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ABSTRACT

While electric vehicles (EVs) have recently gained popularity owing to their economic

and environmental benefits, they have not yet dominated conventional combustion-

engine vehicles in the market. This is due mainly to their short driving range, high

cost and/or quick battery performance degradation. One way to mitigate these

shortcomings is to optimize the driving range and the degradation rate with a more

efficient battery management system (BMS).

This dissertation explores how a more efficient BMS can extend EVs’ driving

range during their warranty periods. Without changing the battery capacity/size,

the driving range and the degradation rate can be optimized by adaptively regu-

lating main operational conditions: battery ambient temperature (T), the amount

of transferred battery energy, discharge/charge current (I), and the range of oper-

ating voltage (min/max V). To this end, we build a real-time adaptive BMS from

a cyber-physical system (CPS) perspective. This adaptive BMS calculates target

operation conditions (T, I, min/max V) based on: (a) a battery performance model

that captures the effects of operational conditions on the degradation rate and the

driving range; (b) a real-time battery power predictor ; and (c) a temperature and

discharge/charge current scheduler to determine target battery operation conditions

that guarantee the warranty period and maximize the driving range. Physical com-

ponents of the CPS actuate battery control knobs to achieve the target operational

conditions scheduled by the batteries cyber components of CPS. There are two sub-

xv



components for each condition (T, I): (d) a battery thermal management system and

(e) a battery discharge/charge current management system that consists of algorithms

and hardware platforms for each sub-system.

This dissertation demonstrates that a more efficient real-time BMS can provide

EVs with necessary energy for the specified period of time while slowing down perfor-

mance degradation. Our proposed BMS adjusts temperature and discharge/charge

current in real time, considering battery power requirements and behavior patterns,

so as to maximize the battery performance for all battery types and drivers. It offers

valuable insight into both current and future energy storage systems, providing more

adaptability and practicality for various mobile applications such as unmanned aerial

vehicles (UAV) and cellular phones with new types of energy storages.
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CHAPTER I

Introduction

1.1 Motivation of Building a Good BMS

Electric vehicles (EVs) are gaining popularity for their environmental friendliness

and potential economic benefits. Since EVs are powered by batteries, rather than

fossil fuel, like internal combustion engines (ICEVs), they can reduce fuel depen-

dency and economically harmful fuel by-products [105]. However, they have not yet

replaced ICEVs for three main reasons.

First, EVs are much more expensive than ICEVs. An EV that has comparable

performance to ICEVs requires a high rate of voltage and current since its powertrain

must drive large motors in order to move its heavy vehicle body and load. To

supply a high rate of current with high voltage, thousands of small cylindrical battery

cells or hundreds/thousands of large battery pouches are connected. For example,

the GM 2010 Chevy Volt requires 288 pouch Li-ion battery cells, while the Tesla

Motors Model S (85 Kwh) requires 7,104 cylindrical cells. These result in an upfront

price difference of thousands of dollars between similar EVs and ICEVs, lowering

consumers’ interest. Second, the battery capacity monotonically decreases with time,

and its degradation rate is larger than that of gasoline tanks and engines in ICEVs.

As a result, EVs must be equipped with enough batteries to maintain the required

1
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Warranty period 8 year  
(70 % of its original capacity) 

Driving range 
426 Km 

Battery capacity 
85 Kwh (~ $ 35000) 

85 Kwh 

59.5 Kwh 

8 Yr 

~ $ 35000 
Required battery capacity 

77.27 Kwh (~ $ 31818) 

Degradation rate 30% ↓  
 $ 3150 

Efficiency 10% ↑ 
  $ 3182 

78.9 Kwh 

30% ↓ 
Capacity 

Battery efficiency : 5.011 m/wh 

5.513 m/wh 

10% ↑ 

Performance requirements 

Figure 1.1: Motivation on battery cost

capacity throughout their warranty period. This capacity fast degradation may also

require battery replacements for most EVs, incurring an additional (maintenance)

cost. Finally, the charging infrastructure for EVs is not yet ready; while more than

120,000 gas stations in the US have been deployed, there are only 16,533 battery

charging stations for EVs as of November 2017 [5, 8, 42, 107, 108].

Therefore, a large number of battery cells in EVs must be managed effectively for

delivery of the required power within a desired operational range over their warranty

period to address several of the challenges facing EVs. Efficient charging/discharging

could reduce the required number of battery cells and the charging frequency (hence

battery cost); robust cell protection/balancing could prevent battery quick capacity

degradation and malfunction under extreme conditions (enhancing battery protec-

tion) [17, 72]. A more efficient BMS would better manage factors that reduce driving

range and battery degradation. This would result in fewer replacement batteries, re-

duced charging frequency, and reduced initial and battery maintenance cost for both

producers and consumers. For instance, Tesla Motors Model S (85 Kwh), which

currently contains 7,104 Li-ion battery cells, guaranteed to power vehicles up to 426

km (265 miles) for eight years with unlimited miles. Figure 1.1 shows the battery ca-
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pacity changes during the warranty period when it degrades constantly. This rate of

degradation is typical for the current BMS. Normally, the battery should be replaced

when its capacity drops below 70% of its original capacity. Hence, the manufacturer

must be able to guarantee that the battery will be larger than 59.5 Khw at the

end of the warranty period. In this scenario, an increase of 10% of driving range

would save $3,182 of the batterys cost, because the vehicle would need fewer cells

(only 6,468) to guarantee the required driving range. There could be an additional

cost reduction of $3,150 with a 30% reduction in capacity degradation rate. With a

reduced degradation rate, the initial battery cells (up to 6,474) operate at a higher

capacity for a longer period of time, maintaining the driving range farther during

the warranty period, as shown in Figure 1.1. This dissertation develops a real-time

battery management framework that both extends driving range and reduces its

degradation rate during the warranty period, including a hardware architecture for

battery management.

1.2 Background and Related Work

This section introduces the background for building the effective BMS. We first

review the factors affecting battery’s driving range and its degradation rate, and

then previous efforts for optimizing those factors.

1.2.1 Critical factors affecting battery efficiency and its degradation

Battery efficiency and degradation depend on the operating conditions, such as

temperature (T ), dis/charge current (Ic, Id) and operating voltage range (Vc, Vd).

Discharge/charge current effects

Among the various reasons for battery performance degradation, the discharge/charge

current (Id, Ic) is the most critical [85, 63]. Continuous exposure to high discharge
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current leads to extensive energy consumption and capacity degradation rate, thereby

deteriorating battery performance. However, high discharge/charge current is often

inevitable, because EVs require large power requirements (power supplement) to

power the motor, especially during acceleration, and store energy from the regener-

ative braking system (RBS) when vehicles decelerate. Hence, most EVs estimate a

power capability, how much power the battery can supply and accommodate, dur-

ing driving, and limit the accelerations requiring high power and/or regenerating

power from RBS. To mitigate discharge/charge stress affecting the battery capacity

and life without limiting power requirement and energy generations from RBS, re-

searchers have focused on hybrid energy storage systems (HESSes) built with two

or more types of energy storage devices. The main principle of HESS is to use the

power-dense battery including ultra-capacitor (UC) as an energy buffer to smooth

rapid power fluctuations in and out of the battery of an EV [25, 65, 109, 111, 114].

High-energy batteries supply the average power required to operate vehicles, while

power-dense batteries provide the sudden power surges required for acceleration and

also accommodate instantaneous regenerative energy from the RBS.

Thermal effects

Temperature is another critical factor in the design and operation of EV’s bat-

teries [13, 32, 63, 85]. Temperature (T ) can alter the battery’s efficiency due to the

dependence of the chemical reaction rate on the absolute temperature. As a rough

approximation, for many reactions happening at around room temperature, the rate

of reaction doubles for every 10 oC rise in temperature, improving battery efficiency.

However, if the battery is used continuously at a high temperature, the performance

degradation rate will also increase due to the accelerated side chemical reactions. Ex-

tremely low temperatures may lead to lower reaction rates and ion mobility, thereby
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resulting in low energy capacity and a severe voltage drop. Existing BMSes have

thus employed thermal management policies to prevent battery cells from very high

and low temperatures which may result in capacity degradation and malfunction,

respectively. A BMS monitors the temperature of battery cells and triggers the ther-

mal control when temperature deviates from the normal operational range (note that

the normal operation range of battery cells can be determined by thoroughly testing

battery cells’ performance in thermal chambers) via “thermal fins”, an “air cooling

system”, or a “liquid coolant system” [35, 70, 99, 115]. This control includes both

cooling and heating, and existing controls and systems are all or nothing. To cool

the battery, the radiator is used to transfer heat from the fluid inside the battery to

the air outside, thereby cooling the fluid, which, in turn, cools the battery [99]. To

heat the battery, an electric heater is embedded in vehicles to heat the coolant. GM’s

Chevy Volt uses 144 thermal fins to cool/heat 288 lithium-ion cells with a coolant

flow valve controlling cooled/heated coolant flows [99].

Voltage effects

The operating battery voltage range, also, significantly affects battery efficiency

and degradation rate. The maximum amount of energy the battery can store is de-

termined by the minimum discharged voltage (Vd) and maximum charged voltages

(Vc). If the voltage range is extended, we can use more extended capacity of bat-

teries because we can store more energy in the battery within the extended voltage

range. However, the extension of operating voltage range accelerates battery degra-

dation. According to the experimental results in some literature, the most damaging

conditions are the high charge cut-off voltage and the charging period at a high volt-

age [84, 140]. Therefore, battery manufacturers test the batteries for various voltage

ranges to optimize them given performance requirements such as the required battery
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warranty period and charge capacity. Then, the BMS maintains batteries within the

recommended voltage range during the battery pack operates.

1.2.2 Conventional BMS

Battery management is crucial because batteries in EVs must power the motors

and other devices efficiently without severe damages within the specific operation

ranges. A standard procedure for BMS designers, especially in automotive industry,

is to (i) test and evaluate battery energy capacity degradation and internal resis-

tance in different operating environments, and tabulate the battery performance

parameters along with the associated operating conditions; (ii) based on these pa-

rameters, determine efficient and safe operating conditions within which the batteries

can power the system without suffering fast capacity degradation or quick internal

resistance increase; and (iii) estimate battery states and operating conditions to keep

the batteries efficient and safe after their release.

However, every vehicle operates under different conditions, including tempera-

ture, voltage discharge/charge-rate, and at different locations or by different drivers

throughout its warranty period. Also, every battery has different properties and may

show different efficiency and degradation characteristics [56]. So, the battery oper-

ating condition bounds based on the battery degradation pattern identified offline

may not be effective for all battery systems, thus necessitating online construction of

a battery degradation model that captures the impact of operating conditions [91].

1.3 Dissertation Goal and Overview

The goal of this dissertation is to design a more effective BMS that improves bat-

tery pack performance, 1) maximizing the usable energy capacity of the battery pack

and 2) lowering the battery performance degradation rate within the EVs warranty
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period. With a larger energy capacity, the same number of batteries extends the

driving range. The battery warranty period is defined as the duration (measured

in the number of cycles or elapsed time) of a rechargeable battery until it degrades

irreversibly to 70% of its initial capacity and cannot hold a useful capacity. By in-

creasing individual battery’s warranty period, the high cost of replacing a battery

within the EV’s warranty period is reduced. Slowing the capacity degradation of

batteries can reduce the overall cost of purchasing and maintaining EVs, both for

producers and consumers. Improved battery capacity may also result in additional

battery cost savings, like reduction in the number of battery cells required, which

further reduces EV costs.

Thus, this dissertation has built a holistic BMS for the optimization dynamic

& adaptive battery operating conditions as shown in Fig. 1.2. Unlike the conven-

tional BMS, the proposed BMS must be able to (i) diagnose batteries and identify

their degradation rate with respect to the operating conditions; (ii) estimate the

battery power requirement for electric loads and supply from energy sources; (iii)

optimize the operating conditions (T, Vc, Vd, Ic, Id) for supplying the required power

and accommodating the regenerated power to maximize battery efficiency during the

warranty period; and (iv) control the operating conditions to achieve the optimized

conditions. This dissertation not only proposes optimal algorithms for determin-

ing battery operating conditions but also implements hardware circuits and relevant

control algorithms to realize the optimizations.

1.4 Dissertation Organization

The disseration is organized as follows. Chapter II examines how to estimate the

required conditions/power to accurately predict an EV’s power requirement in real
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Operation condition optimization 

Given Itot , Optimize T, Id, Ic, Vd, Vc 

Current control 

Target Id, Ic 

Diagnosis 

Performance 

Thermal control 

Target T 

Power supply 

Isup 

Power demand 

Id 

Task scheduling 

Itot 

Degradation model 

ΔPerformance = f (n, T, Id, Ic, Vd, Vc) 

Degradation model 

Chap II 

Chap III & IV 

Chap III 

Chap VI, VII Chap V 

Chap III 

Chap VIII 

Chap VIII 

Figure 1.2: Overall approach and thesis organization

time. This prediction enables the BMS to keep cells within their operating limits

and schedule battery cells to be discharged and recharged more effectively while bal-

ancing them. Chapter III and Chapter IV describe the process to model battery

behavior based on the required power and temperature conditions. Based on the

power requirement prediction and the battery’s behavior model, Chapter IV also

describes how to determine optimal discharge-rate and temperature for better bat-

tery management. Chapter V first analyzes the effect of temperature on the basic

operation of a battery cell, and then shows how the effect can cause thermal and gen-

eral problems, e.g., a thermal runaway that results in the explosion of battery cells,

and unbalanced state of charge (SoC) which degrades battery cells’ performance.

Based on this understanding of thermal behavior, we finally develop temperature

control approaches and a battery thermal management system. Chapter VI and

Chapter VII first explore a contemporary energy storage system for EVs to capture

the physical dynamics that affect the battery discharge/charge rate. Based on this
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understanding of the effects of discharge/charge rate in an energy storage system,

we devise control knobs to manipulate the discharge/charge rate. Then, we design

an adaptive algorithm that manages the discharge/charge rate, reconfiguring the en-

ergy storage architecture. Chapter VIII develops a power scheduling framework for

a reliable energy storage system with multiple power-supply sources and multiple

power-demand operations. First, we provide an offline power-supply guarantee such

that every power-demand operation completes its execution in time while the sum

of power required by individual operations does not exceed the total power supplied

by the entire energy storage system at any time. Second, we propose online power

management that efficiently utilizes the surplus power (available at run-time) for sys-

tem performance improvement. Chapter IX concludes this dissertation and outlines

future directions for BMSes.



CHAPTER II

Real-Time Prediction of Battery Power Requirements for
Electric Vehicles

2.1 Introduction

An effective battery management system (BMS) is a must in addressing the above-

mentioned challenges of EVs in Chapter I. To do this efficiently, processing units

in the BMSes need accurate and appropriate physical state information around/in

the battery cells. While existing approaches assume that the physical states, such

as the cell discharging rate (i.e., the required EV load), are constant or change

slowly with time [72, 80], this assumption is not realistic as EVs’ power requirements

usually change abruptly and significantly. That is, simple measurement of past

power consumption cannot accurately predict power demands in future for efficient

battery management. Furthermore, the calculation of power requirement should be

done fast and used to (re)configure the connection of battery cells; otherwise, the

calculated power requirement may become obsolete at the time of its use for battery

management. It is therefore necessary for the BMS to predict the power requirement

accurately and in real time.

The main goal of this chapter is to develop a systematic way of accurately predict-

ing an EV’s power requirement in real time, which will then enable the BMS to keep

cells within their operating limits and schedule battery cells to be discharged and

10
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Figure 2.1: Cyber-Physical System for PRP

recharged more effectively while balancing them. To show the utility of our power

requirement prediction, we also propose an advanced BMS equipped with the power

requirement predictor (PRP). Note, however, that this prediction is difficult since

the power requirement depends on many physical elements such as traffic conditions,

traffic regulations, the operator’s driving pattern, the vehicle’s state and the road

condition. Therefore, cyber elements in PRP that compute the power requirements

should capture their coupling with the physical elements. To achieve this, we add

an interface that abstracts the physical elements as shown in Fig. 2.1; the input and

output of the interface are directly connected to physical components like sensors

and actuators.

To facilitate the prediction of power requirements, we introduce a power require-

ment model with parameters that dictate the required power, and predict each pa-

rameter from the corresponding physical model in the abstraction layer. Although

many power requirement models have been proposed, such as [22, 119, 10], we use the

simple and widely-used model with real-time adaptation (i.e., history-based energy-

usage model in [48]) to different vehicles and operational environments. With the

model, our PRP operates as follows. First, we update the parameters in the power
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requirement model according to the performance of the vehicle’s physical compo-

nents and structure by periodically estimating the parameters based on the driving

pattern and the power demand data. Second, we pre-calculate changes in the pa-

rameters related to the road information using a pre-downloaded map. Finally, to

predict the changes of acceleration, the most challenging step, we make three key

observations that affect the acceleration pattern: the traffic flow, the operator’s driv-

ing behavior, and the traffic regulations. Then, we develop acceleration prediction

methods that address these observations, and propose a unified method that exploits

the prediction methods.

Our evaluation with actual experimentation and realistic simulation demonstrates

that the proposed PRP with the unified acceleration prediction method yields the

actual required power more accurately than a widely-used heuristic approach by up

to 69.2%.

The proposed PRP differs from other approaches in that it

• predicts the operator’s driving pattern in real time;

• estimates parameters adaptively for the prediction of power requirements;

• reduces the complexity of computation; and

• reflects traffic flows, the driver’s behavior, and traffic regulations.

The chapter is organized as follows. Section 2.2 presents our PRP, and Section 2.3

details the acceleration prediction schemes developed for the PRP. Section 2.4 eval-

uates our acceleration prediction using experimentation and simulation. Finally, the

chapter concludes with Section 2.5.
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a V m g Kr α ρair Cd A
(m/s2) (m/s) (kg) (m/s2) (degree) (kg/m2) (m2)

Dynamics Extremely
high

High Extremely
low

Extremely
low

High High Low Extremely
low

Extremely
low

Dependency Driver,
Road,
Traffic

Driver,
Road,
Traffic

Vehicle
structure

Altitude Tire,
Road

Road Altitude Vehicle
structure

Vehicle
structure

Table 2.1: Characteristics of parameters in the power requirement model

Fair 

Fc 

ma 
Fr 

𝛉 

Fa 

Fr 

Figure 2.2: Forces in the power requirement model

2.2 Power Requirement Prediction

We first present an existing power requirement model we adopt for the power

requirement predictor (PRP), and then describe how to predict all the parameters

in the model. To this end, we identify the parameters’ characteristics, and then use

them to design the PRP. Finally, we present how the PRP is placed in an advanced

BMS.

2.2.1 Power requirement model

We use a polynomial power requirement model [123] that accounts for power

demand according to physical laws. Fig. 2.2 illustrates the model where Fa, Fair, Fc,

and Fr denote, respectively, the force for acceleration, the aerodynamic force, a load

related to steepness, and rolling resistance. The total power requirement (Ptotal) is

then calculated as the sum of all forces multiplied by the vehicle’s forward speed (V ):

Ptotal = Fa · V + Fair · V + Fc · V + Fr · V
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(2.1) = m · a · V +
1

2
· ρair · Cd · A · V 3 +m · g · sin θ · V +m · g ·Kr · V,

where θ denotes the slope angle, and all other parameters will be detailed in Sec-

tion 2.2.2.

Simplicity is the primary reason for adopting this model. Since the model de-

pends only on some physical parameters, we can obtain their actual values from

measurement or calculation. Moreover, the calculation of the power requirement in

Eq. (2.1) requires only basic operations, facilitating the real-time prediction of power

requirements. In Section 2.4, we will show that the model, albeit simple, yields good

accuracy in estimating the required power.

2.2.2 Characteristics of the model parameters

To estimate the amount of power that the BMS should provide during the next

time interval, we need to predict all the parameters in Eq. (2.1). Such prediction

requires the knowledge of (i) the frequency of change in each parameter and (ii)

the information necessary to predict each parameter. One can then tailor prediction

schemes to this knowledge. Table 2.1 summarizes the parameter characteristics which

are then used to categorize the parameters as

C1. stable: mass of the vehicle (m), gravitational acceleration (g), air density (ρair),

drag coefficients (Cd) and frontal area (A);

C2. dynamic but easy to predict: rolling resistance coefficient (Kr) and road slope

(θ); and

C3. dynamic and difficult to predict: acceleration (a) and speed (V ).

The parameters in C1, such as m, Cd and A, rarely change as they depend only on

the vehicle itself. Also, g and ρair change very slowly. The parameters in C2 depend

on the car’s location on the road. We can thus accurately predict the parameters by
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P̂n,n+1, ân,n+1, V̂n,n+1: power demand, acceleration, speed at step n+ 1 estimated at step n

θn, limVn: road slope, speed limit at step n obtained from a pre-downloaded map

∆Vn, ∆Xn: relative speed and distance between the leading and my cars measured at step n

Figure 2.3: Overall structure of the power requirement predictor (PRP)

using offline information of the roads (e.g., Google Map [6]) and real-time location

information (e.g., GPS). For example, we can get the information of road type and

slope a priori from a pre-downloaded map, thus acquiring Kr and θ for a given

location. By incorporating the static information into real-time location information,

we can easily predict the parameters in C2 despite their dynamic variation.

In contrast, the two parameters a and V in C3 dynamically change and are difficult

to predict, since they depend not only on road information, such as the road type and

slope, but also on the operator’s driving pattern, which are difficult to predict and

analyze. In particular, drivers have their own driving patterns related to complex

human decision-making processes, and the pattern might change with their mood or

physical condition. Besides, the driver should obey traffic regulations and consider

traffic conditions, which significantly affect the two parameters.

As a result, we need two different approaches in predicting the parameters in C1,

C2, and C3 as detailed in the next subsection.
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Figure 2.4: Example of road segmentation

2.2.3 Design of the power requirement predictor

Here we present the design of PRP. As shown in Fig. 2.3, PRP estimates the

next (step n + 1) power requirement during the current time interval (step n), and

consists of input and computation parts. The input part provides all measured

data of the current step and all pre-calculated data for the next step. Using this

data, the computation part estimates all the parameters in C1–C3, and then outputs

the estimated power requirement for the next step (i.e., P̂n,n+1) using the power

requirement model in Eq. (2.1).

Before detailing these two parts, we first define a road segment, which is used

for the computation part. A road segment is a continuous road interval in which

road conditions and traffic regulations are uniform. Fig. 2.4 shows an example.

The concept of road segment is important, since some parameters in the power

requirement model vary with road segment.

The computation part estimates the parameters in two different ways. As dis-

cussed in Section 2.2.2, the parameters in C1 and C2 are either slowly changing

or predictable, but the parameters in C3 are difficult to estimate. Considering the

different parameter characteristics, the power requirement model manager (PRMM)

and the acceleration predictor (AP) predict the parameters in C1 and C2, and those

of C3, respectively, as detailed next.

The parameters in C1 change slowly, and Kr in C2 is constant within a road
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segment. So, after segmentation of the road, we can abstract Kr and the parameters

in C1 into four coefficients, thus reducing the number of input parameters for the

power requirement model as follows.

Ptotal(a, V,m, g,Kr, θ, ρ, Cd, A) = the RHS of Eq. (2.1)

(2.2) ⇒ Ptotal(a, V, θ) = c1 · a · V + c2 · V 3 + c3 · sinθ · V + c4 · V.

Then, Eq. (2.2) depends only on the coefficients c1—c4, acceleration (a), speed (V )

and road slope (θ). Since θ is given by the pre-downloaded map, we only need to

estimate the coefficients, and acceleration and speed. For coefficients, PRMM adopts

a popular history-based estimation—linear regression, calculating the coefficients

based on the past data of all parameters in Eq. (2.2). For this, PRMM receives the

current data of power requirement (Pn), acceleration (an), speed (Vn), and rode slope

(θn) as shown in Fig. 2.3, and estimates the four coefficients for prediction at the

next interval.

On the other hand, AP outputs acceleration and speed for the next interval, and

needs additional information on the relative speed and distance between the leader

and the follower cars (∆Vn and ∆Xn) as shown in Fig. 2.3, which abstract the traffic

flow. Of the two parameters a and V , we will focus on the prediction of a since we

can calculate V in the next interval once we know a and V in the current interval. To

predict a in the next interval, we identify factors that affect the acceleration pattern,

develop schemes to address the factors, and finally combine the schemes towards a

unified, effective prediction. We will detail the acceleration prediction in Section 2.3.

As shown in Fig. 2.3, the input part in PRP provides measured or pre-calculated

data to PRMM, AP, or the power requirement model directly, and consists of three

components: (i) the driving data sampler for the power consumption (Pn), accelera-
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Figure 2.5: Structure of proposed BMS.

tion (an), and speed (Vn); (ii) the pre-downloaded map for the current and next road

slopes (θn and θn+1), and the current and next speed limits (limVn and limVn+1);

and (iii) the distance sensor for the relative speed and distance between the leader

and the follower cars (∆Vn and ∆Xn).

2.2.4 Advanced BMS

To manage large-scale batteries for EVs in the presence of nonlinear, complex

battery dynamics [85], existing BMSes [17, 72, 80, 120, 71, 73] usually consist of

the battery status monitor, the battery manager, and the battery configurator as

shown in Fig. 2.5. The battery status monitor periodically reports each cell/pack’s

state, such as SoC (State of Charge), temperature, and open circuit voltage. Then,

the battery manager calculates each cell’s discharge rate and rest period, and then

sends the results to the battery configurator. The configurator sets the connection

of battery cells as instructed by the battery manager at the circuit level.

One of the key features of BMSes is to schedule and allocate battery cells to

meet the EV’s power demand in an effective and safe way. To do this, we have

(in the previous subsection) developed the PRP, which forms additional parts of a
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BMS as shown in Fig. 2.5. That is, the advanced BMS contains the vehicle activity

monitor, which reports the vehicle’s driving information, including all the variables

provided by the input part. Then, the PRP in Fig. 2.3 calculates the vehicle’s next

power demand, which is then sent to the battery manager for more efficient and safe

battery (connection) arrangement. We will briefly discuss how the proposed PRP in

this chapter is placed with the advanced BMS in Section 2.5.

2.3 Acceleration Predictor

As discussed in Section 2.2, it is difficult to predict a vehicle’s acceleration since

it depends not only on static information such as the road type and slope as well as

traffic regulations, but also on dynamic one such as the operator’s driving pattern and

the traffic flow near the car. For accurate acceleration prediction, we first make three

key observations that affect the acceleration pattern. Then, we develop acceleration

prediction schemes that account for some of these observations. Finally, we combine

these prediction schemes to devise a unified acceleration prediction method.

2.3.1 Observations of acceleration pattern

We make three key observations that determine the acceleration pattern: the

traffic flow around the car, the operator’s driving behavior, and the traffic regulations.

We also corroborate the observations with experiments. The observations will be a

basis for acceleration prediction schemes to be developed in Section 2.3.2.

O1. The leader car affects the follower’s acceleration pattern.

As long as car A does not pass the front car B, the average speed of A cannot

exceed that of B. Therefore, as shown in Fig. 2.6,1 the average relative speed between

A and B is almost zero. If the relative speed is negative (positive), A tries to catch

1We obtained Figs. 2.6, 2.7 and 2.8 using the evaluation tools to be described in Section 2.4.
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Figure 2.7: Reaction strength and time; we picked two cars on the US-101 highway.

up (distance itself from) with B by acceleration (deceleration). Therefore, the front

car B determines an average behavior of the follower car A’s acceleration.

O2. The operator’s driving behavior affects the acceleration pattern.

We capture each operator’s driving pattern with two variables: reaction strength—

how quickly the operator/driver accelerates to achieve a desired speed, and reaction

time—how long it takes for the driver to react to a given situation, which are repre-

sented in Fig. 2.7, respectively, by the slope of acceleration and the duration during

which the acceleration is zero. For instance, some drivers press the acceleration

pedal aggressively until the vehicle reaches the desired speed, but others gradu-

ally increase/decrease speed with a long acceleration time. Although the reaction

strength varies with drivers, we found that the reaction strength of a driver remains
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prediction
methods

previous ac-
celeration

previous acceleration
with reaction strength

correlation with
past accelerations

car following
model

road segmen-
tation

addressed
observations

O2 (implic-
itly)

O2 (implicitly) and re-
action strength in O2

O2 (implicitly) O1 O3

limit to appli-
cation

no limita-
tion

no limitation no limitation no limitation segment
transfer

sampling rate dependent dependent dependent independent independent
calculation cost low low high low low
input data an an, reaction strength an−q , · · · , an ∆Vn, ∆Xn Vn, limVn+1

Table 2.2: Properties of the acceleration prediction methods

similar all time. The reaction time also depends on the driver. While drivers with

a long reaction time tend to maintain their vehicles’ speed instead of acceleration

or deceleration, others with a short reaction time immediately respond to a given

situation, e.g., the front car’s slowdown.

Stop sign Stop sign 

Speed bump 

Stop sign 

Figure 2.8: Acceleration pattern between road segments; four different drivers drove around the
University of Michigan campus and the path includes three stop signs and a speed
bump.
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O3. The traffic regulations affect the acceleration pattern.

The traffic regulations include speed limit, traffic lights and other traffic signs,

and have a great impact on acceleration. For example, every driver is supposed to

decelerate at a stop sign or speed bump, and hence, this is independent of drivers

as shown in Fig. 2.8. Using offline profiling of road information, we can predict the

impact of traffic regulations on the acceleration pattern.

2.3.2 Acceleration prediction methods

To predict an operator’s acceleration pattern, we present five methods, each with

its own properties. The first three methods utilize the history of previous acceleration

patterns, thus indirectly/directly addressing O2. On the other hand, the next two

methods address O1 and O3, respectively, by using an existing traffic flow model and

road segmentation based on traffic regulations. The five methods are summarized

in Table 2.2. Considering the fact that the five methods are effective for different

environments/situations, we combine them to devise a unified acceleration prediction

method, exploiting advantages of the five individual methods.

Previous acceleration

In this method, the current acceleration is used as the next acceleration predic-

tion. Its advantage is simplicity. This method, although naive, results in accurate

prediction in case of slow acceleration fluctuation, or high sampling frequency with

an almost zero battery reconfiguration time. However, this method alone cannot

cope with abrupt changes in acceleration in many practical situations.

Previous acceleration with reaction strength

To improve the simple acceleration method that uses the previous acceleration,

we incorporate the reaction strength in O2. To do this, we calculate the accelera-
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tion slope when the driver starts acceleration, and use it for the next acceleration

prediction as follows:

(2.3) ân = an−1 + k · (an−1 − an−2),

where k is the sensitivity coefficient for the acceleration slope (reaction strength).

This additional consideration yields more accurate prediction than the previous ac-

celeration method while requiring only two more basic operations.

Correlation with past accelerations

While the two history-based methods focus on the previous acceleration, this

method employs a linear filter that correlates a long history of earlier accelerations

with the next acceleration. For this, we first measure and record time-stamped accel-

erations, and then generate correlation factors based on the errors between recorded

(input) and predicted accelerations. Finally, we predict the next acceleration by

inner-product of the input and the correlation vectors. This method is useful when

the next acceleration is highly correlated with earlier accelerations. It achieves higher

accuracy than the two history-based methods at the expense of high computational

complexity. Note that all history-based methods including this depend on the data

sampling rate, because the higher rate can mask rapid changes of acceleration.

Car following model

Many transportation researchers studied microscopic driver behavior to describe

a real traffic flow. The car following model [29, 81], a well-known microscopic traffic

flow model, describes the vehicle’s acceleration in terms of the relative speed and

distance between a car and the leading car in front. Among existing car following

models [29, 100, 14, 95], we choose the popular one in [14], which extends the classic

model [29] based on the observation for optimal velocity. The main advantage of
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prediction with the car following model is its independence of the sampling frequency.

Although this model provides which action is needed to maintain a relative speed

of zero and a constant desired distance between the two cars, it does not directly

provide the vehicle’s acceleration, resulting in inaccurate prediction.

Road segmentation

To address the effect of traffic regulations, we segment the road based on traffic

regulations, and then predict the acceleration pattern when a car transits from a

segment to another. This method enhances the accuracy of acceleration prediction

between road segments; for example, if the next segment’s speed limit is higher

or lower than the current one, we can predict the acceleration during the segment

transition by calculating of the difference in speed (limits) between the current and

next segments. Since the traffic regulation information can be extracted from a

pre-downloaded map, it does not depend on the data sampling frequency.

Unified prediction of acceleration

As shown in Table 2.2, each of the above methods has its own characteristics and

advantages: (i) the history-based (the first three) methods depend on the sampling

rate and are effective when the rate is high; (ii) the method based on the car following

model is independent of the sampling rate and thus more widely applicable; and (iii)

the road segmentation method is specialized for segment transition.

Considering these characteristics, we propose a unified method that predicts the

acceleration in the next interval as follows: (a) when the car crosses a segment bound-

ary, it uses the road segmentation method to predict acceleration; (b) otherwise, it

predicts acceleration using a combination of methods based on acceleration history

and car-following model.
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Figure 2.9: Update of the weight factors and calculation of the next acceleration using the weight
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There are two variables that affect the decision of (b): the sampling rate and

the reaction time. As to the sampling rate, the history-based methods (the method

with the car following model) are more effective than the counterpart under a higher

(lower) sampling rate, because the car following model guarantees the same level

of accuracy even under a low sampling rate, while the prediction accuracy of the

history-based methods is proportional to the sampling rate. As to the reaction time,

the history-based methods are accurate for a long reaction time, because drivers

with a long reaction time tend to maintain their speed. On the other hand, the

acceleration by drivers with short reaction time can be described well by the car

following model as the drivers react immediately to a given traffic situation.

