
Regulating and Securing the Interfaces Across
Mobile Apps, OS and Users

by

Huan Feng

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2016

Doctoral Committee:

Professor Kang G. Shin, Chair
Professor J. Alex Halderman
Professor Atul Prakash
Associate Professor Zhengya Zhang

c© Huan Feng 2017

All Rights Reserved

To my family and many other important people in my life.

ii

ACKNOWLEDGEMENTS

I am glad to spend some of my best years in Real-Time Computing Laboratory,

and would like to give special thanks to my advisor, Professor Kang Shin. During

the five years of my Ph.D., I learned how to propose, formalize, design, implement,

evaluate and sell an idea, which will be impossible without his guidance, support

and patience. I especially appreciate the degree of freedom we have in the lab and

his encouragement to pursue “something really excites you and makes you happy.”

These values endure beyond graduate school and research and are particularly rare in

today’s fast-paced society. I would also like to thank Professor Alex Halderman, Atul

Prakash and Zhengya Zhang for serving in my dissertation committee and providing

invaluable feedback.

I appreciate the help and support from the past and current members of the RTCL

family. Kassem Fawaz has been a great friend and I will always remember the days

and nights we work together and many of our long and enjoyable talks. I would also

like to thank Dongyao Chen, Seunghyun Choi, Arun Ganesan, Sihui Han, Xiaoen Ju,

Yu-Chih Tung and Michael Zhang for the useful discussions and feedback, and those

good memories we shared together.

I would like to thank my family for their unconditional support through this jour-

ney to which I am deeply indebted. I am also grateful to the accompany of my friends

and roommates, Kenneth Cheng, Yan Dong, Jing Zhang for their understanding and

support during the past few years. The love of yours gives me courage and endurance

to persist.

iii

Finally, I would like to gratefully acknowledge support of the US National Science

Foundation under Grants CNS-1114837 and CNS-1505785.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xii

ABSTRACT . xiii

CHAPTER

I. Introduction . 1

1.1 An Overview of the Mobile Ecosystem 2
1.2 Problems . 5

1.2.1 Insecure Client-side IPCs 5
1.2.2 Unregulated Cloud-side Profiling 6
1.2.3 Unprotected Voice Interaction Channel 6

1.3 Contributions . 7
1.3.1 Understanding and Defending the Binder Attack Sur-

face . 7
1.3.2 Reducing Unregulated Aggregation Across App Us-

age Behaviors . 7
1.3.3 Enabling Unlinkability of Mobile Apps in User-level 8
1.3.4 Continuous Authentication for Voice Assistants . . . 8

II. Understanding and Defending the Android Binder Attack
Surface . 10

2.1 Introduction . 10
2.2 Related Work . 14
2.3 Android IPC and Binder . 15

2.3.1 Binder . 16

v

2.3.2 Android Interface Description Language (AIDL) . . 16
2.3.3 System Service . 17

2.4 Binder: The Attack Surface 18
2.4.1 Attack Model . 19
2.4.2 Overview of Vulnerabilities 19
2.4.3 Root Cause Analysis 21

2.5 Effective Vulnerability Discovery 24
2.5.1 Unique Challenges 24
2.5.2 BinderCraker: Design Overview 25
2.5.3 Transaction Redirection 27
2.5.4 Transaction Fuzzing 28
2.5.5 Experimental Results 30

2.6 Defenses . 31
2.6.1 Precautionary Testing 31
2.6.2 Security Implications 32
2.6.3 Vulnerabilities: Fixed and Unfixed 35
2.6.4 Runtime Diagnostics and Defenses 35

2.7 Discussion . 39
2.8 Conclusion . 39

III. Reducing Unregulated Aggregation of App Usage Behaviors 41

3.1 Introduction . 41
3.2 Privacy Threats: A New Perspective 45

3.2.1 Threat Model . 46
3.2.2 Linkability: A New Perspective 46

3.3 Dynamic Linkability Graph 48
3.3.1 Basic Concepts . 48
3.3.2 Definitions and Metrics 49
3.3.3 Sources of Linkability 51
3.3.4 DLG: A Mobile OS Extension 52

3.4 Linkability in Real World . 56
3.4.1 Deployment and Settings 56
3.4.2 Data and Findings 57
3.4.3 Functional Analysis 60

3.5 LinkDroid: A Practical Countermeasure 62
3.5.1 Design Overview . 62
3.5.2 Install-Time Obfuscation 63
3.5.3 Runtime Linkability Monitoring 64
3.5.4 Unlinkable Mode 67
3.5.5 Evaluation . 67

3.6 Related Work . 71
3.7 Discussion . 72
3.8 Conclusion . 73

vi

IV. Enabling Unlinkability of Mobile Apps in User-level 75

4.1 Introduction . 75
4.2 Background & Challenges . 77

4.2.1 Unregulated Aggregation 77
4.2.2 Practical Challenges 79

4.3 MASK: A Client-side Design 81
4.3.1 Basic Design Idea 81
4.3.2 App Usage Patterns 81
4.3.3 Aligning Usage Pattern with Privacy 82
4.3.4 Private Execution Modes 83

4.4 Implementation & Evaluation 85
4.4.1 User-Level Sandbox 85
4.4.2 Sandbox Manager 88
4.4.3 APK Rewriter . 90
4.4.4 Performance Overhead 92
4.4.5 Applicability . 94

4.5 Related Work . 95
4.6 Conclusion . 96

V. Continuous Authentication for Voice Assistants 97

5.1 Introduction . 97
5.2 Related Work . 101
5.3 Background . 102

5.3.1 Human Speech Model 102
5.3.2 Speech Recognition and MFCC 103

5.4 System and Threat Models 104
5.4.1 System Model . 104
5.4.2 Threat Model . 105

5.5 VAuth . 106
5.5.1 High-Level Overview 106
5.5.2 Prototype . 108
5.5.3 Usability . 109

5.6 Matching Algorithm . 114
5.6.1 Pre-processing . 115
5.6.2 Per-Segment Analysis 116
5.6.3 Matching Decision 118

5.7 Phonetic-Level Analysis . 121
5.7.1 Accelerometer Energy & Recognition 123
5.7.2 Phonemes Detection Accuracy 125
5.7.3 Idle Detection Accuracy 126

5.8 Theoretical Analysis . 127
5.8.1 Model . 127
5.8.2 Per-segment Analysis 130

vii

5.8.3 False Positive Rate 131
5.9 Evaluation . 132

5.9.1 User Study . 133
5.9.2 Security Properties 136
5.9.3 Delay and Energy 141

5.10 Discussion . 143
5.11 Conclusion . 143

VI. Conclusions And Future Works 145

6.1 Conclusions . 145
6.2 Future Directions . 147

BIBLIOGRAPHY . 149

viii

LIST OF FIGURES

Figure

1.1 An overview of the mobile ecosystem. 3
1.2 The trust relationship between three parties in the mobile ecosystem. 4
2.1 An example AIDL file which defines the interface of a service that

implements a queue. 17
2.2 How does an app communicate with a system service using Binder-based

RPC (using Wi-Fi service as an example)? The red shaded region rep-

resents the codes that need to be provided/implemented by the service

developer. 17
2.3 A typical attack scenario. By injecting faulty transactions via the Binder

driver, an attacker can bypass the sanity check on public API and AIDL

enforcement, and directly challenge the server-side. 19
2.4 List of Android ROMs we tested using BinderCracker. 20
2.5 Vulnerabilities grouped by types of exception. 21
2.6 The constructor of the RemoteView class contains a loophole which can

cause a StackOverflow exception. Specifically, a bad recursion will occur

if the input Parcel object follows a specific pattern. 23
2.7 When fuzzing a transaction, we need to replay the supporting transactions

according to their relative order in the dependency graph. This way, all

the remote objects this transaction requires will be reconstructed during

runtime. 26
2.8 The data struct sent through the Binder diver via the ioctl libc call. This

struct contains three important pieces of information we need to modify

to send a fuzzing transaction. 27
2.9 How does BinderCracker generate semi-valid fuzzing transactions from

seed transactions. 29
2.10 The internal type structure of a non-primitive data type, Intent, gener-

ated by recording the de-serialization process of each non-primitive type.

Note that this type structure is dynamic — it depends on what has been

put into this Intent during runtime. 29
2.11 Many of the vulnerabilities we identified are found to be able to crash the

entire Android Runtime (system server), while others can cause specific

system services (mediaserver) or system apps (nfc, contacts, etc) to fail. . 33

ix

2.12 The constructor of the native handle has an Integer Overflow vulnera-

bility that can cause a heap corruption on the server-side. This can lead

to privileged code execution in system server. 34
2.13 Number of the vulnerabilities that are fixed, disappeared and unfixed. . . 36
2.14 A detailed crash report which includes the system service under attack (0),

transaction sender (1 and 2), schema (3), position of the parsing cursor

(4) and raw content (5). 37
2.15 User receives a visual prompt in case of transaction failure and can choose

to block it to counter continuous DoS attack. 38
3.1 An illustrative example of DLG. Edges of different types represent linka-

bility introduced by different sources. 49
3.2 We instrument system services (red shaded region) to record which app

accessed which identifier using Wi-Fi service as an example. 53
3.3 We extend the centralized intent filter implemented in the Android frame-

work (com.android.server.firewall.IntentFirewall) to intercept all

the Intents across apps. 53
3.4 We instrument Content Provider (shaded region) to record which app

accessed which database with what parameters. 54
3.5 We customize the FUSE daemon under /system/core/sdcard/sdcard.c

to intercept apps’ access to shared external storage. 56
3.6 For an average user, more than 80% of the apps are installed in the first two

weeks after deployment; each app accesses most of the linkability sources

it’s interested in during the first day of its installation. 57
3.7 The percentage of apps accessing each source, and the linkability (LR) an

app can get by exploiting each source. 58
3.8 The (average) Linking Efforts (LE) of all the apps that are linkable due

to a certain linkability source. 59
3.9 Real-world example of indirect RW: an app (fm.qingting.qradio) writes

user identifiers to an xml file in SD card which was later read by three

other apps. This file contains the IMEI (DID) and SubscriberID (SI) of

the user. 60
3.10 An overview of LinkDroid. Shaded areas (red) represent the parts we

need to extend/add in Android. (We already explained how to extend A,

B, C and D in Section 3.3.4.) . 62
3.11 The UI prompt of LinkDroid’s runtime access control, consisting of a

behavioral description, descriptive and quantitative risk indicators, and

opt-out options. 65
3.12 LinkDroid provides a centralized linkability manager. The user can review

and modify all of his previous decisions regarding each app. 66
3.13 The Global Linking Ratio (GLR) of different categories of sources before

and after using LinkDroid. 68
3.14 The Global Linking Ratio (GLR) of different users before and after using

LinkDroid. 68
3.15 DLG of a representative user before (a) and after (b) applying LinkDroid.

