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ABSTRACT

Efficient Large-Scale Graph Processing

by

Xiaoen Ju

Chair: Kang G. Shin

The abundance of large graphs and the high potential for insight extraction from them have

fueled interest in large-scale graph processing systems. Despite significant enhancement

in recent years, state-of-the-art large-scale graph processing systems only yield suboptimal

performance in common scenarios.

In this thesis, we address three categories of deficiency in graph processing systems.

First, in a distributed environment, the performance of graph processing systems is hin-

dered by computation-communication coupling. We present a new programming abstrac-

tion called Compute-Sync-Merge that fully decouples computation and inter-host commu-

nication, making substantial performance gain.

The second and third categories of deficiency both stem from the lack of version aware-

ness in existing graph processing systems. When multiple versions of a large graph—

among which there exists a substantial common subgraph—are processed sequentially,

fetching each version as a standalone graph from persistent storage leads to inefficiency.

We mitigate such inefficiency by introducing a graph caching layer to a graph process-

ing system, enabling the construction of in-memory graph representation based on cached

contents and significantly improving overall system performance.

xiii



When multiple versions of a large graph are processed in parallel, maintaining each

version as a standalone graph in memory and processing it in isolation from other versions

incur memory and computation overheads. We redesign the representation and the process-

ing workflow of a multi-version graph, consolidating duplicated graph states across mul-

tiple versions via dynamic version splitting. Our approach improves the overall efficiency

of a graph processing system by reducing memory footprint and eliminating computation

related to redundant state transitions.
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CHAPTER I

Introduction

Large-scale graph processing plays an important role across numerous domains in to-

day’s big data analytics. We start this thesis with motivating examples of applying large-

scale graph processing to real-world problems. We then discuss state-of-the-art graph pro-

cessing systems adopting the “think like a vertex” paradigm and identify three categories

of deficiency. We highlight our contributions in addressing those categories of deficiency

and conclude this chapter with our thesis statement.

1.1 Large-Scale Graph Processing and Its Applications

Graphs are everywhere. With vertices representing entities and properties and edges

representing relations and connections among them, graphs are suitable for expressing real-

world data in numerous domains. Such real-world graphs are usually large, consisting of

millions of vertices and billions of edges.

With the ubiquity of large graphs comes the broad application of large-scale graph

processing. For instance, web pages can be classified using label propagation in a web

graph, where vertices represent web pages and edges represent overlapping keywords [23].

New movies are recommended to users according to their interests. Such personalized rec-

ommendation can be achieved by performing matrix factorization over a graph capturing

existing user-movie rating information [5,6]. Graph-based outlier detection can be applied

1



to intrusion detection and spam detection [68]. Influential and popular users in a social

network graph can be identified by executing a ranking algorithm, such as PageRank [13],

over the graph [38]. Graph-based clustering algorithms have proven useful for image la-

beling [70] and bioinformatics, such as clustering gene expression data [76, 80].

When multiple graphs share a substantial subgraph, they can be considered multiple

related versions of a graph—a multi-version graph. A prominent example of a multi-ver-

sion graph is a collection of snapshots of an evolving graph, such as a social network.

Multi-version graph processing is important, because it enables analysis of characteristics

embedded across graph versions. In a social network, for example, the change in closeness

between users can be studied by executing a shortest path algorithm on temporal snapshots

of the network [53]. As another example, the evolving centrality scores of scientific re-

searchers in a co-authorship graph can be captured by executing PageRank on its temporal

snapshots [37].

1.2 Think like a Vertex: Abstractions and Systems

Mainstream graph processing systems adopt a “think-like-a-vertex” programming para-

digm, proposed by Pregel [46]. Graph algorithms are designed from the perspective of a

single vertex, leading to vertex-centric computation. Such computation is expressed via a

vertex-centric programming abstraction, for example, in a compute function in Pregel or in

a series of gather-apply-scatter functions in PowerGraph [26].

To execute a graph algorithm, its vertex-centric computation is iteratively applied to all

vertices of a graph. Influenced by Pregel, the majority of graph processing systems, such as

Giraph [1], Mizan [36], GPS [57], and Pregel+ [78], follow the bulk synchronous parallel

(BSP) model [69]. In this model, graph processing progresses in iterations called super-

steps, in which computation and communication alternate. Computation in a superstep

is performed on graph state as viewed at the end of the previous superstep. State update

of a vertex within a superstep remains invisible to the rest of the graph until computation

2



over the entire graph has completed in that superstep. Communication, in the form of in-

ter-vertex messaging or vertex state synchronization, takes place after the completion of

computation.

There exist systems that employ asynchronous graph execution, such as Distributed

GraphLab [43] and its successor PowerGraph [26], Trinity [60], and GRACE [72]. In asyn-

chronous execution, vertex-centric computation is no longer aligned at superstep bound-

aries. Vertx state update is immediately visible to subsequent computation, potentially

leading to faster convergence of graph state.

1.3 Deficiency in State of the Art

Despite significant advances in large-scale graph processing system design in recent

years, such systems often yield suboptimal performance in common scenarios. In this the-

sis, we investigate three categories of deficiency in state-of-the-art systems: performance

penalty due to computation-communication coupling, redundant I/O in graph fetching for

sequential multi-version graph processing, and redundant memory state and computation

in parallel multi-version graph processing.

1.3.1 Computation-Communication Coupling

Computation and communication are tightly coupled in graph processing systems em-

ploying the BSP model. No vertex can proceed to the next iteration of computation until all

vertices have been processed in the current iteration and graph states have been synchro-

nized across all hosts. Especially for computationally-light graph algorithms, this coupling

of computation and communication incurs significant performance penalty [75].

1.3.2 Redundant Graph Fetching

Multi-version graph processing is an important and common scenario in big data an-

alytics. In such a scenario, each version corresponds to a snapshot of an evolving graph;

3



a graph processing system iterates over all input versions and applies a user-defined al-

gorithm to them, one at a time. Multi-version graph processing enables the analysis of

characteristics embedded across different versions. For example, computing the shortest

distance between two users across multiple versions of a social network captures the vary-

ing closeness between them [53]. Computing the centrality scores of scientific researchers

across multiple versions of a co-authorship graph demonstrates their evolving impact [37].

A key element in multi-version graph processing is efficient arbitrary local version

switching. Version switching refers to the preparation of the next to-be-processed version

after computation completes on the current version. Such a procedure can be arbitrary, be-

cause the sequence of to-be-processed versions cannot be predetermined by the underlying

system. It is local in that the next version commonly resides in the vicinity of the current

version, demonstrating version locality.

Arbitrary local version switching has not been fully addressed before, in particular,

from the perspective of the entire multi-version processing workflow. Due to version un-

awareness, mainstream systems, such as Pregel [46] and PowerGraph [26], perform version

switching by discarding the in-memory representation of the current version and loading

the next version in its entirety from persistent storage. Such an approach incurs substantial

version switching time. Existing multi-version processing systems [21,37,39,45] expedite

the version-switching procedure by graph-delta integration. Specifically, the next version

is constructed by integrating the current version with the delta representing the difference

between the two versions. Albeit efficient, they either lack the support for arbitrary local

switching [21, 39], incur high neighbor access penalty during computation [37], or lead to

high memory overhead [45].

1.3.3 Redundant Graph State and State Transition

When multiple versions of a graph are processed in parallel, directly extending a ver-

sion-unaware graph processing system would lead to the instantiation of multiple instances
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of the graph processing system, each processing one version. Chronos [31] improves the

performance of parallel multi-version graph processing by exploiting locality across ver-

sions: when a vertex is scheduled for processing, Chronos executes the vertex-centric algo-

rithm on all versions. Such version-first approach leads to substantial gain with respect to

the default vertex-first approach, where all vertices of a graph version are processed before

those of a subsequent version.

Neither the version-unaware approach nor Chronos reduces the total memory footprint

of a graph processing system or the total computation efforts, leading to redundant in-

memory graph state and redundant state transition. In both approaches, all versions pro-

cessed in parallel need to have their vertex state residing in memory. When the state of a

vertex remains the same across multiple versions, however, it is sufficient to maintain only

one copy. Regarding computation cost, when a vertex with two versions is activated for

computation, if all input states in both versions are identical and the graph algorithm is

functional and deterministic, then only one version needs to be processed. The result can

be shared between the two versions, saving the effort for another round of computation that

would lead to the identical state transition for another version.

1.4 Contributions of the Thesis

In this thesis, we address the above three categories of deficiency in state-of-the-art

graph processing systems.

1.4.1 Computation-Communication Decoupling with Compute-Sync-Merge

Intuitively, if graph processing systems can fully decouple computation from commu-

nication, they should achieve higher performance because they can better pack communi-

cation and computation. We argue that fully decoupling computation from communication

can be achieved; it requires (i) restricted access to only local state during computation and

(ii) independence of inter-host communication from computation. We call the combination
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of both conditions local sufficiency. Conceptually, local sufficiency allows all vertices to

always make progress without blocking on input from remote vertices (i.e., those residing

on remote hosts). Because all vertices are executing in parallel, local sufficiency can intro-

duce state inconsistency in two ways: (1) vertices might make progress using incomplete

input, and (2) replicated vertices might make progress—in parallel—on different sets of

inputs. As we will show in the paper, resolving both types of inconsistencies can be done

efficiently.

Local sufficiency is not efficiently supported by today’s state of the art systems. Syn-

chronous systems, by design, do not support local sufficiency due to their intrinsic com-

putation-communication coupling. Even systems that implement asynchronous execution

only partially achieve local sufficiency. For example, PowerGraph [26]’s asynchronous

mode satisfies local sufficiency by distributed scheduling. If a vertex-centric function uses

remote state, then it will not be marked as ready for execution until its remote input be-

comes locally available after state propagation. Thus, the function itself is not locally

sufficient. Furthermore, the scheduling overhead can be substantial. GiraphUC [29] avoids

such a cost by concentrating computation on master vertex replicas, efficiently supporting

local sufficiency for edge-cut partitioning. But this approach does not support vertex-cut

and thus cannot benefit from the latter’s balanced workload distribution.

Towards efficient support for local sufficiency, we set two design goals. The first goal

is to activate vertex-centric computation on all vertex replicas, enabling each replica to

independently update its local state. This relaxed consistency model would support vertex-

cut and enable fast local state propagation without inter-host coordination. The second goal

is to enforce local sufficiency at the programming abstraction level. This would eliminate

any related coordination overhead at the system level. Additionally, any inconsistency

would be resolved by user-defined functions, which are coordinated across all hosts to

achieve globally-consistent state upon convergence.

Following these design choices, we introduce a new programming abstraction called
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Compute-Sync-Merge (CSM). The Compute abstraction (Compute for short) defines lo-

cally-sufficient computation, which is iteratively and independently applied to all vertex

replicas on each host. Local sufficiency is enforced by the abstraction. Compute has ac-

cess only to local input state. The Sync and Merge abstractions (referred to as Sync and

Merge henceforth) coordinate the execution on all hosts. The former is in charge of state

propagation and the latter is responsible for the merging of remote updates with local state.

Together, they resolve the inconsistency caused by locally-sufficient computation.

We demonstrate the expressiveness and simplicity of CSM by implementing several

widely-used single-phase algorithms, such as PageRank, single-source shortest path (SSSP),

and weakly connected component. The CSM abstraction also provides a new dimension for

designing efficient locally-sufficient multi-phase graph algorithms. In general, multi-phase

algorithms limit the performance gains of locally-sufficient computation due to global syn-

chronization at phase boundaries [29]. CSM, however, enables the design of multi-phase

algorithms in which (i) locally-sufficient computation freely proceeds beyond phase bound-

aries and (ii) conflicting state due to computation with local input is resolved in Sync and

Merge. We exemplify such use of CSM with an efficient new design of a multi-phase

maximal bipartite matching algorithm.

We have fully implemented Hieroglyph, a graph processing system supporting CSM

on top of PowerLyra [19]. We extend PowerGraph’s gather-apply-scatter (GAS) abstrac-

tion [26] to realize the CSM abstraction, augmenting the portability of GAS-based algo-

rithms to CSM. Experiments with real-world graphs show that Hieroglyph consistently and

significantly outperforms state of the art systems. It outperforms PowerGraph and Power-

Lyra by up to 22x and GiraphUC by up to 53x, achieving a median speedup of 3.5x and an

average speedup of 6x among all algorithm-dataset combinations in our evaluation.
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1.4.2 Sequential Mulit-Version Processing with Graph Cache

Towards efficient support for arbitrary local version switching, a system must balance

contradicting requirements among three design dimensions: extensibility, compactness,

and neighbor access efficiency. Extensibility refers to the easiness of creating a new graph

version by extending the current one. Compactness refers to the memory overhead related

to version-switching support. Neighbor access efficiency refers to the speed of neighbor

access by a graph computing engine.

We present Version Traveler (VT) [33], a multi-version graph processing system en-

abling fast arbitrary local version switching. From a holistic view, VT balances the re-

quirements in all three dimensions of the design space. VT consists of two novel compo-

nents: (i) a hybrid-compressed-sparse-row (CSR) graph supporting fast delta integration

while preserving compactness and neighbor access speed during graph computation, and

(ii) a version delta cache that stores the deltas in an easy-to-integrate and compact format.

Conceptually, the hybrid-CSR graph represents the common subgraph shared among mul-

tiple versions in the CSR format. As a result, the subgraph is compactly stored in memory

and yields high neighbor access speed—both known advantages of the CSR format. Dif-

ferences among versions are absorbed by a hierarchical vector-of-vectors (VoV) represen-

tation and placed in the delta cache, leading to high version-switching speed thanks to its

ability to overcome CSR’s lack of extensibility.

We have implemented Version Traveler inside PowerGraph [26] by augmenting its

graph representation layer with VT’s hybrid-CSR graph and version delta cache. Our

evaluation with realistic graphs shows that VT significantly outperforms PowerGraph in

multi-version processing: VT runs 23x faster with a mere 15% memory overhead. VT also

outperforms designs proposed in state-of-the-art multi-version processing systems, such as

log delta, bitmap delta, and multi-version-array, achieving up to 90% improvement when

jointly considering processing time and resource consumption.
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1.4.3 Computation and Memory State Sharing with Kairos

To address the deficiency related to redundant in-memory graph state and state tran-

sition, we propose Kairos, a new graph processing system that provides system support

for parallel multi-versioned graph processing. Built on PowerGraph, Kairos can execute a

vertex-centric graph algorithm expressed in the gather-apply-scatter (GAS) model. When

multiple versions of one graph are specified as input, Kairos automatically and efficiently

executes the same algorithm in parallel over the specified versions, exploring and exploit-

ing sharing opportunities along with the progress of the execution. Specifically, Kairos

consolidates vertex state identical across multiple versions, maintains one copy per shared

state, performs one state transition for each shared state in an iteration, and accomodates

new vertex state along the course of execution, for example, when previously shared state

between two versions begins to diverge. We have evaluated Kairos across several algo-

rithms over large data sets. Our results show that Kairos can outperform PowerGraph by

up to 11.64x when processing 20 versions of realistic large graphs in parallel.

1.5 Thesis Statement

Improving the performance of large-scale graph processing systems is of vital impor-

tance. In this thesis, we design and implement three innovative graph processing systems,

significantly enhancing state of the art by (i) improving the computation stage performance

of single-version graph processing by decoupling computation and communication, (ii) im-

proving the graph fetching performance of sequential multi-version graph processing via

graph state caching, and (iii) improving the efficiency of the computation stage of paral-

lel multi-version graph processing by consolidating graph state and eliminating redundant

state transition.
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CHAPTER II

Hieroglyph: Locally-Sufficient Graph Processing via

Compute-Sync-Merge

This chapter starts with a demonstration of the performance penalty related to computa-

tion-communication coupling and edge-cut partitioning with respect to vertex-cut, justify-

ing the need for a system capable to decouple computation and communication over vertex-

cut partitioning. We then introduce the CSM abstraction in Section 2.2 and present Hiero-

glyph, a CSM-compliant system, in Section 2.3. Section 2.4 demonstrates Hieroglyph’s

superiority by comparing its performance with three state-of-the-art systems. Related work

is discussed in Section 2.5. We then conclude the chapter in Section 2.6.

2.1 Deficiency of Existing Execution Modes

Synchronous Model. In a synchronous model, vertex-centric computation proceeds in

supersteps. Computation and communication iterations alternate. Such coupling can cause

a significant performance penalty. Figure 2.1a shows the instantaneous idle time1 due

to communication when running SSSP on a Twitter followers graph with PowerGraph.

Along the course of the execution, the idle time remains substantial, indicating considerable

blocking of computation due to communication.
1The instantaneous idle time is the percentage of execution time that is idle at time t. That is, if in a time

interval (t, t +dt), the total idle time is pdt, then the instantaneous idle time at time t is p.
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Figure 2.1: Deficiency when executing single-source shortest path (SSSP) over a Twitter
followers graph with PowerGraph and Giraph on 16 Amazon EC2 c3.8xlarge
instances. (a) Instantaneous idle time (in gray) of PowerGraph. (b) Comparison
of execution modes and graph partitioning.

Asynchronous Model. Asynchronous execution [26] decouples computation and com-

munication at the vertex boundary: per-vertex computation-communication tasks are no

longer aligned by supersteps and can be independently performed, improving the computa-

tion-communication interleaving. Such cross-vertex computation-communication decou-

pling partially satisfies local sufficiency. For a given vertex, however, the coupling still

exists, albeit hidden behind the scheduling of the processing system. Regarding perfor-

mance, the scheduling overhead, along with the communication deficiency due to the lack

of message batching and increased locking overhead, causes asynchronous execution to

underperform synchronous execution for several common algorithms, despite the former’s

faster convergence [42]. For example, Figure 2.1b shows that PowerGraph’s synchronous

execution significantly outperforms its asynchronous mode, when running SSSP over the

Twitter graph.

GiraphUC [29] proposes barrierless asynchronous model, achieving local sufficiency

with the observations that (i) inter-host communication is much more expensive than intra-

host communication and (ii) computation can proceed with partial input state propagated

via intra-host communication. Remote input state is consumed when it becomes avail-

able. GiraphUC supports local sufficiency over edge-cut partitioning. That is, workload

related to a vertex—including vertex state update and message passing—must be con-
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Figure 2.2: The four phases of one superstep in PowerGraph’s GAS model, illustrated with
a vertex with two replicas

ducted by only one host. Prior work [19,26] shows that edge-cut partitioning leads to more

skewed computation workload and larger memory footprint, compared to vertex-cut. Fig-

ure 2.1b compares the performance of PowerGraph synchronous execution with Giraph [1],

an open-source implementation of Pregel. Using vertex-cut to produce balanced graph par-

titions and evenly distribute computation workload, PowerGraph yields a 4x speedup with

respect to Giraph, the latter supporting only edge-cut.2 Given the substantial performance

discrepancy between vertex-cut and edge-cut, enabling local sufficiency only for edge-cut

would miss an important opportunity for performance improvement.

2.2 Compute-Sync-Merge

In this section, we discuss the Compute-Sync-Merge (CSM) abstraction, including its

challenge, design, workflow, consistency model, and expressiveness.
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2.2.1 Challenge

Local sufficiency requires (i) the restricted access to only local state available at the

time of vertex-centric computation and (ii) the independence of inter-host communication

from local computation. Most existing abstractions cannot fully support local sufficiency,

because of the use of remote input state in vertex-centric computation. Such usage is ex-

pressed, for example, in the forms of message exchanging in Pregel, vertex state synchro-

nization in Distributed GraphLab [43] and Cyclops’ distributed immutable view [18], and

distributed gathering/scattering in PowerGraph. GiraphUC achieves local sufficiency for

edge-cut but lacks support for vertex-cut.

The unique challenge in supporting local sufficiency on vertex-cut stems from the

partial distribution of vertex-centric computation onto multiple hosts, each maintaining a

replica of the vertex. Take PowerGraph’s GAS abstraction as an example (cf. Figure 2.2).