Considering the two variables, the unified method handles the situation (b) via

the weights α and β (such that α+ β = 1), which are respectively the weight of one

of the history-based methods and that of the method with the car following model.

The weights can be calculated adaptively so as to reduce the error in predicting the

next acceleration. Fig. 2.9 shows an example of the process of updating the weights.

Suppose that the weights at step n − 1 are set to αn−1 = 0.7 and βn−1 = 0.3, and

the method uses them to predict the acceleration of step n. Then, at step n, the

actual acceleration is different from the predicted; if the weights were αn−1 = 0.6 and
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βn−1 = 0.4, the prediction would have no error. Using this information, the method

updates the weights at step n for the acceleration prediction of step n+1 as shown in

the figure.2 In Section 2.4 we will compare the accuracies of acceleration prediction

by the unified and the other methods.

2.4 Evaluation

We now evaluate the proposed power requirement predictor. We first describe

tools and settings used for the evaluation. Then, we demonstrate the accuracy of

acceleration predictor (AP) and power requirement predictor (PRP).

CarSim 

Power Requirement Model 

NGSIM 
transaction data 

AP PRMM 

Vehicle motion data 

Google Map 
API 
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Figure 2.10: Block diagram of the PRP evaluation system

2.4.1 Evaluation tools and settings

To evaluate PRP, three types of offline/driving data are needed as inputs of PRP:

(i) road information (θ, limV ), (ii) real driving data (a, V , ∆X, ∆V ), and (iii) the

measured power consumption (P ). We designed an emulator of PRP, which provides

actual or realistic data from three popular tools as shown in Fig. 2.10: Google Maps

2While the unified method calculates average prediction error of x previous steps for the update of weights, we
illustrate x = 1 for simplicity of presentation.
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API [6], NGSIM [7], and CarSim [4].

Google Maps API enables developers to build map-based applications which allow

us to access the road information database including the road type, the speed limit,

and the elevation along with the GPS data, thus providing road information (i).

NGSIM (next generation simulation program) was initiated by the US DOT, and

accompanied by a core of open behavioral algorithms in support of traffic simulation

with a primary focus on microscopic modeling. NGSIM collects high-quality primary

traffic and trajectory data to test new algorithms, thus providing real driving data

(ii). We use the vehicle trajectory data including vehicle identification number,

instantaneous velocity and acceleration of the vehicle, and distance between the

front-center of a vehicle and that of the preceding vehicle.

CarSim is a vehicle model simulator that allows users to design, develop, test,

and plan vehicle programs in a variety of environments. It can simulate the dynamic

behavior of passenger cars, racecars, light trucks, and utility vehicles, under specified

road type and slope. CarSim provides animations, and outputs the required power,

which can be plotted, analyzed, and exported to other software such as MATLAB,

Excel, and other optimization tools. In our emulator, CarSim receives the vehicle

motion data from NGSIM, and then generates the required power, as shown in

Fig. 2.10.
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Figure 2.11: Road location and slope
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For NGSIM and CarSim, we use a hatchback-type car with 205/55 R16 tires,

assuming a paved road. We also assume that there is no regenerative break system,

and therefore, the required power is always non-negative. For road information, we

select the southbound US-101 highway in Los Angeles, CA from Google Maps API

as shown in Fig. 2.11, and NGSIM tested the car on the road with traffic of June

15th, 2005.

2.4.2 Evaluation results

In this subsection, we evaluate the accuracy of AP and PRP. We first discuss

hardware factors that may degrade accuracy, such as the sampling rate of the required

data, the times for computing the required power and reconfiguring the connection

of battery cells. All of these factors are related to manufacturing costs; if a BMS

is equipped with high-performance sensors, processors, and quickly-reconfigurable

systems, the undesirable effect of these factors on prediction accuracy will be reduced.

However, BMS designers are required to use cheap and low-powered devices to reduce

the cost and power consumption of a BMS, which will in turn lower accuracy of PRP.

While the degree of inaccuracy caused by these factors varies with hardware, it is

inevitable for a BMS to spend time for sensing physical data, calculating the required

power, and incorporating them into the BMS. To address this latency, we abstract

these factors as a sampling rate, and evaluate it with three different rates: 2Hz, 5Hz,

and 10Hz.

Such a finite sampling rate causes prediction error as shown in Fig. 2.12. That

is, even if PRP exactly predicted the required power for step n at step n − 1, the

required power between steps n and n + 1 varies, resulting in some error. This also

holds for acceleration prediction. So, let Opt-P (Opt-A) denote this perfect prediction

of power (acceleration) with the inherent error due to the finite sampling rate.



29

Time(s) 

Real power consumption 

Power (kW) 

Ideal Prediction (Opt-A) 

n-1 n n+1 

Inherent  
error 

Figure 2.12: Inherent error due to finite sampling frequency

We now show the accuracy of AP and PRP with the following acceleration pre-

diction methods, compared to Opt-A.

• Prev (previous acceleration) in Section 2.3.2,

• Prev+ (previous acceleration with reaction strength) in Section 2.3.2,

• Corr (correlation with past accelerations) in Section 2.3.2,

• CF (car following model) in Section 2.3.2,

• RS (road segmentation) in Section 2.3.2, and

• Uni(H) (the unified prediction of acceleration with one of the history-based meth-

ods, i.e., H is either Prev, Prev+, or Corr) in Section 2.3.2.

Accuracy of AP

We first compare the acceleration prediction methods when the car is within a

single road segment. To evaluate the accuracy of acceleration prediction, we used

the driving record produced by NGSIM, and adapted each prediction method to

predict the vehicle’s next acceleration. To compare the performance of each predic-

tion method, we calculated the average of absolute prediction errors, as shown in

Table 2.3. Overall, the higher sampling rate, the more accurate prediction because

more information is available to predict the next acceleration. At a low sampling
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rate, prediction by CF shows less prediction error since CF is the only method that

is independent of the sampling rate. On the other hand, history-based acceleration

predictions, such as Prev, Prev+, and Corr, performed well at a high sampling rate.

Uni(·), in general, yields more accurate acceleration prediction than other methods

irrespective of the sampling rate. One exception is the prediction by CF at 2Hz,

because there are a limited number of driving information samples at 2Hz and then

errors of Uni(·) are likely to occur during the learning of the driver’s reaction.

Average error (m/s2)
Prediction methods 2Hz 5Hz 10Hz

Opt-A 0.795 0.369 0.168
Prev 1.518 0.989 0.556
Prev+ 1.566 1.128 0.461
Corr 1.465 1.016 0.444
CF 0.984 1.070 0.985
Uni(Prev+) 1.154 0.992 0.433
Uni(Corr) 1.162 0.948 0.448

Table 2.3: Average error of acceleration prediction

Now, we show how RS is useful when a car crosses segment boundaries. To

predict the acceleration between road segments, we picked two drivers from NGSIM

trajectory data. The leading car passes a traffic light just before the light turns to

red, but the following car stops at the traffic light since it just turned to red. Then,

we compare the accuracy of acceleration prediction with/without RS when CF is used

as the baseline prediction method. Since the the following car cannot accelerate due

to the traffic light, CF’s prediction of the following car’s acceleration shows a large

average error as shown in Fig. 2.13. However, the road segmentation can provide a

chance to predict acceleration accurately between different road segments as shown

in the figure. The average errors of acceleration prediction are 1.912 and 1.262,

respectively, for CF and CF with RS.
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Figure 2.13: Acceleration prediction between segments

Average error (m/s2)
Prediction methods 2 Hz 5 Hz 10 Hz

Opt-P 8.671 3.861 1.705
PRP with Opt-A 9.186 4.448 2.458
Actual previous power 15.884 10.461 5.904
PRP with Prev+ 17.198 11.212 5.202
PRP with Corr 12.567 10.368 4.962
PRP with CF 10.464 11.006 10.630
PRP with Uni(Prev+) 12.138 10.425 4.916
PRP with Uni(Corr) 10.891 10.220 5.068

Table 2.4: Average error of power prediction

Accuracy of PRP

We first evaluate the power requirement model in Eq. (2.1). Since Opt-P and Opt-

A are the most accurate power and acceleration predictions achievable for a given

sampling frequency, we compare Opt-P, and PRP with Opt-A. As shown in Table 2.4,

the difference in average error between the two is marginal, meaning that the power

requirement model we employed yields accurate enough prediction of the required

power.

Since Opt-P and Opt-A are ideal power and acceleration predictions (thus infeasi-

ble), we need to employ one of acceleration prediction methods with PRP; Table 2.4

summarizes the prediction errors, and Fig. 2.14 plots the prediction. We included

one heuristic (actual previous power) that uses the current actual power consump-
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tion as the next power requirement. Note that this scheme does not use our PRP.

Compared to the heuristic, PRP with Uni(Corr) shows an improvement of prediction

accuracy by 69.2% at 2Hz, 3.7% at 5Hz, and 19.9% at 10Hz within a road segment.

If we compare PRP with different acceleration prediction methods, the trend will

be similar to the accuracy of AP, because the error in predicting the power require-

ments is dominated by that of acceleration prediction. For example, Uni(Corr) is in

general (one of) the best methods for predicting acceleration that corresponds to the

required power associated with PRP. In particular, compared to PRP with CF, PRP

with Uni(Corr) predicts closer to the actual required power by 11.0% at 5Hz, and

62.3% at 10Hz.

2.5 Conclusion

Increasing demand to make EVs lighter and less expensive places stringent re-

strictions on battery size and capacity. It is thus important to devise advanced BMS

extending battery capacity without increasing its size. A number of BMSes have

been proposed to exploit nonlinear battery characteristics, including recovery and

rate-capacity effects.
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To introduce adaptability and efficiency into existing BMSes, we have proposed

the battery power requirement predictor (PRP). It predicts the amount of required

battery power that enables BMSes to allocate battery cells to power EVs efficiently

and safely. While recording and linearly regressing vehicle activities such as speed,

acceleration, road slope and power consumption, PRP updates the (near) static

parameters of the battery power requirement model for EVs. In the meantime, PRP

estimates the acceleration, perhaps the most important dynamic parameter of the

model, in real time, by accounting for the driver’s acceleration pattern, traffic flows

and regulations. Our evaluation with actual experimentation and realistic simulation

has shown that PRP makes a significant improvement in acceleration prediction over

a simple heuristic method often seen in the existing BMSes.

Since PRP was developed to be used in an advanced BMS in Fig. 2.5, we plan

to develop a new battery manager that exploits the predicted power by PRP. We

can then find how much PRP with the new battery manager can improve the life

and operation time of existing BMSes. It would also be interesting to explore ways

of improving PRP. For example, we can enhance the accuracy of the acceleration

prediction by sensing the driver’s motion on the acceleration pedal. Besides, we may

employ more accurate power requirement models, such as those in [22, 119, 10]. Since

these models are complex, it would be interesting to investigate how to adapt them

for real-time prediction.



CHAPTER III

Adaptive Battery Diagnosis/Prognosis for Efficient
Operation Control

3.1 Introduction

Battery diagnosis and prognosis — via accurate estimation of battery character-

istics, such as maximum power capability and end-of-life (EOL) [88, 146, 84] — are

crucial to their reliable operation [141, 91]. Therefore, battery management system

(BMS) designers must test and evaluate battery performance in different operating

environments. Based on the degradation patterns, BMS designer can figure out the

the battery degradation model and determine efficient and safe operating conditions.

The BMS estimates battery states and operating conditions to keep the batteries

efficient and safe after releasing products.

The challenges in building such a battery degradation model are three-fold. First,

it requires a comprehensive understanding on battery operation, which is a rather

complex electro-chemical process that affects the battery’s energy efficiency in many

aspects. Second, most efficiency-related battery parameters change over time, and

thus those dominating the battery degradation, together with their relationship with

batteries’ potential operating conditions (i.e., V, I, T ), must be identified in real time.

This is because the operating conditions affect batteries’ internal reactions — and

thus their efficiency and degradation — significantly, rendering battery degradation a

34
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complex process. This makes simple battery models deficient in describing/predicting

their current/future health states [91, 84]. Third, directly checking the material

states of a battery is expensive and destructive, e.g., disassembling a battery pack

entails additional labor and cost. An ideal battery diagnosis/prognosis system must

be able to indirectly figure out the states of battery health (SOH) in a pack without

taking intrusive measures nor requiring a significant amount of time, both of which

degrade users’ convenience and experience.

Numerous approaches have been proposed to estimate battery state-of-health

(SOH) by identifying battery degradation states with non-destructive data-driven

approaches [57, 88, 30, 143, 125]. Most of them assessed battery SOH in terms of

energy capacity and internal resistance. Based on the degradation profiles of bat-

tery energy capacity and internal resistance under different operating conditions,

they construct a degradation model as a function of operating conditions and cy-

cles/time. Battery’s energy capacity and internal resistance, albeit crucial, cannot

fully represent the important parameters that affect battery SOH. The authors of [84]

proposed a comprehensive degradation model based on a physical electro-chemical

model and validated it in several domains. However, applying their model to the real

world requires certain cell information related to the electro-chemical battery model,

which is usually proprietary to cell manufactures and thus has limited availability.

In particular, we propose an adaptive battery diagnosis/prognosis system for effi-

cient battery control via charging diagnosis and based on a newly constructed adap-

tive battery degradation model. This system monitors battery behaviors during

charging, which are then used to estimate battery SOH. The thus-obtained SOH

profiles are recorded along with the corresponding number of operation cycles and

the operating conditions (V, I, T ) which are used to construct a battery degradation
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model. The degradation model allows the BMS to predict battery EOL (end-if-life)

and search for the optimal battery operating conditions, so as to maximize battery

performance within a given warranty period.

The main contributions of this chapter include:

• proposal of a diagnostic charging system that identifies and collects battery

SOH information during charging;

• development of an adaptive battery degradation model which represents the

relationship between the degradation rates of performance parameters and the

operating conditions applicable to vehicles/mobile systems;

• prediction of battery EOL based on the constructed degradation model; and

• construction of a holistic framework for battery diagnosis/prognosis and demon-

stration of its efficiency via in-depth experimental evaluation.

The rest of this chapter is organized as follows. Sec. 3.2 provides the background of

battery model and degradation, and Sec. 3.3 formally states our problem and solution

approach. Sec. 3.4 describes how to estimate battery model parameters related to

battery performance and SOH during charging. Sec. 3.5 describes the construction

of battery degradation models for predicting batteries’ future states and their use

to predict battery EOL. Sec. 3.6 evaluates the proposed battery diagnosis/prognosis

system. The chapter concludes in Sec. 3.7.

3.2 Background

We present the necessary background on battery management here.

3.2.1 Li-ion Battery Operation and Modeling

Let us first consider how battery operates during discharging and charging. When

discharging a battery, Li-ions in the active materials of its negative electrode (i)
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Figure 3.1: Discharging process of Li-ion batteries.

diffuse to the surface in which they move from the solid phase to the electrolyte

phase; and then (ii) travel to the positive electrode where they react with, and

enter inside the active material. During this process, the electrons released in the

negative electrode travel through the external circuit to generate a flow of current,

as shown in Fig. 3.1. This process occurring in the positive and negative electrodes

will be reversed during charging. When current flows through a battery cell during

discharging/charging, there are a number of factors causing its voltage drops from

the equilibrium open-circuit voltage (OCV) — commonly called “overpotential”,

including: (i) ohmic drop due to electronic or ionic current flow (i.e., Ohm’s law),

(ii) concentration overpotential due to the buildup of concentration gradients in a

battery, and (iii) surface overpotential needed to drive the reactions. Based on the

overpotential and operating principles of battery, we develop the equivalent circuit

model shown in Fig. 3.2.

Equivalent Circuit Model

Typically, a large capacitor or a dependent voltage source is used to represent

the OCV; the rest of the circuit simulates (i) the battery’s ohmic resistance (R0)

due to the ohmic and surface overpotential, and (ii) the dynamic voltage behaviors

(R1, C1, . . . , Rn, Cn) caused by the concentration overpotential when battery is dis-



38

↓Ib 

+ 
 

Vb 
 

- 
← Ib 

+ 

OCVP(
QP

CP
,T) 

̶ 

R0(SOC,T) R1(SOC,T) 

C1(SOC,T) 

+   V1   ̶ 

R2(SOC,T) 

C2(SOC,T) 

+   Vn   ̶ 

CN 

CP 

̶ 

OCVN(
QN

CN
,T) 

+ 

OCVN T1 … 

SOC1 … … 

… … … 

OCVP T1 … 

SOC1 … … 

… … … 

R1 T1 … 

SOC1 … … 

… … … 

R0 T1 … 

SOC1 … … 

… … … 

C1 T1 … 

SOC1 … … 

… … … 

Figure 3.2: Equivalent circuit battery model.

charged/charged at the rate Ib. These battery parameters (i.e., OCV, R0, R1, C1, . . .)

are representative of a particular battery type, and is in general a nonlinear function

of state-of-charge (SOC) and temperature (T) [31]. The number of RC branches in

the equivalent circuit model determines the model’s accuracy and complexity. In this

chapter, we use the RC branch (R1, C1) to describe the dynamic voltage behavior

for simplicity.

Parametric Open-Circuit Voltage (OCV) Model

Battery OCV is determined by the potential difference between OCVs of the

positive (OCVP ) and the negative electrodes (OCVN). Thus, a parametric OCV

model has been proposed to describe the battery’s entire OCV in terms of OCVP (QP
CP

)

and OCVN(QP
CP

) [21, 41], based on the stored charge capacity (QN , QP ) and the total
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Figure 3.3: Degradation factors and their impacts.

maximum charge capacity (CN , CP ) as:

OCV = OCVP (
QP
L

CP
) + OCVN(

QN
L

CN
)(3.1)

QL = QP
L +QN

L ,

where QP
L and QN

L are the amounts of Li-ion that are inter-calated in positive and

negative electrodes’ active material, respectively, and CP and CN are the maximum

charge capacities of the active materials to store Li-ions without over- or under-

voltage in the positive and negative electrodes, respectively. Based on the parametric

OCV model, battery’s total charge capacity can be assessed with three important

parameters: the capacity of positive and negative active material (CP and CN), and

the amount of cyclable Li-ion (QL). These parameters decrease slowly over time due

to side chemical reactions in the battery.

3.2.2 Changes of Battery Parameters due to Degradation

Battery performance degrades over cycles/time, observed as not only charge ca-

pacity decrease, but also as internal resistance increase (R0, R1) and capacitance

decrease (C1). An increase in internal resistance leads to larger voltage drop, and a

decreased internal capacitance causes faster voltage drop, both degrading battery’s
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power capability. The changes of these parameters rely heavily on battery’s operat-

ing conditions as shown in Fig. 3.3, including high/low temperature, high/low SOC,

large charge/discharge current, frequent discharge/charge cycles [140], etc., which ac-

celerate the side chemical reactions related to solid electrolyte interfaces (SEI) layer

growth, lithium plating, gas and precipitation generation, electrolyte oxidation and

decomposition. Along with these chemical side reactions, mechanical stress on the

electrodes during charge/discharge cycles also leads to contact loss, particle cracking,

and structure disorder. These chemical and mechanical stresses affect the parameters

closely related to battery performance over cycles.

3.3 Problem Statement and Proposed Approach

Thus far, we have discussed the necessary background to understand the bat-

tery model, state-of-health (SOH) and degradation factors. Electrodes’ capacities

(CP , CN) and the amount of Li-ion (QL) must be identified because they closely re-

late to battery’s energy capacity. We must also extract battery internal resistances

(R0, R1) and capacitance (C1) to describe the battery’s dynamic behavior such as

voltage drop and recovery effect. Moreover, the degradation of these parameters

over time relies on the battery’s operating conditions (V, I, T ). Therefore, the un-

derlying diagnosis system must identify them accurately, and the prognosis system

should capture the relationship between their degradation and operating conditions

(V, I, T ). Presented below are a formal statement of our diagnosis/prognosis problem

and the overview of the proposed solution.

3.3.1 Problem Statement

With the above system model, assumptions and notations, our problem can be

formally stated as:
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Using battery data measured in the charging titration period,

Develop an adaptive battery diagnosis/prognosis system that identifies the battery

parameters related to the energy capacity (CP , CN , QL) and internal resistance (R0, R1, C1),

figure out the battery parameters’ degradation rates and establish the relationship

between and the operating conditions (V, I, T ) and the parameters’ degradation rates

so as to

Predict battery degradation pattern and end-of-life (EOL), and

Optimize battery operating conditions (V, I, T ).

Considering users’ convenience and cost, the diagnosis system should be able to

estimate parameters (CP , CN , QL, R0, R1, C1) based only on measured data without

disassembling a battery pack or any other destructive measurements. The prognosis

system must complete the development of a battery degradation model based on the

diagnostic data.

3.3.2 Overview of Proposed Solution

Fig. 3.4 shows the overall diagnosis/prognosis process. First, battery current–

voltage characteristics are captured periodically through a titration technique [87].

Based on these characteristics, the model parameters are estimated and stored in

tables with the corresponding operating conditions (V, I, T ) and the number of cycles

(n). For this step, the system needs a parameter estimation technique, which will be

detailed later. The prognosis system then develops the battery degradation model

based on the collected diagnosis information. The degradation model, in turn, is used

to predict battery’s end-of-life (EOL), defined as when the battery performance has

dropped significant enough (e.g., to 50˜80% of its initial capacity [142, 38]). Here, we

use the 70% level of the initial energy capacity to define EOL. Also, the degradation
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Figure 3.4: Overall process for the proposed diagnosis/prognosis

model with respect to operating conditions allows the management system to search

for “effective” operating conditions to ensure smooth system operation throughout

the warranty period.

3.3.3 State-of-the-Art and Limitations

Various approaches to parameter identification have been developed over the last

decade or so. Electrical parameter estimation via electrochemical impedance spec-

troscopy (EIS) and time constant analysis are well-known to describe the dynamic

voltage transient with respect to discharge/charge current [51, 139, 9]. A parameteric

OCV model was proposed to determine battery active material capacities and the

amount of cyclable Li-ion [41, 21]. In this chapter, we propose the battery diagnosis

system that facilitates parameter estimation for battery management and prognosis,

especially for EVs. We first introduce the applicable battery diagnosis techniques,

and then develop applicable algorithms for real vehicles.

For battery prognosis, most existing degradation model studies focused on search-

ing for the optimal model coefficients of the pre-defined form of degradation model

as shown in Fig. 3.5. The pre-defined models are selected based on the observations

during a large number of offline degradation tests under various operating conditions.

To describe the non-linear property of battery degradation, they used exponential,

polynomial, or power functions, because these functions can fit the degradation pat-

terns in their test environments. A non-linear regression or neural network was
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Figure 3.5: Conventional battery degradation modeling.

utilized to identify the coefficients of the pre-defined model.

Fig. 3.6 shows the overall procedure of our battery degradation modeling ap-

proach. Instead of battery’s total capacity and internal resistance, we develop a

more detailed degradation model consisting of positive/negative electrode capacity,

resistances and capacitance. Also, to construct a more adaptive degradation model,

we take an additional step to select a generic model-form instead of using a pre-

defined model form. In addition to identifying degradation patterns, the system also

focuses on the impact of operating conditions on the battery degradation rate as:

Dx = fx(V, I, T ),

where x is the battery model parameters including {CP , CN , QL, R0, R1, C1} and Dx

is the degradation rate of x. {V, I, T} are measurable and controllable operating

conditions related to battery degradation.

3.4 Diagnostic Charging System

We now detail the battery diagnostic charge system in which the amount and

duration of charge current are controllable. Fig. 3.7 shows an example diagnosis

procedure to estimate the battery model parameters.
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Figure 3.6: Proposed battery degradation modeling.

3.4.1 Parameter Estimation of Equivalent Circuit Battery Model

The titration procedure in the algorithm normally consists of a series of charge

current pulses, followed by a relaxation time. During a charge current pulse, the

battery voltage first quickly increases to a value proportional to its ohmic internal

resistance (R0), and then the voltage slowly increases further due to the constant

charge pulse and a charge migration and diffusion effect which is described by ad-

ditional resistance and capacitance (R1, C1, . . .). We record these voltage change

profiles to estimate battery internal parameters (R0, R1, C1). Based on the captured

voltage–current characteristics, we determine R0(SOC, T ), R1(SOC, T ), C1(SOC, T )



45

Galvanostatic intermittent titration technique (GITT) 

CP CN Qli Z, R0, R1, C1, R2, C2, … 

Battery model 

0

0.5

1

1.5

2

2.3

2.8

3.3

3.8

4.3

0 10000 20000 30000 40000 50000 60000

C
u
rr

e
n
t 

(A
) 

V
o
lt
a
g
e
 (

V
) 

Time (s) 

Voltage (V) Current (A)

2.7

3.5

4.3

0 2000 4000 6000 8000

V
o
lt
a
g
e
 (

V
) 

Charge (C) 

OCV

0

2000

4000

0

0.2

0.4

0 4000 8000

C
a
p
a
ci

ta
n
ce

 (
F
) 

R
e
si

st
a
n
ce

 (
O

h
m

) 

Charge (C) 

R0 R1 C1

0

1

2

3

4

-2000 0 2000 4000 6000 8000 10000

V
o
lt
a
g
e
 (

V
) 

Charge (C) 

OCV_N OCV_P

3.46

3.5

3.54

0 1000 2000

V
o
lt
a
g
e
 (

V
) 

Time (s) 

Voltage

Parameter optimization 

Figure 3.7: Model-based battery diagnosis.

over battery SOC and temperature T [30] as shown in Fig. 3.7. After a charging

period, during the relaxation time, the voltage first suddenly decreases to a value

proportional to the internal resistance (R0), and then slowly decreases until output

voltage in equilibrium is reached. These equilibrated voltages are recorded since they

are close to battery’s open circuit voltages (OCV(SOC, T )) at the corresponding SOC

and temperature (T ) levels. Such charge-and-relaxation procedure is applied repeat-

edly until the battery is fully charged (Vo = 4.2V ), obtaining the OCV characteristics

over a full range of battery SOC.
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Figure 3.8: Model-based battery OCV parameter estimation.

3.4.2 Estimation of OCV Model Parameters

Battery electrodes’ capacities and cyclable Li-ion amount decrease over time due

to side chemical reactions in the battery. While the battery’s maximum capacity

decreases, the SOC and OCV will change faster even with the same charge current,

because the decreased capacity will be filled in quickly. Also, OCVs (OCVP , OCVN)

and SOCs (QP
CP
, QN
CN

) are closely related. The parametric OCV model enables the

analysis of battery OCV in terms of active materials’ charge capacities.

Fig. 3.8 provides a search procedure for CP , CN , QL based on the OCV–charge ca-

pacity curves (OCVP (x) and OCVN(x)) [41, 21]. We first synthesize the OCV curve

based on OCVP and OCVN with the capacity parameters (CP , CN , QL). Battery

OCVN(
QNL
CN

) and OCVP (
QPL
CP

) depend on active materials’ maximum charge capacity

(CP , CN) and the amount of charge (QN
L , Q

P
L) in the active materials [41, 21]. Note

that the OCVN(
QNL
CN

) and OCVP (
QPL
CP

) curves are very different functions in terms of

charge concentration (QL
C

) [41, 21]. Next, we compare the measured and synthesized

OCVs with respect to the charge capacity (Q). The algorithm keeps searching the pa-

rameter set (CP , CN , QL) until the difference between the measured and synthesized

OCVs becomes lower than the pre-specified value.
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Figure 3.9: GITT for the battery system over the full range of SOC.

3.4.3 Diagnostic Charging System

One may wonder if a series of charge current pulses may interrupt the vehicle’s

operation. We resolve this problem by only applying the charge current pulses during

night when EV batteries are charged from the wall power while parked. Also, a few

hours may not be sufficient to apply the entire series of charge current pulses; we

divide the series into several intervals, which can be applied in different days. This

is valid because battery behaviors are similar between several consecutive days as

shown in Fig. 3.9.

For the first charge cycle, partial GITT (Galvanostatic intermittent titration tech-
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Figure 3.10: Example model parameter degradations during 250 discharge/charge cycles. Operat-
ing temperature is 23◦C, battery C–rate is 2,300mA, charge current is 2A, max charge
voltage is 4.2V , average discharge current (E(Id)) is 2A, and root mean square of dis-
charge current (RMS(Id)) is 2.45A. Dotted lines show the degradation predictions of
model parameters

nique, as shown in Fig. 3.7) is performed for diagnosis at the lowest SOC. In case the

system cannot perform GITT over the full SoC range due to limited available charge

time, GITT is applied only to a partial SoC range. In following charge cycles, the

charge system applies GITT to identify battery parameters at the other SoC ranges

until the system collects the full SOC range of diagnostic information. Fig. 3.10

shows an example of parameter estimations during the first 250 cycles.

3.5 Prognosis system

Thus far, we have explored the diagnosis system for battery model parameters re-

lated to SOH and performance. Here we propose how to prognose the battery based

on the diagnosis results, and address when the battery is expected to die before the

warranty expires. Fig. 3.11 represents the overall procedure for the proposed bat-

tery prognosis system. First, the system constructed the battery degradation models

adaptively with respect to the operating conditions. Then, the system predicts the

battery EOL and regulates the operating conditions so as to maximize battery per-
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formance within the warranty period.
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Figure 3.11: Overall procedure for battery prognosis

3.5.1 Adaptive performance degradation model

The degradation state (S) includes the charge capacity parameters (CP , CN , QL),

relative internal resistances and capacitances (XR0 , XR1 , XC1 , . . .). The parameter

degradation models (fS) can be represented by functions of operating conditions and

the number of cycles (n) as:

S = (CP , CN , QL, XR0 , XR1 , XC1 , ...),

= fS(DS(x) · n),

x = [T,RMS(Id), Vd, Vc, Ic],
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where x is an operating condition vector including battery temperature (T ), dis-

charge stress (RMS(Id)), minimum discharge voltage (Vd), maximum charge voltage

(Vc) and charge current (Ic). Fig. 3.11 shows an overview of our approach to build-

ing the parameter degradation models. The proposed diagnosis system extracts and

stores battery parameters with the corresponding operating conditions. The prog-

nosis system uses the stored data to construct the battery degradation model. The

system, first, applies a symbolic regression to construct the generic model form of

parameter degradation profiles. Then, the coefficients (DS) of the generic model

are fitted for adaptive degradation model construction (fS). The constructed model

enables prediction of battery EOL, which will be detailed later. Coefficients (DS)

will be regressed with the operating conditions (x) to account for their impact on

the parameter degradation rates, as we will elaborate later.
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Figure 3.12: An example paramater function regression

Generic model-form of parameter degradation

Fig. 3.10 shows battery parameters with degradation patterns. We first explore

mathematical degradation functions for describing the degradation of battery param-

eters. Note that some mathematical functions are commonly used in electrochemical

behavior modeling. For example, exponential and logarithmic functions are utilized



51

in modeling various chemical reaction processes [39, 141, 143, 125]. Polynomial,

hyperbolic functions are also exploited to describe the trend of physical quantities

related to electrochemical reactions. Battery performance degradation is mainly due

to chemical reactions, and hence a combination of these functions has been used to

describe the performance degradation patterns.

The symbolic regression with polynomial, exponential, logarithmic and hyperbolic

functions is performed to find a generic model-form of degradation based on many

degradation profiles of batteries stored in a server. We initially selected a linear

parameter model which is then evaluated in terms of its fitness with the collected

data. If the fitness is not met, other models are explored in the search space. A

more effective model is searched for via genetic programming, which is based on an

evolutionary algorithm [75, 128, 11]. In genetic programming, candidate models are

created for the next generation via a mutation and a crossover based on the parents’

models with low weights. We reproduced models with large weights to leave the

genes that are likely to critically affect the model. The system evaluates its fitness

and repeatedly generates new generations until the fitness is satisfied.

Regression of parameter degradation rate

Battery degradation depends on the operating condition, such as temperature,

dis/charge current and operating voltage range. To customize the parameter degra-

dation model-form while considering the operating conditions, BMS must regress

the parameters related to degradation rate over the operating conditions. Based on

such a degradation rate under the corresponding operating conditions, we can find

a degradation model function that represents the impact of the operating conditions

on parameter degradation. To regress the parameters of the degradation rate model,

neural network regression and support vector regression with Gaussian, polynomial
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Figure 3.13: Development of the parameter degradation rate function based on parameter degra-
dation and operating condition profiles

and linear functions can be used on the recored battery degradation data.

3.5.2 Battery capacity degradation and end-of-life prediction

Described below is how battery performance degradation can be estimated based

on the parameter degradation trends and operating conditions. Then, we can identify

when the battery capacity drop below the EOL capacity (70% of of their initial

capacity) as shown in Fig. 3.14.

Performance estimation based on parameter degradation estimation

Based on the parameter degradation models, the performance degradation over

cycles can be estimated. Energy capacity is the most important metric, and is defined

as the available amount of energy while maintaining voltage within an applicable

range. Hence, the energy capacity can be assessed based on the OCV curve and

the current level for the underlying application. Fig. 3.15 shows an example of
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energy capacity estimation. A decreased energy capacity causes battery to reach the

voltage limit more quickly even with the same current. The internal resistance also

accelerates the decrease of energy capacity because a larger resistance may incur

a larger voltage drop, thereby causing an earlier voltage drop (or rise) below the

minimum (or above the maximum) required value. The energy capacity can be

assessed based on the total charged capacity by integrating the current over time in

the test profiles.