Red circle represents the Facebook app. 70

x

4.1 How usages in different app sessions (circles in the figure) are collected, ag-

gregated and propagated by smartphone apps, A&A agencies and network

sniffers. 79
4.2 Mask provides different private execution modes for each usage pattern we

classified and only app sessions that are functionally dependent on each

other are linkable. 84
4.3 How to achieve Binder IPC interception. 87
4.4 How to achieve persistent storage redirection/isolation. 88
4.5 The UI design of Mask. 90
4.6 Breakdown of apps according to their usage patterns on a per-category basis 95
5.1 The source–filter model of human speech production using the vowel

{i:} as an example. 103
5.2 The high-level design of VAuth, consisting of the wearable and the

voice assistant extension. 107
5.3 Our prototype of VAuth, featuring the accelerometer chip and Blue-

tooth transmitter, (a) compared to US quarter coin and (b) attached
to a pair of eyeglasses belonging to one of the authors. 108

5.4 The wearable scenarios supported by VAuth. 110
5.5 A breakdown of respondents’ wearability preference by security con-

cern and daily wearables. Dangerous and Safe refer to participants’
attitudes towards the attacks to voice assistants after they’ve been
informed; the Dangerous category is further split according to the
wearables that people are already wearing on a daily basis; Yes and
No refer to whether participants are willing to use VAuth in at least
one of three settings we provided. 112

5.6 Pre-processing stage of VAuth’s matching. 114
5.7 Per-segment analysis stage of VAuth. 117
5.8 Matching decision stage of VAuth’s matching. 119
5.9 Analysis of the vibrations received by the accelerometer. 123
5.10 Examples of tested noise signals. 125
5.11 The detection accuracy of VAuth for the 18 users in the still position. 134
5.12 The energy levels of the outlier users (in Fig. 5.11c) compared to

average users. The circles represent commands of the outlier users
that VAuth fails to match. 134

5.13 The detection accuracy of VAuth for the 18 users in the moving position.136
5.14 The detection accuracy of VAuth for the 4 different languages. . . . 136
5.15 The magnitude of the sensed over-the-air vibrations by the accelerom-

eter as a function of the distance between the sound source and the
accelerometer. 138

5.16 The flow of the mangling voice analysis. 139
5.17 Current levels of the prototype in the idle and active states. 142

xi

LIST OF TABLES

Table

3.1 Apps are increasingly interested in requesting persistent and consistent

identifying information during the past few years. 47
3.2 DLG considers the linkability introduced by 10 types of OS-level informa-

tion and 3 IPC channels. 52
3.3 Linkability contributed by different categories of sources. 60
4.1 The gap of linkability: Expectation vs. Reality 83
4.2 List of commonly-used identifiers Mask anonymizes 88
4.3 UI & Sandbox Management Overhead 92
4.4 Mobile App Runtime Overhead . 93
5.1 The IPA chart of English phonetics. 122
5.2 The detection accuracy of VAuth for the English phonemes. 125
5.3 The list of commands. 133
5.4 The protections offered by VAuth. 137

xii

ABSTRACT

Regulating and Securing the Interfaces Across Mobile Apps, OS and Users

by

Huan Feng

Chair: Kang G. Shin

Over the past decade, we have seen a swift move towards a mobile-centered world.

This thriving mobile ecosystem builds upon the interplay of three important parties:

the mobile user, OS, and app. These parties interact via designated interfaces many

of which are newly invented for, or introduced to the mobile platform. Nevertheless,

as these new ways of interactions arise in the mobile ecosystem, what is enabled by

these communication interfaces often violates the expectations of the communicating

parties. This makes the foundation of the mobile ecosystem untrustworthy, causing

significant security and privacy hazards. This dissertation aims to fill this gap by:

1) securing the conversations between trusted parties, 2) regulating the interactions

between partially trusted parties, and 3) protecting the communications between

untrusted parties.

We first deal with the case of mobile OS and app, and analyze the Inter-Process

Communication (IPC) protocol (Android Binder in particular) between these two

untrusted parties. We found that the Android OS is frequently making unrealistic

assumptions on the validity (sanity) of transactions from apps, thus creating signif-

icant security hazards. We analyzed the root cause of this emerging attack surface

xiii

and protected this interface by developing an effective, precautionary testing frame-

work and a runtime diagnostic tool. Then, we study the deficiency of how a mobile

user interacts with an app that he can only partially trust. In the current mobile

ecosystem, information about the same user in different apps can be easily shared

and aggregated, which clearly violates the conditional trust mobile user has on each

app. This issue is addressed by providing two complementary options: an OS-level

extension that allows the user to track and control, during runtime, the potential flow

of his information across apps; and a user-level solution that allows the users to main-

tain multiple isolated profiles for each app. Finally, we elaborate on how to secure

the voice interaction channel between two trusted parties, mobile user and OS. The

open nature of the voice channel makes applications that depend on voice interac-

tions, such as voice assistants, difficult to secure and exposed to various attacks. We

solve this problem by proposing the first system, called VAuth, that provides contin-

uous and usable authentication for voice commands, designed as a wearable security

token. It collects the body-surface vibrations of a user via an accelerometer and con-

tinuously matches them to the voice commands received by the voice assistant. This

way, VAuth guarantees that the voice assistant executes only the commands that

originate from the voice of the owner.

This thesis gives a detailed examination of the privacy and security issues across

various interfaces in the mobile ecosystem, analyzes the trust relationship between

different parties and proposes practical solutions. We share the experience learned

from tackling these problems, and hope it will be reused when dealing with similar

issues in other domains.

xiv

CHAPTER I

Introduction

During the past decade, we have witnessed a swift move towards a mobile-centered

world. In the U.S, the majority of all digital media consumption now takes place

in the mobile ecosystem [67], and a typical smartphone user spends more than 3.5

hours per day on its smartphone device. Most of the time (more than 80 percent)

is consumed purely on mobile apps [50] and this mobile experience is taking over

every aspect of our digital life. For a large percentage of population in developing

countries, a smartphone is their first and only access to the Internet, and becomes

the daily vehicle of their payments, health, and even political systems.

Compared to traditional computing devices, such as desktops and laptops, a

smartphone has several unique properties which make its security and privacy more

critical. First, the smartphone is always connected to the Internet and always pos-

sessed by the user, which enables continuous user tracking and profiling. Second,

the smartphone is rarely shared among different users, making it the very hub for

personal information and activities. Third, the smartphone is equipped with various

sensors, and can thus see/feel the user’s physical environment. All of these make the

smartphone an attractive target of attacks.

The mobile privacy and security issues are further aggravated by the prosperity

and controversy of the mobile app ecosystem. As of the end of 2016, there are more

1

than 2 million apps available for download in Apple’s App Store and Google Play,

respectively. Anyone can also become a developer of these apps, with a deployment

fee of as low as $25, and deploy their apps at a global scale. These developers can be

inexperienced, careless or even malicious, posing great threats to smartphone users

and their information. Moreover, in some countries or areas of the world, there is no

centralized app store and users can only download apps from untrusted sources and

have to deal with hundreds of third-party app stores.

All of these challenges and threats make trust a complicated issue in the cur-

rent mobile ecosystem. Different parties need to interact in a way that both fulfills

the functional needs of each other and at the same time be aware of the potential

hostility between themselves and from others. Nevertheless, we find that as more

communication and interaction interfaces are introduced to the mobile ecosystem,

what is enabled by these interfaces often fails to comply with the trust relationship

between the two communicating parties. This makes the foundation of the mobile

ecosystem untrustworthy and results in significant security and privacy hazards. In

this chapter, we present an overview of the mobile ecosystem, analyze the trust rela-

tionship between different parties, describe the urgent problems to be addressed and

summarize our approaches to resolving these issues.

1.1 An Overview of the Mobile Ecosystem

The mobile ecosystem centers around three parties: mobile user, OS, and app (see

Fig. 1.1). The OS provides a set of API abstractions that app developers can directly

work with. These APIs drive the hardware sensors, system UIs and networking and

storage interfaces. This way, the app developer can focus on implementing the logic of

the apps, instead of being burdened with system/hardware details. User installs apps

on the smartphone OS, either manually, or through some centralized or third-party

app store. These app stores serve as the delivery channel for mobile apps and the first

2

Figure 1.1: An overview of the mobile ecosystem.

defense line against malicious app contents. When the user interacts with an app, his

usage behavior and other personal information will be collected, sent to the cloud,

and then analyzed. In some cases, this is legitimate because most apps are merely

UI abstractions and local content cache, while the actual functional logic resides in

the cloud. Examples of these apps cover the categories of shopping, news, and social

networks. However, in many cases, this tracking process is purely for advertising

purposes. The major monetization channel for mobile apps is by incorporating third-

party ad libraries which collect user demographics, locations, and behaviors, and

enable more targeted advertising.

The dynamics of the mobile ecosystem becomes interesting when considering the

trust relationship between these parties:

• OS does not trust apps. Apps running in an OS can be buggy or malicious,

and hence a modern smartphone OS typically enforces a sandbox environment

for the app’s execution. Apps can only interface with APIs exported by the

OS and extensive sanity checks are deployed around these APIs. In both An-

3

Figure 1.2: The trust relationship between three parties in the mobile ecosystem.

droid and iOS, sensitive APIs are guarded by a permission model. Each app

needs to explicitly declare the permissions it requires to fulfill its functionalities.

Specifically, Apple’s iOS adopts a runtime permission model where the user will

be prompted the first time when app tries to access certain resources, while

Android adopted an install-time permission model, which requires all requested

permissions to be reviewed during install-time. The runtime permission model

is generally believed to be more effective than install-time enforcements, and

the latest Android OS (6.0) has already made the switch to the former.

• User partially trusts apps. The user has to trust the app to some extent

if (s)he needs the service provided by the app. It is impossible for the app

to provide any useful service unless it acquires the necessary information. For

example, if the user wants to purchase some products via a shopping app,

information about the purchased items is unavoidably shared with this app.

Nevertheless, the trust the user has on an app is not unconditional — he only

trusts it with the information related to (generated in) the app. The user may

trust a map app with his location traces, but will not trust it with his financial

information or contact history.

• User trusts OS. The user needs to have a complete trust of the mobile OS.

4

In fact, if the OS is mal-intented (for example, in the case of a user installing

malicious third-party ROM), any information stored or generated in the smart-

phone is inherently insecure. The user mostly interacts with OS through a touch

screen or physical keyboard, but also starts to embrace a voice interaction chan-

nel. This is largely due to the increasing popularity of mobile voice assistant,

such as Siri and Google Now. It is important to ensure the integrity of these

interaction surfaces is not compromised, making sure the trust relationship be-

tween mobile OS and the user is not exploited.

1.2 Problems

This dissertation investigates the cross-party interfaces in the current mobile

ecosystem. Many of these interfaces are either newly invented for, or introduced

to the mobile world and does not fit the complicated trust relationship across parties.

This dissertation aims to identify these gaps and 1) secure the conversations between

trusted parties, 2) regulate the interactions between partially trusted parties, and 3)

protect the communications between untrusted parties. Specifically, it focuses on the

following problems.

1.2.1 Insecure Client-side IPCs

First, we deal with the case of two opposing parties, mobile OS and app, and

analyze the Inter-Process Communication (IPC) protocol between them. In Android,

communications between apps and system services are supported by a transaction-

based IPC mechanism. Binder, as the cornerstone of this IPC mechanism, separates

two communicating parties as client and server. As with any client–server model, the

server should not make any assumption on the validity (sanity) of client-side trans-

actions. To our surprise, this principle is found to have frequently been overlooked

in the implementation of Android system services. We want to find why develop-

5

ers keep making this seemingly simple mistake and how to defend against emerging

vulnerabilities on this attack surface.

