
Towards Scalable Design of Future Wireless
Networks

by

Krishna Chaitanya Garikipati

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical Engineering: Systems)

in The University of Michigan
2016

Doctoral Committee:

Professor Kang G. Shin, Chair
Associate Professor Achilleas Anastasopoulos
Assistant Professor N M Mosharaf K. Chowdhury
Professor Mingyan Liu

c© Krishna Chaitanya Garikipati 2016

All Rights Reserved

To my family

ii

ACKNOWLEDGEMENTS

First and foremost I would like to express my gratitude to my advisor, Prof. Kang

Shin, to whom I owe the most for teaching me about different aspects of research.

Prof. Shin is an outstanding researcher and an excellent advisor. I am deeply indebted

to him for imparting his knowledge and wisdom, and most importantly, for giving

me the freedom to pursue problems of my liking. His guidance, encouragement, and

patience have helped me immensely in my doctorate study.

I am also grateful to my dissertation committee members, Prof. Mingyan Liu,

Prof. Achilleas Anastasopoulos and Prof. Mosharaf K. Chowdhury, for devoting their

time to my thesis and providing valuable comments.

I also wish to thank my colleagues in the Real-Time Computing Lab (RTCL)

for their contributions. Kassem Fawaz has been a great mentor, and I cherish our

discussions on research and life in general. Eugene Chai introduced me to software-

radio programming that has influenced much of my research work. I also benefited

from my interactions with other RTCL members, Seunghyun Choi, Arun Ganesan,

Xiaoen Ju, Huan Feng, Dongyao Chen, Yu-Chih Tung, Sihui Han, Michael Zhang

and Xinyu Zhang, who gave useful and timely feedback on my work.

I am also grateful to my internship collaborators at NEC Labs and Nokia Research,

for giving me the opportunity to work on interesting topics. Also, I like to give credit

to the EECS department faculty and staff for providing an exceptional environment

for learning and doing research.

I also like to thank all my friends in Ann Arbor, Sai, Deeksha, Ananda, Kon-

iii

stantinos, Maruthi, Raj and others, who made my stay fun and memorable.

Finally, I would like to thank my parents and my sister for their unconditional

support through this long journey. To them, I dedicate this thesis.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xiii

ABSTRACT . xiv

CHAPTER

I. Introduction . 1

1.1 Background . 2
1.1.1 Existing Design Choices 2

1.2 Towards Scalable Design . 4
1.2.1 Proposed Solutions 4
1.2.2 Achieving Scalability 6
1.2.3 Thesis Summary . 8

1.3 Thesis Organization . 11

II. Co-existence of LTE and WiFi in Unlicensed Spectrum . . . 12

2.1 Introduction . 12
2.2 Background . 18

2.2.1 LTE PHY Frame Structure 18
2.2.2 Where Does Talos Fit In? 19

2.3 Unlicensed LTE Testbed . 20
2.3.1 Overview . 20
2.3.2 LTE Network . 20
2.3.3 WiFi Network . 20
2.3.4 RF Bridge . 21
2.3.5 Bridging Latency 22

v

2.4 A Real-World Study of Unlicensed LTE 25
2.4.1 Experiment Methodology 25
2.4.2 Impact of CCA Thresholds 26
2.4.3 Characteristics of LTE Time Gaps 27
2.4.4 Impact of LTE Gaps 29
2.4.5 Can We Eliminate Transmit Gaps? 30

2.5 TALOS: LTE-WiFi Co-Existence 31
2.5.1 Solution Overview 32
2.5.2 Collisions: A2TS-Aware Scheduling 32
2.5.3 Fairness: A2TS-Aware Contention 34
2.5.4 Efficiency: Extended Channel Access 35

2.6 Experimental Evaluation . 38
2.6.1 Implementation . 38
2.6.2 Experiment Setup 39
2.6.3 Performance Measurement 40
2.6.4 TALOS Fairness and Throughput 40
2.6.5 TALOS Link-Layer Latency 43
2.6.6 TALOS Reservation Extension 44
2.6.7 TALOS A2TS-Aware Scheduling 46

2.7 Related Work . 46
2.8 Conclusion . 47
2.9 Appendix: TALOS Access Model 47

III. Measurement-Based Design of Network MIMO 50

3.1 Introduction . 50
3.2 Background and Motivation 53

3.2.1 Protocol Design . 53
3.2.2 Effect of CSI Aging 54
3.2.3 Measurement-Based Approach 56

3.3 Network-MIMO Model . 57
3.4 Measurement-Based Design 60

3.4.1 Two-Phase Training 60
3.4.2 Adaptive TXOP sizing 62
3.4.3 Theoretical Analysis 64

3.5 Evaluation . 68
3.5.1 netMIMO Testbed 68
3.5.2 Evaluation Methodology 72
3.5.3 NDP Placement . 74
3.5.4 TXOP Adjustment 75
3.5.5 Field Test . 76
3.5.6 Discussion . 77

3.6 Related Work . 77
3.7 Conlusion . 78

vi

IV. Scalable Real-Time Transport of Baseband Traffic 79

4.1 Introduction . 79
4.2 Background . 82

4.2.1 Wireless Baseband Transport 83
4.2.2 Transport Delay Bound 87

4.3 DISTRO . 87
4.3.1 Design Philosophy 88
4.3.2 Design Requirements 89
4.3.3 End-to-End Guarantees 89
4.3.4 Scalability . 92
4.3.5 Run-time Scheduling 93
4.3.6 Evaluation . 94

4.4 Achievable Capacity Under E2E Schedulability 96
4.4.1 Problem Formulation 98
4.4.2 Search Algorithm 99
4.4.3 Simulation Results 101

4.5 Related Work . 102
4.6 Conclusion . 102
4.7 Appendix . 103

V. Parallelism Meets Scheduling in Cloud-RAN Processing . . . 105

5.1 Introduction . 105
5.2 End-to-End Model . 110

5.2.1 Uplink processing 110
5.2.2 Parallelism . 114
5.2.3 Transport Latency 116
5.2.4 Deadline-miss . 118

5.3 C-RAN Scheduling . 120
5.3.1 Original Scheduling Approaches 120
5.3.2 RT-OPEX . 123

5.4 Implementation and Evaluation 128
5.4.1 Implementation . 128
5.4.2 Evaluation Platform 131
5.4.3 Performance comparison 133
5.4.4 Overheads . 136

5.5 Discussion . 137
5.6 Related Work . 139
5.7 Conclusion . 140

VI. Conclusion and Future Directions 141

6.1 Concluding Remarks . 141
6.2 Future Directions . 142

vii

6.2.1 A Closer Look at Fairness in Unlicensed Spectrum . 142
6.2.2 Virtualization of IoT Gateways 144
6.2.3 Heterogeneous Standards and Platforms 144

BIBLIOGRAPHY . 146

viii

LIST OF FIGURES

Figure

1.1 Performance scaling under ideal conditions. 6

1.2 Summary of the thesis contributions showing their applicability to
the wireless system stack. 8

2.1 An example of LAA-LTE operation. 18

2.2 RF bridging in the LTE-WiFi testbed. 18

2.3 10–MHz downlink LTE frame. 19

2.4 eNodeB and UE used in the LTE testbed. 19

2.5 Bridging latency. 25

2.6 Testbed parameters. 25

2.7 Throughput under LBT-like CCA. 26

2.8 Time-domain snapshot of LTE signal. 26

2.9 LTE gap size distribution for different LTE loads. 27

2.10 Distribution of WiFi throughput at different LTE Loads. The WiFi
load is 20Mbps. 28

2.11 WiFi packet loss statistics. 28

2.12 Impact of 20Mbps WiFi on UE throughput with LTE load of 20Mbps. 29

2.13 Activating the LTE-U component carrier. 31

ix

2.14 Average throughput at different locations. 41

2.15 Sum throughput distribution in a larger network. 43

2.16 Packet latency of the WiFi and LTE networks. 44

2.17 Simulation results in larger deployments. 45

2.18 Talos deployed next to a WiFi link and an equivalent representation
with WiFi-only links. Talos is fair to WiFi if throughput of WiFi is
unaffected when Talos is replaced by another WiFi link i.e., θA = θ

′
A. 48

2.19 State transition diagram. 48

3.1 APs concurrently transmit to multiple STAs 53

3.2 Timeline of a netMIMO transmission 54

3.3 Measured SIR at the STAs suggests that CSI delay during feedback
and transmission leads to performance loss 57

3.4 The proposed training protocol with additional NDP frames inserted
in the feedback sequence . 60

3.5 Adjusting TXOP based on the interference 63

3.6 Examples and results of statistical test show that interference in-
creases with CSI delay . 66

3.7 Deployment of netMIMO testbed 69

3.8 Time and frequency synchronization 69

3.9 Details of the channel measurement framework that allows real-time
evaluation of netMIMO . 71

3.10 Evaluation of NDP placement in 8–STA netMIMO. Results show
significant gains for mobile STAs. 74

3.11 Error rate measured for each MCS before and after TXOP Adjustment 76

4.1 Radio front-end design for baseband conversion. 82

4.2 USRP2 transport log at 25MHz sampling rate. 82

x

4.3 Switch FIFO output for two periodic flows. The output sequence is
non-periodic. 85

4.4 Fat-Tree architecture of DISTRO with heterogeneous radios. 88

4.5 Path of baseband packet from the source to the destination. 90

4.6 Blocking of c by at most one packet (left) and more than one packet
(right). 90

4.7 Delay metrics for flows in a 36-radio setup. DISTRO meets the
end-to-end guarantees of all flows. 95

4.8 Maximum end-to-end delay of flows with increasing number of radios. 96

4.9 The system model for processing and scheduling. 97

4.10 Wireless capacity as the aggregation link rate is varied. 101

5.1 Variations in cellular load of two basestations. 107

5.2 Existing approaches for baseband processing compared with ours. . 108

5.3 C-RAN system model for wireless processing. 110

5.4 Plots showing the variations in processing time. 113

5.5 Distribution of model error (E) vs. benchmark error. 114

5.6 Task execution times on multiple cores. 115

5.7 Breakdown of subframe processing into tasks and subtasks. 116

5.8 Fronthaul latency (left) and distribution of cloud network delay (right).117

5.9 One-way transport latency for GPP (left) and KVM (right) vs num-
ber of antennas for 10GbE port. 118

5.10 Example sequence of subframes in LTE showing the Rx and Tx pro-
cessing timelines. 119

5.11 An example of a partitioned schedule on two cores. Notation (i,j)
refer to processing of jth subframe on the ith basestation. 121

5.12 An example of a global schedule of two basestations on two cores. . 123

xi

5.13 An example scenario of RT-OPEX showing migration between two
cores. 124

5.14 The state diagram of the processing thread in RT-OPEX. 125

5.15 Implementation framework for SchedTool. 130

5.16 Basestation load distribution. 130

5.17 Deadline-miss comparison of schedulers. 133

5.18 Role of RTT/2 in gaps and task-migrations. 133

5.19 Deadline misses vs. load (RTT/2=500µs) 134

5.20 Comparison of processing times of local and migrated tasks. 135

5.21 Global scheduler as cores are varied 136

6.1 Unlicensed and licensed links in the unlicensed spectrum. 142

xii

LIST OF TABLES

Table

2.1 Parameters in each scenario. 41

3.1 netMIMO protocol parameters . 54

3.2 Duration of feedback frames . 56

3.3 Average total netMIMO-throughput (Mbps) 76

4.1 Simulation parameters for schedulability analysis 94

4.2 Simulation parameters for capacity evaluation 100

5.1 Model parameter estimates (in µs). 113

5.2 Qualitative Comparison of Scheduling Approaches in C-RAN. . . . 137

xiii

ABSTRACT

Towards Scalable Design of Future Wireless Networks

by

Krishna C. Garikipati

Chair: Kang G. Shin

Wireless operators face an ever-growing challenge to meet the throughput and pro-

cessing requirements of billions of devices that are getting connected. In current

wireless networks, such as LTE and WiFi, these requirements are addressed by provi-

sioning more resources: spectrum, transmitters, and baseband processors. However,

this simple add-on approach to scale system performance is expensive and often re-

sults in resource underutilization. What are, then, the ways to efficiently scale the

throughput and operational efficiency of these wireless networks? To answer this ques-

tion, this thesis explores several potential designs: utilizing unlicensed spectrum to

augment the bandwidth of a licensed network; coordinating transmitters to increase

system throughput; and finally, centralizing wireless processing to reduce computing

costs.

First, we propose a solution that allows LTE, a licensed wireless standard, to co-

exist with WiFi in the unlicensed spectrum. The proposed solution bridges the incom-

patibility between the fixed access of LTE, and the random access of WiFi, through

channel reservation. It achieves a fair LTE-WiFi co-existence despite the transmis-

xiv

sion gaps and unequal frame durations. Second, we consider a system where different

MIMO transmitters coordinate to transmit data of multiple users. We present an

adaptive design of the channel feedback protocol that mitigates interference resulting

from the imperfect channel information. Finally, we consider a Cloud-RAN architec-

ture where a datacenter or a cloud resource processes wireless frames. We introduce

a tree-based design for real-time transport of baseband samples and provide its end-

to-end schedulability and capacity analysis. We also present a processing framework

that combines real-time scheduling with fine-grained parallelism. The framework re-

duces processing times by migrating parallelizable tasks to idle compute resources,

and thus, decreases the processing deadline-misses at no additional cost.

We implement and evaluate the above solutions using software-radio platforms

and off-the-shelf radios, and confirm their applicability in real-world settings.

xv

CHAPTER I

Introduction

Wireless networks, such as LTE and WiFi, are an integral part of our everyday life.

They permeate our daily activities and routines, connecting our smartphones, tablets,

and laptops to the online world. However, they face an unprecedented challenge in

the next decade from our desire to connect a broad range of devices. Indeed, with

the advent of Internet-of-Things (IoT), some 50 billion devices are expected to come

online by 2020 [1]. This growth is in addition to a steady increase in mobile data usage

that will grow 10× between 2014 and 2019 [2]. The resulting demand for connectivity

and throughput will strain the current wireless deployments that already operate near

maximum link capacity.

The past few decades has seen remarkable progress in the link layer performance

of wireless networks. It is now common for wireless standards to employ capacity

achieving codes (e.g. Turbo codes), efficient modulation schemes (e.g., 256-QAM),

and multiple-antenna technology (MIMO). These enhancements provide an order-

of-magnitude improvement in the wireless throughput over previous standards, for

example, from few Mbps in 802.11b to Gbps in IEEE 802.11ac [3]. However, sustain-

ing this trend is becoming increasingly difficult; for instance, the number of antennas

is constrained by the small form-factor of the mobile devices.

As link layer performance shows signs of saturation, there are a considerable num-

1

ber of design bottlenecks at the system level of existing wireless networks. It is well

known that interference is the primary source of performance loss in dense networks

[4]. This is compounded by the fact that there is only limited bandwidth available

due to a small amount of spectrum (licensed or unlicensed) that can be bought or

shared. Furthermore, the costs of maintaining and upgrading access points (APs)

or basestations (BSs) are increasing manifold, making it uneconomical for cellular

operators to expand their networks [5].

To address these issues, we require innovative approaches to design, and in a

way, rethink the wireless networks to make them future-ready. The next order of

gains will be based on measures that go beyond a single layer (PHY or MAC), and

consider the system as a whole. Such measures will invoke cross-layer (e.g., PHY

access and application semantics) and inter-disciplinary (e.g., MIMO design and real-

time analysis) approaches that have so far received only limited attention in the

research community.

1.1 Background

Before we discuss potential solutions, we describe the role of existing design choices

in wireless networks and their impact on the system performance.

1.1.1 Existing Design Choices

Spectrum segregation. The FCC divides the wireless spectrum into two broad

categories: licensed and unlicensed. The licensed spectrum is owned by an operator

who is its sole user, which guarantees no interference from other operators or devices.

For example, cellular networks such as 3G, LTE, etc. run on the licensed spectrum.

On the other hand, the unlicensed spectrum can be accessed by any device as long as

it uses certified radio equipment and complies with technical requirements, including

2

the power limit specifications1. One such example is the ISM band (2.4 and 5 GHz)

that is widely used by WiFi, Bluetooth, Zigbee and other wireless protocols.

The division of the spectrum resources, though easy to regulate, does not offer the

flexibility to use underutilized channels. The licensed TV bands have low occupancy

for long periods [6] . Similarly, license-exempt channels in the 5GHz, such as DFS

bands, are sparsely used [7]. This is far from ideal, as bandwidth-starved devices

should be able to access unoccupied spectrum without restrictions.

Uncoordinated transmissions. Since the introduction of cellular networks in

the 1980s, frequency-reuse, and more recently, fractional frequency reuse (FFR), has

been the conventional approach to manage interference in wireless networks [8]. In

FFR, the inter-cell interference at cell-edge users is minimized by assigning orthogonal

channels to the adjoining cells. Each cell operates independently, and basestations

in the network transmit without coordination. However, modern network deploy-

ments are extremely dense and have limited number of non-overlapping channels

(e.g., 2.4GHz ISM band has three 20MHz non-overlapping channels). In such scenar-

ios, FFR offers limited resistance against interference from uncoordinated transmis-

sions.

Best-effort transport. Upcoming wireless applications, such as Massive MIMO

[9, 10], demand new baseband architectures. Massive MIMO involves centralized

wireless processing away from the radio hardware, which presumes real-time transport

of baseband samples. Current packet-switching networks, however, are designed for

best effort traffic flows and are unable to prioritize or distinguish packets based on

their delays. For instance, aggregating packet traffic using Ethernet switches can

introduce unpredictable queuing delays that can lead to deadline misses [11]. This

can negatively impact the wireless throughput as missed transport deadlines result

in decoding failures.

1FCC Part 15 Rules

3

Hardware-reliance. Wireless standards and technologies are under a constant

state of evolution. Many innovations, such as full-duplex, interference cancellation,

etc., are taking place at the PHY (or baseband) layer. To continuously incorporate

these changes, the wireless processing at basestations should be fully reconfigurable.

On the other hand, existing wireless networks rely on dedicated hardware (e.g., DSP,

ASIC) that are difficult to program or even modify. Additionally, while wireless traffic

has large temporal and spatial variations (e.g., daytime vs. nighttime), the baseband

hardware is provisioned according to the peak usage of the network, which results

in underutilization of expensive hardware resources [12]. These factors, combined,

have resulted in increasing operating costs to cellular providers, threatening their

profitability and ultimately, end-user experience.

1.2 Towards Scalable Design

The increasing demand for throughput, bandwidth, and operational efficiency

challenges the design choices of existing networks. Towards this, we propose scalable

solutions that address the shortcomings of existing approaches. By scalable, we refer

to the ability to improve system performance in proportion to the resources used.

1.2.1 Proposed Solutions

Augmenting bandwidth. Current cellular networks face a huge shortage of

spectrum; they utilize channels of bandwidth no more than few tens of MHz. De-

spite the fact that additional bandwidth can easily increase the network throughput,

current designs do not augment system bandwidth with other bands, for example,

unlicensed channels. On the other hand, FCC has recently converted vast amounts

of the spectrum (e.g., 800 MHz, 3.5 GHz bands) into license-exempt channels that

can be freely utilized. These changes are beneficial for licensed networks that are

facing severe spectrum shortage. Indeed, there are several proposals for LTE to use

4

the 5GHz unlicensed band [7, 13, 14] . However, to utilize the unlicensed spectrum

requires a new sharing mechanism as licensed users must now co-exist with other

unlicensed users. This sharing mechanism should incorporate the notion of fairness

between licensed and unlicensed users to justify the free usage of unlicensed bands.

In this direction, we introduce a new sharing mechanism for licensed users based

on CSMA access. Our solution is a practical way of maintaining fair usage of the

unlicensed spectrum.

Increasing throughput. The primary cause of interference lies in the lack of

common knowledge between transmitters. We propose to use Network MIMO that

bridges this gap through a design where MIMO-capable APs coordinate their trans-

missions to eliminate interference (or cross-talk) by employing a process called precod-

ing [15]. While precoding (also known as beamforming) has been extensively studied

in the literature, realizing it in Network MIMO presents additional hurdles; the trans-

mitters require synchronization in both time and frequency [16, 17]. With additional

mechanisms in place to mitigate the impact of channel degradation, Network MIMO

enables a near interference-free channel even in the presence of other transmitters.

Guaranteed transport. Applications relying on centralized wireless processing

require real-time transport of baseband samples. Typically, such applications employ

tens and hundreds of antennas. While various architectures (e.g., ARGOS [10], Big-

Station [18]) have been proposed, their analysis from a real-time perspective is lacking.

We introduce a principled approach for the design of baseband transport networks.

In particular, assuming a packet-switched topology, we propose a Fat-Tree design

that can scale across the antennas/radios while meeting end-to-end delay guarantees.

We provide a sufficient condition for schedulability and also study its impact on the

wireless capacity.

Efficient processing. Resource pooling is a robust strategy commonly employed

in datacenters and cloud infrastructure to save computing costs. It also benefits base-

5

APs
Th

ro
ug

hp
ut

Network MIMO
CSMA

(a) Transmitter coordination

Th
ro
ug
hp
ut

Bandwidth

(b) Unlicensed access

Figure 1.1: Performance scaling under ideal conditions.

band processing, since a pool of compute resources in a cloud could replace dedicated

basestation hardware. This approach, also known as Cloud-RAN [5], offers tremen-

dous savings on the energy, and the hardware costs compared to dedicated architec-

tures [19]. Previous studies have shown around 22% savings in compute resources [19].

Additionally, Cloud-RAN allows easy upgrades and amenability to implement coor-

dinated processing. While resource pooling relies on the statistical information of

basestation loads, it does not account for the load variations at finer timescales. As

a result, resource pooling on a multi-core platform leads to underutilized CPU cy-

cles. We propose to utilize these free CPU cycles for parallelizing tasks, resulting in

reduced processing times, and fewer deadline-misses.

1.2.2 Achieving Scalability

Scalability of a system can be of two types: scale-out and scale-up. Viewing

the system as a collection of modules, scale-out relates to the ability of the system

to accommodate more modules to improve aggregated performance while scale-up

relates to the ability to improve the performance of each module. Though desirable,

scalability is not an inherent feature of current wireless deployments.

Scaling-out. The system capacity in CSMA-based access does not increase pro-

portionally with the number of APs, n, but instead scales as Ω(1/
√
n) [20]. On the

other hand, the capacity increases linearly with the number of transmit antennas (or

6

number of transmitters) in a Network MIMO system [21]. To see this, consider a wire-

less communication channel with n transmit and m receive antennas, and a m × n

channel matrix denoted by H. Let ρ denote the signal-to-noise ratio per antenna,

assumed to be equal across the antennas, and let W be the channel bandwidth. The

channel capacity (in bits/s) is given as [15, chapter 8]:

C = W log2 det(I + ρHHH) (1.1)

where I is the m × m identity matrix. Under ideal conditions of medium to high

SNR (ρ � 1), the capacity, C, scales as the maximum rank of the channel matrix,

min(m,n), while at low SNR (ρ� 1), the capacity scales as mn. In both cases, the

capacity increases with the number of transmit antennas, m. Fig. 1.1(a) illustrates

this capacity scaling in Network MIMO compared to CSMA-based access, where each

AP is assumed to have a single antenna.

Scaling-out with the number of transmitters also means that the transport network

should accommodate an increasing amount of baseband traffic. As the baseband

traffic is delay sensitive, the scaling should ensure the transport delay is not adversely

affected. We achieve this with a tree-based design that supports a high degree of traffic

aggregation while being tractable for end-to-end schedulability.

Scaling-up. Most cellular operators run separate WiFi hotspots on top of their

licensed network to offload over-subscribed cellular traffic. Instead, it is more efficient

to leverage their existing licensed infrastructure and transmit cellular signals (such

as LTE) in unlicensed spectrum. As this impacts the WiFi incumbents, sharing

mechanisms must ensure fair co-existence. Once deployed, it allows operators to

scale-up their expensive infrastructure across a wide number of unlicensed channels.

From Eq. (1.1), the capacity increases linearly with the bandwidth W , as illustrated

in Fig. 1.1(b). Hence, unlicensed access can deliver more wireless throughput while

7

Compute

Transmitters

Unlicensed access

Transport

System Subtopic Objective Scaling
RT-OPEX Baseband processing

on GPP
Reducing deadline-
miss rate

Scale-up

DISTRO Real-time baseband
transport

Scalable with end-to-
end schedulability

Scale-out

netMIMO Coordinated MIMO
transmitters

Mitigating interference
from CSI aging

Scale-out

TALOS Access of unlicensed
spectrum

Collision-free and fair
co-existence

Scale-up

ba
se

ba
nd

ch
an

ne
l

Figure 1.2: Summary of the thesis contributions showing their applicability to the
wireless system stack.

using the same cellular infrastructure.

Centralized architectures such as Cloud-RAN rely on off-the-shelf multi-core com-

pute platforms for baseband processing. The compute resources are provisioned ac-

cording to long-term cellular load forecasts, typically over the duration of hours [19].

On the other hand, cellular load exhibits significant variability at much finer timescales,

often in the order of milliseconds. By making the processing flexible to the minute

traffic variations, for instance, utilizing idle compute cycles to offload some of the

parallelizable subtasks of baseband processing, can reduce the execution time. As a

result, the deadline misses are reduced at no additional cost, increasing the computing

efficiency.

1.2.3 Thesis Summary

In this thesis, we start with the question of how to design a scalable wireless net-

work. Towards this, we explore four potential designs that form the basis of such a

system. Fig. 1.2 shows the summary of the designs with their scope, objective and the

type of scalability. The figure also shows a modularized view of the wireless network-

ing stack spanning channel access, transmitter coordination, baseband transport and

baseband processing. Since each of the modules are self-contained, they are treated

and evaluated separately in this thesis. For the rest of this thesis, we discuss our

8

approaches in the context of the current wireless standards, LTE (3GPP LTE) and

WiFi (IEEE 802.11), and propose modifications wherever necessary.

Each of our designs targets one particular layer in the wireless system stack. The

designs are summarized as follows:

TALOS: LTE in the unlicensed spectrum has been proposed to meet the unprece-

dented demands faced by operators from ubiquitous, bandwidth-hungry mobile ser-

vices/applications. However, the access paradigms in LTE (centralized/synchronous)

and WiFi (distributed/asynchronous) are fundamentally incompatible. LTE is not

designed to yield the channel to WiFi, and may potentially starve WiFi of band-

width. While simple on-off duty access mechanisms for LTE are considered by the

industry as a means to tackle this challenging co-existence problem, we demonstrate

several artifacts inherent to LTE transmissions that render such mechanisms ineffec-

tive. We design and implement TALOS, a co-existence protocol that departs from

LTE’s pure synchronous operation to a novel policy of asynchronous access and syn-

chronous transmission (A2TS) to bridge the paradigm gap. TALOS allows LTE to

contend asynchronously for access to the channel in a manner that is efficient and fair

to WiFi, while preserving the compliance and benefits of synchronous transmissions

in LTE. TALOS requires no change to WiFi and LTE protocols, can be easily realized

on LTE base stations alone, and delivers a superior co-existence performance for both

LTE and WiFi over current approaches.

netMIMO: In Network MIMO, that relies on channel feedback, there are the

challenges of interference that arise from the aging of the Channel State Information

(CSI). Particularly, in scenarios of high channel mobility–where Network MIMO is

expected to be used–the performance degradation from interference can be severe.

We design transmission schemes to address the two sources of CSI aging: delay in

acquiring CSI feedback, and transmission period over which CSI remains unchanged.

We introduce a two-phase training and feedback protocol that balances CSI aging

9

across users by allowing users with high interference to have a shorter feedback delay.

We also introduce an adaptive adjustment to the transmission length to reduce the

decoding errors caused from interference. The proposed protocols adapt to the mea-

surements collected from the users and hence applicable to various mobility scenarios.

DISTRO: Upcoming wireless deployments such as C-RAN and Massive-MIMO

rely on real-time transport of baseband samples. The radios (front-ends) in such de-

ployments generate baseband packets once every period, which are transported to the

backend processing cluster. Therefore, to meet the real-time processing constraints,

the baseband transport network must deliver the packets within a fixed end-to-end

delay bound. However, computing the queuing delays in a large-scale packet-switched

network is intractable, making it difficult to provide end-to-end delay guarantees. We

present DISTRO, a novel Fat-Tree-based design for transporting baseband samples.

DISTRO’s design supports real-time transport as it allows us to bound the maxi-

mum transport delay of each packet. As a result, the network switches can implement

well-known scheduling policies to achieve end-to-end delay guarantees. DISTRO par-

titions the transport network into a separate aggregation- and edge-switch network,

such that any scheduling policy changes occur only at the edge switch network. This

logical division of the network along with the tree-based design enables transport scal-

ing to a large number of radios. We also characterize the maximum wireless capacity

that can be achieved while meeting the real-time constraints of baseband transport.

RT-OPEX: Processing in virtualized hardware systems, such as in C-RAN, must

respect wireless protocol deadlines, for example, 3ms to transport, decode and respond

to an LTE uplink frame. However, the commonly used processing (e.g. parallelism)

and scheduling techniques (e.g. partitioned) for wireless processing are inefficient as

they result in either over-provisioning of resources or suffer from deadline misses.

This inefficiency stems from the large variations in processing times due to fluctua-

tions in wireless traffic. We present a new framework called RT-OPEX, that unlike

10

state-of-the-art bridges the gap between scheduling and parallelism. RT-OPEX re-

duces processing times by migrating parallelizable tasks to idle compute resources at

runtime, and thus lowers the deadline misses at no additional cost. We implement

and evaluate RT-OPEX on a commodity GPP platform using realistic cellular load

traces.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter II considers the problem

of LTE and WiFi co-existence in the unlicensed spectrum. It introduces, TALOS,

a novel and provable mechanism for fair co-existence of LTE and WiFi. Chapter

III presents our approach for a measurement-based design of Network MIMO, which

addresses the interference from CSI aging. In Chapter IV, we design a Fat-Tree

based network for baseband transport, DISTRO, that can enable real-time delivery

of baseband samples. In Chapter V, we implement a new processing framework, RT-

OPEX, that relies on run-time migration of subtasks to reduce deadline-miss rates.

Finally, we conclude and discuss the future directions in Chapter VII.

11

CHAPTER II

Co-existence of LTE and WiFi in Unlicensed

Spectrum

2.1 Introduction

Recently, LTE in the unlicensed spectrum (5GHz ISM bands [7]) has received en-

thusiastic support from the global mobile industry as a means to boost the capacity

of LTE networks. The carrier aggregation [22, Chapter 19] feature of LTE allows

operators to augment existing licensed carriers with new carriers placed in the unli-

censed spectrum (i.e., unlicensed carriers). This has the distinct benefit of reusing the

same backend infrastructure that has proven to be capable of providing large-scale

wireless connectivity, and can address the unprecedented bandwidth demands from

ubiquitous Internet-of-Things (IoT) devices and mobile applications.

However, before deploying LTE into the unlicensed spectrum, one must ensure

that LTE will co-exist fairly with both the existing WiFi networks and other un-

licensed LTE networks. LTE is designed for always-on, synchronous and centrally

managed channel access. This is, unfortunately, both incompatible with the CSMA

(asynchronous, distributed) model of WiFi, and not conducive for co-existence with

competing unlicensed LTE networks.

Current approaches: Two approaches have been currently proposed to support

12

LTE in the unlicensed spectrum: LTE-Unlicensed (LTE-U) and Licensed Assisted

Access LTE (LAA-LTE). LTE-U can be realized today (e.g., Qualcomm Snapdragon

820 Processor) as it requires no changes to the existing LTE standards, and uses

adaptive on-off duty cycling of the LTE channel. LTE-U relies on energy sensing

for channel access and dynamically adjusts only the on- and off-durations according

to the measured WiFi utilization of the channel. The on-duration, typically on the

order of hundreds of milliseconds, is suitable for LTE-to-LTE co-existence, but is too

coarse-grained and leads to short-term unfairness to WiFi.1

LAA-LTE alleviates this short-term unfairness to WiFi by requiring LTE nodes

to employ Listen-Before-Talk (LBT) for Clear Channel Assessments (CCA) like WiFi

before LTE subframes are transmitted. LBT also relies on energy sensing but allows

the LTE transmissions to be limited to shorter (1–10ms) time durations. Unlike LTE-

U, shorter transmissions in LAA-LTE requires modifications to the LTE air interface.

At present, LBT requirements are mandatory only in Europe and Japan, but not in

the U.S., China and Korea.

Challenges. While LAA-LTE is a welcome step to solving short-term unfair-

ness to WiFi, our in-depth experimental study reveals some fundamental challenges

that still remain and undermine the feasiblility of operating LTE in the unlicensed

spectrum.

Challenge I: Low Detection Sensitivity. Even with LBT, an LTE node employs

only energy-sensing mechanisms [24, 25], which enables only WiFi/LTE signals that

are over the CCA threshold (around -62 dBm) to be detected. On the other hand,

WiFi uses preamble detection (in addition to energy sensing) and can detect other

WiFi (but not LTE) signals as low as -82dBm. This is particularly troubling as LTE

and WiFi networks are capable of successfully operating at signal levels of -80dBm

and lower. From the prespective of a WiFi (LTE) node, such undetected LTE (WiFi)

1Current fairness claims of LTE-U are made at time scales of seconds [23] and not milliseconds.