CP =  fCP ( dCP  n ) = c11 ( dCP n )3 + … 
CN =  fCN( dCN n ) = c21 ( dCN n ) + c22 … 

QL =  fQL ( dQL n ) = c31 ( dQL n )2 + c32 … 
XR0 = fR0 ( dR0  n ) = c41 ( dR0 n ) + c42 … 

XR1 = fR1 ( dR1  n ) = c51 ( dR1 n )2 + c52 … 

XC1 = fC1 ( dC1  n ) = c61 tanh ( dC1 n ) + … 
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Figure 3.14: Battery EOL prediction based on the battery model and the model parameter degra-
dation function

EOL prediction

Fig. 3.14 shows the algorithm for prediction of battery EOL. First, the degradation

of model parameters over cycles can be predicted by using the degradation model.
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Figure 3.16: Test procedure.

Then, we can estimate energy capacity degradation and internal resistance increase

based on the battery model and parameter degradation estimations. Note that, in

most applications, battery EOL is defined as the point at which the a battery will

hold only a pre-set percentage (70%) of its original storage capacity. Therefore, we

can search for battery EOL by identifying the number of cycles where the energy

capacity is estimated to drop below the 70% of its initial capacity.
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Figure 3.17: Neware battery tester.

Determination of operating condition bounds

The parameter degradation models tell not only the total capacity degradation

under current operating conditions, but also the relationship between operating con-

ditions and the parameter degradation rate. Therefore, the model can be used to

optimize the operating condition bounds to guarantee the battery warranty while

providing the required power capability and energy capacity. For example, if the

estimated battery EOL is shorter than the warranty period, the operating condition

bounds must be regulated to decelerate battery degradation at the expense of the

battery’s effective capacity. Effective charge capacity, Qeff , can be calculated by

considering the total charge capacity (CQ) and charge loss (QId
loss, Q

T
loss) due to the

regulation of operating conditions (Qeff = CQ−QId
loss−QT

loss). To regulate RMS(Id),

an energy buffer is required to move charges to the energy buffer temporarily through

a DC/DC converter, leading to the loss of available charge as:

QId
loss = (1− ηd)(1− ηc)(RMS(I initd )−RMS(Id)) top,

where top is the operation time, ηd and ηc are charge transfer efficiencies, RMS(I initd )

and RMS(Id) are initial and target discharge stresses. Thermal control also con-
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sumes energy as:

QT
loss =

1

ηth
(Text − T ) top,

where ηth is a thermal efficiency, and Text is an external temperature. With the above

system model, assumptions and notations, our problem can be stated formally as:

maximize
x

αQeff (x) + βSchg(x)

subject to EOLmargin + EOLreq < EOLmodel(x)

where x is {RMS(Id), Ic, Vc, Vd, T )}, Schg is the charging time, EOLmodel and EOL

are estimated by the degradation model, EOLreq and EOLmargin are the required

period of EOL and its margin. α and β are the weight of effective charge capacity

and the required charge time, respectively. The charging speed can be assessed by

total capacity (CQ) and charge current (Ic) as:

Schg =
CQ
Ic
.
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Figure 3.18: Test profiles with different charge/discharge currents and voltages.

3.6 Evaluation

We have evaluated the proposed battery model construction, EOL prediction,

and operation conditions optimization via extensive experiments, lasting 8 months

cumulatively.



57

3.6.1 Methodologies and settings

Fig. 3.16 shows our testing procedure, which is implemented with the Neware’s

battery tester as shown in Fig. 3.17 and Li-ion batteries (18650, 2200 mAh) [135].

The battery discharge/charge current and output voltage are logged at 10Hz during

the tests, based on which the proposed model construction is evaluated. We intermit-

tently diagnosed batteries to extract their characteristics, and saved the diagnostic

results with the corresponding cycle and operating conditions. This procedure is re-

peated until the batteries reach their EOLs. We collected battery degradation data

under a wide range of operating conditions in terms of temperature (T : 23–40oC),

discharge stress (RMS(Id): 2–4A), charge voltage (Vc: 4.1–4.3V) and current (Ic:

1–4A), as summarized in Table 3.1 and Fig. 3.18.

Table 3.1: Profiles in battery testing.
T (◦C) Vd(V ) RMS(Id)(A) Vc(V ) Ic(A)

Test-1 23 2.6 2.00 4.2 2
Test-2 23 2.6 2.45 4.2 2
Test-3 23 2.6 3.65 4.2 2
Test-4 23 2.6 2.45 4.3 2
Test-5 23 2.6 2.45 4.1 2
Test-6 40 2.6 2.45 4.2 2
Test-7 23 2.6 2.45 4.2 4
Test-8 23 2.6 4.00 4.2 2
Test-9 23 2.6 3.65 4.2 2
Test-10 40 2.6 2.45 4.2 2
Test-11 23 2.6 2.45 4.2 3
Test-12 23 2.6 2.45 4.1 2
Test-13 40 2.6 3.65 4.2 2
Test-14 23 2.6 2.45 4.3 1
Test-15 40 2.6 2.45 4.2 1
Test-16 23 2.6 2.85 4.2 2

3.6.2 Results

Degradation patterns and model

We evaluate the following three schemes for modeling battery degradation:

• EXP2-Const: the capacity degradation model based on two exponential func-
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tions [39, 141],

• EXP-PW: the capacity degradation model via exponential and power func-

tions [143, 125], and

• SYMR: our capacity degradation model using the symbolic regression described

in Section 3.5.1.

The batteries’ initial capacities are about 8500C. So, their EOLs are reached when

their capacities reduce to 8500× 70% ' 6000C. Fig. 3.19 plots the prediction of ca-

pacity degradation at 80% and 90% SOH with the above three schemes, respectively.

The EOL is also predicted when the battery is of 95%, 85%, and 75% remaining

energy capacity, as summarized in Table 3.2. All three schemes predict EOL more

accurately at later cycles, and SYMR achieves the best accuracy in all cases.

6000

7000

8000

9000

0 250 500

C
h
a
rg

e
 c

a
p
a
ci

ty
 (
C
) 

Cycle (n) 
6000

7000

8000

9000

0 250 500

C
h
a
rg

e
 c

a
p
a
ci

ty
 (
C
) 

Cycle (n) 

Models predict EOL  
when battery has 80% capacity 

◆ Real degradation 
data 

— EXP2_Const  
(Wang13) 

— EXP_PW 
(Xu16) 

— SYMR 
(Ours) 

Models predict EOL  
when battery has 90% capacity 

Figure 3.19: Examples of battery EOL prediction at different SOH levels.

Table 3.2: Errors in predicting battery EOL.
EOL prediction time EOL prediction error (%)
Remaining capacity (SOH) EXP2-Const EXP-PW SYMR

95% 43.8 251.2 26.1
90% 40.6 73.9 16.5
85% 19.9 17.5 5.5
80% 9.4 10.4 5.4
75% 10.8 8.4 2.2
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Parameter degradation rate

(a) (b) 

Figure 3.20: Degradation rate with respect to the operating conditions

Fig. 3.20 shows an example degradation parameter function (DCP ) with respect

to the operating conditions. Fig. 3.20(a) shows the impact of the charge current

(Ic) and charge voltage (Vc) on degradation coefficients in the model while keeping

other conditions intact, and Fig. 3.20(b) shows the impact of temperature (T ) and

discharge/charge stress (RMS(Id)) on the coefficient. Based on the degradation rate

function, we can determine the impact of the operating conditions on the parameter

degradation rate. This parameter degradation model will be used to schedule the

target operating conditions to achieve our goal.

Determination of operation bounds

Using the battery parameter degradation model, we optimized the battery opera-

tion conditions. We set EOLmg and EOLrq to 100 and 500 cycles, respectively. The

optimization result of controllable operation condition vector [RMS(Id), Vc, Ic, T ] =

[1.67, 4.29, 1.00, 23.22]. That is, to use the battery over 500 cycles while maximizing

the user’s satisfaction in terms of effective charge capacity and charge speed, we

have to maintain the battery temperature at 23.22oC and limit the discharge stress
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Figure 3.21: EOL predictions under different charge voltage and current conditions

to 1.67A, charge voltage to 4.29V and charge current to 1.00A, respectively. α and

β are set to 0.85 and 0.15. Determination of weighing factors should be explored

further to maximize the user’s satisfaction which is part of our future work.

3.7 Conclusion

To diagnose and prognose batteries for their effective control, we have analyzed

battery diagnostic data, predicted battery degradation, and optimized battery opera-

tion conditions. For battery prognosis, we have developed a degradation model based

on the parametric OCV model and an equivalent circuit model. The thus-developed

battery degradation model was used to predict battery EOL cycle and optimize bat-

tery operation conditions to guarantee the EOL warranty while maximizing battery

utilization. Our evaluation with real battery data has shown the proposed schemes

to yield an accurate battery degradation model.



CHAPTER IV

Modeling and Real-time Scheduling of Large-Scale Batteries
for Maximizing Performance

4.1 Introduction

The methods of controlling discharge-rate and temperature are considered for de-

ployment in EVs, since they are known to improve the battery capacity and lifetime.

However, there are several obstacles to overcome in order to optimize and deploy so-

lutions in real vehicles. First, an accurate estimation of battery behavior related to

the battery performance and its degradation is very complicated. While the battery

behavior varies non-linearly with temperature, the required discharge-rate, charge

strategy and operating SOC range, their prediction requires the understanding of the

entire battery electrochemical processes. This difficulty of accurate prediction makes

it harder to choose/control the discharge-rate, temperature and operating SOC range

of batteries. Moreover, the behavior and performance of batteries in a pack are not

homogeneous; battery packs’ performance and behavior are not expected to be the

same even during the manufacturing stage. Enhancing one aspect of the performance

(e.g., battery lifetime) may also affect the other aspect (e.g., capacity). For example,

battery capacity improves temporarily at “instant high temperature” due to the in-

creased chemical reaction rate and ion mobility. However, the “cumulative exposure

to high temperature” causes the permanent lifetime to decline because of its accel-

61
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eration of irreversible side reaction. Also, we should consider the timely scheduling

of charge/discharge as well as thermal control, because batteries would otherwise

be over-heated or over charged, potentially leading to catastrophic accidents. This

requires determination of deadlines to protect the batteries from significant loss of

performance and/or reliability. These obstacles call for an integrated cyber-physical

system (CPS) in which batteries and energy management devices are physical com-

ponents. We should thus take all the entities into account, and achieve the effective

and timely control to improve the battery performance based on physical properties

of the system components.

To this end, this chapter proposes a prognosis scheme and a real-time schedul-

ing algorithm for controlling the discharge/charge current, temperature and oper-

ating SOC range to extend battery operation-time within its warranty period. The

operation-time is defined as the “cumulative time for batteries to provide the required

power after a full charge” [72]; with a longer operation time, we can drive farther

or longer with the same amount of batteries. Note that battery effective capacity

monotonically decreases over time, because the performance of batteries degrades

over cycle/time. Therefore, the battery capacity at any time during the warranty

period is at least as much as that at the end of warranty period. That is, an efficient

BMS must provide the required power for an extended operation time even at the

end of warranty period.

To control the battery operating SOC window, discharge/charge current and tem-

perature efficiently to maximize the battery operation-time, we must first character-

ize the impact of them on battery behaviors that affect the operation time and its

degradation. To construct an accurate battery behavior model, we use two regres-

sion schemes: a symbolic regression for a generic model form of battery behavior,
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and a support vector regression for adaptively tuning the generic model. Based on

the behavior model, we can schedule the SOC operating window, discharge/charge

and temperature of batteries to maximize operation-time (to) within the warranty

period. An analysis of the optimal solution allows us to derive an efficient real-time

scheduling policy for controlling the discharge-rate and temperature of batteries so

as to achieve our goal.

The main contributions of this chapter are to:

• develop a prognosis system that constructs the model form and its coefficients

using symbolic regression;

• design a real-time scheduling framework to determine both battery discharge/charge

rate and temperature to maximize battery operation-time during the warranty

period based on the model construction; and

• demonstrate the efficiency of the proposed system via an in-depth, realistic

evaluation.

The chapter is organized as follows. Section 4.2 provides the background of bat-

tery performance and our target BMS architecture. Section 8.3 formally states the

problem from a cyber-physical perspective. Section 4.4 describes how we construct

battery behavior models for predicting batteries’ future states, and Section 4.5 de-

tails how to schedule discharge/charge current and battery temperature for improving

battery performance based on the battery behavior models. Section 4.6 evaluates the

proposed battery behavior prediction using our behavior models, and performance

optimization. Finally, the chapter concludes with Section 4.7.
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4.2 Target BMS Architecture

This section introduces our target BMS architecture for operation condition con-

trols. We first describe the requirements of a good BMS for electric vehicles as shown

in Fig. 4.1, and then our target BMS architecture.

Battery pack 

Map 
 
 

 
 
 

Map 
 

 
 
 
 With a bad BMS during 

the warranty period 
With a good BMS during 

the warranty period 

Figure 4.1: A good BMS allows electric vehicles (EVs) to drive longer distance and time (longer
operation-time) for given batteries.

4.2.1 What is a good BMS ?

A battery pack in EVs supplies DC power to an inverter which operates the

electric motors in EVs. To operate motors, a power inverter needs an applicable

input voltage during the vehicle’s operation. Therefore, a good BMS enables drivers

to use their vehicles for a long operation-time by maintaining the output voltage no

less than the applicable motor input voltage as shown in Fig. 4.1. The operation-time

should also be kept long enough during the battery warranty period; otherwise, the

vehicle requires a larger battery pack and/or more batteries must be recharged more

frequently. Therefore, we must consider battery degradation to meet the specified

warranty.

However, current battery systems still cannot achieve the required performance

and replace the internal combustion engines mainly because they do not utilize bat-
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teries’ full capacity and capability in real vehicle applications. The power require-

ment of an EV is high and changes abruptly [130, 78, 68], because drivers frequently

accelerate/decelerate their vehicles that weigh at least one ton during driving. It

can also cause inefficiency and/or damage to battery, potentially leading to large

energy losses and fast voltage drop within the warranty period. Therefore, a bat-

tery management system (BMS) in an EV is responsible for providing motors with

the required power while protecting the battery cells from damage, excessive energy

loss and life reduction caused by short bursts of power transfer. To achieve such

functions, a BMS is often comprised of (i) a large number of battery cells that can

supply the high current (hundreds of amperes) with the high output voltage (tens

or hundreds of volts), and (ii) an auxiliary system to mitigate thermal and discharge

stresses.

4.2.2 Target BMS architecture

We consider a BMS architecture which consists of a regenerative braking system, a

discharge-rate management system, and a thermal management system as shown in

Fig. 4.2. Although the architecture is relatively simple, it is equipped with essential

functions and structures for efficient battery management, and each component is

widely studied in battery and automotive industries. It allows batteries to save

energy generated from a braking system, mitigate the discharge/charge stress via an

energy buffer, and regulate the thermal condition for the efficient battery operation,

which are detailed next.

Regenerative braking system (RBS)

To reuse the energy dissipated in their braking system, most EVs are equipped

with a regenerative breaking system (RBS) in order to increase operation-time. Dur-
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Figure 4.2: A target battery management architecture for EVs: a regenerative braking system
(RBS) enables a battery system to store dissipated energy from the braking system,
and discharge-rate and thermal management reduce energy loss while mitigating the
stress of batteries.

ing braking, the RBS converts the vehicle’s kinetic energy into electrical energy that

can be stored in batteries for reuse to power the vehicle. Its effectiveness has been

substantiated in terms of fuel economy [90, 52, 53]. Although the RBS improves

the utilization of energy, the high recharging current for a very short period of time

has a negative impact on the battery’s health. Therefore, researchers introduced an

auxiliary system as described next.

Discharge-rate management

Battery health and performance are damaged by short bursts of discharging cur-

rent supplied to motors and recharging current generated from the RBS. To remedy

this problem, researchers proposed deployment of ultra-capacitors (UCs); a BMS

equipped with UCs and batteries is called a hybrid energy storage system (HESS). In

a HESS, UCs are used as an energy buffer to smooth rapid power fluctuations in and

out of the battery of an EV [114, 74, 25, 65]. Therefore, a HESS enables batteries

to supply the average power required for operating vehicles, while UCs provide the

sudden power surges required for acceleration and also accommodate instantaneous

regenerative energy from the RBS.
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Thermal management

Along with discharge-rate management, thermal management is one of the most

important factors for a reliable BMS, and existing BMSes have thus employed ther-

mal management policies so as to prevent battery cells from very high and low tem-

peratures which may likely cause explosion and malfunction, respectively. Basically,

the BMS monitors the temperature of battery cells, and triggers the thermal control

when the temperature deviates from the normal operational range through “thermal

fins”, “air cooling system”, or “liquid coolant system” [116, 70, 35, 99]. This control

includes both cooling and heating, and existing controls are all or nothing, i.e., they

cool/heat all the battery cells connected in parallel. Active fine-grained thermal

control has also been proposed to reduce the safety margin, and then enhance the

system performance based on its thermo-physical characteristics [69]. In principle,

we increase the battery temperature for accelerating its chemical reaction if a large

amount of power is required, and decrease the temperature when the battery needs

to rest.

4.3 Problem Formulation and Solution

Thus far, we have discussed the requirements of a good BMS and our target

BMS architecture meeting the requirements. To develop a good BMS, we should ex-

tend operation-time during the warranty period by maintaining the operating SOC,

discharge-rate and temperature of battery within an efficient operational range. Pre-

sented below are a formal statement of our BMS problem and and an overview of

our solution approach.
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4.3.1 Problem statement

We have already introduced the target BMS architecture that can regulate bat-

tery temperature and discharge-rate for efficient use of batteries. The operating SOC

range can be easily regulated. Specifically, the architecture regulates the tempera-

ture and discharge rate during every time interval, as described in Fig. 4.2 and the

following matrix:

X =


(Ibat, Tbat)

11 ... (Ibat, Tbat)
1n

... ... ...

(Ibat, Tbat)
m1 ... (Ibat, Tbat)

mn

 ,

where (Ibat, Tbat)
ij are the battery discharge current and temperature during the jth

time interval of cycle i. A row vector consists of inputs (Ibat, Tbat) at every time

interval from the start to the end of the battery operation (consisting of n intervals)

in a cycle. Note that a charge/discharge cycle is defined as the process of fully

charging a rechargeable battery and discharging it to a load. We need m input

vectors for every cycle in the warranty period (consisting of m cycles). Therefore,

battery temperature and discharge rate are the control knobs that can be scheduled

at every time interval to improve the system performance in EVs as seen in Fig. 4.3.

For instance, if we scheduled to store much energy into UCs from batteries and an

RBS when the vehicle decelerates, we can supply more power when it accelerates

while maintaining the battery discharge rate within an efficient operational range.

Our goal is to maximize system performance by making the battery supply the

required power to EV as long as possible by selecting the control knob matrix X.

To evaluate the system performance, we introduced the operation-time (to) which

measures how long the battery provides the EV the required power (Preq(t)). To

increase the operation-time of battery, we should maintain battery output voltage
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Figure 4.3: An example of discharge current (Ibat) and temperature (Tbat) controls under a given
power requirement (Preq(t))

(Vo) above the applicable voltage (Vapp) of motors as long as possible because it

is the minimum required voltage for operating electric motors as shown in the last

graph of Fig. 4.3. We also study the performance degradation of a battery, since it

affects the operation-time (to) at later cycles in the warranty period. We estimate

an internal resistance (Rint) at the first interval of each cycle to see the changes in

the degradation. Note that the degradation depends on how the battery is used in

previous cycles. Therefore, we should consider how battery degradation would change

due to the control knob matrix X. Fig. 4.3 shows an example of their discharge-rate

and temperature control over time (control interval) within a cycle for the given

power requirement. The operation-time ends when the output voltage of battery

reaches a certain pre-determined voltage value (which is dependent on the motors in

EVs). During the cycle, battery degrades by ∆Rint.
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Figure 4.4: The kth row of the control knob matrix X and the battery degradation level (Rkint) at
the kth cycle affect battery operation-time at the kth cycle. Our purpose is to find the
control knob matrix X that maximizes the minimum operation-time.

With the above system model, assumptions and notations, Fig. 4.4 depicts our

problem, which can be formally stated as:

Given power requirement {Preq(t)}0<t<tmax , n maximum control intervals, m warranty

cycles, battery temperature upper bound (Tub) and lower bound (Tlb), and battery

discharge current upper bound (Iub) and lower bound (Ilb),

determine the control knob matrix X = {X1, . . . , Xm}T consisting of scheduling vec-

torsX i = {(Ibat, Tbat)
i1, . . . , (Ibat, Tbat)

in} of battery discharge current (I ijbat) and tem-

perature (T ijbat) at each control interval j ∈ {1, . . . , n} for each cycle i ∈ {1, . . . ,m}

so as to maximize the minimum operation-time min{t1o, . . . , tmo } within the warranty

cycles (m). The objective function of this optimization can then be defined as

argmax
X

min{t1o, . . . , tmo },

subject to Tlb < T ijbat < Tub,

Ilb < I ijbat < Iub.
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The reason for our focus on the minimum operation-time is that we want to maximize

the EV’s drivability during the entire warranty period. By finding the minimum

operation-time, we can guarantee that the BMS is able to supply energy for the

operation-time at any cycle within the warranty period. We also assume that the

degradation in a cycle does not affect the operation-time in that cycle to simplify the

problem. This assumption is reasonable because battery degrades very slowly and

its change has a negligible influence on battery capacity within a cycle as seen in the

supplementary file [66]. This assumption allows us to consider the control knob’s

impact on the operation-time and battery degradation separately.

We exploit both discharge-rate and thermal management to prevent the battery

from a large voltage drop caused by high required current. By pre-charging UCs and

transferring charges when the battery is required to supply large current, discharge-

rate management can relieve the battery from discharge stresses while providing the

required current to the electric load. Also, we can increase battery output voltage

temporarily by increasing battery temperature, because it decreases battery internal

resistance [69]. Boosting the output voltage via the discharge current and thermal

management requires power, which may reduce the available energy from the battery

for future usage. That is, we have to maintain battery output voltage while consum-

ing the least amount of energy (Etotal), since the output voltage is approximately

proportional to the amount of the remaining energy in the battery. Therefore, to

efficiently maintain battery output voltage, we have to consider the energy consump-

tion as well.

4.3.2 Solution Approach from a CPS Perspective

Battery management requires understanding of chemical reactions since gener-

ating electricity entails complex chemical processes related to various physical con-
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ditions. Battery output voltage is also affected by the physical conditions such as

battery temperature, the discharge-rate and battery states. Therefore, we should

figure out the relationship between the output voltage and controllable physical con-

ditions (control knobs) and battery states (SOC, SOH). However, it is difficult to

understand the electrochemical processes to capture the relationship between them.

Also, each type of a battery has its own chemical reaction mechanism that generates

energy. To make matters worse, battery behaviors and its performance are not the

same even for the same type of batteries. To meet these challenges, we construct

battery behavior models adaptively.

Control knobs 
 
 

Performance 
 
 

 
 

Optimization of control knobs for maximizing system performance  
 Propose scheduling of control knobs (Tbat and Ibat) 

 

Sec. IV 

min to Tbat Ibat 

Sec. V 

Find relation between control 
knobs and battery behaviors 

Vo 

 
ΔRint 

Figure 4.5: Approach overview: Section 4.4 describes how to refine a battery behavior model, and
Section 4.5 propose how to determine control knobs (Ibat and Tbat) to maximize the
performance based on the refined battery behavior model.

Fig. 4.5 depicts our CPS-perspective approach. Instead of using a pre-defined

model, we first build a generic model that captures the battery behaviors related

to measurable physical quantities. To adaptively construct its generic model, we

employ an efficient regression scheme utilizing experimental data to distill online

physical parameters that affect the battery behavior significantly. The generic model

is then “customized” for each battery pack because each pack in different vehicles has

different characteristics and works at different operation conditions. By using the

model constructed above, we solve the problems and choose efficient control knobs

for the effective operation conditions while considering its performance. Finally,
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we propose a real-time scheduling policy that determines the discharge-rate and

temperature of battery via an analysis of the solution.

4.4 Construction of Models for Battery Prognosis

As discussed in Section 4.3.2, we should characterize the impact of the control

knobs on battery behaviors (Vo, Rint) and system performance (min{to}). To this

end, we first explore measurable physical quantities that impact the system perfor-

mance, and then describe how to extract effective physical quantities and/or their

combinations. Finally, we construct battery behavior models based on these effective

physical quantities for prognosis of batteries as shown in Fig. 4.6.

4.4.2 Searching mathematical expression 
describing battery models 

Vo = f1(Q, I, T, …)        Rint = f2(Q, I, T, …) 

4.4.1 Measurable physical values 

 
Operators  

 + - X ÷ Exp Log Q I V T 

Figure 4.6: Building battery behavior models (output voltage and degradation model) for prognosis
of batteries

4.4.1 Candidate physical quantities

Operation-time is the most important performance metric as it represents how

long batteries can supply the required power, while degradation rate captures how

quickly the operation-time deteriorates. So, we should figure out physical quantities

affecting the battery behaviors and performance (operation-time and degradation

rate) to prognose the batteries. Based on existing studies, we have identified can-

didate physical quantities affecting the battery operation-time and degradation as

summarized in Table 4.1.
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Physical quantities affecting operation-time

We identified three physical quantities that greatly affect battery operation-times:

battery discharge/charge current (Ibat(t)), the amount of discharges (Qd(t)), and

battery temperature (Tbat(t)).

The discharge/charge current (Ibat(t)) is the most important physical quantity

influencing the system performance in various ways [17, 34, 72]. A high discharge

current reduces battery operation-time because such a high discharge current causes

its output voltage to drop, and the battery to provide less energy than the battery

with a lower discharge current, called the rate-capacity effect. On the other hand,

during periods of low or no discharge current, the battery voltage can recover to a

certain extent, which is termed the recovery effect. For instance, a high load causes

a temporary voltage drop, and then a part of the cell voltage is recovered after a

certain period of rest as shown in Fig. 4.7. The figure also shows that battery output

voltage is dependent on the remaining charge in the battery, or State-of-Charge (SoC)

= 1− Qd(t)
Qmax

[76]. Note that we can estimate the SoC based on the amount of discharge

current (Qd(t) =
∫ t

0
Ibat(τ)dτ). Meanwhile, battery temperature (Tbat(t)) affects its

operation-time. A higher temperature stimulates the mobility of electron or ion,

temporarily increasing its capacity [110] with a reduced internal resistance.
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Figure 4.7: The output voltage (Vbat) and state-of-charge (SoC) when a battery is discharged at
23 A/m2 of current and rested at 0 A/m2 repeatedly. The results are extracted from
evaluation tools/settings to be described in Section 4.6.
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System performance Physical quantity Description

Operation-time (to)

Ibat(t) Battery discharge/charge current

dIbat

dt (t)
The rate change of
battery discharge/charge current

dVbat

dt (t)
The rate change of
battery voltage

Qd(t) =
∫ t

0
Ibat(τ)dτ The amount of discharged charge

Tbat(t) Battery temperature

Degradation rate at
kth cycle (∆Rkint)

1
tko

∫ tko
0
|Ibat(t)|dt

The average amount of
battery discharge/charge current

Qkd =
∫ tko

0
Ibat(t)dt The amount of discharged charge∫ tko

0
Tbat(t)dt Accumulative temperature exposure

Table 4.1: Physical quantities affecting system performance (operation-time (to) and battery degra-
dation (∆Rint))

Physical quantities affecting battery degradation

During the warranty period, the operation-time keeps on decreasing due to bat-

tery degradation (∆Rint), and depends on the average amount of discharge/charge

current ( 1
tko

∫ tko
0
|Ibat(t)|dt), the amount of emitted charges (Qk

d), and cumulative tem-

perature exposure (
∫ tko

0
Tbat(t)dt) at the kth cycle as shown in Table 4.1. The average

charge/discharge current ( 1
to

∫ to
0
|Ibat|dt) affects the degradation rate of a battery.

The battery degradation is known to accelerate exponentially with an increase of the

discharge current density [92]. Also, performance degradation rate is closely related

to how much energy is discharged in a cycle (Depth-of-Discharge, DoD) [103], which

can be measured by SoC (|SoC|t=to) at the end of the cycle. On the other hand,

the cumulative temperature exposure (
∫ to

0
Tbatdt) affects the degradation rate as ex-

plained next. The level of battery performance degradation depends on the time and

thermal stresses to which the battery has been exposed, and it can be represented

by a rise of battery internal resistance [137].
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Genes 

Measurable 
physical values 

Mathematical 
expressions 

𝐼, 𝑄,
𝑑𝐼

𝑑𝑡
, 𝑇, … 

𝑄

𝐼
− 𝐼, 𝐼 + 𝑇 ⋅ 𝑄, 𝑇 +

𝑄

𝑇

1
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Step 1 : Generate random genes;

Step 2 : Generate genes for next generation via reproduction,

mutation, and crossover of parent genes;

Step 3 : Execute ordinary least squares to regression to find

weights of genes;

Step 4 : Check its fitness and jump to Step 2 if the fitness is

not satisfied.

Figure 4.8: Symbolic regression process

4.4.2 Construction of a battery behavior model via symbolic regression with genetic
programming

We have investigated physical quantities affecting battery output voltage and

degradation. Here we discuss a systematic way to extract physical quantities and

construct battery behavior models describing how they affect the output voltage

and the rate of degradation from data. We first introduce symbolic regression with

genetic programming for constructing battery behavior models. Then, we present

the process of building a battery behavior model via the symbolic regression while

addressing the issues in exploiting the regression scheme.

Symbolic regression with genetic programming

Symbolic regression is a type of regression analysis. This regression searches the

space of mathematical expressions to find the model that best fits a given data set,

both in terms of accuracy and simplicity [128, 11]. Unlike traditional linear and

nonlinear regression methods that fit parameters to an equation of a given form,
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symbolic regression searches both parameters and form of equations simultaneously.

Searching for effective genes is done by genetic programming, which is an evolu-

tionary algorithm-based method (inspired by biological evolution) to find the best

mathematical expression as shown in Fig. 4.8 [75]. The symbolic regression with ge-

netic programming has already been substantiated as its effectiveness for automated

processes distilling the data into natural law model in the form of analytic mathe-

matical expression [127]. Therefore, we exploit this regression scheme to construct

accurate battery models, because chemical reactions occurring in batteries follow

physical laws.

Battery behavior model construction process

Fig. 4.8 shows an example of the symbolic regression process to generate the

battery behavior model. For the first generation, we generated genes (Q
I

+ I, I +

T · Q, Q
T

+ log T ) in a random way based on measurable physical quantities and

mathematical operations. Then, we constructed the first battery behavior model

consisting of the random genes with their weights. The model is tested in terms of its

fitness, and then, if the fitness is not satisfied, we should explore other models to find a

better one in a search space. In such a case, we generate genes for the next generation

via a mutation (Q
I

+ I → Q
I
− I) and a crossover (Q

T
+ log T → T + log Q

T
) based

on the parents’ genes that have low weights. We execute a reproduction (I + T ·Q)

of genes with large weights to leave the genes that are likely to critically affect the

model. We check its fitness and repeatedly generate new generations until the fitness

is satisfied.

In applications exploiting the symbolic regression, the identification of nontrivial

relations is a major challenge. For example, x
1

100 can be selected for the gene because

it may improve its fitness even if it would not affect the results much. Our key
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Symbolic regression 
(50 times of Fig. 9) 

 

Vo = I x ∫T dt + T + dI/dt 
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… 
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Vo = c0 x T/I  
+ c1 x log T 
+ c2 x dI/dT  
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log T 25 
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Step 1 : Execute symbolic regression 50 times and store the generated

genes from the regression;

Step 2 : Sort the generated genes in order of occurrence and select

genes that frequently occurs;

Step 3 : Construct generic behavior models based on the selected genes;

Step 4 : Check its fitness.

Figure 4.9: Algorithm for constructing a battery behavior model

insight into identifying nontrivial genes is that nontrivial genes would appear more

than trivial genes. To find the most effective nontrivial genes for modeling battery

behavior, we iterate the symbolic regression many times. Then, we sort the genes

in the order of occurrence, and select the frequently appeared genes. For instance,

at step 1, we executed 50 symbolic regressions and stored the generated genes. We

select dI
dt

, T
I
, log T and so on, because it was generated frequently and thus likely

to be nontrivial genes. Based on the extracted nontrivial genes, we construct the

battery behavior model and repeat this process until the fitness is good enough to use

them. Fig. 4.9 shows the entire process for constructing a battery behavior model.

4.5 Online scheduling of battery temperature and discharge/charge cur-
rent

So far, we have built the battery behavior model affecting its operation-time

and degradation rate. We now systematically schedule target operating conditions

over cycles for solving the problem described in Section 4.3.1. Before presenting a

scheduling policy, we first determine the relationship between performance metrics
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(to and ∆Rint) and operating conditions (Ibat and Tbat) to get an insight into efficient

schedulings of the operating conditions.
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UC usage ↑  Degradation rate ↓ 
      Operation-time ↓ 

Temperature ↑  Degradation rate ↑ 
   Operation-time ↑ 

Figure 4.10: The effects of the thermal and discharge-rate control on the system performance.

