to the host platform. For example, a guest OS can access a virtual disk device pro-

vided by the host platform, but disk I/O scheduling in guest OS is generally ineffective as

the physical disk head location is unavailable to the guest OS. Likewise, while all VMs

can synchronize to the host clock, the system time maintained in each guest OS becomes

non-contiguous as timestamps can only be taken if the VM is actually running on at least

one CPU.

The coarse-grained virtual time creates a couple of problems for game servers. First,

the latency increases as it includes the time the host OS delivers the packet to a guest OS

and the scheduling delay that a VM experiences. As our experiment shows, in a loaded

109

system the latency can be as high as 40ms in the worst case. Second, the inter-arrival time

between user inputs becomes obscure. For example, while twopackets may arrive at the

physical host 10ms apart, they may arrive at a VM virtually atthe same time. Although the

arrival order can be preserved, their effect on the game world can be very different.

To bridge the gap between the physical host and a VM, we propose to augment the

virtual network interface used in VMs such that the packet arrival time can be taken in the

host OS and passed to the guest OS if an application requests it. We modified the Xen

virtual network device driver in the Linux kernel. Our evaluation result shows that the

timestamp reflects the user input time better and is much moreaccurate than taking times-

tamps in the guest OS because the timestamp is taken in the very early stage of network

packet processing.

The contribution of this work includes: (1) restore the capability of taking an accurate

timestamp of packet arrival in VMs; (2) provide a prototype in Xen/Linux along with a

game model for evaluation; and (3) investigate its applications beside online game servers.

The rest of the chapter is organized as follows. We first provide an overview of an

FPS game model and an architecture of game-server hosting inSection 6.2. The packet

delivery path in a virtualized system is described in Section 6.3. Our augmented virtual

network interface design and implementation is detailed inSection 6.4 and 6.5, respec-

tively. Evaluation results are presented in Section 6.6 before we summarize the chapter in

Section 6.7.

6.2 Model

In this section, we first provide a brief history of FPS games and the need for hosting game

servers inside VMs. An architecture of a game server hostingservice is then described

which is following by a problem statement.

110

time

Frame

Player A
input

Player B
input

Player C
input

Player B
input

Server updates
Player A, B, & C

20–50ms (fixed)

Figure 6.1 The interaction between game players and a server in a time frame.

6.2.1 Overview of FPS Games

While the history of FPS games can be traced back to 1973, its current form became well-

known afterid SoftwareintroducedDoom, the first multiplayer FPS game, in 1993. Doom

allowed two to four players against each other over a local-area network (LAN) and became

very popular. Many other popular FPS games, includingQuake, Unreal, andBattlefieldse-

ries, followed the same track where the newer ones allowed upto 64 players in a game

session simultaneously.

When a game session is being held over a LAN, one of the player’s computer (a PC

or a game console) is usually assigned an additional role as the game server. Other play-

ers connect to the game server using TCP/IP, IPX, or other protocols. As this is the most

common game-server setup, many game-server programs only support one session at a

time. Geographically-dispersed gamers can also connect toa dedicated game server on

the Internet and play remotely. More recently, emerging massively multiplayer online FPS

(MMOFPS) games support more than 100 players in a battlefield.

The main function of a game server is to provide a consistent view of the game world

to all players. Typically, The game time is partitioned intotime frames. The length of each

time frame is fixed during the game play and usually ranges 20–50ms (i.e., 20–50 frames

per second.) The interaction between game players and a server is depicted in Figure 6.1.

During each time frame, the server receives packets that represent player movements from

clients. At the end of each frame, the server sends out updates to each client to inform them

111

the current game state, essentially a snapshot of the game. Since updating the game world

does not involve any graphics rendering, the server processitself does not demand much

computation resources. When a game session is hosted over a LAN, a relatively powerful

computer is usually chosen to take the additional workload.

Between two updates of the game world, each game client employs a dead reckoning

mechanism to bring a continuously evolving game world to players. A dead reckoning

mechanism uses a pre-defined model and the current game state, such as an entity’s po-

sition, heading, velocity, acceleration, etc., to predictthe entity’s state and its interaction

with user inputs. However, when all users input arrive and reconcile at the game server,

some locally generated game state may be nullified.

A game server is also highly configurable. For example, it cansupport different game

types (death-match, capture-the-flag, etc.) and scenarios(including third-party/customized

ones), tweak update frequency, limit the number of players and the selection of weapons,

anti-cheat plug-in, etc. A group of players may develop their preferred settings and only

play accordingly. Unless two groups of players can all agreeon a set of settings, two

different servers are needed.

6.2.2 Game Server Hosting

As the number of players in a game session increases, it is more and more difficult to bring

all players together and connect their equipment to a LAN. Playing games over the Internet

becomes an attractive alternative. Game servers may be provided by the original game pro-

ducer and hosted in the company’s facility. A group of game players can also rent a server

in a data center and install their customized server program. When a player wants to join

a game, a list of available game servers is shown on the screenalong with their latency,

server configuration, etc. The player then joins a server with a short latency and preferred

game settings.

In order to reduce the operating cost of running game servers, data center operators

112

want to use as few physical servers as possible to host game-server programs. As many ex-

isting game-server programs can support only one game session at a time, multiple copies

of a certain game may need to run on a hosting platform concurrently. However, a game

may only listen to a certain TCP/UDP port and load its configurations from a certain fixed

path. While modifying game-server source code and game protocols can relax these restric-

tions, all gamers must download new client software in orderto continue playing the game,

resulting in a prohibitive redistribution cost. Game developers may also find themselves a

lack of incentives to supporting legacy games.

A simpler approach is to host each game server program in a virtual machine (VM) and

consolidate multiple VMs on top of a physical server. Virtualization provides an illusion

that each game-server program is running on a dedicated server so no redesign is required.

A group of game players can rent a game server VM and apply their customizations and

settings on it. Using virtualization also provides us the flexibility to migrate a game server

from one physical server to another. Game server hosting service providers can use VM

migration to balance the workload on its physical servers. Agame server VM can also

migrate to a data center where all players in that session have equal network delays. When

a game server is not currently being used, the data center operator can also suspend the VM

and resume it when needed.