13

signals (below the CCA threshold but above the noise floor) can still lead to collisions

and severely degrade WiFi (LTE) performance. Our experimental study shows that

WiFi (LTE) throughput can degrade by up to 75% (40%) with such LTE (WiFi)

interference. Simply decreasing the CCA threshold will not address the problem

since it only increases false positive detections, which will reduce the overall channel

utilization.

Challenge II: Mis-interpreted Transmission Opportunities. LTE transmissions

consist of consecutive subframes, each one millisecond in duration. Each subframe

(both uplink and downlink) carries data and control information to/from multiple

user elements (UEs). For various reasons we identify in Sec. 2.4, short, non-deliberate

transmission gaps arise in these frame transmissions, preventing LTE from providing

a continuous source of signal energy. An example of such a gap can be seen in up-

link transmissions. Multiple UEs can transmit, one after the other across different

symbols (each being 70µs), within the same uplink subframe. From the perspective

of a WiFi node, the interference energy seen will be highly time-varying. Hence, a

transmission from a distant UE will likely be seen as an energy-gap by the WiFi node.

Our experimental profiling has shown these LTE transmit gaps to be typically much

larger (median duration of 140 µs) than a WiFi slot duration (9µs). This, in turn,

causes WiFi or LTE to mis-interpret these gaps as idle transmission opportunities,

thereby resulting in WiFi–LTE and LTE–LTE collisions, impacting performance by

as much as 75% in our study.

Our Solution: TALOS

These challenges reveal that current (LTE-U) and proposed (LAA-LTE) mecha-

nisms are not just insufficient for co-existence but can lead to significant performance

degradation in both WiFi and LTE. We address these challenges with Talos — a

novel, fair and efficient co-existence mechanism between LTE and WiFi in unlicensed

14

spectrum. The root cause of the aforementioned challenges stems from the inter-

action of two fundamentally different access technologies — WiFi (carrier-sensed,

distributed, asynchronous) and LTE (always-on, centralized and synchronous), that

were designed for completely different purposes, in the same spectrum. Talos bridges

this division by making LTE and WiFi speak the same asynchronous language during

channel access alone. This is a feature that, we believe, is critical for distributed

co-existence between both LTE–WiFi as well as LTE–LTE (different operators). It

assigns the co-existence burden to the LTE nodes (only base stations), requiring them

to access asynchronously instead of synchronously (in a manner that is compatible

with, and fair to the WiFi nodes) while allowing them to transmit synchronously

(retaining compliance and benefits of synchronous LTE) in the un-licensed spectrum.

We refer to this novel mode of LTE operation as A2TS.

For each unlicensed carrier (channel), Talos employs a supplementary WiFi sens-

ing module on the LTE base station (also called eNodeB) solely for the purpose of

contention (access) on that carrier. Once the WiFi sensing module gains access to

the channel, it broadcasts a CTS-to-Self with the NAV field set to the duration of the

LTE transmission, and relinquishes operation to the LTE stack. The LTE stack then

begins synchronous transmissions on the channel to its UEs during this reserved pe-

riod. A2TS directly addresses the two key challenges identified. The use of the WiFi

module for notification and sensing allows preamble-detection-based channel sensing,

thereby increasing detection sensitivity to -82dBm [25] and mitigates interference

from low-moderate powered transmissions for both LTE and WiFi. Channel reser-

vation (via the CTS-to-Self) prevents WiFi–LTE and LTE–LTE interference, even

during the un-intentional transmit-gaps that arise during LTE transmissions. Albeit

a simple solution at the outset, instrumenting this in reality faces several obstacles,

arising from the disparity that remains between WiFi and LTE in their transmission

procedures.

15

(i) Collision Management. Unlike WiFi, LTE leverages user diversity by transmit-

ting to multiple UEs in the same frame through OFDMA. However, this exacerbates

the hidden terminal problem and results in varying interference/collision levels at the

UEs (some UEs see collisions while others do not) in the same sub-frame. Managing

collisions is no longer straightforward either, as the eNodeB contends on behalf of

multiple clients with varying interference levels at the same time. To address this,

Talos uses a simple, yet effective A2TS-aware scheduling policy to manage colli-

sions and minimize the impact of interference from hidden terminals in a multi-user

transmission setup.

(ii) Fairness. Talos relies on the WiFi sensing module (CSMA mechanisms) to

contend fairly for channel access. However, WiFi contention window size parameters

are appropriately chosen based on typical one-to-one WiFi transmissions. Hence, us-

ing the same contention parameters for an extended, one-to-many client transmission

in LTE will result in starvation of the WiFi devices. Talos overcomes this challenge

with an A2TS-aware back-off mechanism that is designed to maintain fair sharing of

the channel with WiFi in the presence of OFDMA transmissions.

(iii) Efficiency. While LTE’s frames carry appreciable control overhead, it is heav-

ily optimized to deliver high spectral efficiencies by relying on synchronous, always-on

transmissions in the licensed spectrum. This advantage is diminished when operating

at shorter time scales (milliseconds) in the unlicensed spectrum, resulting in a loss

in its efficiency. While this is the price LTE needs to pay for a fair co-existence with

WiFi, it is unnecessary when there is little or no WiFi activity in the channel (as is

the case in some DFS 5GHz channels). In such scenarios, it is desirable for contending

eNodeBs to reserve and operate the channel for longer time periods. However, em-

ploying a WiFi-based sensing module limits channel reservation to 8ms (due to NAV

and other practical limitations), which is not sufficient to boost LTE’s spectral effi-

ciency. Hence, in the absence of WiFi, Talos employs a novel reservation extension

16

scheme that allows it to extend the current channel reservation without requiring the

LTE interface to stop its on-going transmission.

Realizing TALOS. A key feature of Talos is that it requires no change to WiFi

and LTE. The burden of A2TS co-existence rests entirely with LTE base stations, thus

making Talos immediately compatible with the multitude of LTE-U and LTE-LAA

UEs that will soon come into existence. However, there are no LTE devices (eNodeBs

and UEs) available yet that are capable of performing LAA-LTE as the standard

is still being finalized. Hence, our current prototype realizes Talos by mimicking

the operation of LTE-U using existing commercial LTE eNodeBs and UEs, and off-

the-shelf WiFi hardware, together with a novel RF bridge that can replicate WiFi

signals into the LTE band, and vice versa. Results from our unlicensed LTE testbed

demonstrate that Talos’s mechanisms can deliver both fairness and efficiency to

WiFi and LTE in the unlicensed specrtrum.

Contributions. We make two key contributions in this paper: (1) a detailed

measurement study to unravel the critical challenges in WiFi and LTE co-existence;

and (2) design and implementation of Talos — a novel, efficient and fair co-existence

mechanism for LTE and WiFi in unlicensed spectrum, while requiring no modifica-

tions to the WiFi and LTE protocols. Our inferences and mechanisms can contribute

to a better understanding of the challenges facing LTE-WiFi co-existence, thereby

helping researchers and engineers design and incorporate better co-existence mech-

anisms into the standard as it evolves, while providing a level playing field in the

unlicensed spectrum.

The rest of chapter is organized as follows: we provide the necessary background

in Sec. 2.2 and present detailed LTE/WiFi measurements in Sec. 2.4. We describe

Talos in Sec. 2.5 and evaluate it in Sec. 2.6. We discuss related work in Sec. 2.7 and

conclude in Sec. 2.8.

17

2.535 GHz
(Uplink)

2.655 GHz
(Downlink)

Primary
Component Carriers
(Licensed, Band 7)

Secondary
Component Carriers

(Unlicensed)

5.5 GHz 5.54 GHz 5.58 GHz

Figure 2.1: An example of LAA-
LTE operation.

LTE eNodeB

UE UE

700 MHz
(LTE Band 13)

WiFi AP

STA STA

5.18 GHz
(WiFi Ch 36)

RF Bridge

Splitter SplitterUSRP
X310

USRP
X310

Clock

Figure 2.2: RF bridging in the
LTE-WiFi testbed.

2.2 Background

2.2.1 LTE PHY Frame Structure

Unlike WiFi, LTE transmissions are based on OFDMA; and all uplink and down-

link resource allocations are centralized at the LTE eNodeB (BS). The eNodeB divides

spectrum resources along time and frequency into frames spanning 10ms, with each

frame further divided into ten 1ms subframes (see Fig. 2.3). Every subframe is then

partitioned into a grid of resource elements, where each resource element spans a sin-

gle OFDMA subcarrier (15 KHz), over the duration of a OFDMA symbol (66.7µs).

An LTE scheduler allocates resources on the granularity of a resource block (RB),

which corresponds to twelve OFDMA subcarriers (frequency) with a duration of seven

OFDMA symbols (time). The RBs are then divided into several types of channels:

(a) control channels that are used for exchanging control information (e.g., resource

assignments) between the eNodeB and the UEs; (b) data channels that carry data

payloads; (c) reference signals that are are used by the UEs synchronization and

data decoding. The LTE scheduler does not necessarily fill all resource elements in

the control and data channels. For example, if there is only a small amount of payload

data in a particular subframe, the unused data RBs are simply left blank. On the

other hand, reference signals are always transmitted, even if there is no data and

control in the subframe.

LTE can aggregate up to five distinct spectrum bands (component carriers, CCs)

18

Subframe (1 ms)

SF 0 SF 1 SF 2 SF 3 SF 4 SF 5 SF 6 SF 7 SF 8 SF 9

RB 49

RB 0

…

50
 R

B
s

10 Subframes in one LTE frame

Control Channel

Reference Signal
12

 S
u

b
ca

rr
ie

rs

Data Channel

Figure 2.3: 10–MHz downlink
LTE frame.

Figure 2.4: eNodeB and UE used
in the LTE testbed.

into a single composite channel. Each CC is used for either uplink or downlink

traffic, and can be centered in either the unlicensed or licensed spectrum. Fig 2.1

shows an example of an LTE network that uses two primary CCs on LTE Band 72,

along with two additional downlink CCs and one uplink CC in the 5 GHz unlicensed

ISM spectrum. The three downlink CCs are aggregated and used for transmission

to each UE. Similarly, each UE transmits to the eNodeB using the two uplink CCs

concurrently.

2.2.2 Where Does Talos Fit In?

Talos aims to bring LTE networks into the WiFi space using its A2TS protocol

design. Talos is designed to be fully compatible with LTE, and hence compatible

with the current industry interest in LTE-U and LAA-LTE protocols [26]. However,

LAA-LTE devices do not yet exist while LTE-U is compatible with the existing LTE

framework. Hence, our current realization of Talos is with respect to LTE-U in

downlink-only unlicensed channels. We emphasize that Talos design elements and

its A2TS protocol are equally applicable to LAA-LTE.

19

2.3 Unlicensed LTE Testbed

2.3.1 Overview

There are no commercially available eNodeBs and UEs that operate in the un-

licensed spectrum. Nevertheless, our LTE testbed achieves unified WiFi and LTE

interaction through a novel bi-directional RF bridge between the two networks. This

bi-directional RF bridge sends LTE signals into the WiFi channel, and vice versa, all

with negligible forwarding latency. Hence, we can analyze the dynamic interactions

between WiFi and LTE when operating in the same frequency bands.

Fig. 2.2 illustrates our testbed architecture. Our testbed has three main compo-

nents: the LTE network, the WiFi network and the RF bridge. The LTE and WiFi

networks operate in separate frequencies — Band 13 and Channel 36 for LTE and

WiFi networks respectively.

2.3.2 LTE Network

We use a commercial SISO LTE Release 8 small-cell eNodeB with a transmit

power of up to 1W, along with up to five off-the-shelf UE Pantech USB dongles.

Fig. 2.4 shows a picture of the LTE equipment. The small-cell eNodeB uses 10MHz

FDD LTE uplink and downlink channels in LTE Band 13. We attach a splitter to

the active antenna port on the eNodeB: one output port of the splitter is connected

to an 3 dBi omni-antenna, while the other port is connected to the RF bridge via an

RF cable.

2.3.3 WiFi Network

We use a 20MHz 802.11a SISO WiFi network in the 5GHz band. We make use of

two different WiFi network setups. Only one setup is used at any time.

2https://en.wikipedia.org/wiki/LTE frequency bands

20

WARPv3. LTE measurements in Sec. 2.4 are obtained using WARPv3 and the

802.11 Reference Design v1.2 [27]. The WARPv3 provides more detailed performance

statistics than can be obtained from commercial WiFi devices. One of the WARPv3

boards is configured as an AP, while up to five other WARPv3 boards are used as

STAs, i.e., WiFi clients. We connect a splitter to the active antenna port of the

WARPv3 AP. One of the splitter outputs is connected to a 3dBi WiFi omni-antenna,

while the other port is connected to the RF bridge via a RF cable.

TP-Link WiFi. We also employ an alternative WiFi network built using off-

the-shelf TP-Link WiFi devices. We use the TP-Link TL-WDN4800 PCIe WiFi

card, installed on a desktop PC, as an AP and the other TL-WN821N WiFi dongles

as STAs. A splitter is connected to the active antenna port on the AP. This is a

drop-in replacement for the WARPv3 network. We use the TP-Link platform to to

demonstrate that Talos is feasible over unmodified WiFi hardware.

2.3.4 RF Bridge

I/Q forwarding. The RF bridge uses two USRP X310 devices to forward LTE

and WiFi interference between the two networks. Each USRP X310 has two UBX-

120 RF daughterboards. In the LTE-to-WiFi bridge, one RF board is connected to

the splitter port on the LTE eNodeB via an RF cable, while the other RF board

is connected to a 3dBi omni-antenna. The LTE-to-WiFi bridge samples the 10MHz

downlink LTE channel from the eNodeB at 46.08MHz. This is exactly three times the

sampling rate of a 10MHz LTE channel.3 This over-sampled data is then immediately

transmitted by the other RF daughterboard into the 5GHz WiFi network. We have

verified that the spectrum power characteristics (and thus, the interference behavior)

of the LTE signal is maintained after bridging into the WiFi network. The bridge will

induce phase offsets into the forwarded signal, but this does not affect the testbed

310MHz LTE channels are actually transmitted at 15.36MHz.

21

experiments as the forwarded LTE signal is not decoded on the WiFi network. We

maintain frequency and time synchronization across both X310s by using a common

reference clock source.

A similar design is used in the WiFi-to-LTE bridge, except that a 50MHz sampling

rate (2.5x oversampling) is used instead to forward WiFi signals. We emphasize

that each bridge (LTE-to-WiFi and WiFi-to-LTE) forwards signals directly obtained

from the eNodeB and WiFi AP, respectively, over an RF cable. Hence, no cyclic RF

bridging occurs — LTE signals forwarded into the WiFi network are not subsequently

forwarded back into the LTE network.

RF Bridge vs. Analog Frequency Converter. While analog frequency con-

verters are an alternative solution to our RF bridge, the key benefit of the latter is

that it enables the forwarded LTE signals to be quickly switched on and off. The

on-off switching times is on the order of microseconds, thus allowing us to emulate

the fast on-off behavior of both LTE-U and LAA-LTE. Such fine-grained control is

difficult with analog frequency converters without custom complex (and hence costly)

control circuits.

Bridging Gain. We modify the interference power of LTE on WiFi (and vice

versa), by scaling the oversampled I/Q data before transmission over the omni-

antenna, and by adjusting the transmit gain of the associated bridge. The transmit

power of the eNodeB and WiFi APs over their respective omni-antennas are main-

tained unchanged. All reported power levels are obtained using an Agilent spectrum

analyzer.

2.3.5 Bridging Latency

The WiFi-to-LTE and LTE-to-WiFi bridge each has a bridging latency of 250µs.

This latency is an artifact of our LTE testbed, but has a very limited impact on our

measurement study, where we let the LTE node transmit continusously and study its

22

interactions with a conventional WiFi node.

With respect to energy sensing, the bridging latency does not impact WiFi’s capa-

bility of sensing the LTE signal (only depends on CCA) that is always on. Similarly,

the transmit gaps in the LTE transmissions will manifest with a latency of 250 µs

in the WiFi channel (as shown in Fig. 2.5), but do not alter WiFi’s response (com-

pared to without the latency) since the channel state perceived by WiFi is delayed

in its entirety. On the other hand, WiFi’s response to such transmit gaps, will be

observed at LTE with a latency of 500 µs. This latency can lead to false positives

and negatives respectively during measurement of WiFi interference at LTE when

(a) WiFi transmission gets completed within the LTE time gap, leading to false in-

terference detection, and (b) LTE transmission duration is small or comparable to

bridging latency, leading to potentially not detecting interference. However, as we

show in Sec. 2.4, typical WiFi transmission durations (eg. 280µs = 232µs DATA +

16µsSIFS + 32µs ACK for 1.5KB packet at highest rate of 54 Mbps) are much larger

than the median time gaps (under 140 µsecs) observed in LTE transmissions. This

coupled with LTE transmissions operating at several millisec time-scales, eliminates

such scenarios, thereby allowing us to understand the interactions between LTE and

WiFi accurately.

2.3.5.1 Small-Scale Impact

LTE-to-WiFi Latency. Fig. 2.5 illustrates the impact of the 250µs latency

when the downlink LTE channel is forwarded into the WiFi network. Consider, for

example, the case where a time gap exists in the LTE channel. WiFi will infer a clear-

channel during this gap and begin its transmission. Due to the bridging latency, this

gap will appear 250µs later in the WiFi channel. However, this has no impact on

WiFi measurements as the performance of WiFi is dependent on the channel state,

which is still preserved here albeit with a fixed delay.

23

WiFi-to-LTE Latency. Similarly, the WiFi-to-LTE bridge incurs a 250µs bridg-

ing delay. This implies that the effect of WiFi on LTE sees a total delay of 500µs.

However, this delay has limited effect on the interference impact that WiFi has on

LTE. Consider that a typical 1.5KB 802.11a WiFi transmission has an airtime of

280µs (232µs DATA + 16µsSIFS + 32µs ACK) at the highest rate of 54Mbps. This

airtime will increase at lower bitrates and with frame aggregation. In Sec. 2.4, we

show that time gaps in LTE networks are always less than or equal to 220µs with

a median duration under 140µs. Hence, it is highly likely a WiFi transmission that

starts in the gap will interfere with the an LTE frame.

2.3.5.2 Large-Scale Impact

The impact of this latency is more significant when LTE is duty-cycled. More

precisely, the forwarding latency causes a mismatch between the actual activation

time of the LTE CC, and the time at which this activation is seen by WiFi. This

delay results in additional and unwarranted LTE-WiFi collisions when the LTE CC is

enabled. Similar effects have been observed in the impact of the USRP communication

delays on WiFi CSMA behavior [28, 29]. However, this impact on our experiments is

insignificant due to two reasons.

First, in our study of LTE time-gaps in Sec. 2.4, we do not duty-cycle the bridged

LTE signal, i.e. the bridged LTE signal is always on. Hence, the bridging latency does

not result in any anomalous duty-cycling- related effects. Second, in our evaluation

of Talos and other LTE protocols in Sec. 2.6, each on-time is 20ms and 100ms in

duration, respectively. This is an order of magnitude larger than the WiFi frame

transmission. Hence, an overwhelming majority of LTE-WiFi collisions is due to

small-scale time-gaps in the LTE subframes.

24

G
A
P

G
A
P

WiFi Frame

WiFi Frame250 250

Bridge to
WiFi

LTE

WiFi

Bridge to
LTE

Time

µs µs

Figure 2.5: Bridging latency.

LTE WiFi
 Tx. Power -13dBm -14dBm
Modulation 4/16/64 QAM 16 QAM

Pkt. Size 960 Bytes 1400 Bytes

Figure 2.6: Testbed parameters.

2.4 A Real-World Study of Unlicensed LTE

To understand the performance of LTE in unlicensed channels, it is important to

study the PHY-layer behavior of LTE in the WiFi channel. We conduct two exper-

iments: (a) we use WARPv3 devices to highlight the effects of the CCA threshold,

and (b) we study the characteristics of time-gaps using our LTE testbed. Note that

the bridged LTE signal is always-on (i.e. not duty-cycled) so that we can focus on

the impact of small-scale time-gaps in LTE.

2.4.1 Experiment Methodology

Traffic Generation. We use iperf to generate constant bitrate traffic in the

LTE and WiFi networks. The bitrate of the iperf stream is varied to induce different

downlink network loads on the LTE and WiFi networks.

Transmit Load vs. Receive Throughput. The transmit load refers to the

offered bitrate of the transmitted stream over the wireless channel. The received

throughput is the bitrate received at the destination. The received throughput can

be lower than the transmit load due to various wireless channel effects.

Experiment Parameters. Figure 2.6 shows the basic parameters used in the

LTE and WiFi networks. The 802.11a WiFi CCA threshold is fixed at the standard

-62 dBm [25]. We define ∆L to be the ratio of the mean LTE signal power to the

CCA threshold at the AP. Note that due to the large variations in the LTE signal,

the instantaneous LTE power can be higher than the CCA threshold even if ∆L < 0.

25

80 75 70 65 60 55 50
Detected Power (dBm)

0

5

10

15

20

T
h
ro

u
g
h
p
u
t

(M
b
p
s) Energy+Preamble

Energy

Figure 2.7: Throughput under LBT-
like CCA.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Capture Time (ms)

0.0

0.1

0.2

0.3

0.4

0.5

T
x
 A

m
p
lit

u
d
e Data Gap

Control Gap

Figure 2.8: Time-domain snapshot of
LTE signal.

We also define SIR?
L to be the ratio of the received LTE signal to WiFi interference

power at each UE.

2.4.2 Impact of CCA Thresholds

There are no LTE devices available that can perform LBT since the LAA-LTE

standard is yet to be finalized. Instead, we analyze the impact of LBT CCA thresh-

olds using two Tx/Rx pairs of WARPv3 WiFi devices. The devices are placed at

multiple locations over an office floor to obtain different received signal levels. At

each location, we measure the average throughput when only WiFi CCA is enabled

(preamble detection disabled) and when both CCA and preamble detection are active.

The CCA threshold used is -62dBm.

Fig. 2.7 shows the throughput of one of the Tx/Rx pairs, w.r.t. the received in-

terfering signal power. Observe that if preamble detection is employed, this pair

has a throughput of about 12 Mbps. However, when only energy detection is used,

this transmitter cannot detect on-going interfering transmissions, resulting in up to

a 66.7% reduction in throughput (to about 4Mbps). The inability to detect such

interfering transmissions is even more detrimental to LTE, where multiple (tens of)

UEs are scheduled in each subframe. The result also clearly indicates (see region

with lower received power) that decreasing the CCA threshold (eg. -75 dBm) will

26

0 50 100 150 200 250
Gap Size (us)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

1 Users

3 Users

(a) 5 Mbps LTE Tx load

0 50 100 150 200 250
Gap Size (us)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

1 Users

3 Users

(b) 20 Mbps LTE Tx load

Figure 2.9: LTE gap size distribution for different LTE loads.

not address the problem either, as this would prevent two legitimate, non-interfering

LTE and WiFi transmissions from operating concurrently, thereby reducing channel

utilization. Indeed, the role of energy sensing (CCA thresholds) is only to serve as a

macro filter for detecting high powered transmissions in the channel. It needs to be

supplemented with additional protocol-specific detection mechanisms (eg. preamble

detection) that identify legitimate low-moderate powererd transmissions (interfer-

ence) without jeopardizing channel utilization. Such a mechanism is absent in the

case of LTE, which is critical for an efficient LTE-WiFi coexistence.

2.4.3 Characteristics of LTE Time Gaps

We highlight the RF characteristics of LTE I/Q signal measured at the LTE-to-

WiFi bridge during normal LTE operation. We follow the established practice and

consider the channel to be occupied if its measured signal energy is 10 dB above the

noise floor [30]. Our LTE network achieves a peak rate of around 30 Mbps over a 10

MHz downlink channel 4.

Fig. 2.8 shows an example of an LTE power profile that highlights the time-gaps

that arise in both the control and data RBs of an LTE transmission. The presence

and distribution of these gaps vary depending on the LTE transmit load, and are not

due to any intentional idle periods injected by the eNodeB.

4Close to the theoretical bitrate of a Release 8 LTE network operating in SISO mode

27

0 1 2 3 4 5 6
STA Throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

∆L = -8 dB

∆L = 0 dB

∆L = 8 dB

(a) 5 Mbps LTE Load

0 1 2 3 4 5 6
STA Throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

∆L = -8 dB

∆L = 0 dB

∆L = 8 dB

(b) 20 Mbps LTE Load

Figure 2.10: Distribution of WiFi throughput at different LTE Loads. The WiFi load
is 20Mbps.

∆L =-8dB ∆L =0dB ∆L =8dB
0

100

200

300

400

500

W
iF

i
P
kt

 C
o
u
n
t

(p
e
r

se
c)

Success

Data Loss

ACK Loss

(a) LTE Load = 5Mbps

∆L =-8dB ∆L =0dB ∆L =8dB
0

100

200

300

400

500

W
iF

i
P
kt

 C
o
u
n
t

(p
e
r

se
c)

Success

Data Loss

ACK Loss

(b) LTE Load = 20Mbps

Figure 2.11: WiFi packet loss statistics.

Fig. 2.9 shows the distributions of the time-domain gap sizes as we vary both

the total load on the LTE channel, and the number of UEs. Note that at 20Mbps

LTE load, all data RBs are utilized. The time-gaps shown here are due to the gaps in

control RBs only. We note that WiFi uses a 4µs window within a 9µs time slot for en-

ergy detection [31], and can have frame transmission time of several milliseconds [32].

Observe that even under a heavily loaded LTE channel, almost all the gaps are larger

than the WiFi timeslot. This means that (a) WiFi is highly likely to misinterpret

the LTE gaps as transmit opportunities and (b) an erroneous WiFi transmission is

likely to result in a collision. Also observe that the size of the time-gaps is even larger

under low LTE load of 5Mbps.

28

0 5 10 15 20 25 30
UE Throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

w/ WiFi

w/o WiFi

Figure 2.12: Impact of 20Mbps WiFi on UE throughput with LTE load of 20Mbps.

2.4.4 Impact of LTE Gaps

Impact of LTE on WiFi. Fig. 2.10 illustrates the impact of LTE on WiFi.

We fix SIR?
L at the UE at 10dB and the given WiFi transmit load at 20Mbps.

As expected, WiFi achieves higher throughput when the LTE load is lower. More

importantly, when the average LTE signal is higher than the CCA threshold (∆L ≥ 0),

we see that WiFi’s performance degrades with increasing LTE load. This indicates

that although WiFi is able to detect LTE, the transmit gaps in LTE transmission

result in interference between WiFi and LTE, whose impact increases with higher

LTE load. This is further illustrated in Fig. 2.11, where statistics on the number of

transmitted WiFi frames indicates that WiFi generates several packets during LTE’s

transmission, thereby resulting in a larger fraction of losses (50–75%). This impact

increases as the LTE load increases.

Impact of WiFi on LTE. Contrary to several existing measurements [7, 13, 14],

we find that the LTE transmission gaps can also result in WiFi interfering with LTE

severely. Fig. 2.12 shows the throughput achieved by an LTE UE in the presence

of WiFi interferers. Both the WiFi and LTE transmit loads are 20Mbps. It can be

clearly seen that when going from isolated LTE operation to one where WiFi can

detect LTE (and potentially back-off), the received throughput at the UE can be

severely impacted — the median throughput decreases by 40% from 20 to 12 Mbps.

This again can be attributed to the numerous transmit gaps that trigger WiFi, thereby

29

resulting in appreciable performance degradation for LTE.

2.4.5 Can We Eliminate Transmit Gaps?

At a first glance, these gaps seem to arise due to pre-determined control and

data allocations that go un-used. Hence, it appears that these gaps can be easily

eliminated in two ways: (a) by transmitting random data in all unused/null control

and data RBs, and (b) by removing the control portion of the sub-frame completely

from the unlicensed channels (keeping them only in licensed channels). However,

these approaches suffer several limitations.

(Control) Limited User Multiplexing. Allocation of data transmission re-

sources are indicated to UEs through information in the control part of the frame.

When the control part of LTE’s transmission is eliminated in the unlicensed channels,

resource allocation to UEs in those channels have to be conveyed through the control

part of the licensed channels. This will significantly limit the number of UEs that can

be scheduled in all the channels, thereby reducing user diversity gains and leading to

increased latencies. This affects our ability to accomodate the rapidly growing class

of low bandwidth UEs, such as Internet of Things (IoT) devices [33] as well.

(Control) Listen-Before-Talk. Another issue arises in the presence of LBT.

While LTE transmissions in licensed channels always begin and end on sub-frame

boundaries, this is not the case with unlicensed channels, where LBT is employed.

In order to maximize channel utilization, current LAA-LTE proposals allow LTE to

transmit immediately after a successful LBT process [34], thereby resulting in partial

sub-frame transmissions, unlike in licensed channels. Given the non-deterministic

nature of available resources in such partial sub-frames, these cannot be allocated

apriori in the control part of licensed channels and needs to be conveyed in the

control part of the partial sub-frame (unlicensed channel) itself. This prevents the

elimination of control RBs in unlicensed LTE transmissions.

30

C
T
S

Full LTE
Subframes

TimeChannel Reservation Duration

Partial
Subframe

Gap
(< 1ms)

eN
od

eB WiFi

LTE

eNodeB with
Dual Interfaces

LBT Energy Sensing

Figure 2.13: Activating the LTE-U component carrier.

(Data) Non-Uniform Interference. It is challenging to ensure that all data

RBs are filled in the face of traffic burstiness and client heterogeneity [35, 36]. How-

ever, a more significant challenge comes from the fact that LAA-LTE supports both

uplink and downlink transmissions in the same frequency band when deployed in TDD

(time divisioned dupled) mode. Even if we utilize all RBs in the downlink channel, we

cannot prevent gaps during the uplink subframes. Each uplink UE will only transmit

on the set of RBs that has been allocated to it. Hence, the aggregate uplink interfer-

ence power at any WiFi node is time-varying and dependent on the spatial topology

of the UEs. Hence, the eNodeB cannot completely prevent transmission gaps at any

WiFi/LTE device.

2.5 TALOS: LTE-WiFi Co-Existence

Our coexistence solution, Talos is built on the observation that it is essential to

bridge the fundamental difference between the channel access modes of WiFi (dis-

tributed and asynchronous) and LTE (centralized and synchronous) to address the

challenges facing their co-existence. Talos realizes this by enabling the LTE node

(base station) access asynchronously but transmit synchronously (A2TS) in the un-

licensed spectrum. The WiFi nodes are unchanged. The proposed, hybrid mode

of LTE operation (A2TS) allows for the LTE nodes to contend for channel access

asynchronously in a manner that is compatible and fair to other WiFi node, while

remaining compliant with the synchronous nature of LTE transmissions.

31

2.5.1 Solution Overview

For each unlicensed channel that a Talos node accesses, it employs a supple-

mentary WiFi access module on the same channel only for the purpose of channel

contention/access. Once the WiFi module gains access to the channel, it reserves

the channel using a CTS-to-self frame with an appropriate network allocation vector

(NAV) value. The WiFi module then relinquishes the channel to the LTE stack on the

node, which then executes LTE transmissions to its UEs on the unlicensed channel.

Fig. 2.13 illustrates the operation of Talos. Observe that LTE transmissions in

the licensed channel can begin from a partial subframe position, but must end on a

subframe boundary. Hence, there can be up to a 1ms of additional unused reservation

time at the end of the reservation duration.

Augmenting LTE with WiFi based sensing and notification, allows Talos to

protect LTE transmission gaps as well as help WiFi/LTE devices detect interference

with high sensitivity. Albeit a simple idea at the outset, delivering its benefits in

practice requires Talos to overcome three challenges: collision management, fairness

and efficiency. We next describe these challenges and how Talos ’s design helps

address them.

Also, while our solution applies to both downlink and uplink LTE transmissions,

we present it with respect to downlink for an easier exposition.

2.5.2 Collisions: A2TS-Aware Scheduling

Challenge: Hidden terminals in asynchronous access (e.g. WiFi) networks can

result in unexpected collisions at the receiver. Such problems are an even bigger

challenge for LTE as multiple UEs can be concurrently scheduled on the downlink

channel. If we simply approximate the channel state of all UEs with that at the

transmitter, the inferred channel status will be highly inaccurate. The key reason is

that only the WiFi nodes that are within CTS-decoding range of the eNodeB will

32

suspend transmissions in response to the CTS NAV information. Hence, the further

away a WiFi node is from the eNodeB, the more likely it will interfere with ongoing

downlink transmissions. As a result, different UEs will experience different levels of

WiFi interference — those closer to the eNodeB are less susceptible to interference

than those at the edge of the CTS coverage range.

2.5.2.1 A2TS-Aware Scheduling

Talos addresses this challenge through intelligent scheduling of UEs in unlicensed

carriers. Talos identifies UEs that are more susceptible to interference by measuring

their LTE frame loss rates; Talos leverages access to licensed channels by scheduling

(moving) the UEs with consistently high loss rates to the licensed channels, where they

will not be subject to WiFi or LTE (from another operator) interference. This allows

for interference-prone (potentially cell-edge) UEs to receive adequate protection in

licensed carriers, while alleviating the interference they cause to other WiFi devices

(when LTE uplink also operates in unlicensed carrier). On the other hand, those

UEs that are less sensitive to interference continue to be scheduled on the unlicensed

carriers.