4.5.1 Relationship between operation-time and degradation rate

Battery operation-time, degradation rate, and operating conditions are all closely

related to each other. For example, old batteries whose internal resistances are high,

cannot operate longer to power EVs than new batteries, recorded as follows:

• Ri
int ↑ (↓) =⇒ tio ↓ (↑).

Also, the degradation rate depends on how the battery is used. Fig. 4.10 presents

a general trend of operation-time and degradation rate related to the temperature

and discharge/charge current. For instance, excessive use of UCs degrades its ef-

fectiveness because storing/extracting charge to/from UCs causes additional energy

dissipation due to their internal resistance. In contrast, increasing use of UCs de-

celerates battery degradation since it can reduce battery discharge/recharge stress.

Meanwhile, high temperature increases battery capacity by reducing battery internal

resistance during an operation cycle. Unfortunately, continuous/frequent exposure

to high temperature accelerates battery degradations. In summary, the following

relation holds:

• tio ↓ (↑)⇐⇒ ∆Ri
int ↓ (↑).

These trends are used to maximize the minimum operation-time during the warranty
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Figure 4.11: The entire scheduling process. Section 3.5.2 presents an algorithm determining a
operating condition vector (Xk) for maximizing the operation-time (tko) in a single
cycle. Section 3.5.3 provides an algorithm of searching for the target degradation levels
(Rub) of each cycle for maximizing the minimum operation-time (min{t1o, . . . , tmo }).

period. Basically, we use a different control policy for a different cycle during the

warranty period. For example, during very early cycles, we increase use of UCs at

low temperature for future use of battery. In contrast, during late cycles of the

warranty period, we focus only on its operation-time, rather than the degradation

rate, because we do not have to consider the degradation level after the warranty

period.

4.5.2 Scheduling algorithm in a single operation cycle

Fig. 4.11 shows the entire process of determining the operating condition matrix

X. We first represent a scheduling policy to maximize operation-time (to) for the

target degradation level (Rint) in a single cycle. Note that the target degradation level

(Rk+1
int ) is key in regulating the operation-time (to) of each cycle so as to maximize

the minimum operation-time. Section 4.5.3 details how to determine the target

degradation levels (Rk+1
int ) to maximize the minimum operation-time during the entire
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Algorithm 1 Algorithm for optimization in a cycle

1: procedure PROC1(Rub,Rint,Preq)
2: Xk ← Xk that has no additional power for the auxiliary devices;
3: /* Reduce ∆Rint via Xk control if it is larger than the target ∆Rint */
4: while Rub < Rint do
5: Set a target accumulative physical quantities that reduce ∆Rint

6: end while
7: Xk ← Search Xk maximizing to at Preq and maintaining the target cumulative physical

quantities via the discharge current and temperature scheduling (Supplement file)
8: /* We can estimate to and ∆Rint at Xk for supplying Preq via the behavior models con-

structed in Section 3.4*/
9: return [to, Rint, Xk];

10: end procedure

warranty cycle.

Scheduling requirement in one operation cycle

To maximize the operation-time in a cycle, we should maximize the time dura-

tion during which battery output voltage is within an applicable range for motors’

operation while supplying the required energy. In the example in Fig. 4.12(a), the

battery cannot supply the required power with an applicable voltage after initial to,

the operation-time of this scheduling, potentially stopping the motor operation. To

increase operation-time, we have to compensate the voltage shortage by relieving

the discharging stress or helping chemical reactions in the battery via discharge cur-

rent and/or temperature control. In the meantime, we have to maintain the battery

degradation level (Rint) within the required range (< Rub) for its future usability.

The next subsection provides a detailed algorithm for extending operation-time while

keeping the degradation rate below the specified level.

Algorithm for a single cycle

Algorithm 1 describes how to determine vectors of (I ibat, T
i
bat) in a single cycle.

Initially, the minimum use of the thermal fins or energy buffers is set (Line 2). It

would not be the best solution because the required degradation rate may not be
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Figure 4.12: An example of the temperature scheduling in a cycle

satisfied and/or the output voltage of battery could be dropped quickly as shown in

Fig. 4.12 (a). First, to meet the required degradation rate at the kth cycle, steps (Line

4–6, Fig. 4.12 (b)) determine the target cumulative physical quantities affecting the

degradation. The final step (Line 7, Fig. 4.12 (c)) determines a pair of (I ibat, T
i
bat) of

each control interval to compensate as many voltage drop periods as possible while

maintaining the required cumulative physical quantities. A detailed algorithm for

Line 7 is presented in the supplementary file [66].
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Algorithm 2 Algorithm for optimization within a whole period

1: procedure PROC2(Nw, Rub, R
1
int, Preq)

2: [t1o, R2
int,X

1] ← PROC1(∞, R1
int, Preq);

3: for i = 2; i ≤ Nw; i++ do
4: [tio, Ri+1

int ,Xi] ← PROC1(∞, Riint, Preq);
5: Ri−1

UB ← Riint

6: while tio 6= ti−1
o do

7: // To increase to, decrease Rint

8: Ri−1
ub ← Ri−1

ub − 0.01;
9: [ti−1

o , Riint,X
i−1] ← PROC1(Ri−1

ub , Ri−1
int , Preq);

10: [tio, Ri+1
int ,Xi] ← PROC1(Riub, Riint, Preq);

11: end while
12: end for
13: return [to, X];
14: end procedure

4.5.3 Scheduling algorithm during the whole warranty period

So far, we proposed a scheduling algorithm for maximizing operation-time in a

cycle while satisfying the required degradation rate (∆Rint). We now expand the

algorithm for the whole warranty period to maximize the minimum operation-time

(min {to}) based on the impact of battery thermal and discharge-rate control on the

operation-time and degradation rate.

Optimization within warranty period

Algorithm 2 determines the target degradation rate (Rub) for each cycle to max-

imize the minimum operation-time. At the first step (Line 2), the temperature and

discharge current are scheduled without considering the battery degradation rate as

shown in Fig. 4.13 (a). The battery temperature would be set only for its safety, and

therefore UCs are used as little as possible to save additional energy consumption by

the auxiliary devices. Next, the target degradation level is regulated for the present

cycle (Line 8) to increase the operation-time during the next cycle. Even if it may

cause inefficiency in terms of the operation-time of the present cycle, we can improve

the overall system performance by increasing the worst-case operation-time during
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Increase operation-time (to) by decreasing degradation level (Rint) 
Rint ↓    to ↑ 

Decrease degradation rate (∆Rint) for next cycles at cost of operation-time (to) 
to ↓    ∆Rint ↓ 

Maximizing ‘to’ without considering ‘∆Rint’ at 1st cycle 
Vo 

time 

Max min to at 1st cycle (a) 
Vo 

time 

Max min to at 2nd cycle (b) 

Vo 

time 

Max min to at 3rd cycle 
(c) 

Figure 4.13: Determination of each target Rint to maximize the minimum operation-time

the warranty period. We iterate this process until all the operation-times become

similar as shown in Figs. 4.13 (b) and (c).

4.5.4 Real-time scheduling algorithm

To schedule the temperature and discharge current needed to achieve our goal, we

first solve the scheduling problem for a given power requirement. Typically, the future

power requirement is unknown, because it depends on a number of variables, includ-

ing, but not limited to, driving conditions, vehicle type, and road conditions. But,

solving for a given power requirement allows for the creation of an implementable

schedule. Using past power requirement patterns, we can determine the amount of

power needed for a few seconds of battery usage [68]. Based on these patterns, we

can adopt a power requirement predictor and determine the discharge current and

temperature in real time based on the prediction as shown in Fig. 4.14. We should
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Figure 4.14: Real-time prediction and scheduling for battery discharge current and temperature

also determine the frequency at which discharge current and temperature must be

determined (scheduling period). This scheduling period is used to preclude batteries

from inefficient usage.

Algorithm 3 Algorithm for real-time discharge current scheduling

1: procedure PROC3(Itot, I
∗
bat)

2: while Driving do
3: if Recharge then
4: Ibat = 0;
5: Sleep(pc);
6: else if Ibat < I∗bat then
7: Ibat = Itot;
8: else
9: Ibat = I∗bat;

10: Sleep(pd);
11: end if
12: end while
13: end procedure

The scheduling results shown in Fig. 4.18 give insight into the real-time scheduling

of the discharge current. The UCs should be fully recharged when the braking system

generates energy. They can then supply some of the stored charge to the motor, based

on the target degradation rate. Algorithm 3 schedules discharge current in real time.

It requires both the present total discharge current (Itot) and the target battery

discharge current (I∗bat) needed to control the degradation rate. First, when the power

is recharged from the braking system, the battery current is set to 0 to charge the

UC. Then, the discharge current is rescheduled after pc. If the battery is discharged
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to the electric load, the target battery discharge current is determined based on its

amount. If it is in the normal discharge range (Ibat < I∗bat), the battery is allowed

to supply charges to the load (Ibat = Itot). If it is outside of the normal range, the

UC provides charges to maintain the battery discharge current (Ibat = I∗bat). Later,

the discharge current is scheduled (pd). The scheduling period (pd and pc) must be

determined carefully for real-time scheduling. Otherwise, it may lead to additional

power consumption. For instance, if the discharge current is not rescheduled in time,

the battery discharges energy to the UC, even though the UC does not require power.

From the power requirement prediction, the length of the discharge/charge period

can be estimated (p∗d / p∗c). We set pd (pc) to p∗d (p∗c) over 10. Real-time temperature

scheduling is similar to the discharge current scheduling, and thus we omitted the

result.

4.6 Evaluation

We now evaluate the proposed battery model construction and scheduling of bat-

tery temperature and discharge/charge current. We first describe tools and setups for

the evaluation, and then demonstrate the accuracy of battery behavior predictions

and performance improvement by our scheduling system.

4.6.1 Evaluation settings

To test the proposed model construction, we exploit real data including battery

discharge/charge current (Ibat), temperature (Tbat), and output voltage (Vo) by using

Neware’s battery tester [101]. We measure the performance improvement of the pro-

posed temperature and current scheduling by using commonly-used vehicle (Advisor

2.0 ) [106] and battery simulator (Dualfoil5 ) [40]. To make the simulation more real-

istic, we obtained real driving data from “The US Environmental Protection Agency
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(EPA)” and “California Air Resources Board” such as ARB02, SC03 and LA92.

4.6.2 Evaluation results

Our goal is to maximize the minimum battery operation-time during the warranty

period by determining efficient battery temperature and discharge/charge current.

For effective temperature and current schedules, we constructed a battery behavior

model. We evaluate the following schemes for modeling battery voltage and degra-

dation rate:

• V-LR: battery voltage model via linear regression with a circuit-based battery

model;

• V-SVR: battery voltage model via support vector regression;

• V-SR: our battery voltage model via symbolic regression described in Section 4.4;

• R-LR : battery degradation rate model via linear regression with temperature

(likewise discharge current) linear degradation model;

• R-SVR : battery degradation rate model via support vector regression;

• R-SR: battery degradation rate model via symbolic regression with described in

Section 4.4.

Figure 4.15: An example of battery output voltage predictions.

Table 4.2 shows the error of the constructed model of V-SR, V-SVR and V-LR

for battery output voltage prediction, and Fig. 4.15 plots their predictions. Root-

mean-square error (RMSE) is used to measure the prediction accuracy. As shown
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Figure 4.16: Degradation rate predictions. We use 12 degradation patterns from the battery tester.
We select 10 degradation patterns to build a degradation model and validate the model
with 2 remaining degradation cases. The validation process is then repeated 6 times
(6-fold cross-validation).

in this table, V-SR improves the accuracy of the model by up to 67.9% (49.8%),

compared to V-LR (V-SVR). The basis form of V-LR is a circuit-based battery model

whose internal resistance depends on temperature exponentially [69]. However, at

low temperature, the accuracy of the model is lower than that of V-SR, because the

exponential internal resistance model is correct only for a specific range of tempera-

ture. So, while V-SVR predicts the output voltage more accurately than V-LR, V-SR

has the best overall prediction accuracy of the three output voltage models. Table 4.3

and Fig. 4.16 show the errors of degradation predictions. R-SR shows improvements

of prediction accuracy by 5.6% and 8.0% over R-LR and R-SVR, respectively. That is,

the degradation rate model constructed based on various physical quantities yields

an accurate behavior model to predict the battery’s states.

Prediction methods prediction error E(Vo)

V-LR 0.00336
V-SVR 0.00215
V-SR 0.00108

Table 4.2: Average error of battery output voltage prediction

Performance of the proposed scheduling policy

We have evaluated the following three discharge/charge current and temperature

scheduling schemes:
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Prediction methods prediction error E(Rint)

R-LR 1.626
R-SVR 1.668
R-SR 1.535

Table 4.3: Average error of battery degradation prediction (Rint)

• Const-TI: fixed operational temperature and discharge-rate;

• Opt-TI: our scheduling scheme described in Section 4.4;

• RT-TI: our real-time scheduling scheme described in Section 4.4.

Minimum operation-time (to) (s)
Prediction methods ARB02 LA92 SC03

Const-TI 407 331 321
Opt-TI 451 396 595
RT-TI 407 368 554

Table 4.4: Minimum operation-times

Figure 4.17: Voltage profiles during the first cycle and the last cycle (30) for SC03 driving under
Opt-TI scheduling. Compared to Const-TI, the voltage drop was tolerable due to pre-
heating the battery and lower degradation level.

We ran simulation and extracted operation-times during the warranty period of

each scheme under various electric loads. The minimum operation-times are then

extracted to evaluate the schemes. As shown in Table 4.4, Opt-TI improves the

minimum operation-time by up to 10.8% at ARB02, 19.6% at LA92 and 85.3% at

SC03, respectively, over Const-TI. Figs. 4.17 (a) and 4.18 present examples of bat-

tery voltage and scheduled temperature (Tbat) and battery discharge/charge current

(Ibat) under Opt-TI during the first and the last cycles. The algorithm pre-heats



90

-400 

0 

400 

800 

1200 

0 500 1000 
C

u
rr

e
n

t 
(A

) 

Time (s) 

I_bat I_UC 

Figure 4.18: UC current (IUC) profile for SC03 under Opt-TI. IUC helps the battery when it is
required to supply high power by mitigating the discharge/charge stress to the battery.

batteries and pre-charges UCs to preclude the batteries from a fast voltage drop. By

comparing Figs. 4.17 (a) and (b), we can see the differences between Const-TI and

Opt-TI during early cycles and late cycles. As we discussed in Section 4.5.3, Opt-TI

utilizes the thermal and discharge/charge current management much at early cycles

to decelerate the battery degradation. Then, it maximizes operation-time without

considering its degradation during late cycles. Therefore, although battery output

voltage during early cycles of Opt-TI (in Fig. 4.17 (b)) is lower than that of Const-TI

(in Fig. 4.17 (a)), Opt-TI could maintain the output voltage within the applicable

range longer than Const-TI during the last cycle, because Opt-TI decelerated the bat-

tery degradation during early cycles. The battery behavior models constructed in

Section 4.4 enable our BMS to determine a pair of (Ibat, Tbat) at each control interval

under Opt-TI, because they allow the BMS to predict battery operation-time and

degradation rate with respect to (Ibat, Tbat) schedules. The derived real-time pre-

diction model, RT-TI, determines the temperature and discharge current of a given

cycle, while the target degradation rate is calculated by the model Opt-TI. The simu-

lation shows that the minimum battery operation-time of RT-TI is generally similar

to the LA92 and SC03 cases of the Opt-TI model. However, certain conditions, like

highly variable driving patterns in one case (ARB02), reduced the operation-time of

the RT-TI model. In extreme cases, like ARB02, the minimum battery operation-time
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is similar to the Const-TI.

4.7 Conclusion

In this chapter, we have proposed a new integrated BMS that schedules the

amount of energy pre-charged into UCs and battery temperature at each control

interval based on the analysis of their impact on the battery capacity and degrada-

tion. We have also proposed a battery prognosis scheme, which is able to predict

when the battery cannot provide the required power. Our evaluation with real bat-

tery data and realistic driving simulation shows that the proposed schemes make a

significant improvement in BMS’s efficiency over a simple method used in the existing

BMSes for EVs.

In future we would like to improve the BMS using the proposed architecture.

Primarily, the accuracy of the prognosis scheme and power requirement predictions

should be enhanced for efficient discharge/charge current and temperature sched-

ule. This could be achieved by increasing the accuracy of the battery behavior and

power requirement models. For this, we have to process the model construction after

acquiring lots of battery behavior and driving data under various conditions via a

remote prognosis system. Our framework can also be used for other types of batteries

including fuel cells which have their own power and energy densities, because battery

behavior models are extracted by using behavior data of the batteries installed in the

system, and scheduling discharge/charge current and temperature of the batteries

based on the constructed behavior model.



CHAPTER V

Real-Time Battery Thermal Management for Electric
Vehicles

5.1 Introduction

As many researchers pointed out [13, 32, 63, 85], temperature is one of the most

critical factors in designing and operating EVs. For example, an extremely high

temperature may lead to malfunction or performance degradation of battery cells.

In contrast, a battery system operating at a very low temperature might be dysfunc-

tional or have a low capacity due to low reaction rates with freezing electrolytes. In

addition, the discharge rate of cells varies with temperature, altering their capacity.

To address the challenges related to temperature, most automotive manufacturers

have developed their own thermal management systems for their EVs [35, 99]. That

is, a BMS (Battery Management System) monitors the temperature of battery cells,

and triggers the thermal control when temperature deviates from the normal opera-

tional range. This control includes both cooling and heating, and existing controls

are all or nothing—whether or not they cool/heat all the battery cells connected in

parallel. However, such coarse-grained controls result in a large safety margin and

hence inefficiency. More importantly, they do not exploit temperature for more ef-

ficient management, in that more sophisticated controls of temperature even within

the normal operational range may yield better battery performance.

92
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The goal of this chapter is to develop thermal management for an efficient and

reliable BMS. Efficiency is defined by “the ratio of the useful energy delivered by a

dynamic system to the energy supplied to it” [96]; we achieve efficiency by maximizing

operation-time [72], or the cumulative time for a BMS to provide the required power

after a full charge. We achieve reliability by guaranteeing that a BMS provides the

required power throughout the given battery warranty period without an explosion

or malfunction, while letting its cells undergo charge-and-discharge cycles.

To improve efficiency without compromising reliability, we need a cyber-physical

perspective of battery thermal management, integrating and coordinating between

cyber and physical parts. For physical parts, we should understand thermo-physical

characteristics of battery cells and external thermal stress conditions, as they have

significant impact on battery performance. By carefully accounting for these non-

linear physical properties and abstracting the characteristics in the cyber space as

shown in Fig. 5.1, we can develop desirable thermal management that reduces the

safety margin, thereby increasing the efficiency of the entire battery system in EVs.

To achieve this goal, we use temperature as a control knob; beyond a simple

temperature control only for the normal operational range, we design a battery ther-

mal management system, which actively controls temperature for more efficient and

reliable operations. This requires understanding the thermal and general issues of

batteries that affect the efficiency and reliability. Therefore, we analyze the issues

based on battery thermo-physical characteristics and their impact on the electrical

state of battery cells. Based on this analysis, we derive strategies in achieving the

goal, and then propose a battery thermal management system with cell-level thermal

controls. Our policy boosts the performance of cells temporarily when high power

is required, while resting cells otherwise to reduce stresses; we will present details of
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Figure 5.1: Cyber-physical perspective for a BMS

our policy along with their underlying principles. To evaluate the proposed BMS, we

adopt realistic workloads based on real driving patterns, and simulate them with a

widely-used battery simulator. Our simulation results demonstrate the effectiveness

of the proposed battery thermal management, improving the operation-time up to

58.4%, without sacrificing reliability, over the existing BMS.

This chapter makes the following three main contributions:

• Abstraction of thermo-physical characteristics in the cyber-space to address the

issues associated with efficient and reliable thermal management;

• Design of a battery thermal management system with a new architecture, which

is, to our best knowledge, the first comprehensive study to exploit temperature

as a control knob for BMSes; and

• In-depth evaluation of the proposed thermal management, demonstrating its

significant improvement of efficiency without compromising reliability.

The chapter is organized as follows. Section 5.2 presents general and thermal man-

agement approaches in existing BMSes, and Section 5.3 formally states the problem
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Figure 5.2: A battery pack with modules and cells

we want to solve via thermal management. Section 5.4 describes physical charac-

teristics related to thermal and general issues of large-scale battery systems, and

Section 5.5 presents our battery thermal management system. Section 5.6 evaluates

our system via realistic simulations, and finally, Section 5.7 concludes the chapter.

5.2 Background

As illustrated in Fig. 5.2, a battery pack consists of some interfaces (e.g., elec-

trodes) and several battery modules, each of which is composed of several battery

cells. In a battery module, all the battery cells are connected in parallel, reducing

the possibility of battery failure caused by a cell-level failure. The modules in a pack

are usually connected in series, enabling the battery pack to provide a high voltage

and power.

A BMS is responsible for powering EVs while protecting hundreds/thousands of

battery cells from damage and keeping them in an operational condition. For a BMS

to perform these functions, battery cells should be properly controlled because their

safety and performance depend on stress conditions around them. In this section,

we discuss the battery properties and the related work thereof.
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5.2.1 Battery Scheduling for Efficient Battery Management

Rate-capacity and recovery effects are the most prominent physical properties for

efficient battery management. The rate-capacity effect means that the higher the

discharge rate, the lower the deliverable capacity. The recovery effect means that

a rest restores the output voltage temporarily dropped by large discharge current.

Therefore, we can increase the capacity of batteries, by minimizing the discharge

rate per cell and resting battery cells.

State-of-Charge (SoC) represents percentage of deliverable charge, from 0% with

no charge, to 100% with full, and balancing SoC is one of the most critical issues

affecting the performance of large-scale battery systems because the performance of

a large battery pack depends on the electrical state of the most worn battery cell in

the pack.

To achieve better battery performance, a line of work has focused on battery

scheduling that equalizes SoC and/or reduces the discharge rate [17, 55, 59, 71, 72].

They control switches to draw energy from battery cells at a proper discharge rate.

For example, when an electric motor needs high power, a battery manager connects

all the cells to the electric load to improve battery efficiency. In contrast, when the

motor demands low power from the battery, the battery manager disconnects some

cells with low SoC, achieving recovery of the output voltage and equalization of SoC.

5.2.2 Thermal Management of Large-scale Batteries

Besides discharge behaviors and SoC balancing, battery thermal characteristics

are also important to their efficiency, operation and safety. Of many characteristics,

we will focus on the following two major characteristics. First, battery efficiency im-

proves temporarily at “instant high temperature” due to the increased chemical reac-
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tion rate and ion mobility. However, the “cumulative exposure to high temperature”

causes the permanent lifetime to decline because of its acceleration of irreversible

side reaction. Therefore, most BMSes are required to restrict each cell within a cer-

tain temperature range to achieve reasonable performance. Every EV must thus be

equipped with a thermal management system that keeps cell temperature within the

operational range, requiring both cooling and heating. Whenever the temperature of

a battery pack deviates from an operational temperature range, thermal management

is activated to guarantee thermal stability of batteries [35, 99, 70, 115, 116].

For cooling, the radiator transfers heat from the fluid inside to the air outside,

thereby cooling the fluid, which in turn cools batteries. Heating is also required

for driving at extremely cold temperature. For example, GM Chevy Volt [99] uses

144 thermal fins to actively cool/heat 288 battery cells with a coolant flow valve

controlling cooled/heated coolant flows. Ford Focus [35] is also equipped with an

active liquid-cooling and heating system for thermal management of its lithium-ion

battery packs.

So far, this simple approach has been effective for the normal operation of bat-

tery cells during a vehicle warranty period; a warranty can be made by thoroughly

testing battery cells’ performance in thermal experiment chambers. However, such a

passive, coarse-grained thermal control does not take full advantage of thermal man-

agement systems. By understanding battery thermal characteristics and controlling

temperature, we can improve battery’s capacity without compromising the lifetime

of battery cells. This is because heating the cell increases the battery performance

instantaneously, while cooling the cell for the situation of requiring low power can

delay the drop of lifetime. To regulate cell temperature systematically, we analyze

battery dynamics and propose active and cell-level thermal management for more
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efficient and reliable BMSes.

5.3 Problem Statement

In this chapter, we would like to develop “good” thermal management for more

efficient and reliable battery systems. For this, we state the problem of thermal

management for which we first introduce relevant terms.

A battery pack in EVs supplies DC power to an inverter which operates the

electric motors in EVs. To operate motors, a power inverter needs an applicable

input voltage (Vapp) during the vehicle’s operation. Then, the operation-time (`op)

is defined as the cumulative time for a battery pack to provide the required power

with applicable output voltage range after a full charge [72].

Therefore, a BMS should enable its battery pack to supply the required power

(Preq(t)) to electric motors while maintaining output voltage no less than the appli-

cable input voltage for a long operation-time. Meanwhile, the operation-time should

be kept long during the battery warranty period; otherwise, the vehicle requires a

larger battery pack and/or batteries must be recharged more frequently.

In this chapter, we want to develop a BMS that yields a long operation-time

during the warranty period by controlling the temperature of battery cells. We can

control battery temperature by selecting the coolant type in each thermal fin at each

time instant to be cooled or heated, which will be detailed in Section 5.5.3. That is,

the coolant type is used as a control knob for our BMS. Our goal is then to determine

the coolant type at each time instant (Cfin(t)) such that the operation-time (`op) is

maximized during the warranty period without any malfunction or explosion, which

is formally expressed as:

Given stress conditions {Preq(t), Text(t)}0<t<twarr , determine {Cfin(t)}0<t<twarr , such
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that `op is maximized at twarr without any malfunction or explosion in [0, twarr],

where Text(t) is temperature outside the battery pack, and 0 and twarr are the time

at the beginning and end of the battery warranty period, respectively. Note that the

stress conditions and the control of Cfin(t) are valid/necessary only during operation

of the EV in [0, twarr].

Note that `op monotonically decreases over time, because the performance of a

battery keeps on degrading over time and never recovering. Therefore, `op at any

time during the warranty is at least as much as that at twarr.

5.4 Abstraction of Physical Dynamics of Batteries

Several battery dynamics under stress conditions affect the performance and safety

of battery systems. For example, uncontrolled high temperature may cause explosion,

while an extremely low temperature reduces the battery’s performance, potentially

leading to failure to power the electric vehicle. Therefore, the impacts and dependen-

cies of control knobs and external conditions on battery dynamics should be analyzed

to improve the safety and performance of a battery system.

To this end, we will first identify the factors that affect the performance by bridg-

ing different abstraction models for battery physical dynamics. Then, based on the

unified abstraction model, we will address how a change in temperature affects bat-

tery physical dynamics, which will be a basis for our battery thermal management

to be described in Section 7.5.

5.4.1 Abstraction of Battery Characteristics

By analyzing the dependency on thermal conditions and the impacts on states

of batteries, we can figure out how controllable thermal conditions affect the output

voltage of the entire battery system and each cell’s temperature.



100

SoC Voc 

Power requirement 

Vo 

Id 

Rint 

Rint 

+ 
 
 
- 

 
↓ 
I 

SoC 

+ 
 

Vo 

 
- 

Voc 

(SoC) 

← Id 

Figure 5.3: Circuit-based battery model

Circuit-Based Battery Model (Vo = f(Rint, Id, SoC))

Output voltage (Vo) dictates the operation-time of a battery system, and the

output voltage is greatly affected by battery cells’ internal states. A circuit-based

battery model uses fundamental electric elements, such as internal resistance (Rint),

discharge current (Id), and open-circuit voltage (Voc) to represent the cell’s internal

states, and explains the output voltage by basic circuit theory as described in Fig. 5.3

and Eq. (5.1).

When the cell is connected to an external load, an electron flow (Id) occurs from

the anode to the cathode through the external load. Open-circuit voltage (Voc) is the

difference of electrical potential between two terminals of the cell when disconnected

from any circuit, and it largely depends on deliverable charges (SoC) in battery cells.

The internal resistance (Rint) represents all the factors causing voltage drop between

open-circuit voltage (Voc) and output voltage (Vo) when the power source delivers

current. In addition, large capacitors are adopted to represent states of deliverable

charge (SoC) of cells. Then, the output voltage is expressed as [85]:

(5.1) Vo = Voc − IdRint = f(SoC)− IdRint,

which says that a change in internal resistance affects output voltage as follows:

P1. Internal resistance ⇒ Output voltage (R ↑→ Vo ↓): As the internal resistance
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gets higher, the output voltage decreases.

Supplying the required power (Preq) to the electric load induces power dissipation

(Pd) in a battery pack. That is, total power consumption (Pbat) in a battery pack

(Pbat) consists of the two power consumption parameters (Preq and Pd) as shown in

the following equation [85]:

Voc = Vo + IdRint ⇒ VocId = VoId + I2
dRint

⇒ Pbat = Preq + Pd.(5.2)

Therefore, to use batteries efficiently and increase the operation-time of a bat-

tery pack, a BMS should reduce power dissipation (Pd) during operation, which

is recorded as follows.

P2. Internal resistance ⇒ Power dissipation (R↑→Pd↑): As internal resistance gets

higher, power dissipation increases.

Since the output voltages of the cells connected in parallel should be the same and

the variation of open-circuit voltage is small, discharge current depends on internal

resistance according to Eq. (5.1). Then, the discharge current of a cell with larger

internal resistance is lower than that of the other cells in the module, as recorded in

the following statement:

P3. Internal resistance ⇒ Discharge rate (R↑→Id↓): As internal resistance gets

higher, the discharge rate per cell decreases in a module.

Relation between Internal Resistance and Cell Temperature (Rint = f(Tcell, t))

As shown in P1 and P2, internal resistance is an important parameter that affects

batteries’ performance. Therefore, we describe how internal resistance varies with

thermal stresses during operation.
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Figure 5.4: Internal resistance increases as temperature decreases, and relative internal resistance
increases as time to expose to high temperature increases; both graphs are obtained
with evaluation tools/settings to be described in Section 5.6.

Before presenting the effect of temperature on internal resistance, we define two

terms related to time interval. An operation cycle represents a cycle of a battery

cell’s operation from its full charge to no charge. A calendar life is a duration from

a battery cell’s production to its warranty period (e.g., 5 years). We describe how

temperature affects internal resistance, when a given temperature lasts during (i) an

operation cycle, and (ii) a calendar life.

Regarding (i), a higher temperature stimulates the mobility of electron or ion,

temporarily reducing the cell’s internal resistance and increasing its capacity (by

P2). For example, as shown in Fig. 5.4(a), resistance with 320K is smaller than that

with 290K. Therefore, during an operation cycle, the following relation holds:

P4. Temperature ⇒ Internal resistance (T↑→R↓ (operation cycle)): As temperature

during an operation cycle increases, internal resistance decreases.

In literature, relation between internal resistance and cell temperature is well-described

by a polynomial model, and experimental results substantiate its effectiveness [110]:

(5.3) Rint = c3T
3
cell + c2T

2
cell + c1Tcell + c0.

This model dictates cell temperature (Tcell) for the required internal resistance (Rint).

On the other hand, a long-term temperature exposure affects internal resistance

the other way around, as explained next. Battery performance deteriorates over time,

regardless of whether the battery is used or not, which is known as “calendar fade”,
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and it can be represented by a rise of internal resistance as shown in Fig. 5.4(b).

There are two key factors influencing the calendar life, namely temperature (T ) and

time (t), and empirical evidences show that these effects can be represented by two

relatively simple mathematical dependencies (t and T ). The extent of deterioration

can be assessed by relative resistance (µ), which is expressed as [136, 137]:

(5.4) µ(T ; t) = 1 + exp(β0 + β1 ·
1

T
) · tρ,

where β0, β1, and ρ represent the model parameters. According to Eq. (5.4), the

following statement holds:

P5. Temperature over time ⇒ Resistance (t↑, T↑→R↑ (calendar life)): As time to

high temperature exposure increases during a calendar life, internal resistance

increases.

Thermal Behavior Model (Tcell = f(Tamb, Rint, Id))

While internal resistance depends on cell temperature (P4 and P5), cell temper-

ature, in turn, varies with a battery internal state and external stress.

Any battery operation generates heat due to internal resistance when the cell

delivers power to electric loads, which is also known as joule heating (I2
dRint loss).

Some part of generated heat (Qd) would be released on the surface of cells (Qt),

and the remaining heat is absorbed into cell materials (Qs), which can be calculated

by [18]:

Qd = I2
dRint, Qs = Ccell

dTcell
dt

,

Qt = Ah(Tcell − Tamb),

where A is the surface area, h the heat transfer coefficient, Tamb temperature around

the cell, and Ccell heat capacity, respectively. Note that ambient temperature (Tamb)

is affected by external temperature (Text) and temperature of thermal fins (Tfin).
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Figure 5.5: Battery thermal dynamics

Eq. (5.5) shows Bernardi’s energy balance [18], and it can explain cell temperature

(Tcell) variation by heat generation (Qd) as shown in Fig. 5.5. Then, Eq. (5.5) can

be solved by Eq. (5.6) as follows.

(5.5) Qd = Qt +Qs,

(5.6) Tcell(t+ ∆t) = Tcell(t) + ∆t[c1(Tcell − Tamb) + c0I
2
dRint],

where t is the current time and ∆t the time interval. Based on the equation, the

following statement holds.

P6. Discharge current⇒ Heat generation (Id↑→T↑): As discharge current increases,

heat generation increases.