1.2.2 Unregulated Cloud-side Profiling

Then, we study the deficiency of existing mobile user interactions with apps, the

party that he can only partially trust. From the user’s perspective, his behaviors in

different smartphone apps capture different views of his life, and are largely inde-

pendent of each other. These views are supposed to be kept as ‘isolated islands’ of

information and stored separately. However, in the current mobile app ecosystem, a

curious party can covertly link and aggregate usage behaviors of the same user across

different apps. In fact, once the users’ behavioral information is at the apps’ hands, it

may be shared or leaked in an arbitrary way without the users’ control or consent. We

refer to this as unregulated aggregation of app-usage behaviors. How to characterize

and further reduce this threat remains a question to be answered.

1.2.3 Unprotected Voice Interaction Channel

Last, we turn our attention to the voice interaction channel between two trusted

parties, mobile user and OS. Voice has become an increasingly popular User Inter-

action (UI) channel, largely contributing to the ongoing trend of wearables, smart

vehicles, and home automation systems. Voice assistants such as Siri, Google Now,

and Cortana, have become our everyday fixtures, especially in scenarios where touch

interfaces are inconvenient or even dangerous to use, such as driving or exercising.

Nevertheless, the open nature of the voice channel makes voice assistants difficult to

secure and exposed to various attacks as demonstrated by security researchers. We

would like to secure this open communication channel and fortify the trust relation-

ship between mobile OS and user.

6

1.3 Contributions

This dissertation proposes practical solutions for the aforementioned problems.

For each problem, we elaborate on the attack vector, assess its current status, and

develop deployable solutions that can effectively resolve the attack surface and raise

the awareness of the developers/users.

1.3.1 Understanding and Defending the Binder Attack Surface

We identified and studied more than 100 vulnerabilities on the Binder attack sur-

face. We analyzed these vulnerabilities to find that most of them are rooted at a

common confusion of where the actual security boundary is among system devel-

opers. We thus highlight the deficiency of testing only on client-side public APIs

and argue for the necessity of testing and protection on the Binder interface — the

actual security boundary. Specifically, we design and implement BinderCracker, an

automatic testing framework that supports context-aware fuzzing and actively man-

ages the dependency between transactions. It does not require the source codes of the

component under test, is compatible with services in different layers, and performs 7x

better than simple black-box fuzzing. We also call attention to the attack attribution

problem for IPC-based attacks. The lack of OS-level support makes it very difficult

to identify the culprit apps even for developers with adb access. We address this issue

by providing an informative runtime diagnostic tool that tracks the origin, scheme,

content, and parsing details of each failed transaction. This brings transparency into

the IPC process and provides an essential step for other in-depth analysis or forensics.

1.3.2 Reducing Unregulated Aggregation Across App Usage Behaviors

We present a fresh perspective of unregulated aggregation, focusing on monitoring,

characterizing and reducing the underlying linkability across apps. The cornerstone of

7

our study is the Dynamic Linkability Graph (DLG) which tracks app-level linkability

during runtime. We observed how DLG evolves on real-world users and identified

real-world evidence of apps abusing IPCs and OS-level identifying information to

establish linkability. Based on these observations, we propose a linkability-aware

extension to current mobile operating systems, called LinkDroid, which provides

runtime monitoring and mediation of linkability across different apps. LinkDroid is

a client-side solution and compatible with the existing smartphone ecosystem. It helps

end-users “sense” this emerging threat and provides them intuitive opt-out options.

1.3.3 Enabling Unlinkability of Mobile Apps in User-level

Though the threat of unregulated aggregation is prevalent and severe, existing

mobile OS vendors may be unlikely to adopt changes/extensions that can improve

the privacy of users. This is due to a conflict of interest because the entire mobile

ecosystem is fueled by the abundance of user information. To bridge this gap, we

propose Mask, the first user-level solution that allows the user to negotiate to what

extent his behavior can be linked and aggregated. Specifically, Mask introduces a set

of private execution modes that allow the users to maintain multiple isolated profiles

for each app. Each app profile can be temporary, being recycled after each session, or

enduring, persists across multiple sessions. By enabling the private execution modes

which isolate app usages at this very source, Mask provides a client-side solution

without requiring any change to the existing ecosystem.

1.3.4 Continuous Authentication for Voice Assistants

We developed VAuth, the first system that provides continuous and usable au-

thentication for voice assistants. We design VAuth to fit in various widely-adopted

wearable devices, such as eyeglasses, earphones/buds and necklaces, where it collects

the body-surface vibrations of the user and matches it with the speech signal re-

8

ceived by the voice assistant’s microphone. VAuth guarantees that the voice assistant

executes only the commands that originate from the voice of the owner. We have

evaluated VAuth with 18 users and 30 voice commands and find it to achieve an al-

most perfect matching accuracy with less than 0.1% false positive rate, regardless of

VAuth’s position on the body and the user’s language, accent or mobility. VAuth suc-

cessfully thwarts different practical attacks, such as replayed attacks, mangled voice

attacks, or impersonation attacks. It also has low energy and latency overheads and

is compatible with most existing voice assistants.

9

CHAPTER II

Understanding and Defending the Android Binder

Attack Surface

2.1 Introduction

Android is the most popular smartphone OS and dominates the global market with

a share of more than 82% [97]. By the end of 2015, the total number of Android devices

surpassed 1.4 billion, and more than 1.6 million mobile apps were available in Google

Play for download [43, 83]. The developers of these apps are not always trustworthy;

many of them might be inexperienced, careless or even malicious. Therefore, proper

isolation between apps and the system is essential for robustness and security.

To meet this requirement, apps in Android execute in the application sandboxes.

They depend on Inter-Process Communications (IPCs) extensively to interact with

the system and other apps. Binder, as the cornerstone of this IPC mechanism, has

long been believed as one of the most secure/robust components in Android. How-

ever, during the past year, there have been multiple CVE (Common Vulnerabilities

and Exposures) reports discussing attacks exploiting the Binder interface [24–27, 87].

Interestingly, none of these attacks tries to undermine the security of Binder driver,

but instead use Binder only as an attack gateway (entry point). A careful examina-

tion of the attack surface has led us to the discovery of the fundamental cause of this

10

attack vector: an attacker can directly inject faulty transactions into system services

by manipulating the Binder interface, and hence bypass all client-side sanity checks.

Theoretically, this should not be an issue — a system service should not hinge on the

validity of client-side transactions, and should always be robust on its own. However,

we found that this principle has frequently been overlooked in the implementation

of many Android system services, which led us to the following questions: why do

system developers keep on making this seemingly simple oversight, and what can we

do to help mitigate this problem?

To answer these questions, we conduct the first in-depth analysis of this attack

surface. Specifically, we studied more than 98 generic system services (by Google)

and 72 vendor-specific services (by Samsung) in 6 Android versions, and identified

137 vulnerabilities (unique crashes de-duplicated across versions) on this surface. We

analyzed 115 of them in Android source codes and found that sanity checks are

most extensive around client-side public APIs, and quickly become sporadic/careless

after this defense line. Specifically, RPC parameters that are not exposed via public

APIs are frequently left unchecked and the underlying (de-)serialization process of

these parameters is often unprotected. This suggests that there is a mis-conception

of where the security boundary is for Android system services — many seem to

assume the security/trust boundary to be at the client-side public APIs, and whatever

happens thereafter is free from obstruction since they already belong to the system

territory. This mis-conception is understandable since Android provides convenient

and automatic code generation tools (AIDL) that at one side relieve the developers

from writing their own IPC stack, but at the other side hide all the details about

RPC and Binder. Thus, we argue for the necessity of introducing automatic testing

and protection at the Binder surface, i.e., the actual security boundary.

All the vulnerabilities reported in this chapter are identified by BinderCracker,

a precautionary testing framework we developed for Binder-based RPCs. Binder-

11

Cracker is a context-aware fuzzing framework that understands the input and output

structure of each RPC transaction as well as the inter-dependencies between them.

This is essential because many transactions require inputs of remote object handles

which are output of other transactions and cannot be recorded in the form of raw

bytes. Before fuzzing a transaction, BinderCracker will automatically replay all the

transactions it depends on and generate the correct context. BinderCracker does not

require source codes of the services under test and works for services in both the Java

and native layers. Thus, it is readily compatible with both Android system services

and vendor-specific services. BinderCracker achieves effective vulnerability discovery

— it identified 7x more vulnerabilities than simple black-box fuzzing within the same

amount of time. Furthermore, since BinderCracker understands the schema of each

low-level RPC transaction, we can easily configure it to test high-level abstraction

or protocol built on top of the Binder primitives, such as Intent communications or

app-specific protocols.

To help mitigate this emerging attack surface, we need to eliminate potential

vulnerabilities as early as possible in the development cycle. Specifically, we suggest

the use of various precautionary testing techniques (including BinderCracker) before

each product release. This can stop a large number of vulnerabilities from reaching

the end-users. In fact, many severe vulnerabilities [24–27, 87] could have been avoided

had BinderCracker been deployed. Notably, 60% of the vulnerabilities identified by

BinderCracker still remain unfixed by the time they are found. We summarize these

vulnerabilities and have already reported them to AOSP. Many of the vulnerabilities

we identified are found to be able to crash the entire Android Runtime, while others

can cause specific system services or system apps to fail. Some vulnerabilities have

further security implications, and may result in permission leakage, privileged code

execution, targeted or permanent Denial-of-Service (DoS).

In case vulnerabilities leak through precautionary testing into the deployment

12

phase, we need runtime defenses on this attack surface. Here, we addressed the urgent

problem of attack attribution for IPC-based attacks, which have not received enough

attention from the security community. Due to the lack of OS-level support, it is

extremely difficult to identify the culprit app even for developers with adb access, let

alone for average users. This suggests that an attacker app can sabotage the system

or crash other apps without being accused of, or may even blame others. For example,

the attacker app can crash Android Runtime whenever the user opens a competitor

app, creating the illusion that the competitor app is buggy. Similar attacks are

not rare between businesses with stiff competition [103]. To address this issue, we

proposed an informative runtime diagnostic tool. It maintains the sender, schema,

content and parsing information for each ongoing transaction, in case a failure/attack

happens. Whenever a system service fails when processing an incoming transaction,

a detailed report with the transaction information will be generated and a visual

warning will be prompted to the user. The reporting process can also be triggered

by access to privileged APIs or abnormal permission request, to catch attacks that

do not warrant a program crash. This brings transparency into IPC communications

and constitutes an essential first step for other in-depth analysis or forensics.

This work makes the following contributions: we

• Provide a systematic analysis of the attack surface by conducting security and

root cause analysis on 100+ vulnerabilities. We summarized the common mis-

takes made by system developers and found the attack surface persists largely

due to a common confusion of where the actual trust boundary is;

• Design and implement, BinderCracker, a context-aware fuzzing framework for

Android IPCs that actively managed the dependencies between transactions.

BinderCracker is compatible with Android system services, vendor-specific ser-

vices and can be easily configured to fuzz high-level abstractions or protocols.

It identifies 7x more vulnerabilities than a simple black-box fuzzing approach;

13

• Propose a system-level diagnostic tool which addresses the attack attribution

problem for IPC-based attacks. By tracking the origin, schema and content of

ongoing transactions, it brings transparency into Android IPCs and provides

an essential step towards in-depth runtime analysis and defense.