Data to be transmitted on the unlicensed downlink carrier is partitioned into

one or more transport blocks and multiple transport blocks are transmitted in each

subframe. The UE ACKs or NACKs each transport block separately, and the eNodeB

tracks the acknowledgements of these transport blocks to determine the average data

loss rate of each UE in a reservation period.

Talos leverages existing LTE schedulers, which are executed before the trans-

mission of every subframe. Before each subframe transmission, Talos adds a pre-

scheduling step that sorts the set of UEs to be scheduled according to their frame

loss rates. Subframe resources in the unlicensed channel are then assigned to the

UEs in increasing order of their loss rates. The UEs that remain after all RBs are

33

assigned are the predominantly interference-prone UEs. These are then scheduled in

the licensed channels.

2.5.3 Fairness: A2TS-Aware Contention

Challenge: The CSMA behavior in WiFi is influenced by the contention window

and backoff policies. However, WiFi’s CSMA policies cannot be directly applied to

Talos for two reasons. First, the WiFi channel access probability is constrained by

the maximum and minimum contention window sizes, Wmax and Wmin, respectively.

Existing WiFi contention window ranges are appropriate for typical WiFi frame

sizes. However, each Talos reservation duration may be appreciably longer (1-10 ms

for LAA-LTE, tens of ms for LTE-U) than a WiFi frame. If we keep the channel access

probability unchanged, Talos will occupy an unfair share of the channel, leading to

starvation of the WiFi nodes.

Second, LTE uses a one-to-many transmission model. The probability that at

least one UE encounters a collision from WiFi is now significantly higher. Hence,

if Talos backs off even if one UE experiences a collision, then it is very likely to

experience a high incidence of backoffs and will thus be starved of throughput. On

the other hand, if Talos only backs off when all UEs experience collisions, then it is

likely to be overly-aggressive in contending for the channel, leading to unfairness for

WiFi.

2.5.3.1 A2TS-Aware Contention

The goal of Talos is to achieve fair channel access with WiFi. We define “fairness”

as follows. Compare a network with WiFi APs/STAs and LTE eNodeBs/UEs with

another network where the LTE eNodeBs/UEs are replaced with WiFi APs and

STAs, respectively. If the WiFi APs/STAs from the first network obtains the same

throughput as in the second network, then we consider the LTE share of the channel

34

to be fair. To enable such fair sharing, Talos modulates its contention mechanism

along two fronts as follows.

First, Talos linearly scales the contention window sizes. Let the reservation

duration be L× the average transmit airtime of a WiFi frame, the latter being

tracked through the WiFi access module. Talos sets its contention window range to

[LWmin, LWmax]. The random backoff interval, b, is thus increased to b ∈ [0, W] where

W ∈ [LWmin, LWmax]. We show both theoretically in Sec. 2.9 and using experiments

in Sec. 2.6 that this linear scaling maintains throughput fairness to WiFi.

Second, doubling the contention window upon collisions is no longer appropriate

when UEs see different collision states in the same transmission. Hence, to accurately

capture the impact of collisions on multiple UEs concurrently, Talos increases W

proportional to the subframe collision rate. The eNodeB maintains a Hybrid-ARQ

(i.e. MAC-layer ack) counter (value between 0 and 3) for each data packet (i.e.

LTE transport block) that is scheduled during the on-period. Multiple data packets

can be scheduled over the same reservation duration for different UEs. The eNodeB

increments a HARQ counter by one upon a NACK (or lack of ACK) from the UE.

Talos computes the average HARQ value, H, of all transmitted data packets in the

current reservation period.

IfH is larger than the average HARQ from the previous period, the backoff window

limit for the next reservation duration is increased to Ŵ = min{(1+ 1
3
H)W,LWmax}.

The (1 + 1
3
H) scaling factor ensures that the backoff increment is proportional to

the loss rates of the LTE transport blocks across multiple UEs. Otherwise, we set

Ŵ = LWmin. Talos then randomly selects b ∈ [0, Ŵ].

2.5.4 Efficiency: Extended Channel Access

Challenge: Unlike licensed channels, the distributed contention overhead (back-

offs, collisions, etc.) reduces LTE’s spectral efficiency in the unlicensed channels.

35

While this is inevitable to ensure fair sharing with WiFi, it can be avoided during

WiFi’s absence by allowing LTE transmissions over longer time scales. This requires

Talos to (i) first detect presence/absence of WiFi activity, then (ii), during WiFi’s

absence, enable channel reservation for longer time periods beyond those allowed by

WiFi NAV durations, and finally (iii) disable the use of contention window scaling

(Sec. 2.5.3).

2.5.4.1 Detection of WiFi Devices

Talos uses a CTS-to-Self WiFi frame to reserve the channel. A CTS-to-Self

frame that originates from a Talos node is made to carry a “LTE-source” flag in its

payload. Hence, Talos monitors the WiFi traffic on the unlicensed channel to track

the the “LTE-source” flag. If any WiFi packet is detected without the flag, this would

indicate the presence of a WiFi source. Hence, Talos will not use the reservation

extension protocol in this case, so as to maintain fairness to WiFi.

2.5.4.2 Extended Channel Access for LTE

Limited by the NAV durations, Talos uses successive CTS-to-Self frames to con-

tinue extending the current channel reservation on the fly. However, the additional

CTS-to-Self packets (beyond the first one) from the WiFi access module will interfere

with the on-going LTE transmission on the same node. One possible option is to

send the CTS packet precisely at the end of the LTE transmission. However, this will

require tight PHY-layer synchronization between the two interfaces, which requires

PHY-layer changes.

Alternatively, since LTE transmissions must end on sub-frame boundaries, the

data resources in the last (potentially partial) sub-frame of the current reservation

will be left empty. Hence, Talos leverages this to extend the reservation without

causing interference to its on-going LTE transmission as follows.

36

To extend a current reservation, Talos sets the contention window size of the

WiFi access module to zero so that it does not backoff when presented with a chance

to access the channel. When the WiFi module detects a transmission opportunity

during the empty data RBs of the last LTE subframe, it immediately sends three

CTS-to-Self packets back-to-back, separated by SIFS duration. Talos takes advan-

tage of the fact that the smallest gap size between reference signals in the empty

downlink LTE subframe is 133.4µs, while the airtime duration of a WiFi CTS frame

and SIFS is 48µs and 16µs respectively. Hence, a transmitted CTS frame can eas-

ily fit completely within the time gaps. By transmitting three CTS-to-Self packets

consecutively, Talos ensures that at least one of them is not interfered by the ref-

erence/control signals from the LTE transmission (without synchronizing the WiFi

module and LTE interface) and can be received correctly at the WiFi STAs. After

the new CTS-to-Self frames have been sent, Talos continues sending downlink sub-

frames on the same channel un-interrupted. In order to guard against interference to

undetected WiFi devices, we limit the maximum total channel reservation to 100ms

(the typical WiFi beacon interval). This prevent inadvertent WiFi disconnections

due to the loss of multiple beacon signals.

Remarks.

(1) While the 802.11 standard allows for channel NAV durations of up to 32ms,

off-the-shelf devices may only allow for a shorter limit as a precaution against NAV

flooding attacks [37]. For example, the 802.11ac standard allows up to 5.5ms of

aggregated frame transmissions [38], and valid 802.11ac NAV values, even accounting

for SIFS, DIFS, and other delays, should not exceed this by an excessive amount. This

“shortcoming” is easily accomodated in Talos by utilizing the reservation mechanism

more frequently to obtain the desired overall channel reservation time.

(2) The reservation extension mechanism is useful for LTE-LTE coexistence and

finds applications in other unlicensed bands such as 3.5 GHz, where WiFi is absent.

37

2.6 Experimental Evaluation

2.6.1 Implementation

TALOS. Since LTE nodes that operate in the unlicensed spectrum are not avail-

able yet, we build a Talos node by augmenting a commercial LTE node with an

off-the-shelf WiFi interface, the latter serving the role of the WiFi channel access

module. The WiFi interface is a TP-LINK wireless PCIe adapter built on the Atheros

AR9380 chipset. The coordination latency between the LTE and WiFi interfaces on

a Talos node are negligible and hence allow for realization of its mechanisms in real-

time. However, with the commercial LTE interface not capable of short time scale

transmissions, we execute channel access in Talos through activation/deactivation

of the LTE interface itself at transmission time scales of 20 ms (similar to LTE-U).

While these transmission time scales will reduce to few ms in future with LAA-LTE

availability, our current set-up is sufficient to validate and evaluate the benefits of the

various mechanisms in Talos .

CTS-to-Self. We take advantage of the built-in CTS-to-self support in the ath9k

WiFi linux driver. Recall that Talos scales the contention window size to account

for the relatively long channel reservation duration (several ms). In WiFi, the default

value of Wmin is 15 time slots. However, since the largest contention window size

supported by ath9k is 1023, the Talos reservation duration can only be at most

1023/15 ≈ 68 times the WiFi frame duration. If the average WiFi transmission

spans, say 280µs, which is the duration of a 1.5KB 802.11a frame at 54Mbps, then

the channel reservation duration of Talos would be limited to 19.1ms in our testbed.

Fairness and Collisions. We fix Wmin = Wmax = 1023, and the channel reserva-

tion duration to be 20ms for all our LTE experiments. This is achieved by using the

hostapd wireless utility to set the contention windows, and using a modified ath9k

driver with hard-coded NAV duration. No expoential back-off is performed in Talos

38

after any collisions, but the contention window is appropriately adapted (Sec. 2.5).

Unlicensed Carrier Activation and Deactivation. We emulate channel ac-

tivation and deactivation by switching on and off the bidirectional RF bridge in a

coordinated fashion. When the ath9k sends a CTS packet after channel contention,

Talos activates its unlicensed channel and the bidirectional RF bridge begins for-

warding I/Q signals between the LTE and WiFi networks. When Talos deactivates

its unlicensed channel, the RF bridge will cease forwarding I/Q signals. At this point,

the ath9k interface will resume its CTS contention. Due to limitations of our eNodeB,

we only study the performance of Talos over a single unlicensed channel. Carrier

aggregation with a licensed channel is currently not supported.

2.6.2 Experiment Setup

We evaluate Talos in a real-world setting using our LTE-WiFi testbed described

earlier, while replacing the WARP nodes with commercial TP-LINK WiFi devices.

The use of the RF bridge to bring LTE and WiFi signals into each others’ band incurs

a 250 µs latency either way. This bridging latency causes a mismatch between the

actual start time of the LTE (WiFi) transmission, and the time at which this LTE

(WiFi) transmission is seen by WiFi (LTE). This delay results in additional LTE-WiFi

collisions when the LTE (WiFi) transmission is started and before it is detected by

WiFi (LTE). Similar effects have been observed in the impact of the USRP communi-

cation delays on WiFi CSMA behavior [28, 29]. Fortunately, this impact is mitigated

due to Talos ’s operational time scale of 20ms, which is an order-of-magnitude larger

than the typical WiFi frame transmission duration. Hence, an overwhelming majority

of LTE-WiFi interactions will be due to steady state LTE and WiFi characteristics.

The impact of the bridging latency is thus negligible. Note that in response to the

larger channel reservation durations, the contention windows will be scaled accord-

ingly, as described in Sec. 2.5.3. The experimental results and insights obtained from

39

our experiments will thus hold for future LAA-LTE-to-WiFi co-existence character-

istics. We also augment our evaluations with NS-3 [39] simulations, to compensate

for the lack of fine-grained control over the commercial eNodeB scheduler.

Other Protocols (Duty Cycled LTE): We compare Talos with duty-cycled

LTE (eg. Qualcomm’s LTE-U [23]). Each on-period has a duration of 100ms. We

vary the duration of the off-period to achieve duty-cycles of 100% (no off period),

50% and 33%. Note that with static duty-cycling, the optimizations in Talos and

CTS-to-Self (for reserving the channel) are not employed. However, the RF bridge is

still used to emulate the activation and deactivation of the unlicensed channel.

2.6.3 Performance Measurement

In a given topology, we measure the performance of Talos, duty-cycled LTE and

the WiFi network.

LTE. In order to obtain the performance of Talos and duty-cycled LTE over the

unlicensed spectrum, we keep track of the LTE frames transmitted during the carrier

activation period in tcpdump. We use only these frames to determine the performance

of Talos and the duty-cycling protocols.

WiFi. We directly measure the performance of WiFi over the same unlicensed

spectrum. Note that since the WiFi devices actually suspend and resume transmis-

sions in response to the CTS-to-Self messages, the performance of the WiFi network

can be measured directly, without any additional filtering steps. For each topology,

we also measure the fair WiFi throughput (as defined in Sec. 2.5.3.1) by replacing

the eNodeB and UEs with TPLINK WiFi AP and STAs.

2.6.4 TALOS Fairness and Throughput

In this section, we demonstrate that WiFi will achieve its fair throughput under

Talos, without unnecessarily penalizing the LTE throughput. Note that only the

40

Location A Location B Location C Location D
0

5

10

15

20

25

S
T
A

 T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Fair WiFi

TALOS

100% cycle

50% cycle

33% cycle

(a) WiFi

Location A Location B Location C Location D
0

5

10

15

20

25
U

E
 T

h
ro

u
g
h
p
u
t

(M
b
p
s)

TALOS

100% cycle

50% cycle

33% cycle

(b) LTE

Figure 2.14: Average throughput at different locations.

Location A B C D

LOS or NLOS NLOS LOS NLOS LOS
LTE/WiFi

WiFi > LTE WiFi < LTE
Signal Strength
LTE/WiFi (STA) -25dB -20dB 30dB 25dB
LTE/CCA (AP) -34dB -28dB 13 dB 5dB

Table 2.1: Parameters in each scenario.

performance of LTE over the unlicensed bands is considered. Licensed LTE trans-

missions are ignored. We first consider a simple testbed setup using one UE and

one STA, together with an LTE eNodeB and a WiFi AP. From our measurements,

we select four different locations (labeled A to D) for the WiFi AP that represent

different line-of-sight (LOS) and non-line-of-sight (NLOS) network conditions.

The topology parameters are summarized in Table 2.1 and are representative of

the signal strength variations that can be found in a real-world LTE-U network.

“LTE/WiFi(STA)” denotes the ratio of the LTE to WiFi signal energy seen at the

WiFi STA, while “LTE/CCA(AP)” denotes the ratio of the LTE power to CCA

threshold as seen at the AP. Since there is a single LTE and single WiFi link, we

expect that the LTE and WiFi will gain equal air-time to the channel. The maximum

throughput of the LTE network at all locations is 30 Mbps. Hence, under fair-sharing

41

of the channel, LTE should achieve a throughput close to 15 Mbps.

Duty-cycling is highly inefficient. Fig. 2.14 shows the mean throughput at the

STAs and UEs across all four locations. Observe that under simple duty-cycling,

WiFi can achieve, and in some cases even exceed, its fair-throughput. While this

is beneficial to WiFi, it comes at a significant cost to LTE. Consider location A as

an example. Even though a 50% duty-cycle achieves a fair WiFi throughput, LTE

throughput drops to a mere 1 Mbps, which is significantly lower than the expected

15 Mbps. This poor LTE performance is due to significant interference from WiFi.

WiFi transmissions are not suppressed during the LTE on-periods, arising from the

failure of CCA detection as well as time gaps in the LTE signal.

Talos achieves fair-sharing efficiently. When Talos is employed at any location,

the WiFi network can achieve a throughput that is within 1% (e.g. location D) of its

fair throughput. Furthermore, this fairness does not come at a penalty to LTE. For

example, in location A, even though Talos achieves approximately the same WiFi

throughput as a 50% LTE duty-cycle, it does so with a LTE throughput that is over

10× greater (11 Mbps from 1 Mbps). In all other locations, the mean LTE throughput

is within only 25% of the expected 15 Mbps ideal throughput. We emphasize that

such adaptation is inherent to Talos and is achieved without any network calibration.

Thus, the A2TS contention mechanism of Talos converges to this fair state regardless

of the location and configuration of the LTE and WiFi networks.

Optimal duty-cycle is network-specific. We then extend the network to support

up to 2 WiFi APs, with 4 STAs each. Figs. 2.15(a) and 2.15(b) shows the sum-

throughput of WiFi when one and two WiFi APs are present, respectively. Observe

that the optimal duty-cycle in each of these cases (50% and 33% respectively) depends

on the number of APs present. This information is typically not explicitly conveyed

to the eNodeB. Hence, we will need to adapt the duty-cycle for each network over

long-periods in order to converge to the optimal point. Such adaptation has to per-

42

0 5 10 15 20
WiFi Throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Fair

TALOS

100%

50%

33%

(a) WiFi (1×AP)

0 1 2 3 4 5 6 7 8
WiFi Throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) WiFi (2×APs)

0 5 10 15 20
LTE Throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(c) LTE (1×AP)

0 2 4 6 8 10 12 14 16
LTE Throughput (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
(d) LTE (2×APs)

Figure 2.15: Sum throughput distribution in a larger network.

formed continously to track WiFi network dynamics, making it very challenging and

inefficient. In contrast, Talos achieves the fair WiFi throughput in all cases in a

highly efficient manner.

Talos ’s performance scales with contenders. The fair WiFi operating throughput

in Talos does not come at the expense of LTE — in the 1-AP case, for example,

the Talos LTE throughput is within 10% of the throughput that LTE will achieve

without duty cycling. Observe that with two APs, Talos correctly matches the WiFi

throughput achieved under 33% duty-cycle, while achieving 33% (from 4.5 to 6 Mbps)

higher corresponding median LTE throughput.

2.6.5 TALOS Link-Layer Latency

While WiFi packet latency is measured over the entire experiment, LTE link-layer

packet latency is measured only during periods when LTE is active on the unlicensed

channel . This choice is justified since LTE is meant to operates its unlicensed channel

43

Fair TALOS 100% 50% 33%
0

1

2

3

4

5

S
T
A

 L
a
te

n
cy

 (
m

s)

(a) WiFi

TALOS 100% 50% 33%
0

2

4

6

8

10

U
E
 L

a
te

n
cy

 (
m

s)

(b) LTE

Figure 2.16: Packet latency of the WiFi and LTE networks.

together with a licensed channel. During periods when the unlicensed channel is

deactivated, UE transmissions will still be scheduled on the licensed channel. Hence,

we are only interested in the LTE latency during periods when the unlicensed LTE

spectrum is in use.

Fig. 2.16(a) shows the mean and deviation of the downlink latency (measured from

inter-packet arrivals) in WiFi networks with one WiFi link together with one other

UE and an Talos eNodeB. When WiFi exists alongside duty-cycled LTE, its latency

increases steadily with an increasing duty-cycle. This is an expected result given that

duty-cycled LTE does not respect the asynchronous WiFi channel access policy which

will result in co-interference. Even though Talos increases the mean latency from 0.4

ms to 0.9ms, compared to the fair WiFi case (which has no interfering LTE nodes),

it is on par with the latency achieved under the 50% duty-cycled LTE. We expect

the WiFi latency to be reduced even further with LAA-LTE, due to its support for

short-timescale transmissions. Fig. 2.16(b) shows that Talos achieves up to 20×

shorter latencies than simple duty-cycling. This reduction is largely due to the fact

that Talos A2TS mechanisms ensure interference-free LTE transmissions.

2.6.6 TALOS Reservation Extension

We study the performance of Talos in LTE-to-LTE co-existence scenarios (in

absence of WiFi) by augmenting our testbed evaluation with moderate-scale NS-3

44

0 5 10 15 20 25 30 35 40
Reservation Duration (ms)

20
25
30
35
40
45
50

LT
E

Th
ro

ug
hp

ut
 (M

bp
s) No Scaling + A2TS

(a) Reservation extension

Top 20% Top 50% ALL
UEs Scheduled on CC

0

5

10

15

20

25

30

35

LT
E
 T

h
ro

u
g
h
p
u
t

(M
b
p
s) No Hidden APs

Hidden APs

(b) Throughput with A2TS-aware
scheduling

Figure 2.17: Simulation results in larger deployments.

simulations. Our simulation contains five partially overlapping cells. Each cell has

a Talos eNodeB, along with 10 UEs that are uniformly, randomly placed within 20

metres of the eNodeB. Each pair of eNodeBs are separated by at least 50 metres. The

downlink transmit power of each eNodeB is fixed at 10 dBm over a 20MHz channel.

Recall that the contention window size is not scaled since we do not need to maintain

LTE-to-WiFi fairness here.

Fig. 2.17(a) shows the LTE throughput (averaged over all eNodeBs) over dif-

ferent Talos channel reservation durations. If Talos transmits LTE subframes,

one-subframe at a time (1 ms), the average LTE throughput is only 30 Mbps. If

the reservation duration is extended beyond 32ms (i.e. beyond that allowed by the

802.11 specification), the average LTE throughput approaches 40 Mbps — a 33%

improvement. The longer the reservation duration, the smaller the impact of the

channel access overhead, and the better the LTE resource management algorithms

are able to service the downstream UEs. This also highlights the fact that longer

channel durations are beneficial to maximize LTE’s efficiency in unlicensed channels,

when fairness to WiFi is not required, owing to the latter’s absence.

45

2.6.7 TALOS A2TS-Aware Scheduling

We evaluate A2TS-aware scheduling using a simulation that contains one Talos

eNodeB with 10 UEs in FDD downlink, along with 3 WiFi APs and a total of 12

WiFi STAs. We consider two scenarios: no hidden terminals, where all APs are

located 15m from the eNodeB and thus in its carrier sensing range; and with hidden

terminals, where all APs are located 50m from the eNodeB. The transmit power of

all devices is set to 10dBm. Both WiFi and LTE use a 20 MHz bandwidth at a fixed

modulation rate.

Fig. 2.17(b) shows the UE throughput as we vary the proportion of UEs that are

scheduled on the unlicensed channel in the two cases. The reservation duration is

96ms.

Observe that when there are no hidden terminals (i.e. WiFi devices that cannot

receive the CTS-to-Self reservation), A2TS-aware scheduling has little to no impact

on the throughput of LTE. This is expected as Talos can always achieve a fair share

of the channel. In the face of hidden terminals, Talos achieves the best throughput

when it schedules only the top 20% of the UEs (that experience the least amount of

interference from hidden terminals) in the unlicensed channel. When multiple UEs

are scheduled irrespective of their interference status in the unlicensed channel, there

is a large drop (67%) in the overall LTE throughput. This indicates the need for

better interference protection (A2TS-aware scheduling) during multi-user scheduling

in unlicensed channels.

2.7 Related Work

Unlicensed LTE has received considerable attention from the industry [7, 13, 14].

Contrary to their hypothesis that WiFi is not harmed by LTE[7], we show that LTE

transmission artifacts pose a serious challenge for co-existence. The impact of LTE

46

on WiFi in the unlicensed spectrum has been primarily studied through simulations

in [40, 41, 42]. The work in [43] relies on novel DSP techniques, and hence changes to

the receiver design, to decode WiFi and LTE frames from overlapping transmissions.

LTE–WiFi co-existence can also utilize the subframe blanking support in LTE [44,

45]. However, reference signals are still present in blanked frames and will interfere

with WiFi transmissions. A management plane that extends an SDN platform was

proposed in [46] to provide coarse-grained spectrum coordination between LTE-U

and WiFi. The authors of [47] designed a proportional fair allocation of spectrum

between LTE-U and WiFi. However, these two schemes only maintain fairness over

a longer time scale, since they are designed primarily for LTE-U. The authors of [48]

took an alternative approach and allowed WiFi to take an active role in interference

avoidance. Along this line, novel DSP techniques such as [49, 50, 51] enable WiFi

to overcome unwanted interference in the unlicensed band. Finally, WiFi offloading

[52, 53] is complimentary to our work.

2.8 Conclusion

In this chapter, we reveal several fundamental challenges still facing LTE–WiFi

co-existence in unlicensed spectrum. We propose a novel Asynchronous Access, Syn-

chronous Transmit (A2TS) policy for LTE base stations to address the source of this

problem, namely the channel access divide between LTE and WiFi. We then design

and implement Talos , a fair and efficient co-existence protocol that overcomes the

challenges in realizing the benefits of A2TS in practice.

2.9 Appendix: TALOS Access Model

Talos follows the principle of random access to co-exist with WiFi links, which

implies its probability of access and transmission duration will impact the through-

47

WiFi

TALOS

θA

CTS-
to-Self

WiFi

WiFi

θA’

(Link A) (Link A)

(Link B’)

Figure 2.18: Talos deployed next to a WiFi link and an equivalent representation
with WiFi-only links. Talos is fair to WiFi if throughput of WiFi is
unaffected when Talos is replaced by another WiFi link i.e., θA = θ

′
A.

β𝐴/𝑇𝑠

LTE

WiFi

Idle

1/𝑇𝐴

β𝑇/𝑇𝑠

1/𝑇𝑇

Figure 2.19: State transition diagram.

put of nearby WiFi links. To model this dependence, we consider a simple deploy-

ment where a single WiFi transmission(Link A) co-exists with Talos , as shown in

Fig. 2.18. Let βA denote the access probability of the WiFi link, which is defined as

the probability that the WiFi transmitter will transmit in a given time slot (denote

slot size as Ts) in steady state. Note that βA is determined by the WiFi contention

window sizes, Wmin and Wmax, and the collision probability [54]. We assume the

WiFi packet size is exponentially distributed with mean SA, while the channel bi-

trate is fixed. Hence, the packet transmission time is also exponentially distributed,

which we denote by TA. Similarly, we let βT be the probability that Talos will

send a CTS-to-Self in a given slot, which is again determined by the contention win-

dow sizes, LWmin and LWmax, and collision probability. Also, assume the channel

reservation duration for LTE is exponentially distributed with mean TT , and is in-

dependently chosen at each transmission. To keep the analysis tractable, we further

assume the links don’t do exponential backoff. This simplifies analysis as the access

48

probabilities are independent of the collision rate and are given by: βA = 2/Wmin and

βT = 2/LWmin.Under these assumptions, Fig. 2.19 shows the state transition diagram

of the transmissions in the medium. Using a Markovian analysis as shown in [55] we

calculate the throughput, θA, of the WiFi link, which is given by:

θA = θ(βA, TA, TTβT) =
SAβA

Ts + TAβA + TTβT

where θ(·) is a general throughput function of a WiFi link. To show the fairness

between Talos and WiFi, we now consider an equivalent system representation where

Talos is replaced by a regular WiFi transmission, Link B’, as shown in Fig. 2.18. Let

βB′ be its access probability, which is now determined by the regular WiFi contention

window size as: βB′ = 2/Wmin, and let TB′ denote its average transmission time. Using

a similar approach as earlier, the throughput, θA′ , of Link A in this case becomes

θ(βA, TA, TB′βB′).

From our definition, Talos is fair to WiFi if the throughput of Link A in both

these cases remains unaffected, that is, θA = θA′ . Clearly, this holds when TTβT =

TB′βB′ , which occurs if L = TT
T ′B

. Thus, by scaling the contention window size by a

factor that is the ratio of the average LTE transmission duration and the average WiFi

transmission duration, Talos ensures fairness to WiFi. Though our analysis ignores

the overhead from collisions and exponential backoff, we see from our evaluation and

simulation results in Sec. 2.6 that even with those overheads, the fairness concept still

holds.

49

CHAPTER III

Measurement-Based Design of Network MIMO

3.1 Introduction

A distributed multiuser MIMO (MU-MIMO) network, commonly known as net-

work MIMO (netMIMO), has the potential of achieving gigabit capacity in dense

wireless networks. It is targeted for enterprise networks, where generates and receives

the bulk of the wireless traffic. A typical netMIMO setup consists of a central con-

troller that does the baseband processing and a set of distributed Access Points (APs)

that concurrently transmit to multiple users or stations (STAs). In contrast to tra-

ditional multi-cell wireless deployments where adding more cells increases co-channel

interference, netMIMO eliminates the inter-cell interference, or converts it into useful

information through tight integration of APs into a giant virtual MIMO transmitter;

thus preserving capacity gains from the additional cells. In theory, the network ca-

pacity scales linearly with the number of transmitters [21]. Therefore, a netMIMO

deployment with a large number of APs could easily address the bandwidth crunch

of future wireless networks.

However, there are several challenges in realizing the true gains of a large-scale net-

MIMO. First, the distributed APs or transmitters must be accurately synchronized in

time and frequency through a periodic exchange of synchronization frames. Second,

the APs must be connected to the controller through a dedicated backhaul infras-

50

tructure that supports real-time processing. Last, the fundamental wireless capacity

that is under-achieved due to the channel feedback overhead and channel estimation

errors has to scale with the size of the network. Note that although reciprocity of

the wireless channel precludes the need for channel feedback, the calibration require-

ments (as proposed in [10]) make the reciprocity assumption untenable for netMIMO

deployments.

Nevertheless, recent advances have shown that high-capacity backhaul can be

realized with optical fiber technology; while synchronization was achieved with a

large number of APs [17]. On the other hand, STA interference that arises from the

errors between estimated and observed channel reduces the achievable capacity [56].

A netMIMO derives much of the functionality from an MU-MIMO network. The

APs broadcast training frames which are then used by the STAs to compute their

respective Channel State Information (CSI). Each STA then transmits its CSI, either

compressed or uncompressed, back to the APs during the feedback phase. As a

result, the delay in acquiring the CSI feedback from STAs increases with the number

of participating STAs.

In certain scenarios, the excessive feedback delay may see the channel undergo sig-

nificant changes. Subsequently, when data frames are transmitted, one or more STAs

may see a channel that is completely different from the channel used for computing

the CSI. This phenomenon is technically known as CSI aging, and the delay between

CSI estimation and actual transmission is called the CSI delay. Since netMIMO relies

on zero-forcing techniques based on past CSI, improper cancellation of streams due to

CSI aging leads to interference at the STAs. This unwanted interference can result in

significantly lower throughput than expected from perfect cancellation. In addition,

when data frames are sent for an extended period of time using the past CSI, the

interference may get accentuated due to further increase in CSI delay. Therefore,

both the feedback delay and the length of transmission are important factors that

51

determine the effect of CSI aging on netMIMO performance.

In this chapter, we propose transmission schemes for netMIMO that address the

following two problems associated with CSI aging: Q1) how to get CSI feedback

without adversely affecting one or more STAs’ performance? ; Q2) how to determine

the length of transmission over which the CSI remains unchanged? Since the effects

of CSI aging are strongly dependent on the topology (for e.g. mobility), we propose

a measurement-based design. Our design adapts to the measurements received from

the STAs, and therefore applicable to a wide range of topologies.

In particular, we make the following contributions:

• A non-heuristic, non-threshold-based training and feedback protocol, and an

adaptive transmission scheme that effectively overcome the effect of CSI aging.

• A novel measurement-based approach where interference observed at the STAs

is used in adapting the netMIMO protocol. We show that interference is a

useful metric, and support our claims with analysis and observations.

We implement and evaluate our proposed schemes in a netMIMO testbed with

real-world wireless channels. We construct a fully-synchronized netMIMO testbed on

WARP Software Defined Radio [57] achieving both time and frequency synchroniza-

tion. We also develop a new channel-measurement framework with custom hardware

and software design [58].

The remainder of the chapter is arranged as follows: Sec. 3.2 motivates the problem

of CSI aging. Sec. 3.3 specifies the model for Network MIMO. Sec. 3.4 describes

our proposed transmission schemes which are followed by their implementation and

evaluation in Sec. 3.5. Finally, we discuss the related work in Sec. 3.6 and conclude

in Sec. 3.7.

52

STA1! STA2!

AP1! AP2!

Backhaul!

STA3! STA4!

Figure 3.1: APs concurrently transmit to multiple STAs

3.2 Background and Motivation

Consider an example netMIMO deployment in Fig. 3.1, where a group of APs,

all of them connected to a controller through a common backhaul link, concurrently

transmit data of multiple STAs. To suppress the interference that may occur when a

STA receives unwanted data of other STAs (e.g., STA1 receives signals of STAs 2–4),

netMIMO uses coordinated transmission like zero-forcing and block-diagonalization

[59]. This coordination is possible if the baseband transceiver processing is imple-

mented at the controller, and the APs effectively function as remote antennas.

3.2.1 Protocol Design

In netMIMO, the downlink CSI of STAs that is required for canceling interference

is obtained through a training and feedback protocol. We assume a mechanism similar

to the IEEE 802.11ac MU-MIMO explicit feedback protocol [3, 60]. Training occurs

via a sequence of Null Data Packet (NDP) sounding frames sent by the netMIMO

APs. Each STA estimates the channel matrix by listening to the NDP frames and

computes its CSI. The format of the CSI, e.g. channel matrix, beamforming matrix,

precoding matrix indicator, signal-to-noise ratio, etc., is specified by the controller.

The STAs encode this CSI into CSI-feedback frames and transmit them to one or more

APs in a pre-determined order. Once the controller obtains the CSI, it generates the

precoding weights that are applied to the antennas of the APs to send the netMIMO

data packets.

53

	
 	
 	

…!

	
 	
 	

…!NDP1! NDPM!

 CSI!
STA1!

netMIMO !
DATA!

ACK!ACK!

SIFS!SIFS! SIFS! 	
 	
 	

…!

Training! Feedback! Data!

 netMIMO TXOP!

Sync!

 CSI!
STAK!

netMIMO !
DATA!

	
 	
 	

…!

	
 	
 	

…!