If we bridge all the battery characteristics discussed in P1–P6, we have an abstract

layer from the temperature of thermal fins (Tfin) to operation-time, as described in

Fig. 5.6.

5.4.2 Battery Physical Dynamics According to a Thermal Change

Our goal is to develop thermal management so as to increase battery operation-

time during its warranty period without explosion and malfunction. To figure out

battery dynamics affecting the operation-time and safety, we constructed an abstrac-

tion layer by accumulating several physical dependencies as shown in Fig. 5.6. We

revisit the physical dependencies (P1–P6) on the abstraction to analyze the battery
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Figure 5.6: Abstraction of battery dynamics

physical dynamics, which will be a basis for our thermal management to be presented

in Section 7.5.

Thermal runaway (P3, P4 and P6)

Thermal runaway is one of the most serious thermal issues affecting safety of a

battery cell, and results in extremely high temperature and current. A rise in the

temperature of a battery cell decreases its internal resistance (by P4) and increases

its current (by P3) in a parallel connection, which, in turn, raises its temperature

(by P6); this process may repeat, as illustrated in Fig. 5.7. Since extremely high

temperature (above around 80◦C) may cause an explosion due to decomposition of

materials [85, 63], the thermal stability of battery cells should be maintained.

Explosion T↑R↓ R↓I↑ I↑T↑ 

Figure 5.7: Increase in temperature of a cell causes a further increase in the temperature, potentially
resulting in explosions of the battery cells because of material decomposition inside the
cells.

Malfunction at low temperature (P1 and P4)

Each BMS has a specification of applicable output voltage (Vapp). The BMS should

guarantee delivery of the required power within Vapp range. However, a decrease in

temperature increases internal resistance (by P4), and it may cause a higher voltage
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drop (by P1) in order to supply the same current. Output voltage (Vo) drops below

the applicable voltage (Vapp) making a power inverter unable to operate in a specified

condition, and hence failing to provide the required power to the vehicle’s electric

motors. Fig. 5.8 illustrates how a low temperature causes malfunction.

Malfunction T↓R↑ R↑Vo↓ 
Insufficient 

supply 
voltage 

Figure 5.8: Low temperature leads to high internal resistance and voltage drop.

Short operation-time at lower temperature (P2 and P4)

A decrease in temperature reduces the mobility of charges and chemical reaction

in cells, which can be represented by the increased internal resistance (by P4). This

increased internal resistance implies a larger power dissipation during operation (by

P2), which reduces operation-time as shown in Fig. 5.9. For example, it is reported

that a drop of just 20 Celsius degrees can drain 10 – 20% of a battery’s charge [45].

Shorten lifetime T↓R↑ Large power 
dissipation R↑Pd↑ 

Figure 5.9: Low temperature leads to higher internal resistance and power dissipation.

Performance degradation due to continuous exposure to high temperature (P1, P2
and P5)

Operating under continuous exposure to high temperature induces a rapid increase

in internal resistance (by P5) due to the acceleration of irreversible side reactions [85].

The increase in internal resistance causes energy dissipation of cells, shortening their

operation-time. Faster performance degradation may also cause battery malfunc-

tion even during its warranty period (by P1 and P2), potentially leading to tragic

accidents or financial loss. Figs. 5.8 and 5.9 illustrate what we explained so far.
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Unbalanced SoC (P4, P5 and P3)

Uneven temperature distribution causes different resistances between battery cells

in a battery pack (by P4 and P5). Since the discharge rate depends on internal

resistance (by P3), the discharge rates available for different cells are uneven, leading

to unbalanced SoC among the cells in a battery pack as shown in Fig. 5.10.

SoC unbalancing t↑,T↑R↑ T↑R↓ R↑↓I↓↑ 

Figure 5.10: Uneven degradation and temperature of cells cause different internal resistances of
battery cells, leading to different discharge current and SoCes.

Rate-capacity effect and recovery effect (P4, P5, P3 and P6)

A higher discharge rate causes more capacity loss yielding larger voltage drop due

to heat loss (by P5), called rate-capacity effect explained in Section 5.2.1. In case of

a very low (or zero) discharge rate, the battery can recover its capacity loss to some

extent during high-rate of discharge, called recovery effect, also discussed in Sec-

tion 5.2.1. Uneven temperature distribution may cause more unexpected discharge

current (by P3, P4, P5), leading to more rate-capacity effect in some cells as shown

in Fig. 5.11. Also, uneven discharge rates cause different amounts of heat loss (by

P6), causing unbalanced SoC of cells in a battery pack.

Rate-capacity effect ↑ 

Recovery effect ↓ 
T↑R↓ R↓I↑ 

Figure 5.11: Uneven states of cells yield different rate-capacity/recovery effects, leading to unbal-
anced electrical states.

5.5 The Proposed Battery Thermal Management

So far, we have investigated and abstracted the physical characteristics of bat-

teries. We have then uncovered their effects on thermal dynamics that dictate the

performance of a large-scale battery system. Based on these, we now identify the
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thermal requirements considering the thermal dynamics, and then develop a bat-

tery thermal management policy which can satisfy the requirements based on the

abstraction.

5.5.1 Requirements for efficient and reliable BMSes

To enhance the battery’s operation-time, we need to control the physical dynamics

we discussed thus far. To protect battery cells from thermal runaway (Section 5.4.2)

and malfunction at low temperature (Section 5.4.2), the operation temperature (Tcell)

should lie between its upper (Tup) and lower (Tlow) bounds as follows.

R1. Tlow < Tcell < Tup.

According to P3, delivering power with high temperature reduces internal resis-

tance and improves the capacity of a battery cell during an operation cycle. Un-

fortunately, continuous/frequent exposure to high temperature also accelerates the

degradation of battery cells during a calendar life (as shown in P4 and Section 5.4.2).

According to these two characteristics, to improve capacity of cells while increasing

lifetime, we should

R2’. Maximize
[
Tcell(t)

]
for 0 < t < twarr ∈ OPERATION, and

R3’. Minimize
[ ∫ twarr

0
Tcell(t)dt|t ∈ OPERATION

]
,

where OPERATION is a set of time intervals in which an EV operates.

However, we cannot achieve R2’ and R3’ at the same time, because maximizing cell

temperature will increase cumulative cell temperature. Therefore, existing studies on

battery thermal management attempted to determine a static operation temperature

range [94, 37], rather than dynamic thermal control, and therefore they cannot fully

address the two requirements.

To achieve R2’ and R3’ together, we should focus on a property: EVs require
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Figure 5.12: Driving pattern and power requirements, generated by a vehicle simulator with real
driving records

power intermittently, rather than continuously. For example, requiring high power

for rapid accelerations consumes most energy as shown in Fig. 5.12. This means,

we do not have to heat cells all the time for reduction of energy dissipation, be-

cause heating the cells only during the period of high power requirement can reduce

energy dissipation mostly. Therefore, separating the management period based on

the power requirement can greatly reduce energy dissipation without losing poten-

tial performance improvement much. That is, we divide OPERATION into two:

WORK and REST, which denote a set of time intervals in OPERATION in which a

battery cell should provide a high power, and a lower power (or no power) is re-

quired, respectively; by definition, OPERATION = WORK ∪ REST. Then, we modify

R2’ and R3’ such that it is possible to achieve them together by scheduling heat-

ing/cooling based on their working/resting status: maximizing working cell temper-

ature (Tcell ↑, if t ∈ WORK) and minimizing cumulative resting cells temperature

(Tcell ↓, if t ∈ REST), as recorded below.

R2. Maximize
[
Tcell(t)

]
for 0 < t < twarr ∈ WORK, and

R3. Minimize
[ ∫ twarr

0
Tcell(t)dt|t ∈ REST

]
,

Also, we should take into account issues that previous work focused on. First,

we have to equalize the SoC of cells during operation-time (as mentioned in Section

5.4.2), because just one deep discharged battery cell can lead to significant reduction
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of capacity of the entire battery pack. Therefore, we enforce

R4. Minimize deviation
[
SoCes

]
.

By rate-capacity effect, a higher discharge rate causes inefficiency of a battery. To

reduce inefficient energy loss by excessive high discharge rates, we set a discharge

current limit (Idlim) where the rate-capacity effect does not have much impact on the

cell’s capacity, and enforce cells to operate within the tolerable discharge rate range

(≤ Idlim), if possible, as follows.

R5. Id ≤ Idlim if possible.

Meeting R1–R5 will reduce energy dissipation and protect cells from unbalanced

SoC, explosion, and malfunction. By controlling the temperature of each cell, we

can directly meet R1–R3 and also alter discharge rate, addressing R4 and R5. That

is, by P3 and P4, we can decrease (increase) discharge rate by lowering (raising)

temperature. To realize such a control, we need a battery thermal management

system and a cell-level thermal management architecture, which are detailed next.

5.5.2 Main thermal management: after starting a vehicle

We now propose a battery thermal management system (TMS) that meets R1–

R5. Its basic principle is to heat (cool) cells to be high-discharged (rested or low-

discharged). Based on each cell’s SoC and the required power, our TMS determines

the type of coolant for each cell to realize the principle and achieve our goal. Algo-

rithm 4 describes how the proposed TMS operates.

Update states of cells (Lines 2–6)

We update all the states of battery cells in a pack to support the following steps.

We can directly measure each cell’s output voltage and current via sensors, and then

estimate the cell’s SoC, Rint, and Voc based on the measured values [118, 77, 33, 82].
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Algorithm 4 Algorithm for thermal management after starting operation

1: for Each module do
2: measure Vo
3: for Each cell X (the n-th cell) in the module do
4: measure Id[n] and Tcell[n];
5: estimate SoC[n], Voc[n] and Rint[n];
6: end for
7: if High power is required then
8: increase Vo;
9: else

10: decrease Vo;
11: end if
12: for Each cell X (the n-th cell) in the module do
13: choose efficient Id[n];
14: choose Rint[n] from Eq. (5.1);
15: choose Tcell[n] from Eq. (5.3);
16: choose Tfin[n] from Eq. (5.6) and thermal distribution in a pack;
17: if Tfin[n] ≥ previous Tfin[n] then
18: HeatingSet ← HeatingSet ∪ {X};
19: else
20: CoolingSet ← CoolingSet ∪ {X};
21: end if
22: if Tcell[n] ≥ Tup then
23: CoolingSet ← CoolingSet ∪ {X};
24: HeatingSet ← HeatingSet \ {X};
25: end if
26: end for
27: end for

Set target output voltage (Lines 7–11)

This step regulates the target output voltage (Vo) based on the power require-

ments. Increasing Vo helps power the vehicle because the following steps heat the

battery cells to reduce internal resistance in order to supply the target output volt-

age. Unfortunately, the power requirement may change abruptly (e.g., due to sudden

acceleration or deceleration of the vehicle) and thermal control takes time. There-

fore, we predict the power requirement by analyzing the driving patterns [144, 68]

before segmenting the driving path for effective management in the subsequent steps.

Calculate the target discharge current (Line 13)

This calculates efficient discharge current (Id) of cells for small heat dissipation

and SoC balancing. As discussed in R5, we need to make each cell’s discharge rate no
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larger than Idlim for reduction of inefficient energy dissipation. Suppose Idlim ≤ Preq
N ·Vtot

holds, where Preq is the required power, N is the number of parallel-connected cells,

and Vtot is the total output voltage. Then, by making each cell discharged at Itot
N

, we

can supply the required power without excessive heat dissipation, where Itot is total

discharge current. To meet R4, we set Id based on the SoC when the level of power

requirement (Preq) is satisfied; cells with higher SoC should work more. Therefore,

the discharge current (Id) is set to Itot
N

if Idlim ≤ Preq
N ·Vtot holds, and Itot

SoC
ΣSoC

otherwise,

which is recorded as:

Id =


Itot
N
, if Idlim ≤ Preq

N ·Vtot ,

Itot
SoC

ΣSoC
, otherwise.

Calculate the required thermal fins’ temperature (Lines 14–16)

After setting Id and Vo, we can calculate the required Rint and Tcell from Eqs. (5.1)

and (5.3) as:

c3T
3
cell + c2T

2
cell + c1Tcell + c0 = Rint =

Voc − Vo
Id

,

while Eq. (5.6) calculates the desirable ambient temperature (Tamb).

Cell temperature depends on ambient temperature including the temperature of

thermal fins, and the ambient temperature can be estimated by updating temperature

distribution in a battery pack as shown in Fig. 5.13. Note that the temperature

distribution can be calculated based on temperatures measured by sensors in a pack.

Based on the temperature distribution, we can obtain thermal fins’ temperatures

that achieve the target ambient temperature.
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Figure 5.13: Temperature distribution and ambient temperature of cells in a battery pack

Select the coolant type for thermal fins (Lines 17–25)

Lines 17–21 determine the coolant type (heated or cooled) for cells based on

current and required fin temperatures. In Lines 22–25, we choose the cells whose

temperature is higher than the upper limit, and move them from HeatingSet to

maintain thermal stability.

As discussed earlier, the way of calculating Id addresses R4 and R5. Then, all

the steps will meet R2 and R3, since cells are heated (cooled) when they need high

power (otherwise). The final step (Lines 22–25) guarantees R1. So, Algorithm 4

meets R1–R5.

5.5.3 Thermal Management Architecture

R1–R3 can be met by the existing thermal architecture, since it can regulate the

temperature of battery cells in a timely manner. To satisfy R4 and R5, we need a

new architecture which can cool/heat each cell selectively as shown in Fig. 5.14. The

new architecture is not much different from existing architectures. While existing

BMSes are already been equipped with the heating/cooling capability (e.g., [99, 35]),

we need to add more coolant flow valves between the heating/cooling channel and

thermal fins for each cell, as shown in the figure. Each coolant control valve should

be able to select the type (either heating or cooling) of coolant for cells.
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Figure 5.14: Thermal management for battery packs

5.6 Evaluation

We now evaluate the performance improvement by the proposed TMS, focusing

on whether or not the goal stated in Section 5.3 is met. We first introduce the

performance metrics and evaluation tools/settings to be used. We then present the

evaluation results, and finally make remarks on the TMS implementation.

5.6.1 Evaluation metrics

To evaluate the performance of the proposed TMS, we conducted various simula-

tions, and recorded relevant internal battery states. To check if the goal is achieved or

not, we extracted the information of battery operation-time. Also, for the analysis of

the simulation results, we use (i) energy dissipation to show how fast battery energy

is depleted, and (ii) internal resistance to assess the degradation rate of batteries.

5.6.2 Evaluation tools and settings

To study battery behavior under the proposed TMS, we designed a comprehensive

simulator which can calculate each cell’s internal states under realistic situations.

Also, to obtain realistic thermal stress values for each cell, we selected three US

cities representing cold, medium, and hot regions: Anchorage, AK; Ann Arbor, MI;

and Phoenix, AZ, denoted by AC, AA and PH, respectively. Fig. 5.15 provides an
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Figure 5.15: Evaluation tools

overview, components of which are described next.

Dualfoil5 (cell-level battery simulator)

Dualfoil5 is a popular battery simulator written in Fortran, and can simulate

various types of batteries including the lithium-metal, lithium-ion, and sodium-ion

batteries [40]. The program reads the load profile as a sequence of constant current

steps, and the battery lifetime is obtained from the output by reading off the time at

which the cell potential drops below the cutoff voltage. The equations and methods

used in the program rely on an electrochemical model that describes the charge and

discharge of a lithium ion battery developed by Marc Doyle et al. [40].

CarSim with driving patterns (power requirement)

To acquire realistic power requirements, we exploit US driving patterns [7], a

daily driving pattern model [130, 78], and CarSim [4]. CarSim is a well-known and

widely-used vehicle modeling tool, simulating the dynamic behavior of vehicles under

specified driving conditions, and calculating the required power during driving. We

obtain the power requirement profile as follows. First, a daily driving pattern model

with a set of US real driving patterns yields daily driving patterns. These daily

driving patterns are then fed to CarSim to generate the power requirement. Fig. 5.16
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Figure 5.16: Speed and power requirement profiles

shows a set of speed and power requirement profiles generated by this process.

5.6.3 Evaluation results

We evaluate the following three thermal management schemes:

• BASE: no thermal management;

• EX: existing approaches described in Section 5.2 (pack-level cooling/heating

only for thermal stability); and

• MSC: our thermal management described in Section 5.5 (active cell-level cool-

ing/heating for efficient BMSes).

For these evaluations, we generated realistic driving and external temperature

profiles before simulating the behavior of a battery system with the above three

schemes. The three metrics described in Section 5.6.1 are then extracted from the

simulation results.

Operation-times after one-year operation

We ran simulation and extracted operation-times of each scheme under various

stress conditions. Average operation-times are then calculated to show the overall

performance of each scheme. Table 5.1 shows the ratio of the average operation-

time of MSC (and EX), to that of BASE. As shown in the table, MSC improves the

operation-time by up to 204% and 58.4%, respectively over BASE and EX. Also, MSC
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Figure 5.17: Example of thermal management in AC; C x means Cell x

keeps all the batteries within a tolerable temperature range to prevent explosion or

malfunction as shown in Fig. 5.17; in AC, some batteries operate at extremely cold

temperature under BASE, potentially leading to malfunction or inefficient usage of

the battery pack, whereas all the cells in a pack operate within a tolerable tempera-

ture range under MSC and EX.

Average `op (Sec)
City, Month AC AA PH

EX/BASE 1.92 0.92 1.03
MSC/BASE 3.04 1.40 1.62

Table 5.1: Average operation-time

From Table 5.1, we can observe that MSC’s improvement in AC is more pronounced

than that in AA and PH, because there is more room for performance improvement

in colder areas, which we will elaborate in Section 5.6.3. As shown in Table 5.1, MSC

effectively exploits such room for improvement. For a more detailed analysis for the

improvement of MSC, we investigate energy dissipation and performance degradation

in the following subsections.

Energy dissipation

Our TMS in Section 5.5 includes several methods to decrease energy dissipa-

tion. They actually contribute to the extension of operation-time, since reducing

energy dissipation increases available energy in the cells, which, in turn, extends the

operation-time.

We compare the energy dissipation of the three thermal management schemes
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Figure 5.18: Cumulative energy dissipation for one-year operation in AA

when the car operates in AC, AA and PH. Table 8.3 shows energy dissipation when

drivers operate their cars repeating the same driving pattern every day for a year.

Fig. 5.18 shows an example energy dissipation of each management scheme. Com-

pared to BASE, MSC reduces energy dissipation by 70.6% in AC, 63.8% in AA, and

48.4% in PH. MSC is even better than EX in that it can reduce more energy dis-

sipation by up to 58.6% than EX. This reduction of energy dissipation extends the

operation-time under MSC.

Cumulative energy dissipation (Wh/m2)
City AC AA PH

BASE 20978 16216 10474
EX 14910 13450 9976.5
MSC 6167.5 5864.6 5403.5

Table 5.2: Energy dissipation after one year of operation

An interesting point to note is that the difference between energy dissipation

of MSC (or EX) and that of BASE is significant in AC. This can be reasoned as

follows. In a hotter area, the efficiency is higher (or smaller energy dissipation) even

without any thermal management (i.e., BASE), because high temperature increases

the chemical reaction rate in a battery. So, in AC where temperature is extremely

low in winter, MSC and EX heat the cells to attain effective operation temperature;

we observe from Fig. 5.17 that EX and MSC yield a tolerable temperature range for
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Figure 5.19: Relative resistance and internal resistance in AA

battery cells. This reduces energy dissipation.

MSC reduces energy dissipation significantly more than EX, since it not only

timely cools/heats the cells in order to reduce energy dissipation, but also selectively

cools/heats the cells for SoC equalization. Therefore, each cell operates more effi-

ciently under MSC, by reducing temperature differences between cells. The reduction

of energy dissipation is one of the dominant reasons for improving the operation-time.

Degradation of battery performance

The degree of battery performance degradation depends on its cumulative expo-

sure to high temperature. To evaluate the performance degradation, we compare

cells’ degradation levels, which are represented by relative resistance and the abso-

lute value of internal resistance, under each thermal management scheme in AC, AA

and PH during a 1-year period. Of these three locations, we chose AA, since the

results for other locations exhibit a similar or same trend.

Figs. 5.19(a) and (b) plot relative resistance and the absolute value of internal

resistance, respectively. As shown in Fig. 5.19(a), MSC leads to a little bit faster

degradation than the other schemes, because MSC actively cools/heats each cell.

However, such active control reduces the absolute value of internal resistance; as

shown in Fig. 5.19(b), internal resistance after one-year usage under MSC is smaller

than that under other schemes. This implies that MSC, despite higher relative re-
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sistance, is still more efficient for up to one year. These results validate an increase

of operation-time discussed in Section 5.6.3, i.e., MSC is efficient in using a battery

pack.

5.6.4 Remarks on implementation

We can build the TMS based on the existing approaches for cooling and heating

engines and batteries in the current vehicles on the market. To implement the BMS

that accommodates the proposed TMS, some additional hardware should be installed

in each battery pack. Measuring the output voltage and discharge current of cells re-

quires sensors, just as other BMSes [60, 73, 55] do. Additional control flow valves are

also required for cell-level thermal controls; their performance and reliability should

be considered since they directly affect the effectiveness of battery management. It

would be interesting to design a BMS with efficient and reliable management of hard-

ware sensors and actuators by considering their physical characteristics along with

battery dynamics. This is part of our future work.

5.7 Conclusion

To resolve increasing demand to make EVs less expensive and safer, BMSes should

cope with thermal and general issues that affect efficiency and reliability of BMSes.

A thermal management is the key to addressing these issues, since temperature has

significant impact on electrical states of BMSes. In this chapter, we presented how to

achieve efficient and reliable BMSes using thermal controls. We proposed a battery

thermal management scheme that cools/heats battery cells timely and selectively

based on the analysis for impacts of power requirements and temperature variation

on electrical states of battery cells. To support this scheme, we also proposed ther-

mal management architecture, which is able to cool/heat battery cells selectively.
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Our evaluation with realistic simulation showed that our approach makes a signifi-

cant improvement in BMSes’ efficiency without compromising their reliability, over

a simple method often seen in the existing BMSes.

It would be interesting to explore ways of improving thermal management based

on the proposed architecture. We may be able to improve performance with a more

accurate and adaptive abstraction model instead of the basic model used in this

chapter. We can also improve the BMS efficiency by heating/cooling cells in advance

with more accurate power requirement prediction [144, 68].



CHAPTER VI

Optimal Design and Discharge/Charge Rate Management
for Hybrid Energy Storage

6.1 Introduction

An electric vehicle (EV) requires a high rate of voltage and current since its

powertrain must drive large motors in order to move its heavy vehicle body. To

supply a high rate of current, tens/hundreds of small cylindrical battery cells or

a few of large battery pouches are connected in parallel. To drive large motors,

tens/hundreds of battery cells are connected/stacked in series, forming a high-voltage

source.

EVs’ batteries must support high peak discharge (charge) currents to (from) elec-

tric loads needed during acceleration and/or hill climbing, and accommodate mo-

mentary power generated during regenerative breaking. The resulting current surges

in and out of the batteries tend to dissipate an extensive amount of energy and accel-

erate the capacity degradation due to high voltages, large discharge/charge currents,

and frequent changes of their volume of electrodes. To mitigate these “harmful”

discharge/charge surges, researchers proposed hierarchical energy-storage systems

consisting of an energy buffer with high power-density and a main energy storage

(battery pack) with high energy-density [28, 60, 111]. The energy-dense battery pack

extends the driving range, while the power-dense energy buffer enables good acceler-
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ation and accommodates momentary power generated during regenerative braking.

Such a battery pack need not be oversized or designed to accommodate the peak

power discharge/charge demands, thus reducing the battery-pack cost while deliver-

ing the required power.

Another important issue of a large-scale battery pack is the imbalance of its

constituent cells’ State-of-Charge (SoC). In a pack with series-connected battery

cells, the same current flows through each battery stack even if its energy capacity

and SoC are different from others’. It may cause incomplete charging of the battery

pack or incomplete use of the pack’s energy to protect the battery cells in the pack

from over-charging and/or deep-depth of discharge. Various cell-balancing techniques

have been proposed to maintain energy evenly among the battery cells [98]. Passive

balancing dissipates the energy of cells with high SoC in the form of heat, until their

SoC becomes equal to the lowest one in the stack. It allows all cells to have the same

SoC using a simple method, but does not improve the run-time performance of a

vehicle. Active cell balancing overcomes the energy loss of the passive balancing by

delivering energy to where it is needed most, using an inductive or capacitive energy

storage.

A large-scale battery pack must be managed effectively to handle its battery

cells’ imbalance and peak discharge/charge currents. Its battery management sys-

tem (BMS) must transfer energy not only among the battery cells to balance their

SoC, but also between the battery pack and the energy buffer to reduce peak dis-

charge/charge current surges. While hardware architectures and control algorithms

have been proposed to efficiently transfer charges for balancing cells and reducing

the peak power requirement, little has been done on how they can be optimized and

effectively applied in real operating environments.
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To fill this gap, we propose the design and management of a hybrid energy storage

system (HESS) that takes into account the above issues. We first address the problem

of sizing energy-dense main battery and power-dense energy buffer for effectively peak

power reduction and SoC balancing. Then, we determine the target discharge/charge

current of the battery pack and the energy buffer. The target current must be

determined adaptively based on the power requirement history and the SoC of energy

components so as to effectively maintain battery discharge/charge current within the

required operating range, while balancing battery cells’ SoC.

The paper is organized as follows. Section 8.2 describes the backgrounds and

our overall approach. Sections 6.3 and 6.4 describe the proposed HESS design and

algorithm for determining discharge/charge currents, respectively. Section 8.7 im-

plements our solutions on a prototype and evaluates their performance. Finally, the

paper concludes with Section 8.8.

6.2 System Model and Problem Statement

This section describes our target architecture for power management. Figs. 6.1

and 6.2 show a hybrid energy storage system including multiple energy storage

components with the DC/DC converters, and circuit models of a battery and an

ultra-capacitor. The proposed algorithms with these models determine the desired

discharge/charge current to enable effective control of the DC/DC converter input

switches.

6.2.1 Li-ion battery and ultra-capacitor model

According to the equivalent battery circuit models, the terminal battery voltage

(Vb) depends on open circuit voltage (Voc), current through the battery (Ib), and
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internal parameters (V1, R0):

(6.1) Vb = Voc − V1 −R0Ib ,

where V1 represents the dynamic voltage behaviors due to Lithium-ion diffusion and

charge transfer. The dynamic voltage is modeled by an RC circuit:

(6.2) V̇1 =
−1

R1C1

V1 +
1

C1

Ib,

and this is reformulated as a discrete time model of Li-ion batteries:

(6.3) V1[k + 1] = e
−∆t
R1C1 V1[k] +R1(1− e

−∆t
R1C1 )Ib[k],

where ∆t is a control time interval. The battery’s open circuit voltage (Voc) depends

on the battery’s SoC (z), and its changes can be estimated based on the battery

current (Ib) and the total charge capacity (Cbat):

Voc[k] = f(z[k]), z[k + 1] = z[k]− 1

Cbat
Ib[k],
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where f is a Voc function of SoC. This model is used for estimating Voc and SoC

based on battery voltage (Vo) and current measurements (Ib).

Similarly, the ultra-capacitor voltage (Vc) depends on the internal parameters

(Rc, Rc0 , Cc) and current (IL) via

Vc = Vc1 −Rc0IL1 ,

V̇c1 =
1

RcCc
V1 −

1

Cc
IL1 ,(6.4)

where Rc0 is the internal resistance, Rc is the resistance of self-discharge, and Cc is the

capacitance of ultra-capacitor, respectively. With these battery and buffer models,

the discharge/charge current dynamics from energy storage components (IL1 , IL2)

can be described when the converter switches are turned on (IoL1
) and off (IfL1

) as:

İoL1
=
−Rc0

L1

IL1 +
1

L1

Vc =
−Rc0

L1

IL1 +
1

L1

(Vc1 −Rc0IL1),

(6.5) İfL1
=
−Rc0

L1

IL1 +
1

L1

Vc =
−Rc0

L1

IL1 +
1

L1

(Vc1 −Rc0IL1 − Vo),

where İoL1
and İfL1

are the rate changes of inductor currents when the converter switch

is turned on and off, respectively. It depends on the system parameters and the SoC

of energy storage components. Hence, the current dynamics determine the desired

switch duty cycles, the ratio of time when switch is on to that when the switch is off.

6.2.2 Problem statement

We now formally state the problem to be solved based on the system models as:

Given power requirement (Irq), a set of battery SoCs and performance parameters of

energy storage components,

Determine the duty cycles {Qc1 [k], Qc2 [k], Qz1 [k], Qz2 [k]}0<k<ke that minimize the

following objective function during the operation (0 < k < ke).
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Minimize (S0) Dischage/charge stress =
1

Top

∫
I2
b dt

Subject to (S1) Irq = IL1 + IL2 + Ib

(S2) z1[ke] = z2[ke].(6.6)

The energy system must supply the required power with current (Irq) to the elec-

tric load. The sum of current supplies from energy storage components (IL1 , IL2 , Ib)

must be the power requirement for all k ∈ [0, ke) (S1). While providing the required

power to the load, the power supplies from the energy storage components must

be limited within specific ranges for efficient operations. Also, the current between

batteries must be controlled to balance the battery SoC (S2). The control knobs

are the duty cycles of the converter switches (Qc1 , Qc2 , Qz1 , Qz2), dictating the con-

verter current (IL1 , IL2). The objective function in S0 represents the amount of dis-

charge/charge stress during operation period (Top). Note that large discharge/charge

currents harm the batteries more than moderate amounts of current. Therefore, we

assess discharge/charge stress as square of discharge/charge current in this chapter.

6.2.3 Overall solution approach

Fig. 6.3 shows the proposed overall control system. Here we are focusing on the

determination and control of discharge/charge currents of batteries and an energy

buffer. We first determine the target discharge/charge current for SoC balancing

and peak power reduction. The current determination algorithm (denoted by 1))

considers SoCs in the batteries and the buffer, and analyzes the current requirement

pattern to determine effective discharge/charge currents. The converter controller

(denoted by 2)) regulates the duty cycles of the converter switch input to achieve

the determined target current.
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Figure 6.3: Overall discharge/charge current management

6.3 Problem of Designing a HESS with Power- and Energy-Dense Bat-
teries

We first analyze the power demand to identify the HESS design requirements, such

as power capability and energy capacity to support the power demand profiles. Then,

we make a formal statement of HESS design problem subject to these constraints.

6.3.1 Power requirement analysis and HESS requirements

The main advantage of a HESS is its capability of supplying peak power bursts

using a small number of power-dense batteries so that the designer can use the

energy-dense battery as the primary energy source, increasing the system’s total

energy capacity. Therefore, the energy-dense battery must be able to supply at least

the average required power (Pavg) to the electric load, while the system has a sufficient

capability for powering the vehicle. That is, the power-dense battery must be able
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to accommodate the surplus energy and supply the energy to the electric load when

the peak power is required. These requirements determine the energy capacity of

the power-dense battery, which must be larger than the amount of energy that could

be charged into the power-dense battery or discharged to the electric load during

peak charge/discharge periods. We will identify the peak discharge/charge powers

(Pd,pk, Pc,pk) and their time duration (Tpk) in the power demand profiles as shown in

Fig. 6.4. These parameters allow the system designer to determine how much energy

the power-dense battery should be able to store for effective energy accommodation

(from RBS) and supply to the load:

Epk = TpkPd,pk

6.3.2 The Problem of Designing a HESS for Power Requirement Analysis

With the above design requirements, assumptions and notations, our problem can

be formally stated as:

Given the total weight requirement (mrq), and a tradeoff function (fep) between the

specific power (P s) and energy (Es),

Determine the HESS design parameters {Es
e ,me, E

s
p,mp} to
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maximize (S0) HESS Energy capacity = Es
eme + Es

pmp

subject to (S1) P s
eme + P s

pmp ≥ Ppk

(S2) Es
pmp ≥ Epk

(S3) P s
eme ≥ Pavg

(S4) me +mp = mrq,(6.7)

where Es
e is the specific energy of the energy-dense battery, me the weight of the

energy-dense battery, Es
p the specific energy of the power-dense battery, mp the

weight of the power-dense battery, and mrq total maximum weight requirement,

respectively. P s
e and P s

p are the specific powers of the energy-dense battery and

power-dense battery, respectively, and they can be determined by their specific energy

(P s
e = fep(E

s
e), P

s
p = fep(E

s
p)). To make the problem analytically solvable, we assume

that the system cost depends only on the system weight, and approximated the

tradeoff between Li-ion battery power capability and energy capacity (P s = fep(E
s))

based on the recent result reported in [134]. The objective function in S0 represents

the total energy capacity of the HESS, and must be maximized while the battery

system must be able to supply the peak power (S1). To support the system’s peak

power, the power-dense battery must have a sufficient energy capacity to be able to

supply the peak power (S2). Since the energy-dense battery is the primary energy

source, it must be able to provide the average required power to the load (S3). The

sum of weights of energy storage components (me+mp) must be lower than the total

weight limit (mrq) (S4).
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6.4 Effective Discharge/Charge for Peak Power Reduction and SoC-
Balancing

We develop a decision algorithm for effective discharge/charge currents from/to

the batteries and the energy buffer by considering the current requirement patterns

(Irq) and the SoC (z) of energy storage components. Algorithm 5 describes the overall

discharge/charge current management for peak power reduction and SoC-balancing.

Algorithm 6 periodically calculates the effective current bounds that Algorithm 5

needs.