However, any consolidation effort must also meet the timingrequirements imposed by

the application. FPS game players are very sensitive to the game-server’s responsiveness

because a short delay can easily influence the result of a duel. While the latency in a LAN

is very short (<1ms), the latency of Internet game playing is much higher. For example, the

network latency over a coast-to-coast (US) link is around 30–50ms. On top of the network

latency is the latency incurred within the game server, including the delivery of incoming

packets to VM and the VM scheduling delay. The goal of this study is to understand these

delays and improve game-server performance in a virtualized infrastructure.

113

6.2.3 Problem Statement

Given the popular demand of Internet gaming and the need of game-server hosting, the

goal of data centers is to host as many FPS game servers as possible on top of a virtualized

infrastructure. The consolidation effort is constrained by a service-level agreement that

limits the latency a user input may experience inside a data center. We also assume that

the workload model of each server is identical and the host platform has a fixed amount

of resources. Therefore, the number of hosted game servers is used as the metric in our

evaluation.

6.3 Timing in Game Servers

As a game server and its clients are geographically dispersed, it is usually difficult to have

their clocks synchronized with each other. Therefore, the gold master state of a game world

must depend on a single clock source, the server clock, to serialize events generated from

all clients. In this section, we first discuss various latencies in a virtualized system and how

timestamps are taken in a guest OS.

6.3.1 Packet Delivery Delay

In current architecture, all network I/Os to and from VMs arehandled by device drivers

in the host OS. The packet delivery path is illustrated in Figure 6.2. For each incoming

packet, the host OS typically uses its layer-2 MAC address, layer-3 IP address, or layer-4

port number to switch or route a packet to a VM. The packet header is overwritten on-the-

fly to reflect different network settings. The host OS then uses the virtualization interface

provided by the hypervisor to make the packet available to the destination VM. Once the

packet is delivered, the host OS sends an event to wake up the destination VM. If the VM

is not currently scheduled to run, the scheduler will schedule its execution.

We define the delay between the time that a packet is received by the host OS and the

114

Xen Hypervisor

Domain 0 Domain U

Host OS
kernel

vifneth

networking

Guest OS
kernel

eth

Game
Server

networking

pkt 1. User-input pkt arrives at physical host

2. Switch/route

in host OS

3. Grant mem pg &

pass meta-data

4. Deliver

Figure 6.2 The packet delivery path for an incoming user-input packet.

time that a packet is received by a guest OS as thepacket delivery delay. From the above

discussion, the packet delivery delay includes the time a packet spent in the protocol stack

in host OS, the mechanism that passes the packet from the hostOS to a VM, and a schedul-

ing delay before the guest OS can pick it up. Among these components, the scheduling

delay is the most non-deterministic and is discussed below.

6.3.2 Scheduling Delay

In a non-virtualized environment, a game-server process iscompeting with other processes

in an operating system (OS) for CPU time. The process scheduler in the OS has full con-

trol of CPU time allocation. Theprocess scheduling delay, which is defined as the time

between a process is ready to run and the time that it actuallybegins to run, is a function

of the scheduling algorithm in use, other processes in the system, timer frequency, and so

on. Typically, a game server only co-exists with some background daemon processes so

the process scheduling delay is very short.

In a virtualized environment, a game server also needs to compete with other VMs in

the physical server for CPU time, incurring an additionalVM scheduling delay. The VM

scheduling delay is defined as the time between a VM, or a process in the VM, is ready to

run and the time that VM actually begins to run. Similar to theprocess scheduling delay,

115

the VM scheduling delay is also a function of the underlying scheduling algorithm, the

workload of other VMs, timer frequency, and so on.

The CPU scheduler in a hypervisor can increase the priority of a VM that was waiting

for incoming packets or I/O operations to complete. This design improves the responsive-

ness of I/O-intensive VMs . However, if there are many I/O-ready VMs that need to be

scheduled, a penalty is still imposed on the response time. Our evaluation result shows that

the VM scheduling delay can be as high as 40ms in a game-serverhosting scenario.

6.3.3 Timestamping Methods

Modern CPUs have a built-in timestamp counter that can supply high-resolution times-

tamps to a OS. During boot-up, the OS first initializes the system time with the hardware

clock and also calibrates the timestamp counter using hardware timers. When current

system time is needed, the OS reads the current value of the timestamp counter and con-

verts the value to the system time in a certain format, such asstruct timeval or

ktime t. Time resolution might be limited in the conversion process, e.g., 1µs for

struct timeval and 1ns forktime t.

In a POSIX-compliant system, application programmers can use thegettimeofday

to learn about current system time. Therefore, one can call the function immediately after

receiving a packet from the OS and associate the timestamp with the packet. However, this

method suffers from both packet delivery and scheduling delays. It also generates an exces-

sive number of system calls and results in higher CPU demand as timestamps are required

for most input packets. On the other hand, it is compatible tomany systems and is the most

portable approach.

In many recent OSes, one can specify theSO TIMESTAMP option to an opened socket

using thesetsockopt system call. Timestamps are taken in the kernel and available

to user-space applications via therecvmsg system call as ancillary data (also called

control messages.) In Linux kernel, the timestamp is taken at the very beginning of device-

116

independent network code. Although the time spent in network device drivers and the

scheduling of kernel tasklets are still not taken into account, the timestamp is much closer

to the packet arrival time. Both the network time protocol (NTP) daemon and thetcpdump

network packet capturing program use this option to obtain timestamps.

While the option is enabled per socket, Linux kernel timestamps all incoming pack-

ets if any opened socket requests timestamps. This design values timestamp accuracy as

one does not need to wait until a packet is associated with a socket to determine whether

a timestamp is needed. Given that a large portion of game traffic requires timestamps,

the extra time spent in timestamping all incoming packets becomes insignificant for game

servers.