In order to balance the workload, PowerGraph divides vertex-centric computation into three

stages: gather, apply, and scatter. The gather and scatter stages are responsible for collect-

ing input state from and propagating updated state to a vertex’s neighbors, respectively;

they are distributed to all replicas. The state of a vertex is, however, updated only by the

master replica in the apply stage. This design leads to computation-communication cou-

pling because of dependencies among vertex replicas during computation. On the one hand,

state propagation—in the form of input state in the gather stage and vertex state in the ap-

ply stage—is intertwined with computation. On the other hand, coordinated stage transition

(i.e., from gather to apply to scatter) across all replicas of a vertex also requires commu-

nication. Local barrier and message buffering—techniques proposed in GiraphUC—target

state-propagation-related coupling and cannot resolve the additional dependency due to

coordinated stage transition.

2Differences in systems implementation also contribute to the performance discrepancy.
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Table 2.1: CSM Abstraction
compute(Du, Nu)→ (Dnew

u , Nnew
u )

sync(Du)→ Mu

merge(Du, Nu, Mu)→ (Dnew
u , Nnew

u )

Table 2.2: Notation
Symbol Semantics
Du data of vertex u
D(u,v) data of edge u→ v
Nu neighboring states of u, i.e.,

⋃
v∈nghr(u){Dv,D(u,v)}

Mu final sync data for vertex u
Ilocal
u local sync data for vertex u

Imirror
u sum of sync data from mirrors of u

Imaster
u interim sync data for u at master

2.2.2 Abstraction and Workflow

To achieve local sufficiency in a vertex-cut abstraction, we make two design decisions.

First, for vertex-centric computation on each host, we confine the input scope to local state.

If such computation consists of multiple stages (e.g., gather-apply-scatter), we activate

all stages on all vertex replicas and enable autonomous stage transition without inter-host

coordination. This allows computation to proceed at full speed. Second, synchronization

of vertex state and merging of local and remote states are needed to ensure the consistency

of the final converged graph state across all hosts.

Following this reasoning, we design Compute-Sync-Merge (CSM) (cf. Table 2.1). We

discuss CSM along its workflow (cf. Figure 2.3).

A CSM-compliant system maintains two groups of worker threads, one for computation

and the other for communication. Locally-sufficient computation progresses in iterations,

independently on each host. For an iteration, the computation workers invoke a Compute

function on all active vertices. A vertex is activated for the next iteration, if it receives

messages as a result of the current iteration of computation. The next iteration starts im-

mediately after the completion of the current iteration, without inter-host communication.

The communication workers run in parallel with the computation workers, synchroniz-
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Figure 2.3: Interaction of computation, synchronization, and merging in CSM workflow,
illustrated with two hosts (placed left and right). One compute thread and one
synchronization thread are shown for each host. Logical time progresses down-
ward.

ing local updates across all vertex replicas with a Sync function. State synchronization also

progresses in iterations. Contrary to computation iterations, which are locally maintained,

synchronization iterations are aligned across all hosts by global barriers. Upon completion

of a synchronization iteration, states propagated from remote hosts are merged with the

local states used for locally-sufficient computation via a Merge function.

2.2.3 Relaxed Consistency

To support local sufficiency on vertex-cut, CSM employs a relaxed consistency model

for vertex-centric computation. Specifically, the state of a local replica can be updated

independently to other replicas of the same vertex. No ordering constraint is imposed on

such updates. Such a model decouples the progress of locally-sufficient computation on

each host. Computation is no longer restrained by inter-host communication.

CSM’s relaxed consistency is weaker than consistency models in existing synchronous

and asynchronous vertex-centric abstractions. Prior work requires that either vertex states

be always in sync, or mirrors fall behind masters. CSM, in contrast, allows vertex states

to be updated by all replicas. Resolving the inconsistency caused by parallel updates, as
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well as the achievement of eventual consistency upon task completion, depends on the

collaboration of Compute, Sync, and Merge.

2.2.4 Expressiveness

Algorithms can be expressed by CSM, if they can tolerate transient inconsistency: that

is, inconsistent states due to local updates can be resolved by Sync and Merge and do not

affect the correctness of the final converged states. Several common graph algorithms, such

as SSSP, weakly connected component, PageRank, maximal bipartite matching, between-

ness centrality, and approximate diameter, are tolerant of transient state inconsistency and

can be expressed by CSM. We have implemented the first four algorithms.

CSM’s expressiveness of inconsistency resolution can lead to better performance, if the

gain from local sufficiency outweighs the cost incurred by inconsistency resolution. Such

is the case for the four algorithms studied in this paper. Expectedly, with such expressive-

ness comes the increase of complexity in algorithm design. We evaluate both aspects in

Section 2.4.

Algorithms intolerant of local inconsistency can also be expressed in CSM, albeit with-

out the potential performance gain from local sufficiency. This is because stronger con-

sistency can be flexibly reintroduced to the workflow via the three functions in CSM. For

example, GAS can be expressed in CSM by (i) reducing the collection of local gather states

to Compute, (ii) reducing the propagation of gather states, the generation of the updated

master state in the apply function, and the synchronization of the master state, to Sync, and

(iii) reducing the vertex state update in the apply function, as well as local scatter, to Merge.

GAS algorithms can thus be converted to their corresponding CSM versions.

2.3 Hieroglyph

Hieroglyph is our prototype implementation of a CSM-compliant graph processing sys-

tem. It is implemented as an integrated component of PowerLyra [19], which is, in turn,
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Table 2.3: Hieroglyph’s Implementation of CSM
Compute
gather(Du, D(u,v), Dv)→ acc
sum(acc left, acc right)→ acc
apply(Du, acc)→ Dnew

u

scatter(Dnew
u , D(u,v), Dv)→ Dnew

(u,v)

Sync
sync switch(Du)→ Ilocal

u

sync sum(Ilocal
u left, Ilocal

u right)→ Ilocal
u

sync apply(Ilocal
u , Imirror

u )→ Imaster
u

sync commit(Ilocal
u , Imaster

u )→ Mu

Merge
merge apply(Du, Mu)→ Dnew

u

merge scatter(Dnew
u , D(u,v), Dv, Mu)→ Dnew

(u,v)

built on PowerGraph [26]. Hieroglyph extends PowerLyra and PowerGraph’s vertex-cen-

tric abstraction to support CSM. It implements the CSM workflow in a standalone pro-

cessing engine, parallel to existing ones in PowerGraph and PowerLyra. It also extends

PowerGraph’s graph analytics toolkit with algorithms implemented with the CSM abstrac-

tion.

2.3.1 Implementation of CSM in Hieroglyph

Hieroglyph decomposes the CSM abstraction into several primitive functions (cf. Ta-

ble 2.3). We detail this implementation along Hieroglyph’s workflow.

Compute. In each locally-sufficient computation iteration (cf. Algorithm 1, Line 3), the

computation workers iterate through all active local vertices. Vertex-centric computation

is implemented in a GAS style. The reuse of the GAS abstraction in CSM’s Compute

increases the portability of existing GAS-based algorithms to CSM. For each vertex, in-

formation regarding its neighbor vertices and edges is accumulated through a gather-sum

function pair or via a sum over messages sent by a previous scatter stage. Such information

is then used to update the vertex state via an apply function. A scatter function concludes

the vertex-centric computation by updating neighbor edges according to the new vertex
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Algorithm 1 Overall Execution Flow
1: /* executed by compute workers */
2: while true do
3: compute an iteration
4: if sync worker state == INACTIVE then
5: sync worker state←META
6: resume sync workers for metadata sync
7: else
8: if sync done == false then
9: continue /* to next iteration of computation */

10: sync done← false
11: if sync worker state == META then
12: if has updated vertices == 0 then
13: /* all hosts have converged */
14: terminate computation
15: else
16: sync switch /* prepare sync data */
17: sync worker state← DATA
18: resume sync workers for data sync (cf. Algo. 3)
19: else
20: sync worker state← INACTIVE
21: merge

state. Hieroglyph’s Compute differs from PowerGraph’s GAS in that (i) all of its three

stages are executed on all active vertex replicas and (ii) its stage transition is autonomous,

without inter-host coordination.

Sync. After an iteration of computation, the computation workers resume the communi-

cation workers to perform metadata synchronization (cf. Algorithm 1, Line 6). They then

continue with locally-sufficient computation. The goal of metadata synchronization is to

achieve consensus among all hosts regarding the set of to-be-synchronized vertices. At

the end of the metadata synchronization, if no progress can be made by any host since

the last synchronization (cf. Algorithm 1, Line 12), then the computation has completed.

Otherwise, computation workers invoke a sync switch function on to-be-synchronized ver-

tices. The purpose of sync switch is to create a standalone copy of the subset of vertex state

used for communication, so that subsequent computation can freely proceed, updating ver-

tex state without conflicting with communication. After switching state, the computation
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Algorithm 2 Execution Flow: Metadata Synchronization
1: /* executed by communication workers */
2: has updated vertices← local updated vids.count()
3: ∑

all hosts has updated vertices
4: /* exclude single-replica (i.e., internal) vertices */
5: updated vids← local updated vids − internal vids
6: sync updated vids across all hosts
7: sync done← true

Algorithm 3 Execution Flow: Data Synchronization
1: /* executed by communication workers */
2: for u in updated vids do
3: if u is not master copy then
4: send Ilocal

u to master
5: global barrier
6: for u in updated vids do
7: if u is master copy then
8: Imaster

u ← sync apply(Ilocal
u , Imirror

u )
9: send Imaster

u to mirror hosts
10: global barrier
11: for u in updated vids do
12: Mu← sync commit(Ilocal

u , Imaster
u )

13: sync done← true

workers resume locally-sufficient computation tasks, delegating vertex state synchroniza-

tion to the communication workers.

The vertex state synchronization is divided into three stages, separated by global barri-

ers (cf. Algorithm 3). In the first stage, all mirror replicas (Imirror
u ) are sent to their corre-

sponding master hosts. In the second stage, each host generates intermediate master copy

(Imaster
u ) by combining master replicas with received mirror state in a sync apply function

and distributes the master copy to the corresponding mirroring hosts. In the third stage,

each host creates the final merging state (Mu) for all vertices participating in the current

synchronization by combining the local synchronization state and the master copy in a

sync commit function.

Merge. Upon communication completion, the computation workers enter the merging

stage (cf. Algorithm 1, Line 21). They first use a merge apply function to merge remote
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Algorithm 4 SSSP in CSM
Compute
gather(Du, D(u,v), Dv): no-op
sum(a, b): return min(a, b) /* message combiner */
apply(Du, acc): Du = min(Du, acc)
scatter(Du, D(u,v), Dv): /* to out neighbors */

if changed(Du) and (Du + D(u,v) > Dv) then
send msg(v, Du + D(u,v))

Sync
sync switch(Du): Ilocal

u = Du
sync sum(a, b): return min(a, b)
sync apply(Ilocal

u , Imirror
u ): Imaster

u = min(Ilocal
u , Imirror

u )
sync commit(Ilocal

u , Imaster
u ): Mu = Imaster

u

Merge
merge apply(Du, Mu): Du = min(Du, Mu)
merge scatter(Du, D(u,v), Dv, Mu): /* to out neighbors */

if changed(Du) and (Du + D(u,v) > Dv) then
send msg(v, Du + D(u,v))

state with the local counterpart. Another merge scatter function is then invoked to update

neighbor edges according to the newly merged state.

2.3.2 Single-Phase CSM Algorithm Design: SSSP

We exemplify single-phase CSM algorithm design with SSSP (cf. Algorithm 4). Its

Compute section is expressed similarly to its counterpart in common vertex-centric ab-

stractions [26]. If the shortest distance of a vertex changes due to apply, it notifies its

neighbors in scatter. Messages are combined with the min operator, as shown in sum.

The Sync section involves the propagation of the minimum shortest distance among all

replicas. In order to achieve that, sync switch first makes a copy of the local vertex state,

which is then propagated from mirror replicas to the master. The shortest distances from

mirror replicas are combined with the min operator in sync sum. The intermediate master

value is the minimum of the shortest distance of the master replica and that of the received

mirror replicas. Such a value is then broadcasted to all mirror replicas. Sync commit estab-
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lishes the intermediate master value as the final merge value.

As for Merge, merge apply and merge scatter have identical functionality to their coun-

terparts in the Compute section. Thus, if the local vertex state has a shortest distance that

is no larger than the merge value, then the merge value is ignored. This is the case when

the current replica contributes the minimum shortest distance to the previous synchroniza-

tion iteration. It can also happen because locally-sufficient computation further advances

the vertex state between the previous synchronization iteration and the merging operation.

When merging, the current local vertex state may have become smaller than the minimum

shortest distance of all replicas at the time of the previous synchronization. Otherwise, the

current local state is larger than the merge value and is thus overwritten by the latter in

merge apply. Such update is then propagated to local neighbors in merge scatter.

In summary, SSSP demonstrates the simplicity and elegance of algorithm design using

CSM. Compute handles locally-sufficient computation and is identical to PowerGraph’s

GAS implementation, facilitating design reusing. In addition, both the alignment of all

vertex replicas to a consistent value in Sync and the merge of synchronized consistent state

with local vertex state in Merge rely on the same message combining and vertex updating

logic in the sum and apply functions of Compute.

The CSM implementation of SSSP is guaranteed to converge to the correct final graph

state. This is because, if a destination vertex vd is unreachable from the source vertex

vs, then vd converges upon algorithm initialization (i.e., ∞). If vd is reachable, then let n

denote the minimum number of vertices along the shortest path(s) from vs to vd (inclusive).

vd enters the final converged state within n−1 iterations of synchronization: after at most

i iterations, vertices i steps away from vs receive the correct final states, propagated via

scatter or merge scatter.
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Figure 2.4: Illustration of bipartite matching in CSM. Each circle represents a vertex. The
number inside a circle represents the id of the vertex with which the center ver-
tex (represented by the circle) currently matches. A circled “R” represents the
revoked state. An arrow associated with “R{vid}” represents a local revocation
message with vid as its payload.

2.3.3 Mulit-Phase CSM Algorithm Design: Bipartite Matching

Multi-phase algorithms impose new challenges to locally-sufficient computation [29].

Due to the different functionality across computation phases, global synchronization is
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generally required to guarantee the correctness of execution. In addition, messages sent

from a phase to be processed by the subsequent phase must be hidden until phase switching.

Otherwise, they will be combined with messages targeting at the current phase, leading to

erroneous results. As a result, locally-sufficient computation is applied only phase by phase

in GiraphUC, reducing the performance gain.

In CSM, when (i) progress can be made across algorithm phases based only on local

input state and (ii) inconsistent vertex state as a result of cross-phase locally-sufficient

computation can be fixed without affecting the correctness of the final converged graph

state, locally-sufficient computation can freely proceed across phase boundaries, leading to

potentially high-performance algorithm design.

We demonstrate the potential of CSM in multi-phase algorithm design with our imple-

mentation of the bipartite matching algorithm. We adapt the four-phase matching algorithm

in Pregel [46] for CSM’s Compute. When applying it to locally-sufficient computation with

no inter-host coordination, that algorithm produces a maximal matching on each comput-

ing host. Inconsistent final state may occur, nevertheless, in the form of vertices having

different matching state across multiple replicas. Such inconsistency is resolved in Sync

and Merge of the CSM version of the matching algorithm.

Bipartite Matching by Example. We use an example to describe bipartite matching in

CSM, shown in Figure 2.4. Detailed implementation of the algorithm can be found in Algo-

rithms 5–7. The input graph (cf. Figure 2.4a) has five vertices, two on the left and three on

the right, with five edges connecting them. Suppose the graph is partitioned onto three hosts

(cf. Figure 2.4b). We follow the execution of the algorithm step by step until the comple-

tion of the second iteration of synchronization and merging (shown in Figures 2.4d–2.4k),

reaching the state shown in Figure 2.4c. Note that, for bipartite matching, CSM confines

the resumption of communication workers to the start of the four-phase matching cycles.

The semantics of one iteration of computation in CSM’s overall execution flow (cf. Algo-

rithm 1, Line 3) thus refers to a cycle of four-phase matching. Intermediate matching state
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within a cycle is hidden from communication workers, simplifying the synchronization.

In the first iteration of computation, matching is performed locally (cf. Figure 2.4d).

Local state is then synchronized (cf. Figure 2.4e), with the master replica of each vertex ac-

cumulating all local matching decisions. Each master replica then uses an arbitration func-

tion to resolve conflicting decisions. In our current implementation, each master replica

selects the matching decision with the minimum matching vertex id. Such decision is then

distributed to all replicas of a vertex and is used as its merge value.

Merge is separated into two steps in bipartite matching. In the first step, merge value

obtained from synchronization is used to correct local decisions (cf. Figure 2.4f). When a

local decision is corrected, it also sends a revocation message to its previous partner. For

example, on the left host, after v3’s local decision of matching with v2 is overwritten by the

merge value v1, v3 sends a message to v2, notifying its revocation of its previous matching

decision. In the second step (cf. Figure 2.4g), each vertex receiving revocation messages

checks the relevance of those messages. That is, whether the payload of a revocation mes-

sage matches the current matching decision of the receiving vertex. Irrelevant revocation

messages stem from global state synchronization: upon receipt of a revocation message, the

vertex’s state may have been updated to its globally consistent value. Since the receiving

vertex has rematched to a vertex different than the sending vertex, the sender’s revocation

of a previous matching becomes irrelevant and is ignored. Such are the cases for v2 and

v5 on the right host, each receiving an irrelevant revocation message from the other. When

a relevant revocation message arrives (e.g., v2 on the left host), the receiving vertex sets

its state to revoked, becomes unmatched, and then activates itself for the next iteration of

computation.3

The second iteration of computation progresses as the first one (cf. Figure 2.4h). Since

all revoked vertices have their local neighbors in a matched state, no process can be made.

In the subsequent synchronization (cf. Figure 2.4i), local revocations from the previous

3A revoked right vertex also needs to activates all its unmatched left neighbors.

24



merging phase are propagated globally. The revocation precedence adopted in the arbitra-

tion logic (cf. Algorithm 6) guarantees that revocation decisions overwrite matched state.

For example, regarding v2, the unmatched state (represented by ∅) prevails after a message

combination with a matching decision of v3.

The second iteration of merging proceeds as the first one (cf. Figures 2.4j and 2.4k), ap-

plying synchronized state and propagating local revocations in the first step and performing

or ignoring revocations in the second step. After the merging, the graph reaches the state

as shown in Figure 2.4c.

Algorithm Design Details. Algorithms 5–7 illustrate the CSM implementation of the bi-

partite matching algorithm.

The Compute section mirrors the four-phase matching algorithm in Pregel [46]. In

Phase 0, each unmatched left vertex sends a matching request to its unmatched right neigh-

bors. In Phase 1, each unmatched right neighbor grants matching to one requesting neigh-

bor (via replying the right neighbor’s vertex id) and declines the remaining requests (via

replying an empty message). In Phase 2, if a left vertex receives at least one grant message,

it then selects one such message, updates its own state to record the matching, and con-

firms with the matching right vertex (via replying its vertex id). In Phase 3, a right vertex

receiving a confirmation message records the matching by updating its own state.

For Sync, the key point is to achieve consensus on the state of a vertex. Vertex state is

propagated across all replicas. The arbitration follows revocation precedence: state from

a vertex with a “revoked” flag overwrites that from a normal (i.e., non-revoked) vertex

replica. If two vertices have the same “revoked” flag, then they have the same priority

and the arbitration is based on their matched state. In our current implementation, when

inconsistent local matching decisions occur, we favor the matching with the smallest vertex

id. Users are free to implement their own arbitration logic, as long as it guarantees forward

progress.