6.4.1 The overall algorithm

Algorithm 5 Target current decision (IL1
, IL2

)

1: while 1 do
2: /* Target current for peak current reduction */
3: if Ib,ub < Irq,n then
4: IL1 ← Irq − Ib,ub
5: else if Ib,lb > Irq,n then
6: IL1

← Irq − Ib,lb
7: else
8: IL1

← 0
9: end if

10: /* Target current for SoC balancing */
11: if ∆z > ∆zst then
12: while ∆z > ∆zend do
13: if Iz,ub > Irq,n > Iz,lb then
14: IL2

← min(Iz,ub − Irq, Irq − Iz,lb)
15: if z1 > z2 then
16: IL2 ← −IL2

17: end if
18: else
19: IL2

← 0
20: end if
21: end while
22: else
23: IL2

← 0
24: end if
25: end while

Lines 3–9 of Algorithm 5 determine the discharge current from the buffer (IL1) in

order to meet the high discharge/charge current requirement (Irq). When Irq is larger

than its upper bound (Ib,ub), the energy buffer provides energy to reduce the battery
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discharge current (lines 3–4). When Irq is less than its lower bound (Ib,lb), the buffer

takes in the generated current to protect batteries from over-recharge current (lines

5–6). The algorithm also determines the target current between batteries (IL2) based

on SoC-balancing in batteries (lines 11–24). If the SoC difference (∆z) is larger than

its threshold (∆zst), the SoC-balancing operation kicks in until the SoC difference

(∆z) reaches the termination condition (∆zend). The balancing operation transfers

the charge in a battery with higher SoC to the one with lower SoC (lines 15–16),

and the amount of current to be transferred is limited to protect batteries from

over-dis/recharge current (lines 13–14). Figs. 6.5 and 6.6 show examples of power

reduction and SoC-balancing with the proposed current management. Determination

of the current bound for power buffering and SoC-balancing will be detailed next.
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Figure 6.5: Power buffering for peak power reduction.

6.4.2 Determination of current bound

Battery discharge/charge currents must be controlled within a proper range since

the peak discharge/charge current significantly affects battery performance degrada-
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tion. Thus, Algorithm 6 determines the current bounds (Ib,ub, Ib,lb, Ib,ub and Ib,lb) to

minimize the discharge/charge stress.

Algorithm 6 Determination of the current bound for peak current reduction and SoC-balancing

1: Ec ← 1
2CcV

2
c,rated

2: while 1 do
3: Tc ← DisChargeCycleTimeUpdate()
4: Iavg[k]← k−1

k Iavg[k − 1] + 1
k Irq

5: Istd[k]← {k−1
k Istd[k − 1]

2
+ 1

k (Irq − Iavg[k])2} 1
2

6: [Iub, Ilb]← FindBound(Tc, Ec, Iavg[k], Istd[k])
7: Ib,ub ← Iavg[k] + (Iub − Ilb)(1− (zc[k]− zoptc ))
8: Ib,lb ← Iavg[k]− (Iub − Ilb)(1− (zoptc − zc[k]))
9: Ez ← |Ebat1(zb1)− Ebat2(zb2)|

10: Tz ← TargetBalanceTimeUpdate()
11: [Iz,ub, Iz,lb]← FindBoundSOC(Tz, Ez, Iavg[k], Istd[k])
12: Sleep()
13: end while

Power requirement pattern and UC energy capacity (lines 1–6)

Algorithm 6 represents the upper and lower current bounds to effectively limit

the battery discharge/charge. The required amount of energy depends on the driv-

ing pattern, motor performance, and regenerative braking system (RBS). It creates

the uncertainty in the required amount of discharge/charge current during driving.

Therefore, we have to analyze the discharge/charge history to set the most effective

current discharge/charge bound, protecting the battery without the buffer’s energy

overflow and shortage. Lines 4–5 calculate the average and standard deviation of

the current requirement (Iavg[k], Istd[k]). In this algorithm, the current bounds will

be determined under the assumption that the required current would follow with a

Gaussian normal distribution with average, Iavg, and standard deviation, Istd. When

the average required current(Iavg) is high, the current bound Iub and Ilb should be

increased to effectively buffer recharging energy and supply the energy while limiting

the battery discharge/charge current. The standard deviation of the required current

(Istd) also affects the determination of Iub and Ilb. A large standard deviation means
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the transfer of a large amount of energy with a high peak current. In this case,

Iub should be increased and Ilb decreased to buffer the energy effectively without

shortage of energy in the buffer as seen in Fig. 6.5.

Algorithm 7 describes how to determine Iub and Ilb for peak power reduction.

During the charging/recharging cycle (Tc), the UC receives power from electric load

and supplies power to the load once. To maximize buffer utilization, when power is

recharging, the buffer must be fully charged without overflow and use all the stored

energy in the buffer without energy shortage in reducing discharging. Thus, we

determine Iub and Ilb to make the buffered energy in UC (Ebf ) and an available UC

energy capacity (Ec) equivalent. The energy stored in UC (Ec) can be calculated

using the standard equation related to capacitor energy (Ec = 1
2
CcV

2
c,rated), where

Vc,rated is UC-rated voltage and Cc UC capacitance. To estimate the amount of the

buffered energy in UC (Ebf ), we assume that current requirement patterns follow

a Gaussian normal distribution with average (Iavg) and standard deviation (Istd) of

the current requirement. We can then probabilistically calculate the amount of the

buffered energy (Ebf ) by integrating buffered current (Ibf = i− Iub) as:

Ebf (Iub) =

∫ Tc

0

Pbf (t)dt = Tc

∫ ∞
Iub

Pbf (i)PDF(i)di

= Tc

∫ ∞
Iub

VbIbf (i)PDF(i)di

= Tc

∫ ∞
Iub

Vb(i− Iub)PDF(i)di

= TcVo

[ ∫ ∞
Iub

iPDF(i)di− Iub
∫ ∞
Iub

PDF(i)di
]

= TcVo

[ ∫ ∞
Iub

iPDF(i)di− Iub(1− CDF(Iub))
]

= TcVo

[
I2
stdPDF(Iub) + (Iavg − Iub)(1− CDF(Iub))

]
,(6.8)
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Algorithm 7 FindBound

1: procedure [Iub, Ilb] = FindBound(Ec, Iavg, Istd)
2: for Iub = Iavg; Iub < Iavg + 2Istd; Iub = Iub + Istd

20 do
3: if Ebf (Iub) > Ec then
4: Break;
5: end if
6: end for
7: Ilb = Iavg − (Iub − Iavg)
8: return [Iub, Ilb]
9: end procedure

where Vo is the battery output voltage, and Pbf is the buffered power.

Buffer state-of-charge (lines 7–8)

We assume that the power requirement follows a Gaussian normal distribution,

but this assumption does not hold for the power requirement in every period. Lines

7–8 additionally adjust the current upper and lower bounds based on the SoC of the

energy buffer, protecting the buffer in case the current requirement is larger than

expected. When UC is fully charged (zc ≈ 100%), it cannot be charged any more.

Therefore, when zc is high, we need to decrease Ilb to reduce the charging energy,

and decrease Iub to use more energy in UC to support loads. When UC is discharged

fully (zc ≈ 0%), it cannot be discharged any more. Therefore, when zc is low, we

need to increase Ilb and decrease Iub.
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Figure 6.6: SoC-balancing
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Algorithm 8 FindBound for SoC-balancing

1: procedure [Iz,ub, Iz,lb] = FindBoundSOC(Tz, Ez, Iavg, Istd)
2: for Iz,ub = 0; Iz,ub < Iavg + 2Istd; Iz,ub = Iz,ub + Istd

20 do
3: Iz,lb = −Iz,ub
4: if Etr(Tz, Iz,ub, Iz,lb) < Ez then
5: Break;
6: end if
7: end for
8: return [Iub, Ilb]
9: end procedure

Power requirement pattern and SoC balancing (lines 9–11)

Currents between batteries also have to be regulated for SoC-balancing based

on the total current requirement (Irq). When battery supplies large power to load

or receive power from the load, additional current for SoC-balancing may harm

the batteries due to the increased discharge/charge current from some batteries.

Therefore, we determine an acceptable current requirement range for cell balancing

to protect cells from over-discharge/charge currents. The current bounds for SoC

operation (Iz,ub, Iz,lb) are determined based on the power requirement patterns and

the SoC differences between batteries. Ez is the amount of energy transferred for

SoC-balancing.

Algorithm 8 determines the current ranges for energy transfer to balance SoC

considering the time period (Tz), the remaining energy difference (Ez), and the power

requirement pattern (Iavg, Istd). We search for Iz,ub to achieve the battery SoC-

balancing (Etr = Ez) within the required time period (Tz). Then, the amount of

energy transferred between batteries that depends on the current ranges and the

power requirement, and time period (Tz) can be calculated according to Eq. (6.9).
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Etr =

∫ Tz

0

Pbal(t)dt

= Tz

∫ Iz,ub

0

Vo(Iz,ub − i)PDF(i)di

+ Tz

∫ 0

Iz,lb

Vo(i− Iz,lb)PDF(i)di

= TzVo

[
Iz,ub

∫ Iz,ub

0

PDF(i)di−
∫ Iz,ub

0

iPDF(i)di

+

∫ 0

Iz,lb

iPDF(i)di− Iz,lb
∫ 0

Iz,lb

PDF(i)di
]

= TzVo

[
Iz,ub[CDF(Iz,ub)− CDF(0)]

− [I2
std(PDF(0)− PDF(Iz,ub)) + Iavg(CDF(Iz,ub)− CDF(0))]

+ [I2
std(PDF(Iz,lb)− PDF(0)) + Iavg(CDF(0)− CDF(Iz,lb))]

− Iz,lb[CDF(0)− CDF(Iz,lb)]
]

(6.9)

6.5 Control system

This section represents a control system for the converters’ input signals to buffer

the discharge/charge current and transfer charge between batteries.

6.5.1 Converter operation for current control

Discharge/charge current from energy storage components (IL1 , IL2) can be ad-

justed by duty-cycle controls of converter input switches (Qc1 , Qc2 , Qz1 , Qz2). For

example, when Qc1 switch is turned on, charge flows from the buffer to ground stor-

ing energy in the form of current (IL1). Then, when Qc1 switch is turned off, the

inductor L1 flows the charge from the buffer to the battery and the electric load even

when Vc is lower than Vo because of the inductor’s property. Note that an inductor

tends to maintain current flow through it. It moves the energy until the current
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dropps to 0. Turning on/off other switches (Qc2 , Qz1 , Qz2) does similar operations

that move energy between energy storage components.

Irq ILx 
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Dd 

Dc 

if (Ie > 0) { 
   Dd,∆++ or 
   Dc,∆−−       } 
else if (Ie < 0) { 
   Dd,∆−− or 
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Dd = Dd,0 + Dd,∆ 

Dc = Dc,0 + Dc,∆ 
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ILx
*

 

Duty cycle 
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Dd,0 

Dc,0 

ILx 

Figure 6.7: Control of duty cycles (Dc, Dd) for the target current

6.5.2 Selection of duty cycles (Dd,0, Dc,0) for regulating current (IL1
, IL2

)

We can calculate the required duty cycles for the target current based on pa-

rameters including inductance, resistance and capacitance in our system. The fun-

damental principle is that the current increase (∆IoL1
,∆IoL2

) must be the same as

the current decrease (∆IfL1
,∆IfL2

) at the target level to maintain the target current

(IL1 , IL2). Current increase and decrease can be described as:

∆IoL1
= ∆IfL1 → toİ

o
L1

= tf İ
f
L1
,(6.10)

where to (tf ) and İoL1
(İfL1

) are the time duration and the rate change of current

when the switch is turned on (off), respectively. Using Eq. (6.10) and the definition

of duty cycle, we can derive the desired duty cycle as a function of the target current

(IL1) as:

Dc =
to

to + tf
= (1 +

tf
to

)−1 = (1 +
İoL1

İfL1

)−1(6.11)

İoL1,k
= (

Rc

L1

− 1)IL1,k +
1

L1

Vc,k

İfL1,k
= (

Rc

L1

− 1)IL1,k +
1

L1

Vc,k +
1

L1

Vo,k +
Rc

L1

Io,
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where Rc, L1 are system parameters, Vo battery voltage, and Vuc the energy buffer

voltage. We can also calculate the duty cycles (D) for the current through other

inductors.

6.5.3 Adaptively adjust duty cycles (Dd,∆, Dc,∆)

To compensate the current errors (Ie) due to measurement and model errors, the

controller uses a feedback control loop. When the current is larger than the target

current, it reduces the fraction of time duration when the switch stays on (to) to

decrease the current and eliminate the error (Ie) as shown in Fig 6.7. Therefore, we

finally determine the duty cycles based on the calculation from the current dynamics

and the error between the target current and the present current as:

Dd = Dd,0 +Dd,∆

Dc = Dc,0 +Dc,∆.

One important consideration is that the discharge and charge switches must not be

turned on at the same time. It causes the batteries to be short-circuited, destroying

the converter and batteries. Therefore, the controller has to turn off the charge

switch (D = 0) before turning on the discharge switch (D ↑) when the controller

increases the discharge current.

6.6 Evaluation

We evaluate the proposed current management for peak discharge/charge reduc-

tion and SoC-balancing, with a focus on whether or not they meet the goals stated

in Section 8.2.
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6.6.1 Experimental setup

We have built a prototype which is equipped with wheels, wheel motors, stepper

motors, coolers and an HESS, including a pack of lithium-ion batteries and a pack of

UCs as shown in Fig. 6.8. The system is required to execute user applications, and

allocate available resources for their execution. For realistic evaluations, we acquired

driving profile/data from the Air Resources Board (ARB02) and US Environmental

Protection Agency (UDDS, SC03, US06) [3]. We programmed the application to

operate wheel motors to achieve these driving profiles.
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Figure 6.8: Prototype for evaluation

6.6.2 Results

Fig. 6.9 shows the current measurements resulting from the peak power reduction

control. It shows the current requirements (Irq) with a pattern (Iavg, Istd) and the dis-

charge/charge current (Ib) from the battery with the determined bounds (Ib,ub, Ib,lb).

Fig. 6.10 presents the results of an SoC-balancing example. When the SoC differences

exceed over its threshold, the controller starts regulating the converter switches to
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transfer charges for SoC-balancing. To protect batteries from large discharge/charge

stresses due to SoC-balancing, charge transfer operations are executed only when the

current requirements are within the current bounds (Iz,lb < Irq < Iz,ub).

Irq Ib Iavg Ib,ub Ib,lb 

Figure 6.9: Example of the proposed power buffering for peak power reduction

Iz,ub 

Large ΔSoC triggers  
balancing operation  

Operation  
end 

IL2 Irq Vb2 Vb1 Voc,2 Voc,1 

Figure 6.10: Example of the proposed SoC-balancing

Driving cycle Baseline Our control Reduction ratio

UDDS 20.96 A2 18.25 A2 12.9 %
ARB02 10.81 A2 8.67 A2 19.8 %
SC03 13.60 A2 12.37 A2 9.0 %
US06 27.92 A2 26.67 A2 4.5 %

Table 6.1: Dis/charge stress ( 1
T

∫
I2
b dt) under the proposed peak power reduction and the baseline

Table 8.3 shows the discharge/charge current stresses ( 1
T

∫
I2
b dt) at different driv-

ing cycles. The proposed discharge/charge current management reduces the dis-

charge/charge stress while reducing SoC imbalances at the end of cycle by up to

19.8%. In the US06 driving cycle case, a vehicle was driven at a high speed for a

while, decreasing the utilization of energy buffer.
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6.7 Conclusion

In this chapter, we have proposed a discharge/charge current management that

minimizes the battery discharge/charge stress and ensures SoC balancing between

batteries. To adaptively control the discharge/charge rate, we have proposed an

algorithm for determining the discharge/charge rate while considering the current

requirement pattern and the SoCs of energy storage components. We have also de-

signed a control system to achieve the target current determined by this algorithm.

We have validated the algorithm and control with an HESS-powered prototype sys-

tem running realistic applications, demonstrating peak current reduction and SoC

balance. In future, we would like to develop a design framework for general large-

scale energy storage systems. We also plan to build a power/energy management

system that balances not only the SoC of batteries, but also the SoH of energy

storage components.



CHAPTER VII

Real-Time Discharge/Charge Rate Control for Hybrid
Energy Storage in Electric Vehicles

7.1 Introduction

An effective battery management system (BMS) can reduce the required number

of battery cells and extend the replacement period, hence reducing the battery cost.

As part of our goal of designing such a BMS, we will in this chapter focus on ex-

tending batteries’ life which has significant impact on the battery cost. Battery life

is defined as the duration (measured in the number of cycles or elapsed time) of a

rechargeable battery until it degrades irreversibly and cannot hold a useful capacity

of the underlying applications [43]. That is, the battery capacity monotonically de-

creases with time, and will never be recovered. As a result, EVs must be equipped

with enough batteries to maintain the required capacity throughout their warranty

period. This capacity degradation may also require battery replacements, incurring

an additional (maintenance) cost. It is therefore necessary for the BMS to slow down

the capacity degradation of batteries in order to reduce the cost of purchasing and

maintaining EVs.

Among the various reasons for battery capacity degradation, the discharge/charge

rate is reported to be the most critical [85, 63]. For example, a continuous exposure

to high discharge current leads to fast capacity degradation, thereby shortening the

143
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battery life [92, 34], which is inevitable due to abrupt changes in the EVs’ power

requirement, such as acceleration. To extend the battery life, researchers focused

on hybrid energy storage systems (HESSes) built with two or more types of energy

storage devices [47, 122, 27, 138, 109]. The main principle for regulating the battery’

discharge/charge rate in a HESS is to adjust the discharge/charge rate for each

storage device.

The goal of this chapter is, therefore, to develop discharge/recharge rate manage-

ment for an efficient HESS so as to reduce its initial deployment and maintenance

costs. It requires not only comprehensive understanding of physical dynamics be-

neath the HESS, but also efficient management of the HESS based on this under-

standing. For example, in a HESS consisting of batteries, ultra-capacitors (UCs) and

boost-buck DC/DC converters, the discharge/charge rate of each storage is domi-

nated by a second-order differential equation, and we have to carefully regulate the

parameters in the equation so as to minimize battery performance degradation. That

is, we need to take a cyber-physical perspective, integrating and coordinating physical

dynamics and adaptive controls as follows. First, we capture parameters affecting

the discharge/charge rate in the HESS based on the circuit dynamics that represent

the underlying discharge/charge operations. Second, we introduce three key control

knobs that can manipulate the parameters, and develop management algorithms

that manipulate control knobs to extend battery life using adaptive control schemes.

Finally, we propose a reconfigurable architecture that realizes our management algo-

rithms to regulate control knobs.

We evaluate the proposed battery discharge/charge rate management using work-

loads based on real driving patterns, and simulate them with a popular simulation

tool. Our evaluation results demonstrate the effectiveness of the proposed battery



145

discharge/charge rate management. Compared to the existing simple management

schemes, our system improves the battery life up to 37.7% without increasing initial

cost.

The main contributions of this chapter are:

• Consideration of physical circuit dynamics to address the issues associated with

battery life;

• Design of battery discharge/charge rate management with a new architecture;

and

• In-depth, realistic evaluation of the HESS managements, demonstrating that the

proposed system significantly increases the HESS efficiency without increasing

initial cost.

The chapter is organized as follows. Section 7.2 examines the state-of-art BM-

Ses, each consisting of a regenerative braking system, batteries and UCs. Section 7.3

states the problem from a cyber-physical perspective. Section 7.4 describes the phys-

ical dynamics related to the discharge/charge rate of batteries in a HESS. Section 7.5

presents our battery discharge/charge rate management algorithms, and Section 8.7.1

describes a HESS management architecture. Section 7.7 evaluates our system via

simulation, and finally, the chapter concludes with Section 7.8.

7.2 State-of-Art Battery Management Systems

This section introduces the background of HESSes, including a brief review of

existing BMSes. First, we describe the function and structure of a BMS shown in

Fig. 7.1. Then, we introduce the part of a BMS that can supply power. Finally,

we present an advanced architecture that can be incorporated into a BMS so as to

overcome some disadvantages of existing simple BMSes; this architecture is the basis
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Figure 7.1: Energy storage system in EVs

for our approach described in the following sections.

7.2.1 Overview of BMS

As illustrated in Fig. 7.2, the power requirement of an EV is high and changes

abruptly [28, 122, 68], because drivers frequently accelerate/decelerate their vehicles

that weigh at least one ton during driving. Therefore, the battery management

system (BMS) in an EV is responsible for providing motors with the required power

while protecting batter cells from damage and life reduction caused by short bursts

of power transfer. To perform such functions, a BMS is often comprised of two

parts: (i) a large number of battery cells that can supply high current (hundreds of

ampere) with high output voltage (tens or hundreds of volt), and (ii) an auxiliary

system to mitigate the stress caused by large and abrupt power requirements from a

regenerative braking system and motors.

7.2.2 Regenerative braking system (RBS)

To meet the requirements of a BMS, most EVs are equipped with a regenerative

breaking system (RBS) to reuse the energy dissipated in their braking system. During

braking, the RBS converts the vehicle’s kinetic energy to electrical energy that can
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Figure 7.2: Variation of an EV’s power requirement

be stored in batteries for reuse to power the vehicle. Its effectiveness has been

substantiated in terms of fuel economy [52, 53, 49, 90]. Although the RBS improves

the utilization of energy, high recharging current for a very short period of time has a

negative impact on the battery’s health. Therefore, researchers deployed an auxiliary

system that will be introduced next.

7.2.3 Hybrid Energy Storage System (HESS)
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Figure 7.3: A simple HESS
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Figure 7.4: A HESS with a DC/DC converter

Battery health is damaged by short bursts of discharging current supplied to

motors and recharging current generated from the RBS. To remedy this problem,
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researchers deployed ultra-capacitors (UCs) in the BMS; a BMS with UCs as well as

batteries is called a hybrid energy storage system (HESS). In a HESS, UCs are used

as an energy buffer to smooth rapid power fluctuations in and out of the battery of

an EV [74, 62, 25, 111]. HESSes effectively utilize the properties of batteries and

UCs, called power density and energy density. That is, available power density of

batteries is lower than UCs so that the higher the discharge rate, the less efficient

the energy conversion, whereas UCs do not suffer such efficiency degradation. On

the other hand, UCs have lower energy density and higher unit cost than batteries as

shown in Table 7.1, implying that we should place a large number of UCs in an EV.

Therefore, HESSes make batteries supply the average power required for operating

vehicles, while UCs provide the sudden power surges required for acceleration and

also accommodate instantaneous regenerative energy from the RBS.

Type Ultra-capacitor Lithium battery

Power density (W/kg) 100 - 10 K 80-2000
Energy density (WH/Kg) 1 - 10 60 - 150
Cost (USD/WH) 10.3 3.7

Table 7.1: Power density, energy density, and cost of energy storages [27]

Fig. 7.3 shows a simple HESS where an UC is connected directly to a battery,

and the UC acts as a low pass filter so as to reduce the peak discharge current

of the battery. Unfortunately, the HESS with this configuration requires a large

number of UCs because the configuration cannot fully exploit UCs’ capacity because

of the same terminal voltages of the UC and the battery [62, 117]. To address this

problem, many configurations of HESSes have been proposed [62, 25]. For example,

Fig. 7.4 illustrates the most widely-studied configuration of HESS that includes a

bi-directional DC/DC converter between a battery and an UC. This configuration

allows voltage separation and an increase in utilization of the UC via the converter
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so as to reduce the required capacitance (8F) of the UC in comparison with that

(80F) of the simple HESS shown in Fig. 7.3.

7.2.4 Effective utilization of energy capacity for UCs in a HESS
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Figure 7.5: Capacity utilization of a HESS

The ability of effectively utilizing UCs is a main focus in evaluating HESS con-

figurations. That is, if we capture as much redundant energy into the UC bank as

possible and then use all of that energy when required, we can efficiently utilize UCs

without wasting the UC banks’ capacity and their deployment cost. We can evaluate

the utilization based on the law of storage in a standard capacitor. Energy stored in

an UC (EUC) is affected by the voltage (V ) and the size of capacitors (C) as:

EUC =
1

2
CV 2.

Therefore, the utilization of UCs’ capacity can be measured by the range of voltage

swing as shown in Fig. 7.5. For example, when 50% of an UC’s voltage varia-

tion within a tolerable voltage range is permitted, 75% of the UC’s energy can be

delivered, whereas we can use only 20% of the energy for a 10% variation range,

decreasing the UC’s effectiveness. The HESS with a DC/DC converter in Fig. 7.4

shows high utilization of UCs’ energy capacity by separating the voltage between

the UC and the battery, while the simple HESS in Fig. 7.3 could not effectively

utilize the energy capacity of UCs because the voltage drop is only 20%. To enhance

the UCs’ capacity utilization, several feedback control schemes have been proposed
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based on the UC-converter-battery architecture that regulates the discharge current

adaptively [138, 47, 109, 62, 25].

Although a HESS can reduce the stresses and enhance the life of batteries, it still

has not been used widely in commercial EVs, because UCs are not only expensive,

but also required to endure high discharge current and high operating voltage. Fur-

thermore, it takes a long time to find the optimal configuration for EVs, since it

requires a number of tests in various environments. This is because discharge/charge

current varies with driving conditions and behaviors which are related to a complex

human decision-making process [68]. We will address these issues using adaptive

control of converters and dynamic reconfiguration of UC banks.

7.3 Problem Statement and Solution Approach

We want to develop a “good” HESS using an efficient and reliable BMS. We first

introduce relevant terms and design constraints, state the problem, and then briefly

describe our solution approach.

7.3.1 Battery life

A long lifetime of batteries reduces their number and extends their replacement

periods, reducing the cost of EVs. Therefore, most BMSes are required to maintain

appropriate battery operational environments to avoid damage and fast capacity re-

duction [69]. The battery life is known to depend on the number of discharge/charge

cycles, the amount of energy used at each cycle (depth of discharge), operational

temperature, and discharge/charge current [145, 121, 102, 131, 104, 97, 92, 34]. Here

we focus on the impact of discharge/charge current on the battery life, and propose

a HESS that reduces stress of batteries, and doesn’t affect the depth of discharge,

operational temperature, and the number of cycles. Given the depth of discharge,
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operation cycle and operational temperature, the battery life depends on discharge

current the battery supply as [92, 34]:

(7.1) Lcycle = αe−βIbat ,

where Lcycle is the cycle life, Ibat is the discharge current, α and β are positive

coefficients. That is, a decrease in discharge/charge stress can extend the battery

life exponentially.

7.3.2 Physical constraints and cost of components

To operate the electric motors satisfying vehicles’ required drivability, a BMS is

required to provide a large amount of charge in a few seconds. It should also maintain

tolerable voltage and current for electric components during operation. The rated

voltage (Vr) of an UC is the maximum voltage that the UC is designed for. That is,

to use UCs without destruction, we should keep UCs to operate within the tolerable

voltage range. Likewise, we have to maintain the rated current when we use the

converter. Rated current (Ir) is defined as “the maximum amount of electrical current

a device can carry before sustaining immediate or progressive deterioration” [1].

From the market [2], we can acquire a variety of capacitors and converters, and

the price depends on their specifications. Obviously, the larger capacitance or rated

voltage, the more expensive. For example, an UC with 5.4V of rated voltage and

5F capacitance costs $15.3 while another UC with 5.4V and 1.5F costs only $10.2.

Therefore, we should consider the overall cost of the components as well as their

specifications when a BMS is designed.

7.3.3 Problem Statement

In this chapter, we want to develop a BMS that enables its battery pack to supply

the required power (Preq(t)) for a long time. Specifically, we would like to determine
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the BMS operation at each time instant (t) so as to maximize the battery life (Lcycle)

within tolerable voltage (<= |Vr|) and current range (<= |Ir|), which is formally

expressed as:

Given the power requirements {Preq(t)}0<t<top , determine the states of control knobs

for the HESS, such that Lcycle is maximized subject to the fixed cost without causing

over-voltage (> |Vr|) and over-current (> |Ir|), where 0 and top are the beginning

and end time instants of the battery operation, respectively.

Note that the power requirements and the control knobs’ states are valid/necessary

only during the EV’s operation in [0, top]. Available control knobs will be extracted

by carefully considering the physical dynamics on the HESS in Section 7.4. Note

that Lcycle monotonically decreases with the increase of the cumulative amount of

current according to Eq. (7.1). Therefore, we focus on minimization of the cumulative

current (Ibat) over time to maximize Lcycle.

7.3.4 Cyber-physical system perspective of the HESS

Various control schemes and architectures for HESS have been proposed and stud-

ied for efficient usage of batteries. However, they have not been adopted in EVs due

to their high cost. Thus, we need to develop a more efficient HESS which addresses

the cost problem via integrated management exploiting existing approaches. To this

end, we build a cyber-physical system (CPS) for HESS by considering all the pa-

rameters that affect discharge/charge operation beneath the HESS. We first capture

the physical dynamics of HESS, and identify the effective control knobs including

new control knobs which have not been identified before. Then, we propose inte-

grated management with a relevant architecture that enhances the life of the HESS

by effectively regulating the control knobs.

In the rest of the chapter, we detail the cyber-physical system of HESS shown
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in Fig. 7.6. In Section 7.4, we explore physical dynamics when UCs supply power

through a DC/DC converter. Our careful exploration of the physical side enables

extraction of effective control knobs that are able to regulate the physical operation

and enhance the battery life. Section 7.5 develops the management algorithms that

can determine desirable control knobs yielding a long battery life based on the under-

standing of physical dynamics detailed in Section 7.4. In Section 8.7.1, we construct

not only the HESS architecture which is able to regulate the control knobs, but also

a unified management algorithm that can be applied to the architecture.
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Figure 7.6: CPS perspective for the design/management of the HESS

7.4 Analysis of Discharge/Charge Rate of a HESS

Discharge/charge rate greatly affects the battery life, and should therefore be con-

trolled properly. Unlike the conventional battery systems, the battery discharge/charge

rate can be regulated in a HESS due to UCs’ capability of controlling discharge/charge

current. For example, an increase (decrease) in discharge current of UCs decreases

(increases) discharge current of batteries while supplying the total required current

to the electric load. In this section, we first describe how converters in the HESS op-

erate and how they influence the discharge/charge rate of UCs. Second, we identify

controllable parameters that affect the discharge/charge rate of UCs.
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Figure 7.7: A basis for the proposed HESS

7.4.1 Circuit dynamics in the HESS

We investigate the physical dynamics of the UC-converter-battery unit shown in

Fig 7.7 [114], because this will be the basis for our approach in the following sections.

The main principle is that an inductor resists changes in current by developing a

voltage (VL) across it which is proportional to the rate of the current change as:

(7.2) VL = L
dI

dt
.
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(b) Energy is transferred to the electric load when Q1 is turned off

Figure 7.8: Physical dynamics of the UC-converter-battery unit

When switch Q1 is closed, electron flow (I) occurs through the inductor (L) be-

cause output voltage of the UC drives current between terminals of the inductor.
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According to Eq. (7.2), the inductor allows the current to slowly increase by de-

creasing its voltage drop, and energy is accumulated in the inductor. Then, when

switch Q1 is opened, current will be decreased slowly since the inductor fights abrupt

changes in current. As a result, the inductor must act like a current source toward

the electric load through diode D2 for a few seconds. One can expect a similar ef-

fect during recharging through D1 by controlling Q2 switch. Therefore, the converter

makes charge in UCs (likewise load) transfer to the load (likewise UCs) by repeatedly

switching Q1 (likewise Q2).

During this process, the amounts of stored and transferred energy are affected by

the size of the inductor (L) and the capacitor (C). When Q1 is closed, the charge

stored in the capacitor transfers to the inductor in the LC circuit. The differential

equation of the LC circuit is

d2iUC(t)

dt2
+

1

LC
iUC(t) = 0,

and the solution of this differential equation is

(7.3) iUC(t) = Ip sin(
1√
LC

t),

where Ip is the peak current. Note that the rate of energy transferred to the load

is dominated by the size of L and/or C (from 1√
LC

called the resonance frequency).

Peak current (Ip) can be calculated based on the law of energy conservation as:

Etot = EC + EL =
1

2
LI2 +

1

2
CV 2

=
1

2
LI2

p + 0 = 0 +
1

2
CV 2

0 ,(7.4)

where V0 is the initial voltage difference through the inductor. Initially, all the energy

in the system is stored in the UC (1
2
CV 2

0 ) and no energy in the inductor. When Q1

is closed, the energy in UCs starts to transfer to the inductor as a form of current
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(1
2
LI2). Because total energy in the LC circuit must be conserved, the energy and

current in an inductor reach the peak current when all the energy accumulated in

UCs transferred to the inductor. Eq. (7.4) can be modified as:

Ip =

√
C

L
V0.

Note that the large capacitance (C), initial voltage of the UC (VUC) and small

inductance (L) yield a high peak current (Ip). Finally, Eq. (7.3) can be re-written

as:

iUC,on(t) =

√
C

L
VUC sin(

1√
LC

t).(7.5)

We can also expect a similar effect when Q1 is closed and write the discharge current

as:

iUC,off (t) =

√
C

L
(VUC − Vbat) sin(

1√
LC

t),(7.6)

where Vbat is the battery voltage.

7.4.2 Control knobs

Eq. (7.5) shows parameters that should be controlled for an efficient BMS. We

now present the three control knobs affecting the parameters (t, L, C, and VUC) in

the equation, which are the keys to the development of our discharge/charge rate

management to be presented in Section 7.5.