However, in a VM, the thus-obtained timestamp only reflects the time that a packet is

handled by a guest OS. The packet delivery latency within a virtualized platform is not

taken into account. This presents an information gap between a VM and its host system.

For a game server, a longer latency and inaccurate timestamps reduce the fidelity of game

playing.

6.3.4 Effects of Inaccurate Timestamps

When the packet delivery delay occurs between a client and a server, the dead reckon-

ing mechanism uses an inaccurate timestamp to estimate gamestate before applying the

player’s command delivered in the packet. The net effect appears that the client took longer

to make the decision. When the total latency is large, game players will feel sluggish as

their inputs are not processed promptly.

Furthermore, the inter-arrival time between two user inputs, whether or not they come

from the same user, also becomes obscure. While the two inputs may be 10ms apart when

they arrived the host OS, they may be delivered to a VM in the same batch and handled by a

guest OS almost at the same time. Although the order of packetdelivery can be preserved,

the result can be very different. If the two inputs were from the same user, the difference in

117

Switch/route pkt,
map mem page,

enqueue meta-data,
send event,

schedule guest

User-input
pkt arrives
@host OS

Guest
OS

starts to
run

Dequeue meta-data,
TIMESTAMP,

deliver to game

User-input
pkt arrives
@host OS

TIMESTAMP
Switch/route pkt,
map mem page,

enqueue meta-data,
send event,

schedule guest

Dequeue meta-data,
deliver to game
w/ timestamp

Guest
OS

starts to
run

Timestamp error

Timestamp error

time

orig

new

Figure 6.3 A comparison between two different timestamping approaches.

inter-arrival time may not reflect the user’s original intention. If the two inputs were from

two users aiming each other with a gun, the difference in inter-arrival time may determine

whether a gunshot hits a dodging opponent or not. Previous research also shows that rel-

ative delays between gamers may also impact gaming experience [59]. Because of these

consequences, we need a better timestamping mechanism for game servers in VM.

6.4 Augmented Virtual Network Interface

In order to reduce the packet delivery delay, one can controlthe number of VMs hosted

on a host platform so the VM scheduling delay can be minimized. An admission control

mechanism can be used to determine if new game-server VMs canbe started or running

game servers need to be migrated to another host platform. However, this approach simply

manages the additional latency but not fills the informationgap.

To make accurate packet arrival timestamps available to VMs, we decide to record

packet arrival times in the host OS and deliver the timestampto the destination guest OS.

A comparison of the timestamp error in these two approaches can be seen in Figure 6.3.

While the packet delivery delay is not shortened with this approach, the timestamp error

— the difference between the reported timestamp and the actual packet arrival time — is

118

significantly reduced, so the effects of inaccurate timestamps can be reduced.

Similar to theSO TIMESTAMP socket option that a process can use to request times-

tamps from kernel, we allow the guest OS to proxy that requestto the host OS and take

timestamps in the host OS instead. The timestamp is then passed to a VM along with other

meta-data of a packet, such as the physical memory address that the packet resides, whether

the packet has been check-summed in host OS, and so on. When the guest OS receives a

timestamp-associated packet, it simply trusts the timestamp and passes the timestamp to

the application — the game server. While the game server may process multiple user in-

puts in a batch, their timestamps faithfully represent their arrival times in the host OS and

the resulting game state can be constructed with higher fidelity.

For each game packet, the timestamp is only taken once — the design simply moves

the work from a guest OS to the host OS. We also value timestampaccuracy more by tak-

ing timestamps immediately after each incoming packet enters device-independent network

code in the host OS. This approach avoids most of the packet delivery delay but additional

work is done for packets that are not destined for game-server VMs. We argue that it is

still a better approach as selective timestamping incomingpackets can easily incur higher

overhead.

6.5 Implementation

We implemented the augmented virtual network interface by modifying the Xen virtual ma-

chine monitor (VMM). Specifically, we modified the virtual network interface card (NIC)

device driver to allow the host OS to pass timestamps to guestOSes. We also created a

model FPS game to emulate the game-server workload without setting up a large number

of game servers and clients. The detail of the implementation is described next.

119

6.5.1 Xen Virtual NIC

In order to reduce the cost of memory copying in delivering packets between VMs (called

domains in Xen), the sending Xen virtual NIC typically grants accesses to the memory

pages that contain the packet and only passes memory addresses to the receiving party. The

memory addresses are passed in a circular buffer shared between a pair of virtual NICs.

The circular buffer is implemented as an array of fixed-sizedrecords. The size of each

record is 8 bytes. A record may represent a packet that is pending to be received at the

other end. Additional records may be used to deliver meta-data. We defined a new record

type and use it to deliver the arrival time of a packet.

Unfortunately, only 6 bytes of an 8-byte record can be used topass the timestamp, the

other 2 bytes are header fields. The timestamp in Linux 2.6.18, which is both the host

and the guest OS in our implementation, is stored in thetimeval structure. The struc-

ture stores the number of seconds since the UNIX epoch and thenumber of microseconds

passed the second, hence having a resolution of 1µs. In a well-formed timestamp the value

in the second field is always between 0 and 106−1 (inclusive.)

In order to fit the timestamp into the 6-byte payload, we reduced the timestamp res-

olution to 16µs (24µs) so the “microseconds” part of a timestamp needs only 16 bits (2

bytes) instead of⌈log2106⌉ = 20 bits to represent all possible values. This implementation

is effective because only one additional record is needed todeliver a timestamp and there is

no need for any prior language or any dependency between packets. The 16µs resolution

provides enough details for online gaming. If a higher resolution is needed, one can use

multiple records or use a common base timestamp between multiple packets.

6.5.2 Model FPS Game

We first investigate the source code of an open-source network FPS game, Urban-Terror,

to understand the logic of a game server. The game is based on the game engine of Quake

120

3, a very popular FPS game. The game uses UDP/IP for network gaming so players can

connect to a game server and play from a remote location. Similar to other games, the game

server supports only one session at a time.

When a user makes a move in the game, a packet is sent from the client to the sender

to propagate the state change. Every 50ms the server sends anupdate of the game world

to each client. The traffic between an Urban-Terror game server and its clients is not en-

crypted.