The rest of the chapter is organized as follows. Section 2.2 summarizes related

work in the field of software testing and Android security. Section 2.3 introduces

Binder and AIDL in Android, and describes how Android uses these to build sys-

tem services. Section 2.4 examines the attack surface and focus on explaining what

mistakes have the developers made and why. Section 2.5 details the design and

implementation of our testing framework, BinderCracker. Section 2.6 gives a com-

prehensive discussion on how to mitigate this attack surface with a special focus on

the attack attribution problem. Section 2.7 discusses the insight, and other potential

use-cases of BinderCracker, and finally, the chapter concludes with Section 2.8.

2.2 Related Work

Discussed below is related work in the field of software testing and Android secu-

rity.

Software Testing In the software community, robustness testing falls into two

categories: functional and exceptional testing. Functional testing focuses on verifi-

cation of the functionality of software using expected input, while exceptional test-

ing tries to apply unexpected and faulty inputs to crash the system. Numerous

efforts have been made in the software testing community to test the robustness of

Android [4, 5, 51, 65, 73, 112]. Most of them focus on the functional testing of GUI

elements [4, 5, 51, 65]. Some conducted exceptional testing on the evolving public

APIs [73]. In this work, we highlight the deficiency of testing public APIs only and

conduct exceptional testing on lower-level Binder-based RPC interfaces.

14

Android Security Android has received significant attention from the research

community as an open source operating system [17, 34, 35, 48, 69, 90, 94, 99]. Existing

Android security studies largely focus on the imperfection of high-level permission

model [37, 39, 80], and the resulting issues, such as information leakage [34], privilege

escalation [17, 90] and collusion [69]. We will highlight the insufficient protection of

Android’s lower-level Binder-based RPC mechanism and how it affects the robustness

of system services.

There also exist a few studies focusing on the IPC mechanism of Android [20,

32, 54, 66, 91]. However, they largely focus on one specific instance of Android IPC

— Intent. Since the senders and recipients of Intents are both apps, manipulat-

ing Intents will not serve the purpose of exposing vulnerabilities in system services.

Some researchers also made recommendations for hardening Android IPCs [54, 66]

and pointed out that the key problem in Intent communication is the lack of for-

mal schema. We demonstrate that even for mechanisms enforcing a formal schema,

such as AIDL, robustness remains as a critical issue. There have also been some

parallel attempts on fuzzing the Binder interface in industry [41, 47]. However, they

focused on the technical details of implementing Proof-of-Concept (PoC) exploits on

this interface and only tested simple fuzzing techniques. Our work focuses instead

on understanding of the origin of the Binder attack surface and proposes practical

defenses. We summarize the common mistakes made by system developers by study-

ing 100+ real vulnerabilities and address the urgent problem of attack attribution for

IPC-based attacks. Moreover, our context-aware fuzzing framework, BinderCracker,

is sophisticated and works much more effectively than simple black-box fuzzing.

2.3 Android IPC and Binder

Android executes apps and system services as different processes and enforces iso-

lation between them. To enable different processes to exchange information with each

15

other, Android provides, Binder, a secure and extensible IPC mechanism. Described

below are the basic concepts in the Binder framework and an explanation of how a

typical system service is built using these basic primitives.

2.3.1 Binder

In Android, Binder provides a message-based communication channel between

two processes. It consists of (i) a kernel-level driver that achieves communication

across process boundaries, (ii) a Binder library that uses ioctl syscall to talk with

the kernel-level driver, and (iii) upper-level abstracts that utilize the Binder library.

Conceptually, Binder takes a classical client–server architecture. A client can send

a transaction to the remote server via the Binder framework and then retrieves its

response. The parameters of the transaction are marshalled into a Parcel object

which is a serializable data container. The Parcel object is sent through the Binder

driver and then gets delivered to the server. The server de-serializes the parameters of

the Parcel object, processes the transaction, and returns a response in a similar way,

back to the client. This allows a client to achieve Remote Procedure Call (RPC) and

invoke methods on remote servers as if they were local. This Binder-based RPC is

one of the most frequent forms of IPC in Android, and underpins the implementation

of most system services.

2.3.2 Android Interface Description Language (AIDL)

Many RPC systems use IDL (Interface Description Language) to define and re-

strict the format of a remote invocation [66], and so does Android. The AIDL (An-

droid Interface Description Language) file allows the developer to define the RPC

interface both the client and the server agree upon [7]. Android can automatically

generate Stub and Proxy classes from an AIDL file and relieve the developers from

(re-)implementing the low-level details to cope with native Binder libraries. The

16

interface IQueueService {

boolean add(String name);

String peek();

String poll();

String remove ();

}

Figure 2.1: An example AIDL file which defines the interface of a service that imple-
ments a queue.

Figure 2.2: How does an app communicate with a system service using Binder-based RPC
(using Wi-Fi service as an example)? The red shaded region represents the codes that need
to be provided/implemented by the service developer.

auto-generated Stub and Proxy classes will ensure that the declared list of parame-

ters will be properly serialized, sent, received, and de-serialized. The developer only

needs to provide a .aidl file and implement the corresponding interface. In other

words, the AIDL file serves as an explicit contract between client and server. This

enforcement makes the Binder framework extensible, usable, and robust. Fig. 2.1

shows an example AIDL file that defines the interface of a service that implements a

queue.

2.3.3 System Service

We describe next how the low-level concepts in the Binder framework are struc-

tured to deliver a system service, using Wi-Fi service as an example. To implement

17

the Wi-Fi service, system developers only need to define its interfaces as an AIDL de-

scription, and then implement the corresponding server-side logic (WifiService) and

client-side wrapper (WifiManager) (see Fig. 2.2). The serialization, transmission, and

de-serialization of the interface parameters are handled by the codes automatically

generated from the AIDL file. Specifically, when the client invokes some RPC method

in the client-side wrapper WifiManager, the Proxy class IWifiManager.Stub.Proxy

will marshall the input parameters in a Parcel object and send it across the pro-

cess boundary via the Binder driver. The Binder library at the server-side will

then unmarshall the parameters and invoke the onTransact function in the Stub

class IWifiManager.Stub. This eventually invokes the service logic programmed in

WifiService. Fig. 2.2 provides a clear illustration of the entire process.

2.4 Binder: The Attack Surface

The Binder driver serves as the boundary between two communicating parties

and separates them as client and server. Existing attacks on this interface typically

involve direct injection of a crafted transaction via the Binder interface. In theory,

at which layer is a transaction injected at the client-side should not affect the security

of the Android system — the server-side should always be robust on its own. This is

probably a best engineering practice for any system that adopts a client–server model.

However, as we will show later, this guideline is found to be frequently overlooked in

the implementation of Android system services. Here, we review 100+ vulnerabilities

found in six major Android versions and try to summarize the mistakes made by

the system developers that turn the Binder interface into a tempting attack surface,

and why system developers keep making these seemingly simple mistakes. All of the

vulnerabilities discussed in this section are discovered by BinderCracker, the first

context-aware fuzzing framework for Android IPCs. We will detail the design of

BinderCracker in the next section.

18

Figure 2.3: A typical attack scenario. By injecting faulty transactions via the Binder

driver, an attacker can bypass the sanity check on public API and AIDL enforcement, and
directly challenge the server-side.

2.4.1 Attack Model

We assume the adversary is a malicious app developer trying to sabotage the

robustness or the integrity of Android system services. A system service can be

generic, existing in Android framework base, or vendor-specific, introduced by device

manufacturers. The attacker launch attacks by directly injecting crafted transactions

into the Binder interface. The consequences can range from Denial-of-Service (DoS)

attack to privileged code execution, depending on the payload and the target of the

malicious transaction. We assume the attacker has no root permission and cannot

break the security of OS kernel. Fig. 2.3 illustrates a typical attack scenario.

2.4.2 Overview of Vulnerabilities

We identified 137 vulnerabilities on the Binder attack surface by testing 6 major

versions of Android: 4.1 (JellyBean), 4.2 (JellyBean), 4.4 (KitKat), 5.0 (Lollipop),

5.1 (Lollipop) and 6.0 (Marshmallow). Note that the number of discovered vulner-

abilities have already been de-duplicated across versions. Specifically, we examined

more than 98 generic system services (by Google) and 72 vendor-specific services (by

19

Version API Market Device Build #

4.1.1 16 9.0% Galaxy Note 2 JRO03C
4.2.2 17 12.2% Galaxy S4 JDQ39
4.4.2 19 36.1% Galaxy S4 KOT49H
5.0.1 21 16.9% Nexus 5 LRX22C
5.1.0 22 15.7% Nexus 5 LMY47I
6.0.0 23 0.7% Nexus 5 MRA58K

Figure 2.4: List of Android ROMs we tested using BinderCracker.

Samsung), which covers more than 2400 low-level RPC methods. The majority of

the vulnerabilities are in Android framework while 15 of them are in vendor-specific

(Samsung) services. All our experiments are conducted by running BinderCracker on

official firmwares from major device manufacturers (see Fig. 2.4). An official firmware

went through extensive testing by the vendors and is believed to be ready for a public

release. Each firmware is tested in the initial state, right after it is installed. We

didn’t install any third-party app or change any configuration except for turning on

the adb debugging option, ruling out the influence of external factors.

An RPC method is found to be vulnerable if testing it resulted in a fatal exception,

crashing part of, or the entire Android Runtime. Each unique crash (stack traces)

under an RPC interface is further referred to as an individual vulnerability. For each

vulnerability reported here, we followed the process of: 1) identify it on an official

ROM, 2) manually confirm that it can be reproduced, and 3) inspect the source codes

for a root cause analysis. For vendor-specific vulnerabilities of which source codes are

not available, such as many of the customized system services provided by Samsung,

we only record the stack trace. Fig. 2.5 list the number of vulnerabilities grouped by

the exception types in the crash traces. The security implications of the identified

vulnerabilities will be further reviewed in Section 2.6.

20

Level Exception Type Count

Java

NullPointerException 29
IllegalArgumentException 9
OutOfMemoryError 8
RuntimeException 8
IllegalStateException 4
StackOverflowError 4
UnsatisfiedLinkError 2
ArrayIndexOutOfBoundsException 2
OutOfResourcesException 1
SecurityException 1
StringIndexOutOfBoundsException 1
IOException 1
BadParcelableException 1

Native
SEGV MAPPER 31
SI TKILL 29
BUS ADRALN 4
SEGV ACCERR 1
SI USER 1

Figure 2.5: Vulnerabilities grouped by types of exception.

2.4.3 Root Cause Analysis

The direct causes of crashes are uncaught exceptions such as NullPointerException

or SEGV MAPPER, but the fundamental cause behind them is deeper. For each crashed

system service of which source codes are available, we looked into the source codes

and analyzed the root causes of the vulnerabilities. We noticed that sanity checks

are most extensive around client-side public APIs, but are sporadic/careless after this

line. This suggests that many system developers only considered the exploitation of

public APIs, thus directly injecting faulty transactions to the Binder driver creates

many scenarios that are believed to be ‘unlikely’ or ‘impossible’ in their mindset.

Here, we highlight some of the new attack vectors enabled by attacking the Binder

interface which contribute to most of the vulnerabilities we identified.