Duty cycle of signal for converter switches (iUC(t) =
√

C
LV0 sin( 1√

LC
t ))

To operate the converters in the HESS, we need the switching signals for Q1 and

Q2 switches. The duty cycle of the signal, the ratio between the pulse duration (T )

and the period (P ), should be controlled properly, because it determines the energy

accumulation period (T ) and the amount of charge moving to/from the electric load
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Figure 7.10: Duty cycle as a control knob

as illustrated in Fig. 7.9-(a). Fig. 7.10-(a) illustrates an example of duty cycle for

the converter switches, and Fig. 7.10-(b) shows the discharge current variation with

duty cycles. For example, when the converter accumulates more energy during each

period due to an increase in the duty cycle, the system supplies more energy to the

electric load.

LC Configuration of the UC-converter in the UC bank (iUC(t) =
√

C
LV0 sin( 1√

LC
t))

The LC configuration in the UC-converter dictates the UC’s capacitance (C),

the inductor’s inductance (L) and the capacitor output voltage (V0) as described

in Fig. 7.11, and then affects the form of discharge/charge current according to

Eq. (7.5). For example, a change in current through a larger inductor (high L) in the

HESS tends to be slower as illustrated in Fig. 7.9-(b). Therefore, we can adaptively

determine discharge/charge patterns by regulating V0, L and C via reconfiguration
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of LC circuit in the multiple UC-converters. For instance, when a UC bank’s voltage

(V0) is too low to supply the required current, we can serialize UCs in the UC bank

so as to increase output voltage of the UC bank.
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Figure 7.11: Voltage, capacitance and inductance vary with the configuration

Frequency of signal for converter switches

Discharge/charge current fluctuations in batteries may damage batteries. For ex-

ample, as shown in Fig. 7.9-(c), discharge current changes greatly and peak-to-peak

current gets up to 4A when it is operated by a 1 kHz switch signal, whereas dis-

charge/charge current is stable at 10 kHz switch frequency. Therefore, the converter

switches should be cycled fast enough to prevent the excessive discharge/charge cur-

rent fluctuations. However, the required frequency for stable discharge/charge rate

varies with duty cycle and LC configuration in the UC-converters, since the form of

discharge/charge current depends on them. Based on the duty cycle and the LC con-

figuration, we then adaptively regulate the frequency of the converter input switches

to protect batteries from excessive discharge/charge current variations.
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7.5 The Proposed Battery Discharge/charge-rate Management in the
HESS

So far, we have examined circuit dynamics and control knobs that affect the

discharge/charge current in the HESS. Based on them, we now develop battery dis-

charge/charge rate management policies to extend the battery life. To extend the

battery life, the BMS should mitigate the discharge/charge stress based on the power

requirements and the battery degradation model, which is discussed in the previous

chapter. This section states the requirements for extending the battery life when the

information is not available, and then develop an overall management policy.

7.5.1 Requirements

To avoid fast performance degradation due to the stress, we should reduce peak

discharge current (max(Ibat(t))) and the amount of charge transferred to/from the

electric motors as follows.

• Minimize
[ ∫
|Ibat(t)|dt

]
.

• Minimize
[

max(Ibat,discharge(t))
]
.

•
[
Ibat,recharge(t) = 0

]
.
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To satisfy the requirements of minimizing battery discharge/charge stress, all the

energy in the UC (EUC = 1
2
CV 2) should be discharged during the discharge period

(T ), and the UC accumulates the charge supplied by the RBS to reduce charge

stress of battery as shown in Fig. 7.12. If total discharge current is known through

a power requirement prediction, we can calculate constant target battery discharge

current (I∗bat) during the period (T ) satisfying the requirements for reducing battery

discharge/charge stress. The target discharge current (I∗bat) is set to “0” if the braking

system supplies charge to the battery (Itot > 0), or “ 1
T

∫ T
0
Itot(t)dt − 1

2TVbat
CV 2

UC”

otherwise. The following approaches in Sec. 7.5.2 are taken to make the battery

current (Ibat) the target battery current (I∗bat) as seen in Fig. 7.14.
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Figure 7.14: Requirements and approaches
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7.5.2 Overall Management

By satisfying the requirements, we can design an efficient discharge/charge rate

manager achieving a long life as seen in Fig. 7.14. To this end, we propose an

integrated management algorithm for duty cycle, frequency, and configuration as

illustrated in Fig. 7.13. Our management algorithm determines the duty cycle of

converter switches that make target battery current (I∗bat), and configuration of UC-

converters (VUC , L and C) which enables the HESS to achieve the target battery

discharge/charge rate (I∗bat). Meanwhile, the frequency for converter switches should

be chosen carefully for the stable transfer of charge.

Dynamic regulation of duty cycle

-1.2

-0.8

-0.4

0

0.4

0.8

2 4 6 8 10

C
u

rr
e

n
t 

(A
) Time (s)

Total required current UC current Battery current

Accumulate all the 
electric charge into UC

feedback control loop 
for target Ibat*

Duty cycle 
for IUC

target Ibat*

Increase 
duty cycle

Decrease 
duty cycle

Figure 7.15: Duty cycle selection

To satisfy the requirements for achieving high UC utilization and moderate stress

on the batteries, we set the target battery and UC current (I∗bat and I∗UC). We achieve

the target discharge current by regulating the discharge rate of UCs (IUC) through

adaptive selection of duty cycle (D) as follows.

In Section 7.4.1, we explored the discharge current when a switch is repeatedly
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turned “on” and “off” (iUC,on and iUC,off ). By comparing the change rates of these

discharge currents (iUC,on and iUC,off ), we can calculate the base duty cycle (Dbase)

that can maintain the required discharge current (I∗UC). Fig. 7.16 and the following

equation show how to calculate the base duty cycle for the target discharge current.

Dbase =
Ton

Ton + Toff
,

where Ton (likewise Toff ) is the time duration the UC’s current iUC,on (likewise

iUC,off ) changes up to tolerable variation (∆Itolerable) when the UC supplies the

target current (I∗UC).

To reduce the error due to inaccuracy in voltage measurements (VUC , Vbat) or ele-

ment sizes (L,C), we also adopt a PD controller handling the difference (u) between

the target battery current (Ibat∗) and the present battery current (Ibat) as seen in

steps 3–5 of Algorithm 9. Finally, we select the duty cycle (D) to make the batteries

supply the target discharge current (I∗bat) based on the base duty cycle (Dbase) and

the estimation of difference (u) between the target and actual discharge rate.
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Algorithm 9 Algorithm for dynamic regulation of duty cycle (DUTY)

1: I∗bat ← target(Ibat, C, VUC , Vbat, T, I
∗
tot(t));

2: Dbase ← (L,C, VUC , Vbat)
3: e← I∗bat − Ibat;
4: ed ← (e−eprev)

∆t ;
5: u← kp · e+ kd · ed; // kp and kd are tuning parameters
6: D ← Dbase + u;
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Figure 7.17: Selection of frequencies for converters

Dynamic regulation of switching frequencies for converters

To protect the batteries from current surges due to a periodically controlled con-

verter, we control the frequencies (f = 1
T

) of the signal for the converter switches.

We repeatedly capture the peak-to-peak discharge current of UCs (peak-to-peak

IUC), and regulate the frequency, achieving the moderate discharge rate of UCs and

batteries as illustrated in Fig. 7.17 and Algorithm 10.

Reconfiguration

To increase the voltage swing range of UC banks while maintaining the capacity

of the bank, we reconfigure UC-converter dynamically. When the UC bank is already

charged or supposed to be recharged from the RBS soon, we parallelize the UCs in the

bank to store the charge in UCs efficiently. However, the charge would be transferred

to the electric load for operating EVs, and the capacitor voltage (V0) would be
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Algorithm 10 Algorithm for dynamic frequency regulation (FREQ)

1: if |peak-to-peak IUC | ≥ margin then
2: f ↑
3: else
4: f ↓
5: end if

dropped over time. Then, UC banks cannot supply required current (u ≥ margin)

effectively due to lack of peak discharge current (Ip in Eq. (7.3)) even if the duty cycle

(D) is maximum. In this case, we restore the output voltage of UC banks to increase

peak current (Ip) by serializing the UCs. This reconfiguration enables the bank to

supply the charge to the load, leading to larger voltage swing and energy capacity

utilization as shown in Fig. 7.18. Algorithm 11 shows this process for determining

whether to serialize or parallelize configuration (CFG) of the UC-converter in the

HESS based on the current duty cycle (D) and the difference between the target and

actual currents (u).
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Algorithm 11 Algorithm for selection of the HESS configuration (CFG)

1: if D = max(D) & u ≥ margin then
2: CFG← Series;
3: else if Ibat ≤ 0 then
4: CFG← Parallel;
5: else
6: NO ACTION
7: end if

7.6 Implementation

So far, we have examined the circuit dynamics underlying HESSes and relevant

management policies for efficient usage of UC banks. This section describes our

implementation of a HESS architecture that supports the management algorithms

discussed in Section 7.5.

7.6.1 Basic HESS architecture
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Figure 7.19: Basic architecture for a HESS

Fig. 7.19 shows a basic HESS architecture. Let Np and Ns denote the number

of UCs connected in parallel and series, respectively, and they are determined based

on the components’ physical constraints as discussed in Section 7.3.2. For example,

if an UC pack should operate at high voltage, we have to deploy a large number of

UCs in series (Ns).
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Figure 7.20: Reconfigurable architecture for a HESS

7.6.2 Reconfigurable architecture

The discharge/charge rate of the battery and UCs is strongly coupled with the

HESS topology as seen in Section 7.4.2. Also, Section 7.2.1 shows the required

discharge/charge rate (Itot) in a modern energy storage varies widely, necessitating

various HESS configurations. An optimal topology of the UC-converter depends on

states of charge in UCs and/or the required discharge/charge current, necessitating

a reconfigurable HESS. Therefore, we add reconfigurability with a few additional

switches on the basic architecture of a HESS as illustrated in Fig. 7.20.

C L

C
L

C L

C
L

Figure 7.21: Two available configurations; the left configuration is set when Qs is turned on and
the right configuration when the switch is turned off

An input of switch Qs determines the topology as seen in Fig. 7.21. For example,

if Qs is opened, we can use two UC-converter units which have C capacitance and

L inductance, allowing for storing a large amount of charge. When the switch Qs is
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Algorithm 12 Algorithm for Discharge/Charge Rate Management

1: while 1 do
2: [Ibat, IUC ] ← current sensors;
3: I∗tot ← Power requirement prediction;
4: [DQ1,Q2,Q3,Q4 , u] ← DUTY(I∗tot, IUC , Ibat);
5: fQ1,Q2,Q3,Q4

← FREQ(IUC);
6: CFG ← CFG(D,u);
7: if CFG = Series then
8: Qs ← 1;
9: else

10: Qs ← 0;
11: end if
12: delay(∆tcontrol);
13: end while

closed, UCs are serialized while inductors are parallelized, leading to decrease in not

only capacitance of the UC bank (2C → 1
2
C) but also inductance of the inductor in

the converter (2L→ 1
2
L). Serialization of UCs can increase peak current (Ip) due to

the increased voltage (V0), enabling the BMS to effectively exploit UCs.

7.6.3 Management algorithm

The cyber part should be able to select inputs of switches (Qs, Q1, Q2, Q3 and

Q4) to satisfy the target discharge/recharge rate of batteries and UCs. Algorithm 12

describes our management policy. The main principle of our approach is to cap-

ture the charge in the UC bank temporarily and supply them to the electric load

in order to reduce the battery stress. Steps 2–3 pre-process; we measure the cur-

rent of UCs and battery banks, and calculate the discharge current of the next step.

Steps 4–5 determine the form of cycled signal for converter switches. Algorithm 9

regulates duty cycle (DQ1,Q2,Q3,Q4) of switch signals to yield the desirable battery

current for longer lifetime, and Algorithm 10 chooses the frequency (fQ1,Q2,Q3,Q4)

of the signals for protecting cells from excessive current variations caused by peri-

odically controlled (∆tcontrol) converters. Steps 6–11 decide on the configuration of

UC-converters (CFG) according to Algorithm 11.
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7.7 Evaluation

We now evaluate the proposed HESS. We first introduce performance metrics for

the HESS and then describe the tools and settings used for the performance evalu-

ation. Finally, we present the evaluation results. Fig. 7.22 describes our evaluation

process.

7.7.1 Evaluation metrics: battery lifetime

Lifetime is an important metric in evaluating large-scale battery systems, be-

cause it significantly affects the cost of EVs. To evaluate the battery lifetime in the

proposed HESS, we conducted extensive simulations, and recorded discharge/charge

stresses. Then, we computed the battery lifetime by feeding the stress measurements

into the lifetime model introduced in Section 7.3.1. We evaluated the lifetimes of

multiple systems built at the same materials cost for a fair comparison.

7.7.2 Evaluation tools and settings

We built the several energy storage architectures by programming the control

blocks and loading electric component models in a simulation tool. We then simu-

lated different HESSes with a given electrical load using MATLAB, which is widely

used for the verification of control systems [93]. During simulations, we recorded the

interesting physical states to evaluate the HESSes.

Electric load

The US Environmental Protection Agency (EPA) provides “Dynamometer Drive

Schedules” for standard emissions testing of driving. We used the dynamometer

drive schedules as the electric load of an EV’s powertrain.
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Figure 7.22: Evaluation process

Physical space simulation

MATLAB is a high-level language with a numerical computing environment, de-

veloped by MathWorks. SimPowerSystems library in MATLAB provides electric

component models and tools for modeling and simulating electrical power systems.

We used the component models to implement our reconfigurable HESS architecture

in Section 8.7.1. We filled in the internal parameters of the components library by

using the specification of components in the website [2] for realistic simulations.

Cyber space implementation

We also implemented control blocks describing our management algorithms. We

specified the inputs of the control blocks and made the blocks determine outputs via

the proposed algorithms such as duty cycle control, frequency control and configura-

tion control. The algorithms monitor the states of the HESS and regulate the control

knobs based on the states so as to reduce the discharge/charge stress of batteries.



170

7.7.3 Evaluation results

We have evaluated the following three HESS schemes:

• BASE: no ultra-capacitors;

• EX: existing HESSes introduced in Section 7.2 (the HESS with DC/DC convert-

ers);

• DRF: our HESS described in Section 7.5 (adaptive discharge/charge rate man-

agement with a reconfigurable architecture).

Lifetime

We ran simulation and extracted the discharge/charge stress of batteries for each

scheme. Then, we estimated their lifetime based on the lifetime model. Table 7.2

shows the ratio of the average lifetime of DRF (and EX), to that of BASE. As shown

in this table, DRF improves the lifetime by up to 153% and 37.7% over BASE and

EX, respectively. We compared the discharge/charge stress to batteries under the

three schemes by using the following equation.

• 1
T

[ ∫ T
0
|Ibat(t)|dt

]
,

where T is an operation period. Table 7.3 shows the battery stresses under the same

workload. Compared to BASE, DRF reduces the stress by 15.9%. DRF is even better

than EX in that it can reduce the discharge/charge stress by up to 5.4% than EX.

This reduction of discharge/charge stress extends the lifetime under DRF.

Type EX/BASE DRF/BASE

Lifetime (Ncycle) 1.83 2.53

Table 7.2: Lifetime of energy storage systems

Type BASE EX DRF

Stress of Battery 149.42 135.67 128.43

Table 7.3: Discharge/charge stress of energy storage systems
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Figure 7.23: Example of discharge/charge current of DRF

Energy Capacity Utilization of UCs

Our HESS introduced in Sections 7.5 and 8.7.1 includes the method to increase the

utilization of energy capacity. It actually contributes to the extension of battery life,

since increasing the capacity utilization decreases the discharge/charge stress of bat-

teries. We first calculate the target battery discharge current (I∗bat) maximizing UC

utilization, and the proposed management policy manipulating UCs current (IUC)

to satisfy the target battery discharge current as shown in red boxes in Fig. 7.23.

Furthermore, whenever UCs cannot supply the required current due to lack of UC

bank voltage, the HESS reconfigures UC-converters to boost the voltage of UC banks

to supply a sufficient amount of charge. As shown in dotted red box in Fig. 7.23,

our HESS changes the configuration so as to supply charge effectively by allowing a

larger voltage swing of the UCs.

7.8 Conclusion

To meet the increasing demand to make EVs financially affordable, BMSes should

be able to cope with harsh discharge/charge rate that affects the battery life signif-

icantly. A form of switch inputs (frequency and duty cycle) for converters and the

HESS configuration are key control knobs for slowing down the battery capacity
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degradation, since they have significant impact on the discharge/charge rate of each

energy storage device in the HESS. In this chapter, we have presented how to achieve

efficient battery management using these control knobs. We proposed a new battery

discharge/charge rate management scheme that determines, in real time, the form of

input signals and the configuration of the HESS based on the analysis of their impact

on the discharge/charge rate of battery cells. To realize this scheme, we also pro-

posed the reconfigurable HESS architecture, which can select the configuration of the

HESS. Our evaluation using realistic simulation has shown that the proposed HESS

management makes a significant improvement of battery life without increasing cost,

over a simple method often seen in the existing BMSes.

It would be interesting to improve the discharge/charge rate management based

on the proposed architecture. One direction is to improve the performance of dis-

charge/charge rate management with a power requirement prediction, since it allows

BMSes to prepare for supplying or storing energy in advance [68]. Our approaches

can also be used for other types of HESSes including fuel cells which have their own

power and energy densities. These are matters of our future inquiry.



CHAPTER VIII

Offline Guarantee and Online Management of Power
Demand and Supply in Cyber-Physical Systems

8.1 Introduction

Most electric systems, such as electric vehicles, mobile robots, nano satellites, and

drones, have to perform various mechanical/electrical operations for their intended

applications. For example, a drone needs to (i) operate the flight motors to fly, (ii)

power sensors, coolers, and communication modules, (iii) operate the camera and

stepper motors to take pictures and deliver parcels, and (iv) perform the computation

necessary to maintain its stability (see Fig. 3 in the supplementary file [67]). These

multiple power-demand operations impose different power demands on the system

and may be triggered at different times, requiring the system to effectively provide

time-varying supply of power [23, 24, 113, 28, 78, 68]. Existing studies on the power

scheduling problem focused on the reduction of peak power by scheduling multiple

power-demand operations and analysis thereof [83, 26, 46, 16].

However, a complete solution of the power scheduling problem also needs to char-

acterize energy storages/sources because it affects power capability for the power-

demand operations. We address this need by targeting hybrid energy storage systems

(HESSes) comprised of multiple power-supply sources and storages, such as batteries,

supercapacitors, and renewable energy sources, whose concept and implementation

173
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have been proposed and explored in [28, 114, 60, 111, 25, 65, 109]. A combination

of high-energy-density batteries and high-power-density supercapacitors enables the

system to supply the required time-varying power for a longer time, improving system

sustainability. Moreover, renewable power sources (e.g., solar, wind and geothermal

energy) enhance the system’s power capacity and reduce the load intensity on bat-

teries and supercapacitors, thus prolonging their lifetime [129, 12, 58, 112, 79].

Researchers have studied the optimal design of a HESS to meet the power demands

at minimum cost [15, 44, 60, 64, 148]. They first explored possible storage configura-

tions (i.e., size, type, connection) of multiple power-source supplies and storages, and

then selected the best configuration by comparing the performance and the energy

production cost. Search for an optimal design iterates to generate candidate config-

urations until one of the candidates satisfies the pre-defined performance and cost

criteria [44]. However, these approaches do not guarantee power-sufficiency during

operation, as the electric load and criteria are determined based on the load history

or the designer’s experience and intuition.

To ensure the power sufficiency, we will develop a power scheduling and analysis

framework for a reliable energy storage system with multiple power-supply sources

and multiple power-demand operations, which achieves the following goals.

G1. Offline power-supply guarantee: We provide an offline guarantee to com-

plete every operation before its deadline (i.e., operation-level power guarantee)

while keeping the amount of power supplied to the entire system no smaller

than the sum of power required by individual operations at any time instant

(i.e., system-level power guarantee).

G2. Online power management: We develop online power management that

effectively utilizes the difference between the worst-case supplied/demanded
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power and the actual one for system performance improvement.

This is a typical cyber-physical systems (CPS) problem in that we should address

power scheduling and its analysis in the cyber space, based on comprehensive under-

standing of the physical characteristics of power supply and demand.

To achieve G1, we find similarities between the power-supply guarantee problem

and a real-time scheduling problem that determines the execution order of real-

time tasks; while the operation-level power guarantee corresponds to the task-level

deadline satisfaction, the system-level power guarantee matches the computing plat-

form’s capacity constraint. Using the techniques of real-time scheduling, we solve

the power-supply guarantee problem in two steps. First, we address the case of

multiple power-demand operations with a single, uniform power-supply source (e.g.,

a battery pack), and develop a scheduling framework and offline power guarantee

analysis. Based on the scheduling and analysis framework, we address the general

problem—multiple power-demand operations with multiple power-supply sources.

For the second step, we develop two scheduling frameworks to utilize additional

sporadic power-supply sources: one for sharing additional power-supply sources by

all power-demand operations, and the other for assigning the sources to only some

of power-demand operations. Our solution for G1 not only demonstrates that the

technique of real-time scheduling helps solve a CPS problem, but also addresses the

design problem of a HESS by finding a combination of energy storages at minimum

cost.

In addition to making the offline power-supply guarantee (G1), we develop on-

line power management (G2), which aims at increasing the utilization of the energy

generated by renewable power-supply sources. That is, scheduling multiple power-

supply sources and power-demand operations according to G1 necessarily yields sur-
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plus energy since G1 considers the worst case, i.e., the largest power demand and

the smallest power supply. While we can utilize the surplus energy for improving

various performance aspects of a HESS, we focus on the reduction of the peak power

of our main energy storage (i.e., a battery pack) to improve its capacity and life-

time [92, 34, 72, 17, 65, 64].

We have prototyped a HESS-powered system (Fig. 8.5 as described in Section 8.7

and Fig. 1 in the supplementary file [67]) to validate the proposed solutions for G1 and

G2. The prototype consists of power-consuming components such as wheel motors,

stepper motors, coolers, sensors and converters, whose operations are controlled by

an application. The prototype is powered by a HESS consisting of Lithium-ion

batteries, ultra-capacitors (UCs), and solar panels. When designing this prototype,

we determine the sizes of batteries, UCs and solar panels that ensure the worst-

case power sufficiency based on the offline power-supply guarantee G1. At run-

time, the master board schedules the power-demanding operations with fixed-priority

scheduling, and determines the power distribution among batteries, UCs, and solar

panels according to online power management G2. Our experimental results show

that the prototype not only supplies a sufficient amount of power to the components

during their operation, and but also reduces the battery’s peak power by 33.1%.

In summary, this chapter makes the following main contributions:

• Design of a power scheduling and analysis framework that consists of (i) offline

power-supply guarantee, which is the first power guarantee analysis applicable

to the design of a HESS, and (ii) online power management for a HESS to

enhance the energy storage’s performance,

• Demonstration of the effectiveness of the proposed framework via in-depth, re-

alistic experiments, and
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• Solution of an important CPS problem using real-time scheduling techniques.

The chapter is organized as follows. Section 8.2 describes the characteristics

of power-supply sources and power-demand operations, and Section 8.3 formally

states our main problem. Sections 8.4 and 8.5 present the power scheduling and

analysis framework for the offline power-supply guarantee, while Section 8.6 details

online power management. Section 8.7 implements our solutions on a prototype and

evaluates their power sufficiency and reduction of peak power dissipation. Finally,

the chapter concludes with Section 8.8.

8.2 Characteristics of Power-Demand Operations and Power-Supply Sources

As the first step for offline power-supply guarantee and online power manage-

ment, we investigate the characteristics of power-demand operations and power-

supply sources.

8.2.1 Power-demand operations

We consider typical mechanical/electrical operations that are executed repeatedly

to complete a given set of tasks. For example, an operation that maintains a constant

vehicle speed would accelerate/decelerate motors repeatedly based on the online

collected speed data. In this closed-loop control system, the operation updates the

required acceleration and requests it to the motor controller at every control period

— the operation requires a certain level of power, and must be completed within its

control period.

We model the power-demand operations as follows. A system has a set of mechani-

cal/electrical operations λ = {λ1, λ2, . . . , λnd}, where nd is the number of operations.1

The power usage of λi is modeled by the minimum inter-arrival time T d
i , its maximum

1Throughout the chapter, we use the superscripts d and s for power demand and power supply, respectively.
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power consumption P d
i , and the maximum length of execution Ld

i . Each operation is

assumed to be non-preemptive; unlike a computing task executed on a processor, a

preemption of an operation on a power system either yields incorrect system behavior

or incurs significant cost. The former happens because the physical state of devices

before a preemption is not necessarily identical to that after the preemption, e.g.,

revolutions of a motor per minute. The latter also makes sense in that most power-

consuming devices are deployed in a distributed manner, so a preemption and its

re-activation entail non-trivial communication/operation overhead such as sending

a message via communication channel, pausing the mechanical/electrical operation,

and sending back a preemption completion message to the master controller. Each

operation is also assumed to be rigid, i.e., providing more power does not reduce the

execution length.

Considering the characteristics described so far, λi with parameters T d
i , P d

i , and

Ld
i invokes its instances as follows. Each instance’s release time is separated from

the predecessor by at least Ti time units, and each instance should be finished within

Ti time units after its release. Once starting to execute, each instance performs its

execution during at most Li time units without any preemption, and the amount of

actual power consumption at t within the interval is denoted by P d
i (t), which is less

than or equal to P d
i .2

Finally, each operation has its own priority based on the importance of the oper-

ation; we consider fixed-priority scheduling [86] using the predefined operation-level

priorities.

2Throughout the chapter, P (t) implies the actual power demand/supply at t, and P represents the maxi-
mum/minimum power demand/supply. Also, we use the term of an “operation” for an “instance” of the operation,
when no ambiguity arises.
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Figure 8.1: Battery-centric hybrid energy storage system model

8.2.2 Power-supply sources

We consider a battery-centric hybrid energy storage system (HESS) that is com-

prised of three parts: (i) an energy-dense lithium-ion battery pack, (ii) a set of

auxiliary renewable energy sources, and (iii) a power-dense energy buffer as shown

in Fig. 8.1. Although relatively simple, this architecture contains essential parts for

advanced energy management, and each part has been studied extensively [28, 90,

50, 65, 114, 27].

While batteries are widely used as the main energy storage due to their capability

to store a large amount of energy and deliver the required power, renewable energy

sources such as an RBS (Regenerative Braking System) and a solar panel, supply

power sporadically. For instance, an RBS in a vehicle can supply power only when

the vehicle decelerates, and the amount of generated power is dependent on braking

torque that each brake can provide. A solar panel generates the energy when sunlight

strikes a solar cell. On the other hand, the energy buffer accommodates surges

of recharging current to protect the battery and provide power when the power

requirement is high. Fig. 4 in the supplementary file [67] is an example showing how

the energy buffer works for accommodating power supply from renewable energy

sources and powering requested operations.

Described below are notations and characteristics of above-mentioned power-
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supply sources and storages. Let Γbat and ΓUC denote the battery pack and the

energy buffer corresponding to (i) and (iii), respectively, and they can supply a cer-

tain amount of power, which are limited to their individual power capabilities P s
bat

and P s
UC, respectively; P s

bat(t) (≤ P s
bat) and P s

UC(t) (≤ P s
UC) denote the actual power

supply at t of the corresponding sources. Let Ls
UC denote the minimum time interval

for ΓUC to supply power as much as P s
UC when the system starts, i.e., at t = 0, ΓUC has

at least P s
UC · Ls

UC amount of energy.3 We assume that the target system halts when

there is no energy in the battery pack, meaning that we do not need to specify the

interval length of Γbat.

As to (ii), let Γ = {Γ1,Γ2, ...Γns} denote a set of auxiliary renewable energy

sources, where ns (≥ 0) is the number of elements in the set. Each energy source Γi

is modeled with the maximum inter-arrival time T s
i , the minimum supplied power

P s
i , and the minimum length of supply duration Ls

i . That is, Γi generates at least

P s
i amount of power during at least Ls

i time units at the end of every period whose

length is no larger than T s
i . Let P s

i (t) is the actual supplied power at t from Γi.

Power generation from Γi may be unpredictable, which makes it difficult to derive

the parameters of Γi. However, if we imagine power generation from solar panels

during daytime, we can derive the parameters that express conservative behaviors in

terms of the amount of power generation; we will show an example of Γi using our

prototype in the evaluation section (Fig. 2 in the supplementary file [67]). Note that

parameters that provide “guarantee” of power supply (i.e., P s
bat amount of power

for all time and P s
i · Ls

i amount of energy for every T s
i time units) will be utilized

for the offline power guarantee, while any surplus energy (the information which is

available only at run-time) will be stored in ΓUC and used for online management for

3For example, the battery pack supplies energy to the energy buffer when an electric vehicle turns on the ignition.
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minimizing battery peak power. Also, we assume that the energy ΓUC can store is

sufficiently large so as to accommodate power generated by all the renewable energy

sources.

8.3 Problem Statement and Solution Approach

We first present a formal problem statement for achieving offline power-supply

guarantee and online power management. Then, we give high-level explanation how

to solve the problem.

Problem statement. Using the characteristics of power-demand operations and

power-supply sources described in Section 8.2, we formally state the problem to be

solved as:

Given a set of mechanical/electrical operations λ, the battery pack Γbat, the energy

buffer ΓUC, a set of auxiliary renewable energy sources Γ, and the operation interval

[0, tmax),

Determine P s
UC(t) and {P d

i (t)}ndi=1 for all t ∈ [0, tmax) for achieving the following objec-

tive function.

Minimize (S0)

∫ tmax

0

P s
bat(t) + P s

bat-loss(t) dt,

Subject to (S1)
∑
λi∈λ

P d
i (t)− P s

UC(t)−
∑
Γi∈Γ

P s
i (t)

= P s
bat(t) ≤ P s

bat,

(S2) P s
UC(t) ≤ P s

UC,

(S3) Every instance of each operation λi ∈ λ finishes

its execution within T d
i time units after its release.

{P s
i (t)}nsi=1 are not control knobs in that their generated power is immediately

stored in ΓUC or served for power-demand operations. P s
bat(t) is also not, because it
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is determined once P s
UC(t) and {P d

i (t)}ndi=1 are determined as shown in S1. For each

P d
i (t), we determine the time instant at which each λi starts to execute. When it

comes to P s
UC(t), we determine the amount of supplied power from ΓUC to λ at each

time instant t.

P s
bat-loss(t) in S0 denotes the amount of power dissipation at t caused by the

power supply of the battery pack; in other words, we lose P s
bat-loss(t) of power due

to supplying P s
bat(t) of power from the battery pack at t. Therefore, S0 implies the

amount of energy used and dissipated by the battery pack; since the former (i.e.,

the amount of energy used) is not a control knob, we should reduce the latter (i.e.,

the amount of energy dissipated) using a simple circuit-based battery model [147]:

P s
bat-loss(t) = I2

bat(t) · Rbat(t), where Rbat(t) is a battery’s internal resistance, and

Ibat(t) is the battery’s discharge/charge current for supplying Pbat(t). Since power

dissipation is quadratically proportional to discharge/charge battery current, the

minimization of battery peak current may reduce energy dissipation of the battery

pack, potentially extending the battery operation-time.

Solution approach. To achieve the above objective, we develop a power schedul-

ing and analysis framework that consists of two steps, as shown in Fig. 8.2. In the

first step, we focus on satisfaction of constraints S1, S2 and S3, achieving offline

power-supply guarantees to complete every operation before its deadline while keep-

ing the amount of power supplied to the entire system no smaller than the sum of

power required by individual operations at any time instant. To this end, we con-

sider two sub-steps: one for the single, uniform power-supply source, and the other

for the multiple power-supply sources, both of which use parameters that exhibit

the worst-case behaviors, e.g., P d
i , not P d

i (t). First, in Section 8.4 we will consider

scheduling of λ only with Γbat, and develop a power scheduling framework and its
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Figure 8.2: Outline of our power scheduling and analysis framework that consists of offline power
guarantee and online power management

power guarantee analysis that determines whether or not λ is always scheduled on

time without any power shortage under fixed-priority scheduling. Then, we extend

the results for considering additional power-supply sources Γ. Adding Γ and using

the fact that ΓUC has the minimum energy when the system starts, in Section 8.5

we will suggest two approaches that utilize the power from Γ: one for sharing the

power by all operations, and the other for assigning the power to some operations.

We also develop the scheduling framework and power guarantee analysis for both

approaches.

For the second step, Section 8.6 aims to minimize S0 without compromising S1, S2

and S3. Since the first step is performed based on parameters that exhibit the worst-

case behaviors, a lot of energy is actually stored in ΓUC, coming from the difference

between P s
i and P s

i (t). To effectively utilize the difference for minimizing S0, in

Section 8.6 we propose an online power management framework to reduce battery

peak dissipation, thereby improving battery performance. Since greedy usage of the

energy buffer may cause energy shortage when it is needed to mitigate the subsequent

surges of power demand, we determine power supply of the energy buffer (P s
UC(t))

effectively, by considering the current status of the energy buffer and the history of

power demand.
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8.4 Scheduling of Multiple Power-Demand Operations with a Uniform
Supply

In this section, we present how to schedule a set of power-demand operations

(λ) when the battery pack (Γbat) is the sole power-supply source. We first develop

a scheduling framework that considers the characteristics of λ and Γbat described

in Section 8.2. Under this scheduling framework, we then develop an offline power

guarantee analysis that determines whether every operation in λ powered by the

battery pack is performed before its deadline without suffering any power shortage.