While a large installation of game-server VMs can be set up bycloning VMs, it is much

more difficult to set up a large number of clients and generategame playing traffic to game

servers. Instead, according to the traffic characteristicsof Urban-Terror and other stud-

ies, we built a model game server and client that help us evaluate large-scale deployment

scenarios.

We expect future games contain more details than current games. Previous studies

have shown that both the average packet size and packet rate are increasing in more recent

games [44]. As the market size of serious gaming becomes larger, we also expect more so-

phisticated encryption algorithm will be used in online gaming. There are already security

software add-ons for Quake 3 that encrypt game traffic to prevent cheating.

Based on these observations, we employed a fixed 256-byte data block to represent

user inputs, which are encrypted before sending to the server. Along with a few header

fields and message digest, the final UDP payload size is 296 bytes — similar to the average

packet size of 247–270 bytes reported forHalo 3, a newer and also popular network FPS

game [44]. The emulated user inputs follow the Poisson process and the average rate is set

to 20 inputs per second, which is also similar toHalo 3 (15–30 inputs per second). Game-

state updates are sent out periodically and the frequency isset to 20 updates per second (the

default value as in Quake 3) in our evaluation.

121

6.5.3 Measuring Packet Delivery Delay

We measure the packet delivery delay by comparing the packetarrival time on the game

server to the user input time on the game client. Before sending each user input packet to

the game server, a timestamp is taken on the game client and sent to the game server in a

header field along with a sequence number. After the server received the packet, it subtracts

the client timestamp from the packet arrival time. Since thetwo timestamps are based on

different clocks, we synchronize the two clocks before eachexperiment.

The resulting time difference is the time a packet spent in sender’s protocol stack, trans-

mission delay, and the packet delivery delay at the receiving end. Of these components, the

first two are not affected by different timestamping approaches in the game server so we

can measure the difference in the packet delivery delay.

6.6 Evaluation

In this section, we primarily use the model game server and client we created to evaluate

the packet delivery delay in a VM-based game server hosting scenario. The testbed setup

is described first which is followed by evaluation result.

6.6.1 Testbed

We set up a testbed that consists of two machines. Each machine has two dual-core CPUs

and 4GB memory which are connected via gigabit Ethernet. Oneof them is configured

with Xen VMM and our modified virtual NIC driver. Since our model game server doesn’t

use much memory, each game-server VM is only allocated with 1virtual CPU and 32MB

memory. Only a guest OS and our model game server are running within each VM. The

smaller memory footprint allowed us to host many VMs withoutrunning out of memory.

The other machine runs our model game client and measures thelatency to the server.

122

0

10

20

30

40

0 10 20 30 40 50
Number of game-server VM

P
ac

ke
t

lo
ss

 r
at

e
(%

)

Dynamic CPU assignment

Restricted CPU assignment

Figure 6.4 Packet loss ratio for different number of game-server VMs indifferent configurations.

6.6.2 Packet Loss Rate-Based Scalability

We first evaluate the scalability of the game-server hostinginfrastructure by hosting as

many game-server VMs as possible. We created two slightly different setups and used the

packet loss ratio as the metric. In the first setup, the domain0 (host OS) and all game-

server domains (guest OSes) are allowed to use any of the 4 CPUcores in the system. In

the second setup, the domain 0 is pinned to one CPU core and allgame-server domains are

allowed to use any of the 3 other CPU cores.

From Figure 6.4, we see that the packet-loss ratio shoots up when there are more than

40 domains if all 4 CPU cores are dynamically assigned to any domains (labeledDynamic

CPU assignmentin the figure). On the other hand, if one CPU is dedicated to domain 0

(labeled asRestricted CPU assignmentin the figure), 46 and 48 game-server domains can

be hosted with<1% and<3% packet loss ratio, respectively.

The restricted CPU assignment scheme works better because all incoming packets need

to be switched or routed via domain 0 before they can reach their final destination. When

domain 0 could not obtain enough resources, incoming packets are dropped due to limited

buffer space. If the packet-loss ratio is the only criteria in a service-level agreement, the

hosting service provider may conclude that the system can host 46 active game sessions

after this experiment.

123

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50
Number of game-server VM

A
vg

 P
kt

 D
el

iv
er

y
D

el
ay

 (
m

s) Timestamp in Guest OS

Timestamp in Host OS

Figure 6.5 Average packet delivery delay for different number of game-server VMs using differ-
ent timestamping approaches.

6.6.3 Packet Delivery Delay-Based Scalability

With the restricted CPU assignment, we look at the average packet delivery delay obtained

by different timestamping approaches. As we can see in Figure 6.5, the average packet de-

livery delay increases with the number of game-server domains. If the timestamp is taken

after the packet arrives in the guest OS, the delay is much higher than taking timestamp in

the host OS. When the server is loaded with 46 domains, our design can reduce the delay

by 3.1ms. In other words, the obtained timestamp is 3.1ms closer to the actual user input

time.

If the game server requires a timestamp to be taken within 1msafter a packet is arrived,

44 domains can be hosted with our new design while only 30 domains can be hosted when

timestamps are taken in each guest OS — a 47% increase in scalability.

In addition to the average packet delivery delay, the 95-percentile of packet delivery de-

lay can also be used as an indicator of service quality. We plotted the results in Figure 6.6.

We note that it can take more than 20ms to deliver a packet to a guest OS when 46 domains

are hosted, the difference between two approaches can be as high as 15ms. When 44 or

fewer domains are hosted, the time that a packet spent in the host OS is essentially con-

stant. On the other hand, the 95-percentile of packet delivery delay distribution increases

significantly if more than 40 domains are hosted. This shows that the improved timestamp

124

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50
Number of game-server VM

95
-p

er
ce

n
ti

le
 D

el
iv

er
y

D
el

ay
 (

m
s) Timestamp in Guest OS

Timestamp in Host OS

Figure 6.6 95-percentile of packet delivery delay for different number of game-server VMs using
different timestamping approaches.

approach not only performs better if a certain service levelis required, its performance is

only bounded by the speed of the CPU that domain 0 runs on.