Figure 3.2: Timeline of a netMIMO transmission

CSI compression Givens Bits per angle 8

Feedback rate MCS0 AP,STA Antennas 2,1

SIFS duration 16µs Tx Power 18 dBm

NDP duration 30µs Bandwidth 20MHz

CSI Grouping 2:1 Processing ZF

Table 3.1: netMIMO protocol parameters

Fig. 3.2 illustrates the basic netMIMO transmission protocol. It begins when a

sync frame is transmitted by the master AP to synchronize the multiple APs and

to reserve the wireless medium [17], followed by a sequence of NDP frames in the

training period. This is followed by sequential CSI feedback from the STAs (Poll

frames for soliciting CSI feedback are not shown). The data packets of STAs are sent

in the netMIMO Transmit Opportunity (TXOP) period, where the TXOP duration is

determined during the channel reservation process. Once the STAs receive and decode

their data frames, they send ACK/Block ACK frames to acknowledge reception.

Remark: The CSI may be encoded by the STA to reduce the amount of feedback

overhead. For example, quantization [61], CSI grouping across subcarriers [3] and

differential encoding [62] can be readily applied. In addition, matrix operations like

Givens rotation [63] may be applied to reduce the size of channel representation.

3.2.2 Effect of CSI Aging

The wireless channel between two nodes varies with time due to relative motion

between them, motion in the surroundings, random fading and other physical impair-

ments. The rate of variation is generally captured through the notion of coherence

54

time—defined as the time period during which the wireless channel remains almost

constant. For example, the coherence time is of the order of hundreds of milliseconds

for stationary nodes but can be much less (< 10ms) for moving nodes [64]. It there-

fore follows that aging of CSI is inversely related to the coherence time. To study the

effect of this CSI aging, we perform some preliminary measurements of the protocol

as described earlier in Section 3.2.1, on a netMIMO testbed (see Section 3.5 for de-

tails). We consider three mobility profiles for the STAs—stationary (Stat), moving

environment (MovE) and moving device (MovD)—that capture a range of different

channel characteristics. The parameters for the netMIMO transmission protocol are

chosen from the 802.11ac standard [3] and are shown in Table 3.1. The details of

transmit and receive processing are given in Section 3.3. Further, to isolate the effect

of channel aging on the performance, we assume a noiseless channel estimation and an

error-free feedback channel. This is justified by using the best feedback resolution (8

bits per angle), and the lowest modulation and coding scheme (MCS0) for feedback.

Nonlinear increase in feedback delay. Table 3.2 lists the duration of the CSI

feedback frame for each STA and the total feedback delay as the number of STAs

is varied. In each scenario, the number of transmit antennas is taken equal to the

number of STAs. The calculation, based on the parameters in Table 3.1, is done as

follows: Given a total of K transmit antennas and single receive antenna per STA, the

CSI feedback is a K × 1 unitary matrix (Sec. 3.3). This implies the total number of

angles (both phase and rotation) after parameterization by Givens rotation is 2K−2

(Eq. (30) in [63]). Therefore, the feedback size (bits) of each STA is given by:

Feedback size (each) =
(2K − 2)×#BitsperAngle×#Subcarriers

#CSIgrouping
(3.1)

Using Eq. (3.1), the feedback duration is calculated using the MCS0 (6Mbps) feedback

55

4 STAs 6 STAs 8 STAs 10 STAs

Each (ms) 0.224 0.288 0.480 0.608

Total (ms) 0.96 1.82 3.96 6.24

Table 3.2: Duration of feedback frames

rate. This is then summed for all K STAs including the packetization and the inter-

frame overheads to arrive at the total feedback duration. As one can see, the total

feedback duration grows quadratically with the number of STAs. For example, the

total feedback delay is 0.96ms for 4 users, but increases to 3.96ms for 8 users – a 4×

increase when the number of users is doubled.

We measure the Signal-to-Interference (SIR) values for a single STA in various sce-

narios in a 10–STA netMIMO (Fig. 3.3(a)). The total feedback delay here is 6.24ms,

and as one can see, the SIR in the MovD environment is at least 50% less than the

stationary environment. Since the SIR in each of the scenarios is generally high-

est in case of the stationary channel, it suggests that SIR degradation (4–15dB) in

non-stationary channels is due to the interference from CSI aging.

Role of TXOP duration. When the precoding weights based on past CSI are used

in sending data packets for a prolonged period, it may also lead to CSI aging. This

is confirmed with a netMIMO of 6 STAs as shown in Fig. 3.3(b), where there is a

marked difference in the SIR values at the start of TXOP and at the end of TXOP.

This is particularly significant (=6 dB) as the duration of TXOP is increased to 4ms,

where CSI aging corresponds to a total 5.82ms (including the initial feedback delay

of 1.82ms).

3.2.3 Measurement-Based Approach

Overcoming the effects of CSI aging requires changes to the netMIMO protocol.

However, given that the indoor wireless channels are difficult to model because of

their dependence on the topology and disturbances, it is difficult to quantify the

effect of CSI aging. Therefore, we present a passive measurement-driven protocol

56

 5

 10

 15

 20

 25

STA5 STA6 STA7 STA8

S
IR

 (
dB

)

Location 2

Stat
MovE
MovD

(a) Effect of feedback delay

 10
 12
 14
 16
 18
 20
 22

Stat MovE MovD Stat MovE MovD Stat MovE MovD

S
IR

 (
dB

)
TXOP Start
TXOP End

TXOP=4msTXOP=2.5msTXOP=1ms

(b) Effect of TXOP duration

Figure 3.3: Measured SIR at the STAs suggests that CSI delay during feedback and
transmission leads to performance loss

that inherently accounts for the CSI delay of each STA.

Why netMIMO? Although channel variations are also applicable to a MU-MIMO

network consisting of a single AP [60], we emphasize the CSI aging effect in the context

of netMIMO for two reasons. First, netMIMO is designed for high-density indoor

environments like conference rooms, theaters, shopping malls, etc., that inherently

have mobility. Second, as compared to the single AP installation, links between STA

and APs in netMIMO are more diverse, which implies lower coherence, and therefore,

a greater CSI aging effect.

3.3 Network-MIMO Model

We briefly describe the netMIMO baseband signal processing at the APs and

STAs, respectively. The system uses OFDM, and in the description that follows we

drop the subcarrier index to indicate that it is applicable to each OFDM subcarrier.

Assume there are M APs, each with Nm antennas, and Nt = M × Nm transmit

antennas in total, that together serve K STAs (K ≤ Nt). Let K = {1, . . . , K} denote

57

the set of STAs, each of which is equipped with Nr receive antennas. The STA k

estimates the composite Nr×Nt channel matrix, H̃k, from the M NDPs in the training

phase and computes the right singular matrix, Vk, of H̃k. Assume that a single data

stream is supported per STA and an equal amount of power is assigned to each STA.

We consider the case where the CSI of STA k is the strongest right singular vector, vk,

of Vk [65]. Each STA k quantizes, compresses and encodes vk into the CSI feedback

frame, and broadcasts it to the APs. The CSI feedback frame is decoded by the

APs and its contents are then passed on to the controller. After collecting CSI from

each STA, the controller uses a zero-forcing (ZF) precoding to generate the precoding

matrix, W = Γ(Γ†Γ)−1, where Γ = [v1 v2 . . . vK] is a matrix of singular vectors, and

(·)† represents the Hermitian transpose. The precoding weights, w̃1, w̃2, . . . , w̃K , are

the normalized column vectors of W used by the controller to modulate the K STA

data streams. The APs then collectively transmit these modulated streams which are

received and processed by each STA as a single netMIMO frame.

Let xk denote the data of STA k, then the signal yk received by STA k is given by

yk = Hkw̃kxk +

interference︷ ︸︸ ︷∑
i 6=k

Hkw̃ixi (3.2)

where Hk is the observed channel of STA k in netMIMO data packet. In this equation,

the term Rk =
∑

i 6=kHkw̃ixi is the unwanted interference from other STAs’ data while

the term Hkw̃kxk is the desired signal. In ideal conditions, the interference Rk is 0

because the estimated channel H̃k is equal to the observed channel Hk, and the

precoding weights w̃i satisfy Hkw̃i = 0 for all i 6= k . However, in practice, Hk and

H̃k are different due to the time-lag between them (CSI aging effect) which results in

non-zero interference.

In this chapter, we assume all STAs are equipped with a single antenna, i.e., Nr =

1. The case with multiple antennas is left to future work. We also assume the data

58

symbols, x1, . . . , xK , are zero-mean Gaussian i.i.d. with equal average power, P/K,

where P is the total input power. Therefore, the interference power, Ik, observed by

STA k is

Ik =
∑
i 6=k

P

K
|Hkw̃i|2 (3.3)

while the SIR is given by

SIRk =
|Hkw̃k|2∑
i 6=k |Hkw̃i|2

(3.4)

Unless specified otherwise, the term interference refers to the interference power in

Eq. (3.3). Each STA k decodes its data x̂k with a Zero-Forcing (ZF) receiver given

by x̂k = (Hkw̃k)
†yk/|Hkw̃k|2. Similar to the 802.11ac MU-MIMO protocol [3], the

precoded channel terms, Hkw̃i, needed for ZF/MMSE estimation are known from the

channel estimation symbols of the netMIMO packet. Therefore, from the perspective

of a receiver, a netMIMO STA is simply an MU-MIMO STA of existing WLAN

deployments.

Observe that the channel noise in the system, albeit present, has been ignored in

our model. This follows from the fact that netMIMO deployments are geared towards

dense deployments where interference is much stronger than noise.

The interference at a STA arises from the mismatch between the observed chan-

nel, Hk, and the precoding weights derived from the estimated channel, H̃k, and is

therefore a good metric to quantify channel fluctuations (Sec. 3.4.3). Furthermore, it

can be approximated as: |Hkw̃k|2E[|x̂k−xk|2], which can be calculated at the receiver

after demodulation. We validate this approximation in our setup by precoding with

random precoding vectors at Tx antennas and measuring the average symbol error

after demodulation at a receiver.

59

	
 	
 	

…!

	
 	
 	

…!NDP1! NDPM!

CSI!
STAK1!

NDP1! NDPM!
netMIMO!

 DATA!

	
 	
 	

…!

NDP1! NDP2!

Feedback delay
for STAs in! Feedback delay

for STAs in !
K1

K2

	
 	
 	

…! CSI!

STAK2!

Figure 3.4: The proposed training protocol with additional NDP frames inserted in
the feedback sequence

3.4 Measurement-Based Design

We present a netMIMO transmission protocol that combats CSI aging by mod-

ifying the CSI delay of STAs. We use the interference experienced by the STAs to

quantify CSI aging as the metric of interest. The first part of the protocol balances

the interference across STAs through two-phase training in which STAs with mobile

channels are accorded a smaller CSI delay. The second part of the protocol adjusts

the TXOP duration to meet the decoding threshold required throughout the TXOP

duration. We begin by describing our proposed modification of the training protocol.

3.4.1 Two-Phase Training

The idea of two-phase training is to have a second NDP broadcast from APs close

to the start of data transmission. STAs with high channel mobility and therefore with

large channel variation relative to the first NDP use the new NDP frames to estimate

their channel. The training protocol is depicted in Fig. 3.4. Here NDP1 and NDP2

refer to the original and the additional set of training frames, respectively. The set

of STAs, denoted by K1, estimate the downlink channel w.r.t. NDP1, and broadcast

their CSI feedback, similar to the standard feedback procedure. The remaining set of

STAs, K2, estimate the channel from NDP2 and send their CSI feedback after NDP2 is

transmitted. The partitions, K1 and K2, therefore identify the two phases of training,

and are specified by the controller at the start of the netMIMO transmission.

Let TNDP be the collective duration of the set of NDP frames and let Tk be the fixed

60

feedback duration of STA k. Given a partition K2, the feedback delay (CSI delay)

of STAs in K1 is given by T 1 =
∑

k∈K Tk + TNDP, while for STAs in K2, the delay is

given by T 2 =
∑

k∈K2
Tk. Clearly, T 1 is fixed while T 2 varies with the size of K2. For

simplicity, the constant overhead terms like SIFS are not shown. Let Īk(K2) be the

average interference of STA k where the average is taken over all OFDM symbols and

subcarriers in the first data packet of the netMIMO TXOP. Its dependence on CSI

delay, T 2, is indicated implicitly through the set K2. To keep analysis tractable, the

duration of the data frames in netMIMO TXOP is fixed at 1ms. We ignore channel

variations within the data frame and define the CSI delay w.r.t. the start of data

frame, which is also the feedback delay of the protocol.

Initializing with a few mobile STAs in K2 results in a smaller feedback delay

and, possibly less interference from CSI aging. But as more STAs are included in

K2, the feedback delay, and possibly the interference, of STAs trained with NDP2

increases. Consequently, there exists an optimal partition that balances interference

across all STAs, i.e., minimizes the worst case. Taking the objective function OBJ =

maxk∈K Īk(K2), we express this as a minimization problem:

min
K2⊆K
{max
k∈K

Īk(K2)}. (3.5)

Although straightforward, the problem cannot be solved because the observed channel

and interference of STAs are not known a priori during training. Therefore, we take a

passive measurement-based approach. The current location of NDP2 is decided based

on interference measurements reported by the STAs in the ACK frames from previous

netMIMO transmission. We use a greedy approach: At each step the STA with

the maximum reported interference is trained with NDP2 as long as the maximum

interference decreases in the next step. Algorithm 1 shows the procedure for NDP

placement. It is initialized by sending only NDP1, i.e., K2 = ∅ and measuring the

61

interference at STAs.

Algorithm 1 NDP placement

1: Initialize: t = 0, K1 = K,K2 = ∅, Ī1(∅) . . . ĪK(∅), Ī0? = maxk Īk(∅)
2: for iteration t do
3: Find Ī t? = maxk Īk(K2), STA k? = arg maxk Īk(K2)
4: if Ī t? > Ī t−1? and K2 6= ∅ then
5: Remove the last placed STA from K2 into K1

6: else
7: Place STA k? in K2 if k? was not previously moved from K2 into K1

8: end if
9: Train STAs in K1 with NDP1 and STAs in K2 with NDP2. Complete net-

MIMO transmission.
10: Obtain average interference, Īk(K2), of each STA k
11: end for

At every iteration of the NDP placement algorithm, the maximum observed in-

terference among STAs is compared with previous maximum interference (line 4). If

there is a decrease, the algorithm tries to further decrease OBJ by training the STA

with maximum interference with NDP2 (line 7). If there is an increase in OBJ, the

last placed STA in K2 is shifted to K1. Intuitively, the NDP placement algorithm

addresses CSI aging by reducing CSI delay of mobile STAs.

Overhead. The overhead of additional NDP frames is negligible compared to the

feedback duration. For instance, in a 4-AP netMIMO setup with 8 STAs, TNDP is

0.18ms, which is around 4.6% of the 3.96ms total feedback duration.

3.4.2 Adaptive TXOP sizing

The netMIMO transmit opportunity (TXOP) is the common transmission period

in which a single or a burst of netMIMO data packets of STAs are transmitted. Since

the transmission is based on precoding from past CSI, a limit on the duration of

TXOP is required to avoid the interference that arises from excessive CSI delay. A

similar TXOP limit has been defined in 802.11 EDCA mechanism, albeit to improve

MAC-level efficiency. Also, since different STAs have different channel characteristics,

62

	
 	
 	

…!netMIMO!

 DATA!
ACK! ACK! ACK!

 Old TXOP Limit!

Interference > !βk

 New TXOP Limit!

netMIMO!
 DATA!

netMIMO!
 DATA!

 CSI!
STAK!

	
 	
 	

…!

Figure 3.5: Adjusting TXOP based on the interference

the interference in the TXOP can be different for each STA. This suggests that each

STA needs to have its own TXOP limit within the netMIMO TXOP according to its

tolerance towards interference.

We propose a netMIMO protocol that adapts the TXOP limit of each STA while

satisfying its decoding requirements. The basic idea is to observe the interference

in the TXOP of a previous netMIMO transmission to set the limit for the next, as

shown in Fig. 3.5. Since a TXOP is made up of multiple data packets, which are also

utilized in sending the interference reports, the TXOP limit is specified in the integral

number of constant sized 1ms data packets. Algorithm 2 shows the procedure for the

proposed netMIMO TXOP Adjustment that is run at every netMIMO transmission.

Algorithm 2 TXOP Adjustment

1: Initialize: t = 0, Lk = TXOP Limit of STA, βk = interference threshold of STA
k

2: for iteration t do
3: Obtain average interference, Īek, from the end of TXOP of STA k
4: for each k with Īek ≥ βk do
5: Set Lk to the first time instant (> minimum TXOP limit) in TXOP where

interference of STA k exceeds βk
6: end for
7: for each k with Īek < βk do
8: Lk ← max(L1, . . . , LK)
9: end for

10: Set netMIMO TXOP Limit, L = max(L1, . . . , LK)
11: end for

The algorithm initializes with the default TXOP duration Lk and interference

threshold βk of each STA k. This threshold depends on the fixed modulation and

63

coding scheme (MCS) used by the STA in the TXOP. Its calculation is given in

Section 3.4.3. In lines 4–5, the algorithm decreases the TXOP Limit of STA k when

it exceeds its interference threshold. On the other hand, the TXOP limit of STA whose

interference is below the threshold is set to the maximum value (line 8) of L which

is also the netMIMO TXOP limit. Similar to MU-MIMO transmission in 802.11ac

[3], zero-padding is done for STAs whose TXOP limit is less than the transmission

duration.

In summary, the two-phase training mitigates the interference at the start of

TXOP while the TXOP Adjustment algorithm tries to reduce the interference that

shows up towards the end of transmission. Both of these approaches therefore com-

plement each other.

3.4.3 Theoretical Analysis

We now present some key insights into the underlying variables of CSI delay and

interference. We back these insights with measurements obtained from our testbed.

We then show that the proposed protocol follows directly from these observations.

Insight 1(Independence): Interference at a STA is independent of CSI delay of other

STAs.

Explanation: This follows from the fact that given the precoding weights w̃1, . . . , w̃K

and the estimated channel H̃k of STA k, the interference Ik is only dependent on its

observed channel Hk, and is therefore independent of CSI delays of other STAs.

Insight 2(Monotonicity): The average interference experienced by a STA is directly

related to its channel variations. Moreover, it increases roughly monotonically with

the CSI delay of the STA.

Explanation: We can express the observed channel of STA k in terms of the estimated

channel and the error ek as:

Hk = H̃k + ek (3.6)

64

where ek is a zero-mean spatially white gaussian error term. The zero-mean behavior

was indeed verified in our testbed measurements. Next, consider a single data frame

which is made up of a sequence of OFDM symbols. For a single subcarrier, we can

express the expected value of interference (using Eq. (3.3)) as follows:

E[
∑
i 6=k

P

K
|(H̃k + ek)w̃i|2]

(a)
= E[

∑
i 6=k

P

K
|ekw̃i|2]

=
∑
i 6=k

P

K
E[(ekw̃i)

†(ekw̃i)] =
∑
i 6=k

P

K
w̃†iE[e†kek]w̃i

(b)
=
∑
i 6=k

P

K
w̃†iσ

2
kIw̃i =

∑
i 6=k

P

K
w̃†i w̃iσ

2
k

(c)
= Cσ2

k

where C = (K−1)P/K is a constant; (a) follows by using H̃kw̃i = 0 for all i 6= k, (b) is

result of the white gaussian error term ek, and (c) uses w̃†i w̃i = 1 for all i. This implies

the observed average interference1 that is obtained from multiple OFDM symbols of

STA k can be approximated as

Īk ≈ Cσ2
k (3.7)

Therefore, the average interference at a STA is directly proportional to the power of

channel variations, σ2
k. This suggests that as channel variations grow larger with the

CSI delay, the interference should also increase. To investigate if this indeed holds,

we experimentally measure the interference as a function of STA’s CSI delay under

different scenarios. Fig. 3.6(a) gives an example of the observed STA interference in a

10-STA netMIMO setup. As expected, the interference in general increases with CSI

delay, and more so in case of non-stationary environments. We run through these

observations with the Kendall τ rank correlation test [66] which is non-parametric

test to measure monotonicity between two variables. A correlation coefficient close

to +1 indicates a monotonically increasing relationship while a value close to −1

1Average from a single sample path is used as approximation of mean across all paths

65

0 2 4 6
−45

−40

−35

−30

−25

−20

Time (ms)

In
te

rf
er

en
ce

 (
dB

m
)

Stat
MovE
MovD

(a) Example of STA interference
(averaged over 10MHz) vs. CSI de-
lay

0

0.2

0.4

0.6

0.8

1

K
en

da
ll

τ
C

oe
ff

Stat MovE MovD

(b) Kendall τ coefficient for inter-
ference vs. CSI delay with 0.01 sig-
nificance level

Figure 3.6: Examples and results of statistical test show that interference increases
with CSI delay

suggests a dependency that is monotonically decreasing. Fig. 3.6(b) plots the range

of Kendall τ rank correlation coefficient values calculated for the interference with

respect to the CSI delay observed over 10 runs. The significance level was set to 0.01.

In the majority of runs and under different channel conditions, we observe a rank

correlation coefficient, τ > 0.7, which confirms our insight on the monotonic nature

of interference as a function of CSI delay.

In what follows, we make use of the assumptions on independence and strict

monotonicity, and make another simplifying assumption that channel behavior re-

mains constant across multiple iterations.

Proposition 1. The NDP placement algorithm finds the optimal solution to Eq. 3.5

within K iterations.

Proof. We first show that NDP placement does converge. By construction, at every

step, a STA from K1 is moved to K2, unless the maximum interference among STAs

increases. The CSI delay of STAs in K1 is given by T 1 =
∑

k∈K Tk + TNDP which

remains constant, so interference of STAs in K1 also remains constant by assumption.

On the other hand, from the monotonicity assumption, the interference of STAs in

K2 increases as the CSI delay T 2 =
∑

k∈K2
Tk increases which happens when a STA is

moved to K2. Clearly, if at any point k? ∈ K2, then partitions don’t change further.

66

Also, if at any iteration t, Ī t? > Ī t−1? , STA k? form iteration t−1 will be moved back to

K1. Subsequently, in iteration t+ 1 STA k? will continue to remain in K1. Therefore,

the partitions converge in both cases.

To show that the converged partition, K1,K2, is optimal, assume there exists

another partition G1,G2 that does strictly better. Let STA k? and STA r? have

the maximum interference in the two scenarios, respectively. It follows that Ir?(G2) <

Ik?(K2). For any k ∈ K2, it is true that k ∈ G2 because otherwise if k ∈ G1, then Ik(G2)

≤ Ir?(G2) < Ik?(K2) from assumption. Further, Ik?(K2) < Ik(G2), because at some

point, T ′, in NDP placement STA k would be moved from the first partition and the

maximum interference strictly decreases at each step, and also because the CSI delay

of STA k before T ′ is same as with the partitions G1,G2. As a result, Ik(G2) < Ik(G2)

which is a contradiction. Therefore, we have K2 ⊂ G2 since the two partitions cannot

be the same. Now, consider two cases when k? ∈ K1 and k? ∈ K2. In the first, it

follows that k? ∈ G2 because otherwise if k? ∈ G1 implies Ir?(G2) ≥ Ik?(G2) = Ik?(K2),

which is not true. Now, consider, Ik?(K2 ∪ k?) > Ik?(K2) > Ir?(G2) > Ik?(G2), from

the stopping condition of the algorithm. This is a contradiction since K2 ∪ k? ⊆ G2.

For the second case, since k? ∈ K2 ⊂ G2, it follows Ir?(G2) ≥ Ik?(G2) > Ik?(K2) which

is also contradiction to our assumption. Consequently, there cannot exist another

partition with does strictly better than the NDP placement algorithm.

Proposition 2. If the interference threshold βk of STA k satisfies βk = P
K

(Λ̃min
k)2/αk,

where αk is the SIR decoding threshold, and Λ̃min
k is the minimum largest singular

value of H̃k across subcarriers, then the average SIR after TXOP Adjustment satisfies

SIRk
≥
≈αk for each data frame.

Proof. The TXOP adjustment proceeds by doing a series of adjustments to the TXOP

limit of each STA, and sets it either to the minimum TXOP limit or increases to the

maximum of the TXOP limits of all STAs. Therefore, after a finite number of steps

the TXOP limit of each STA k converges to a constant value such that the average

67

interference, Īk, throughout the TXOP is less than βk (if not the case then it is set

to the minimum possible TXOP limit and there are no performance guarantees).

Consider a subcarrier of a data frame within the TXOP, we can express:

E[SIRk] = E[
P

K

|(H̃k + ek)w̃k|2
Ik

]
(d)≈ E[

P

K

|H̃kw̃k|2
Ik

]

(e)
= E[

P

K

Λ2
k

Ik
]
(f)

≥ E[
P

K

(Λmin
k)2

Ik
]
(g)

≥ P

K

(Λmin
k)2

E[Ik]

(h)≈ P

K

(Λmin
k)2

Īk
≥ (Λmin

k)2

βk
= αk

where (d) is an empirical approximation when |Hkwk| >> |ekwk|, (e) uses the fact that

w̃k is normalized vector of W = (Γ†)−1 and Hk has a single non-zero singular value,

(f) follows by using the minimum singular value across subcarriers, (g) follows from

Jensen’s inequality and (h) is obtained by replacing expectation with the average sum.

Therefore, for any data frame in a TXOP, we may approximate the average measured

SIR measured across the frame’s OFDM symbols and subcarriers as SIRk
≥
≈αk.

3.5 Evaluation

In this section, we provide the details of our netMIMO testbed, the evaluation

methodology, the implementation of the proposed algorithms and their performance

evaluation.

3.5.1 netMIMO Testbed

We implement a prototype of netMIMO using the WARP SDR platform [57]. The

setup consists of a maximum of 5 APs (with 2 Tx antennas each), and 10 STAs, each

with 1 Rx antenna. The controller function is implemented on a back-end server

connected to the WARP boards via Ethernet with a Gigabit switch. We make use of

the WARPLabv7.3 drivers with their efficient WARP-PC interface to interface with

68

1

3

2

4

1
2

APs STAs

Figure 3.7: Deployment of net-
MIMO testbed

AP1!

Clock Buffer !

AP2! AP3!

clock cable!

Twisted-pair !
cable!

D12!

D13!

Figure 3.8: Time and frequency
synchronization

the WARP boards.

Fig. 3.7 shows the layout of the netMIMO testbed deployed in our Department

building. To manage the large number of WARP boards we grouped them into

separate AP and STA clusters. We have 2 AP clusters, and 3 STA clusters, with a

combined total of 10 Tx and Rx antennas. The STA WARP boards are placed on a

movable cart while carrying out the experiments.

3.5.1.1 Signal Processing

Following the 802.11n/ac standards, we have implemented a full-fledged netMIMO

OFDM system. We use the basic 20MHz 64-fft OFDM (48 data subcarriers) design

and upsample it by a factor of 2 to get an effective bandwidth of 10MHz. We use the

channel 14 in the 2.4GHz ISM band that is unused by nearby devices.

At the start of every netMIMO transmission, a sync signal is sent by the controller

to trigger the APs and the STAs to start their transmit and receive chain, respectively.

Each AP broadcasts an 802.11 NDP packet composed of a short training field (STF)

and a long training field (LTF). Each STA runs an auto-correlation algorithm to

detect the STF and extracts the start time of the received packet. It also uses the

STF to estimate the frequency-offset and corrects it accordingly. The LTF of an

AP consists of OFDM training symbols on each Tx antenna of the AP, and is used

69

by the STA to estimate channel w.r.t. each Tx antenna. The CSI feedback frames

are not sent over-the-air and made implicitly available to the controller. Finally, a

netMIMO data frame consisting of cyclic-shifted STFs, and precoded training and

data is transmitted.

3.5.1.2 Synchronization

For the netMIMO signal processing to be valid, we require that all AP nodes in

netMIMO are completely synchronized. By default, we take AP1 as the master AP

and synchronize the rest of the APs with AP1.

Time Synchronization: At a high level, time synchronization means that all APs

transmit simultaneously. However, in the context of netMIMO which uses OFDM,

it requires that for each STA, the precoded OFDM frames transmitted by the APs

as part of a single netMIMO packet must arrive within a cyclic prefix (CP) window.

By ignoring the small differences in the propagation delay between APs and STAs,

this implies that time synchronization in netMIMO is achieved when all APs begin

transmission within a CP period. We ensure this in two steps.

First, we use a twisted-pair cable assembly and connect the debug headers on the

WARP board of AP1 with that of other APs. This ensures that the rest of the APs

can be triggered by AP1 while AP1’s input trigger is set to a PC trigger that is sent

over Ethernet. The twisted-pair cable which extends up to 30m in our setup has a

propagation delay of the order of 100ns (typical value of CP is 400 or 800ns). As a

result, we observe a significant time-lag in triggering from AP1. In our second step,

we address this lag by introducing transmission offsets among the APs, i.e., we delay

the start of packet transmission at an AP by a fixed duration. Let Dj denote the

delay of the twisted-pair cable between AP1 and AP j. Note that D1 = 0. Also,let

Oj be the transmission offset of AP j. We find offsets O1 to OM that satisfy the

70

20μs" time"

TX_NODES

100μs" ≈650μs"

PC Trigger" PC Trigger"

Channel measurement period ≈ 0.8ms"

700μs"

Host PC"

RX_NODES

Host PC"

WriteIQ" Tx/Rx" ReadIQ" Tx/Rx" ReadIQ"

(a) Timeline of function calls in CWARP

0.05

0.1

0.15

M
ag

ni
tu

de

Time (ms)

0 0.1

LTF Symbols

6.3 6.4

(b) LTF symbol stream for channel es-
timation

Figure 3.9: Details of the channel measurement framework that allows real-time eval-
uation of netMIMO

following constraint.

max
1≤j≤M

{Oj +Dj} − min
1≤j≤M

{Oj +Dj} ≤ CP. (3.8)

As the above constraint is under-specified, the offsets are found easily through a

simple search. To allow for tolerance, we use CP/2 as the window size in our setup.

Frequency Synchronization: As illustrated in Fig. 3.8, we frequency-synchronize

all netMIMO APs by sourcing their RF and sampling clock from the 40MHz reference

clock of AP1. This is implemented with the CM-MMCX module of WARPv3 board

that provides external interface to the reference clocks. We use the RG-174 coax

cables that have an attenuation rating of 6.6dB/100ft at 50MHz for connecting the

clock sources. Further, we use ADCLK954 boards as external clock buffers to prevent

clock drift that may arise from the attenuation.

Phase Synchronization: Two WARP boards that are frequency synchronized may

still differ in phase due to a random phase introduced by the Amplifier (LNA) circuit.

Fortunately, this random phase remains constant once the circuit is powered on. Thus,

a constant phase difference between two APs is easily corrected.

71

3.5.2 Evaluation Methodology

3.5.2.1 Trace-based evaluation

Our netMIMO setup uses the WARPLAB 7.3 library written in MATLAB to do

signal processing. However, the execution time of MATLAB for netMIMO process-

ing and WARP read/write exceeds 100ms and thus renders it useless for real-time

evaluation. Therefore, we resort to a trace-based evaluation of netMIMO. The idea

is to continuously collect the channel measurements between every pair of antennas

in real time. This is achieved by repeatedly sending LTF symbols from the APs and

processing the received symbols at the STAs to estimate the channel. We then play

back the channel traces with the netMIMO transmission protocols through virtual

timers which allow us to do an offline yet realistic evaluation.

3.5.2.2 Channel-Measurement Framework

To do an accurate trace-based evaluation of netMIMO, we require the Nr × Nt

channel measurements to be done as frequently as possible. This implies that we need

to either send/receive a single long packet (>10ms) of LTF symbols or send/receive

the LTF symbols at a very fast rate (every 1ms or so). The WARP design, however,

has a maximum buffer size of only 215 samples (airtime of 0.8ms at 40MHz). Moreover,

reading just a single buffer into WARPLab incurs an average delay of around 3ms.

Therefore, it is difficult to obtain accurate channel traces using the current WARP

framework.

We overcome these limitations by designing our own hardware and software so-

lutions. We modify the WARP FPGA design by halving the sampling clock and

increasing the buffer size to 216 samples (beyond 216 is not possible due to FPGA

Bus width limitations). This allows us to send/receive signals up to 6.4ms long—an

8× increase in the transmission airtime. Consequently, we are able to send/receive

72

LTF symbols to accurately track the channel as shown in Fig. 3.9(b). We have also

written a multi-threaded C driver that directly interfaces with the WARP hardware

[58]. This lightweight driver completely replaces the much slower WARPLAB driver

that is written in MATLAB. On comparing the performance of the basic readIQ rou-

tine which reads the IQ baseband buffers into the PC, we witness an almost 3× to

10× reduction in read delay as the number of buffers is increased from 4 to 10. In

particular, the average readIQ delay for reading 211 samples in case of 6 STAs is only

0.8ms, i.e., smaller packets can be sent and received within 1ms (Fig. 3.9(a)), which

allows us to do channel measurements with high accuracy. The long transmission

design is used for validating the STA interference behavior, e.g., Section 3.4.3, while

the WARP driver is used in the evaluation of our algorithms. We would like to point

out that measurements with WARP boards are highly sensitive to noise, external

interference and other physical impairments. Therefore, we apply a locally-weighted

smoothing on the time variations of channel magnitude and phase, similar to the

channel tracking procedure of OFDM receivers.