First, an attacker can manipulate RPC parameters that are not directly ex-

posed via public APIs. For example, IAudioFlinger provides an RPC method

21

REGISTER CLIENT. This method is only implicitly called in the Android middleware

and is never exposed via public interfaces. Therefore, the developers of this system

service may not expect an arbitrary input from this RPC method and didn’t perform

a proper check of the input parameters. In our test, sending a list of null parameters

via the Binder driver can easily crash this service. This suggests that developers

should not overlook RPC interfaces that are private or hidden.

Second, an attacker can bypass sanity checks around the public API, no matter

how comprehensive they are. For example, the IBluetooth service provides a method

called registerAppConfiguration. All of the parameters of this RPC method are

directly exposed via a public API and there are multiple layers of sanity check around

this interface. Therefore, if there is an erroneous input from the public API, the client

will throw an exception and crash without even sending the transaction to the server

side. However, using our approach, an attack transaction is directly injected to the

Binder driver without even going through these client-side checks. This suggests that

the server should always double-check input parameters on its own.

Third, an attacker can exploit the serialization process of certain data types and

create inputs that are hazardous at the server side. For example, RemoteView is a

Parcelable object that represents a group of hierarchical views. It contains a loophole

in its de-serialization module which can cause a StackOverflow exception. As shown

in Fig. 2.6, a bad recursion will occur if the input Parcel object follows a certain

pattern. By directly manipulating the serialized bytes of the Parcel sent via the

Binder driver, this loophole can be triggered and crash the server. This suggests

that RPC methods with serializable inputs require special attention and sanity check

is also essential in the de-serializaiton process.

These common mistakes made by system developers indicate there is a miscon-

ception of where the security boundary is for Android system services — many may

assume the security/trust boundary is at the client-side public APIs, and whatever

22

android.widget.RemoteViews

private RemoteViews(Parcel parcel , BitmapCache bitmapCache) {

int mode = parcel.readInt ();

...

if (mode == MODE_NORMAL) {

...

} else {

// recursively calls itself

mL = new RemoteViews(parcel , mBitmapCache);

// recursively calls itself

mP = new RemoteViews(parcel , mBitmapCache);

...

}

...

}

Figure 2.6: The constructor of the RemoteView class contains a loophole which can cause a
StackOverflow exception. Specifically, a bad recursion will occur if the input Parcel object
follows a specific pattern.

happens thereafter is free from obstruction since it is already in the system zone. This

mis-conception is understandable since Android provides the convenient abstraction

of AIDL and automatically generate codes that serialize, send, receive, de-serialize

RPC parameters. This at one side relieves the developers from implementing their

own IPC stack, but at the other side hide all the details about RPC and Binder. In

other words, even though Android system services depend on IPC extensively, the

developers are likely to be agnostic of that. Therefore, we advocate the importance

of introducing automatic testing and protection at the Binder surface — the actual

security boundary.

23

2.5 Effective Vulnerability Discovery

In this section, we explain how to conduct effective vulnerability discovery through

the Binder interface. A naive approach is to issue transactions containing random

bytes, also known as black-box fuzzing. In our experiment, we found that when

using black-box fuzzing, almost all of the vulnerabilities are found within the first

few fuzzing transactions, and a longer fuzzing time did not lead to the discovery of

new bugs. The deficiency of black-box fuzzing is largely due to the extremely large

and complex fuzzing space of this attack surface, and drives us to develope more

sophisticated fuzzing techniques.

2.5.1 Unique Challenges

There are some unique challenges in fuzzing the Binder surface. First, a Binder

transaction may contain non-primitive data types which result in complicated and

hierarchical input schema. This affects 48% of all Binder-based RPCs and makes

it difficult to fuzz according to parameter types. Moreover, the list of parameters

included in a transaction is often dynamic instead of static. For example, when a

transaction takes a Bundle object as input, what this object contains highly depends

on the runtime status, and cannot be simply captured by a static interface description.

All of these make it difficult to generate schemas of Binder-based transactions in an

effective and reliable way.

Second, inter-dependencies often exist across Binder transactions. We found that

37% user-level RPC invocations require an input parameter that is the output of

previous transactions. Note that, these input parameters are remote handlers that

cannot be recorded in the form of raw bytes and can only be generated by executing

the same transactions. This process is extremely crucial if we want to fuzz dynamically

generated system services. While we can directly retrieve the handler of a statically

24

cached system service and start to fuzz it, the handler of dynamically generated

system services can only be retrieved by replaying the sequence of transactions it

depends on.

Besides these two challenges, our design options are also restricted by the (un)availability

of the source codes for the system services under test. For example, in a typical Sam-

sung Galaxy device, there are more than 70 vendor-specific system services, the source

codes of which are clearly unavailable. Even for system services that are included in

the core Android framework, their source codes are typically proprietary when re-

lated to crypto or interactions with OEM hardwares. The scenario becomes more

exaggerated if considering services exported by system or user-level apps.

2.5.2 BinderCraker: Design Overview

We present an overview of the design of BinderCracker. Our design addresses the

above challenges by adopting a context-aware, replay-based approach that actively

manages the dependencies across transactions. Specifically, BinderCracker includes

a recording component, implemented as an Android extension (custom ROM), and a

fuzzing component, implemented as a user-level app. The recording component col-

lects detailed information of different Binder transactions and the fuzzing component

tries to replay and mutate each recorded transaction for fuzzing purposes.

The recording component builds and records the schema (parameter types and

structure) of each transaction during runtime by instrumenting the (de)-serialization

process of the Binder transaction. This is different from the approach that parses

RPC interface (AIDL) files and does not require access to the source codes. Specifi-

cally, it monitors and records how each parameter is unmarshalled from the Parcel

object. This instrumentation works recursively with the (de)-serialization functions,

and thus can understand and record complicated, hierarchical schemas and non-

primitive types. In additional to recording the transaction schema, BinderCracker au-

25

Figure 2.7: When fuzzing a transaction, we need to replay the supporting transactions
according to their relative order in the dependency graph. This way, all the remote objects
this transaction requires will be reconstructed during runtime.

tomatically matches the inputs and outputs of adjacent transactions and constructs a

dependency graph among them. This dependency graph captures the sequence (tree)

of transactions required to generate the inputs of a target transaction (see Fig. 2.7).

This allows BinderCracker to automatically manage the dependencies between trans-

actions and reconstruct the dynamic context each transaction requires. For example,

certain system services, such as IGraphicBufferProducer, are dynamically initial-

ized instead of statically cached in the system server. Fuzzing it typically requires

manually writing a code section that first generates this service and then using re-

flections on private APIs to retrieve the handler, which is tedious and not scalable.

BinderCracker greatly simplifies this process since all the transactions that generate

this service will be replayed automatically before the actual fuzzing process.

After recording the seed transactions and their dependencies, we need to utilize

them to fuzz a system service. The fuzzing component of BinderCracker has a replay

engine built-in and is implemented as a user-level app. Basically, it is manipulating

(either directly or indirectly) a binder transaction data struct sent to the Binder

driver. This data struct contains three important pieces of information we need to

modify to send a fuzzing transaction and has the format as shown in Fig. 2.8. The

target.handle field specifies the service this transaction is sent to. The code field

represents a specific RPC method we want to fuzz. The data struct contains the

serialized bytes of the list of parameters for the RPC method, which is inherently a

Parcel object. Parcel is a container class that provides a convenient set of serial-

ization and de-serialization methods for different data types. Both the client and the

26

struct binder_transaction_data {

union {

size_t handle; // (1).target service

void *ptr;

}target;

void *cookie;

unsigned int code; // (2).RPC method

unsigned int flags;

pid_t sender_pid;

uid_t sender_euid;

size_t data_size;

size_t offsets_size;

union {

struct {

binder_uintptr_t buffer;

binder_uintptr_t offsets;

} ptr;

__u8 buf [8];

} data; // (3).transactional data

};

Figure 2.8: The data struct sent through the Binder diver via the ioctl libc call. This
struct contains three important pieces of information we need to modify to send a fuzzing
transaction.

server work directly with this Parcel object to send and receive the input parame-

ters. Later in this section, we will elaborate on how to modify the handle and code

variables to redirect the transaction to a specific RPC method of a specified service,

and how to fuzz the Parcel object to facilitate testing with different policies.

2.5.3 Transaction Redirection

There is a one-to-one mapping from the handle variable in the binder transaction data

object to system service. This mapping is created during runtime and maintained by

the Binder driver. Since the client has no control over the Binder driver, it cannot

get this mapping directly. For system services that are statically cached, we can get

them indirectly by querying a static service manager which has a fixed handle of

0. This service manager is a centralized controller for service registry and will be

27

started before any other services. By sending a service interface descriptor (such as

android.os.IWindowManager) to the service manager, it will return an IBinder ob-

ject which contains the handle for the specified service. For system services that are

dynamically allocated, we can retrieve them by recursively replaying the supporting

transactions that generate these services (see Fig. 2.7).

After getting the handle of a system service, we need to specify the code vari-

able in the binder transaction data object. Each code represents a different RPC

method defined in the AIDL file. This mapping can be found in the Stub files which

are automatically generated from the AIDL file. The code variable typically ranges

from 1 to the total number of methods declared in the AIDL file. For native system

services that are not implemented in Java, this mapping is directly coded in either

the source files or the header files. Therefore, we scan both the AIDL files and the

native source codes of Android to construct the mapping between transaction codes

and RPC methods.

2.5.4 Transaction Fuzzing

After being able to redirect a Binder transaction to a chosen RPC method of

a chosen system service, the next step is to manipulate the transaction data and

create faulty transactions that are unlikely to occur in normal circumstances. Here,

BinderCracker utilize our context-aware replay engine to generate semi-valid fuzzing

transactions. A transaction is said to be semi-valid if all of the parameters it contains

are valid except for one. Semi-valid transactions can dive deeper into the program

structure without being early rejected, thus is able to reveal more in-depth vulnera-

bilities.

In summary, BinderCracker maintains both the type hierarchy and dependency

graph when recording a seed transaction. These information capture the semantic

and context of each transaction and help BinderCracker generate semi-valid fuzzing

28

Figure 2.9: How does BinderCracker generate semi-valid fuzzing transactions from seed
transactions.

Figure 2.10: The internal type structure of a non-primitive data type, Intent, generated
by recording the de-serialization process of each non-primitive type. Note that this type
structure is dynamic — it depends on what has been put into this Intent during runtime.

transactions. Specifically, it follows the process illustrated in Fig. 2.9. For each seed

transaction we want to fuzz, we first parse the raw bytes of the transaction and un-

marshall non-primitive data types into an array of primitive types (step 1). This

utilizes the type hierarchy recorded with the seed transaction. Then, we check the

dependency of the transaction (step 2) and retrieve all the supporting transactions

(steps 3, 4). This step utilizes the dependency graph recorded with the seed transac-

tion. After that, we need to replay the supporting transactions (step 5) to generate

and cache the remote IBinder object handles (steps 6, 7). Finally, the fuzzer can

start to generate semi-valid fuzzing transactions by mutating each parameter in the

seed transaction according to their data types (steps 8, 9). For example, for numerical

types such as Integer, we may add or substrate a small delta from the current value

or change it to Integer.MAX, 0 or Integer.MIN; for literal types such as String, we

may randomly mutate the bytes contained in the String, append new content at start

or end, or insert special characters at certain locations.