6.7 Summary

In this chapter, we present a design that bridges an information gap between a physical

host and a virtual machine. The timestamps are particularlyimportant to time-sensitive

applications such as online gaming, an emerging market in the entertainment sector. We

showed that while simple consolidation approaches can host30 game servers subject to a

timestamp accuracy constraint, with our improved interface one can host 44 game servers.

125

Chapter 7

Conclusion

Virtualization is an old concept that has brought back recently with the primary goal of im-

proving x86 server utilization. In this thesis, a distinct feature of a virtual machine, namely

the flexibility in run-time resource allocation adjustment, is utilized to improve the design

of software systems on large-scale virtualized infrastructures, such as data centers. We

showed that by incorporating this feature in software system designs, better performance

can be achieved with the same amount of resources.

We first built Vibra Web, a web server cluster based on a virtualized infrastructure.

Instead of balancing the workload of back-end web servers, we used a scalable and locality-

aware request dispatcher at the front-end and tackled load imbalance by transferring net-

work bandwidth allocation between back-end server VMs. Ourevaluation results showed

that average response time is reduced in Vibra Web and it is also more scalable than other

locality-aware approaches.

Resource re-allocation schemes can also be integrated withfault-tolerant mechanisms

to improve system performance during degraded operations.Surviving servers in a cluster

can be granted more resources to compensate for the failed server. We also showed that

by bridging a gap between a physical machine and a VM, the system clock can still be

available to a VM even when the VM is not running, resulting inmore accurate timestamps

and better online gaming experience.

We also applied the idea of transferring virtual resources to parallel computing appli-

cations and built a distributed proportional-share (DPS) CPU scheduler. By transferring

126

CPU share allocations between computing nodes, a parallel application can complete its

execution faster. It also relieves programmers from balancing computing workload.

In traditional operating system designs, we have seen that many designs were based on

certain features at the hardware/software interface. Similarly, in this thesis, we showed that

understanding the VM abstraction and design software systems accordingly can also make

significant improvements in performance. We expect that there will be more systems that

can be designed and perform better in virtualized infrastructures.

In the future, we expect more cores and larger memory in computer systems of all sizes.

A more sophisticated hypervisor is needed to schedule hundreds of VMs, each with tens

GB of main memory, on a single server with tens of cores and hundreds GB of physical

memory. While the number of VMs that need to be scheduled is similar to the number of

processes in a typical system, the size of each VM is roughly 2orders of magnitude larger

than a typical process, making memory allocation in NUMA systems a bigger problem.

We also expect the advent of more specialized, virtualization-capable I/O devices, such

as newer 1Gbps and 10Gbps NICs. While their introduction will reduce the work that needs

to be done in the host OS, the NICs also become stateful and mayhamper compatibility of

VM migration. New classes of computing resources, such as general-purpose computation

graphics processing units (GPGPU) in advanced video cards,should also be made available

to VMs while complicating VM abstraction. That is, keeping asmall footprint and a small

attack surface of a hypervisor will become more and more difficult. With a richer VM

abstraction and more types of resources supporting dynamicallocation at run-time, it also

brings more opportunities to optimize VM performance in a heterogeneous environment.

127

Bibliography

[1] Emmanuel Ackaouy. The xen credit cpu scheduler. Presentation in the Xen Summit
of Fall 2006, September 2006.

[2] Saurabh Agarwal, Andy B. Yoo, Gyu Sang Choi, Chita R. Das,and Shailabh Nagar.
Co-ordinated coscheduling in time-sharing clusters through a generic framework. In
Proceedings of the 2003 IEEE International Conference on Cluster Computing, pages
84–91, December 2003.

[3] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer.
SETI@home: An experiment in public-resource computing.Commun. ACM,
45(11):56–61, 2002.

[4] Christos D. Antonopoulos, Dimitrios S. Nikolopoulos, and Theodore S. Pap-
atheodorou. Scheduling algorithms with bus bandwidth considerations for SMPs.
In Proceedings of International Conference on Parallel Processing, pages 547–554,
2003.

[5] Martin Arlitt and Tai Jin. Workload characterization ofthe 1998 world cup web site.
Technical Report HPL-1999-35R1, HP Labs, Oct. 1999.

[6] Mohit Aron, Peter Druschel, and Willy Zwaenepoel. Efficient support for P-HTTP
in cluster-based web servers. InProceedings of the 1999 USENIX Annual Technical
Conference, Berkeley, CA, USA, June 1999. USENIX Association.

[7] Mohit Aron, Peter Druschel, and Willy Zwaenepoel. Cluster reserves: a mechanism
for resource management in cluster-based network servers.In SIGMETRICS ’00:
Proceedings of the 2000 ACM SIGMETRICS international conference on Measure-
ment and modeling of computer systems, pages 90–101, New York, NY, USA, 2000.
ACM Press.

[8] Mohit Aron, Darren Sanders, Peter Druschel, and Willy Zwaenepoel. Scalable
content-aware request distribution in cluster-based networks servers. InATEC’00:
Proceedings of the Annual Technical Conference on 2000 USENIX Annual Technical
Conference, Berkeley, CA, USA, 2000. USENIX Association.

128

[9] Andrea C. Arpaci-Dusseau and David E. Culler. Extendingproportional-share
scheduling to a network of workstations. InInternational Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA’97), June 1997.

[10] Andrea Carol Arpaci-Dusseau. Implicit coscheduling:Coordinated scheduling with
implicit information in distributed systems.ACM Trans. Comput. Syst., 19(3):283–
331, 2001.

[11] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,Tim Harris, Alex Ho, Rolf
Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art ofvirtualization.
In Proceedings of the nineteenth ACM symposium on Operating systems principles
(SOSP’03), pages 164–177, New York, NY, USA, 2003. ACM Press.