3.5.2.3 Mobility Experiments

In order to account for the channel conditions in real netMIMO deployments,

we consider three mobility scenarios in our evaluation: (1) Stationary(Stat)—This

corresponds to the scenario when the location of STAs is fixed, and there are no

disturbances from the motion of people or nearby objects. (2) Moving environ-

ment(MovE)—Environmental mobility is simulated through human actions such as

arm movements and walking while the nodes remain fixed. (3) Moving device(MovD)—

Device mobility is simulated by moving the cart on which STA nodes are placed

while taking measurements. This motion closely resembles the pedestrian mobility of

smartphones and other mobile devices.

73

 0

 2

 4

 6

 8

 10

 12

STA1 STA2 STA3 STA4 STA5 STA6 STA7 STA8

S
IR

 G
ai

n
(d

B
)

MovD(STAs 1--4)
MovD(STAs 5--8)
MovE(STAs 1--4)
MovE(STAs 5--8)

(a) Observed gains in four experiments

0 100 200 300 400 500
−30

−25

−20

−15

−10

Time (ms)

M
ax

. I
nt

er
fe

re
nc

e
(d

B
m

)

Default
NDP placement

(b) Maximum interference among STAs

Figure 3.10: Evaluation of NDP placement in 8–STA netMIMO. Results show signif-
icant gains for mobile STAs.

3.5.3 NDP Placement

We implement and run the NDP placement given in Algorithm 1 over a period of

450ms where a netMIMO transmission occurs every 15ms. A number of scenarios for

STAs’ mobility are played out while the channel measurements are taken. Fig. 3.10(a)

shows the SIR gains of STAs with the NDP placement compared to the default

training protocol in four different scenarios: MovD where one among the group of

STAs 1–4 and STAs 5–8 are placed and moved on a cart, and repeated again in

MovE where instead external disturbances are present around one of the group of

STAs. The gain is calculated by measuring the SIR of a single netMIMO packet

that is transmitted following the feedback process. As one can see, the gains for

some STAs can be significant (5–10dB) and is due to the smaller CSI delay resulting

in reduced interference. Most importantly, the gains are strongly correlated to the

channel mobility of the STAs. For example, when STAs 1–4 are moved, all of STAs 1–

4 see gains while STAs 5–8 see almost none. When STAs 5–8 are moved, STAs 6 and 8

have noticeable gains while STA3’s and STA4’s performance remains unchanged. This

can be explained from the two different CSI delays—a few STAs’ delay is reduced

(from NDP2) while for others it remains the same (NDP1). Note that due to the

coarseness of the measurement readings, the actual gains may deviate slightly than

what has been reported.

74

Fig. 3.10(b) shows the results for the MovD (STAs 1–4) scenario of the 8–STA

netMIMO system which according to Table 3.2 incurs a feedback delay of 3.96ms

with single NDP training. The average readIQ delay of reading each WARP buffer

was observed to be 1.07ms. Therefore, channel readings are available at 4 time points

within the feedback period. In Fig. 3.10(b), we plot the maximum average interference

of STAs (Ī t? in Algorithm 1) as a function of netMIMO iteration. As expected, the

NDP placement strives to lower the maximum interference compared to the default

scheme.

3.5.4 TXOP Adjustment

Similar to the NDP placement, the TXOP Adjustment (TxAj) procedure in Al-

gorithm 2 uses the past interference to adapt every netMIMO transmission. The CSI

delay of STAs is fixed while the netMIMO TXOP duration is varied. Since the objec-

tive here is to meet the SIR threshold (βk) of a STA according to its MCS, we evaluate

the performance of our proposed approach with all possible MCS values. We use the

widely adopted MCS-threshold lookup table for 802.11 wireless environments[67].

Fig. 3.11 shows the evaluation results of a single STA in an 8-STA netMIMO setup

with TXOP limit of 4ms. The minimum TXOP limit of each STA is set to 1ms.

The TXOP limit value is the initial TXOP duration of all netMIMO STAs which

remains constant in the default scheme but is adjusted for each STA in our proposed

scheme. Note that the CSI delay here consists of the TXOP duration in addition to

the feedback delay of 3.96ms. For each MCS, we calculate the percentage of STA’s

total transmissions that do not meet the corresponding average SIR threshold and

hence would result in packet errors. Since the accuracy of measurement is limited

to 1ms, the SIR is measured only for a few packets in the TXOP. A higher MCS

means requires larger SIR (e.g., MCS7 requires SIR > 23dB); the plots in Fig. 3.11

therefore exhibit an increasing trend. With our TXOP Adjustment which changes

75

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7

E
rr

or
 R

at
e(

%
)

MCS index

MovE
MovE w TxAj
MovD
MovD w TxAj

Figure 3.11: Error rate measured for each MCS before and after TXOP Adjustment

STAs K = 4 K = 6 K = 8

Location (1,2) (3,4) (1,2) (3,4) (1,2) (3,4)

Default (Sec. 3.2.1) 134 113 199 108 279 150
Proposed (Sec. 3.4) 142 119 220 123 292 174

Table 3.3: Average total netMIMO-throughput (Mbps)

the transmission length according to the interference, we see a noticeable reduction

in error rate – up to and 42%.

3.5.5 Field Test

We conduct a field test of the netMIMO setup by running both NDP placement

and TXOP Adjustment simultaneously for a period of 450ms. We consider the am-

bient wireless environment of our testbed and further orchestrate all STAs in motion

together with the motion of people/objects around. We consider two different loca-

tions of the STA clusters, with Location (3,4) being in NLOS environment w.r.t. the

APs, and placed farther than Location (1,2). The initial TXOP limit was set to

4ms. The average throughput of each STA is calculated by averaging over all possible

MCS data rates, which is then added for all STAs to arrive at the average netMIMO

throughput, as shown in Table 3.3. It can be concluded that the throughput gains are

modest in the case of 4–STA netMIMO, but become more prominent as the system

is scaled—more than 15% in case of 8 STAs. Note that the throughput is per unit

time within a netMIMO TXOP.

76

3.5.6 Discussion

Theoretical basis: While the monotonic behavior of interference is loosely observed

in our measurements, the channel state across netMIMO iterations can be quite dif-

ferent. Consequently, the theoretical analysis in Sec. 3.4.3 does not necessarily apply,

but rather provides a guiding principle.

Rate adaptation and Decoding: We have used fixed MCS rates for each STA for

determining the transmission duration. In addition, decoding is assumed to fail com-

pletely if the decoding threshold is not met. However, our TXOP adjustment can be

further improved if rate adaptation is applied within and across TXOPs, whereas soft

decoding at STA will reduce the TXOP error rate.

3.6 Related Work

Distributed MU-MIMO systems have been implemented through centralized [17,

16] and decentralized WLAN architectures[68]. Furthermore, a downlink MU-MIMO

base station with 64 antennas was implemented in [10]. Each of them assumed per-

fect CSI, or rather stationary wireless channel, which is justified given that their

experiments were carried out in a controlled environment. However, we find that user

mobility has a significant effect on the performance of such systems. While the other

alternative of implicit CSI feedback, as employed in [10], effectively mitigates the CSI

aging effects, its calibration requirements make it less practical for WLAN devices,

and as such has not been adopted in the 802.11ac standard.

In theory, the results on MU-MIMO capacity with the overhead of training and

feedback, imperfect channel estimation, and channel aging are well known [21, 69, 61].

However, few systems have validated these results in practice. The user mobility

profile was considered in [70] to select a transmission strategy. The authors claimed

that netMIMO architecture was only suitable for stationary clients. In [64] and [60],

77

experiments were performed to show the relationship between feedback delay and

capacity of 802.11n SU-MIMO and MU-MIMO users, respectively. The authors in

[60] observed that the performance of MU-MIMO is highly sensitive to CSI delay and

aging, and the sensitivity is dependent on the number of Tx/Rx antennas and the

interference cancellation ability of the STAs. It is stated that without interference

cancellation, capacity decreases considerably within 5ms, which is also consistent with

our findings. However, their results are limited to just 4 STAs, assumes multiple Rx

antennas, and employs fixed training interval for each STA irrespective of its mobility

state. The recent work in [71] on MU-MIMO feedback is closely related to ours. It

proposes an adaptive feedback compression scheme based on frequency and time-

domain compression techniques, and evaluates them in realistic indoor channels. The

setup, however, considers single AP and 2 STAs, and does not take into account the

scaling of feedback overhead or the diversity from having multiple APs.

3.7 Conlusion

Network MIMO has the potential to meet the capacity requirements of future

wireless networks. In this chapter, we consider how CSI aging affects the performance

of a large-scale netMIMO in real and accurately measured indoor wireless channels.

We propose a two-phase feedback protocol and an adaptive transmission scheme,

which adapt from the interference measured by the STAs. Our approach exploits

the underlying relationship between interference and CSI delay, which is validated in

our experiments. Our evaluations demonstrate significant gains in the case of mobile

wireless channels.

78

CHAPTER IV

Scalable Real-Time Transport of Baseband Traffic

4.1 Introduction

In upcoming wireless architectures such as C-RAN [5, 12], and Massive-MIMO

[9, 10], a baseband transport network connects the antenna/radio deployments to

the backend processing infrastructure. For instance, in a C-RAN deployment, a

fronthaul network carries the baseband samples between the remote radio heads and

the baseband processors located in a datacenter. Such architectures provide numerous

cost advantages: lesser power consumption from resource pooling, quicker upgrade

and replacement cycles, support for advanced signal processing, and flexibility in the

management of radio infrastructure.

Since the baseband transport network is the key enabler of such architectures, its

design must meet the following requirements to maximize the cost benefits.

Guarantees. The real-time nature of the wireless processing imposes stringent

constraints on the transport network; the network must provide end-to-end (e2e)

guarantees for delay and jitter. For instance, the transport delay bound can be as

little as few microseconds for WiFi samples [72], to hundreds of microseconds for

LTE samples [73]. In addition, the transport behavior of the radio samples must be

predictable, that is, given a network topology and the traffic sources, one must be

able to model the delivery of the baseband traffic. This model is necessary for an

79

e2e schedulability analysis — determining whether the given network can meet the

requested delay bounds. In the real-time systems literature, however, it is known

that modeling packet traffic in the network core is intractable due to the non-periodic

nature of arrivals [74, 11]. Therefore, in a general baseband transport network con-

sisting of multiple switches, it is not entirely clear what packet scheduling policies

(implemented by switches) will achieve e2e schedulability.

Aggregation. The baseband transport design should also support traffic aggrega-

tion from the radios, for scenarios such as MIMO processing, or, for resource pooling

in C-RAN, where a common compute platform decodes multiple base-stations. In-

herently, this can be achieved from a tree-based design using aggregation switches.

However, traffic aggregation without proper scheduling introduces variable queuing

delays, and moreover, cannot differentiate between traffic flows based on their delay

bounds.

Scalable. Considering the size of future radio deployments, the baseband trans-

port design should be scalable. It must be extensible to any number of radios while

preserving its predictable behavior. Also, it must require only few additional resources

(e.g., cables, switches) to add a large number of radios to the network. The scalability

of baseband transport is desirable, if not necessary, for massive MIMO systems which

are equipped with tens or hundreds of antennas/radios. Existing datacenter designs

[75] that are optimized for scalability, are likely candidates for baseband transport.

However, they are primarily designed to handle bisection traffic between the compute

clusters whereas traffic flows in a baseband network are exclusively in the north–south

direction.

Optimal. Whether the baseband traffic is schedulable or not depends on the

transport rate of the radios, which in turn depends on the sample quantization widths

used at the radios. As the selected quantization widths affect the wireless capacity

through quantization noise, there is an indirect dependence between schedulability

80

of the traffic and the wireless capacity of the network. Ideally, the network should

operate at a point that ensures schedulability but also maximizes wireless capacity.

Based on the above requirements, we introduce DISTRO, a design for real-time

baseband transport networks (such as fronthaul networks) that can potentially scale to

a large number of radios. DISTRO utilizes a logical tree structure of radio front-ends

and network switches; the radios represent the leaves of the tree, the network switches

represent the intermediate nodes, and the root of the tree is the common aggregation

point that connects to a pool of baseband processors. DISTRO’s design supports

real-time transport as it allows us to bound the maximum transport delay of each

baseband packet. Specifically, using a constrained tree design, the upper bound on the

waiting time at any switch can be obtained irrespective of the input arrival sequence,

using which, one can get the maximum total delay of a baseband flow. As a result,

the network switches can utilize schedulability results from the real-time systems

literature and implement scheduling policies (such as EDF[76], fixed-priority[77] etc.)

to achieve e2e delay guarantees.

Since scheduling policies are subject to the baseband traffic parameters, any ad-

dition of radios or changes in them requires policy changes in the entire network,

making the design unscalable. Therefore, the tree structure in DISTRO is parti-

tioned into an aggregation- and an edge- switch network; the schedulability analysis

is done only at the edge-switch network whereas the default packet scheduling (e.g.,

FIFO) is implemented in the aggregation switch network. This logical division along

with the tree-based design enables transport scaling to a large number of radios.

The quantization widths in DISTRO are selected to maximize the wireless ca-

pacity while ensuring e2e schedulability. A brute-force search of optimal quantization

widths has exponential complexity in the number of radios. However, using the mono-

tonic dependence of the wireless capacity and the schedulability on the quantization

widths we propose a greedy-based approach that has much less complexity in practice.

81

BPF LNA ADC DDC
Mixer

LO

Baseband
samples

Antenna

Figure 4.1: Radio front-end design for
baseband conversion.

Figure 4.2: USRP2 transport log at
25MHz sampling rate.

In summary, we make the following contributions:

• Proposal of a Fat-Tree architecture for scalable deployment of baseband radios;

• Calculation of the maximum delay bound of a baseband packet in the network

and its use to achieve e2e schedulability; and

• Characterization of the wireless capacity under the schedulability constraint

and development of an efficient search algorithm to maximize the capacity.

The rest of this chapter proceeds as follows. Sec. 4.2 provides the background on the

baseband transport. Sec. 4.3 presents our proposed transport design and its evalu-

ation results in a simulated network scenario. In Sec. 4.4, we obtain the maximum

wireless capacity with end-to-end schedulability. Finally, Sec. 4.5 presents the related

work and Sec. 4.6 concludes the chapter.

4.2 Background

This section provides the background on baseband transport and processing, and

describes how real-time scheduling is applicable to baseband transport.

82

4.2.1 Wireless Baseband Transport

The radio front-ends in a baseband network (also known as RRHs in C-RAN) act

as converters between RF samples and complex (I and Q) baseband samples. Fig. 4.1

shows the components of such a radio. In the receive mode, the RF signal is down-

converted, filtered and passed through an analog-to-digital converter (ADC) that gives

out a digitized (e.g. 16-bit) stream of baseband samples. This stream is broken into

fixed-size blocks, which are then transported as payloads in special-purpose packets

generated with appropriate headers and tags.

Suppose there are n radios in the network, where each radio is denoted by index

i ∈ [1, n]. Let fi denote the desired sampling frequency from the ADC (achieved

through decimation by digital-down converters), and let Qi denote the number of

bits used to represent each I (and Q) baseband sample. Then, the transport data

rate (in bits/s) of radio i can be expressed as :

Ri = 2Qifi. (4.1)

Further, let B denote the fixed payload size (in bits) of a transport packet. The

inter-packet arrival time (in seconds) at radio i, assuming negligible packet overhead,

is given by:

Ti =
B

Ri

. (4.2)

Since the ADC operates at a fixed frequency, and fixed-size blocks are used, the packet

inter-arrival time is a constant at each radio, which we refer to as the period of the

arrival process.

Example:USRP is a common software-radio platform that uses the UDP protocol

for baseband transport. Fig. 4.2 shows the timestamps from the transport log of

a USRP2 running at 25MHz sampling rate and payload size of 1492 Bytes. Using

Eqs. (4.1) and (4.2), the packet inter-arrival time with 8–bit quantization is calculated

83

to be 2.98µs. This is indeed close to inter-packet arrival time ∈ [3, 4]µs observed from

the USRP2 logs (Fig. 4.2). Note that the logs are not exactly periodic because of the

minimum 1µs resolution and random lag in the packet capture.

Wireless protocols have a fixed e2e processing deadline for PHY-layer primitives

such as channel sensing and decoding. Assuming a fixed (or worst-case) processing

time at the baseband processors, the e2e PHY deadlines impose a maximum transport

delay. Therefore, in order to support real-time processing, the generated baseband

packets from the radios must be transported to the baseband processors within a

fixed amount of time. That is, each radio i has an e2e transport delay bound, Di,

that the transport network must satisfy.

The traffic specification of radio i is thus given by a 2–tuple τi = (Ti, Di), which

represents the inter-arrival time, and the e2e delay bound, respectively. The radio

traffic is said to be schedulable if for all 1 ≤ i ≤ n, the maximum delay experienced

by a packet of radio i is not greater than the requested delay bound Di.

The transport network in large deployments of C-RAN runs over a fiber infras-

tructure such as dark fiber and WDM [12]. While in indoor environments, the radios

can be connected using high-capacity Ethernet or Infiniband links [10]. In both sce-

narios, baseband samples are exchanged through packet transmissions (most optical

networks now offer packet switching for increased flexibility). Thus, the baseband

transport network can be modeled as a packet-switch network with one or more net-

work switches. Every packet in the network passes through multiple links, switches,

and routers before reaching its destination. While many routes can exist for a packet,

for simplicity, we assume fixed routing in the network, which is necessary for e2e delay

guarantees [78].

Despite its advantages, packet-switching introduces various delays at each link in

a selected route. The e2e packet delay is the summation of delays over links and

switches along the selected route, which is composed of:

84

5G

3.3G

10G
SwitchPkt. size

= 1KB
Proc.

0 1 2 3 4 5

Both pkt.
arrive at

same time
at switch

6 7 8 time(us)

Received
at Proc.

2us 4us

Queuing Queuing

Figure 4.3: Switch FIFO output for two periodic flows. The output sequence is non-
periodic.

• Propagation delay (tp): the time taken for the packet to reach the next switch;

• Switching delay (ts): the time taken for the packet to move from the ingress to

egress port of a switch;

• Transmission delay: the time needed to transmit the packet, which is a function

of the link capacity; and

• Queuing delay: the waiting time of packet in a switch’s egress queue.

Among the different delays, the queuing delay is the only unknown that can be

different for each packet in the network. In general, it is a function of the switch’s

scheduling policy and the input arrival sequence. One needs to model these delays

at each switching stage, which becomes intractable for large networks as the output

sequence from a switch is non-periodic even though packets arrive periodically. For

example, consider a simple baseband network (Fig. 4.3) with periodic baseband traffic

from 2 radios having inter-arrival times of 2µs and 3µs, respectively. Assume the

processing link capacity is 10Gbps and the packet size is 1000 bytes. That is, the

output transmission time of both flows is 1µs. Assume packets from the two radios

arrive in the queue at the same time instant in the beginning. Fig. 4.3 shows the

timeline of the queue output. As one can see, the inter-arrival time of the 3.3Gbps

85

flow at the output is non-periodic (inter-arrival times of 2µs and 4µs) that is induced

from the waiting in the queue. This non-linearity of queuing makes it difficult to

model e2e packet arrivals, a fact well-known in the literature [74].

Common packet-switching techniques such as First-In-First-Out (FIFO) and Round-

Robin (RR), which are designed for best-effort traffic flows, are not suitable for the

real-time traffic that requires e2e delay guarantees. To support real-time baseband

traffic, the switches can use various scheduling policies that were developed by real-

time systems researchers [11, 74]. Among them, the deadline scheduling is a natural

approach where each arriving packet is assigned a deadline according to the requested

delay bound. The packet with the earliest deadline is transmitted first. This sched-

uler is optimal in the sense that if packets meet their deadlines using any scheduling

policy, so will they using deadline scheduling. While the original deadline scheduling

considered implicit deadlines (deadline is the same as the period) and preemption, one

can generalize it further to obtain both necessary and sufficient conditions for schedu-

lability with arbitrary deadlines. Theorem A.1 formally states these conditions for

both cases, with and without preemption.

Deadline scheduling uses dynamic prioritization and thus difficult to realize in

practice. A more feasible approach is the fixed-priority scheduling where each traffic

flow is assigned a static priority [77], and incoming packets are transmitted in the

order of their priority. As shown in Theorem A.2, there exists a schedulability test to

determine whether the set of traffic flows with given priorities meet their delay bounds.

Furthermore, one can do an iterative or offline search and use the schedulability

criteria to arrive at the feasible priority assignment policy if one can be found [79].

The necessary conditions for schedulability, however, are known only under special

circumstances (e.g., when the deadline is equal to the period).

86

4.2.2 Transport Delay Bound

The wireless processing design depends on the wireless protocol and the target ar-

chitecture. For WiFi signals, where slots are 9µs long, baseband samples are streamed

and decoded on the fly [72]. In contrast, LTE has 1ms-long subframes and decoding

is carried out on an accumulated buffer of baseband samples [73]. The time required

to decode the baseband samples (or frames) depends on the capability and the op-

timizations of the platform. In this chapter, we assume the processing time is fixed,

and focus on the transport delays.

The transport delay bound of radio i is computed by subtracting the maximum

processing time, Tproc, from its end-to-end protocol deadline, Tprot, as:

Di = Tprot − Tproc. (4.3)

In case of WiFi signals, the protocol deadline, Tprot, can be 4µ (since CCA assert

should occur within 4µs during energy sensing [3]). Assuming Tproc = 2µs to perform

sample summation, this results in a 2µs delay bound for the transport network. On

the other hand, for LTE signals, Tprot = 2ms, as there is no channel sensing, and the

HARQ process governs the protocol deadline. Consequently, the delay bound is much

larger (0.5–0.7 ms) than the WiFi case.

It is worth noting that the transport delay bound, Di, is not always fixed but

can vary with the number of radios, n, since the processing time, Tproc, typically

increases with n. For instance, Tproc ∝ O(n3), when decoding n spatially multiplexed

signals [18].

4.3 DISTRO

This section describes the construction, requirements, and analysis of our proposed

real-time transport design for baseband traffic.

87

Edge
switch

network

Aggregation
switch

network

Baseband
processing

Baseband Radios

Fat link

q-ary tree

Figure 4.4: Fat-Tree architecture of DISTRO with heterogeneous radios.

4.3.1 Design Philosophy

The design of a baseband network is driven by two key observations. First, the

baseband traffic flows exclusively between the radios and the processor pool (cross-

traffic between radios is negligible). Second, depending on the application, baseband

traffic is aggregated into one or more links for processing.

A tree-based design, therefore, is a good fit for baseband transport. Moreover,

the baseband transport operates in real time. Specifically, given the traffic flows and

delay bounds, we must be able to give a sufficient, if not necessary, condition to check

their e2e schedulability.

We propose DISTRO, a baseband network design that combines the tree structure

with real-time scheduling. Fig. 4.4 illustrates the proposed design in a deployment of

heterogeneous radios. The radios are connected to edge switches, and the links from

the edge switches are aggregated at multiple levels until the root switch. The desti-

nation is assumed to be located at the root switch, which is the common aggregation

point for the baseband packets. The destination could is assumed to be a physical

point that is connected to a pool of baseband processors.

DISTRO’s design accommodates an increasing number of radios without severely

88

affecting their delay performance, and makes the schedulability flexible to the addition

and removal of radios. It partitions the baseband network into two components: edge-

and aggregation- switch network. The edge switch network contains the edge switches

that form the first entry point of a baseband flow. From a deployment standpoint,

each edge switch could connect a group of radios that are in physical proximity of

each other, for instance, a basestation site in a cellular network. The aggregation

network contains all the remaining switches except the edge switches, and its purpose

is to aggregate traffic from the edge towards the destination.

4.3.2 Design Requirements

The aggregation network in DISTRO is a logical tree of links and switches. To

simplify the schedulability analysis, we place the following restrictions on its design.

1) Fat-Tree. A tree is a Fat-Tree if for every switch in the tree, the switch’s uplink

capacity is greater than or equal to the sum capacity of the incoming links.

2) Symmetric. A tree is symmetric if for every switch, interchanging the incoming

links results in the same tree.

3) Non-preemptive. The network switches always use a non-preemptive scheduling

policy, i.e., an ongoing packet transmission is never preempted.

4) Equal packet sizes. The baseband packet sizes in the network are always equal

irrespective of their source.

4.3.3 End-to-End Guarantees

As noted earlier, a packet can experience a queuing delay at any of the switches

in the network. Beyond the edge switch, characterizing the queuing behavior be-

comes difficult as the packet arrivals are no longer periodic [74]. However, under our

symmetric Fat-Tree construction, we can easily bound the maximum queuing time.

Assume K edge switches, and let Si, i = 1, 2, . . . K, denote the set of radios con-

89

tp + C2 tp + C1

Destination

tp + Ch

Height = h

Source ts
 ts

 ts

tp + Ch+1

Figure 4.5: Path of baseband packet from the source to the destination.

x	

a

a

Incoming links

b

c

b c
Outgoing link

Queuing time

Arrival times

time

(a) Equal transmission times

x	

a

a

Incoming links

\

b

c

b c
Outgoing link

Queuing time

Arrival times

time

(b) Unequal transmission times

Figure 4.6: Blocking of c by at most one packet (left) and more than one packet
(right).

nected to edge switch k where Sk ⊆ {1, 2 . . . , n}. For simplicity, assume at time t = 0

packets from radios of each edge switch are queued at the switch, and the packets

arrive periodically at the switch thereafter. Further, assume no transmission or prop-

agation delay from the radio to the edge switch. Let C1 denote the transmission time

of a packet on the link connecting the edge switch and the next aggregation switch.

Since packet size, B, is fixed for the network, every baseband packet has the same

transmission time going through the edge switch.

For simplicity, assume a binary aggregation tree. Let the transmission time se-

quence as a packet traverses from the edge to the destination be represented as

C1, C2, . . . , Ch+1, where h is the height of the aggregation tree. We define h = 1

if there is only one aggregation switch.

From the symmetric Fat-Tree definition, it holds that if Cj is the transmission

time on the incoming link, then the transmission time on the aggregation link, Cj+1,

for all j, 1 ≤ j ≤ h, satisfies:

Cj+1 ≤ Cj/2. (4.4)

90

Let us assume the edge-switch uses a non-preemptive scheduling policy whereas the

aggregation switches use FIFO scheduling. Under non-preemptive scheduling, the

inter-arrival time of the incoming packets from the edge is equal to or larger than

C1. Consider the first aggregation switch: the outgoing transmission time is C2(C2 ≤

C1/2). The packets in each of the two incoming links have at least C1 time separation.

Therefore, any packet will wait for at most C2 time in the queue, which occurs when

two packets arrive at the same time. This is illustrated in Fig. 4.6(a), where packet

c arrives at the same instant as packet b, and is blocked by the transmission time of

packet b.

Similarly, for every j, packets in the two incoming links with transmission time

Cj and inter-arrival time greater than Cj, will have a maximum queuing delay of

Cj+1. Therefore, for the path as shown in Fig. 4.5, the maximum total delay of any

baseband packet across the aggregation network is bounded by:

Ta =
h+1∑
j=2

(ts + Cj + Cj + tp) = h(ts + tp) +
h+1∑
j=2

2Cj

≤ h(ts + tp) +
h+1∑
j=2

C1

2j−2

= h(ts + tp) + 2(1− 2−h)C1

where we use the inequality Cj ≤ Cj−1/2 ≤ . . . ≤ C1/2
j−1 using Eq. (4.4).

Now, in order for a baseband packet of radio i to meet its e2e delay bound Di,

the total packet delay at its edge switch must be less than Di less the maximum

aggregation delay. Adding the switching and propagation delays of the edge switch,

we arrive at the e2e schedulability of all baseband flows in the network by checking

the schedulability of baseband traffic at each edge switch.

Theorem IV.1. In a q-ary symmetric fat-aggregation-tree of height h, the radio

traffic τi = (Ti, Di), i = 1, 2, . . . , n, is schedulable, if for every k, 1 ≤ k ≤ K, the set

91

of traffic flows τi = (Ti, d
′
i), i ∈ Sk, with transmission time C1 and no preemption, is

schedulable at edge switch k, where d′i = Di − 1−q−h

1−q−1C1 − (h+ 1)(ts + tp).

Proof. By extension of the binary tree analysis to q-ary tree and noting that the

maximum queuing delay of a packet on a link with transmission time Cj is (q− 1)Cj.

�

Theorem IV.1 provides only a sufficient condition for schedulability, but does not

affirmatively tell us if a given set of traffic flows are schedulable. Nevertheless, the

result is still useful as it allows us to construct a transport network that guarantees

to meet the requested e2e delay bounds. Furthermore, it gives the scheduling policies

that the network must implement: non-preemptive scheduling at edge switches, and

regular FIFO scheduling at aggregation switches.

The reason for restricting our construction to a symmetric Fat-Tree and non-

preemptive scheduling is simple: the packet transmission times are equal for the in-

coming links, and therefore, the maximum queuing delay in the aggregation network

is easy to obtain. This is not the case, however, if we assume unequal transmission

times, which happens if unequal links are used or when preemption is allowed. For

instance, Fig. 4.6(b) shows the blocking of a smaller packet, c, due to the transmis-

sion of two previous larger packets. This example is akin to the head-of-line (HOL)

blocking problem that occurs when subsequent transmissions are held up by the first

transmission [80]. Then, to arrive at the maximum queuing time in the network, one

must examine different arrival sequences and their transmission times at each switch,

which can quickly become intractable.

4.3.4 Scalability

The design of DISTRO is scalable on three fronts. First, as the number of

radios in the network, n, grows, and the number of edge switches, K, increases, the

92

maximum total delay of a packet increases only logarithmically. To see this, one can

upper bound the total aggregation delay as follows:

Ta < h(ts + tp) + 2C1. (4.5)

The delay bound grows linearly with the height, h, which is always less than or equal

to dlog2Ke. For large packets (e.g., Jumbo Ethernet frames), the transmission time is

much larger than the switching and propagation time. In this case, the delay scaling

factor, ts + tp, becomes even less significant.

Second, DISTRO supports heterogeneous baseband radios with differing periods

and deadlines. There is no restriction on the type of radio protocol. This aids the

deployment of a radio access network over multiple wireless standards, such as LTE

and WiFi, at the same physical location.

Finally, each edge switch, k, implements a schedulability test locally that is de-

pendent only on the traffic generated from the set of radios, Sk, connected to it.

Any addition or removal of radios requires one to check only local schedulability,

without disturbing the performance of other flows. This feature enables incremental

deployment of the baseband network.

4.3.5 Run-time Scheduling

The aggregation network in DISTRO implements the default FIFO scheduling.

On the other hand, each edge switch implements a non-preemptive scheduler which

can either be EDF or fixed-priority. The fixed-priority scheduler is easy to realize

with multiple outbound queues at a switch. Each incoming packet is first classified

and placed in its corresponding queue, and the queues are then dequeued in the order

of their priority.

Background Traffic. Background traffic such as control messages can disrupt the

93

ts 50ns Edge–src. 10Gbps

tp 10ns Agg.–Edge 10Gbps

Pkt. size (B) 1KB Agg.–Core 40Gbps

q-ary tree 2,3,4 Core–Dest. 200Gbps

height (h) 2 Flow rate (Ri) 1, 1.5, 2, 2.5 Gbps

Radios/edge 4 Simulation Time 1sec

Table 4.1: Simulation parameters for schedulability analysis

real-time performance of the network. To ensure minimum disruption, we segregate

the baseband traffic from the rest of the traffic through flow prioritization. Back-

ground and rest of the traffic are placed in a separate queue, which has lower priority

than baseband traffic. Since background traffic adds to the non-preemptive delay at

each switch, we update the delay bound in Eq. (4.5) accordingly.

4.3.6 Evaluation

We implement and evaluate DISTRO’s Fat-Tree architecture using NS-3[39]. NS–

3 is a discrete-event network simulator that accurately simulates network traffic in

large deployments. Table 4.1 shows the simulation parameters used in our setup.

Each edge switch connects 4 heterogeneous radios that have different flow rates (1,

1.5, 2 and 2.5G) but fixed packet size of 1000 bytes. We simulate a fat-aggregation-

tree with three levels: 1) a core switch that is connected to the destination through

200Gbps link; 2) q aggregation switches connected to core switch with 40Gbps links;

3) q edge switches connected to each aggregation switch with 10Gbps links. Thus,

the total number of radios in our setup is 4q2.

We use the NS–3 packet tagging mechanism to tag each baseband packet with a

priority level. The priority levels are chosen to achieve e2e schedulability (Sec. 4.3.3).

We then implement a packet-classifier at the edge switch that classifies the incoming

packet and places it in one of the 4 egress queues. For dequeuing, the queues are

searched in decreasing order of their priority. For simplicity, we assume the transport

delay-bound is same as the inter-arrival period of each flow. Under this assumption,

94

0 1 2 3 4 5 6 7 8
Index (2.5G Flow)

2000
3000
4000
5000
6000
7000
8000
9000

M
ax

im
um

 D
ela

y (
ns

)
0 1 2 3 4 5 6 7 8

Index (2G Flow)
0 1 2 3 4 5 6 7 8

Index (1.5G Flow)
0 1 2 3 4 5 6 7 8

Index (1G Flow)

FIFO DISTRO inter-arrival time

(a) Maximum Delay

0 1 2 3 4 5 6 7 8
Index (2.5G Flow)

200
400
600
800

1000
1200
1400

Jit
te

r (
ns

)

0 1 2 3 4 5 6 7 8
Index (2G Flow)

0 1 2 3 4 5 6 7 8
Index (1.5G Flow)

0 1 2 3 4 5 6 7 8
Index (1G Flow)

(b) Jitter

Figure 4.7: Delay metrics for flows in a 36-radio setup. DISTRO meets the end-to-
end guarantees of all flows.

the priorities are determined by the inverse of the inter-arrival period (equivalent to

a rate monotonic scheduler).