After sending a faulty transaction to a remote service, there are a few possible

responses from the server-side. First, the server detects the input is invalid and rejects

the transaction, writing an IllegalArgumentException message back to the client.

29

Second, the server accepts the argument and starts the transaction, but encounters

unexpected states or behaviors and catches some type of RuntimeException. Third,

the server doesn’t catch some bizarre scenarios, causes a Fatal Exception and crashes

itself. In this work, we focus on the last type of responses, as it is most critical and

has disastrous consequences.

2.5.5 Experimental Results

We collected more than one million valid seed transactions by running 30 popular

apps in two latest Android versions (Android 5.1 and Android 6.0). For each RPC

interface, we sampled the transactions and selected those with unique transaction

schema/structures. Based on this seed dataset, we performed fuzzing test on more

than 445 RPC methods of 78 system services. In total, we identified 89 vulnerabilities

in Android 5.1 and Android 6.0 which is 7x more than simple fuzzing with the same

time spent. Compared to the vulnerabilities identified using simple black-box fuzzing,

the vulnerabilities exposed by context-aware fuzzing are more interesting and have

severer security implications — we start to identify buffer overflow, serialization bugs

in deeper layers of the code, instead of just simple crashes or parsing errors (see

Section 2.6 for details).

Moreover, since the approach BinderCracker adopts is generic, we can easily con-

figure it to fuzz higher-level abstractions or protocols. For example, Intent is a

high-level abstraction built on top of the Binder RPCs. It is used as a user-level

communication primitive to launch apps, services or trigger broadcast receivers. With

some simple configuration, we can turn BinderCracker into an Intent fuzzer. Specif-

ically, we configure BinderCracker to only fuzz three RPC interfaces that the Intent

communication mechanism is built upon, and only mutate the Intent parameter in

these RPC calls. This makes BinderCracker a useful Intent fuzzer that automatically

tracks and utilizes the internal type hierarchy of Intent extras (Bundle). Fig. 2.10

30

illustrates the input structure of an example Intent we fuzz. In total, BinderCracker

identified more than 20 vulnerabilities in the Intent communication, many of which

exist in the de-serialization process of Intent.

2.6 Defenses

New vulnerabilities are still emerging on the Binder attack surface whenever there

is a major upgrade of the Android code base. This is because, considering the code

size of Android, it is almost impossible to prevent the developers from writing buggy

codes. We discussed how to conduct effective precautionary testing to help expose

vulnerabilities before releasing the new ROM, and also explained why it is very diffi-

cult, if not impossible, to conduct runtime defense in existing Android systems. The

major obstacle in developing runtime defenses is the lack of transparency/auditing

on IPC transactions. When a system service fails, no one knows why it crashed and

who caused its crash without proper OS-level support. Thus, a system-level IPC di-

agnosis tool is essential for any in-depth runtime analysis, such as attack attribution

and cross-device analytics.

2.6.1 Precautionary Testing

Before releasing a new ROM, developers can conduct precautionary testing. The

defense can be done early, in the development phase of each system service, or later,

after the entire ROM gets built.

Android has already adopted a static code analysis tool, lint, to check poten-

tial bugs and optimizations for correctness, security, performance, usability, acces-

sibility and internationalization [52]. Specifically, lint provides a feature that sup-

ports inspection with annotations. This allows the developer to add metadata tags

to variables, parameters and return values. For example, the developer can mark

an input parameter as @NonNull, indicating that it cannot be Null, or mark it as

31

@IntRange(from=0,to=255), enforcing that it can only be within a given range.

Then, lint automatically analyzes the source codes and prompts potential violations.

This can be extended to support inspections of RPC interfaces, allowing developers

to explicitly declare the constraints for each RPC input parameter. This way, many

potential bugs can be eliminated during the development phase. This defense is prac-

tical and comprehensive but requires system developers to specify the metadata tags

for each RPC interface.

We can also conduct precautionary testing during runtime after the ROM has

been built. Our system, BinderCracker, is effective in identifying vulnerabilities and

can be used as an automatic testing tool. By fuzzing various system services with

different policies, a large number of vulnerabilities can be eliminated before reach-

ing the end-users. Actually, many severe vulnerabilities [24–27, 87] could have been

avoided if a tool like BinderCracker had been deployed. Note that the effectiveness

of BinderCracker depends on the quality and coverage of the seed transactions. Be-

sides collecting execution traces of a large number of apps, another potential way of

generating a comprehensive seed dataset is to incorporate the functional unit tests of

each system service.

2.6.2 Security Implications

Most of the vulnerabilities BinderCracker discovered (more than 90%) can be used

to launch a Denial-Of-Service (DoS) attack. Some of them are found to be able to

crash the entire Android Runtime, while others can cause specific system services or

system apps to fail. Fig. 2.11 shows the distribution of the affected services (apps).

When launching a DoS attack, the attacker can trigger a crash either consistently

or only under certain conditions, for example, when a competitor’s app is running.

This can create the impression that the competitor’s app is buggy and unusable.

We even identified multiple vulnerabilities (in the de-serialization process of Intent)

32

 0

 10

 20

 30

 40

 50

 60

wallpaper.livepicker

system
_server

surfaceflinger

settings

rild
quicksearchbox

process.m
edia

phone

packageinstaller

nfc
m

usicfx

m
usic

m
m

s
m

ediaserver

m
edia

launcher3:wallpaper_chooser

launcher3

inputm
ethod.latin

gallery3d

em
ail

docum
entsui

dialer

contacts

cam
era2

bintvoutservice

android:ui

System
UI

G
oogleApps

Drm
Server

#
 o

f
V

u
ln

e
ra

b
ili

ti
e

s

Figure 2.11: Many of the vulnerabilities we identified are found to be able to crash the
entire Android Runtime (system server), while others can cause specific system services
(mediaserver) or system apps (nfc, contacts, etc) to fail.

that can cause targeted crash of almost any system/user-level apps, without crashing

the entire system. Specifically, an attacker can craft an Intent that contains a mal-

formated Bundle object and send to the target app. This will cause a crash during

the de-serialization process of the Intent object before the target app can conduct

any sanity check. Moreover, it can be very challenging to identify the attacker app

under these scenarios because the OS only knows which service/app is broken, but

cannot tell who crashed it. We will discuss more about the attack attribution process

in later sections.

We also discovered a few vulnerabilities that can cause other serious security

problems. We found that in several RPC methods, the server-side fails to check

potential Integer overflows. This may lead to disastrous consequences when exploited

by an experienced attacker. For example, in IGraphicBufferProducer an Integer

overflow exists such that when a new NativeHandle is created, the server will malloc

smaller memory than it actually requested (see Fig. 2.12). Subsequent writes to

this data struct will corrupt the heap on the server-side. This vulnerability has been

demonstrated to be able to achieve privileged code execution, and insert any arbitrary

code into system server [25]. We also found a vulnerability in IContentService

33

native_handle_t* native_handle_create(int numFds , int numInts)

{

// numFds & numInts are not checked!

native_handle_t* h = malloc(...

+ sizeof(int)*(numFds+numInts));

h->version = sizeof(native_handle_t);

h->numFds = numFds;

h->numInts = numInts;

return h;

}

Figure 2.12: The constructor of the native handle has an Integer Overflow vulnerability
that can cause a heap corruption on the server-side. This can lead to privileged code
execution in system server.

that can lead to an infinite bootloop, which can only be resolved by factory recovery

or flashing a new ROM. This is also classified as High Risk according to the official

specification of Android severity levels [92].

Besides RPC methods that are not well implemented, we also discovered RPC

methods that are not properly protected by existing Permission models. In official

ROMs of Samsung Galaxy 4 (Android 4.2.2 and Android 4.4.2), an attacker can

reboot the device by directly sending a transaction to PackageManagerService via

the Binder driver without requiring the REBOOT permission. This is critical since

REBOOT is a sensitive permission only granted to system apps. The other service

is ICoverManager, a customized service from Samsung. An attacker can invoke a

certain RPC method of ICoverManager and block the entire screen with a pop-up

blank Activity. The blank Activity cannot be revoked using any virtual or physical

button and the only exit is restarting the device.

34

2.6.3 Vulnerabilities: Fixed and Unfixed

We examined how many of the vulnerabilities discovered by BinderCracker remain

unfixed and are potentially zero-day when they are found. Our analysis is based on

the public changes of the source codes across different Android versions and revisions.

We skipped the 15 vulnerabilities in vendor-specific system services and 7 in generic

system services due to the unavailability of source codes. Note that not all generic

system services are open source, especially when it is related to decryption/encryption

or interactions with OEM hardware.

Of the 115 analyzed vulnerabilities in Android code bases, only 18 have been fixed

by adding additional sanity checks of input parameters. Another 12 vulnerabilities

‘disappeared’ during several major Android version upgrades either because 1) the

corresponding source codes (or API) have been deleted; or 2) new updates in other

parts of the source codes accidentally bypass the vulnerable source codes. For exam-

ple, some crashes are caused by a recursive call in the RemoteView class (see Fig. 2.6).

Similar crashes disappeared after Android 5.0. We looked into the source codes and

found this is not because the bug has been fixed, but because in new versions of

Android a faulty transaction will create an additional Exception before it reaches

the vulnerable codes. The additional Exception is properly caught and accidentally

avoids the fatal crash caused by the real vulnerability. We do not consider this as a

‘fix’ since an attacker can still recreate the crash by manually crafting a transaction

which bypasses the new code updates. Fig. 2.13 illustrates the proportion of vul-

nerabilities that are fixed, disappeared and unfixed. We have already submitted all

unfixed vulnerabilities to AOSP.

2.6.4 Runtime Diagnostics and Defenses

It will be helpful if Android can provide some real-time defense against potential

vulnerabilities even after the ROM has been deployed on end-users’ devices. Here, we

35

85

22

18

12

Unfixed

No Source Codes

Fixed

Disappeared

Figure 2.13: Number of the vulnerabilities that are fixed, disappeared and unfixed.

focus on specific defenses on the Binder layer, excluding generic defenses such as Ad-

dress Space Layout Randomization (ASLR), SELinux, etc. They have been discussed

extensively eslewhere [59, 93, 96] and are not specific to our scenario. Basically, there

are two potential defenses one can provide on the Binder surface during runtime: (i)

intrusion detection/prevention, identifying and rejecting transactions that are mali-

cious, and (ii) intrusion diagnostics, making an attack visible after the transaction

has already caused some damage. Unfortunately, both approaches are not applicable

in existing Android systems. Next, we explain why the first approach is inherently

challenging and then describe our efforts to enable the latter.

To provide runtime intrusion prevention, one needs to perform some type of ab-

normality detection on incoming transactions. This works by examining the input pa-

rameters of valid/invalid RPC invocations and characterizing the rules or boundaries.

However, in our case, it is not practical for the following reasons. First, Binder trans-

actions occur at a very high frequency but a mobile device has only limited energy

and computation power. Second, parameters in Binder transactions are very diverse,

codependent, and evolving dynamically during runtime, and hence clear boundaries

or rules may not exist. Third, end-users are not likely to accept even the smallest

false-positive rate. One can, of course, build a very conservative blacklist-based sys-

tem and hard-coding rules of each potential vulnerability in the database. However,

36

Figure 2.14: A detailed crash report which includes the system service under attack (0),
transaction sender (1 and 2), schema (3), position of the parsing cursor (4) and raw content
(5).

this seems unnecessary, especially when Android nowadays supports directly pushing

security updates (patches) to devices of end-users.