[12] Tom Beigbeder, Rory Coughlan, Corey Lusher, John Plunkett, Emmanuel Agu, and
Mark Claypool. The effects of loss and latency on user performance in unreal tourna-
ment 2003R©. In NetGames ’04: Proceedings of 3rd ACM SIGCOMM workshop on
Network and system support for games, pages 144–151, New York, NY, USA, 2004.
ACM.

[13] Richard B. Bunt, Derek L. Eager, Gregory M. Oster, and Carey L. Williamson.
Achieving load balance and effective caching in clustered Web servers. InProceed-
ings of the 4th International Web Caching Workshop, pages 159–169, 1999.

[14] Valeria Cardellini, Emiliano Casalicchio, Michele Colajanni, and Philip S. Yu. The
state of the art in locally distributed web-server systems.ACM Comput. Surv.,
34(2):263–311, 2002.

[15] M. Castro, P. Druschel, A.-M. Kermarrec, and A.I.T. Rowstron. Scribe: a large-scale
and decentralized application-level multicast infrastructure.IEEE Journal on Selected
Areas in Communications, 20(8):1489–1499, Oct. 2002.

[16] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue Moon. I
tube, you tube, everybody tubes: analyzing the world’s largest user generated content
video system. InIMC ’07: Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement, pages 1–14, New York, NY, USA, 2007. ACM.

[17] Wu chang Feng, David Brandt, and Debanjan Saha. A long-term study of a popular
mmorpg. InNetGames ’07: Proceedings of the 6th ACM SIGCOMM workshop on
Network and system support for games, pages 19–24, New York, NY, USA, 2007.
ACM.

[18] Wu chang Feng, Francis Chang, Wu chi Feng, and Jonathan Walpole. A traffic charac-
terization of popular on-line games.IEEE/ACM Trans. Netw., 13(3):488–500, 2005.

[19] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M. Vahdat, and
Ronald P. Doyle. Managing energy and server resources in hosting centers.SIGOPS
Oper. Syst. Rev., 35(5):103–116, 2001.

129

[20] Xu Cheng, Cameron Dale, and Jiangchuan Liu. Understanding the characteristics of
internet short video sharing: Youtube as a case study. InQuality of Service, 2007
Fifteenth IEEE International Workshop on, June 2008.

[21] L. Cherkasova, D. Gupta, and A. Vahdat. When virtual is harder than real:resource
allocaiton challenges in virtual machine based it environments. Technical Report
HPL-2007-25, HP Labs, February 2007.

[22] Gyu Sang Choi, Jin-Ha Kim, Deniz Ersoz, Andy B. Yoo, and Chita R. Das.
Coscheduling in clusters: Is it a viable alternative? InProceedings of the 2004
ACM/IEEE conference on Supercomputing (SC’04), Washington, DC, USA, 2004.
IEEE Computer Society.

[23] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and Andrew Warfield. Live migrationof virtual machines.
In Proceedings of the 2nd USENIX Symposium on Networked Systems Design and
Implementation (NSDI’05), Boston, MA, USA, May 2005.

[24] Anthony Cricenti and Philip Branch. Arma(1,1) modeling of quake4 server to client
game traffic. InNetGames ’07: Proceedings of the 6th ACM SIGCOMM workshop
on Network and system support for games, pages 70–74, New York, NY, USA, 2007.
ACM.

[25] Francisco Matias Cuenca-Acuna and Thu D. Nguyen. Cooperative caching mid-
dleware for cluster-based servers. InHPDC ’01: Proceedings of the 10th IEEE
International Symposium on High Performance Distributed Computing, Washington,
DC, USA, 2001. IEEE Computer Society.

[26] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.
Wide-area cooperative storage with cfs. InSOSP ’01: Proceedings of the eighteenth
ACM symposium on Operating systems principles, pages 202–215, New York, NY,
USA, 2001. ACM.

[27] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. InOSDI, pages 137–150, 2004.

[28] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and
Werner Vogels. Dynamo: amazon’s highly available key-value store. InSOSP ’07:
Proceedings of twenty-first ACM SIGOPS symposium on Operating systems princi-
ples, pages 205–220, New York, NY, USA, 2007. ACM.

[29] D. M. Dias, W. Kish, R. Mukherjee, and R. Tewari. A scalable and highly avail-
able web server. InCOMPCON ’96: Proceedings of the 41st IEEE Int’l Computer
Conference, Washington, DC, USA, Feb 1996. IEEE Computer Society.

[30] Peter Druschel and Antony Rowstron. Past: A large-scale, persistent peer-to-peer
storage utility. InHOTOS ’01: Proceedings of the Eighth Workshop on Hot Topics in
Operating Systems, page 75, Washington, DC, USA, 2001. IEEE Computer Society.

130

[31] Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-time (BVT) scheduling:
Supporting latency-sensitive threads in a general-purpose scheduler. InProceedings
of the 17th ACM symposium on Operating systems principles (SOSP’99), pages 261–
276, New York, NY, USA, 1999. ACM Press.

[32] Andrea C. Dusseau, Remzi H. Arpaci, and David E. Culler.Effective distributed
scheduling of parallel workloads. InProceedings of the 1996 ACM SIGMETRICS
international conference on Measurement and modeling of computer systems (SIG-
METRICS’96), pages 25–36, New York, NY, USA, 1996. ACM Press.

[33] Mootaz Elnozahy, Michael Kistler, and Ramakrishnan Rajamony. Energy conser-
vation policies for web servers. InUSITS’03: Proceedings of the 4th conference
on USENIX Symposium on Internet Technologies and Systems, Berkeley, CA, USA,
2003. USENIX Association.

[34] Dror G. Feitelson. Packing schemes for gang scheduling. In Dror G. Feitelson and
Larry Rudolph, editors,Proceedings of the Workshop on Job Scheduling Strategies for
Parallel Processing (IPPS’96), pages 89–110, London, UK, 1996. Springer-Verlag.

[35] Dror G. Feitelson and Larry Rudolph. Gang scheduling performance benefits for fine-
grain synchronization.Journal of Parallel and Distributed Computing, 16(4):306–
318, December 1992.