Fig. 4.7 shows the maximum e2e transport delays and jitter observed in a 3-ary

tree with 36 radios. Here, we compare DISTRO’s scheduling with the basic FIFO

packet scheduling. As seen from Fig. 4.7(a), DISTRO meets the e2e guarantees

(delay < inter-arrival time) of each flow while the FIFO scheduling misses the delay

bound of the 2.5G flow. In prioritized scheduling, the 1G flow has the least priority

and therefore sees an increase in its transport delay.

In Fig. 4.8, we show the maximum observed flow delays as we increase the number

of radios in the network. We assuming a fixed number of radios per edge switch. The

scaling is achieved by using q2 edge switches, and q aggregation switches for a q-ary

aggregation tree. The core switch capacity, however, is fixed at 200Gbps. Despite

quadrupling the number of radios (from 16 to 64), the maximum delay in the network

increases not more than 300ns (a less than 10% increase). This can be explained by

95

16 36 64
Number of Radios

0

1000

2000

3000

4000

5000

M
ax

im
um

 D
ela

y (
ns

)

2.5G
2G
1.5G
1G

Figure 4.8: Maximum end-to-end delay of flows with increasing number of radios.

the maximum delay bound that is dependent only on the height of the tree, and not

on the number of radios. Note that this constant increase is not always the case, for

example, in daisy-chained radio network in ARGOS [10], the maximum delay grows

linearly with the number of radios.

4.4 Achievable Capacity Under E2E Schedulability

In this section, we characterize the achievable wireless capacity under the con-

straint of e2e schedulability. We consider the MIMO processing of baseband samples

from n radios. The specifics of synchronization, buffering and decoding are omitted

but are assumed to manifest through the requested delay bounds.

Fig. 4.9 shows our system model radios receive samples over a wireless channel

and transport them using a single aggregation switch. Let x ∈ Cm×1 be the signal

vector sent by the transmitter, and let y = Cn×1 be the received signal vector, where

m is the number of transmit antennas, and n is the number of radios. Let H ∈ Cn×m

represent the wireless channel between the transmitter and the radios.

Quantization. Assume radio i has ADC quantization width, Qi, that takes an

integer value from the set L = {L1, . . . , Ld}, where L1 and Ld are the minimum and

the maximum quantization widths, respectively. Further, let Q = [Q1, . . . , Qn], and

let γ(Qi) be the average quantization noise power injected into the baseband samples,

96

y1

y2

yn

Q1

Q2

Qn

Decoding

Quantization
widths

Aggregation
switch

x1

xm

Figure 4.9: The system model for processing and scheduling.

where γ(·) is the quantization noise function.

Transport. Assume a fixed size B of baseband packets. From Eq. (4.1) and

Eq. (4.2), the inter-arrival time at radio i is Ti = B
2Qifi

, which is a function of the

radio quantization width, Qi.

Model. Assuming a narrow-band channel, the received signal can be expressed

as:

y = Hx + z + zQ, (4.6)

where E[xxH] = ρIm and ρ denotes the transmitted power, that is equal across

all symbols, and z ∼ CN (0, σ2In) is the additive complex white gaussian noise,

and zQ represents the quantization noise vector. We assume the effect of quantiza-

tion manifests through the additive term zQ, which is approximated as a zero-mean

complex Gaussian noise with covariance matrix ΣQ = diag(γ(Qi), . . . , γ(Qn)). Let

Σ = σ2In + ΣQ denote the equivalent noise covariance matrix.

The ergodic wireless capacity (in b/s/Hz) for a fixed Q, with imperfect channel

knowledge at the transmitter, is [81, Eq. 20]:

R(Q) = EH[log2 det(I + ρΣ−1HHH)] (4.7)

where the expectation EH[·] is taken over all channel realizations of H.

97

4.4.1 Problem Formulation

We want to select the quantization, Q, that ensures e2e schedulability, and also

maximizes the wireless capacity. This is expressed through an optimization problem

(OP):

OP: max
Q∈Ln

R(Q)

s.t.τi(Q) = (Ti, Di), i = 1, . . . , n, is schedulable

where Di is the transport delay bound of radio i. Next, we show the following

properties of our optimization problem.

Proposition IV.2. If γ(·) is monotonically decreasing, R(Q) is monotonically in-

creasing in Q.

Proof. Let Z = I+ρΣ−1HHH , Σ−1 = diag(µ1, . . . , µn), where µi = 1/(σ2+γ(Qi)) for

i = 1, . . . , n, and let λ1, . . . , λn denote the eigen values of Z such that λ1 ≥ λ2 ≥ . . . ≥

λn. We follow an approach similar to [82, Theorem 10.3] for the proof. For a fixed

i, we claim that λj, for every j, is monotonically increasing in µi. On the contrary,

suppose this is not true and there exists an interval of µi, and k, k ∈ {1, . . . , n}, such

that λk increases and decreases in that interval. Consequently there exists λ
′
such that

(λ
′−λk) vanishes for at least two values of µi. Now write det(λI−Z) = Πn

j=1(λ−λj),

Then, for λ = λ
′
, det(λI − Z) vanishes for more than one value of µi, which is

impossible, since det(λI− Z) is a linear polynomial in µi. Therefore if γ(Qi) strictly

decreases with Qi, µi strictly increases with Qi, thus, ∀j, λj monotonically increases

with Qi, for any i = 1, . . . , n. Since log2 det(Z) =
∑n

j=1 log2 λj, and expectation is a

monotonic operator, therefore, R(Q) is monotonically increasing in Q. ut

Proposition IV.3. For quantization Q, if the traffic τi = (Ti, Di), i = 1, . . . , n, is

schedulable with the sufficient conditions of scheduling given in Theorems A.1–A.2,

98

then the same traffic is schedulable by decreasing Q.

Proof. For simplicity, we consider a non-preemptive EDF scheduler and show that

the proposition holds. For any i, changing Qi to Q
′
i increases the inter-arrival period

from Ti to T
′
i . Since Ti < T

′
i implies d(t− di)/T ′i e+ ≤ d(t− di)/Tie+, ∀t, substituting

in Eq. (4.9), it follows that τi(Q
′
) = (T

′
i , Di), i = 1, . . . , n, is schedulable if τi(Q) =

(Ti, Di), i = 1, . . . , n is schedulable. ut

4.4.2 Search Algorithm

The search space in OP is Ln, hence, finding the optimal Q through a brute-

force search has an exponential complexity. Note that we cannot relax the integral

constraint because of the discreteness of the schedulability. However, from the mono-

tonic dependence on Q (Propositions IV.2–IV.3), we can construct a greedy search

algorithm.

The idea is to use breadth-first search (BFS) on the enumeration of the search

space. Starting from the highest quantization, [Ld, . . . , Ld], we enumerate the next

highest quantizations, [Ld−1, Ld, . . . , Ld], . . ., [Ld, Ld, . . . , Ld−1], and then enumerate

the next highest quantization for each of them, and so on. More generally, let us

define the function enum(·), for quantization, Q = [Lk1 , Lk2 , . . . , Lkn], as follows:

enum(Q) = {[Lk1−1, Lk2 , . . . , Lkn], [Lk1 , Lk2−1, . . . , Lkn], . . . , [Lk1 , Lk2 , . . . , Lkn−1]}.

(4.8)

As we enumerate each possible quantization, we check its shcedulability (according

to Theorems A.1–A.2). If it is schedulable, we calculate the corresponding capacity,

but do not enumerate its further. Finally, from the calculated capacities, we find

quantization Q? that achieves the maximum capacity.

Algorithm 3 gives the pseudo-code for implementing our proposed solution. It uses

99

Algorithm 3 BFS search

1: Initialize: Q? ← φ , C? ← 0, U ← [Ld, . . . , Ld]
2: Returns: C?, Q?, optimal capacity and quantization
3: while U is not empty do . breadth-first traversal
4: Q

′ ← U.pop()
5: if Q

′
is schedulable then . check e2e schedulability

6: if R(Q
′
) > C? then

7: C? ← R(Q
′
), Q? ← Q

′
. maximum capacity till now

8: end if
9: else

10: for T in enum(Q′) do
11: U.push(T) . next highest quantization
12: end for
13: end if
14: end while

B 1 KB L {2, 4, 8}
ρ 0dB σ2 1

m 2 channel rayleigh

γ(x) 10π
√
3

2 2−2x fi 20MHz

Table 4.2: Simulation parameters for capacity evaluation

a queue data structure, U , for breadth-first traversal. We show that this algorithm

finds the optimal solution to OP. Though in the worst case it has the same O(Ln)

complexity, the running time in practice is much less than a brute-force search.

Theorem IV.4. Algorithm 3 gives the optimal solution to OP.

Proof. We use the the construction of Algorithm 3 to prove that Q? is schedulable

and achieves maximum capacity. The schedulability of Q? holds from Line 5. From

Proposition IV.2, the capacity from enumeration (in Line 10) always decreases, and

hence C? will always be larger than the capacity of unenumerated quantizations (all of

which are schedulable from Proposition IV.3). Also, from Line 7, C? is the maximum

of all enumerated quantizations that are schedulable. Therefore, C? is the optimal

capacity that is schedulable. �

100

0 5 10 15 20 25 30 35 40
Aggregation link (Gbps)

5

10

15

20

Ra
te

 (b
/s/

Hz
)

n=8
n=16
n=32

Figure 4.10: Wireless capacity as the aggregation link rate is varied.

4.4.3 Simulation Results

We use simulations to evaluate the wireless capacity and its dependence on e2e

schedulability. Table 4.2 shows the simulation parameters used in our setup. Since

we are interested in the queuing delays, we ignore the transmission time from radio

to the switch, the propagation, and the switching delays. We consider a Rayleigh

channel model, with two transmit antennas and SNR (without quantization) of 0

dB. Note that the quantization noise function, γ(x) , is monotonically decreasing in

x. For ease of comparison, we set the delay bounds of all flows to be equal to their

periods, i.e., Di = Ti for all i = 1, . . . , n. We use a rate monotonic scheduler as the

fixed priority scheduler.

Fig. 4.10 shows the maximum sum wireless rate averaged over 1000 channel re-

alizations. Observe that as the aggregation link capacity increases, the transmission

times decreases, and thus the schedulability supports higher quantization rates re-

sulting in increased capacity. For example, when n = 8, the rate increases (from 2-bit

to 4-bit quantization) at 14Gbps. Also, as we increase the number of radios from 8

to 32, we require at least 30Gbps, up from 14Gbps, link rate for the the baseband

traffic with 4-bit quantization to meet their delay bounds.

101

4.5 Related Work

The concept of a Fat-Tree topology originated from the work on non-blocking

switch networks. The topology is now widely used in datacenters for building scalable

transport networks [75].

A large-scale MU-MIMO was realized using a distributed architecture of servers

in [18]. The authors claim that bandwidth needed for baseband transport is not

an issue as modern switches support up to 40Gbps links. However, they do not

consider the real-time guarantees of transporting baseband samples. ARGOS [10] is

another practical multi-antenna setup that suggests daisy-chained radios with Tree-

based aggregation. However, no real-time analysis was provided there.

To eliminate transport jitter in fronthaul networks of a C-RAN, [83] proposes

scheduled Ethernet using global scheduling. On the other hand, the authors of [84, 85]

study the compression of baseband signals. They propose quantization schemes for

lossy compression of the baseband samples. In [84], the authors propose prioritization

of baseband frames, however, the priorities do not account for packet delays.

Real-time transport of Ethernet packets is a well-known problem in real-time sys-

tems literature [78, 74, 11]. While [78] provides a general approach for schedulability,

the authors propose the use of flow regulators at each switch, which is difficult to

realize in practice.

4.6 Conclusion

In this chapter, we have designed a baseband transport network based on Fat-

Tree topology that is scalable to a large number of radios while meeting the e2e delay

bounds. We have provided sufficient criteria for e2e schedulability, which is validated

via simulations. While we only consider one aggregation link per switch, the design

can be generalized to multiple aggregation links and cross-links for improved fault-

102

tolerance. The only requirement is that one should be able to bound the queuing

time at each switch.

We also characterize the wireless capacity with the schedulability constraint, and

provide an efficient search algorithm to maximize the capacity. Overall, our design

can enable processing of wireless signals away from hardware while ensuring no per-

formance loss from the underlying transport network.

4.7 Appendix

Theorem A.1. Under deadline scheduling, a set of traffic flows τi = (Ti, di), i =

1, 2, . . . , n, is schedulable on a link with transmission time C, and preemption if

and only if [76, Theorem 1]:

∀t > 0,
C

t

(
n∑
i=1

d(t− di)/Tie+
)
≤ 1, (4.9)

and without preemption if and only if [76, Theorem 6]:

∀t ≥ dmin,
C

t

(
1 +

n∑
i=1

d(t− di)/Tie+
)
≤ 1 (4.10)

where dmin = min{di : 1 ≤ i ≤ n} and the function dxe+ = max(0, dxe).

Theorem A.2. Under fixed-priority scheduling, a set of traffic flows τi = (Ti, di), i =

1, 2, . . . , n, and priorities πi, i = 1, 2, . . . , n, such that π1 ≥ π2 ≥ . . . ≥ πn, is schedu-

lable on a link with transmission time C, if the function Wm(k, x) satisfies:

max
1≤m≤n

max
k≤Nm

Wm(k, (k − 1)Tm + dm) ≤ 1 (4.11)

where Nm = min{k : Wm(k, kTm) ≤ 1}, and function Wm(k, x), for preemption, is

103

defined as [77]:

Wm(k, x) = min
0<t≤x

C

t

(
k +

m−1∑
i=1

dt/Tie
)
, (4.12)

and without preemption, Wm(k, x) is defined as [86]:

Wm(k, x) = min
0<t≤x

C

t

(
k + 1 +

m−1∑
i=1

(1 + b(t− C)/Tic)
)

(4.13)

104

CHAPTER V

Parallelism Meets Scheduling in Cloud-RAN

Processing

5.1 Introduction

The baseband architecture of today’s wireless networks is highly inefficient. Bases-

tations use hardware that is usually proprietary, expensive, and difficult to upgrade.

More importantly, the hardware resources (such as CPUs, DSPs, etc.) at each

basestation are provisioned for its peak usage. This often results in severe resource-

underutilization, as wireless traffic is known to exhibit significant spatial and temporal

variations within a network [12]. Moreover, as network density increases from smaller

cell sizes, the operating costs for the maintenance of the hardware (cooling, site vis-

its, etc.) increases rapidly. Consequently, wireless operators are decoupling baseband

processing from basestations and implementing it in a centralized pool of compute

resources. The idea is to implement radio access network (RAN) functions in a cloud

or a datacenter, where resources can be managed more efficiently. This approach,

also known as Cloud-RAN (C-RAN), has received considerable attention from the

industry as a way to reduce network costs [5, 12].

C-RAN attributes most of its advantages to resource pooling in which the aggre-

gate load of a group of basestations is processed together. Previously, resource pooling

105

was shown to achieve more than 22% reduction in compute resources [19]. However,

the biggest challenge in a C-RAN comes from the timing constraints of frame pro-

cessing. For example, in LTE, a basestation must process a received subframe within

a hard deadline of 3ms in order to send an acknowledgment.

The problem of meeting deadlines is fundamental tied to the design of the wireless

frame processing, particularly, the scheduling of frame processing and the degree of

parallel processing. A baseband scheduler must handle wireless frames that arrive

periodically at a fixed rate (every 1ms in LTE), where each frame has a hard process-

ing deadline. Besides, parallelism is another design dimension that lowers processing

times and can enable real-time frame processing. A typical baseband chain consists

of signal processing blocks, such as FFT, equalizer and decoder; each of these blocks

can be broken down into independent (sub)tasks that can execute concurrently. For

instance, FFT operations can run in parallel across antennas and symbols, while

well-known parallel algorithms can be applied to Viterbi and Turbo decoding.

State-of-the-Art. Existing solutions utilize different scheduling schemes to meet the

C-RAN’s timing constraints; these schemes fall under partitioned scheduling [19, 87,

88]. Partitioned schedulers employ an upper bound on the frames’ processing time

(a.k.a. the worst-case execution time (WCET)) as a fixed processing time, which

enables the design of optimal scheduling of basestations on multiple processors — a

problem known to be NP-complete [89, 90, 91, 92, 93, 94, 95].

On the other hand, one could also use a global scheduler which maintains a shared

queue and assigns each incoming frame to the next available core according to a

priority mechanism, such as FIFO or earliest-deadline-first (EDF). Global schedulers

are flexible in that they adapt to the available number of cores and the processing

time variations [91, 92, 93].

Other existing systems [96, 18] exploit parallelism by splitting the baseband pro-

cessing into parallel subtasks that can be executed on a large number of CPU/GPU

106

10 20 30 40 50
0

0.5

1

time (ms)

n
o
rm

a
liz

e
d
 l
o
a
d

BS 1
BS 2

Figure 5.1: Variations in cellular load of two basestations.

cores. By achieving fined-grained parallelism and thus very small processing times,

the problem of scheduling incoming frames becomes straightforward. For instance,

parallelism can be used with existing partitioned schedulers through a variant, called

partitioned-parallel, where a scheduled task makes use of additional cores for parallel

processing. This approach, however, leads to over-provisioning of compute resources

and increases the operating costs, thereby negating the benefits of C-RAN.

Shortcomings. The assumption of fixed processing time, albeit simplifying assump-

tion, does not hold in practice. Both basestation traffic and wireless channel exhibit

large temporal and spatial variations that result in varying subframe processing times.

For example, Fig. 5.1 shows the load variations of Band–13 and Band–17 LTE bases-

tations (in downlink) measured over a 50ms interval in a metropolitan region. As

shown in the figure, the load varies considerably between two consecutive subframes

that are transmitted every 1ms. The load variations are also seen across the two

basestations. Therefore, a partitioned scheduler that relies on WCET (corresponding

to peak load), will over-provision compute resources [97]. A global scheduler avoids

the pitfalls of the partitioned scheduler by adapting to the variable processing time

and available compute resources. Nevertheless, such schedulers are more complex to

implement, and suffer from high runtime overhead [98].

Proposed Approach. To address the shortcomings of existing schedulers, we pro-

pose RT-OPEX (Real-Time OPportunistic EXecution), a new framework that com-

107

Sc
h

e
d

u
lin

g

Parallelism

none

partiti
-oned

global

no yes

PRAN [88]

CloudIQ [19]

Bigstation [18]

RT-OPEX

GPU-based[96]

hybrid

Figure 5.2: Existing approaches for baseband processing compared with ours.

bines offline scheduling with runtime parallelism. It minimizes deadline-misses of

wireless frame processing by utilizing free CPU cycles at runtime to migrate paral-

lelizable tasks to idle cores. The design of RT-OPEX is based on the premise that

partitioned scheduling is unable to exploit other cores’ free CPU cycles, while de-

signing a scheduling algorithm with parallel processing is highly intractable. Hence,

RT-OPEX treads the middle path and combines the flexibility of global schedules

with determinism of partitioned schedules. Fig. 5.2 illustrates this comparison over

existing approaches, which have either relied on scheduling, or on parallelism, but

not both. We claim that RT-OPEX is highly effective in reducing deadline misses

in C-RAN where frame execution times are highly variable across basestations.

RT-OPEX vs. Resource Pooling. Existing C-RAN literature [19, 12] has

suggested resource pooling in which the statistical information of basestation loads

is utilized to aggregate processing. We highlight that RT-OPEX is another variant

of resource pooling, except that it consolidates processing at much finer timescales.

Particularly, it utilizes the load variations of the order of subframes (1ms) to migrate

processing on the compute platform, and as a result, maximizes the utilization of the

available resources. However, unlike resource pooling, it has the advantage of making

no assumptions about the prior knowledge of the load and traffic variations.

We evaluate the performance of RT-OPEX with other well-known schedulers:

108

partitioned, partitioned-parallel, and global. For accurate evaluation, we implement

a medium-scale cloud-RAN-type platform comprising 16 radios, off-the-shelf GPP

platform, and Ethernet infrastructure. We profile our implementation to develop an

end-to-end (e2e) model for processing that includes transport and processing latency

of a wireless frame. We also develop and release an open-source tool, SchedTool1, that

enables cellular operators to compare the performance of different C-RAN schedulers.

It empowers the operators to conduct an extensive evaluation of deadline-misses and

system capacity in addition to the computational and memory usage for each sched-

uler.

Our results reveal that RT-OPEX, compared to existing partitioned and global

scheduling schemes, reduces the deadline-miss rate by more than orders-of-magnitude

and increases the system capacity by 15%. As a result, RT-OPEX strictly outper-

forms partitioned scheduling schemes while offering the flexibility of a global sched-

uler.

Following are the main contributions of this chapter:

• development of an e2e model for characterizing the wireless processing times

and the deadline-miss event;

• implementation and evaluation of different schedulers for a medium-scale C-

RAN under realistic workloads and scenarios;

• design, implementation, and evaluation of a novel scheduling algorithm, RT-

OPEX, which reduces deadline-misses by combining scheduling and parallelism;

and

• an open source tool, SchedTool, that assists C-RAN operators in their quest for

a scheduler.

The rest of the chapter is organized as follows. We present an end-to-end model of

1https://github.com/gkchai/garud

109

Radios

Fronthaul Cloud

Uplink

Downlink

Cloud
Network

Compute
Resources

GPP

VM
x86

Figure 5.3: C-RAN system model for wireless processing.

C-RAN, including processing and transport in Section 5.2. Section 5.3 describes the

design and implementation of possible schedulers including our proposed RT-OPEX

scheduler. Section 5.4 presents the evaluation results of our implementation along

with the details of the evaluation platform. In Section 5.5, we provide a qualitative

comparison of the implemented schedulers. Finally, we discuss related work in Section

5.6 and conclude the chapter in Section 5.7.

5.2 End-to-End Model

In this work, we assume a pure software-based C-RAN where the entire baseband

processing (or L1) is carried out on general-purpose processors (GPPs) or virtual

machines (VMs). Fig. 5.3 shows the main elements in a C-RAN deployment where

baseband (or IQ) samples from the radios are transported back and forth over a fron-

thaul network. In this section, we present a model to calculate the uplink processing

time that allows us to characterize the deadline-miss event from an end-to-end per-

spective. This model is then used to develop C-RAN scheduling algorithms. We

restrict our attention to uplink processing as it is significantly more time-consuming

and varying than downlink [19, 73].

5.2.1 Uplink processing

A basestation, in the uplink, processes wireless signals from multiple antennas to

decode user information. The basic unit of processing in LTE is a subframe (1ms

110

long). Each subframe is a sequence of 14 OFDM symbols, which is divided into

multiple physical resource blocks (PRBs). These PRBs are then assigned to one or

more users. Each user encodes information using a modulation and coding scheme

(MCS) and transmits it in the allocated PRBs.

The computational load, and therefore, the time to process a subframe, is deter-

mined by the number of users, the number of antennas, allocation of PRBs to users,

MCS assignment, and the number of decoder iterations required to decode user in-

formation. To capture this relationship, we present a linear model that accurately

approximates the processing time. We first establish the mapping between the MCS

and the number of data bits.

Let us consider the transmission of a single user and let the subcarrier load, D,

denote the ratio of the number of data bits (packet size) in a subframe to the number of

resource elements (REs) available in a subframe, where RE is the basic data carrier

unit in an LTE subframe. The packet size as a function of number of PRBs and

MCS is determined by a lookup table specified in the LTE standard [99]. For 10MHz

bandwidth, which has 8400 REs, D varies from 0.16 to 3.7 bits per RE (for 50 PRBs),

corresponding to MCS 0 and MCS 27, respectively. The maximum subcarrier load is

6 bits per RE when using 64-QAM modulation. For MCS 27, which uses 64-QAM,

the load is much lower due to the overhead of coding, pilots and CRC bits.

LTE’s uplink chain consists of commonly used signal processing blocks. To calcu-

late the total processing time, one must model the dependence of each block on the

number of antennas, subcarriers and other block-specific parameters. In general, this

can be daunting as the uplink chain contains numerous blocks: FFT/IFFT, chan-

nel estimator, equalizer, demapper, descrambler, rate dematcher, and turbo decoder.

However, we can construct a simple yet accurate model by making the following ob-

servations: (i) processing time of blocks that operate on OFDM symbol level (e.g.,

111

FFT, equalization), including the memory copy, varies linearly2 with the number,

N , of antennas; (ii) processing time of blocks using the constellation symbols (e.g.,

demapper, dematcher) is a function of the modulation order; (iii) processing time of

decoder is determined by the number of iterations, denoted by L, and subcarrier load

D, and noting that the decoder processes D bits per subcarrier in each iteration.

Thus, the total processing time can be written as:

Trxproc = w0 + w1 ·N + w2 ·K + w3 ·D · L+ E, (5.1)

where w0, w1 and w2 are constants; E is the error term that includes modeling

error and the variability of the execution environment; K is the modulation order of

the MCS used. The constants in Eq. (5.1) are largely implementation and platform

specific, as they depend on type of optimizations (e.g. vectorization) as well as the

architecture.

The processing time depends indirectly on the wireless channel through the num-

ber of iterations, L, that are required to decode a packet, i.e., pass the CRC checksum.

To avoid excessive delay, receivers typically limit decoding to at most Lm iterations.

Therefore, irrespective of the channel condition, we obtain a WCET bound on process-

ing time by substituting L with Lm in Eq. (5.1). Note that the number of iterations,

L, is in general non-deterministic (even for fixed SNR) and may take any value in

[1, Lm].

To validate our linear model, we collect data on the total uplink processing time

of a 10MHz LTE system (50 PRBs) for different MCS (0–27), SNR values (0–30dB),

and different number of antennas. The maximum number of turbo iterations, Lm, is

set to 4. For each measurement, we note the load, D, and the iteration count, L, and

then apply a linear regression to determine the model parameters.

Table 5.1 shows the model parameter estimates obtained from 4 × 106 measure-

2Assuming MRC equalization. With spatial multiplexing, the equalization complexity is N2[18].

112

w0 w1 w2 w3 r2

GPP 31.4 169.1 49.7 93.0 0.992
KVM 31.1 186.6 56.5 101.3 0.982

Table 5.1: Model parameter estimates (in µs).

0 5 10 15 20 25 30
MCS

0.0

0.5

1.0

1.5

2.0

2.5

Pr
oc

. T
im

e
(m

s) L=2
L=4

(a) vs. Iterations (N = 2)

0 5 10 15 20 25 30
MCS

0.0

0.5

1.0

1.5

2.0

2.5

Av
g.

 P
ro

c.
Ti

m
e

(m
s) 10dB

20dB

(b) vs. SNR (N = 2)

0 5 10 15 20 25 30
MCS

0.0

0.5

1.0

1.5

2.0

2.5

Pr
oc

. T
im

e
(m

s) N=1
N=2

(c) vs. Antennas

Figure 5.4: Plots showing the variations in processing time.

ments on a GPP and KVM [100] environment, respectively. We also show the

goodness-of-fit metric, r2, in each scenario. The fitness metric is observed to be

close to 0.99, indicating the high accuracy of our model. Based on the model param-

eter estimates, we observe that each additional antenna adds 169µs while each turbo

iteration at MCS 27 adds 345µs.

Fig. 5.4 shows the total processing time as we vary the number of iterations, SNR

and number of antennas. From the plots, it is evident that the processing time exhibits

high variability. For instance, it increases by a factor of 3 (from 0.5ms to 1.4ms) as

MCS changes from 0 to 27 (Fig. 5.4(a)). Further, the total time with four iterations

increases the total processing time by more than 0.5ms. This is consistent with

observations made in previous studies [73, 96]. Note that in Fig. 5.4(b), decreasing

the SNR from 20dB to 10dB increases the processing time by more than 50% between

MCS 13 and 25. Similarly, for a fixed post-processing SNR, increasing the number of

antennas to 2 adds a fixed 200µs to processing time.

In summary, we find that wireless processing is a dynamic workload that varies

with data rates, channel conditions and the number of antennas used.

Platform Error. Fig. 5.5 shows the distribution of the error between the model

113

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Error (ms)

10-5

10-4

10-3

10-2

10-1

100

CC
DF

Model
Benchmark

Figure 5.5: Distribution of model error (E) vs. benchmark error.

and the actual processing time. In 99.9% of observations, the error is less than 0.15ms.

However, for a few measurements the error can be as high as 0.7ms. Since the pro-

cessing runs on a soft-real time system (§5.4), the processing could be disrupted due

to kernel tasks such as interrupt handling. The error term could thus be significant

for some observations. Nevertheless, this could also be attributed to a large model

error. To confirm otherwise, we perform a separate stress test on the processing plat-

form. We ran the cyclictest [101] latency measurement tool alongside a benchmark

load generated using hackbench [102]. The cyclictest was run with the highest system

priority, and was expected to show a near-constant latency. Fig. 5.5 shows the la-

tency distribution from the benchmark. The mean latency is 0.2ms, but some of the

measurements have a latency above 0.4ms. We also observe that the order statistics

of the modeling error is roughly similar to the benchmark latency. For example, 1

in 105 measurements had a latency of more than few hundred microseconds. This

confirms that the distribution of error term in Eq. (5.1) is mostly influenced by the

platform and not by the model error.

5.2.2 Parallelism

While the model in Eq. (5.1) provides the total processing time, it does not show

the processing times of individual blocks. For simplicity, we assume the processing

chain comprises of three sequential tasks: FFT, demod, and decode, where the demod

114

N=1 N=2
Antennas

0

20

40

60

80

100

120

Pr
oc

. t
im

e
(u

s)

1 core
2 core

(a) FFT

0 4 9 10 13 16 17 22 27
MCS

0

200

400

600

800

1000

1200

Pr
oc

. t
im

e
(u

s)

1 core
2 core

(b) Decode

Figure 5.6: Task execution times on multiple cores.

task comprises of channel estimation, channel equalizer and constellation-demapper;

and decode task comprises of rate-dematcher, de-scrambler and Turbo decoder. Sim-

ilar to Eq. (5.1), one can obtain a model for the processing time of each block.

So far, we have modeled processing time for a single thread running on a single

core. However, it is possible to exploit different levels of parallelism, e.g., antenna-

level, symbol-level and subcarrier-level parallelism, by making use of multiple CPU/GPU

cores[96]. The FFT task that runs on each of the 14 OFDM symbols of each antenna,

is easy to parallelize. Similarly, channel equalization that runs on each OFDM symbol

can also be parallelized. Turbo decoding which is the most time consuming operation

can be parallelized over code-blocks, where decoding and CRC check can be done

independently on each code-block [99]. For instance, at MCS 27, LTE specifies 6

code-blocks all of which can be decoded concurrently.

Fig. 5.6 shows the processing times of FFT and decode tasks when it is parallelized

over 2 cores. We are able to run FFT on 7 OFDM symbols on each core, and nearly

halve the processing time (note the maximum overhead of 6µs). In the decode block,

as seen in Fig. 5.6(b), parallelizing the Turbo decoding reduces the processing time

by almost 320µs, from 980µs to 670µs.

Based on these observations, Fig. 5.7 shows a general breakdown of the processing

of a subframe into tasks, and further into subtasks. For clarity, each task is shown

115

Subtask 1

Subtask 2

Subtask k

Task j (e.g., Decode)

.

.

.

Subtask 1

Subtask 2

Subtask n

Task i (e.g., FFT)

.

.

.

...

tp

. . .P
subtasks

Figure 5.7: Breakdown of subframe processing into tasks and subtasks.

to be completely parallelizable, as one can always add another task block that con-

tains serial tasks. Although a certain task might be parallelized, all of its subtasks

must complete execution before moving on to the next stage. This establishes a

dependency/precedence constraint between the different tasks involved in the sub-

frame decoding. For the rest of the chapter, we assume that the execution time of

tasks(subtasks) is deterministic (except for the decoder).

5.2.3 Transport Latency

The transport of IQ samples from the radios to the cloud involves two separate

networks as shown in Fig. 5.3. The fronthaul network, deployed using an optical fiber

network, connects the radios to an optical switch located in the cloud. Various stan-

dards such as CPRI [103] have been proposed for transport over fronthaul networks.

In addition, a cloud network connects the optical switch to the pool of GPPs and

VMs. The architecture of the cloud network is similar to a datacenter network (e.g.,

fat-tree topology) and includes aggregation and top-of-rack switches [12].