For Merge, merge apply is divided into two phases: Phase 0 is in charge of updating
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Algorithm 5 Bipartite Matching in CSM: Compute
Compute
gather(Du, D(u,v), Dv): no-op
sum(a, b): /* merge requesting/granting vid vectors */

return a.insert(b)
apply(Du, acc):

/* randomly select a message */
if acc.empty() then Du.msg = MAX
else Du.msg = random select(acc)
/* check phase */
if (iteration counter mod 4) == 2 then

if Du.msg != MAX then
Du.vid = Du.msg /* left becomes matched */

else send msg(u, ∅) /* keep activated */
if (iteration counter mod 4) == 3 then

if is right(Du) then
Du.vid = Du.msg /* right becomes matched */

else send msg(u, ∅) /* keep activated */
scatter(Du, D(u,v), Dv):

/* check phase */
if (iteration counter mod 4) == 0 then

/* if left and unmatched, scatter to all neighbors */
if is right(v) and (not is matched(Dv)) then

send msg(v, u)
if (iteration counter mod 4) == 1 then

/* scatter to all neighbors */
if is left(v) then

if v == Du.msg then send msg(v, u) /* grant */
else if (not is matched(Dv)) then

send msg(v, ∅) /* decline */
if (iteration counter mod 4) == 2 then

/* scatter to all neighbors */
if Du.msg == v then send msg(v, u) /* confirm */

local state with globally consistent state thanks to the arbitration in Sync; Phase 1 is for per-

forming local revocation. In Phase 0, the globally consistent state is authoritative, unless it

is a normal (i.e., non-revoked) and unmatched state. In that case, it will not be used to over-

write local state, thus preserving progress made by locally-sufficient computation. In other

cases, the local state is then aligned with the globally consistent state. If a local matching

decision is overturned, then the related vertex sends a revocation message, notifying the
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Algorithm 6 Bipartite Matching in CSM: Sync
Sync
sync switch(Du): Ilocal

u = Du
sync sum(a, b): /* arbitration */

if a.revoked == b.revoked then
/* same revocation precedence, compare vid value */
if a.vid ¿ b.vid then a.vid = b.vid

else if (not a.revoked) then a = b /* diff precedence */
sync apply(Ilocal

u , Imirror
u ):

Imaster
u = sync sum(Ilocal

u , Imirror
u )

sync commit(Ilocal
u , Imaster

u ): Mu = Imaster
u

locally-matched partner vertex.

A vertex enters Phase 1 of merge apply if and only if it receives local revocation mes-

sages. Such a vertex then determines whether its received messages are relevant. Recall

that a local revocation messages is relevant if its sender is the vertex with which the re-

ceiving vertex records a match confirmation. In this case, the receiving vertex resets its

matching state to unmatched (i.e., MAX) and turns on its “revoked” flag. Such local revo-

cation will be propagated to other replicas in the next iteration of synchronization. Due to

the revocation precedence in Sync, state propagated from revoked vertex replicas correctly

overwrite normal replicas. If, after revocation, a vertex becomes unmatched, then it needs

to re-enter the next round of computation. If such a vertex is on the right, it also needs to

reactivate all its unmatched left neighbors for the subsequent computation.

Correctness. The CSM implementation of bipartite matching is based on the original

Pregel implementation—a randomized maximal matching algorithm. Its correctness is de-

termined by the properties of the final graph state.

Definition II.1. A distributed randomized maximal bipartite matching algorithm is correct

if, upon graph convergence, (i) all replicas of a vertex are in the same state; (ii) if a vertex

is matched, then it matches with a vertex on the other side of the bipartite graph; (iii) if

a vertex vi matches with another vertex v j, then v j matches with vi; and (iv) if a vertex is

unmatched, then all its neighbors on the other side of the graph, if any, are matched.
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Algorithm 7 Bipartite Matching in CSM: Merge
Merge
merge apply(Du, Mu):

/* check merge phase */
if (merge counter mod 2) == 0 then

if (not Mu.revoked) and (not is matched(Mu)) then
return

Du.revoked = false
if Du.vid != Mu.vid then

/* local state is out-of-sync, revoke */
prev = Du; Du.vid = Mu.vid
if is matched(prev) then

/* need revocation, msg stored in merge msg */
send revoke msg(prev.vid, u)
if not is matched(Du) and is left(u) then

send msg(u, ∅) /* re-enter compute */
else

if merge msg.contains(u) then
/* msg is relevant. perform local revocation */
Du.vid = MAX ; Du.revoked = true
send msg(u, ∅) /* re-enter compute */

merge scatter(Du, D(u,v), Dv, Mu): /* to all neighbors */
if is right(u) and become revoked(u) and is left(v)

and (not is matched(Dv)) then send msg(v, ∅)

Regarding the four properties of the final graph state, the first addresses general con-

sistency of distributed graph state. The second property is the requirement of bipartite

matching. The third property is the consistency requirement of a matching. The fourth

property is the requirement of a maximal matching.

Theorem II.2. The CSM implementation of bipartite matching is correct.

We prove Theorem II.2 by proving the following lemmas.

Lemma II.3. Upon graph convergence, all replicas of a vertex are in the same state.

Proof. The final state of all replicas of a vertex vi is the same as the state decided by the

arbitration logic in the last synchronization iteration k related to vi. After that iteration of

synchronization, there exists no local update to vi at any host. This is because, any further
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local update to a replica of vi after k, due to either computation or revocation, leads to

another synchronization iteration k+1 related to vi, contradicting with the assumption that

k is the last synchronization for vi.

The consistent final state of vi is thus an outcome of the arbitration logic, which selects

one and only one value from all replicas of vi.

Lemma II.4. Upon graph convergence, if a vertex is matched, then it matches with a vertex

on the other side of the bipartite graph.

Proof. All matching decisions are results of local matching decisions, direct (on the same

host where the local matching takes place) or indirect (via propagation). Local matching

decisions are made according to the original proven-correct bipartite matching algorithm

used in Pregel. Left vertices thus only match with right vertices, and vice versa.

Lemma II.5. Upon graph convergence, if a vertex vi matches with another vertex v j, then

v j matches with vi.

Proof. Suppose, in the final graph state, vi matches with v j but v j does not match with vi.

For vi, the matching between vi and v j stems from a local matching decision made by

a host h maintaining the edge connecting vi and v j. The last state update of vi on h must be

because of the local matching decision. Note the time when the last update of vi on h takes

place as t.

At t, v j’s local state at h is “matched with vi,” due to the local matching decision. Since

v j’s final state is “not matched with vi,” the local state of v j on h must be updated at t ′,

t < t ′. At t ′, v j sends a local revocation message to vi, according to the two-phase merging

logic (cf. Algorithm 7). Such revocation message must be relevant to vi, because vi’s state

remains “matched with v j” after t. This relevant revocation message will then cause vi’s

local state to change, contradicting with the assumption that vi’s state is final after t.

Lemma II.6. Upon graph convergence, if a vertex is unmatched, then all its neighbors on

the other side of the graph, if any, are matched.
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Proof. Support vi and v j are neighbors on opposite sides of the graph and both unmatched

in the final graph state.

There are two cases where vi and v j can be both unmatched in the final graph. First,

vi and v j remain unmatched during the course of the computation. Second, at least one of

them becomes matched during the computation but then becomes unmatched due to CSM’s

revocation logic.

In the first case, there must be a host h maintaining the edge connecting vi and v j. As

a result, the two vertices cannot remain unmatched on h, according to the proven-correct

local matching algorithm.

In the second case, without loss of generality, assume that vi enters the final unmatched

state no earlier than v j. When vi enters the final unmatched state, it activates itself and/or

v j on h, according to the two-phase merging logic (cf. Algorithm 7). After the activation,

the two remain unmatched on h—an impossible condition according to the proven-correct

local matching algorithm.

According to Lemmas II.3–II.6, we have Theorem II.2 by Definition II.1.

2.3.4 Discussion

Termination Condition. In Hieroglyph, the termination condition is checked against the

total number of vertices updated across all hosts since the last synchronization (cf. Algo-

rithm 1, Line 12). An algorithm completes when this number becomes zero.4 In contrast,

in the synchronous mode of PowerGraph and PowerLyra, this condition is checked at the

superstep boundaries, owing to the tight coupling between computation and communica-

tion. If no progress can be made after an iteration of computation followed by an iteration

of communication, then the execution terminates.
4This statement holds for single-phase algorithms. It also holds for multi-phase algorithms whose CSM

implementations do not require global synchronization, such as our bipartite matching algorithm. For multi-
phase algorithms mandating global synchronization at the phase-switching boundaries, this condition marks
the end of a phase.
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The correctness of Hieroglyph’s termination condition derives from the following pat-

terns in the workflow (cf. Algorithm 1): (i) one iteration of computation (Line 3) is per-

formed after an iteration of merging (Line 21) and before the termination condition check-

ing (Line 12), and (ii) the termination checking, in turn, precedes the subsequent iteration

of synchronization (Line 18). If no progress can be made in any host since the last syn-

chronization, after incorporating the remote states in the merging stage and a subsequent

iteration of locally-sufficient computation, then no progress is possible. Convergence over

the entire graph has thus been achieved.

Computation-Communication Interleaving. In Hieroglyph, to achieve computation-

communication decoupling, we use two groups of worker threads: one for computation

and the other for communication. PowerGraph and PowerLyra, in contrast, rely on one

group of threads to perform both computation and communication.5

The two groups of worker threads in Hieroglyph are of an equal size, both equating

the number of cores on a computing host. Hieroglyph supports fine-tuning of computa-

tion-communication interleaving. On the one hand, in order to expedite the integration of

remote vertex state updates into locally-sufficient computation, the computation workers

separate vertices into chunks and perform computation one chunk at a time, yielding to the

communication workers at the chunk boundaries and thus improving their interleaving.6

On the other hand, Hieroglyph can be configured to enforce algorithm-specific restric-

tions on computation-communication interleaving. Our bipartite matching algorithm, for

instance, confines the interaction between the two groups of worker threads only to the

boundaries of a four-phase computation cycle. It ensures that local matching decisions,

instead of intermediate states during locally-sufficient multi-phase computation, are used

for synchronization.

5Our discussion focuses on threads used by the processing engine layer and does not include those used
for background communication.

6One iteration of computation over all local vertices is performed immediately after an iteration of merg-
ing, regardless of chunk configuration, in order to maintain the validity of the termination condition.
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Deferred Switching. Deferred switching refers to postponing the preparation of the syn-

chronization state from the beginning of the synchronization to when the state is accessed

by the communication workers. Specifically, it delegates the invocation of sync switch from

the computation worker (cf. Algorithm 3, Line 16) to the communication workers, before

the sending of Ilocal
u in the case of a mirror replica (cf. Algorithm 3, Line 4) and before

the invocation of sync apply for a master replica (cf. Algorithm 3, Line 8). In comparison,

the original workflow of the computation workers (cf. Algorithm 1) invokes sync switch

before the start of the communication, isolating the vertex state used by computation and

communication workers and thus guaranteeing lock-free access.

Deferred switching relaxes such isolation, exploiting benign data race to expedite state

propagation. For example, in SSSP (cf. Algorithm 4), sync switch involves a copy of the

locally-maintained shortest distance. Since this value is monotonically non-increasing, cor-

rectness remains intact if functions in Sync access a vertex state different from the one that

would have been copied by sync switch before the start of a synchronization iteration. It

is also beneficial to defer the access of the vertex state during synchronization: the use

of an updated state from one host potentially expedites convergence on other hosts. The

monotonically non-increasing property, combined with read-only access from the commu-

nication workers, justifies benign data race: access to vertex state from both worker groups

remains lock-free.

In Hieroglyph, we support both the eager switching design and the deferred switching

mode as an optimization.

Local Synchronous/Asynchronous Execution. The CSM abstraction does not define

whether locally-sufficient computation should be performed synchronously or asynchronously

on each host. Assume PowerGraph GAS for locally-sufficient computation. For an itera-

tion of computation, locally-synchronous execution involves running the gather, apply, and

scatter phases each in a dedicated iteration, with a local barrier separating two consecutive

phases. Messages produced in the current iteration can be processed only in the subsequent
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iteration. In locally-asynchronous execution [29,66,75], on the other hand, the three phases

are applied to a vertex as an integrated function. Messages sent from vertices vi to v j are

processed in the same iteration, if v j is processed after vi.

Locally-synchronous execution achieves lock-free access to vertex and edge data. Lo-

cally-asynchronous execution, in contrast, has the advantage of fast state propagation.

Hieroglyph supports both execution modes and, for locally-asynchronous execution, sup-

ports different consistency models, similar to the vertex/edge/full consistency in distributed

GraphLab [43].

Fault-Tolerance. Hieroglyph resorts to a checkpoint-based fault-tolerance mechanism [1,

26, 36]. Checkpoints are created by computation workers independently on each host.

The checkpoint interval is specified with respect to synchronization iterations, which are

globally consistent, and aligned at the beginning of a metadata synchronization stage. Only

vertex states and intra-host messages need to be checkpointed. This is because, at the time

of checkpoint creation, there exists no state associated with either Sync or Merge.7 When a

fault occurs, all hosts are rolled back to their most recent checkpoints.

2.4 Evaluation

We compare the performance of Hieroglyph with three state-of-the-art graph processing

systems and show the superiority of our proposed CSM abstraction.

2.4.1 Experiment Setup

To evaluate Hieroglyph’s performance, we use five realistic datasets (summarized in

Table 2.4). Livejournal [7, 40] describes the friendship relation in the LiveJournal social

network. Wiki [11, 12] compiles English Wikipedia pages. Twitter [38] captures the “who

follows whom” relation in the Twitter social network. Road [25] is the road network of
7The next Sync stage is pending and the previous Merge has completed, with all its related state incorpo-

rated into vertex state. Also recall that no inter-host message exists in locally-sufficient computation.
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Table 2.4: Graph datasets. Counts in parenthesis are for undirected graphs.
Dataset |V| |E|
Livejournal 4.8M 69.0M (85.7M)
Wiki 4.2M 101.3M (183.9M)
Twitter 41.7M 1.5B (2.4B)
Road 2.8M 6.8M (6.8M)
Web 118.1M 1.0B (1.7B)

the great lakes area of the United States. Web [11, 12] is a web graph generated by Web-

Base [24].

We evaluate Hieroglyph with four algorithms: bipartite matching (abbreviated as Bi-

part),8 weakly connected component (abbreviated as CC), PageRank, and SSSP, all com-

mon building-block algorithms in graph analytics.

We compare Hieroglyph with PowerGraph [26], PowerLyra [19], and GiraphUC [29].

PowerGraph uses vertex-cut partitioning and features efficient processing of high-degree

vertices. PowerLyra extends PowerGraph to support hybrid-cut, enhancing computation

efficiency for low-degree vertices. Hieroglyph augments PowerLyra with locally-sufficient

computation. Given such relation, regarding both design and implementation, a perfor-

mance comparison between Hieroglyph and its two predecessors identifies the gain of lo-

cally-sufficient computation over vertex-cut. GiraphUC is a vertex-centric graph process-

ing system providing locally-sufficient computation over edge-cut. Despite the discrepancy

between GiraphUC and Hieroglyph in terms of implementation details,9 a comparison be-

tween them sheds light on the potential of enabling locally-sufficient computation over

vertex-cut partitioning.

All experiments are conducted in a cluster of 16 Amazon EC2 c3.8xlarge instances,

each with 32 2.8GHz vCPUs, 60GB memory, and 10 Gbps network connection. All in-

stances run Ubuntu 14.04.2 LTS (Linux 3.13.0-54-generic). PowerGraph, PowerLyra, and

8Treating vertices with an even id as left vertices and the rest as right vertices enables the evaluation of
Bipart on all five datasets [56].

9Such discrepancy includes different vertex-centric abstractions, programming languages, and inter-host
communication mechanisms.
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Hieroglyph are compiled with gcc 4.8.2. GiraphUC is implemented on Giraph 1.1.0 and

run with Hadoop 1.0.4 and jdk 1.7.0 79. Each data point is the mean of at least three runs.

For all experiments, grid vertex-cut is used for PowerGraph by default, hybrid-cut with

ginger heuristics for PowerLyra and Hieroglyph, and hash-based edge-cut for GiraphUC.

PowerGraph and PowerLyra run in the synchronous mode by default.

2.4.2 Performance

Figure 2.5 shows that Hieroglyph outperforms all the other three systems for all algo-

rithm-dataset combinations in our evaluation. Hieroglyph’s speedup varies from 1.02x to

52.50x, with a median speedup of 3.54x and an average speedup of 6.00x.10

Comparing against PowerGraph and PowerLyra. In most settings, the performance im-

provement of Hieroglyph with respect to both PowerGraph and PowerLyra maximizes on

Road and minimizes on Twitter. This is because locally-sufficient computation is most ef-

fective with respect to synchronous execution, when local state propagation in synchronous

execution is severely hindered by global synchronization. Hieroglyph’s effectiveness is

thus amplified by Road, which has a large diameter and requires numerous supersteps—

each concluded with an iteration of global synchronization—for local state propagation in

PowerGraph and PowerLyra.11

The diminishing performance gap in Twitter can be understood from the perspective

of computation-communication balancing. Given its size, Twitter imposes considerable

computation workload on each participating host. On the one hand, it improves the com-

putation-communication interleaving in PowerGraph and PowerLyra, effectively reducing

the penalty of inter-host communication. On the other hand, it magnifies the computation

overhead of Hieroglyph caused by (i) repeated per-vertex computation to process asyn-

10GiraphUC runs in BSP mode (i.e., reducing to Giraph) in our Bipart measurement. This is because
GiraphUC terminates prematurely when executing our Bipart algorithm with locally-sufficient computation.
Note, however, that GiraphUC’s execution time obtained in BSP mode lower-bounds that with locally-suffi-
cient computation enabled, given the one-superstep-per-phase property of Bipart.

11Such pattern conforms to observations in GiraphUC [29].
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chronously-delivered input state and (ii) the need for resolving inconsistent local state.

Indeed, compared to Livejournal and Wiki, we observe an increase in vertex update rate—

an indicator of the computation efficiency—for PowerGraph and PowerLyra in the case of

Twitter. The update rate for Hieroglyph, however, drops in the case of Twitter. The opposite

trend thus reduces the performance improvement of Hieroglyph.

Results for Bipart show the superiority of Hieroglyph due to its ability to perform lo-

cally-sufficient computation across phase boundaries. Given that each of the four phases

in Bipart consists of only one superstep and that messages generated in one phase are al-

ways processed by the next phase, Hieroglyph’s performance would be identical to that of

PowerLyra if local sufficiency is confined within phase boundaries. In other words, sys-

tem-only support for locally-sufficient computation—without the flexibility introduced in

the CSM abstraction—would miss the opportunity of performance enhancement in Bipart.

With our CSM bipartite matching design, Hieroglyph achieves up to 3.58x speedup over

PowerGraph and 3.49x over PowerLyra.

Comparing against GiraphUC. GiraphUC achieves better performance than both Power-

Graph and PowerLyra for all four algorithms on LiveJournal, Wiki, and Road. It, however,

becomes inferior on Twitter and Web. GiraphUC’s performance variation mirrors that of

Hieroglyph. When the computation workload increases in the synchronous execution, the

relative effectiveness of local sufficiency reduces.

Yet, speedups of Hieroglyph over GiraphUC for Twitter and Web are larger than those

for the remaining datasets. Although the reduced effectiveness of locally-sufficient com-

putation affects both Hieroglyph and GiraphUC in Twitter and Web, Hieroglyph, with its

vertex-cut support via CSM, gracefully handles the increasing workload with respect to

GiraphUC.

Performance Breakdown. Figure 2.6a shows the performance breakdown of the compute

workers, which are responsible for both the compute and the merge stage. For the four al-

gorithms used in our evaluation, the compute stage dominates the workload of the compute
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Figure 2.6: Results on performance breakdown, resource consumption, and scalability. (a) Performance breakdown of Hieroglyph’s
Compute and Merge. (b) Resource consumption, normalized to PowerLyra. (c) Scalability comparison, with the number of
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workers in most cases. The compute-merge ratio is a function of algorithm and dataset.

Figure 2.6a shows that, (i) the compute-merge ratio related to the Twitter dataset is higher

than that of Livejournal and (ii) the ratios related to Bipart and CC are higher than those of

PageRank and SSSP.

In general, a larger portion of execution time in the merge stage indicates a higher

cost of inconsistency resolution. This cost is determined by two factors: the frequency of

the activation of merge stages and the cost of each activation with respect to the cost of

compute stages. In the case of SSSP, for example, given that the costs of each activation

of the merge stage and the compute stage are comparable, the large portion of execution

time in the merge stage indicates frequent activation of the merging logic. Note, however,

that both compute and merge stages contribute to the final graph state convergence. A low

compute-merge ratio does not entail an insufficient CSM algorithm design.