[36] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A.Brewer, and Paul Gau-
thier. Cluster-based scalable network services. InSOSP ’97: Proceedings of the
sixteenth ACM symposium on Operating systems principles, pages 78–91, New York,
NY, USA, 1997. ACM Press.

[37] Eitan Frachtenberg, Fabrizio Petrini, Salvador Coll,and Wu chun Feng. Gang
scheduling with lightweigth user-level communication. InProceedings of 2001 In-
ternational Conference on Parallel Processing (ICPP’01),Workshop on Scheduling
and Resource Management for Cluster Computing, pages 339–348, Valencia, Spain,
September 2001. IEEE Computer Society.

[38] Tobias Fritsch, Hartmut Ritter, and Jochen Schiller. The effect of latency and network
limitations on mmorpgs: a field study of everquest2. InNetGames ’05: Proceedings
of 4th ACM SIGCOMM workshop on Network and system support forgames, pages
1–9, New York, NY, USA, 2005. ACM.

[39] W. Gentzsch. Sun grid engine: towards creating a compute power grid. InProc.
First IEEE/ACM International Symposium on Cluster Computing and the Grid, pages
35–36, 2001.

[40] Phillipa Gill, Martin Arlitt, Zongpeng Li, and AnirbanMahanti. Youtube traffic
characterization: a view from the edge. InIMC ’07: Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, pages 15–28, New York, NY, USA,
2007. ACM.

131

[41] Ajay Gulati, Arif Merchant, Mustafa Uysal, and Peter J.Varman. Efficient and adap-
tive proportional share i/o scheduling. Technical Report HPL-2007-186, HP Labs,
November 2007.

[42] A. Gupta and P. Dinda. Inferring the topology and trafficload of parallel programs
running in a virtual machine environment. InProceedings of the 10th Workshop on
Job Scheduling Policies for Parallel Processing, June 2004.

[43] Diwaker Gupta, Rob Gardner, and Ludmila Cherkasova. Xenmon: Qos monitor-
ing and performance profiling tool. Technical Report HPL-2005-187, HP Labs, Oct.
2005.

[44] Szabolcs Harcsik, Andreas Petlund, Carsten Griwodz, and Pål Halvorsen. Latency
evaluation of networking mechanisms for game traffic. InNetGames ’07: Proceed-
ings of the 6th ACM SIGCOMM workshop on Network and system support for games,
pages 129–134, New York, NY, USA, 2007. ACM.

[45] Yousuke Hashimoto and Yutaka Ishibashi. Influences of network latency on interac-
tivity in networked rock-paper-scissors. InNetGames ’06: Proceedings of 5th ACM
SIGCOMM workshop on Network and system support for games, page 23, New York,
NY, USA, 2006. ACM.

[46] Eric Van Hensbergen and Athanasios E. Papathanasiou. Knits: Switch-based connec-
tion hand-off. InIEEE Infocom, 2002.

[47] Atsushi Hori, Hiroshi Tezuka, and Yutaka Ishikawa. Highly efficient gang scheduling
implementation. InProceedings of the 1998 ACM/IEEE conference on Supercomput-
ing (CDROM) (Supercomputing’98), Washington, DC, USA, 1998. IEEE Computer
Society.

[48] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
distributed data-parallel programs from sequential building blocks. InEuroSys ’07:
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007, pages 59–72, New York, NY, USA, 2007. ACM.

[49] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Geiger:
monitoring the buffer cache in a virtual machine environment. In Proceedings of the
12th international conference on Architectural support for programming languages
and operating system (ASPLOS-XII), pages 14–24, New York, NY, USA, 2006. ACM
Press.

[50] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. Consistent hashing and random trees: distributed caching protocols
for relieving hot spots on the world wide web. InSTOC ’97: Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages 654–663, New
York, NY, USA, 1997. ACM.

132

[51] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

[52] Jaecheol Kim, Jaeyoung Choi, Dukhyun Chang, TaekyoungKwon, Yanghee Choi,
and Eungsu Yuk. Traffic characteristics of a massively multi-player online role play-
ing game. InNetGames ’05: Proceedings of 4th ACM SIGCOMM workshop on
Network and system support for games, pages 1–8, New York, NY, USA, 2005. ACM.

[53] Ian M. Leslie, Derek McAuley, Richard Black, Timothy Roscoe, Paul T. Barham,
David Evers, Robin Fairbairns, and Eoin Hyden. The design and implementation of
an operating system to support distributed multimedia applications. IEEE Journal of
Selected Areas in Communications, 14(7):1280–1297, 1996.

[54] Bin Lin and Peter A. Dinda. Vsched: Mixing batch and interactive virtual machines
using periodic real-time scheduling. InProceedings of the 2005 ACM/IEEE con-
ference on Supercomputing (SC’05), Washington, DC, USA, 2005. IEEE Computer
Society.

[55] Aravind Menon, Jose Renato Santos, Yoshio Turner, G. (John) Janakiraman, and
Willy Zwaenepoel. Diagnosing performance overheads in thexen virtual machine
environment. InProceedings of the 1st ACM/USENIX international conference on
Virtual execution environments (VEE’05), pages 13–23, New York, NY, USA, 2005.
ACM Press.

[56] Shailabh Nagar, Ajit Banerjee, Anand Sivasubramaniam, and Chita R. Das. Alterna-
tives to coscheduling a network of workstations.Journal of Parallel and Distributed
Computing, 59(2):302–327, November 1999.

[57] J. K. Ousterhout. Scheduling techniques for concurrent systems. InProceedings of
the Third International Conference on Distributed Computing Systems, pages 22–30,
May 1982.

[58] Vivek S. Pai, Mohit Aron, Gaurov Banga, Michael Svendsen, Peter Druschel, Willy
Zwaenepoel, and Erich Nahum. Locality-aware request distribution in cluster-based
network servers. InASPLOS-VIII: Proceedings of the eighth international conference
on Architectural support for programming languages and operating systems, pages
205–216, New York, NY, USA, 1998. ACM.