A wireless subframe incurs both fronthaul and cloud latencies. The fronthaul

latency is a function of the length of the fiber (propagation time of light in fiber

is approximately 5µs/Km) and the overhead of optical switching. While the exact

fronthaul specifications are still under consideration, it is expected that the distance

between remote radios and the cloud can be up to 20–40Km [5], resulting in a one-

116

0 5 10 15 20
Distance (Km)

0

20

40

60

80

100

De
lay

 (u
s)

1550nm

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
RTT/2 (ms)

10-5

10-4

10-3

10-2

10-1

100

CC
DF

GPP 1G
KVM 1G
GPP 10G
KVM 10G

Figure 5.8: Fronthaul latency (left) and distribution of cloud network delay (right).

way propagation delay of 0.1–0.2ms excluding the overheads of (de)-packetization

and cloud transport delay. For example, Fig. 5.8 shows the fronthaul latency as a

function of distance for a single-mode fiber with 1550nm wavelength. Being circuit-

switched, the fronthaul network has a fixed delay and a negligible jitter [12]. On the

other hand, the cloud transport latency is less deterministic as it involves a mix of

hardware, software and virtualized interfaces. To see the impact of the cloud network,

we measure the one-way latency (measured from the round-trip time) between an

external host and cloud resource. The host and the cloud resource are connected over

1/10 GbE Ethernet through a switch. We obtain the measurements by sending 1000

packets per second (LTE processes 1000 subframes per second) between the host and

the cloud resource.

In Fig. 5.8 we show the distribution of one-way cloud latency for GPP and KVM

platform with 1 and 10Gbps Ethernet network. The KVM uses a para-virtualized net-

work driver, virtio, which is known to offer close to physical performance. However,

the similarity between KVM and GPP driver is only seen in 99.9% of the packets.

For instance, consider the performance with 1GbE connection. The mean latency for

GPP is 0.16ms while it is 0.24ms for KVM. For around 1 in 104 packets, the latency

with GPP increases to 0.25ms, while the latency for the KVM increases to 0.7ms —

which is more than twice the GPP latency. Similar behavior is also observed in the

10GbE network. These observations imply that using the mean statistic of the trans-

117

2 4 6 8 10 12 14
Antennas

400

600

800

1000

1200

1400

RT
T/

2
(u

s)

10MHz
5MHz

2 4 6 8 10 12 14
Antennas

400

600

800

1000

1200

1400

RT
T/

2
(u

s)

10MHz
5MHz

Figure 5.9: One-way transport latency for GPP (left) and KVM (right) vs number of
antennas for 10GbE port.

port latency is not enough to provide latency guarantees. A KVM network driver

may cause a fraction of the subframes to miss their processing deadline even if its

mean transport latency has been accounted in the processing budget.

To emulate C-RAN’s transport network, we build a medium-size testbed of 16

WARPv3 radios that are connected using Ethernet to an off-the-shelf GPP. The

radios are connected via 1 GbE port, and then aggregated using a 1/10 GbE switch

into GPP’s 10GbE port. We use the CWARP transport library [104] to implement the

read and write operations. Fig. 5.9 shows the one-way transport latency as we vary

the number of antennas/radios and the sampling bandwidth. In the GPP scenario:

for the 5 MHz case, we observe that the maximum latency is 620µs while it is exceeds

1000µs (or 1ms) for 10MHz bandwidth. Since LTE frames arrive every 1ms, to prevent

queuing delay, at most 8 antennas at 10 MHz can be supported on the GPP. On the

other hand, for the same bandwidth, we can only support 2 antennas on the KVM.

Also, note the high transport jitter on the KVM, which is attributed to high latency

of virtualization.

5.2.4 Deadline-miss

Once an uplink subframe is received at the radio frontends, an ACK or NACK

response must be included in the downlink subframe that is transmitted exactly 3ms

later. However, as illustrated in Fig. 5.10, not all of 3ms is available for Rx processing.

118

N N+1 N+2 N+3

N+4

N+4

 Rx Proc(N)

N N+1 N+2 N+3Downlink

Acquisition

Tx Proc(N+4)

Radio!Cloud Cloud!Radio

Uplink

< 2ms

3ms

ACK (N)

Figure 5.10: Example sequence of subframes in LTE showing the Rx and Tx process-
ing timelines.

For example, subframe N received by the basestation (after acquisition) in the uplink

needs to acknowledged by subframe N + 4 in the downlink. The Tx processing that

encodes the response subframe cannot wait indefinitely for the Rx to finish. We

assume the Tx processing starts 1ms before the actual over-the-air transmission of

downlink frame 3. As a result, only 2ms is effectively available for Rx processing and

this includes the transport delay from radios to the cloud.

Formally, we can express the end-to-end timing requirements as:

Trxproc +

RTT/2︷ ︸︸ ︷
Tfronthaul + Tcloud ≤ 2ms (5.2)

where Tfronthaul is the fixed fronthaul latency and Tcloud is the cloud network latency.

For ease of notation, the combined transport latency is denoted by RTT/2. One can

rewrite Eq. (5.2) using the model given in Eq. (5.1). Furthermore, we can use the

resulting equation to calculate the probability of a deadline-miss event. Assuming the

fronhtaul latency is fixed, the calculation requires the underlying distribution of the

network latency and platform error. Since the true distribution is difficult to model,

we can use the empirical distribution obtained from a separate network and stress

tests.

3Consistent with OpenAirInterface[105] implementation

119

5.3 C-RAN Scheduling

In what follows, we discuss the different approaches to scheduling subframes in C-

RAN. We also present the design and implementation of RT-OPEX, a novel schedul-

ing approach that reduces deadline-miss rate in wireless frame processing.

A typical C-RAN consists of two main components: transport and processing. The

transport component makes an LTE subframe available every 1ms for processing. The

processing component, on the other hand, receives these subframes and attempts to

decode each of them within the available processing time budget. Specifically, the

processing time of each subframe, Trxproc, should be less than Lmax, such that

Trxproc ≤ Lmax = 2ms− (RTT/2). (5.3)

One could view a typical C-RAN on a multiprocessor host as executing a set

of processing threads, with each thread continuously running on a single core. An

underlying scheduler assigns and schedules tasks for each processing thread, where

each task represents a subframe decoding process.

5.3.1 Original Scheduling Approaches

There are two types of schedulers: partitioned and global. Below, we describe the

design and implementation of partitioned and global schedulers.

5.3.1.1 Partitioned Scheduler

Generally, partitioned schedules are determined offline; each incoming subframe

is assigned to a core based on a predetermined schedule. Such schedules have the

advantages of providing statistical real-time processing guarantees and generating

deterministic schedules.

Our focus here is not to generate an optimal partitioned schedule (minimizes the

120

(0,0)core 0 (0,2)

New subframe
proc. deadline proc. deadline

core 1 (0,1) (0,3)

proc. deadline proc. deadline

0 ms 1 ms 2 ms 3 ms 4 ms 5 ms

missed proc. deadline

(0,4)

proc. deadline

6 ms

RTT/2

Figure 5.11: An example of a partitioned schedule on two cores. Notation (i,j) refer
to processing of jth subframe on the ith basestation.

number of cores), but one that is feasible (meets processing deadlines). As is common

in partitioned scheduling, we utilize an upper bound on execution time as an input

(such that Lmax < 2ms). The scheduler assigns dLmaxe cores for each basestation.

For a basestation of id bsid (0 ≤ bsid ≤ M − 1), it maps the subframe of index i to

core bsid ∗ dLmaxe+ imod dLmaxe.

As a basestation receives a new subframe each 1 ms, the partitioned scheduler

schedules two subframes on the same core each dLmaxe ms. This guarantees that

each subframe has dLmaxe of available processing time on the core it is assigned to,

which is larger than its upper bound of Lmax. It can be easily shown that when

Lmax = dLmaxe, this partitioned scheduler is optimal. Fig. 5.11 shows an example

partitioned schedule on a 2-core host. In this example, the dLmaxe = 2, so the

partitioned scheduler assigns the subframes in a round robin fashion on the two cores

each 1ms.

5.3.1.2 Partitioned Parallelized Scheduler

A partitioned scheduler can exploit parallelism to improve its performance and

reduce deadline misses. If we consider the task model of Fig. 5.7, several stages of the

processing chain can be parallelized. A scheduler can split each processing stage into

subtasks, and then run these subtasks simultaneously over a set of cores. The main

input to such scheduler is the degree of parallelism that indicates the performance

gains.

121

Nevertheless, constructing an optimal parallelized partitioned schedule (one that

minimizes the number of needed cores) is NP-complete with a much larger search

space to cover than the original partitioned schedule [90]. As we are more interested

in characterizing the performance gains of parallelizing a partitioned schedule, we

resort to increasing the number of cores. In particular, our parallelized variant takes

the original partitioned scheduler and the degree of parallelism (dp) as inputs. It then

dedicates dp−1 shadow cores for each processing core so that the total number of uti-

lized cores is dp.dLmaxe. Shadow cores are dedicated for processing the parallelizable

subtasks.

The scheduler works as follows: it starts processing each subframe according to

the original partitioned schedule until it reaches a parallelizable stage (of P subtasks).

It then runs on each of the processing and shadow cores P/dp subtasks. Further, it

uses barrier logic on the main processing cores to ensure that all the parallelizable

subtasks have completed execution before moving to the next stage.

5.3.1.3 Global Scheduler

We utilize a single queue shared across basestations to implement the global

scheduling. The queue is realized with a fixed-size ring-buffer that holds the incoming

subframes from the basestations. The main scheduling thread runs on an indepen-

dent core, performs book-keeping of the deadlines, and dispatches subframes from the

queue to the available cores for decoding according to earliest-deadline-first (EDF)

scheduling. Note that EDF is equivalent to FIFO scheduling when all basestations

have the same transport delay.

Each core has a resident processing thread that receives the subframe dispatched

from the main scheduling thread. A core will process at most one subframe at a time.

If the processing does not end before the deadline, the processing thread terminates

the ongoing task and goes to an idling state. It then waits for the next dispatched

122

(0,0)core 0 (0,1)

core 1 (1,0) (0,3)

0 ms 1 ms 2 ms 3 ms 4 ms 5 ms

missed proc. deadline

(1,2)

(0,2)

6 ms

(1,1)

(1,3)

(1,4)

(0,4)

(1,5)

Figure 5.12: An example of a global schedule of two basestations on two cores.

subframe. Fig. 5.12 shows an example global schedule of two basestations on a 2-core

host. In this example, when the processing finishes before the next subframe arrives,

no queuing takes place, as seen at t = 1ms. On the other hand, at t = 4ms, the

4th subframe of basestation 0, is queued and only dispatched at t = 5ms, so that it

misses its processing deadline (at 6ms).

Below, we present RT-OPEX, which builds on top of a partitioned scheduler and

utilizes idle processor cycles to reduce deadline-misses, and consequently improve

performance of a C-RAN.

5.3.2 RT-OPEX

Depending on the partitioned scheduler design, there will be time intervals during

which the processing thread might not be actively processing a subframe. This occurs

frequently as the processing time is dynamic and often not completely deterministic,

especially due to turbo decoding. The processing time depends on external factors

that can be completely unanticipated, such as the channel condition and network

traffic load. Even if an optimal scheduler achieves tight packing of subframes, the

dynamic processing times might still open up gaps (core being idle) or result in missing

deadlines (longer than expected processing time).

For example, as shown in Fig. 5.11, the processing time of a frame, Trxproc, might

take time less than dLmaxe, so that the core will be idle for the amount of time equal

to dLmaxe−Trxproc. On the other hand, in extreme cases, Trxproc will be larger dLmaxe.

This will happen as dLmaxe is usually chosen as the a percentile of the processing times

123

(0,1)core 0

core 1 (0,2)

1 ms 2 ms

Offload
task

Result
ready

Process migrated task

3 ms

(0,0)

Waiting state

Figure 5.13: An example scenario of RT-OPEX showing migration between two
cores.

distribution, but can’t guarantee each processing time being less than dLmaxe [19].

This event will force a scheduler to drop the subframe to ensure the schedulability of

incoming subframes, and consequently a deadline miss.

The processing thread alternates between two states: active and waiting. The ac-

tive state corresponds to the case when it is actually processing a subframe (darkened

portions of Fig. 5.11). The waiting state, on the other hand, corresponds to the case

when it is not performing any active processing (empty portions of Fig. 5.11).

5.3.2.1 RT-OPEX Design

The design of RT-OPEX is inspired by an intuitive observation: if the processing

thread of core 2 in Fig. 5.11 were able to utilize the idle cycles of core 1, then it

wouldn’t have missed its deadline.

RT-OPEX opportunistically executes a portion of a processing task on another

idle core, which we refer to in the rest of this chapter as “migration”. RT-OPEX is

independent of any partitioned scheduler employed underneath. As long as multiple

processing threads are running on different cores, there will be time intervals during

which the active and waiting states of these threads will overlap. RT-OPEX exploits

this phenomenon to decrease processing time, reduce the deadline-miss probability,

and improve performance.

A. High-Level Description: From a high-level perspective, RT-OPEX mi-

grates a subtask from a processing thread in its active state to another processing

124

No avail.
 cores

1. Wait
migrated

task

2. Perform
migrated

task

3. Received
subframe

7.
ACK/NACK

4. process

5. Migrate
task

6. Recovery

available
cores

preempted

Migrated
task arrives

Preempt –
result

 not ready

Done –
result ready

Result
ready

Result
not ready

Deadline
check

Waiting State Active State

Figure 5.14: The state diagram of the processing thread in RT-OPEX.

thread (running on a different core) in the waiting state. We refer to the subframe

processing task assigned to a processing thread by the scheduler as the processing task,

and the subtask (part of the processing task) migrated by RT-OPEX to another core

as the migrated subtask.

Fig. 5.13 shows an migration example. At 2.3ms, RT-OPEX finds that the

processing thread on core 1 is in its waiting state. So, it migrates a subtask from

the processing task of core 2 to run on core 1. At that point of time, the processing

task will be executing in parallel on both cores. After the migrated subtask finishes

execution, it makes its result ready for the processing thread to consume it. The

processing task then completes execution on core 2, and the processing thread on

core 1 returns to its waiting state.

B. Migration Mechanism: Fig. 5.14 shows the state diagram of RT-OPEX.

A processing thread alternates between two states, active and waiting. In its active

state, it executes the processing task, and might execute migrated subtask(s) in its

waiting state.

1. Waiting State: When the processing thread is in its waiting state, it waits for

a migrated subtask for execution (from another processing thread – state 1). When

such subtask arrives, the processing thread starts executing the migrated subtask

immediately (state 2), where two of the following events might happen.

125

Algorithm 4 The Migration Algorithm in RT-OPEX.

1: Input: P subtasks, each subtask has tp proc. time.
2: Input: R cores, each core has fcj > 0 of free time.
3: Input: δ, cost of migrating a subtask to another core.
4: S ← P . # of left subtasks (not migrated)
5: maxoff ← 0 . max # of migrated subtasks per core
6: while S > 1 and j ≤ R do
7: limoff = b fcj

tp+δ
c . # of subtasks can be migrated

8: noff ← min(S −maxoff , limoff , bS2 c)
9: maxoff ← max(noff ,maxoff)

10: Migrate noff subtasks to jth core
11: S ← S − noff
12: j ← j + 1
13: end while

1. The migrated task completes before a new processing task is available, i.e.,

before it gets preempted. RT-OPEX sets a result ready flag for the “remote”

processing thread (the one migrating a subtask) to consume the result. The

thread then returns to waiting for a migrated subtask (state 2 → state 1).

2. The migrated subtask is preempted at the deadline before it is completed. This

indicates that a new processing task is available for the processing thread. RT-

OPEX sets a result not ready flag and switches the processing thread to the

active state (state 2 → state 3).

While waiting for a migrated subtask (at state 1), the transport component can

preempt the processing thread to indicate that a new processing task is available

(state 1 → state 3).

2. Active State: When the processing thread receives a new processing task, it

switches to the active state, and starts processing the subframe (state 4).

The processing thread starts processing the subframe until it reaches a paral-

lelizable task which offers an opportunity for migration to idle cores (such as FFT

or decoder). As the arrival of subframes is deterministic, the underlying scheduler

should be able to inform when each idle core will be preempted and switched to active

126

processing. As such, the scheduler can compute the potential available time budget

for migration on each idle core.

RT-OPEX uses this knowledge along with the model of the subtask execution

time to decide how many subtasks to migrate to each core (state 4→ state 5) through

applying Alg. 4. RT-OPEX follows a greedy approach; it tries to migrate subtasks as

much as possible with one caveat. The number of subtasks left to be executed locally

(i.e., those that are not migrated) should be larger than the maximum number of

migrated subtasks to each idle core. In particular, the number of migrated subtasks

to a core j, noff , should satisfy the following requirements.

R1. It must be less than the maximum number of subtasks core j can accommodate

(given in line 7 as limoff), such that noff ≤ limoff . limoff includes the subtask

execution time as well as the subtask migration cost, δ.

R2. The number of subtasks left after migrating S − noff should be larger than the

maximum number of subtasks already allocated to any other core such that

S − noff ≥ maxoff . It follows that noff ≤ S −maxoff .

R3. The number of un-migrated subtasks, S−noff , should be larger than the number

of subtasks migrated to core j. We need this condition as the previous step does

not count in the subtasks to be migrated to core j. We then have S−noff ≥ noff

so that noff ≤ S/2.

At line 8, Alg. 4 combines the three requirements so that noff = min(S −

maxoff , limoff , bS2 c). After calculating noff , RT-OPEX migrates noff subtasks to

core j. It repeats the same process until either the number of subtasks for migration

or the number of cores is exhausted.

Due to Alg. 4, the processing thread does not have to wait for any migrated

subtask for completion. By the time the processing thread finished the local subtasks,

all migrated subtasks must have completed in the ideal case. The processing thread

127

can use their results and move on with the execution (state 5 → state 4). On the

other hand, if the local processing is complete and at least one migrated subtask

is not completed, the processing thread goes to recovery state (state 5 → state 6).

The recovery state simply involves computing the results for the incomplete migrated

subtasks. This ensures that the performance of RT-OPEX will be no worse than the

baseline case. In the baseline case, all subtasks are executed serially which corresponds

to the worst-case scenario of RT-OPEX (no migrated subtask completed execution).

Once all subtasks corresponding to a single processing task are completed, the pro-

cessing thread continues executing the rest of the decoding tasks. It repeats the same

procedure for any task that can be parallelized. RT-OPEX always monitors whether

the processing thread violated the task’s processing deadline (Trxproc ≤ Lmax). De-

pending on the deadline check status, the processing might result in either an “ACK”

or “NACK” message to the radio (state 7) after execution has completed. RT-OPEX

then switches the processing thread back to the waiting state.

5.4 Implementation and Evaluation

We implement RT-OPEX and rest of the schedulers on a testbed of software

radios, Ethernet, and commodity server hardware. In this section, we give the details

of the implementation, the evaluation platform, and performance evaluation of the

schedulers.

5.4.1 Implementation

We build a C-RAN multiprocessor scheduler from the ground up. Our scheduler

utilizes the pthread library to implement the processing and transport components.

Each processing core has a dedicated thread pinned to it, and similarly, each antenna

or radio has a dedicated transport thread. The transport threads run on a dedicated

set of cores that are separate from processing cores. The transport and the processing

128

threads are synchronized using semaphores. As the transport threads are critical to

maintain synchronization between the radios and the GPP (triggered every 1ms),

we use a one-way locking mechanism where only processing threads wait for the

transport threads. The processing threads are signaled when the transport threads

finish writing to the sample IQ buffer. We implement a common watchdog timer that

maintains a global reference time using which the deadline misses are detected.

Our scheduler integrates with the OpenAirInterface (OAI) PHY library [105].

OAI is an open-source software implementation of LTE that includes both RAN and

Evolved Packet Core, and implements all the PHY-layer functions of LTE Rel 10.

OAI implements its own out-of-the-box partitioned scheduler for uplink and downlink

processing, but it is not amenable to PHY-layer migration. Therefore, we modularize

the OAI processing and write an abstraction layer that abstracts the PHY functions

at task level, taskX, and subtask level, subtaskX, where X ∈ {FFT, demod, decode}.

Within each task, the functions that are not currently parallelized are treated as left

unchanged. Each of the subtasks can be executed independently, and thus, provides

the basis for parallelism. Since OAI implements a complete baseband chain, our

abstraction code is tested using traces from OAI simulators to make sure that the

processing is reproducible. This step was essential to ensure the correct functioning of

the scheduler when the OAI data-structures are duplicated for multiple basestations.

Using our system design, partitioned scheduling is realized by fixing the threads

on which basestation’s subframes are processed, i.e., when a particular subframe is

received from the transport, only the corresponding processing thread is notified. In

case of global scheduling, there is no binding of a basestation to threads, and any idle

processing thread can process an arriving subframe. In RT-OPEX, the migration of

subtasks implies that the some of the subtaskX routines from the current processing

thread are migrated to a different processing thread. As the global OAI variables and

the baseband samples are held in a shared memory (L3 or main), migration of data

129

fft() demod() decode()

Scheduler
Multi-core platform

OpenAir

CWARP
Radios proc()trans()

GPP/KVM

Figure 5.15: Implementation frame-
work for SchedTool.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

normalized load

C
D

F

BS 1

BS 2

BS 3

BS 4

Figure 5.16: Basestation load dis-
tribution.

is realized by passing the references to the memory contents.

Enforcing deadlines. For correct operation of a real-time system, we must ensure

that a frame processing task must be completed before, or terminated at its deadline.

Implementing this in our system is challenging since we abstract away the low-level

PHY routines. One possible solution is to pass a timer to each OAI function, and

constantly check on the timer. This approach, however, is not practical. Instead, we

check on the slack time before we perform each task; using our task model we check if

the execution time is less than the slack time, else we drop the task and the subframe.

The resulting gaps are however not used for migration.

Our code is packaged into an open-source tool, SchedTool, that can be used to

validate the performance of different schedulers (Fig. 5.15). SchedTool is highly con-

figurable as the user can choose any of the possible scheduling algorithms, number

of basestations, number of processing cores, number of antennas, and the transport

bandwidth. Moreover, the user can run it for different underlying operating system

configurations, including thread scheduling models (e.g., Round-Robin and FIFO),

real-time kernel, virtualization, etc. Ultimately, the tool can be used to profile the

system performance (deadline-miss rate, load, memory usage) which can, in turn,

help operators design and provision compute resources for C-RAN.

130

5.4.2 Evaluation Platform

We use different state-of-the-art computing and networking platforms in our eval-

uations. For computing, we use a commodity server (i.e., a general-purpose processor

(GPP)) and a virtual machine (VM) that is hosted on a GPP. The GPP is a 32-

core (hyper-threading enabled) machine with Intel Xeon E5-2660 2.2 GHz x86 CPUs

(SandyBridge architecture), 128GB RAM, 15MB L3 cache, and 1/10 GbE Ethernet

ports. For virtualization, we use a KVM hypervisor that emulates the underlying

hardware to host a guest operating system. The evaluation with other means of vir-

tualization such as containers (e.g., LXC) is left to future work. To closely match the

performance of data-center networks, we consider 1 GbE and 10 GbE Ethernet links

that are connected to the GPP/VM through an HP 6600 series Ethernet switch. The

GPP uses standard Intel network drivers while the VM uses a virtio network driver.

Optimizations. Several optimizations are applied to get the best computing perfor-

mance. The OAI workload runs on an Ubuntu 14.04 low-latency kernel. Considered

as a soft real-time system, the low-latency version is a stable kernel compared to other

hard real-time kernels like RTLinux [106] which require custom patches. Various op-

timization features, such as SSE3/SSE4 instruction set, O3 flags, etc., are enabled.

Further, the power-saving features and sleep states available on Intel processors are

disabled. This ensures the CPU cores run at a constant maximum frequency. To

minimize disruptions from interrupts, the processing threads are pinned to dedicated

cores and use FIFO scheduling. We use the OAI timestamps to calculate the process-

ing time. The timestamps are obtained by counting the exact number of CPU clock

cycles.

Data collection. Since publicly available basestation traces are difficult to obtain,

we devise a measurement setup to get the variations of cellular traffic. We use USRP

software radios and log RF samples off the air on Band-13 and Band-17 LTE downlink

channels in a city environment. Specifically, we log the signal of 4 cellular towers and

131

estimate the load by correlating with the average signal energy every 1ms. Fig. 5.16

shows the distribution of the load variations for the 4 basestations. We then run the

scheduler with IQ traces from OAI, where the MCS of each subframe is determined

by our basestation load trace. For each experimental setting, we use an AWGN

channel model with a fixed SNR of 30dB and collect the processing logs of 30000

LTE subframes from each basestation. Fixing the SNR makes it easier to compare

the scheduler performance.

Experimental setup. We consider a 4-bsestation setup, each with two antennas

(N = 2), running on a GPP platform. We specify the OAI LTE bandwidth to

10MHz, which corresponds to a sampling rate of 15.36MHz, i.e., each subframe con-

tains 15360 samples. We consider a single user uplink transmission and assume 100%

PRB utilization. Under this configuration, the nominal PHY throughput can vary

from 1.3 to 31.7Mbps, depending on the MCS used. Further, we choose dLmaxe to 2,

i.e., each basestation is assigned 2 CPU cores under partitioned scheduling.

We first run the processing with our C-RAN testbed with radios and the Ethernet

transport. As mentioned earlier, the radios in our testbed are WARPv3 SDR boards.

From Fig. 5.9(a), observe that the one-way latency from radios to the GPP at 10MHz

bandwidth is as high as 0.9ms. This effectively leaves 1.1ms to process each subframe

(which is much less than the processing time of 1.5ms), resulting in a very high

deadline-miss rate. Therefore, to accurately emulate real C-RAN deployments, we

replace the WARP transport with a fixed transport delay (RTT/2) value ranging

from 0.4ms to 0.7ms, that represents various off- and on-site deployment scenarios.

In what follows, we describe the results for a single GPP platform, but note that

similar results were also observed on our KVM platform.

132

400 450 500 550 600 650 700
RTT/2 (us)

10-3

10-2

10-1

100

De
ad

lin
e

m
iss

 ra
te

Partitioned (8 cores)
RT-OPEX(8 cores)
Global(8 cores)
Global (16 cores)

Figure 5.17: Deadline-miss comparison of schedulers.

0 500 1000 1500 2000
Gap duration (us)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

400us
500us
600us
700us

400 500 600 700
RTT/2 (us)

0

20

40

60

80

100

M
igr

at
ed

 (%
)

FFT
Decode

Figure 5.18: Role of RTT/2 in gaps and task-migrations.

5.4.3 Performance comparison

For each transport delay setting, we evaluate the deadline-miss rate for the four

base stations and for each scheduler. Fig. 5.17 shows the deadline-miss performance

of the different schedulers. The main takeaways from the figure are as follows.

RT-OPEX Performance: RT-OPEX exhibits virtually zero deadline-miss rate

when latency is less than 500µs. To understand this further, let’s look at Fig. 5.17.

For RTT/2 less than 500µs, the partitioned scheduler has gaps (only due to pro-

cessing time variation) larger than 500µs for 60% of the processed subframes. RT-

OPEX utilizes these gaps to migrate FFT and decoding subtasks as evident from the

Fig. 5.18(b), where 20% of the decode subtasks are migrated. These migrated decode

subtasks belong to subframes with high MCS that are responsible for the deadline

misses in the original partitioned scheduler. By migrating these tasks, the processing

time drops well below 1500µs, which is less than the processing budget.

133

0 5 10 15 20 25 30 35
Load (Mbps)

10-3

10-2

10-1

100

De
ad

lin
e

m
iss

 ra
te

Partitioned (8 cores)
RT-OPEX(8 cores)
Global(8 cores)
Global (16 cores)

Figure 5.19: Deadline misses vs. load (RTT/2=500µs)

As latency increases beyond 500µs, the gaps get narrower, thus reducing the

chances for migrating the decode subtasks. Nevertheless, RT-OPEX keeps on mi-

grating the smaller size FFT subtasks, resulting in the deadline-miss rate significantly

lower than that of the partitioned and global schedulers. As evident from Fig. 5.17,

the deadline-miss rate of RT-OPEX is one order-of-magnitude better (10−2 → 10−3)

than that of both partitioned and globals schedulers.

Partitioned Scheduler: Unlike RT-OPEX, a partitioned scheduler can’t exploit

gaps available because of the processing time variations. This is evident from the

sudden rise of the deadline-miss rate when RTT/2 exceeds 400µs. The available time

budget of processing falls below 1600µs. Referring to Fig. 5.4(a), the processing time

can exceed 1.5ms for higher MCS values.

As a result, most subframes with MCS larger than 20 will miss their processing

deadlines. As RTT further increases above 400µs, the deadline-miss rate increases,

albeit at a slower rate. Subframes with lower MCS values can be successfully decoded

within 1.3ms (corresponding to RTT/2 = 700µs).

Partitioned Parallel Scheduler: The partitioned parallel scheduler performs the

best among the schedulers considered. Recalling that we evaluate this scheduler with

a degree of parallelism equal to 2, the processing times are effectively cut by 40%

(after counting in scheduling and parallelizing overheads). This indicates that the

processing time for subframes with the highest MCS values will virtually never exceed

134

90 110 130 150
Time (us)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

FFT local
FFT migrated

1000 1100 1200 1300
Time (us)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

decode local
decode migrated

Figure 5.20: Comparison of processing times of local and migrated tasks.

1.3ms — the available time budget at RTT/2 = 700µs. Therefore, the partitioned

parallel scheduler never misses any deadline, and hence it is not part of Fig. 5.17.

Global Scheduler: The global scheduler exhibits the most surprising behavior. We

evaluate two global schedulers, one running with 8 cores while the other utilizes 16

cores. Theoretically, this scheduler should perform as good as a partitioned scheduler

with dLmaxe = 2ms. Both schedulers provide a subframe with all the time needed to

finish decoding before its deadline.

Nevertheless, as evident from Fig. 5.17, the global scheduler (1) performs slightly

worse than the partitioned scheduler, (2) does not improve when the number of cores

is doubled from 8 to 16, and (3) does not exhibit a zero deadline-miss rate even at

the lowest RTT value. As explained later, several factors related to the design and

execution of the global scheduler contribute to this surprising phenomenon.

In Fig. 5.19, we set RTT/2 to 500µs and show the deadline-miss performance

for different subframe loads (corresponding to different MCS values). RT-OPEX’s

gains are shown to be prominent at higher loads (30Mbps and above) where rest of

the schedulers miss deadlines for 100% of the frames. Therefore, assuming a deadline-

miss threshold of 10−2 that is typical of real-time systems, RT-OPEX can support

15% higher load (31Mbps compared to 27Mbps) than a default partitioned scheduler.

135

0 2 4 6 8 10 12 14 16
#cores (M)

10-3

10-2

10-1

100

De
ad

lin
e

m
iss

 ra
te 400

500

0 10 20 30 40 50
Waiting time (us)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

M=4
M=8
M=12
M=16

1200 1400 1600 1800 2000 2200
Processing time (us)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Partitioned (8 cores)
Global(8 cores)
Global (16 cores)

Figure 5.21: Global scheduler as cores are varied

5.4.4 Overheads

The major overhead in migration comes from the transfer of contents from shared

memory. Given the complex memory hierarchy of modern processors, providing a

detailed cache analysis is out of the scope of this chapter. However, we use our

abstraction to calculate the overhead of task migration by simply measuring the time

it takes to process a local and a migrated task. Fig. 5.20 compares the processing

times of the tasks that are performed locally and that are migrated to and executed

on a different core at runtime. Observe that there is always a non-zero overhead to

migrate a task. For example, for FFT, the median processing time increases from

108µs to 126µs when it is migrated, i.e., a 18µs increase. For the decode task, the

overhead is nearly the same at 20µs. Thus, the cost of migration is a fixed across

the subtasks, which corresponds to the fetching of global OAI variables from shared

memory to on-chip/local memory. Note that the subframe buffer and transport block

buffer are both referred within the OAI eNB data-structure, and therefore, both

FFT and decode migration (including subtask) involve the same amount of memory

transfer.

Global scheduling, despite offering flexibility, suffers from performance loss and

high overheads. More interestingly, increasing the number of cores does not miti-

gate this (and even decreases performance). To see this, consider Fig. 5.21, where

deadline-miss performance saturates beyond 8 cores. There are two reasons for this:

136

Table 5.2: Qualitative Comparison of Scheduling Approaches in C-RAN.

Scheduling
Determin-

istic
Optimal Overhead

Flexible
to

resources

Flexible
to load

Partitioned 4 4 low – –

Partitioned–P 4 4 low – –

Global – – high 4 4

RT-OPEX 4 4 med. – 4

1) increased lock contention, and 2) cache trashing. In the same figure, the waiting

time plot shows the distribution of waiting time for a single basestation in the global

queue as we vary the number of cores. Theoretically, the waiting time must be 0

since each subframe is guaranteed to be given a core. However, in case of 16 cores,

more than 20% subframes wait for more than 20µs in the queue. This is explained

from increased lock contention. In addition, as each core in global scheduling switches

between different basestations every few subframes, this leads to frequent flushing of

its cache that adds to the processing times, as evident from the right-most plot in

Fig. 5.21, which shows the processing time distribution for MCS 27. From the plot,

we observe that global with 16 cores has a considerably larger processing time (80µs)

for more than 10% of the subframes.

5.5 Discussion

Based on our evaluation of the different scheduling approaches, we now discuss

how they fare under different system configurations and operator requirements. In

Table 5.2, we show the comparison summary of the scheduling approaches.