Resource Consumption. Figure 2.6b shows the resource consumption of Hieroglyph with

respect to PowerLyra when executing SSSP. CPU consumption is measured by the num-

ber of vertex state updates. Hieroglyph conducts a substantially larger amount of vertex

updates, due to the activation of the update function on all replicas of each vertex, instead

of only the master replica. Such overhead is also due to the use of potentially inconsistent

local state for update in Hieroglyph. Inconsistency resolution incurs a 51%–182% over-

head regarding network traffic. Since the communication workers progress independently,

however, the negative impact of such an overhead on the overall performance is minimized.

Hieroglyph’s memory overhead varies from 3% to 65%, thanks to the maintenance of ad-

ditional states for Sync and Merge.

Scalability. Figure 2.6c shows the scalability of the four systems when executing CC on

Twitter. The execution time of all systems reduces with the increasing number of hosts.

Yet, all systems demonstrate sublinear speedup with the increasing number of hosts, due to

the intrinsic inter-host dependency of the workload. In terms of execution time, Hieroglyph

outperforms the other systems in all our settings. Its speedup varies between 1.66x–3.37x,
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Table 2.5: Hieroglyph’s speedup over synchronous and asynchronous PowerGraph and Po-
werLyra

CC PowerGraph PowerLyra
synchronous 2.38x 2.07x
asynchronous 8.27x 6.15x
SSSP PowerGraph PowerLyra
synchronous 1.94x 1.65x
asynchronous 17.42x 18.58x

2.38x–2.47x, 1.83x–2.08x, and 1.78x–2.08x, when the number of hosts are 8, 16, 24, and

48, respectively.

Asynchronous Execution. When running in the asynchronous mode, the performance of

PowerGraph and PowerLyra degrades significantly for CC, PageRank, and SSSP.12 Fig-

ure 2.7a compares the performance of PowerGraph, PowerLyra, and Hieroglyph when

executing CC and SSSP on Twitter (summarized in Table 2.5). We choose Twitter for

evaluating the asynchronous mode of PowerGraph and PowerLyra, because it produces the

minimum speedup for Hieroglyph and thus provides a conservative view of the perfor-

mance improvement.

For CC, the speedup of Hieroglyph with respect to PowerGraph more than triples when

comparing the latter’s synchronous execution to asynchronous execution. As for Power-

Lyra, the speedup of Hieroglyph triples, as well. The increase is even more significant in

the case of SSSP. Hieroglyph’s speedup boosts from 1.94x for synchronous PowerGraph to

17.42x for asynchronous PowerGraph, enlarging the performance gap by 8x. For Power-

Lyra, the gap enlarges by over an order-of-magnitude.

Graph Partitioning. Figure 2.7b shows the performance of Hieroglyph using hash and

ginger-heuristic graph partitioning [19], measured with the Twitter dataset. Overall, Hiero-

glyph achieves high performance in both hash and ginger partitioning. Given its ability to

perform locally-sufficient computation, Hieroglyph can mitigate the effect of unbalanced

12Bipart requires synchronous mode on PowerGraph and PowerLyra.
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workload caused by graph partitioning. Yet, in general, Hieroglyph still benefits from more

balanced ginger partitioning.

Deferred Switching. The effect of deferring the switching of synchronization state from

the beginning of a synchronization iteration to the time when such state is accessed is neg-

ligible for CC and SSSP, yielding a maximum of 5% reduction in execution time (cf. Fig-

ure 2.7c). Such ineffectiveness may be partly attributed to the high priority assigned to the

communication workers in the current implementation of Hieroglyph. While the computa-

tion workers frequently yield to the communication workers (e.g., by reducing the vertex

chunk size), the latter proceed until all available data have been exchanged. The rationale

behind this default mode of Hieroglyph is that, when local state is updated, it is advanta-

geous to propagate the update to all replicas. In other words, it is desirable to minimize the

time window during which the vertex state remains inconsistent. Locally-sufficient compu-

tation proceeds opportunistically, aiming at making progress to hide communication cost

yet minimizing additional communication delay (in the form of reduced responsiveness of

the communication workers due to parallel locally-sufficient computation). The probability

that the local vertex state is repeatedly updated before synchronization is thus minimized,

so is the effect of deferred switching.

There are, nevertheless, cases where it is beneficial to assign high priority to local state

propagation [75].13 In those cases, we expect deferred switching to significantly shorten

the execution time.

Local Asynchrony. Figure 2.7c also compares the performance of locally-synchronous

execution with that of locally-asynchronous execution. For all cases in Figure 2.7c, local

asynchrony leads to superior performance, with the speedup ranging from 1.13x to 1.76x.

For both CC and SSSP, the gain of local asynchrony is larger for Road than for Twitter. This

is because the effect of fast state propagation in locally-asynchronous mode is amplified by

13In graph-centric approaches [66,75], the same problem bares the form of whether to perform per-partition
computation iteratively (e.g., until the partition converges) or to frequently propagate updated external vertex
state to adjacent partitions.
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Table 2.6: Algorithm Complexity in Lines of Code
Algorithm GAS CSM
Bipart 123 206
CC 46 88
PageRank 48 99
SSSP 44 88

the large diameter of Road.

It is also worth noting that, for CC and SSSP, vertex-consistency is sufficient for cor-

rectness [43]. Since during local-sufficient computation, vertex state can be updated only

in the apply function, there is no write-write data race. In addition, read-write data race is

benign in both CC and SSSP.14 Consequently, no lock is required for accessing vertex state.

Regarding operations on the message queue, message enqueuing requires lock protection

in both locally-synchronous and asynchronous modes. The only additional locking over-

head induced by locally-asynchronous execution is thus for message dequeuing. This slight

overhead is outweighed by the benefit of fast state propagation, leading to the significant

improvement of locally-asynchronous execution.

The performance improvement of local asynchrony is encouraging. Yet, locally-syn-

chronous execution has its own merit. For example, it efficiently supports the bipartite

matching algorithm, in which active vertices of the current phase send messages to be

processed by the subsequent phase. Had Hieroglyph only supported locally-asynchronous

mode, it would require the implementation of phase-related message tagging [29], compli-

cating multi-phase algorithm design.

Complexity. Table 2.6 compares the complexity of CSM algorithms with their GAS coun-

terparts, using lines of code as the metric. Using Hieroglyph’s implementation of the CSM

abstraction, the four algorithms studied in the evaluation require 67%–106% more lines of

14For example, assume that a vertex vi will not send a message to another vertex v j, if vi obtains (i.e., reads)
the most recent update (i.e., write) of v j. Then, if vi sends a message to v j due to the access of a stale state of
v j but the message arrives after v j’s update, it will be discarded due to program logic, for both CC and SSSP.
Such race thus does not affect correctness.
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code to be expressed in CSM. Note that, the complexity of algorithm design in CSM is also

determined by the inconsistency resolution logic in Sync and Merge. For CC, PageRank,

and SSSP, their corresponding inconsistency resolution logic resembles the logic used in

their locally-sufficient computation, the latter an extension of the GAS implementation.

As a result, these three algorithms are relatively easy to be implemented. Bipart is more

difficult, in contrast, because of the dissimilarity between Compute and the inconsistency-

fixing logic in Sync and Merge.

2.5 Related Work

Execution Modes. In this chapter, we have discussed the vertex-centric programming

paradigm, as well as synchronous, asynchronous, and barrierless asynchronous execution.

We have discussed Pregel [46], PowerGraph [26], PowerLyra [19], and GiraphUC [29] in

prior sections of the chapter. Below we summarize other graph processing systems.

Influenced by Pregel, many graph processing systems, such as Giraph [1], Mizan [36],

GPS [57], Pregel+ [78], GraM [73], and Quegel [79], follow the bulk synchronous paral-

lel model. Giraph [1] is an open-source implementation of Pregel. Mizan [36] features

dynamic workload balancing. GPS [57] broadens the vertex-centric paradigm to support

master computation—computation performed by a master host and serialized to BSP su-

persteps on all hosts. It also introduces dynamic graph repartitioning and large adjacency

list partitioning for reducing communication overhead. Pregel+ [78] analyzes the benefit of

vertex state mirroring [43] and extends the Pregel abstraction with a request-respond para-

digm, enhancing the flexibility in state propagation. GraM [73] achieves overlapping of

computation and communication at the architectural level, via a multi-core-aware RDMA-

based communication stack. Quegel [79] extends BSP to support superstep-sharing execu-

tion, effectively amortizing the cumulative synchronization cost across the parallel execu-

tion of multiple queries.
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Besides BSP-style systems, PowerGraph [26], Trinity [60], and GRACE [72] support

both synchronous and asynchronous modes. PowerSwitch [74] employs Hsync, a hy-

brid execution mode featuring adaptive switching between synchronous and asynchronous

modes for better performance.

Multi-Core/Out-of-Core Processing. Ligra [62] is a high-performance graph processing

system targeting a multi-core setting. GraphChi [39] and X-Stream [55] enhances the per-

formance of out-of-core processing by exploiting data access locality. Chaos [54] extends

out-of-core processing to a distributed setting. PathGraph [81] uses path-centric compu-

tation to improve memory and disk locality. FlashGraph [82] enhances the performance

and applicability of out-of-core processing systems by using SSDs. These approaches are

orthogonal to Hieroglyph, which targets a distributed environment.

Dataflow Operators. Pregelix [14] and GraphX [27] both map a vertex-centric abstrac-

tion onto distributed dataflow operators, enabling efficient support of graph processing over

general purpose dataflow engines. Such approaches benefit from the substantial efforts and

experiences in the design and implementation of high-performance dataflow engines. They

also seamlessly integrate graph processing into a high-level data-analytics framework. Hi-

eroglyph, in contrast, is a specialized graph processing system. Such approach commonly

achieves high performance in the graph processing stage—generally exceeding general-

purpose approaches—but requires substantial efforts to be integrated with other data-ana-

lytics components. Mapping the CSM abstraction onto dataflow operators would enable

locally-sufficient computation on graph processing systems built atop dataflow engines,

thus improving the latter’s performance in the graph processing stage.

Other Programming Abstractions. Pegasus [34] expresses graph algorithms via general-

ized iterated matrix-vector multiplication that can be efficiently executed on a MapReduce

platform. Combinatorial BLAS [15] expresses graph algorithms using linear algebra prim-

itives. Galois [49] implements the amorphous data-parallelism (ADP) model and achieves
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high performance due to the high efficiency of a general low-level programming model and

sophisticated task scheduling.

Giraph++ [66] advocates the exposure of graph partitions to users, proposing a “think

like a graph” paradigm. The graph-centric abstraction enables users to design algorithms

from the perspective of all vertices in a partition, leading to more efficient algorithms. Blo-

gel [77] advances the graph-centric abstraction by associating partitions with their own state

and promoting them to first-class entities: algorithms can be defined for partitions instead of

vertices of a partition. Xie et al. [75] employs a similar block-centric approach in GRACE

to the improvement of CPU cache utilization. Chen et al. [20] augments message combi-

nation with network-topology-awareness, demonstrating another interesting aspect of the

generic hierarchical graph processing idea. P++ [83], GoFFish [63,64], and GraphHP [17]

also apply the graph-centric principle in their system designs. Arabesque [65] proposes

a “think-like-an-embedding” paradigm for distributed graph mining. NScale [52] enables

users to specify a subgraph where an algorithm should be executed.

Failure Recovery. Most graph processing systems [1, 26, 36] resort to checkpoint-based

recovery mechanism. Both vertex state and messages are checkpointed. Similar to its

locally-sufficient computation, Hieroglyph performs checkpointing locally, without global

synchronization. Only vertex state needs to be checkpointed, due to the nonexistence of

inter-host messages. Shen et al. [61] proposes to reassign failed partitions upon failure in

order to balance the computation and communication cost related to failure recovery among

computing hosts. Outgoing messages are logged per superstep so that vertices outside the

failed partitions do not need to be recomputed: replaying logged messages is sufficient for

recomputing failed vertices. Zorro [51] employs a reactive approach, trading accuracy in

recovered execution for zero overhead during failure-free execution.

Performance Evaluation. With the proliferation of large-scale graph processing systems

comes the need for thorough performance evaluation. Existing efforts [28,30,44,59] aim at

providing objective comparisons regarding system performance and resource consumption,
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facilitating users to make educated selection among candidate processing systems.

2.6 Conclusions

In this chapter, we introduced the Compute-Sync-Merge (CSM) abstraction, a vertex-

centric programming paradigm enabling locally-sufficient computation over vertex-cut par-

titioning. We demonstrated the expressiveness of CSM by implementing several fundamen-

tal algorithms with it. We showcased CSM’s potential in enabling highly-efficient multi-

phase algorithm design with our bipartite matching implementation, where locally-suffi-

cient computation freely proceeds across phase boundaries and inconsistent local state is

fixed in CSM’s Sync and Merge stages. Hieroglyph—our prototype system supporting the

CSM abstraction—outperforms state of the art by up to 53x.
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CHAPTER III

Multi-Version Graph Processing

In the second half of this thesis, we focus on a specific scenario in large-scale graph

processing: multi-version graph processing. This chapter starts with a discussion on the

motivation for multi-version graph processing, presenting several concrete and compelling

use cases. It then presents the multi-version graph processing terminology used in this the-

sis, followed by a discussion on how a multi-version graph evolves. This chapter concludes

with how a multi-version graph processing task is conducted in state-of-the-art systems.

3.1 Motivation

Large-scale real-world graphs evolve in various ways [67, 84]. Conceptually, if we

define a certain state of an evolving graph to be the root version—that is, the common

ancestor—of the graph and consider all the other graphs derived from it as its successor

versions, then the collection of graphs becomes a multi-version graph.

Accurately capturing and understanding the dynamics of graph evolution increase the

usefulness of graph processing: there exists information that can be extracted only by pro-

cessing and comparing multiple versions of a graph. For example, Ren et al. [53] note that

the varying closeness of the friendship between two users ui and u j in a social network

can be studied by processing multiple versions of the social network graph, each corre-

sponding to a temporal snapshot of that network. Fine-grained insight can be drawn from
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such analysis, for example, about whether the increasing closeness of ui and u j is due to

the appearance of a new common friend or the establishment of friendship between two

previously non-adjacent users uk and ul along the shortest path between ui and u j.

Another case of multi-version graph processing is collaborative graph editing and anal-

ysis from multiple data scientists [8]. Starting from a shared common graph dataset, each

data scientist may need to perform a different type of analysis, thus advancing the graph

to a specific successor version. Such versions may later be combined to construct another

shared version or used as input for cross-version comparison.

Multi-version graph processing becomes even more important and prevalent, if we as-

sume an as-a-service perspective common in today’s big data analytics. When graph pro-

cessing is offered as a service, individual graph processing requests from independent users

can become related from the perspective of a service provider. This is the case when re-

quests from independent users each targets one of the many versions of the same multi-

version graph. For example, suppose several users send requests to a navigation service

provider, requesting the shortest route from Location A to Location B. Suppose that each

user has some specific constraint, for example, avoiding a certain portion of a highway or

requesting Location C as a via point. Also suppose that the service provider solves the nav-

igation problem with a shortest-path algorithm. Then in this scenario, the service provider

needs to perform a multi-version graph processing task, running the same algorithm on

multiple versions of the same road network graph, each version representing the specific

constraint of a user.

3.2 Terminology

We define terminology used for discussing multi-version graph processing in this thesis.

Version. A version corresponds to specific state of an evolving multi-version graph. Both

graph topology and properties—in the form of vertex and edge state—are associated with
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a version.

All versions are not of the same importance. For example, if a user creates a successor

version vb by removing, from version va, edges satisfying a certain criteria. Suppose n

edges in va need to be removed. Then removing one edge at a time would lead to n− 1

intermediate versions, which do not have specific meaning for the user, do not have version

numbers or identifiers, and are thus not externally addressable. We call such intermediate

versions internal versions and va and vb external versions. In this thesis, we use the term

versions to refer to external versions.

When the state of a vertex related to a version is updated during computation, it does

not lead to a new version of the vertex. Instead, such computation-related update preserves

the version information. For instance, when the rank of a vertex in a version is updated in

an iteration of the PageRank algorithm, it is still associated with the same version. Upon

completion of the computation, users decide whether to use the updated state to overwrite

the existing state of the same version in persistent storage or to label the updated state with

a new version number.

We assume the existence of a common subgraph among all versions, whose size is

substantially larger than the difference between two versions. This is the case, for example,

for temporal snapshots of large social networks in which links identical across all snapshots

significantly outnumber newly established links in a fixed relatively-short time window [48,

53, 71].

Graph. A graph is a collection of graph versions. For simplicity, we assume that there

exists a common ancestor for all versions of a graph.

Root version. The common ancestor version of a multi-version graph is called the root

version, or the default version. All other versions are referred to as non-root versions.

Delta. A delta represents the difference between two versions. For example, if version vb

can be created by adding an edge e to another version va, then the delta δab connecting va
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Figure 3.1: Generic graph evolution

and vb consists of e.

The root version of a graph can evolve with the graph. When the root version evolves,

other versions represented as deltas atop the root version need to be adjusted.

3.3 Graph Evolution

Graphs may evolve linearly or non-linearly. Most existing work [37, 53] adopt a lin-

ear evolution model. This model is sufficient for expressing temporal graph snapshots—a

prominent scenario in multi-version graph processing.

This thesis intends to study multi-version graph processing in a broader context, as

showcased in Section 3.1. As a result, we adopt a generic graph evolution model (cf. Fig-

ure 3.1).1 Versions can branch off a common ancestor version or merge into a common

successor version.

3.4 Style of Multi-Version Graph Processing

Multi-version graph processing can proceed sequentially or in parallel. We call the for-

mer sequential multi-version graph processing and the latter parallel multi-version graph

processing.

1Our generic graph evolution model is conceptually similar to the generic dataset evolution model pro-
posed in DataHub [8].
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Most state-of-the-art graph processing systems target standalone graph processing tasks.

They are thus unaware of versions. Each version of a multi-version graph is processed in-

dependently. Assuming abundant computing resource and infinitely fine-grained billing in

a cloud environment [4], there is little distinction between sequential and parallel multi-

version graph processing from the perspective of a version-unaware graph processing sys-

tem: resource and time become interchangeable and the total cost remains the same. For

example, if processing one version requires r computing resource, finishes in t, and incurs

a cost of c, then processing n versions incur a cost of nc, regardless of whether the n ver-

sions are processed sequentially, using r resource and finishing in nt, or in parallel, using

nr resource and finishing in t.

In this thesis, we show the deficiency of ignoring the relation among versions in multi-

version graph processing. Regarding augmenting graph processing systems with version

awareness, sequential and parallel processing need to be addressed from different perspec-

tives, due to their distinct characteristics in graph fetching and computation stages.
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CHAPTER IV

Version Traveler: Fast and Memory-Efficient Version

Switching in Sequential Multi-Version Graph Processing

In this chapter, we first study the design space and optimization opportunities in se-

quential multi-version graph processing systems. We then introduce our solution—Version

Traveler, a sequential multi-version graph processing system preparing in-memory graph

representation with cached graph state—in Section 4.2. We evaluate its efficacy in Sec-

tion 4.3. Section 4.4 surveys additional related work. Section 4.5 concludes the chapter.

4.1 Multi-Version Graph Processing

In this section, we first discuss the characteristics of multi-version graph processing

workloads, followed by a discussion on its workflow. We then summarize related work,

analyze the design space for efficient multi-version graph processing systems, and discuss

challenges.

4.1.1 Workload Characteristics

In multi-version graph processing, version switching commonly demonstrates random-

ness and locality. Version switching is arbitrary, in that the next version may precede or
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succeed the current version in the graph evolution.1 Such a switching sequence may be

dynamic, unable to be predetermined by the graph processing system. Version switch-

ing is local, in that the next version commonly resides within the vicinity—in terms of

similarity—of the current one in the graph evolution.

We exemplify the demand for arbitrary local version switching with three examples.

First, suppose we need to identify the cause of the varying distance between two users

in a social network [53]. For simplicity, assume that the distances in versions i and k are

different and that the distance changes only once along the evolution from versions i to k. If,

after processing version j = i+k
2 , a binary-search-style exploration algorithm finds that the

distance in that version remains the same as that in version k but differs from that in version

i, then the algorithm would invoke another iteration of shortest distance computation for

version m = i+ j
2 . The switching from versions j to m is arbitrary for the supporting graph

processing system. In terms of locality, although the search may oscillate between versions

with high dissimilarity at the beginning, the version locality increases exponentially with

the progress of the execution.