[59] Peter Quax, Patrick Monsieurs, Wim Lamotte, Danny De Vleeschauwer, and Natalie
Degrande. Objective and subjective evaluation of the influence of small amounts of
delay and jitter on a recent first person shooter game. InNetGames ’04: Proceedings
of 3rd ACM SIGCOMM workshop on Network and system support forgames, pages
152–156, New York, NY, USA, 2004. ACM.

[60] K. Rajamani and C. Lefurgy. On evaluating request-distribution schemes for saving
energy in server clusters. InProceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, March 2003.

133

[61] Sylvia Ratnasamy, Paul Francis, Mark Handley, RichardKarp, and Scott Schenker.
A scalable content-addressable network. InSIGCOMM ’01: Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer
communications, pages 161–172, New York, NY, USA, 2001. ACM.

[62] Antony Rowstron and Peter Druschel. Storage management and caching in past, a
large-scale, persistent peer-to-peer storage utility. InSOSP ’01: Proceedings of the
eighteenth ACM symposium on Operating systems principles, pages 188–201, New
York, NY, USA, 2001. ACM.

[63] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Middleware ’01: Pro-
ceedings of the IFIP/ACM International Conference on Distributed Systems Platforms
Heidelberg, pages 329–350, London, UK, 2001. Springer-Verlag.

[64] Debanjan Saha, Sambit Sahu, and Anees Shaikh. A serviceplatform for on-line
games. InNetGames ’03: Proceedings of the 2nd workshop on Network andsystem
support for games, pages 180–184, New York, NY, USA, 2003. ACM.

[65] Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow, Monica S. Lam,
and Mendel Rosenblum. Optimizing the migration of virtual computers. SIGOPS
Oper. Syst. Rev., 36:377–390, 2002.

[66] Anees Shaikh, Sambit Sahu, Marcel Rosu, Michael Shea, and Debanjan Saha. Im-
plementation of a service platform for online games. InNetGames ’04: Proceedings
of 3rd ACM SIGCOMM workshop on Network and system support forgames, pages
106–110, New York, NY, USA, 2004. ACM.

[67] Michael Shirts and Vijay S. Pande. Screen savers of the world unite! Science,
290(5498):1903–1904, 2000.

[68] S. Singhal, M. Arlitt, D. Beyer, S. Graupner, V. Machiraju, J. Pruyne, J. Rolia, A. Sa-
hai, C. Santos, J. Ward, and X. Zhu. Quartermaster - a resource utility system. In
Proc. 9th IFIP/IEEE International Symposium on IntegratedNetwork Management
IM 2005, pages 265–278, 2005.

[69] Allan Snavely and Dean M. Tullsen. Symbiotic jobscheduling for a simultaneous
multithreaded processor. InProceedings of the 9th international conference on Ar-
chitectural support for programming languages and operating systems (ASPLOS-IX),
pages 234–244, New York, NY, USA, 2000. ACM Press.

[70] Patrick Sobalvarro, Scott Pakin, William E. Weihl, andAndrew A. Chien. Dy-
namic coscheduling on workstation clusters. InProceedings of the Workshop on
Job Scheduling Strategies for Parallel Processing (IPPS/SPDP’98), pages 231–256,
London, UK, 1998. Springer-Verlag.

[71] Stephen Soltesz, Herbert Potzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peter-
son. Container-based operating system virtualization: A scalable, high-performance
alternative to hypervisors. InACM SIGOPS EUROSYS 2007, March 2007.

134

[72] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internetapplications. InSIGCOMM
’01: Proceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 149–160, New York, NY, USA,
2001. ACM.

[73] David G. Sullivan and Margo I. Seltzer. Isolation with flexibility: A resource man-
agement framework for central servers. InProceedings of the 2000 USENIX Annual
Technical Conference, pages 337–350. USENIX Association, 2000.

[74] Chang-Hao Tsai, Kang G. Shin, John Reumann, and Sharad Singhal. Online web
cluster capacity estimation and its application to energy conservation.IEEE Transac-
tions on Paralled and Distributed Systems, 18(7):932–945, July 2007.

[75] Carl A. Waldspurger. Memory resource management in vmware esx server.SIGOPS
Oper. Syst. Rev., 36:181–194, 2002.

[76] Carl A. Waldspurger and William E. Weihl. Lottery scheduling: Flexible
proportional-share resource management. InOperating Systems Design and Imple-
mentation, pages 1–11, 1994.

[77] Carl A. Waldspurger and William E. Weihl. Stride scheduling: Deterministic
proportional- share resource management. Technical Report MIT/LCS/TM-528, MIT
Laboratory for Computer Science, 1995.

[78] Kun-Lung Wu and Philip S. Yu. Load balancing and hot spotrelief for hash routing
among a collection of proxy caches. InICDCS ’99: Proceedings of the 19th IEEE
International Conference on Distributed Computing Systems, page 536, Washington,
DC, USA, 1999. IEEE Computer Society.

[79] Takahiro Yasui, Yutaka Ishibashi, and Tomohito Ikedo.Influences of network la-
tency and packet loss on consistency in networked racing games. InNetGames ’05:
Proceedings of 4th ACM SIGCOMM workshop on Network and system support for
games, pages 1–8, New York, NY, USA, 2005. ACM.

[80] Ronghua Zhang, Tarek F. Abdelzaher, and John A. Stankovic. Efficient tcp connection
failover in web server clusters. InINFOCOM ’04: Proceedings of the 23rd Annual
Joint Conference of the IEEE Computer and Communications Societies, volume 2,
pages 1219–1228, March 2004.

[81] Xiaolan Zhang, Michael Barrientos, J. Bradley Chen, and Margo Seltzer. Hacc: an
architecture for cluster-based web servers. InWINSYM’99: Proceedings of the 3rd
conference on USENIX Windows NT Symposium, pages 16–16, Berkeley, CA, USA,
1999. USENIX Association.

[82] B.Y. Zhao, Ling Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Kubiatowicz.
Tapestry: a resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications, 22(1):41–53, Jan. 2004.

135