An alternative solution is to diagnose, instead of prevent problems. It would be

helpful if we can provide more visibility on how malicious transactions actually under-

mine a device. Even though this cannot stop the single device from being attacked,

we can still utilize the collected statistics to develop in-time security patches, benefit-

ing the vast majority of end-users. However, it is impossible to conduct informative

diagnostic on the Binder layer even for developers with adb access. This is due to a

lack of transparency/auditing on IPC transactions. Essentially, when a system ser-

vice fails, no one knows why it crashed and who crashed it without proper OS-level

support. This, also known as attack attribution, has not yet received enough attention

from the research community. To fill this gap, we propose a system-layer diagnostic

tool and demonstrate its use for more in-depth analyses.

The diagnostic tool is designed to provide three important functionalities: 1) when

a service fails when processing an incoming transaction, the sender of the transaction

will be recorded and the user will be warned with a visual prompt; 2) detailed in-

formation of the failed transaction, including the content, schema and parsing status

will be dumped into a report for future forensics; 3) a signature of the transaction

37

Figure 2.15: User receives a visual prompt in case of transaction failure and can choose to
block it to counter continuous DoS attack.

will be generated and the user can review it and choose to block future occurrences

of the same transaction. These, together, capture a snapshot of the IPC stack in case

of a potential attack. This snapshot can be triggered by a crash, for DoS attacks, or

by access to sensitive/privileged APIs, for privilege escalation attacks.

The diagnostic tool can be implemented in a similar way as the recording compo-

nent of BinderCracker, by instrumenting the Binder framework and the Parcel class.

We can further retrieve the sender of each transaction by calling Binder.getCallingUid()

in the victim system service, and get the package name of the sender by querying the

PackageManagerService with the retrieved uid. The same flow is also used to sup-

port permission checks in Android system services. The schema of each transaction is

constructed and maintained during runtime by tracking the de-serialization process of

the Parcel. Whenever an Exception is thrown and not caught by any of the Exception

handling blocks, the transaction information maintained will be dumped as a separate

report (see Fig. 2.14). The parsing information will be appended, indicating which

parameters the service is parsing (have just parsed) when the failure/attack happens.

The signature of the transaction will be recorded and the user will be prompted with a

Notification (see Fig. 2.15). End-users can choose to block transactions with the same

signature in the future to mitigate continuous DoS attacks. This marks an essential

step towards more sophisticated runtime analysis, such cross-device analytics.

38

2.7 Discussion

We have assessed a risky attack surface comprehensively which has long been

overlooked by the system developers of Android. As our experimental results demon-

strated, new vulnerabilities are still emerging on this attack surface and Binder-

Cracker can help eliminate potential vulnerabilities in future releases of Android.

The lessons learned can transcend to other platforms facing similar issues, such as

vehicular systems (CAN buses and ECUs), wearable devices, etc. We highlight that,

although many systems adopt a client–server model in the design of their internal

system components, they rarely follow the security standards of a real client–server

model as in a networked environment. In many scenarios, a component may fall into

the wrong hands and create serious security threats.

Our context-aware fuzzing is generic and not limited to system services. In fact,

it can also be applied to services exported by user-level apps. For example, Facebook

alone exports more than 30 services to other apps which forms a large attack surface.

By performing fuzzing on this interface, more app-level vulnerabilities are expected

to be unearthed. However, due to the unavailability of source codes, it is difficult

to analyze the root causes and security implications of the identified vulnerabilities.

Note that, although lack of source codes won’t affect the discovery of vulnerabilities,

it does make it more difficult to understand their implications.

2.8 Conclusion

In this chapter, we conducted an in-depth analysis on an emerging attack surface

in Android. We summarized the common mistakes made by system developers that

produces this attack surface and highlight the importance of testing and protection

on the Binder interface, the actual trust boundary. We designed and implemented

BinderCracker, a precautionary testing framework that achieves automatic vulnera-

39

bility discovery. It supports context-aware fuzzing and performs 7x more effectively

than a simple black-box fuzzing approach. We also addressed the urgent problem

of attack attribution for IPC-based attacks, proposing OS-level runtime diagnostics

support. These mechanisms are useful, practical and can be easily integrated into the

development/deployment cycle of Android.

40

CHAPTER III

Reducing Unregulated Aggregation of App Usage

Behaviors

3.1 Introduction

Mobile users run apps for various purposes, and exhibit very different or even

unrelated behaviors in running different apps. For example, a user may expose his

chatting history to WhatsApp, mobility traces to Maps, and political interests to

CNN. Information about a single user, therefore, is scattered across different apps

and each app acquires only a partial view of the user. Ideally, these views should

remain as ‘isolated islands of information’ confined within each of the different apps.

In practice, however, once the users’ behavioral information is at the hands of the

apps, it may be shared or leaked in an arbitrary way without the users’ control or

consent. This makes it possible for a curious adversary to aggregate usage behaviors

of the same user across multiple apps without his knowledge and consent, which we

refer to as unregulated aggregation of app-usage behaviors.

In the current mobile ecosystem, many parties are interested in conducting un-

regulated aggregation, including:

• Advertising Agencies embed ad libraries in different apps, establishing an ex-

plicit channel of cross-app usage aggregation. For example, Grindr is a geosocial

41

app geared towards gay users, and BabyBump is a social network for expecting

parents. Both apps include the same advertising library, MoPub, which can

aggregate their information and recommend related ads, such as on gay parent-

ing books. However, users may not want this type of unsolicited aggregation,

especially across sensitive aspects of their lives.

• Surveillance Agencies monitor all aspects of the population for various precau-

tionary purposes, some of which may cross the ‘red line’ of individuals’ pri-

vacy. It has been widely publicized that NSA and GCHQ are conducting public

surveillance by aggregating information leaked via mobile apps, including pop-

ular ones such as Angry Birds [8]. A recent study [108] shows that a similar

adversary is able to attribute up to 50% of the mobile traffic to the “monitored”

users, and extract detailed personal interests, such as political views and sexual

orientations.

• IT Companies in the mobile industry frequently acquire other app companies,

harvesting vast user base and data. Yahoo alone acquired more than 10 mobile

app companies in 2013, with Facebook and Google following closely behind [2].

These acquisitions allow an IT company to link and aggregate behaviors of

the same user from multiple apps without the user’s consent. Moreover, if the

acquiring company (such as Facebook) already knows the users’ real identities,

usage behaviors of all the apps it acquires become identifiable.

These scenarios of unregulated aggregation are realistic, financially motivated,

and are only becoming more prevalent in the foreseeable future. In spite of this grave

privacy threat, the process of unregulated aggregation is unobservable and works as

a black box — no one knows what information has actually been aggregated and

what really happens in the cloud. Users, therefore, are largely unaware of this threat

and have no opt-out options. Existing proposals disallow apps from collecting user

42

behaviors and shift part of the app logic (e.g., personalization) to the mobile OS

or trusted cloud providers [29, 60]. This, albeit effective, is against the incentive of

app developers and requires construction of a new ecosystem. Therefore, there is

an urgent need for a practical solution that is compatible with the existing mobile

ecosystem.

In this chapter, we propose a new way of addressing the unregulated aggregation

problem by monitoring, characterizing and reducing the underlying linkability across

apps. Two apps are linkable if they can associate their usage behaviors of the same

user. This linkability is the prerequisite of conducting unregulated aggregation and

represents an upper-bound of the potential threat. Researchers studied linkability un-

der domain-specific scenarios, such as on movie reviews [79] and social networks [58].

In contrast, we focus on the linkability that is ubiquitous in the mobile ecosystem

and introduced by domain-independent factors, such as device IDs, account numbers,

location and inter-app communications. Specifically, we model mobile apps on the

same device as a Dynamic Linkability Graph (DLG) which monitors apps’ access to

OS-level identifying information and cross-app communication channels. DLG quan-

tifies the potential threat of unregulated aggregation and allows us to monitor the

linkability across apps during runtime.

We implemented DLG as an Android extension and observed how it evolved on 13

users during a period of 47 days. The results reveal an alarming view of the app-level

linkability in the wild. Two random apps (installed by the same user) are linkable

with a probability of 0.81. Specifically, 86% of the apps a user installed are directly

linkable to the Facebook app, namely, his real identity. In particular, we found

that apps frequently abuse OS-level information and inter-process communication

(IPC) channels in unexpected ways, establishing the linkability that is unrelated

to app functionalities. For example, we found that many of the apps requesting

account information collect all of the user’s accounts even when they only need one

43

to function correctly. We also noticed that some advertising agencies, such as Admob

and Facebook, use IPCs to share user identifiers with other apps, completely bypassing

system permissions and controls. Furthermore, we identified cases when different apps

write and read the same persistent file in shared storage to exchange user identifiers.

The end-users should be promptly warned about these unexpected behaviors to reduce

unnecessary linkability.

Based on the above observations, we propose LinkDroid, a linkability-aware ex-

tension to Android which provides runtime monitoring and mediation of the linka-

bility across apps. LinkDroid introduces a new dimension to privacy protection on

smartphones. Instead of checking whether some app behavior poses direct privacy

threat, LinkDroid warns users about how it implicitly affects the linkability across

apps. Practicality is a main driver for the design of LinkDroid. It extends the widely-

deployed (both runtime and install-time) permission model on the mobile OS that

end-users are already familiar with. Specifically, LinkDroid provides the following

privacy-enhancing features:

• Install-Time Obfuscation: LinkDroid obfuscates device-specific identifiers

that have no influence on most app functionalities, such as IMEI, Android ID,

etc. We perform this during install-time to maintain the consistency of these

identifiers within each app.

• Runtime Linkability Monitoring: When an app tries to perform a certain

action that introduces additional linkability, users will receive a just-in-time

prompt and an intuitive risk indicator. Users can then exercise runtime access

control and choose any of the opt-out options provided by LinkDroid.

• Unlinkable Mode: The user can start an app in unlinkable mode. This will

create a new instance of the app which is unlinkable with other apps. All actions

that may establish a direct association with other apps will be denied by default.

44

This way, users can enjoy finer-grained privacy protection, unlinking only a set

of app sessions.

We evaluated LinkDroid on the same set of 13 users as in our measurement and

found that LinkDroid reduces the cross-app linkability substantially with little loss

of app performance. The probability of two random apps being linkable is reduced

from 0.81 to 0.21, and the percentage of apps that are directly linkable to Facebook

drops from 86% to 18%. On average, a user only needs to handle 1.06 prompts per

day in the 47-day experiments and the performance overhead is marginal.

This work makes the following contributions:

1. Introduction of a novel perspective of defending against unregulated aggregation

by addressing the underlying linkability across apps (Section 3.2).

2. Proposal of the Dynamic Linkability Graph (DLG) which enables runtime mon-

itoring of cross-app linkability (Section 3.3).

3. Identification of real-world evidence of how apps abuse IPCs and OS-level in-

formation to establish linkability across apps (Section 3.4).