A. Determinism: Determinism is a desirable feature in the design of hard real-

time systems [107]. In comparison with fixed partitioned schedules, global schedules

are non-deterministic; a subframe is assigned to the next available core. In con-

trast, both partitioned scheduler and RT-OPEX follow a deterministic execution

137

plan which eliminates waiting time, and thus reduce processing time when compared

to the global scheduler.

B. Optimality: Given an upper bound on the processing time, an operator can

obtain an optimal partitioned schedule (both regular and parallelized) that is feasible

and minimizes the number of needed cores [19] . The general problem of obtaining an

optimal partitioned schedule is, however, NP-complete [89, 90, 91]. The search space

becomes intractably large when designing an optimal parallelized partitioned schedule

because of the larger number of subtasks as well as the precedence constraints among

the subtasks [108, 90]. However, RT-OPEX is as optimal as a partitioned scheduler

since it uses the same number of cores.

C. Overhead: The additional scheduling overhead of a partitioned (and par-

allelized) schedule is minimal; each subframe is assigned to a predetermined core

without the need of locking or task/data migration across cores. On the other hand,

a global scheduler incurs higher overhead because of a shared queue as well as from

constant cache trashing. RT-OPEX incurs the overhead of subtask migration, which

we estimated to be in the order of 20µs for both FFT and decode subtasks. RT-

OPEX takes this overhead into account while migrating so as to guarantee feasible

migration. Even with the overhead, we show in §5.4.3 that RT-OPEX achieves a

significant improvement in deadline-miss performance.

D. Flexibility to resources: Available resources in C-RAN might change over

time as storage, memory, and processor failures are common in a datacenter run-

ning on commodity hardware [109]. As a partitioned schedule is provisioned to a

set of fixed resources, any change in the available resources results in a significant

performance degradation [110]. Alternatively, a global schedule, by virtue of its de-

sign, adapts to the underlying resources without the need to design a new schedule

(Fig. 5.21). RT-OPEX, suffers from the same limitation of a partitioned schedule,

but can automatically exploit any added resources to migrate subtasks.

138

E. Flexibility to load: From our measurements, we observe that processing

times exhibit millisecond-level variations due to varying traffic loads and channel

conditions (Fig. 5.1). However, the partitioned schedule fails to adapt to varying

processing times. When the processing time of a subframe exceeds the deadline,

partitioned schedules drop the subframe resulting in a deadline miss. This occurs

even though processing on another resource might introduce a gap. RT-OPEX fills

the scheduling gaps by migrating subtasks to the available cores. It, therefore, adapts

to the variations in the load. By design, the global scheduler is inherently flexible to

the varying processing time.

5.6 Related Work

Real-time wireless frame processing in software has been an active area of research

over the past decade [72, 73]. Today, there are commercial software implementations

of a fully functional LTE basestation such as Amarisoft [111]. However, their per-

formance is nowhere close to the hardware performance. With the introduction of

C-RAN [5], a slightly different variant — cloud-based processing — has received con-

siderable attention.

Much of the research in C-RAN has focused on the system architecture and imple-

mentation. The authors of [19] provide a framework to schedule multiple basestations

on a multi-core platform in order to meet their processing requirements. However,

they assume the processing time for the subframe is fixed and do not consider the

effect of deadline-misses. In [88], a more flexible approach to resource management

was proposed, where a pool of shared cores are made available based on the dynamics

of the load. However, these scheduling decisions are made before wireless frames are

received, and thus cannot account for channel variations. The role of virtualization

in RAN was described in [73, 112, 113]. A container approach to virtualization was

shown to have a slightly better performance than a hypervisor approach. In [114],

139

the authors adopt a two-tier model to manage a RAN where part of the control that

requires less frequent changes goes to a central controller. The design of a remote

radio head and its synchronization with the processing units was described in [87].

Finally, [12] and the references therein provide a comprehensive background on the

state of the current C-RAN technology.

5.7 Conclusion

C-RAN is a promising solution to the problem of economically managing the scale

and size of wireless processing. However, meeting frame processing deadlines without

over-provisioning resources remains a major challenge. We proposed to meet this

challenge with a new scheduling framework that builds on top of partitioned schedul-

ing and opportunistically exploits the idle processing cycles for parallel processing of

frames. Our evaluation results have demonstrated its potential in reducing deadline-

misses at no additional cost. In essence, our approach is resource pooling applied at

finer timescales.

140

CHAPTER VI

Conclusion and Future Directions

6.1 Concluding Remarks

Future deployments of wireless networks face many challenges from the expo-

nential growth of wireless devices. Their capacity must handle traffic volumes that

will be orders of magnitude larger than today’s networks. Also, they should provide

wide-ranging connectivity, improved quality-of-service, and must achieve this with in-

creased operational efficiency using architectures that are cost-effective, flexible and

upgradeable. All of these requirements are part of a bigger quest towards a scalable

design, which is a wireless network architecture that can efficiently scale using the

resources of spectrum, transmitters, and processors.

In this thesis, we present the building blocks of a scalable wireless network, namely,

co-existence between heterogeneous technologies such as LTE and WiFi; co-ordination

of multi-antenna transmitters and their feedback design; and transport and process-

ing architectures for efficient centralized processing. Each of these blocks addresses

the shortcomings of existing approaches and proposes a solution that outperforms

its counterparts in the evaluated scenarios. First, the duty-cycling approach to co-

existence was shown to perform poorly in real-world scenarios as it does not account

for the transmission gaps or the access fairness. To address this, we propose a CSMA-

based access mechanism, which eliminates collisions, and is provably fair. Second, in

141

UL

θ

(a) Single
unlicensed

UL UL

θ' θ'

(b) Two unli-
censed

UL L

xul xl

(c) Unlicensed
and licensed

Figure 6.1: Unlicensed and licensed links in the unlicensed spectrum.

a coordinated Network MIMO system, we show that channel state information gets

corrupted due to channel mobility, which is mitigated to an extent through our adap-

tive transmission schemes. Third, we introduce a tree-based design for real-time

transport of baseband samples and provide its end-to-end schedulability and capacity

analysis. Finally, we present a new framework for processing of baseband samples,

that improves deadline-miss performance, and alternatively, reduces the number of

networking and computing resources.

6.2 Future Directions

The presented approaches in the thesis open up several avenues for further explo-

ration, least of which are as follows.

6.2.1 A Closer Look at Fairness in Unlicensed Spectrum

In Chapter II, we described our fairness metric and showed through modeling and

evaluations that TALOS satisfies our fairness criteria. In related work, [47] proposed

a mechanism to achieve proportional fairness between LTE and WiFi. However, these

are not the only ways to define fairness in the unlicensed spectrum. Here we look at

other possible mechanisms and explore if they can be enforced in practice. Ultimately,

we wish to study these mechanisms in actual deployments and report the findings.

Consider the usage of unlicensed spectrum by unlicensed (UL) users, and licensed

(L) users who use it opportunistically. We assume the unlicensed users are the pri-

142

mary occupants of the unlicensed spectrum and do not recognize the transmissions of

licensed users. As shown in Fig. 6.1, we consider three scenarios of links transmitting

in the unlicensed spectrum: a) A single UL link with throughput θ; b) Two UL links,

each with equal throughput θ′, assuming fair access between unlicensed devices; and

c) A single link L with throughput xL co-existing with UL link having throughput

xUL. We now define the fairness criteria under different models of fairness.

True fairness. We call the co-existence is truly fair if link L does not benefit at

the cost of UL and the link L has the same throughput as a shared UL links that is,

when the following is true:

xUL = xL = θ′. (6.1)

Observe that this is the strictest sense of fairness in the sense that a link L is a drop-in

replacement of UL link with the same performance and behavior.

CRN fairness. We borrow the co-existence model of cognitive radio networks

(CRNs) [6] and define CRN fairness to hold when the UL link sees at most η, 0 <

η < 1, fraction loss in performance, i.e.,

xUL ≥ θ(1− η). (6.2)

CRN fairness is observed when link L performs continuous sensing and only transmits

when the medium is free. Upon a collision with UL transmission, it immediately backs

off and waits for a sufficient time for the medium to go idle. The mechanism is similar

to the manner secondary users (SU) use the radio bands of incumbent primary users

(PUs) in CRNs. As expected, this fairness is biased towards unlicensed links.

TALOS fairness This fairness metric is based on our definition from Fig. 2.18,

which states that a link L should not benefit at the cost of two UL links. Formally,

143

this implies that:

xUL = θ′. (6.3)

In contrast to CRN fairness, TALOS fairness is biased towards licensed links. Also,

note the difference between True and TALOS fairness, in TALOS, there are no re-

strictions on the throughput of the licensed link.

6.2.2 Virtualization of IoT Gateways

In this thesis, we consider the transport and processing of only LTE and WiFi

frames, but our designs are extendable to any wireless deployment. For instance,

our real-time implementation from Chapters IV and V can be applied to baseband

processing in internet-of-things (IoT) gateways. Existing IoT gateways employ ded-

icated wireless interfaces to communicate with IoT devices through Bluetooth/BLE

and Zigbee protocols. However, to maximize the compute efficiency, the baseband

processing on the gateway can be decoupled from the hardware and carried out on

a backend server platform. The only constraint in this implementation comes from

the 150µs and 192µs inter-frame spacing (IFS) durations of Bluetooth and ZigBee,

respectively. However, as we have shown, these deadlines can be met by taking a

principled real-time approach towards transport and processing.

6.2.3 Heterogeneous Standards and Platforms

In Chapter V, we proposed the idea of combining parallelism with scheduling for

baseband processing. The gains from this approach are even more significant in a

C-RAN deployment of heterogeneous basestations. Newer wireless standards that

are targeted towards IoT devices are expected to have characteristically different

traffic patterns and deadlines than current cellular traffic. For example, most IoT

144

devices such as smart-grid meters, activity trackers, home sensors, etc. generate data

periodically in short-lived sessions. Backend processing of the aggregated loads of

IoT and mobile devices will result in frequent unused CPU cycles. We can apply RT-

OPEX to leverage the idle cycles to improve the deadline performance of processing.

As seen from Eq. (5.1), the processing time is dominated by the Turbo decoder.

Alternatively, the decoding can be implemented on dedicated baseband accelerators

(or DSPs) that are an order-of-magnitude faster. GPUs with their extensive multi-

threading are another possibility [96]. The primitives of task migration in these

scenarios need further investigation as the migration overhead is architecture specific.

145

BIBLIOGRAPHY

146

BIBLIOGRAPHY

[1] The Internet of Things. http://www.cisco.com/web/about/ac79/docs/

innov/IoT_IBSG_0411FINAL.pdf. [Online; accessed 29-Nov-2015].

[2] Cisco Visual Networking Index: Forecast and Methodology, 2014-2019.

[3] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Spec-
ifications . IEEE Std. 80211ac Draft 3.0, 2012.

[4] B. Soret, K. I. Pedersen, N. T. K. Jrgensen, and V. Fernndez-Lpez. Interference
Coordination for Dense Wireless Networks. IEEE Communications Magazine,
53(1):102–109, January 2015.

[5] C-RAN: The road towards green RAN. http://labs.chinamobile.com/cran/
wp-content/uploads/2014/06/20140613-C-RAN-WP-3.0.pdf. [Online; ac-
cessed 29-Nov-2015].

[6] C. Cordeiro, K. Challapali, D. Birru, and Sai Shankar. IEEE 802.22: The First
Worldwide Wireless Standard Based on Cognitive Radios. In First IEEE Inter-
national Symposium on New Frontiers in Dynamic Spectrum Access Networks
DySPAN, 2005.

[7] LTE in Unlicensed Spectrum: Harmonious Coexistence with Wi-Fi. Qualcomm
Research, June 2014.

[8] G. Boudreau, J. Panicker, N. Guo, R. Chang, N. Wang, and S. Vrzic. Interfer-
ence Coordination and Cancellation for 4G Networks. IEEE Communications
Magazine, 47(4):74–81, 2009.

[9] F. Rusek, D. Persson, Buon Kiong Lau, E.G. Larsson, T.L. Marzetta, O. Edfors,
and F. Tufvesson. Scaling Up MIMO: Opportunities and Challenges with Very
Large Arrays. IEEE Signal Processing Magazine, 30(1):40–60, Jan 2013.

[10] C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang, and L. Zhong.
Argos: practical many-antenna base stations. In Proc. of MOBICOM, 2012.

[11] C. M. Aras, J. F. Kurose, D. S. Reeves, and H. Schulzrinne. Real-time commu-
nication in packet-switched networks. Proceedings of the IEEE, 82(1):122–139,
1994.

147

[12] A. Checko, H.L. Christiansen, Ying Yan, L. Scolari, G. Kardaras, M.S. Berger,
and L. Dittmann. Cloud ran for mobile networks – a technology overview.
Communications Surveys Tutorials, IEEE, 17(1):405–426, 2015.

[13] Nokia LTE for unlicensed spectrum. Nokia Whitepaper, 2014.

[14] U-LTE: Unlicensed Spectrum Utilization of LTE. Huawei Whitepaper, 2014.

[15] David Tse and Pramod Viswanath. Fundamentals of wireless communication.

[16] H. Balan, R. Rogalin, A. Michaloliakos, K. Psounis, and G. Caire. Achieving
High Data Rates in a Distributed MIMO system. In Proc. of MOBICOM, 2012.

[17] H. Rahul, S. Kumar, and D. Katabi. JMB: scaling wireless capacity with user
demands. In Proc. of SIGCOMM, 2012.

[18] Qing Yang, Xiaoxiao Li, Hongyi Yao, Ji Fang, Kun Tan, Wenjun Hu, Jiansong
Zhang, and Yongguang Zhang. Bigstation: Enabling scalable real-time signal
processingin large mu-mimo systems. In Proc. of SIGCOMM, 2013.

[19] Sourjya Bhaumik, Shoban Preeth Chandrabose, Manjunath Kashyap Jataprolu,
Gautam Kumar, Anand Muralidhar, Paul Polakos, Vikram Srinivasan, and
Thomas Woo. Cloudiq: A framework for processing base stations in a data
center. In Proc. of Mobicom, 2012.

[20] Chi-Kin Chau, Minghua Chen, and Soung Chang Liew. Capacity of Large-
scale CSMA Wireless Networks. In Proceedings of the 15th Annual International
Conference on Mobile Computing and Networking, MobiCom ’09, pages 97–108,
New York, NY, USA, 2009. ACM.

[21] D. Gesbert, S. Hanly, H. Huang, S. Shamai Shitz, O. Simeone, and Wei Yu.
Multi-Cell MIMO Cooperative Networks: A New Look at Interference. in IEEE
Journal on Selected Areas in Communications, 2010.

[22] Christopher Cox. An Introduction to LTE: LTE, LTE-Advanced, SAE, VoLTE
and 4G Mobile Communications. John Wiley & Sons, 2nd edition, 2014.

[23] LTE-U Technology and Coexistence. Qualcomm Technologies, Inc, May 2015.

[24] Broadband Radio Access Networks (BRAN); 5 GHz high performance RLAN;
Harmonized EN covering the essential requirements of article 3.2 of the R&TTE
Directive. ETSI EN 301 893 V1.8.1, March 2015.

[25] IEEE Standard for Information Technology - Telecommunications and Infor-
mation Exchange Between Systems - Local and Metropolitan Area Networks -
Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC)
and Physical Layer (PHY) Specifications. IEEE Std 802.11-2007, pages 1–1076,
June 2007.

148

[26] LTE-U/LAA, MuLTEfire and WiFi; Making Best Use of Unlicensed Spectrum.
Qualcomm, 2015.

[27] WARP 802.11 Reference Design. http://warpproject.org/trac/wiki/802.

11. [Online; accessed 23-Sept-2015].

[28] George Nychis, Thibaud Hottelier, Zhuocheng Yang, Srinivasan Seshan, and
Peter Steenkiste. Enabling MAC Protocol Implementations on Software-defined
Radios. In Proc. of NSDI, 2009.

[29] S. Sen, R.R. Choudhury, and S. Nelakuditi. CSMA/CN: Carrier Sense Multiple
Access With Collision Notification. IEEE/ACM Transactions on Networking,
20(2):544–556, April 2012.

[30] Handbook on spectrum monitoring. International Telecommunication Union,
2002.

[31] Eugenio Magistretti, Krishna Kant Chintalapudi, Bozidar Radunovic, and Ra-
machandran Ramjee. WiFi-Nano: Reclaiming WiFi Efficiency Through 800 ns
Slots. In Proc. of MobiCom, 2011.

[32] Seongho Byeon, Kangjin Yoon, Okhwan Lee, Sunghyun Choi, Woonsun Cho,
and Seungseok Oh. MoFA: Mobility-aware Frame Aggregation in Wi-Fi. In
Proc. of CoNEXT, 2014.

[33] J. Jermyn, R.P. Jover, I. Murynets, M. Istomin, and S. Stolfo. Scalability
of Machine to Machine systems and the Internet of Things on LTE mobile
networks. In International Symposium on a World of Wireless, Mobile and
Multimedia Networks (WoWMoM), 2015.

[34] 3GPP TDocs, Meeting: R1-83 - 2015-11-15 to 2015-11-22,
Anaheim. http://aiweb.techfak.uni-bielefeld.de/content/

bworld-robot-control-software/. [Online; accessed 25-Jan-2016].

[35] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z. Morley
Mao, Subhabrata Sen, and Oliver Spatscheck. An In-depth Study of LTE:
Effect of Network Protocol and Application Behavior on Performance. In Proc.
of SIGCOMM, 2013.

[36] Shuo Deng and Hari Balakrishnan. Traffic-aware Techniques to Reduce 3G/LTE
Wireless Energy Consumption. In Proc. of CoNEXT, 2012.

[37] Mi Kyung Han, Brian Overstreet, and Lili Qiu. Greedy Receivers in IEEE
802.11 Hotspots. In Proceedings of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN ’07, pages 471–480,
Washington, DC, USA, 2007. IEEE Computer Society.

[38] Matthew Gast. 802.11Ac: A Survival Guide. O’Reilly Media, Inc., 1st edition,
2013.

149

[39] NS–3. https://www.nsnam.org/. [Online; accessed 14-Apr-2016].

[40] A.M. Cavalcante, E. Almeida, R.D. Vieira, F. Chaves, R.C.D. Paiva, F. Abi-
nader, S. Choudhury, E. Tuomaala, and K. Doppler. Performance Evaluation
of LTE and Wi-Fi Coexistence in Unlicensed Bands. In VTC Spring, 2013.

[41] Tomi Nihtila, Vitaliy Tykhomyrov, Olli Alanen, Mikko A Uusitalo, Antti Sorri,
Martti Moisio, Sassan Iraji, Rapeepat Ratasuk, and Nitin Mangalvedhe. System
performance of LTE and IEEE 802.11 coexisting on a shared frequency band.
In Proc. of WCNC, 2013.

[42] Jeongho Jeon, Qian Clara Li, Huaning Niu, Apostolos Papathanassiou, and
Geng Wu. LTE in the Unlicensed Spectrum: A Novel Coexistence Analysis
with WLAN Systems. In Proc. of GLOBECOM, 2014.

[43] Lili Qiu Sangki Yun. Supporting WiFi and LTE Co-existence. In Proc. of
INFOCOM, 2015.

[44] E. Almeida, A.M. Cavalcante, R.C.D. Paiva, F.S. Chaves, F.M. Abinader, R.D.
Vieira, S. Choudhury, E. Tuomaala, and K. Doppler. Enabling LTE/WiFi
coexistence by LTE blank subframe allocation. In Proc. of ICC, 2013.

[45] Supratim Deb, Pantelis Monogioudis, Jerzy Miernik, and James P Seymour.
Algorithms for Enhanced Inter-Cell Interference Coordination (eICIC) in LTE
HetNets. Trans. on Networking, 22(1):137–150, February 2014.

[46] Shweta Sagari, Samuel Baysting, Dola Saha, Ivan Seskar, Wade Trappe, and
Dipankar Raychaudhuri. Coordinated dynamic spectrum management of LTE-
U and Wi-Fi networks. In Proc. of DySPAN, pages 209–220. IEEE, 2015.

[47] C. Cano and D.J. Leith. Coexistence of WiFi and LTE in Unlicensed Bands: A
Proportional Fair Allocation Scheme. In Communication Workshop (ICCW),
2015 IEEE International Conference on, pages 2288–2293, June 2015.

[48] Božidar Radunović, Ranveer Chandra, and Dinan Gunawardena. Weeble: En-
abling Low-power Nodes to Coexist with High-power Nodes in White Space
Networks. In Proc. of CoNEXT, 2012.

[49] Daniel Halperin, Thomas Anderson, and David Wetherall. Taking the Sting
out of Carrier Sense: Interference Cancellation for Wireless LANs. In Proc. of
MobiCom, 2008.

[50] Shyamnath Gollakota, Fadel Adib, Dina Katabi, and Srinivasan Seshan. Clear-
ing the RF Smog: Making 802.11N Robust to Cross-technology Interference. In
Proc. of SIGCOMM, 2011.

[51] Aditya Gudipati and Sachin Katti. Strider: Automatic Rate Adaptation and
Collision Handling. In SIGCOMM, 2011.

150

[52] Aruna Balasubramanian, Ratul Mahajan, and Arun Venkataramani. Augment-
ing Mobile 3G Using WiFi. In Proc. of MobiSys, 2010.

[53] Rajesh Mahindra, Hari Viswanathan, Karthik Sundaresan, Mustafa Y Arslan,
and Sampath Rangarajan. A Practical Traffic Management System for Inte-
grated LTE-WiFi Networks. In Proc. of MobiCom, 2014.

[54] G. Bianchi. Performance Analysis of the IEEE 802.11 Distributed Coordination
Function. IEEE Journal on Selected Areas in Communications, 18(3):535–547,
2000.

[55] Xin Wang and K. Kar. Throughput Modelling and Fairness Issues in CSMA/CA
Based Ad-Hoc Networks. In Proc. of INFOCOM, 2005.

[56] G. Caire, Sean A. Ramprashad, and H.C. Papadopoulos. Rethinking Network
MIMO: Cost of CSIT, Performance Analysis, and Architecture Comparisons.
In Information Theory and Applications Workshop (ITA), 2010.

[57] Rice University Wireless Open Access Research Platform.

[58] Krishna C. Garikipati and Kang G. Shin. Improving Transport Design for
WARP SDR Deployments. In Proc. of the ACM SIGCOMM Software Radio
Implementation Forum (SRIF), 2014.

[59] Q.H. Spencer, A.L. Swindlehurst, and M. Haardt. Zero-forcing Methods for
Downlink Spatial Multiplexing in Multiuser MIMO channels. IEEE Transac-
tions on Signal Processing, 52(2):461–471, 2004.

[60] M.X. Gong, E. Perahia, R. Want, and S. Mao. Training protocols for multi-user
MIMO wireless LANs. In Proc. of PIMRC, 2010.

[61] N. Jindal. MIMO Broadcast Channels With Finite-Rate Feedback. IEEE Trans-
actions on Information Theory, 52(11):5045–5060, 2006.

[62] R. Porat, E. Ojard, N. Jindal, M. Fischer, and V. Erceg. Improved MU-MIMO
Performance for Future 802.11 Systems Using Differential Feedback. In Infor-
mation Theory and Applications Workshop (ITA), 2013.

[63] J.C. Roh and B.D. Rao. Efficient Feedback Methods for MIMO Channels
Based on Parameterization. IEEE Transactions on Wireless Communications,
6(1):282–292, 2007.

[64] E. Perahia, A. Sheth, T. Kenney, R. Stacey, and D. Halperin. Investigation
into the Doppler Component of the IEEE 802.11n Channel Model. In Proc. of
GLOBECOM, 2010.

[65] F. Boccardi, H. Huang, and M. Trivellato. Multiuser Eigenmode Transmission
for MIMO Broadcast Channels with Limited Feedback. In IEEE Workshop on
Signal Processing Advances in Wireless Communications, 2007.

151

[66] M. Kendall. Rank Correlation Methods. 1990.

[67] Cisco Systems Inc. Wireless Mesh Access Points, Design and Deployment Guide,
Release 7.4, 2013.

[68] X. Zhang, K. Sundaresan, M. Khojastepour, S. Rangarajan, and K. Shin.
NEMOx: Clustered Network MIMO for Wireless Networks. In Proc. of MOBI-
COM, 2013.

[69] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran. Multiuser MIMO Achiev-
able Rates With Downlink Training and Channel State Feedback. IEEE Trans-
actions on Information Theory, 56(6):2845–2866, 2010.

[70] S. Singh, K. Sundaresan, A. Khojastepour, S. Rangarajan, and S. Krishna-
murthy. One Strategy Does Not Serve All: Tailoring Wireless Transmission
Strategies to User Profiles. In Proc. of ACM Workshop on Hot Topics in Net-
works, 2012.

[71] X. Xie, X. Zhang, and K. Sundaresan. Adaptive Feedback Compression for
MIMO Networks. In Proc. of MOBICOM, 2013.

[72] Kun Tan, Jiansong Zhang, Ji Fang, He Liu, Yusheng Ye, Shen Wang, Yong-
guang Zhang, Haitao Wu, Wei Wang, and Geoffrey M. Voelker. Sora: High
performance software radio using general purpose multi-core processors. In
Proc. of NSDI, pages 75–90, 2009.

[73] Navid Nikaein. Processing radio access network functions in the cloud: Criti-
cal issues and modeling. In Proceedings of the 6th International Workshop on
Mobile Cloud Computing and Services, 2015.

[74] Hui Zhang. Service disciplines for guaranteed performance service in packet-
switching networks. Proceedings of the IEEE, 83(10):1374–1396, 1995.

[75] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A Scalable,
Commodity Data Center Network Architecture. In Proc. of SIGCOMM, 2008.

[76] Qin Zheng and K. G. Shin. On the ability of establishing real-time channels in
point-to-point packet-switched networks. IEEE Transactions on Communica-
tions, 42(234):1096–1105, Feb 1994.

[77] J. P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary
deadlines. In Proceedings of Real-Time Systems Symposium, 1990.

[78] D. D. Kandlur, K. G. Shin, and D. Ferrari. Real-time Communication in
Multi-hop Networks. IEEE Transactions on Parallel and Distributed Systems,
5(10):1044–1056, 1994.

[79] K. W. Tindell, A. Burns, and A. J. Wellings. An Extendible Approach for
Analyzing Fixed Priority Hard Real-time Tasks. Real-Time Systems, 6(2):133–
151, 1994.

152

[80] M. Karol, M. Hluchyj, and S. Morgan. Input Versus Output Queueing on
a Space-Division Packet Switch. IEEE Transactions on Communications,
35(12):1347–1356, 1987.

[81] Laurent Schumacher, Klaus I. Pedersen, Preben E. Mogensen, Niels Jernes
Vej, and Dk-Aalborg st. From Antenna Spacings To Theoretical Capacities -
Guidelines For Simulating Mimo Systems. In IEEE PIMRC, 2002.

[82] R. Bhatia. Perturbation Bounds for Matrix Eigenvalues. Society for Industrial
and Applied Mathematics, 2007.

[83] A Performance Study of CPRI over Ethernet. http://www.ieee1904.org/3/

meetingarchive/2015/02/tf31502ashwood1a.pdf. [Online; accessed 14-Apr-
2016].

[84] E. Chai, KG. Shin, SJ. Lee, J. Lee, and R. Etkin. SPIRO: Turning Elephants
into Mice with Efficient RF Transport. In Proc. of INFOCOMM, 2015.

[85] Karl F. Nieman and Brian L. Evans. Time-Domain Compression of Complex-
Baseband LTE Signals for Cloud Radio Access Network. In Proc. of IEEE SIP,
2013.

[86] Yun Wang and M. Saksena. Scheduling fixed-priority tasks with preemption
threshold. In International Conference on Real-Time Computing Systems and
Applications, 1999.

[87] ZhenBo Zhu, Parul Gupta, Qing Wang, Shivkumar Kalyanaraman, Yonghua
Lin, Hubertus Franke, and Smruti Sarangi. Virtual base station pool: Towards
a wireless network cloud for radio access networks. In Proceedings of the 8th
ACM International Conference on Computing Frontiers, 2011.

[88] Wenfei Wu, Li Erran Li, Aurojit Panda, and Scott Shenker. PRAN: Pro-
grammable radio access networks. In HOTNETS, 2014.

[89] Yingfeng Oh and Sang H. Son. Allocating Fixed-priority Periodic Tasks on
Multiprocessor Systems. Real-Time Systems, 9(3):207–239, 1995.

[90] Julie Baro, Frédéric Boniol, Mikel Cordovilla, Eric Noulard, and Claire Pagetti.
Off-line (optimal) multiprocessor scheduling of dependent periodic tasks. In
Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC
’12, pages 1815–1820, 2012.

[91] Joseph Y.-T. Leung and Jennifer Whitehead. On the complexity of fixed-
priority scheduling of periodic, real-time tasks. Performance Evaluation,
2(4):237 – 250, 1982.

[92] Bjorn Andersson, Sanjoy Baruah, and Jan Jonsson. Static-priority Scheduling
on Multiprocessor. In Proceedings of IEEE Real-Time Systems Symposium,
pages 193–202, 2001.

153

[93] A. Srinivansan and Sanjoy K. Baruah. Deadline-based Scheduling of Periodic
Task Systems on Multiprocessors. Information Processing Letters, 84:93–98,
2002.

[94] Theodore Baker and Sanjoy Baruah. Schedulability Analysis of Multiprocessor
Sporadic Task Systems. In Handbook of Real-Time and Embedded Systems.
Chapman Hall/ CRC Press, 2007.

[95] John Carpenter, Shelby Funk, Phil Holman, Anand Srinivasan, Jim Anderson,
and Sanjoy Baruah. A Categorization of Real-time Multiprocessor Scheduling
Problems and Algorithms. In Handbook of Scheduling: Algorithms, Models, and
Performance Analysis. CRC.

[96] Qi Zheng, Yajing Chen, Hyunseok Lee, Ronald Dreslinski, Chaitali Chakrabarti,
Achilleas Anastasopoulos, Scott Mahlke, and Trevor Mudge. Using Graphics
Processing Units in an LTE Base Station. Journal of Signal Processing Systems,
78(1):35–47, 2015.

[97] Z. Shi, E. Jeannot, and J. J. Dongarra. Robust Task Scheduling in Non-
Deterministic Heterogeneous Computing Systems. In Cluster Computing, 2006
IEEE International Conference on, pages 1–10, Sept 2006.

[98] A. Bastoni, B.B. Brandenburg, and J.H. Anderson. Is Semi-Partitioned Schedul-
ing Practical? In Euromicro Conference on Real-Time Systems (ECRTS), pages
125–135, 2011.

[99] LTE Physical Layer Procedures. http://www.etsi.org/deliver/etsi_ts/

136200_136299/136213/08.08.00_60/ts_136213v080800p.pdf. [Online; ac-
cessed 29-Nov-2015].

[100] KVM. http://www.linux-kvm.org/. [Online; accessed 29-Jan-2016].

[101] Cyclictest. https://rt.wiki.kernel.org/index.php/Cyclictest. [Online;
accessed 29-Nov-2015].

[102] Hackbench. http://manpages.ubuntu.com/manpages/trusty/man8/

hackbench.8.html. [Online; accessed 29-Nov-2015].

[103] CPRI Specification V6.1. http://www.cpri.info/downloads/CPRI_v_6_1_

2014-07-01.pdf. [Online; accessed 29-Nov-2015].

[104] Krishna C. Garikipati and Kang G. Shin. Improving transport design for warp
sdr deployments. In Proceedings of the 2014 ACM Workshop on Software Radio
Implementation Forum, SRIF ’14, 2014.

[105] Open Air Interface. http://www.openairinterface.org/. [Online; accessed
29-Nov-2015].

[106] RTLinux. http://rt.wiki.kernel.org/. [Online; accessed 29-Jan-2016].

154

[107] H. Kopetz, A. Damm, C. Koza, M. Mulazzani, W. Schwabl, C. Senft, and
R. Zainlinger. Distributed Fault-Tolerant Real-Time Systems: The Mars Ap-
proach. IEEE Micro, 9(1):25–40, 1989.

[108] Thomas Wagner, Alan Garvey, and Victor Lesser. Design-to-criteria schedul-
ing: Managing complexity through goal-directed satisficing. In Proceedings
of the AAAI-97 Workshop on Building Resource-Bounded Reasoning Systems.
Citeseer, 1997.

[109] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. Characterizing Cloud
Computing Hardware Reliability. In Proceedings of the 1st ACM Symposium
on Cloud Computing, 2010.

[110] S. R. Biyabani, J. A. Stankovic, and K. Ramamritham. The Integration of
Deadline and Criticalness in Hard Real-Time Scheduling. In Real-Time Systems
Symposium, 1988., Proceedings., pages 152–160, Dec 1988.

[111] Amarisoft. http://amarisoft.com/. [Online; accessed 29-Jan-2016].

[112] L. Zhao, M. Li, Y. Zaki, A. Timm-Giel, and C. Gorg. LTE virtualization: From
Theoretical Gain to Practical Solution. In Proc 23rd ITC, 2011.

[113] Chengchao Liang and F.R. Yu. Wireless Network Virtualization: A Survey,
Some Research Issues and Challenges. Communications Surveys Tutorials,
IEEE, 17(1):358–380, Firstquarter 2015.

[114] Aditya Gudipati, Daniel Perry, Li Erran Li, and Sachin Katti. SoftRAN: Soft-
ware Defined Radio Access Network. In HotSDN, 2013.

155