Second, in interactive big data analytics, an analyst may rerun an algorithm on a graph

version, after digesting the results of the previous execution. Which version should be pro-

cessed next depends on the analyst’s understanding of the existing results, as well as his/her

domain knowledge and intuition. This leads to arbitrary version switching from the per-

spective of the graph processing system. As for locality, such analysis commonly follows

a refinement procedure, where significant efforts are required to zoom in and conduct in-

depth analysis on a cluster of versions within the vicinity of each other.

Third, in a collaborative data analytics environment, both datasets and computing power

are shared among users [8]. Individual tasks—each targeting a graph version—can be com-

bined by the processing system, leading to multi-version graph processing. Since the next

request may be enqueued during the processing of the current version and may target a ver-

1More broadly, in a non-linear graph evolution scenario [8], the next version may reside in a different
branch than the current version.

53



Load
graph

Compute

a)

Warm Loop

Load
delta

Load
graph

Integrate 
graph/delta

Compute

b)

Delta cache

Figure 4.1: Version switching workflow, (a) with and (b) without the use of deltas

sion preceding or succeeding the current version in the graph evolution, version switching

is arbitrary. Regarding locality, independently-submitted tasks may target similar versions.

Such is the case, for example, where various algorithms are employed to capture and un-

derstand trending events in an evolving social network.

4.1.2 Workflow

A typical multi-version graph processing workflow is divided into multiple iterations.

In each iteration, an arbitrary graph version is processed. Systems designed for individual

graph processing tasks are unable to recognize or take advantage of the evolution relation

among versions. Treating each version as a standalone graph, such systems first fully load

the version from persistent storage into memory and then execute a user-defined graph

algorithm over it (cf. Figure 4.1(a)).

When versions of a working set share a substantial common subgraph, working with

deltas—representations of the differences between graph versions—can be more efficient.

Figure 4.1(b) shows the multi-version processing workflow with deltas. After the first

version is loaded and processed, switching to a subsequent version can be achieved by

integrating the current version in memory with deltas relating the current and the next

versions. In general, deltas are much smaller than full graphs [53,71]. As a result, they can

be cached in memory, further improving the efficiency of version switching.

54



(a)

0 1

23

(b)

1 3 0 2 3 2

pointer array

neighbor array

dst_vid

src_vid

1 3 0 2 3 3 2

(c)

(d)

1 3 …

pointer array

dst_vid

src_vid

start
end of contents
end of storage

0 2 3 2

(e)

1 3 0 2 3 3 2

Figure 4.2: Graph representations: (a) illustrates two versions of a graph. A circle rep-
resents a vertex (vertex id inside) and an arrow represents an edge (edge id
omitted). The first version consists of solid-arrow edges. The second version
has one more edge (illustrated by a dashed arrow). (b) and (c) demonstrate the
CSR representation of the out-edges of the two versions. (d) and (e) demon-
strate the vector of vectors format. For clarity, each element in the neighbor
array in (b)–(e) shows only the destination vertex id and omits the edge id.

4.1.3 Related Work on Graph/Delta Designs

We focus the discussion of related work on in-memory graph and delta representa-

tions, because they determine the efficiency of the switching loop (cf. Figure 4.1(b)).2 For

graphs, we specifically focus on representations related to neighbors of vertices, because

they differentiate graphs from regular table-form datasets.

We study related work by asking the following three questions:

• Does it provide high computation performance? In particular, does it support fast

access of the neighbors of a vertex?3

2Both graphs and deltas may have different representations in memory and on disk. We focus on in-
memory representations, due to their significance in the warm loop of the version switching workflow.

3In this chapter, we equate computation performance with neighbor access efficiency for two reasons.
First, computation related to graph algorithms affects all systems in the same way and is out of scope. Second,
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• Does it support fast version switching?

• Does it store graphs and deltas compactly?

Graph. We study two common graph representations: compressed sparse row (CSR),

adopted in PowerGraph [26] and GraphX [27], and a vector-of-vectors (VoV) design,

adopted in Giraph [1].

In CSR (cf. Figures 4.2b and 4.2c), all neighbors are packed in an array. A pointer array

maintains the address of the first neighbor of each vertex. The set of neighbors for vertex i

is thus marked by the values of vertices i and i+1 in the pointer array. This representation

enables fast access to a vertex’s neighbors. Version switching is slow, however. This is be-

cause modifying a vertex’s neighbor affects pointers and neighbors of all vertices following

the one being modified.

As for VoV (cf. Figures 4.2d and 4.2e), the first-level vector functions as the pointer

array in CSR, locating the neighbors of a vertex according to the vertex id. Each second-

level vector represents the neighbors of a vertex. This format also supports fast neighbor

access. In addition, the neighbors of a vertex can be modified without affecting other

vertices, thus enabling fast version switching. Its shortcoming is the memory overhead due

to maintaining auxiliary information, such as the start and end positions of each vertex’s

neighbors.4

Delta. Previous work has used a compact log-format structure to represent deltas in stream-

ing processing [21]. A log delta consists of an array of log entries, each specifying an edge

via its source and destination vertex ids (and an optional edge id) and whether the edge

should be added or removed (i.e., an opcode). Log deltas are compact and have no neg-

ative impact on the neighbor access efficiency during graph processing. This is because

in the computation stage, a system supports neighbor access and vertex/edge data access. Assuming the
storage of data in sequence containers and their identical impact on all systems, computation performance is
determined only by neighbor access efficiency.

4Such overhead is non-trivial. For example, a 24-byte per-vector overhead (cf. Figure 4.2(d), “start,” “end
of contents,” and “end of storage” pointers each consume 8 bytes) amounts to a 40% overhead for representing
the entire out-neighbor array for the Amazon dataset [11, 12], assuming 4-byte vertex/edge ids.
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log deltas are conceptually applicable to all graph representations as-is. During graph-delta

integration, log deltas are fully absorbed in the graph version. The cost of graph-delta in-

tegration is high, however, because all log entries in deltas relating the current and the next

versions need to be applied during a version switching.

Alternatively, a system could co-design graph and delta representations to minimize the

integration cost. For example, affected neighbor vectors of a VoV graph may be copied and

updated in a delta, reducing version switching to simple and fast vector pointer updates but

losing compactness. LLAMA [45] partially mitigates the compactness loss by separating

modified neighbors related to a version into a dedicated consecutive area in the neighbor

array, avoiding copying unmodified neighbors. CSR’s pointer array is transformed to a

two-level translation table. The first level consists of per-version indirection tables, each

bookkeeping a set of second-level pages associated with a version. A second-level page

contains a series of vertex records—equivalent to a fragment of CSR’s pointer array—

with each record indicating the start of a vertex’s neighbors.5 LLAMA’s version switching

incurs nearly zero time cost: only an indirection table pointer needs to be updated. Its use of

page-level copy-on-write for the second-level pages holding vertex records, nevertheless,

requires the copy of an entire page even if only one vertex in the page has a modified

neighborhood, hindering its compactness.

GraphPool [37] maintains the union of edges across all versions in the graph. Its deltas

are per-version bitmaps over the graph’s edge array, where a bitmap’s n-th bit indicates the

existence of the corresponding edge in that version. Version switching is simple: a bitmap

pointer is adjusted to point to the next version. In the computation stage, however, this

approach requires bitmap checking for determining whether an edge exists in the current

version, incurring neighbor access penalty.

5Neighbors belonging to the same vertex but stored in separate areas—each containing per-version
modifications—are concatenated via continuation records such that only one start position needs to be main-
tained for a vertex’s neighbors per version.
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4.1.4 Design Dimensions and Challenges

Summarizing lessons learned from related work, we point out that the design of graph

and delta must balance between three dimensions: extensibility, compactness, and neighbor

access efficiency.

Extensibility. Efficient version switching requires that a delta be easily integrated with a

graph. From a data structure perspective, it requires that the neighbors of a vertex be easily

extended to reflect the evolution from one version to another. This, in turn, requires that

either the data structure representing the neighbors of a vertex support efficient modification

(i.e., insertion and removal) or the collection of the neighbors of a version be easily replaced

by that of another version.

Compactness. Compact graph and delta representations enable caching a large number

of versions, leading to low delta cache miss rate and high version switching efficiency.

Moreover, real-world large graphs commonly have millions of vertices and millions or

billions of edges, making the compactness of the neighborhood data structure a primary

requirement.

Access Efficiency. A common and crucial operation during computation is to access a

complete collection of neighbors for a vertex. Fast neighbor access requires limiting the

number of lookups in the integrated graph/delta data structure. Ideally, only one lookup is

sufficient for locating the first neighbor of a vertex. The remaining neighbors can then be

accessed sequentially.

The main design challenge is to carefully balance the requirements from the above three

dimensions and co-design graph and delta representations such that they are extensible,

compact, and efficient in neighbor access. Achieving the balance is difficult, as witnessed

by existing designs, because those requirements commonly lead to contradicting design

choices.

58



3-Version Graph

version 0

version 1

version 2

0

2

3

1

Hybrid CSR

dst vid

src vid

x
1

delta 
indicator

offset

bit 31 bits 30-0

1 10 1000

0

Pointer 
Array

Neighbor 
Array

Delta Cache

src
vid

prev csr
end

revert 
value

neighborschain

1 0 0 0

1 01 0

0 2

0 2 3

Vertex Delta Array

Modified
Neighbor 

Array

𝛿01

𝛿12

Delta Entry Format

Figure 4.3: Hybrid graph representation

4.2 Version Traveler

We introduce Version Traveler (VT), a graph processing system that features a graph/

delta co-design achieving compactness, extensibility, and access efficiency. Residing in the

core of VT are two innovative components—a hybrid graph and a hybrid delta cache—

bringing together fast neighbor access and compactness of CSR and high extensibility of

VoV.

4.2.1 Hybrid Graph

VT’s hybrid graph augments CSR in a way that achieves extensibility while remaining

compact and efficient in neighbor access (cf. Figure 4.3). It avoids costly in-place mod-

ification to CSR’s neighbor array by storing vertices with a modified neighborhood in a

version delta cache.
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Algorithm 8 Neighbor Access
1: input vid
2: if csr ptrs[vid].in delta = true then
3: return cache[csr ptrs[vid]].nbrs
4: else
5: if csr ptrs[vid +1].in delta = false then
6: return csr nbrs[csr ptrs[vid], csr ptrs[vid +1]]
7: else
8: return csr nbrs[csr ptrs[vid], cache[csr ptrs[vid +1]].prev csr end]

Algorithm 9 Delta Application
1: input δi j,opcode
2: for e in δi j do
3: if opcode = apply then
4: csr ptrs[e.src vid]← offset(e)
5: csr ptrs[e.src vid].in delta← true
6: else csr ptrs[e.src vid]← e.revert value

CSR’s neighbor array is created during the loading of the first version—also referred to

as the root version—and then remains constant. Each subsequent version is loaded into the

delta cache, in the form of a series of vertex delta entries. Each entry contains information

related to the updated neighbors of a vertex, as well as metadata to support neighbor access

and version switching (cf. Figure 4.3). VT reserves a delta indicator bit in each entry

of CSR’s pointer array to indicate the placement of a vertex’s neighbors for the current

version: in CSR’s neighbor array or in the vertex delta cache.

Neighbor Access. In a conventional CSR, neighbors of vertex vid are bounded by the

pointers of vertices vid and vid+1. For VT’s hybrid CSR, neighbor access may be directed

to either CSR’s neighbor array or the neighbors field of a delta entry, depending on whether

the neighbors are stored (cf. Algorithm 8). Each delta entry maintains the end position of

the preceding vertex’s neighbors in CSR’s neighbor array (in the prev csr end field), such

that the end position of vid can be determined regardless of whether neighbors of vid + 1

are stored in CSR’s neighbor array or the delta cache (cf. lines 5–8).

Delta Application and Reversion. VT performs version switching by applying or revert-
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ing deltas (cf. Algorithm 9). When applying δi j to switch from versions i to j, VT iterates

over entries belonging to δi j in the delta cache and, for each entry, updates the correspond-

ing entry (according to the src vid field) in the CSR pointer array with the delta entry’s

offset in the delta array and sets the delta indicator bit. Reverting δi j consists of restoring

the revert value field—which contains the saved value for version i’s CSR pointer entry—to

the corresponding entry in the CSR pointer array for each entry in δi j.

Example. We use a 3-version graph in Figure 4.3 to illustrate neighbor access and version

switching. The hybrid CSR in Figure 4.3 represents the state of version 2. The three out-

neighbors of vertex 1 can be accessed from its delta entry (δ12). For vertex 0, neighbor

access requires obtaining the start position from its CSR pointer, due to its cleared delta in-

dicator bit, and the end position from prev csr end of vertex 1’s delta entry. The difference

between the two is 0 (0−0 = 0), indicating that vertex 0 has no out-neighbors. In order to

switch from versions 2 back to 1, VT reverts δ12, which has only one entry related to vertex

1. Its revert value field, of which the delta indicator bit is set and the offset is 0, is restored

to vertex 1’s CSR pointer entry. After reversion, vertex 1’s CSR pointer entry will point to

the first entry in the delta array, which corresponds to vertex 1’s delta entry for version 1.

4.2.2 Hybrid Delta

For simplicity, in Section 4.2.1, we assume that a delta entry maintains the entire neigh-

bors of a vertex (cf. Figure 4.3). This is memory-inefficient for vertices with a large number

of neighbors and small amount of per-version modifications, due to numerous redundant

copies of neighbors. To improve compactness, we propose two complementary solutions:

Sharing and Chaining. Sharing preserves access efficiency and trades extensibility for com-

pactness. Chaining preserves extensibility and trades access efficiency for compactness.
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4.2.2.1 Sharing

Concept. Sharing reduces the memory footprint by merging a vertex’s delta entries span-

ning multiple versions into one shared entry. Figure 4.4 shows an example with four ver-

sions of a vertex, each adding one neighbor to its base. When they share a delta entry, there

exists only one neighbor vector, containing the neighbors of the vertex related to the current

version being processed. The challenge is to compactly specify how the shared vector is

modified during version switching. VT maintains this information in addition and removal

delta logs.

Delta Representation. In the Sharing mode, VT does not create delta cache entries with

copies of modified neighbor arrays. Instead, it creates log entries: specifying the neighbors

it would have added to or removed from the neighbor array in an addition or removal log.

Each entry in the addition log array (cf. Figure 4.5) contains the source and target vids of

the added edge, as well as the edge id. Logs associated with the same vertex (the source

vid in the out-neighbor case) are continuously stored. A next vid field indicates the start

position of the logs associated with a subsequent vertex. The format of a removal log

entry—gray fields apart—is similar. Its offset field refers to the offset within the neighbor

array where the removal should take place.
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Neighbor Access. Sharing has no effect on neighbor access. When multiple versions of

a vertex share a neighbor vector, the CSR pointer header points to the same delta entry

containing the vector for all versions.

Delta Application/Reversion. In the Sharing mode, version switching resorts to log-based

delta application/reversion, similar to streaming processing [21, 39]. During delta applica-

tion, for an neighbor addition, the neighbor is simply appended to the end of the neighbor

vector. For a removal, VT removes the neighbor at the offset according to the offset value

in the removal log entry. Delta reversion follows the inverse procedures.

4.2.2.2 Chaining

Concept. Chaining refers to the representation of a vertex’s neighbors with a chain of

vectors, each containing a subset of neighbors and capturing the difference between the

version associated with it and its base version. In Figure 4.6, with each version chained

onto its base, only one neighbor needs to be maintained per version. Redundant copies

are eliminated, improving compactness. Extensibility remains the same: to switch from

versions 1 to 2, for example, we need to adjust only the CSR pointer to version 2’s delta

entry, regardless of whether that entry’s neighbor vector is chained onto another. Access

efficiency decreases in Chaining, because of the need to switch among multiple neighbor

vectors. Chaining imposes two new challenges to delta design: chaining beyond the base,

called Leap-Over Chaining, and removal from ancestors, called indirect removal.

Delta Representation. Leap-Over Chaining intends to accelerate neighbor access. In
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Figure 4.6, with each version chained onto its base, the neighbor access for later versions

leads to considerable performance hit, limiting Chaining to a small set of adjacent versions

in the graph evolution relation. Leap-Over Chaining enables the chaining of a delta entry

on an indirect ancestor version. For instance, version 3 in Figure 4.6 can be chained onto

version 0.

To support Chaining, in particular Leap-Over Chaining, we introduce a chaining field to

the delta entry format (cf. Figure 4.3). When Chaining is disabled,6 the entry is a standalone

entry with a complete copy of neighbors. When Chaining is in use, VT saves a pointer to

the entry upon which the current one is based along the chain to the latter’s chaining field.

Similar to CSR pointers, a chaining pointer uses its most significant bit to indicate whether

the offset is for CSR or for the delta array.

To support indirect removal, a neighbor vector is divided into two sections: a new-

neighbor section and a removal section (cf. Figure 4.7). An element in the new-neighbor

section represents a new neighbor added to the vertex in the current version. An element

in the removal section corresponds to a removed element, with layer indicating the neigh-

bor vector in the chain where the removal should take place and offset the position of the

to-be-removed neighbor within the vector. To improve compactness, we overload the first

element in the new-neighbor section: it is marked with a special flag if the removal sec-

tion exists, in which case the second element contains a pointer to the removal section;7

otherwise it contains the first added neighbor.

6That is, setting all bits in chaining to one.
7The first two elements are also referred to as removal preamble.
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Example. We follow a concrete example illustrated in Figure 4.8 to present in detail VT’s

support for neighbor removal in the Chaining mode. In that figure, there are three entries

in the delta array associated with a vertex in three versions i, j, and k (from top to bottom).

The top entry is a standalone entry, with a complete copy of the vertex’s neighbors related

to version i. The middle entry has its chaining pointer set to the top one, indicating its

dependency on the latter. The removal section indicator of its neighbor vector is turned

on. As a result, the next element following the removal section indicator contains a vector

pointer, holding the address of the removal section associated with that delta entry. The

removal section contains only one element. Its layer field is set to 1, indicating that the

neighbor vector from which the neighbor should be removed is one step away from the

current one, that is, the vector of version i. Its offset field is set to 3, indicating that the

gray element in version i, whose offset is 3, should be removed when neighbors in version

j are accessed. Similarly, the neighbor vector of version k has a removal section and a

new-neighbor section. The two elements in its removal section point to the 0th and the 4th

elements in versions i and j, respectively.

Effect on Removal Log. Since Chaining introduces the separation of new-neighbor and

removal sections, Sharing’s removal log format needs to be adjusted (cf. gray fields in Fig-

ure 4.5). Specifically, a type field is added to differentiate the two sections. A {layer, offset}
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pair in a removal section is stored similarly to a {vid, eid} pair in a new-neighbor section.

During delta application, if a removal takes place in the current vertex’s new-neighbor sec-

tion, then the corresponding {vid, eid} pair is removed. Otherwise, the {layer, offset} pair

is inserted to the current vertex’s removal section. The inverse procedure achieves delta

reversion.

Neighbor Access. Given a vertex, VT first locates its entry via the CSR pointer header.

If the neighbors are stored in a delta array entry whose Chaining mode is turned on, then

VT iteratively accesses neighbors stored in entries along the chain, skipping neighbors that

no longer exist in the current version using the removal sections. Otherwise, it follows the

common neighbor access procedure, as described in Section 4.2.1.

Delta Application/Reversion. Except for Chaining’s aforementioned effect on removal

logs, both delta application and reversion follow the description in Section 4.2.1.

4.2.2.3 Relationship between Chaining and Sharing

Chaining and Sharing are similar in that they both aim at reducing memory consump-

tion by storing only the difference among versions. Sharing is a good choice when the size

of neighbors is large and the delta size is small. A large neighborhood leads to a consider-

able gain in compactness over a full-neighbor-copy approach, whereas a small delta entails

a moderate cost for log-based version switching. Chaining is useful when both the sizes of

neighbors and delta are large. Similar to Sharing, a large neighbor size leads to a substantial

gain in compactness for Chaining. A large delta entails Chaining’s superiority to Sharing,

due to the avoidance of the latter’s costly log-based version switching procedure.