8.4.1 Scheduling framework

We would like to schedule a set of multiple operations (λ) so as to achieve a system-

level and operation-level power guarantee under the uniform supply from the battery

pack Γbat. By “system-level power guarantee,” we mean that the sum of power

demand at any time instant should be no larger than maximum power capability of

the battery pack, i.e.,
∑

λi∈λ P
d
i (t) ≤ P s

bat, which is equivalent to S1.4 To achieve

the operation-level power guarantee, every operation should receive sufficient power

within its period, which is S3.

Our scheduling framework employs the work-conserving policy based on the worst-

case power demand and operation-level fixed-priority scheduling policy. The former

implies that an operation λk can start to execute as long as its worst-case power

demand P d
k (as opposed to the actual power demand P d

k (t)) is no larger than the

difference between the battery capability P s
bat and the sum of the worst-case power

demand of currently-executing operations
∑

λi∈Qrun
P d
i . The latter implies that the

scheduling framework prioritizes the operations that satisfy the above condition.

Since each operation exhibits the non-preemptive behavior as described in Sec-

4Since this section considers the sole supply of Γbat, we remove terms of the energy buffer and a set of renewable
power-supply sources in S1.
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Algorithm 13 Scheduling Framework

The following steps are performed whenever at least one mechanical/electrical operation is finished
or released at t:

1: For each λk finished at t, Qrun ← Qrun \ {λk}
2: For each λk released at t, Qready ← Qready ∪ {λk}
3: Sort Qready by given operation-level fixed-priorities
4: for λk ∈ Qready (a higher priority operation is chosen earlier) do
5: if P d

k ≤ P s
bat −

∑
λi∈Qrun

P d
i then

6: Qrun ← Qrun ∪ {λk}
7: Qready ← Qready\{λk}
8: end if
9: end for

tion 8.2, an operation can start its execution only when it is released or the other

operation is finished, and each operation, once started, continues its execution until

the completion. Therefore, the scheduling framework can be expressed (as in Algo-

rithm 13) by describing actions for the situations. Lines 1–3 update the ready queue

Qready that contains operations ready to execute, and the running queue Qrun for

currently-executing operations. Lines 4–9 select operations to be started and move

them from Qready to Qrun. Although the scheduling framework prioritizes operations

based on their priorities, a lower-priority operation λj in Qready can start its exe-

cution earlier than a higher-priority operation λk in Qready, if the remaining power

capability of the system (i.e., P s
bat −

∑
λi∈Qrun

P d
i ) is larger than P d

k but, no larger

than P d
j , as described in line 5.

Analogy with real-time scheduling. The scheduling framework presented in

Algorithm 13 is similar to gang scheduling [61] in the area of real-time scheduling,

where P d
i corresponds to the number of threads to be parallelized for a real-time task,

and Ld
i matches the WCET (Worst-Case Execution Time) of each thread. Note that

P d
i is a continuous variable, but the number of threads is a discrete value. While

existing studies for gang scheduling have focused on preemptive scheduling [61, 54,

19], we need non-preemptive gang scheduling. In Section 8.4.2, we will develop an
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offline power guarantee analysis, corresponding to the schedulability analysis of non-

preemptive gang scheduling, which is, to the best of our knowledge, the first attempt

in the real-time scheduling field.

We also note that the similarity to gang scheduling holds for the case of this

section—multiple power-demand operations only with the uniform supply; it is a

new type of scheduling problem to address the general case of multiple power-demand

operations and multiple power-supply sources, which will be addressed in Section 8.5.

8.4.2 Offline power guarantee analysis

Since each operation is non-preemptive, we need to check if each operation λk

can start its execution no later than (T d
k − Ld

k) time units after its release; once it

starts to execute, it completes execution within its period without any preemption.

Therefore, we focus on the interval of length (T d
k −Ld

k + εt), which begins at the time

of λk’s release, and check whether the sum of energy consumed by other operations

within the interval is strictly less than (P s
bat−P d

k + εp) · (T d
k −Ld

k + εt), where εt and

εp denote the time and power quantum (the smallest unit). Since the smallest power

that prevents λk from execution at each time instant is (P s
bat − P d

k + εp), the above

condition guarantees the start of λk’s execution to be no later than (T d
k − Ld

k) time

units after its release.

The remaining step is then to calculate Ik←i(`), the amount of energy demanded

by instances of λi within an interval of length ` that contributes to prevention of λk

from starting its execution. Note that for calculation of Ik←i(`), we limit the power

demand at each time instant to (P s
bat−P d

k + εp), since we need to know whether the

sum of all power demands at each time instant is no smaller than (P s
bat − P d

k + εp).

Now, we will describe how to calculate an upper bound of Ik←i(`).

First, if λi has a higher priority than λk, then the upper-bound of Ik←i(`) is the
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maximum energy demanded by λi in an interval of length `, which is calculated as

Wi(`) = min(P d
i , P

s
bat − P d

k + εp)×

min
(
`,
(
Ni(`) · Ld

i + min(Ld
i , `+ T d

i − Ld
i −Ni(`) · T d

i )
))
,(8.1)

where Ni(`) = b `+T
d
i −Ld

i

T d
i
c. This calculation is similar to the workload calculation of

real-time scheduling [20]. Briefly, Ni(`) implies the number of instances of λi, and

each of their periods is completely included within the interval of length ` (including

the first instance of λi), which contributes min(P d
i , P

s
bat−P d

k +εp) ·Ni(`) ·Ld
i of energy

to Wi(`). The second part of Wi(`) represents the contribution of the operation whose

period is partially included in the interval of length `. Fig. 5 in the supplementary

file [67] shows an example of Wi(`) with Ni(`) = 2, which contributes min(P d
i , P

s
bat−

P d
k + εp) · 2 · Ld

i of energy, and the third instance of λi contributes min(P d
i , P

s
bat −

P d
k + εp) ·min(Ld

i , `+ T d
i − Ld

i −Ni(`) · T d
i ) of energy to Wi(`).

Second, if λi has a lower priority than λk, then we consider two sub-cases. Since

each operation is non-preemptive, λi can execute before the start of λk’s execution,

if λi starts its execution before the release of λk. In this case, the energy demand is

upper-bounded by min(P d
i , P

s
bat−P d

k + εp) ·min(Ld
i − εt, `), which is an upper-bound

of Ik←i(`) for the first sub-case of P d
i ≥ P d

k . If P d
i < P d

k , then an upper-bound of

Ik←i(`) can be larger than the first sub-case. That is, due to our worst-case-based

work-conserving policy, it is possible for λi to start its execution before the start of

λk’s execution, whenever λk does not satisfy Line 5 of Algorithm 13 but λi does. In

this case, we use the general upper-bound Wi(`) as an upper-bound of the second

sub-case.

Combining all the results discussed so far, we develop a power guarantee analysis

as follows.



188

Lemma VIII.1. Suppose that every λk ∈ λ satisfies Eq. (8.2). Then, every instance

of every operation λk ∈ λ finishes its execution within its period of length T d
k , while

guaranteeing the sum of power demands at any time instant is no larger than the

battery power capability (i.e., S1 and S3 hold).

∑
λi∈λ\{λk}

Ik←i(T
d
k − Ld

k + εt)

< (P s
bat − P d

k + εp) · (T d
k − Ld

k + εt),(8.2)

where Ik←i(`) = Wi(`), if λk has a higher-priority than λi or P d
i < P d

k ; Ik←i(`) =

min(P d
i , P

s
bat − P d

k + εp) ·min(Ld
i − εt, `) otherwise.

Proof. As discussed so far, Ik←i(T
d
k − Ld

k + εt) in Eq. (8.2) is an upper-bound of the

amount of energy demanded by instances of λi in an interval of length (T d
k −Ld

k + εt).

Therefore, if Eq. (8.2) holds, then there exists an instant t1 within the interval, such

that the sum of power demands is less than or equal to (P s
bat − P d

k ). This means

that λk can start its execution no later than (T d
k − Ld

k) time units after its release,

implying that λk finishes its execution within its period.

The lemma works not only for an offline power guarantee for the case of the sole

supply, but also for a basis to develop an offline power guarantee for the general case

to be discussed in Section 8.5. Also, the lemma can be used for addressing a design

problem: calculation of the minimum capability of the battery cell that can supply

given λ by finding the minimum P s
bat that satisfies the lemma for given λ.

8.5 Scheduling of Multiple Power-Demand Operations with Multiple
Power-Supply Sources

This section addresses a more general situation than Section 8.4, in which addi-

tional power is sporadically generated from multiple power-supply sources such as an
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RBS and a solar panel, and immediately stored in the energy buffer or used for power-

demand operations. We will first address a scheduling challenge due to the existence

of sporadic additional power supply. Then, we present two approaches, depending

on how to distribute the additional power supply to power-demand operations.

8.5.1 A scheduling challenge

Unlike the situation where a battery pack is the only power-supply source dis-

cussed in Section 8.4, a straightforward approach cannot yield a system-level power

guarantee, as shown in the following example.

Example VIII.2. Suppose that additional power is supplied by Γ1 in [t1, t2), while

the battery pack is the only supply in [t0, t1) and [t2, t3), where t0 < t1 < t2 < t3,

as shown in Fig. 6 (a) in the supplementary file [67]. Also, there are two operations

λ1 and λ2 ready to execute at t0, and λ1 ≤ P s
bat and λ1 + λ2 > P s

bat, as shown in

Fig. 6 (b) in the supplementary file [67]. Suppose that we apply the worst-case-based

work-conserving policy in Algorithm 13, implying we start execution of an operation

in the ready queue as long as the system has enough remaining power supply to

accommodate the worst-case power demand of the operation. Then, λ2 can start its

execution at t1, but there is a problem at t2, at which power supplied by Γ1 ends.

In [t2, t3), the total amount of power demand is strictly larger than that of power

supply, entailing either eviction of one of “non-preemptive” operations, or risking

power shortage in executing operations, both of which are considered as a system

failure.

Example VIII.2 shows the need for a more fine-grained way to handle additional

sporadic power-supply sources. To meet this need, we consider two policies depending

on how to distribute the additional supply as follows.
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• Calculate the additional “guaranteed” uniform supply P s
uni, meaning that addi-

tional power-supply sources (and the energy buffer) can always provide power

as much as P s
uni (as the battery pack provides up to P s

bat). This entails the

calculation of P s
uni; once it is calculated, we can reuse the power scheduling

and analysis framework presented in Section 8.4, by adding P s
uni to the existing

uniform supply P s
bat. In this case, all operations can share the power generated

by additional power-supply sources.

• Assign additional power to a partial set of operations. Power generated by

additional power-supply sources (and stored in the energy buffer) is used only

when the operations in the partial set are executed. This entails the way to

divide power generated by additional power-supply sources for individual power-

demand operations.

In what follows, we will detail the above two approaches, including their scheduling

frameworks.

8.5.2 Uniform supply approach

In this approach, we calculate the additional guaranteed uniform supply P s
uni from

additional power-supply sources. After calculating P s
uni, we can reuse the scheduling

framework in Algorithm 13. That is, we just change the P s
bat term in Line 5 to

P s
bat + P s

uni. The main issue of this approach is to accurately calculate P s
uni; the

larger P s
uni, the more operations to be accommodated.

The basic idea to obtain P s
uni is to calculate the amount of the minimum supplied

energy in [0, t) by considering the fact that the energy buffer has at least P s
UC ·Ls

UC of

energy at 0 and each additional supply generates power at the end of its instances’

periods. If we divide this amount by t and take the minimum, we guarantee to supply
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power as much as P s
uni in [0, t), as stated in the following lemma.

Lemma VIII.3. We can calculate P s
uni using the following equation.

P s
uni = min

0≤t≤LCM

f(ΓUC, t) +
∑

Γi∈Γ f(Γi, t)

t
,(8.3)

where LCM is the least common multiple of {T s
i }Γi∈Γ,

f(ΓUC, t) = P s
UC · min(t, Ls

UC), and(8.4)

f(Γi, t) =P s
i ·
⌊
t

T s
i

⌋
· Ls

i

+ P s
i · max

(
0, t−

⌊
t

T s
i

⌋
· T s

i − (T s
i − Ls

i)

)
.(8.5)

Proof. Since the amount of energy in the energy buffer at t = 0 is at least P s
UC · Ls

UC,

the amount of the supplied energy from the energy buffer in [0, t) is P s
UC · t if t ≤ Ls

UC,

and at least P s
UC ·Ls

UC otherwise, which is recorded in f(ΓUC, t) of Eq. (8.4). For given

t, b t
T s
i
c means the number of instances of λi whose periods are completely included

in [0, t), and each instance generates energy no smaller than P s
i · Ls

i . The second

term of Eq. (8.5) presents the minimum energy generated by the last instance whose

period is partially included in [0, t). Therefore,
∑

Γi∈Γ f(Γi, t) represents the amount

of generated energy by Γ in [0, t). Since we assume that the capacity of the energy

buffer is sufficiently large, we can always use power as much as the lower-bound of

f(ΓUC,t)+
∑

Γi∈Γ f(Γi,t)

t
for 0 ≤ t ≤ LCM.

If LCM is very large or time-complexity is critically important, e.g., for online

admission control for operations, we need a tractable way to calculate P s
uni, which is

covered in Lemma 1 of the supplementary file [67].

Finally, we can check a power guarantee of this approach by applying Lemma VIII.1

for all λk ∈ λ and replacing P s
bat with P s

bat + P s
uni.

8.5.3 Dedicated supply approach

In this approach, we can determine λded, a set of operations completely powered

by a set of additional power-supply sources Γ and the energy buffer ΓUC. Once we
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determine λded, operations in λ\λded can be executed according to Algorithm 13, and

their power guarantee is judged by Lemma VIII.1 with λ \ λded. On the other hand,

each operation in λded is fully supplied by Γ with ΓUC, and does not use power from

Γbat. Our policy is to execute each operation in λded at the end of each period, which

accommodates more operations in λded (because this policy uses less initial energy

from the energy buffer). Formally, λk ∈ λded starts its execution at r+T d
k −Ld

k, where

r is the release time of an instance of λk, and ΓUC supplies P d
k (t) (≤ P d

k ) amount of

power to λk in [r + T d
k − Ld

k, r + T d
k ).

Then, the remaining step is to determine λded. The basic idea is to calculate the

maximum energy demanded by λded in [0, t) and the minimum energy supplied by

Γ and ΓUC in [0, t). We check whether the former is not larger than the latter at all

times, which is stated in the following lemma.

Lemma VIII.4. Every instance of every operation λk ∈ λded finishes its execution

at the end of each period (e.g., [r + T d
k − Ld

k, r + T d
k ) where r is the release time

of an instance of λk), only with Γ and ΓUC, if the following inequality holds for all

t ∈ [0, LCM). ∑
λi∈λded

f(λi, t) ≤ f(ΓUC, t) +
∑
Γi∈Γ

f(Γi, t), and(8.6)

f(λi, t) =P d
i ·
⌊
t

Ti

⌋
· Ld

i

+ P d
i · max

(
0, t−

⌊
t

T d
i

⌋
· T d

i − (T d
i − Ld

i)

)
.(8.7)

Proof. Since f(λi, t) in Eq. (8.7) exhibits the same formula as Eq. (8.5), it calculates

the maximum energy demanded by λi in [0, t) when its instances are executed at

the end of their periods. Therefore, the LHS (Left-Hand Side) of Eq. (8.6) is the

maximum energy demanded by λded in [0, t). On the other hand, the RHS (Right-

Hand Side) of the equation is the minimum energy supplied by Γ and ΓUC in [0, t) as

explained in Lemma VIII.3. Therefore, the lemma follows.
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Note that if time-complexity is important, we can use another necessary condition

presented in Lemma 2 in the supplementary file [67].

The remaining problem is then how to select λded that satisfies Lemma VIII.4 (or

Lemma 2). Here we describe a simple, but effective heuristic. We sort λi ∈ λ, based

on the ratio of the LHS to the RHS of Eq. (8.2). If the ratio of λi is larger than that

of λk, we interpret that λi is more difficult to satisfy Eq. (8.2) than λj. Therefore,

starting from λded = ∅, we repeat the following step until there is no operation to be

moved: we select an operation λj with the largest ratio among operations in λ \ λded

such that λded ∪ {λj} satisfies Lemma VIII.4, and then add λj to λded.

Finally, we can check the power guarantee of this approach by checking Lemma VIII.1

only with λi ∈ λ \ λded. Note that for λi ∈ λded, we automatically guarantee their

power sufficiency in that λded is constructed so as to supply all power demands in

λded by Γ and ΓUC without Γbat.

8.6 Online Power Management

If one performs a set of power-demand operations under a set of power-supply

sources that satisfy the offline power guarantee analysis in Section 8.5, there will be

extra energy stored in the energy buffer as the analysis is based on the minimum

(not actual) power supply. Thus, we propose an online power management frame-

work, which adaptively controls power of the energy buffer effectively to reduce the

battery’s peak power that achieves the goal in Section 8.3.

Our framework periodically controls power of the energy buffer, as shown in

Fig. 8.3 and Algorithm 14. At t0, the beginning of each period (for online power

management) of length tp, we calculate the amount of energy in ΓUC, which is nec-

essary for an offline power guarantee for the current period [t0, t0 + tp) (denoted by
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Figure 8.3: Online power management

Algorithm 14 Online Power Management

The following steps are performed at t0, the beginning of each period of length tp,

1: Calculate Em
buf(t0) depending on the uniform/dedicated supply approach.

2: Calculate Ebuf(t0) by 1
2 · Cbuf · V 2

buf(t0).
3: // Calculate P s*

bat(t0) as follows.
4: P s*

bat(t0)← P s
bat // The initial threshold is the battery capacity.

5: Eadd ← 0
6: while Ebuf(t0)− Em

buf(t0) ≥ Eadd do
7: P s*

bat(t0)← P s*
bat(t0)− εp

8: Eadd =
∫ t0
t0−tp max(ΣP d

i (t)− P s*
bat(t0), 0) dt

9: end while

Em
buf(t0)) as follows. For the uniform power-supply approach in Section 8.5.2, Em

buf(t0)

is simply calculated by tp ·P s
uni since the offline power guarantee exploits the property

that P s
uni of power is always supplied by Γ. For the dedicated supply approach in

Section 8.5.3, we calculate Em
buf(t0) using the amount of energy consumed by λded

based on their maximum power demand parameters (i.e., P d
i , not P d

i (t)) during the

interval.

Once Em
buf(t0) is calculated, we can utilize the energy from ΓUC up to the difference

between the amount of total energy stored in ΓUC at t0 (denoted by Ebuf(t0)) and

Em
buf(t0). Note that we can measure the amount of energy in ΓUC by monitoring the
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voltage level of ΓUC at t0 (denoted by Vbuf(t0)), using Ebuf(t0) = 1
2
· Cbuf · V 2

buf(t0),

where Cbuf is a constant representing the capacitance of ΓUC [65]. Lines 1 and 2 of

Algorithm 14 represent the calculation of Em
buf(t0) and Ebuf(t0).

Then, we utilize the extra energy up to as much as Ebuf(t0)−Em
buf(t0), for reducing

the battery’s peak power. We use energy from the energy buffer if the power usage

of the battery pack is larger than a threshold P s*
bat(t0). We determine P s*

bat(t0) for the

current period [t0, t0 + tp), using the history of the previous period [t0− tp, t0), which

is the amount of actual energy consumption by λ during that period. As shown

in Lines 3–9 of Algorithm 14, we repeat the following process: for given P s*
bat(t0),

we check if the additional amount energy to keep the peak demand no larger than

P s*
bat(t0) (denoted by Eadd) is not larger than the available energy Ebuf(t0)−Em

buf(t0).

If yes, we increase P s*
bat(t0) by εp and repeat the process; otherwise, we stop the

process.

Finally, for given Em
buf(t0) and P s*

bat(t0), the online power management framework

controls the energy stored in the energy buffer within a period [t0, t0 + tp) as follows.

Suppose that the battery pack should supply X amount of power if there is no supply

from ΓUC at t for the purpose of the peak power reduction.5 Then, the energy buffer

supplies X −P s*
bat(t0) of power, only when X ≥ P s*

bat(t0) and Ebuf(t) ≥ Em
buf(t0) hold.

8.7 Evaluation

We now evaluate our offline power-supply guarantee analysis and online power

management, focusing on whether or not they meet the goals stated in Section 8.3.

We first introduce a prototype consisting of sub-devices and a HESS, and the required

power-demand operations. We then present experimental results, demonstrating the

5The amount of energy ΓUC (the energy buffer) should supply at t for an offline power guarantee is already figured
in X.
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HESS’s power-supply guarantee and reduction of energy dissipation. Fig. 8.4 shows

the overall evaluation process.

Online power management  
(Sec. 8.6) 

Required power demand operations 
Available HESS configuration 

Schedulability analysis   
(Sec. 8.4 & 8.5) 

Energy dissipation Power capability guarantee 

Power demand & supply model Prototype design (hardware & software) 

Figure 8.4: The evaluation process used

8.7.1 Prototype design

We have built a prototype which is equipped with wheels, wheel motors, stepper

motors, coolers and a HESS including a pack of lithium-ion batteries, a pack of UCs,

an RBS and solar panels as shown in Fig. 8.5. The required power demand opera-

tions and specifications of energy sources/storage are detailed in Tables 8.1 and 8.2,

and the supplementary file [67]. We can determine the parameters of power-demand

operations and power-supply sources from their power demand/supply profiles and

specifications. Based on the parameters, we determine the optimal number of bat-

teries achieving a power-supply guarantee for the system via the power guarantee

analysis in Sections 8.4 and 8.5. We have then executed various sequences of opera-

tions while recording battery states to evaluate the proposed system.

System architecture of the prototype

The architecture is required to execute operations of user applications or the

system maintenance, and assign the available resources for their execution. Our

prototype system consists of a single master and multiple local controllers. The
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Tasks T s(s) Ls(s) P s(W )

Γ1 6 2 3
Γ2 6 1.5 3
Γ3 1.5 0.2 0.2
ΓUC 3 3
Γbat 40

Table 8.1: Power supply

master controller is responsible for scheduling real-time operations using scheduling

frameworks in Sections 8.4 and 8.5, and sending messages to the local controller over

the CAN bus [36]. Several Arduino boards are used as local controllers to actuate

sub-devices according to the messages from the master controller. Our HESS consists

of lithium-ion batteries (Γbat), UCs (ΓUC), switched-mode converters, regenerative

braking system (Γ3), solar panels (Γ1,Γ2), and controllers that can monitor the state

of the HESS and communicate with the master controller, all of which are detailed in

the supplementary file [67]. The master controller can also regulate power supply of

each energy storage via the converter control. Table 8.1 shows power supply models

from renewable energy sources.

Applications and tasks

To make our experiments more realistic, we have obtained real driving data from

“The US Environmental Protection Agency (EPA)” [3]. Our drive application is

programmed to operate wheel motors to achieve the driving profile. Our motor

control (λ1) depends on the PID controller to achieve the required speed, and its

control interval (T d
1 ), maximum acceleration time (time to achieve the target speed,

Ld
1), and the maximum power (P s

1 ) are 5s, 1s, and 12W, respectively. To reflect

various user applications, we also ran applications that sporadically actuate motors

(λ4 and λ5). Some applications actuate stepper motors to control position (λ2), while

others (λ3) use thermal fins to regulate temperature for system thermal stability. The
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Tasks T d(s) Ld(s) P d(W )

λ1 5 1 12
λ2 3 1 9.6
λ3 2 1 6
λ4 2 1 6
λ5 3 2 7.2

Table 8.2: Power demand operations

CAN bus 

DC bus 

Master controller 

App 1 App 3 Sys 1 Sys 3 

DC/DC 
Converter 

DC/DC 
Converter 

DC/DC 
Converter 

Driver Driver Driver 

Local 
controllers 

(ECUs) 

Figure 8.5: Prototype overview

power demand operations are shown in Table 8.2.

8.7.2 Evaluation results

Our offline power-supply guarantee analysis and online power management are

evaluated in terms of power guarantee and the amount of energy dissipation reduc-

tion, respectively.

Offline power-supply guarantee analysis

As mentioned in the description of our prototype, we schedule the five operations

using the three scheduling frameworks in Sections 8.4, 8.5.2 and 8.5.3, and record the

minimum battery capability needed to pass the power guarantee analysis, as follows.

• PS1: the minimum required battery capability under the scheduling framework

in Section 8.4 (no additional renewable power sources),
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Figure 8.6: Power demand profile when the battery pack is the sole power supply

• PS2-UNI: the minimum required battery capability under the scheduling frame-

work in Section 8.5.2 (uniform supply approach with renewable sources), and

• PS2-DED: the minimum required battery capability under the scheduling frame-

work in Section 8.5.3 (dedicated supply approach with renewable sources).

Fig. 8.6 shows the battery power profile under the scheduling framework in Sec-

tion 8.4. As references, we compare PS1 with MAX and AVG, which denote the sum

of the maximum power demand (i.e.,
∑

λi∈λ P
d
i ), and the average of the maximum

power demand (i.e.,
∑

λi∈λ
P d
i ·Ld

i

T d
i

). AVG could not supply the sufficient power in the

worst case, because most electric systems do not require power constantly. While

MAX and PS1 guarantee power capability only with the battery pack, PS1 (34.8W)

reduces the required battery capability, compared to MAX (40.8W). Note that PS1

can be used as a battery capability when it is difficult to estimate power supply from

renewable energy sources.

When it comes to PS2-UNI and PS2-DED, they further reduce the required battery

capability (consuming 29.7W and 25.3W, respectively). Between the two, PS2-DED

is the most reasonable for a power guarantee, in that it can reduce the required

battery capability by 38%, compared to MAX, a naive approach without utilizing

renewable energy sources.
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Schemes Ploss(mW )

PS2-UNI & BE 526
PS2-UNI & OPM 352
PS2-DED & BE 390
PS2-DED & OPM 334

Table 8.3: Average discharge stress energy dissipation Ploss

Figure 8.7: Battery discharge current profile under PS2-UNI & BE and PS2-UNI & OPM, which
shows that our online power management helps reduce peak battery discharge current
considering energy generation rate and power demand history

Online power management

We now compare the average dissipation power in batteries during an opera-

tion interval [0, 600), under our online power management (OPM) and the best-

effort approach (BE) that enforces the use of buffer energy as long as energy re-

mains in the buffer. Since we have two scheduling frameworks for buffer usage, we

have four approaches to compare: PS2-UNI & BE, PS2-UNI & OPM, PS2-DED &

BE and PS2-DED & OPM. Note the average dissipation is calculated by Ploss =

1
tmax

∫ tmax
0

P s
bat-loss(t) dt = 1

tmax

∫ tmax
0

I2
bat(t) ·Rbat(t) dt, as mentioned in Section 8.3.

Table 8.3 shows the energy dissipation during the operation interval. For a given

underlying scheduling framework, OPM significantly reduces the energy dissipation

over BE. That is, under PS2-UNI and PS2-DED, the amounts of energy dissipation

reduction by OPM over BE are 33.1% and 14.4%, respectively. This observation can

be explained using Fig. 8.7 that presents the battery discharge current profile under

PS2-UNI & BE and PS2-UNI & OPM. From the figure, we can easily observe that

PS2-UNI & BE fails to supply power when the peak current occurs, while PS2-UNI &
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OPM effectively reduces the peak current. For example, if we focus on a time instant

that exhibits the highest peak current (around t = 90), PS2-UNI & OPM successfully

reduces the peak current, while PS2-UNI & BE cannot. This is because PS2-UNI &

BE consumes much energy when power demand is low (around t = 80), as shown in

the figure.

On the other hand, if we compare the underlying scheduling frameworks, PS2-DED

outperforms PS2-UNI. However, the gap between the two is significantly reduced if we

apply OPM (352 versus 334, as opposed to 526 versus 390). This also substantiates

the effectiveness of OPM in reducing energy dissipation.

8.8 Conclusion

In this chapter, we have proposed a power scheduling framework—as a guideline

for the design of a HESS—that ensures power sufficiency for the worst-case power

demand and supply. To improve the runtime performance of the HESS further, we

have also designed an online power management framework that utilizes the surplus

energy from a real-time power supply, reducing the battery’s peak power and hence

extending its lifetime. We have validated the design with a HESS-powered prototype

system running realistic applications, demonstrating power sufficiency with a lower-

cost HESS and higher energy-efficiency.

In future, we would like to develop a design framework for general energy stor-

age systems based on a power guarantee analysis. It will search for the optimal

configurations of energy storage systems at their design or replacement time while

considering power demand history and power supply’s state-of-health. We also plan

to build a power/energy management system that not only schedules power demand

and supply, but also monitors and pro/diagnoses energy storages/sources.



CHAPTER IX

Conclusion

9.1 Concluding remarks

To meet increasing demands for making EVs less expensive and safer, BMSes

should be designed to cope with battery degradation and reliability. In this disserta-

tion, we have proposed a new real-time, integrated BMS that diagnoses the battery

states, analyzes the impact of operating conditions on the battery states and reg-

ulates the conditions including the operating voltage range, discharge/charge and

thermal stress to batteries based on the analysis. This system adaptively analyzes

and reacts to real-time changes in charge and temperature. To introduce adaptabil-

ity into BMSes, we proposed a real-time battery power requirement predictor (PRP)

and a data-driven diagnosis/prognosis system. To cope with harsh discharge/charge

rates, one of the major operating conditions reducing battery operation-time and

life, we presented a reconfigurable hybrid energy storage system (HESS). The HESS

consists of multiple energy storages, each with different characteristics. It utilizes a

battery discharge/charge rate management algorithm that determines, in real time,

the amount of energy needed and identifying the proper configuration of the HESS

to efficiently achieve this energy level. Our system also manages and addresses the

issues related to battery temperature. Thermal management is key to addressing

202
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a better BMS, because it impacts the electrical state of the battery, as well as its

operation-time and lifetime. Using battery thermal management, our BMS can se-

lectively and timely cool/heat battery cells. Although this framework was designed

for large-scale EV batteries, it can also be used for other types of batteries, including

metal air batteries, Lithium–sulfur batteries and fuel cells. While these batteries

have their own thermal characteristics, power and energy densities, the scheduled

discharge/charge current can be reconfigured based on other battery behavior mod-

els, because battery behavior models are extracted by using behavioral data from

the batteries installed in the system.

9.2 Future Directions

This section makes recommendations for future research in building reliable BM-

Ses. More work is needed to improve not only the battery performance, as is the

focus of this thesis, but also battery fault detection in a large-scale system and

remote/wiress battery management system. For this, we must detect and correct

abnormal battery operations to preserve functionality during the warranty period.

The International Electrotechnical Commission (IEC) requires that electric vehicles

possess certain battery fault diagnosis functions [89]. These functions alarm drivers

and service stations of unhealthy batteries and general aging information. The re-

mote/wireless battery management system can facilitate battery data analysis via

cloud server/computing resources.

9.2.1 Battery fault model

Most battery fault detection research uses the battery’s current and voltage pat-

terns during the charge/discharge period to detect potential faults in a battery

pack [132, 133]. These methods require to record the actual battery’s voltage and
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Figure 9.1: Remote battery diagnosis/prognosis system

current data, and then compare the data with current and voltage patterns from a

similar healthy battery in the server. This method is based on the idea that bat-

tery degradation will result in an abrupt change in the battery’s discharge/charge

voltage. Other researchers have used fuzzy logic or bayesian techniques to create

battery fault diagnosis models [126, 89, 124]. They first analyzed the relationship

between the changes in external characteristics throughout a typical battery’s life

or state. Then, a fault diagnosis model for the battery pack was built using fuzzy

mathematical theory or Bayesian statistical estimates to determine the health level

of a battery based on changes in external characteristics.

9.2.2 Remote diagnosis/prognosis for large-scale batteries

Currently, fault diagnosis has become a new discipline. However, there are some

requirements for a practical diagnosis/prognosis system. Since EVs are equipped

with many battery modules and cells – Tesla Motors Model S battery pack (85 KWh
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model) consists of 16 modules, each containing 444 battery cells – we cannot measure

the voltage, current, and temperature of each cell in a module/pack. Therefore, we

need a diagnosis/prognosis and a fault detection system for large-scale batteries with

a limited number of sensors. A wireless BMS facilitates the deployment of sensors at

the optimal locations while addressing the persistent reliability issues associated with

automotive wiring harnesses and connectors in electric and hybrid/electric vehicles.

Also, the remote BMS can estimate the battery state-of-health and fault conditions

more accurately via data analysis tools and battery behavior data stored in the large

data servers.

9.2.3 Battery efficient autonomous driving

We have designed a real-time battery management system that analyzes vehicle

power requirements and battery state-of-health. Based on thus analysis, we can pro-

pose an adaptive driving and battery control system. In addition to the conventional

adaptive (autonomous) driving system that focuses only on safety distance, nearby

objects and driving fluency, we can also take into account the battery efficiency and

degradation. Furthermore, during autonomous driving, power requirement no longer

depends on a driver’s driving pattern. This independence of the human factor al-

lows for a more predictable power requirement for autonomous driving, potentially

leading to more sophisticated and effective energy component power distribution.
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