Another way to compare the two is when the concatenation of neighbors occurs. Chain-

ing performs the concatenation in a chain at the computation stage. Sharing performs the

concatenation at the version switching stage. Due to the different delta formats used in

Chaining and Sharing, the concatenation in Chaining is lighter-weight than that in Sharing.

As for the number of concatenation performed for a vertex, the concatenation in Chaining
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needs to take place when a vertex’s neighbors are accessed. The cost of concatenation in

Chaining is thus magnified if a vertex is iteratively processed by an algorithm. The con-

catenation in Sharing is, in contrast, guaranteed to be once per vertex per version switching.

VT supports Sharing and Chaining as operation modes, complementing the default full-

neighbor-copy mode (referred as Full mode). It enables them when the estimated cost of

version switching and the potential impact on the computation stage are justified by the

amount of memory saving. The current VT implementation supports flexible threshold-

based policies: when creating a new delta for a vertex, VT feeds the number of neighbors

in its base version and the current delta size related to that vertex to a configurable policy

arbitrator function, which determines the activation of Sharing or Chaining.

4.2.3 Implementation

We implement VT by integrating it with PowerGraph [26], replacing the latter’s graph

representation with VT’s hybrid CSR graph and delta/log arrays. VT operates seamlessly

with PowerGraph’s computation engine layer, thanks to its full support of the same compu-

tation-stage graph abstraction viewed from an engine. This also demonstrates VT’s broad

applicability to existing graph processing systems.

4.3 Evaluation

We first demonstrate the three-way tradeoff among extensibility, compactness, and ac-

cess efficiency, showing the relative advantage of Full, Chaining, and Sharing. We then

compare the performance of VT against PowerGraph and several multi-version reference

designs.

67



4.3.1 Microbenchmark

Design. The goal of microbenchmarking is to evaluate the relative effectiveness of Full,

Sharing, and Chaining in balancing the three-way tradeoff. Since the overall tradeoff on

a graph is the accumulative effect of the same tradeoff on each vertex, we conduct mi-

crobenchmarking from a vertex’s perspective. Trends in the microbenchmark results are

applicable to varying graph sizes, given the accumulative nature of the per-vertex tradeoff.

We construct a graph with 1000 identical high-degree stars. For each star, only the

center vertex has a non-empty set of out-neighbors—default to 1000. Each center vertex

thus provides the opportunity for an in-depth study of the per-vertex tradeoff. To evaluate

it in a multi-version scenario, we create two versions: a source version and a target version.

The target version differs from the source by randomly adding or removing out-neighbors

of center vertices.

Two key factors related to a delta are its size and the ratio of additions to removals.

Prior work shows that the difference between consecutive versions is commonly within 1%

of the graph size [53]. For each star, given the default 1000 edges in the base version, we

vary the delta size from 1 to 100, corresponding to 0.1% to 10% of the size of the star. The

total vertices and edges in the graph thus vary between 0.9 to 1.1 million. We also fix the

operation types in a delta: a delta consists of either edge additions or edge removals.

We evaluate extensibility by measuring the version switching time from the source ver-

sion to the target version, neighbor access efficiency by measuring the time for iterating

through all the out-neighbors of center vertices in the target version, and compactness by

measuring the memory used for maintaining the graph connectivity information of both

versions. All measurements are conducted on a host with 8 3GHz vCPUs and 60GB mem-

ory.

Version Switching. Figures 4.9a and 4.9b compare the version switching performance.

The performance of Full and Chaining is comparable and remains constant, regardless of
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Figure 4.9: Microbenchmark results

the edge modification types in deltas or the delta size, because both approaches require

adjusting only CSR pointer values for center vertices. The cost of Sharing linearly grows

with the delta size, due to the need to parse a log array whose size is proportional to the

delta size. Comparing edge additions with removals, the cost of the former is significantly

lower than the latter. This is because, additions translate to appending neighbor records to

the end of the neighbor vector and removals involve data movement within the vector.

Access. Figures 4.9c and 4.9d compare the neighbor access speed. Full and Sharing per-

form equally well for both additions and removals. Since the cost of neighbor access is

proportional to the neighborhood size, it linearly increases and decreases with the size of

delta in the cases of addition and removal, respectively. Chaining leads to the worst per-

formance in both cases, due to its cost of indirection. The cost is moderate in the case of

edge additions, because there is one and only one indirection during neighbor access—that

is, the switching from the newly added neighbors to the existing ones—regardless of the

delta size. The cost of indirection becomes significant for edge removals, because each
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removal separates a previously continuous neighbor range into two, introducing one more

indirection during neighbor access. The cost thus linearly grows with the delta size.

Memory. Figures 4.9e and 4.9f show the memory footprint. In both addition and removal

cases, Chaining and Sharing lead to significant memory savings comparing with Full. In-

tuitively, the cost of Full linearly grows with the delta size in the addition case and linearly

decreases in the removal case. Our measurements, however, show mostly constant memory

footprints in both cases, due to (1) the capacity doubling effect and (2) no capacity reduc-

tion upon removal in the vector implementation in our testbed (glibc 2.15). For Chaining

and Sharing, the memory footprint grows with the size of delta, regardless of the type of

edge modifications. This is because, for both additions and removals, Chaining needs to

maintain the modifications either in the neighbor vector (for additions) or in the removal

section (for removals). Similarly, Sharing maintains the modifications in the log arrays.

4.3.2 Macrobenchmark

Reference Designs. We compare VT with PowerGraph [26]—a high-performance system

targeting individual graph processing—and four reference multi-version processing system

designs (cf. Table 4.1) reflecting different combinations of graph and delta formats. Specif-

ically, we evaluate CSR+log, VoV+log, VoV+bitmap, and multi-version-array. They mirror

design choices made in PowerGraph, Giraph [1], GraphPool [37], and LLAMA [45], and

are abbreviated to csr, log, bitmap, and m-array, respectively.

Workloads. Table 4.1 summarizes the datasets [11,12] and algorithms. The Facebook [71]

and GitHub graphs are collected as dynamically evolving graphs. The remaining five

graphs are collected as static graphs [11, 12], for which deltas need to be created. Since

deltas among consecutive versions are commonly within 1% of the graph size [53], we

vary the delta size from 0.01% to 1%. We select δ = 0.1% as a middle ground and show

most of the evaluation results with this configuration. The total number of cached versions
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Table 4.1: Graphs, algorithms, and reference designs
dataset V (M) E (M) description
Amazon08 0.7 5.2 similarity among books
Dblp11 1.0 6.7 scientific collaboration
Wiki13 4.2 101.4 English Wikipedia
Livejournal 5.4 79.0 friendship in LiveJournal social network
Twitter 41.7 1468.4 Twitter follower graph
Facebook 0.1 1.6 friendship in regional Facebook network
GitHub 1.0 5.7 collaboration in software development

algorithm description
nop access neighbor and return
bipart max matching in a bipartite graph
cc identify connected components
PageRank compute rank of each vertex
sssp single-source shortest path
tc triangle count

ref. design description
csr use CSR graph and log delta
log use VoV graph and log delta
bitmap maintain union of neighbors in all versions in VoV graph and use bitmap delta
m-array use multi-version-array graph/delta

varies broadly from 1 to 100. Unless otherwise specified, we use uniform add-only deltas:

each delta consists of edge additions uniformly distributed over a graph. Graphs evolve

linearly: version i is created by iteratively applying δ j, j+1, j = 0 . . . i−1 to the root version

(i.e., version 0). Version switching is local, in that all versions are within the range of nδ

from the root version. Version switching is arbitrary. That is, the next version j is selected

independently to the current version i, may precede or succeed i, and do not need to be

consecutive to i.

Since machines with large memory and many cores become popular and affordable [50,

62], VT’s evaluation focuses on single-host setting. The elimination of inter-host commu-

nication cost in graph processing stage further highlights the effect of neighbor access

efficiency. All measurements except those related to the Twitter graph [38] are performed

on a host with 8 3GHz vCPUs and 60GB memory. Twitter-related workloads run on a host
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Figure 4.10: Comparison of VT and PowerGraph

with 32 2.5GHz vCPUs and 244GB memory.

Metrics. The requirements on extensibility, compactness, and access efficiency naturally

lead to the use of time and memory consumption as two basic metrics. In addition, inspired

by the resource-as-a-service model in the economics of cloud computing [4], we introduce

a penalty function as a third metric: p = (ts + tc)α ×mβ . The penalty p is a function of the

version switching time ts, the computation time tc, and memory consumption m. α and β

are weights associated with time and memory resource. If the per-time-unit monetary cost

is determined only by memory consumption, then assigning 1 to both parameters equates

the penalty with the per-task monetary cost.8 We use α = 1 and β = 1 in our evalua-

tion. When appropriate, we report penalty score p in the form of utility improvement: the

improvement of VT over a reference system ref is calculated as pre f−pvt
pre f

.

Delta Preparation. For each system/workload setting, deltas corresponding to versions

accessed in that workload are populated in memory, according to the delta design em-

ployed by that system, before the start of the workload. For VT, we employ a threshold-

based policy (cf. Section 4.2.2.3), determining the delta format according to the number

of neighbors in its source version and switching from Full to Sharing to Chaining as the

number increases. We sample the threshold space for Full-Sharing and Sharing-Chaining

transitions and report the lowest penalty score.

Comparison with PowerGraph. We evaluate the performance of PowerGraph by running

8Time and resource, nevertheless, do not always have the same weight. For instance, if graph processing
resides along the critical path of a higher-level data analytics framework, then a user may assign a higher
weight to α , willing to trade memory for sublinear speedup.
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Figure 4.11: Comparison with existing graph/delta designs

SSSP on Amazon with ten 0.1% δ s in two scenarios. First, we measure the performance

of PowerGraph as-is, with a graph version loaded from persistent storage in its entirety at

the beginning of each task. Second, we augment PowerGraph with full-version caching,

storing each version in the working set as a full graph copy in memory.

Figure 4.10 shows that VT significantly outperforms PowerGraph in both scenarios.

VT’s processing speed is on a par with that of PowerGraph with full-graph caching and is

23x faster than that of PowerGraph without caching. This is due mainly to PowerGraph’s

substantial loading time when caching is disabled. VT’s memory footprint is close to that

of PowerGraph without caching (incurring a 15% overhead) and is only 12% of that of

PowerGraph with full-graph caching—a 7.3x enhancement. Overall, VT improves utility

by 86% and 95% over PowerGraph with and without caching, respectively.

Comparison with Multi-Version Designs. Figure 4.11 compares four multi-version de-

signs with VT, executing nop on Amazon with ten 0.1% δ s. Csr incurs prohibitive switch-

ing cost, due to CSR’s low extensibility. It, nevertheless, yields the highest performance

and has the smallest memory footprint. Both log and bitmap consume more memory than

VT. Bitmap incurs a computation-stage penalty due to bitmap checking. Log’s switching

cost is 7.4x that of VT.

Regarding m-array, its neighbor access time and version switching time are signifi-

cantly shorter than the other designs. Its memory consumption, however, is much higher

than the other. It is important to note that m-array’s superior performance is an outcome of

efficient implementation of LLAMA, not a result of the multi-version-array design. This is

because, after a version becomes ready for processing, all things being equal, csr should
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yield the highest neighbor access performance for the nop workload. The difference be-

tween m-array and csr is then due to the framework-related overhead: m-array is measured

with LLAMA and csr—as well as the other designs—is measured with PowerGraph-based

implementation. Had we ported m-array to PowerGraph, its performance would be at best

on a par with csr, and thus also close to VT.

M-array’s high memory consumption is a result of the multi-version-array design. For

Amazon with 0.1% δ s, each version contains 5.2K new edges. Uniformly distributed,

those edges affect 5.2K vertices’ neighborhood. In LLAMA, with a 16-byte vertex record9

and a 4KB page, the entire vertex record array for the root version spans 2.7K pages,

which is also the expected number of pages affected when the 5.2K vertices with modified

neighborhood are uniformly distributed. This yields a 100% memory overhead in terms of

per-version vertex record array—because the entire 2.7K pages containing the root multi-

version array need to be copied for each version—and a 21.5% overhead when the entire

graph connectivity structure (with neighbor arrays) is considered. Such an overhead is

prohibitively expensive for large graphs. In contrast, VT has a smaller footprint for the

root version and, more importantly, incurs only a 0.6% per-version overhead for the graph

connectivity structure in its Chaining mode.

Figure 4.11 confirms our expectation on the advantages and shortcomings of existing

designs. Given csr’s low extensibility and m-array’s high memory consumption, we focus

on comparing VT with log and bitmap for the rest of the evaluation.

Comparison with log and bitmap. Figure 4.12 summarizes the results comparing VT

with log and bitmap, each with 10 δ s of size 0.1%. VT consistently outperforms both

systems in all but one case. Except the Twitter-SSSP workload, VT runs 2–17% faster in

average per-version processing time and achieves 17–34% memory saving and 19–40%

utility improvement.

Running SSSP over the Twitter graph, VT runs 88% faster than log but 19% slower
9A vertex record consists of version id, offset into the neighbor array, number of new edges for the current

version, and an optional out-degree, each occupying 4 bytes.
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Figure 4.12: Comparison of VT with log and bitmap across all datasets and algorithms with 10 0.1% δ s
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number of versions to 10 and varying δ between 0.01% and 1.0%.
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than bitmap. This is because, given the size of the dataset, the configuration of the support-

ing hardware, and the characteristics of the algorithm, the difference in version switching

dominates the overall processing efficiency. Log falls far behind VT, due to the former’s

need of log replaying during version switching. VT’s delta application, although efficient

and highly parallelized, is still a heavier-weight operation compared to bitmap. Combining

time and memory consumption, the net effect is that VT outperforms log by 90% and is on

a par with bitmap in utility improvement.

Varying Deltas. We compare VT with log and bitmap by executing SSSP on Amazon08,

varying the size of delta from 0.01% to 1% and the number of deltas from 10 to 100. Fixing

the delta size to 0.1% and varying the number of deltas from 10 to 100, we observe that

VT’s utility gain remains high with respect to log and bitmap (cf. Figure 4.13a). Com-

pared to log, VT’s memory saving reduces with the increasing number of deltas, because

the memory consumption of the delta cache grows with the number of deltas, gradually

neutralizing the benefit of the use of hybrid CSR. VT’s gain due to the reduction of version

switching time increases with the number of deltas, however. Overall, with these opposite

trends, VT’s utility gain remains high. Compared to bitmap, VT’s memory saving remains

high, because of bitmap’s need to maintain per-version bitmaps. VT’s saving in processing

time reduces, however, because the impact of bitmap’s saving in version switching time

increases with the number of deltas, compensating for bitmap’s neighbor-access slowdown

in the computation stage. The overall effect of these opposite trends is VT’s constantly

high utility gain with respect to bitmap across a wide range of versions.

Fixing the number of deltas to 10 and varying the size of delta from 0.01% to 1%, we

observe that VT’s utility gain gradually reduces (cf. Figure 4.13b). Compared to log, VT’s

gain peaks at δ = 0.01%, thanks to its efficient graph-delta representation. VT’s gains

for δ = 0.1% and δ = 1% are similar: larger deltas reduce VT’s advantage in memory

representation but amplify its reduction of version switching cost. Compared to bitmap,

VT’s utility gain remains high for δ = 0.01% and δ = 0.1%, but drops significantly for
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δ = 1%. Note that, the maximum distances among versions—in terms of dissimilarity—

are the same for 100 0.1% δ (in Figure 4.13a) and 10 1% δ (in Figure 4.13b). Yet, VT’s

gain with respect to bitmap is much higher in the former case. This is because VT’s memory

saving is more significant when bitmap needs to maintain a larger number of per-version

bitmaps in order to track the neighbor-version relation.

Skewed and Add/Remove Workloads. Figure 4.14 compares VT’s performance across

three types of workloads, all with ten 0.1% δ s. The first is a uniformly distributed add-

only delta type, same as those used throughout the evaluation. The second is a skewed

add-only delta, in which the probability of adding a new edge to a vertex is proportional

to the latter’s degree in the root version. The third is a mixed add/remove delta type, with

each delta maintaining a removals/total operations ratio varying from 0.1% to 10%. VT

consistently outperforms log and bitmap in all the three workloads.

Effectiveness of Optimization. Figure 4.15 summarizes the effectiveness of Sharing and

Chaining. Reusing the workload of SSSP-Amazon with ten 0.1% δ s, we first enforce a

fixed delta format, measuring the performance of Full, Sharing, and Chaining individu-

ally. We then combine Full and one of the two optimization approaches and report the

minimum achievable penalty. All results are then normalized to those of VT. The effec-
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Figure 4.17: Performance of VT, log, and bitmap on Facebook and GitHub graphs

tiveness of Sharing and Chaining is demonstrated by the superiority (in terms of penalty) of

a combined delta preparation strategy (e.g., Full-Sharing) to both approaches when applied

individually (e.g., Full and Sharing). It is also demonstrated by VT’s superiority—with all

three delta formats combined—to the five alternatives.

Realistic Evolving Workloads. We compare VT with log and bitmap, using two 10-ver-

sion graphs generated from the evolving Facebook friendship and GitHub collaboration

graphs,10 respectively. Figure 4.16 shows their evolution trends. Specifically, we choose 10

consecutive days towards the end of the collected periods for the two graphs11 and combine

newly established friendship/collaboration relations in each day into a delta. Friendship/

collaboration relations existing before that 10-day period then form the root versions of the

two graphs. Figure 4.17 shows that VT outperforms both log and bitmap when executing

SSSP over these two graphs, improving utility by 10.38–24.83%.

10In the GitHub graph, the collaboration (i.e., edge) between two users (i.e., vertices) is established when
they start to work on at least one shared repository. The initial state of the graph is set to empty. Its evolution
spans between March 2011 and July 2015. We generate this graph via the use of GitHub API [2] and GitHub
Archive [3].

11For the Facebook graph, daily delta size reduces drastically towards the end of the collected period,
which might be caused by limitations of the collection method. We avoid those anomalies when creating the
multi-version graph for evaluation.
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4.4 Related Work

In this section, we discuss additional related work within the broad scope of multi-

version graph processing but not dedicated to in-memory graph/delta design in the context

of arbitrary local version switching.

Kineograph [21] and GraphChi [39] support streaming processing—a special case of

multi-version graph processing where version switching is always forward and versions

are only processed once. Such a solution is insufficient for the general multi-version sce-

nario, where switching is arbitrary and a cached version is repeatedly accessed by multiple

algorithms. Chronos [31] reorganizes the memory layout of multiple versions to improve

cache utilization. FVF [53] proposes a specialized multi-version processing framework and

demonstrates superior performance with several graph algorithms refactored for that frame-

work. DataHub [8] provides a version control system supporting collaborative data analysis

over multi-version datasets. Bhattacherjee et al. [9] investigates the tradeoff between stor-

age space and recreation speed of a dataset version, focusing on organizing versions on

disk instead of data structure redesign for in-memory caching.

None of the prior work systematically investigates the multi-version caching design

space, which has significant impact on the overall performance and memory usage. VT

takes a fundamental step in this direction.

4.5 Conclusions

In this chapter, we conducted a systematic investigation of the caching design space

in multi-version graph processing scenarios, decomposing it into three dimensions: neigh-

bor access efficiency, extensibility, and compactness. Our solution, Version Traveler, bal-

ances requirements from all three dimensions, achieving fast and memory-efficient version

switching. It significantly outperforms PowerGraph and is superior to four multi-version

reference designs.
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CHAPTER V

Kairos: Efficient Parallel Multi-Version Graph Processing

via State Consolidation

In this chapter, we first use a concrete example to demonstrate state sharing opportu-

nities in parallel multi-version graph processing and then discuss the challenges related to

in-memory graph state consolidation and the elimination of redundant state transition. We

then present Kairos, a parallel multi-version processing system that addresses the above is-

sues with dynamic state splitting. We also discuss the use of version collapsing to mitigate

the version propagation effect—a side effect of dynamic state splitting.

5.1 Opportunities and Challenges

5.1.1 Opportunities

Figure 5.1 showcases the resource and computation sharing opportunities by applying

the PageRank algorithm on the Amazon graph [11, 12]. We create a multi-version graph

by using the original dataset as the base graph and randomly adding/removing a certain

percentage of edges per version (ranging from 0.00001% to 10%). We then run PageRank

on 10 versions of the graph in parallel for 20 iterations. We use the number of updates to

vertices (i.e., the number of activation of vertex-centric computation) as the metric for the

computation cost and the number of vertex versions (i.e., the sum of per-vertex versions
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Figure 5.1: Sharing opportunities regarding resource and computation reuse.

over all vertices) as the metric for the memory usage. For example, the leftmost data points

show that, when each non-default version differs from the default version by 0.00001% of

the edges—only one edge in the case of Amazon, then processing the multi-version graph

on a parallel multi-version processing system that can explore the resource and computation

sharing opportunities would lead to the reduction of 27.5 million updates to vertex states

and the elimination of 6.5 million copies of vertex states, compared with the same task

processed in parallel on a single-version system. From Figure 5.1, we observe that (i) there

exist substantial sharing opportunities when multiple similar graph versions are processed

and (ii) the sharing opportunities in both computation and memory reuse diminish when

graph versions become significantly different from each other.

5.1.2 Challenges

We discuss two major challenges in exploiting the sharing opportunities in multi-version

graph processing: graph representation and version tracking.

5.1.2.1 Graph Representation Challenges

Not surprisingly, multi-version graph processing needs to properly represent graph ver-

sions on disk and in memory. On disk, multi-version graph processing requires the split

of a graph version into a base graph and a delta file representing the difference between
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the given version and the base graph. This is supported to some degree by existing graph

processing systems (e.g., GraphLab only allows additions, but not deletions, of vertices and

edges inside a graph delta file). As for the in-memory representation, multi-version graph

processing requires a compact representation that ideally incurs only marginal overhead

for each additional version atop the base graph. In addition, such a multi-version repre-

sentation should minimize the memory access overhead with respect to that in a single-

version graph. These two requirements lead to a common trade-off between performance

and resource consumption. A compact representation, such as a tree-style structure, re-

duces memory consumption but increases the memory access cost. A structure that fa-

cilitates per-graph-version random access, such as a per-graph-version vector for vertices,

maintains the memory access speed as in a single-version processing system, but incurs

significant memory overhead.

5.1.2.2 Version Tracking

Version tracking refers to the bookkeeping of versioned states in a multi-version graph.

Specifically, given a vertex and a version number, a multi-version processing system needs

to be able to extract the vertex state related to that version, including its data fields and

in/out edges.

Assume the use of a compact memory representation where vertex/edge states of non-

default versions that are identical to those of the default version are consolidated. For

any non-default version, version tracking involves determining whether or not each vertex

shares the state of the corresponding vertex in the default version. This is straightforward

(and static) if (i) graph algorithms are deterministic in how they modify vertex state, and

(ii) for each vertex computation, the input state does not contain more versions than the

center vertex. For most graph algorithms, however, there is no guarantee on the identity

between the version information of the vertex state and that of its input state. The per-

vertex version information thus gradually diverges from its on-disk counterpart during the
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course of per-vertex computation, leading to version propagation.

Figure 5.2 illustrates the effect of version propagation by applying the PageRank algo-

rithm on Amazon. We run PageRank on 10 versions of the graph in parallel and observe

the increase of multi-version vertices with the progress of the execution. From Figure 5.2,

we observe that (i) vertices become multi-versioned along the execution of the algorithm,

demonstrating the version propagation effect, and (ii) version propagation is positively cor-

related with the difference among graph versions.

5.2 Kairos

Kairos is a multi-version graph processing system that targets graph state consolidation

in multi-version graph processing, as well as the elimination of identical state transitions.

5.2.1 Overview

Kairos extends the GAS model (cf. Algorithm 10) introduced in PowerGraph [26] in

order to support multi-version graph processing. It also extends PowerGraph’s graph rep-

resentation and introduces version management to handle dynamic version tracking during
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Algorithm 10 Per-Vertex Computation in Kairos
// gather-apply-scatter for center vertex Vu
// gather
for all i in versions do

for all v in neighbors do
gi← gi+ gather(Vui,E(u,v)i,Vvi)

// apply
for all i in versions do

Vui ← apply(Vui,gi)
// scatter
for all i in versions do

for all v in neighbors do
scatter(Vui,E(u,v)i,Vvi)

graph computation. Kairos reuses the vertex-cut technique for graph partitioning. The

scheduling of vertex-centric computation is orthogonal to parallel processing of multiple

graph versions. Kairos currently supports synchronous computation scheduling.

5.2.2 Programming Interface

Kairos maintains a PowerGraph-compatible programming interface and supports the

gather-apply-scatter (GAS) model. Algorithms expressed in this model can be executed on

Kairos with minor modifications over multi-version graphs.

We extend the original GAS abstraction with one additional interface that improves the

efficiency of algorithms when processing multi-version graphs. Specifically, we define an

“approximately equal” operator for the gather type, which is used for collapsing similar

versions into the default version. The default behavior is to always return false, effectively

disabling version collapsing. Users can enable version collapsing by overriding this func-

tion with an algorithm/gather-type-specific implementation. Kairos, in such a case, invokes

the function at the end of the apply phase, folding non-default versions back to the default

version when it is appropriate to reduce memory footprint and mitigate version propaga-

tion.
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5.2.3 Graph Representation

We assume the existence of a common base graph from which all graph versions evolve.

We have two design goals regarding Kairos’s graph representation layer: (i) making the

processing of single-version data fast—presumably the common case in large multi-version

graphs—and (ii) compactly representing multi-version graphs. Take the representation of

vertex data as an example (cf. Figure 5.3). Kairos uses a vector to store vertex data in

the base version. This achieves the first goal: data access of the base version is as fast

as single-version processing systems. When multiple versions exist for a given vertex,

Kairos dynamically allocates a map and stores the mapping from version numbers to their

corresponding vertex data. All pointers to these per-vertex maps are maintained in another

vector addressed by vertex id. A NULL pointer in that vector indicates that the corresponding

vertex remains single-versioned; that is, all versions share the same copy of vertex data.1

The version-to-value mapping achieves the second goal: if a version shares the same state

as the base version, then it is eliminated from the mapping.

We follow the same approach to extending other data structures, such as edges and

messages. As for graph topology, we use the compressed sparse row (CSR) representation

for vertices with single-version neighborhood and fall back to maps of versioned adjacency

lists for multi-version vertices.

5.2.4 Version Splitting

Version management is the centerpiece of a multi-version graph processing system. The

key idea is to (i) split versions, when necessary, to guarantee correctness of the computation

and (ii) collapse versions, when appropriate, to mitigate the negative impact of version

propagation on system performance. We focus on version splitting in this section.

Graph states evolve with the computation. So do the ways in which they are shared or

unshared. Take vertex state as an example. As execution progresses, a single-version vertex

1Our current implementation also explicitly maintains the single/multi-version indicator in a bitset.
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Figure 5.3: Illustration of vertex related data structure in Kairos. The single/multi-version
indicator, the vertex value vector for the base graph, and the pointer vector for
multi-version version to vertex data mapping are all addressed by vertex ids.
The per-vertex version to data mapping uses version numbers as keys.

becomes multi-version when the vertex data related to at least one non-default version

diverges from that in the default version. A multi-version vertex becomes single-version

when all non-default versions converge to the state of the default version. In general, the

version-to-value mapping may be inserted or removed from the multi-version vertex data

map, depending on how many non-default versions can share the default value.

Version splitting requires copy-on-write (CoW) of vertex data. While kernel-mode

page-level CoW can be efficiently achieved via standard MMU-based page protection,

user-mode software systems, such as Kairos, need to rely on software approaches. Kairos

achieves CoW of vertex data through inference. With the requirement that a vertex-centric

graph algorithm be deterministic, the result of a vertex computation is determined only by

the input. Thus, we can effectively infer the version of the output data based on that of the

input data.

For example, suppose an algorithm specifies that, in each iteration, the center vertex

updates its value on its own, as well as the values of its incoming neighbor vertices and

incoming edges. For a given version i, the updated vertex data can be shared with the

default version if the i-th version of all input states shares with their corresponding default
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version. If such a condition does not hold and if the i-th version of the center vertex shares

the default value before the update, then Kairos splits the i-th version of the center vertex

from the default value, allocating its own memory area. The inference happens before the

vertex computation so that, at the time of vertex update, the i-th version has already been

allocated with its own copy of the vertex state.

Inference-based version splitting is applied to all data versioned by Kairos, including

data and metadata (e.g., number of in/out edges) of vertices, edges, graph topology, as well

as computation state, such as messages and gather values.

5.2.5 Version Probing and Caching

Given a non-default version, a common operation in per-vertex computation is to de-

termine whether that version shares the state of the default version for a certain data

type. This common operation is abstracted as an internal version probing interface for

all data structures versioned by Kairos. Version probing can incur a non-trivial overhead

to the per-vertex computation, in particular if the per-vertex computation itself is relatively

lightweight. The overhead is exacerbated by the fact that a center vertex commonly needs

to perform version probing for all its incoming/outgoing neighbor vertices and/or edges.

To speed up version probing, we implement a version cache, effectively collecting ver-

sion information in a batch mode. For simplicity, in the rest of the section, we focus only

on vertex-related version probing. The same mechanism is used for other data types, such

as edges and gather values. Each vertex, upon entering one of the GAS phases, first pop-

ulates a version cache indicating whether each non-default version of the vertex can share

with the default version, given the version information of all its input states. Kairos then

skips the computation phase all-together for those sharable versions (i.e., cache hits in the

version cache), eliminating redundant version probing and per-vertex computation.

To understand the benefit of batched version probing, we compare the complexity of

version cache population and version probing without caching. Suppose the state of the
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center vertex is a function of its incoming neighbor vertices. Then, version cache pop-

ulation has O(n) complexity, where n is the average number of per-vertex non-sharable

non-default versions in the incoming neighbors. The complexity of version probing with-

out caching is O(m logn), where m is the number of versions participating in the current

computation phase and n the same as the cache population case. Version caching is found

to be always beneficial except for small m values.

5.2.6 Version Collapsing

Kairos also supports version collapsing—the inverse function of version splitting—to

boost system performance. In Kairos, due to the compact in-memory graph representation,

both the computation cost and the memory footprint of a vertex computation are propor-

tional to the number of non-default versions that do not share the state of the default version,

instead of the total number of versions participating in the computation. Version collapsing

effectively reduces the computation and memory overhead by folding identical or similar

non-default versions into the default version.

Contrary to inference-based version splitting, version collapsing decisions are made by

applying a user-defined “approximately-equal” comparator to determine the similarity of a

non-default version and the default version.

5.2.7 Multi-Version Engine

Putting all together, we design Kairos’s extended multi-version GAS engine.

Multi-Version Gather. The gather phase consists of two steps: (1) collecting information

from the center vertex’s neighbors via a user-defined gather function on each host and (2)

merging them into one gather value via a user-defined operator+= for the gather type.

Kairos extends operator+= from single-version state to the version-to-value mapping,

merging two values if they have the same version number and inserting the version-value

mapping existing in only one operand directly into the result. If the gather value of the i-th
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Figure 5.4: Illustration of multi-version gather. Each box with a dashed black border rep-
resents a multi-version gather value. Each box with a solid black border repre-
sents a version-value pair. Each gray box represents a version-value pair split-
ted during the gather operation. The generic operator += is extended from one
gather value to a map of versioned gather values. Version split takes place, for
example, in the left operand which does not have a dedicated copy for Version
3 before the gather operation.

version shares the default value before the gather in the left operand but the right operand

has a dedicated copy of that version, then a version split takes place in the former before

the addition (cf. Figure 5.4).

Multi-Version Apply. In the apply phase, for each center vertex, the multi-version gather

value is folded into the multi-version vertex data. For each vertex, the user-defined apply

function is called on all non-default versions, as indicated by its version cache. Inference-

based version splitting for vertex data takes place when necessary (cf. Section 5.2.4). Ver-

sions that are inactive—that is, versions that participate in the current computation task

but are deactivated for the current apply phase—incur additional complexity in the version

splitting logic. For instance, suppose versions vi, v j, and vk share the default version v0 at

the beginning of an apply phase. vi and v j are active and update the vertex data associated

with the default version. vk, in such a case, needs to be splitted from the default version

in order to avoid false sharing and state corruption—a feature defined as inactive version

splitting in Kairos. Kairos handles inactive version splitting after updating the active non-

default versions and before updating the default version.

At the end of an apply phase, if the approximately-equal operator is defined for the

vertex data type, then Kairos employs it for version collapsing.
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Multi-Version Scatter. In the scatter phase, the user-defined scatter function is called

for all non-sharable versions, as in the gather and apply phases. Multi-version messages

are created when a vertex needs to signal its neighbors for their participation in the next

superstep. Message versioning is necessary, since the per-vertex computation is activated at

the granularity of versions (called per-version computation activation in Kairos). Message

passing without versioning would force receiving vertices to activate all versions in the

next superstep, potentially diverging the computation from algorithm specification and also

incurring unnecessary overhead.

In order to support multi-version messaging, version unfolding takes place when at least

one sharable version is active in the scatter phase. Specifically, thanks to the version cache,

computation on all sharable versions is reduced to that on the default version. If the scatter

function, when invoked with the default version, is about to send a message to its neighbors,

then encoding only the default version in that message does not work. In effect, versions are

locally maintained at each vertex. Consequently, the set of non-default versions sharable

with the default version of one vertex may differ from that of its neighbors. Receiving a

message containing the default version number, a vertex cannot correctly translate it to the

set of non-default versions that are intended to be activated by the sender. It is the sender

vertex’s responsibility to explicitly unfold the version information locally and specifying

the set of non-default versions that should be activated in a multi-version message.

5.3 Evaluation

In this section, we compare the performance of Kairos with PowerGraph. We first de-

fine evaluation metrics and then present the evaluation results based on micro-benchmarks

with synthetic workloads as well as macro-benchmarks on realistic large graphs.

5.3.1 Metrics

We use three metrics to evaluate the performance of Kairos.
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Execution Time. First, we calculate the speedup of Kairos over PowerGraph. Specifically,

we define speedup =
tpn
tmn

, where tmn is the execution time of Kairos to run a multi-version

computation task over n versions of a graph and tpn is that of PowerGraph. Assuming

sequential processing of versions on PowerGraph, tpn = tp1 × n, where tp1 is the average

time for processing one version.2

Memory Consumption. We also compare memory usage of both approaches and report

the memory overhead of Kairos with respect to PowerGraph. Memory overhead is defined

as overhead =
mmn
mp1

, where mmn is the peak memory usage during the processing of a multi-

version task with Kairos and mp1 is that during the processing of each individual version

on PowerGraph.

Cost. The elasticity and fine-grain billing [4] of cloud computing enables flexible trading

and tuning between resource consumption and processing time. Users are charged accord-

ing to the integral of resource consumption along the time domain. Assuming the existing

of a cost per time-unit per resource-unit, time and resource become interchangeable regard-

ing billing. Following this trend, we use a normalized performance gain (NPG) to quantify

the performance gain of Kairos when jointly considering execution time and memory con-

sumption.3 The gain is calculated as the ratio of the cost of PowerGraph to that of Kairos,

with the cost equating the product of execution time and memory consumption. That is,

NPG = speedup
overhead =

ntp1mp1
tmnmmn

. An NPG larger than one indicates that Kairos outperforms Pow-

erGraph.

2Given PowerGraph’s version unawareness, its instance processes one version at a time. Kairos, in con-
trast, can process multiple versions in parallel.

3Note that, in defining NPG, we only consider the memory usage and ignore other resources, such as CPU
and network I/O. This relative gain makes PowerGraph more favorable. For a fair comparison, we should
also reduce the number of CPUs used by PowerGraph according to the measured memory overhead, i.e.,

1
overhead of the CPUs used by Kairos. This, nevertheless, requires retrofitting CPU configuration after the
measurement of memory overhead, the latter of which will then be affected by CPU resource re-allocation.
We choose to use the memory overhead as the single factor for resource-usage comparison due to its dominant
influence in in-memory processing of large graphs.
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5.3.2 Microbenchmark

We implement a no-op microbenchmark algorithm to evaluate the overhead related to

version management in Kairos. In each superstep, all vertices are activated, each gathering

along its incoming neighbors and scattering to its outgoing neighbors. Gather/apply/scatter

functions are all defined as no-op. The algorithm halts after 500 supersteps. For Power-

Graph, the computation is performed on a single-version graph. For Kairos, its input is a

non-default version identical to the default version (i.e., the same single-version graph with

an arbitrary non-default version number to force Kairos to perform version inference). As

a result, no version splitting or collapsing is triggered. The overhead of version manage-

ment in this case stems from the need for Kairos to (i) determine, for each vertex, whether

its vertex data, as well as other metadata such as in/out edges, are shared with the default

version and (ii) fold/unfold the non-default version to/from the default version.

We also implement a heavy-op algorithm to isolate the effects of graph versioning on

the performance of PowerGraph and Kairos. Each vertex contains an array of 10000 long

integers. In the apply phase, we repeatedly compute the Fibonacci series and store them

in the vertex for 10000 times. The algorithm halts after one superstep. The input graph is

the same as that for the no-op algorithm so that version splitting or collapsing is not in use.

The to-be-computed number of versions is set to 100. The choice of 100 versions, as with

any other value, is intended to highlight the potential difference between PowerGraph and

Kairos.

We run both algorithms on a synthetic graph with 3 thousand vertices and 1 million

edges. Indegrees and outdegrees of all vertices follow uniform distribution. The measure-

ment is performed on one blade of HP BladeSystem c7000, with 2 AMD Opteron 2214HE

processors and 16 GB memory. The results, as shown in Table 5.1, clearly indicate the

potential benefits and shortcomings of version management in graph processing.

For no-op, Kairos’s graph computation time is significantly larger than that of Power-

Graph. Such inefficiency mainly stems from two aspects. First, each multi-version data
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Table 5.1: Performance comparison using the no-op and heavy-op algorithm. “perf” and
“mem” refer to graph computation time (in seconds) and memory usage (in GB),
respectively.

no-op heavy-op
perf mem perf mem

Kairos 187.60 0.52 143.10 1.19
PowerGraph 22.75 0.48 14050 1.18
speedup/overhead 0.12 1.08 98.18 1.01
gain 0.11 97.21

access in Kairos incurs two memory accesses, one to the single/multi-version indicator bit-

sets and the other to the data. In contrast, PowerGraph accesses the data directly. Second, in

Kairos, each phase in the GAS model involves a version cache population step, preceding

other user-defined vertex computation. When processing one single version, the version

cache cannot speed up version probing. Populating the cache, however, is more costly than

the no-op operation in each phase.

For heavy-op, Kairos significantly outperforms PowerGraph with marginal memory

overhead. Since all versions are identical, Kairos only computes the default version and

shares the result with all the other versions. PowerGraph, on the contrary, misses the reuse

opportunity and needs to repeat the same computation for 100 times. This difference is lin-

ear to the number of versions. Moreover, the computation cost is dominated by generating

the Fibonacci series. These two aspects explain the huge speedup of Kairos.

5.3.3 Macrobenchmark

We evaluate the performance of Kairos with the Amazon, Dblp, Wiki, and Livejournal

datasets (cf. Table 4.1). We use three algorithms in our evaluation, PageRank, triangle

count, and single-source shortest path. The same evaluation approach and metrics are em-

ployed in all experiments. In this section, we first present a thorough analysis on PageRank

related results and then summarize results related to the other two algorithms.

We run PageRank on the four graphs while varying the difference between a non-
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Figure 5.5: Performance of PowerGraph and Kairos when executing PageRank on Ama-
zon. Each entry in the legend corresponds to a setting of the portion of the
graph of a non-default version differing from the default version. For example,
“multi 1%” indicates that each non-default version differs from the default by
1% of the size of the graph.

default version and the default version, as well as the number of versions processed in

parallel. A non-default version differing from the default by x% is generated by randomly

adding and removing x% of the total edges from the original graph. Vertices in all versions

are identical. We define such a difference to be per-version modifications, which ranges

from 0.00001% to 10% in our experiments. The accumulated difference of all non-default

versions and the default version is thus the product of per-version modifications and the

number of versions.4

All experiments with PageRank are executed on an 8-node Amazon EC2 cluster. Each

node is a c3.8xlarge instance, with 32 vCPUs mapped to Intel Xeon E5-2680 v2 proces-

sors, 60 GB memory, and 10 Gbit Ethernet network. For PowerGraph, we run PageRank

on the original graphs and report that as PowerGraph’s average execution time for pro-

cessing one version (tp1). We also measure the memory consumption of PowerGraph dur-

4Ideally, the accumulated difference is upper-bounded by the product of per-version modifications and
the number of versions. For a given vertex, multiple versions may modify the base graph in the same way.
The simplistic representation used in Kairos, however, makes it difficult to express the similarity among
non-default versions. As a result, in our current implementation, the accumulated difference is equal to the
product.
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Figure 5.6: Memory consumption of PowerGraph and Kairos when executing PageRank
on Amazon.

ing the processing of the default version and use that to represent the amount of memory

PowerGraph consumes in processing any non-default version (mp1). For Kairos, we run

PageRank in parallel on a multi-version graph and measure the execution time (tmn) and

memory consumption (mmn). Results for each experiment setting are averaged over at least

3 measurements.5

Figure 5.5 shows the performance of PowerGraph and Kairos with the Amazon graph.

Kairos consistently and significantly outperforms PowerGraph in terms of graph compu-

tation time for multi-version processing tasks by 2.57x to 12.06x. The speedup of Kairos

increases with the number of versions processed in parallel. As expected, Kairos’s pro-

cessing time increases with the size of per-version modifications. Intuitively, the larger

a non-default version differs from the default version, the less likely results of per-vertex

computation can be shared between the two.

Figure 5.6 shows the memory consumption of PowerGraph and Kairos with Amazon.

PowerGraph consumes a constant amount of memory, because it sequentially processes

5Note that, with our evaluation setting, there is no guarantee for either PowerGraph or Kairos to achieve
optimal performance for any workload. In reality, for a parallel multi-version task, the placement and repli-
cation of input data, as well as instantiation of graph processing systems in a given computing environment,
have significant impact on the overall performance.
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each version. Kairos consumes more memory than PowerGraph, incurring an overhead

between 1.19 and 5.27. The memory consumption increases with per-version modifications

and parallel versions.

The normalized performance gain is shown in Figure 5.7. Clearly, when the graph is

single-version, PowerGraph is superior to Kairos. With the increasing number of parallel

versions, however, Kairos becomes superior, demonstrating its ability to efficiently process

multiple versions in parallel, exploiting sharing opportunities on-the-fly. In fact, for all

per-version modifications settings except 10%, Kairos demonstrates higher relative perfor-

mance than PowerGraph. When each non-default version is 10% different from the default

version, Kairos remains inferior to PowerGraph for all settings of parallel versions. This

demonstrates the challenge imposed on Kairos by sizable inter-version differences.

The normalized performance gain varies significantly with workloads, as summarized

in Table 5.2. For Amazon, Kairos remains superior until the per-version modifications

amount to 10% of the original graph size. Results for Dblp show similar trends with those

for Amazon 08. For Wiki and Livejournal, however, Kairos can only outperform Power-

Graph when non-default versions are almost identical to the default version.
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Table 5.2: Normalized performance gain of Kairos running Pagerank.

per-ver-mods %
parallel versions

Amazon Dblp Wiki Livejournal
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

0.00001 2.98 5.53 7.49 8.67 2.58 3.47 4.23 4.60 0.95 1.05 1.01 0.87 1.13 1.33 1.33 1.16
0.0001 2.99 5.30 7.33 8.45 2.32 3.20 3.72 3.91 0.90 0.99 0.94 0.79 1.06 1.22 1.20 1.02
0.001 3.21 5.39 7.04 8.00 2.17 2.93 3.31 3.23 0.87 0.92 0.85 0.70 1.00 1.10 1.06 0.90
0.01 2.84 4.53 5.46 6.26 2.05 2.67 2.89 2.72 0.79 0.84 0.76 0.63 0.90 0.99 0.95 0.78
0.1 2.30 3.13 3.67 3.74 1.68 2.01 2.09 2.00 0.58 0.53 0.45 0.36 0.74 0.70 0.62 0.51
1 1.48 1.70 1.73 1.63 1.08 1.09 1.04 0.94 0.26 0.22 0.19 0.18 0.34 0.28 0.24 0.20

10 0.71 0.88 0.94 0.93 0.46 0.48 0.49 0.45 0.17 0.17 0.15 0.13 0.15 0.16 0.15 0.13

Table 5.3: Normalized performance gain of Kairos running Triangle Count.

per-ver-mods %
parallel versions

Amazon Dblp Wiki Livejournal
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

0.00001 3.58 6.68 9.50 11.64 3.51 6.52 8.94 10.66 2.92 5.56 7.87 9.74 2.98 5.58 7.77 9.23
0.0001 3.52 6.67 9.43 11.50 3.51 6.57 8.79 10.48 2.98 5.50 7.84 9.66 3.06 5.67 7.67 9.27
0.001 3.45 6.43 9.19 11.07 3.52 6.41 8.77 10.44 2.99 5.53 7.62 9.18 3.01 5.42 6.97 7.41
0.01 3.27 5.88 8.24 9.37 3.28 5.29 6.38 6.89 2.12 3.70 4.29 4.29 2.58 3.89 4.42 4.55
0.1 2.91 4.73 5.60 6.19 2.83 4.63 5.50 5.89 0.99 1.24 1.27 1.24 1.41 2.07 2.25 2.31
1 1.68 2.26 2.56 2.81 1.35 1.59 1.63 1.61 0.33 0.27 0.25 0.22 0.46 0.43 0.38 0.34

10 0.50 0.50 0.47 0.42 0.38 0.36 0.33 0.29 0.12 0.09 0.07 0.06 0.13 0.10 0.08 0.07
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Table 5.4: Normalized performance gain of Kairos running SSSP.

per-ver-mods %
parallel versions

Amazon Dblp Wiki Livejournal
5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20

0.00001 3.95 7.67 11.17 13.91 3.75 7.12 10.26 13.18 1.60 2.56 3.33 3.71 1.72 3.15 4.19 4.85
0.0001 4.00 7.64 11.02 14.00 3.82 7.21 10.33 13.01 1.52 2.54 3.46 3.68 1.76 3.21 4.07 4.88
0.001 3.24 6.44 7.90 9.70 3.74 7.05 10.40 12.93 1.54 2.64 3.34 3.62 1.69 2.73 3.32 3.47
0.01 2.41 2.76 2.73 3.40 3.67 6.76 9.81 11.17 1.57 2.13 2.46 2.44 1.18 1.23 1.18 1.00
0.1 1.98 2.81 2.91 2.95 3.39 4.94 6.14 5.79 1.22 1.66 1.72 1.57 0.83 1.00 1.00 0.92
1 1.80 1.85 1.62 1.44 1.72 1.47 0.91 1.02 0.31 0.26 0.30 0.28 0.40 0.31 0.24 0.18

10 1.02 1.07 0.96 0.83 0.51 0.59 0.61 0.54 0.16 0.16 0.17 0.14 0.12 0.10 0.08 0.06

Table 5.5: Version collapsing related performance gain and accuracy loss. For each combination of per-version modifications and parallel
versions, we present the relative gain of version collapsing with respect to the results without using version collapsing, as well
as the loss of accuracy, in the format “relative gain (%) / accuracy loss (%).”

per-ver-mods %
parallel versions

Wiki Livejournal
5 10 15 20 5 10 15 20

0.00001 30.01 / 0.41 42.63 / 0.43 59.38 / 0.48 72.07 / 0.48 76.44 / 0.00 133.11 / 0.00 173.57 / 0.00 210.10 / 0.00
0.0001 14.65 / 0.11 20.79 / 0.12 30.90 / 0.13 37.11 / 0.14 39.64 / 0.37 64.91 / 0.37 82.91 / 0.36 124.24 / 0.30
0.001 8.62 / 0.06 16.35 / 0.07 19.69 / 0.07 30.88 / 0.07 25.53 / 0.26 41.88 / 0.28 50.69 / 0.29 67.39 / 0.31
0.01 7.47 / 0.03 13.52 / 0.03 16.49 / 0.03 20.13 / 0.03 14.90 / 0.09 20.08 / 0.11 21.25 / 0.13 33.82 / 0.14
0.1 6.21 / 0.01 6.66 / 0.01 11.97 / 0.02 12.33 / 0.02 6.40 / 0.03 10.57 / 0.04 12.11 / 0.04 15.03 / 0.04
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With Wiki and Livejournal, the gain decreases with the increase of per-version modifications—

a trend that we have observed with the Amazon workload. The other trend—that is, the

increase of gain along with the number of versions processed in parallel—no longer holds

for Wiki or Livejournal. Both workloads, instead, show higher gain for versions equal

to 10 and 15 than that for versions equal to 5 and 20. In practice, the number of ver-

sions that can be processed in parallel by Kairos cannot be infinite. A theoretical limit

for the maximum number of parallel versions, or more generally, the range of parallel

versions in which Kairos is advantageous, can be calculated based on the amortized com-

putation overhead, memory access slowdown, and memory footprint increase related to

a multi-versioned vertex with respect to its single-versioned counterpart, as well as the

version propagation effect—a function of the user-defined algorithm and the graph work-

load. Table 5.2 indicates that the sweet spot of Kairos for applying PageRank on Wiki and

Livejournal resides between 5 and 20 of parallel versions, while our current experimental

setting cannot fathom the limit of Kairos for Amazon, at least for small per-version modifi-

cations. Results for Dblp show the shift of the sweet spot from above 20 versions for minor

per-version modifications to between 5 and 20 versions for more significant modifications.

The performance of Kairos also depends on algorithms. Tables 5.3 and 5.4 show the

relative gain of running triangle counting and SSSP on Kairos. Since the version prop-

agation effect is constrained by algorithm design in these cases, the range of per-version

modifications where Kairos is superior expands significantly for Wiki and Livejournal. In

addition, the performance of Kairos keeps increasing with the number of parallel versions

in most cases for all four workloads, indicating the dependency of the sweet spot in the

dimension of parallel versions on algorithms.

5.3.4 Effectiveness of Version Collapsing

Table 5.5 shows the effectiveness of version collapsing in mitigating the version prop-

agation effect during the execution of PageRank. For each combination of per-version
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modifications and parallel versions, we present the relative gain of version collapsing with

respect to the results without version collapsing, as well as the loss of accuracy. Specifi-

cally, the relative gain is calculated as
per fcollapse− per foriginal

per foriginal
, per fcollapse denoting the

NPG with version collapsing and per foriginal denoting the NPG without version collaps-

ing. We use the L1 norm to quantify the loss of accuracy. Specifically, lossaccuracy =

∑
#vertices
i=1 |rankioriginal − rankicollapse|

∑
#vertices
i=1 rankioriginal

, with rankioriginal denoting the rank of vertex i without

version collapsing and rankicollapse denoting the rank with version collapsing. The version

collapsing threshold is set to be 1/10 of the tolerance value in PageRank. Table 5.5 indi-

cates that an algorithm can be designed to be multi-version-processing friendly via Kairos’s

version collapsing interface. One can conveniently trigger the version collapsing support

of Kairos, explicitly trading a minor loss of accuracy, when appropriate, for a potentially

substantial performance gain.

Figure 5.8 shows a case study on the effectiveness of version collapsing regarding mem-

ory footprint reduction, comparing the variation of the total number of versions when run-

ning PageRank on Amazon, with and without version collapsing. The total number of

versions in a multi-versioned graph in the example is calculated as the sum of per-vertex

non-default non-sharable versions plus the number of default versions (i.e., the number of

vertices). Specifically, if a given vertex has two versions holding state different from the

default version, then it contributes three versions to the total number of versions. From

Figure 5.8, we observe that version collapsing is highly effective in this case, keeping the

multi-versioned graph in a condensed representation.

5.4 Discussion

Relation to Incremental Processing. Incremental graph processing systems (e.g., Kineo-

graph [21]) share a similar design principle to a multi-version graph processing system:

improving efficiency by reusing the result of a preceding computation stage. It is the def-

100



0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

to
ta

l 
v

er
si

o
n

s 
(i

n
 m

il
li

o
n

s)

iterations

no collapsing

collapsing

Figure 5.8: Case study on the effectiveness of version collapsing regarding memory foot-
print reduction (measured by the total number of versions).

inition of a computation stage that differentiates the two approaches (cf. Figure 5.9). In

incremental processing, a computation stage is equivalent to a computation task and re-

sult reuse always takes place at the task boundary. Moreover, the computation stage at the

graph level is aligned with that at the vertex level. A clear definition of the version-switch

boundary in incremental processing simplifies system design. It requires, nevertheless,

algorithms to be modified so as to reuse previous results at that boundary [22, 32]. Con-

sequently, an incremental equivalent of an algorithm may not always be realizable. When

they do, they may not produce results identical to their non-incremental counterparts.

In contrast, the computation stage in multi-version processing is only implicitly defined

at the vertex level. When two versions of a vertex can no longer share a common state,

the shared computation becomes the preceding computation stage and a version split with

result reuse then takes place. Specifically, multi-version processing systems provide two

key benefits over incremental processing systems: (i) the lifting of the requirement for

incremental algorithms and (ii) implication, the guarantee on producing the same result as

single-version processing systems. These benefits come at a cost: multi-version system

can potentially have higher computation overhead and larger memory footprint (due to the

difference between version switch and version split).
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Alternative Countermeasures to Version Propagation. To mitigate version propagation,

we have experimented with version collapsing—an error-bound-based approach.

Another promising solution is to cluster versions according to a similarity metric and

only share vertex/edge state among versions within a cluster. This approach is inspired by

clustering in FVF [53] and for version indexing [37]. It is conceptually similar to the above

error-bound approach: the latter is effectively a dynamic clustering approach that generates

clusters at the level of vertices/edges along the course of computation.

A third tentative solution is to enable a multi-version processing system to switch from

the state sharing mode back to the basic one-version-at-a-time approach when appropriate.

Specifically, we could start the computation optimistically by launching all versions (or all

versions within a cluster) in the state sharing mode. In the course of computation, if we

determine that the severity of version propagation surpasses a threshold, then we pause the

computation, checkpoint the current state for all versions, and then resume the computation

one version after another. After the computation on a version is completed, we restore the

system state using the checkpoint, and continue the processing of the next version.
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A finer-grained variant of the above approach is to switch only a subset of versions off

the state sharing mode and allow the rest to proceed in the state sharing mode. The selective

switching may lead to better overall system performance but requires more sophisticated

logic to determine the time for switching and the subset of versions to be switched off.

5.5 Related Work

Kineograph [21] targets incremental processing of graphs. Kairos differs from Kineo-

graph in that the latter focuses on reusing the result from a previous computation and then

continuing toward a different execution path. Only one execution is active at any given

time. In contrast, Kairos processes multiple versions of a graph in parallel, progressing

towards all paths as specified by a task. Conceptually, Kairos overlays multiple graphs

processed by Kineograph and aligns them to the same starting point, forking new computa-

tion threads when necessary to guarantee correctness. GraphInc [16] achieves incremental

graph processing without requiring the redesign of non-incremental algorithms—similar

to a design goal in Kairos. GraphInc’s use of memoization of all computation state dur-

ing the execution of an algorithm, however, incurs significant cost. Chronos [31] is, to our

knowledge, the first parallel multi-versioned graph processing system, capable of efficiently

processing multiple temporal snapshots of one graph in parallel. By making one dedicated

copy of vertex data for each snapshot, Chronos effectively avoids version management—

one key design aspect in Kairos—and achieves high performance. Kairos, however, fo-

cuses on resource and computation sharing in parallel multi-versioned graph processing.

The trade-off between more compact memory representation and the performance over-

head due to version management, as well as the issue of version propagation, is thus well

worth investigating. Kairos takes a first step in this direction.
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5.6 Conclusions

In this chapter, we presented Kairos, a graph processing system optimized for parallel

multi-versioned graph processing tasks. Kairos takes a first step in exploiting the sharing

opportunities—in terms of both fine-grained per-vertex computation and in-memory graph

representation—in cloud settings. We also identified version propagation as one key issue

negatively affecting sharing opportunities across versions. We demonstrated the efficacy of

Kairos in handling similar graph versions, its shortcomings in managing larger differences

among graph versions, and the effectiveness of version collapsing as a countermeasure

to the version propagation problem. The overall performance of Kairos demonstrates its

potential as a promising solution for multi-versioned graph processing.
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CHAPTER VI

Conclusions

In this thesis, we focus on the performance improvement of large-scale graph process-

ing systems. We discuss three categories of deficiency in state-of-the-art graph processing

systems and address each of them with a new systems design. We summarize the contibu-

tions of this thesis and conclude with a discussion on future directions.

6.1 Contributions

We study the performance penalty of computation-communication coupling in the com-

putation stage of single-version graph processing systems. We propose a new programming

abstraction called Compute-Sync-Merge that supports locally-sufficient computation over

vertex-cut, fully decoupling computation and communication. CSM enables the efficienct

design of single- and multi-phase algorithms. Hieroglyph—our prototype implementation

of a CSM-compliant system—outperforms state of the art by up to 53x.

Regarding sequential multi-version graph processing, we discuss the substantial over-

head related to graph fetching, had each version of a multi-version graph been fetched

individually, in its entirety. We address such deficiency with the integration of a graph

caching layer into the multi-version graph processing workflow, enabling the construction

of in-memory graph representation of a to-be-processed version based on graph contents

present in the cache. Decomposing the caching design space into three dimensions, en-
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compassing neighbor access effciency, extensibility, and compactness, we systematically

investigate all of them. Version Traveler—our implementation of a graph processing sys-

tem with a carefully design caching layer—significantly outperforms state of the art: run-

ning 23x faster with a 15% memory overhead compared to PowerGraph and achieving up

to 90% improvement compared to several multi-version processing systems, when jointly

considering processing time and resource consumption.

As for parallel multi-version graph processing, we study the presence of redundant

graph state in memory and the computation cost related to redundant state transition. We

design Kairos, a parallel multi-version graph processing system that consolidates redun-

dant graph state and eliminates redundant state transition via dynamic state splitting. We

also investigate countermeasures for mitigating the version propagation effect in dynamic

version splitting.

6.2 Future Directions

This thesis focuses on optimizing the graph processing layer, which resides between

supporting layers—such as systems software and hardware—and user-defined graph algo-

rithms and applications. Higher performance can be achieved by carefully investigating the

interactions of the graph processing layer with both the systems layer and the application

layer.

At the systems level, efficient use of cache [31], RDMA [73], and GPU [47] may be

critical for achieving high-performance graph processing. For example, enhancing cache

utilization by prioritizing version-locality over graph-topology-related-locality can signif-

icantly speed up certain parallel multi-version processing tasks. Effective use of RDMA

can improve the interleaving of computation and communication. GPU architectures can

lead to significant gain in graph traversal with carefully devised parallelization strategies.

Future graph processing systems need to explicitly take into consideration the features of
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their supporting layers in order to further boost performance.1

At the application level, despite the wide adoption of vertex-centric programming para-

digm, designing efficient vertex-centric graph algorithms remains difficult [58]. One promis-

ing approach to complement the efforts in algorithm design [35, 41] is to investigate the

interaction between programming abstraction and algorithm design and, by co-designing

the two, improve overall graph processing performance. Specifically, existing abstractions

may need to be extended or restricted to better support certain categories of algorithms.

Existing algorithms may need to be redesigned to fully unleash the power of state-of-the-

art graph processing systems and carefully avoid their shortcomings.

Exciting domains are constantly emerging in real-time big data analytics, such as Inter-

net of Things (IoT) and self-driving cars. Novel scenarios, such as the real-time analysis

of massive data streamed from smartphones, smart watches, healthcare devices, home ap-

pliances, and cars, will impose new challenges to analytics frameworks. For example, how

should massive traffic data be maintained to enable both offline analytics workloads and

online decision making? How should fine-grained medical records generated by constant

monitoring of numerous users be processed to help identify the propagation of a disease?

Lessons learned from designing and improving graph processing systems, such as the ones

presented in this thesis, can be applied to such new scenarios, resulting in innovative sys-

tems to efficiently address new challenges.

1This trend is observed in other domains of systems design, as well [10].
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