4. Addition of a new dimension to access control based on the runtime linkability,

and development of a practical countermeasure, LinkDroid, to defend against

unregulated aggregation (Section 3.5).

3.2 Privacy Threats: A New Perspective

In this section, we will first introduce our threat model of unregulated aggregation

and then propose a novel perspective of addressing it by monitoring, characterizing

and reducing the linkability across apps. We will also summarize the explicit/implicit

sources of linkability in the current mobile app ecosystem.

45

3.2.1 Threat Model

In this work, we target unregulated aggregation across app-usage behaviors, i.e.,

when an adversary aggregates usage behaviors across multiple functionally-independent

apps without users’ knowledge or consent. In our threat model, an adversary can be

any party that collects information from multiple apps or controls multiple apps, such

as a widely-adopted advertising agency, an IT company in charge of multiple authen-

tic apps, or a set of malicious colluding apps. We assume the mobile operating system

and network operators are trustworthy and will not collude with the adversary.

3.2.2 Linkability: A New Perspective

There are many parties interested in conducting unregulated aggregation across

apps. In practice, however, this process is unobservable and works as a black box

— no one knows what information an adversary has collected and whether it has

been aggregated in the cloud. Existing studies propose to disable mobile apps from

collecting usage behaviors and shift part of the app logic to trusted cloud providers or

mobile OS [29, 60]. These solutions, albeit effective, require building a new ecosystem

and greatly restrict functionalities of the apps. Here, we address unregulated aggre-

gation from a very different angle by monitoring, characterizing and reducing the

underlying linkability across mobile apps. Two apps are linkable if they can associate

usage behaviors of the same user. This linkability is the prerequisite of conducting

unregulated aggregation, and represents an “upper-bound” of the potential threat.

In the current mobile app ecosystem, there are various sources of linkability that an

adversary can exploit. Researchers have studied linkability under several domain-

specific scenarios, such as movie reviews [79] and social networks [58]. Here, we focus

on the linkability that is ubiquitous and domain-independent. Specifically, we group

its contributing sources into the following two fundamental categories.

46

Type 2013-3 2013-10 2014-8 2015-1

Android ID 80% 84% 87% 91%
IMEI 61% 64% 65% 68%
MAC 28% 42% 51% 55%

Account 24% 29% 32% 35%
Contacts 21% 26% 33% 37%

Table 3.1: Apps are increasingly interested in requesting persistent and consistent identi-
fying information during the past few years.

OS-Level Information The mobile OS provides apps ubiquitous access to various

system information, many of which can be used as consistent user identifiers across

apps. These identifiers can be device-specific, such as MAC address and IMEI, user-

specific, such as phone number or account number, or context-based, such as location

or IP clusters. We conducted a longitudinal measurement study from March 2013 to

January 2015, on the top 100 free Android apps in each category. We excluded the

apps that are rarely downloaded, and considered only those with more than 1 million

downloads. We found that apps are getting increasingly interested in requesting

persistent and consistent identifying information, as shown in Table 3.1. By January

2015, 96% of top free apps request both the Internet access and at least one persistent

identifying information. These identifying vectors, either explicit or implicit, allow

two apps to link their knowledge of the same user at a remote side without even

trying to bypass on-device isolation of the mobile OS.

Inter-Process Communications The mobile OS provides explicit Inter-Process

Communication (IPC) channels, allowing apps to communicate with each other and

perform certain tasks, such as export a location from Browser and open it with Maps.

Since there is no existing control on IPC, colluding apps can exchange identifying in-

formation of the user and establish linkability covertly, without the user’s knowledge.

They can even synchronize and agree on a randomly-generated sequence as a custom

user identifier, without accessing any system resource or permission. This problem

47

gets more complex since apps can also conduct IPC implicitly by reading and writing

shared persistent storage (SD card and databases). As we will show in Section 3.4,

these exploitations are not hypothetical and have already been utilized by real-world

apps.

3.3 Dynamic Linkability Graph

The cornerstone of our work is the Dynamic Linkability Graph (DLG). It enables

us to monitor app-level linkability during runtime and quantify the linkability intro-

duced by different contributing sources. In what follows, we will elaborate on the

definition of DLG, the linkability sources it considers, and describe how it can be

implemented as an extension of Android.

3.3.1 Basic Concepts

We model linkability across different apps on the same device as an undirected

graph, which is called the Dynamic Linkability Graph (DLG). Nodes in DLG repre-

sent apps and edges represent linkability introduced by different contributing sources.

DLG monitors the linkability during runtime by tracking the apps’ access to various

OS-level information and IPC channels. An edge exists between two apps if they

accessed the same identifying information or engaged in an IPC. Fig. 3.1 presents an

illustrative example of DLG.

DLG presents a comprehensive view of the linkability across all installed apps.

An individual adversary, however, may only observe a subgraph of the DLG. For

example, an advertising agency only controls those apps (nodes) that incorporate

the same advertising library; an IT corporate only controls those apps (nodes) it has

already acquired. In the rest of the chapter, we focus on the generalized case (the

entire DLG) instead of considering each adversary individually (subgraphs of DLG).

48

Figure 3.1: An illustrative example of DLG. Edges of different types represent linkability
introduced by different sources.

3.3.2 Definitions and Metrics

Linkable Two apps a and b are linkable if there is a path between them. In Fig. 3.1,

app A and F are linkable, app A and H are not linkable.

Gap is defined as the number of nodes (excluding the end nodes) on the shortest

path between two linkable apps a and b. It represents how many additional apps an

adversary needs to control in order to link information across a and b. For example,

in Fig. 3.1, gapA,D = 0, gapA,E = 1, gapA,G = 2.

Linking Ratio (LR) of an app is defined as the number of apps it is linkable to,

divided by the number of all installed apps. LR ranges from 0 to 1 and characterizes

to what extent an app is linkable to others. In DLG, LR equals to the size of the

Largest Connected Component (LCC) this app resides in, excluding itself, divided by

the size of the entire graph, also excluding itself:

LRa =
size(LCCa)− 1

size(DLG)− 1

Linking Effort (LE) of an app is defined as the Linking Effort (LE) of an app as

the average gap between it and all the apps it is linkable to. LEa characterizes the

difficulty in establishing linkability with a. LEa = 0 means that to link information

49

from app a and any random app it is linkable to, an adversary does not need additional

information from a third app.

LEa =
∑

b∈LCCa
b6=a

gapa,b
size(LCCa)− 1

LR and LE describe two orthogonal views of the DLG. In general, LR represents

the quantity of links, describing the percentage of all installed apps that are linkable

to a certain app, whereas LE characterizes the quality of links, describing the average

amount of effort an adversary needs to make to link a certain app with other apps.

In Fig. 3.1, LRA = 6/8, LRH = 1/8; LEA = 0+0+0+1+1+2
7−1 = 4/6, LEH = 0.

GLR and GLE Both LR and LE are defined for a single app, and we also need two

similar definitions for the entire graph. So, we introduce Global Linking Ratio (GLR)

and Global Linking Effort (GLE). GLR represents the probability of two randomly

selected apps being linkable, while GLE represents the number of apps an adversary

needs to control to link two random apps.

GLR =
∑
a

LRa

size(DLG)

GLE =
1∑

a size(LCCa)− 1

∑
b

∑
c∈LCCb
c6=b

gapb,c

In graph theory, GLE is also known as the Characteristic Path Length (CPL)

of a graph, which is widely used in Social Network Analysis (SNA) to characterize

whether the network is easily negotiable or not.

50

3.3.3 Sources of Linkability

DLG maintains a dynamic view of app-level linkability by monitoring runtime be-

haviors of the apps. Specifically, it keeps track of apps’ access to device-specific iden-

tifiers (IMEI, Android ID, MAC), user-specific identifiers (Phone Number, Accounts,

Subscriber ID, ICC Serial Number), and context-based information (IP, Nearby APs,

Location). It also monitors explicit IPC channels (Intent, Service Binding) and im-

plicit IPC channel (Indirect RW, i.e., reading and writing the same file or database).

This is not an exhaustive list but covers most standard and widely-used aggregating

channels. Table 3.2 presents a list of all the contributing sources we consider and the

details of each source will be elaborated in Section 3.4.

The criterion of two apps being linkable differs depending on the linkability source.

For consistent identifiers that are obviously unique — Android ID, IMEI, Phone

Number, MAC, Subscriber ID, Account, ICC Serial Number — two apps are linkable

if they both accessed the same type of identifier. For pair-wise IPCs — intents,

service bindings, and indirect RW — the two communicating parties involved are

linkable. For implicit and fuzzy information, such as location, nearby APs, and

IP, there are well-known ways to establish linkability as well. User-specific location

clusters (Points of Interests, or PoIs) is already known to be able to uniquely identify a

user [42, 56, 114]. Therefore, an adversary can link different apps by checking whether

the location information they collected reveal the same PoIs. Here, the PoIs are

extracted using a lightweight algorithm as used in [13, 36]. We select the top 2 PoIs

as the linking standard, which typically correspond to home and work addresses.

Similarly, the consistency and persistence of a user’s PoIs are also reflected on its

AP clusters and frequently-used IP addresses. This property allows us to establish

linkability across apps using these fuzzy contextual information.

51

Category Type Source

OS-level Info.

Device

IMEI

Android ID

MAC

Personal

Phone #

Account

Subscriber ID

ICC Serial #

Contextual

IP

Nearby APs

Location (PoIs)

IPC Channel

Explicit
Intent

Service Binding

Implicit Indirect RW

Table 3.2: DLG considers the linkability introduced by 10 types of OS-level information
and 3 IPC channels.

3.3.4 DLG: A Mobile OS Extension

DLG gives us the capability to construct cross-app linkability from runtime be-

haviors of the apps. Here, we introduce how it can be implemented as an extension

to current mobile operating systems, using Android as an illustrative example. We

also considered other implementation options, such as user-level interception (Aura-

sium [110]) or dynamic OS instrumentation (Xposed Framework [109]). The former

is insecure since the extension resides in the attacker’s address space and the latter

is not comprehensive because it cannot handle the native code of an app. However,

the developer can always implement a useful subset of DLG using one of these more

deployable techniques.

Android Basics Android is a Linux-based mobile OS developed by Google. By

default, each app is assigned a different Linux uid and lives in its own sandbox. Inter-

Process Communications (IPCs) are provided across different sandboxes, based on

the Binder protocol which is inherently a lightweight RPC (Remote Procedure Call)

52

Figure 3.2: We instrument system services (red shaded region) to record which app accessed
which identifier using Wi-Fi service as an example.

Figure 3.3: We extend the centralized intent filter implemented in the Android framework
(com.android.server.firewall.IntentFirewall) to intercept all the Intents across
apps.

mechanism. There are four different types of components in an Android app: Activity,

Service, Content Provider, and Broadcast Receiver. Each component represents a

different way to interact with the underlying system: Activity corresponds to a single

screen supporting user interactions; Service runs in the background to perform long-

running operations and processing; Content Provider is responsible for managing

and querying of persistent data such as database; and Broadcast Receiver listens to

system-wide broadcasts and filters those it is interested in. Next, we describe how

we instrument the Android framework to monitor app’s interactions with the system

and each other via these components.

53

Figure 3.4: We instrument Content Provider (shaded region) to record which app accessed
which database with what parameters.

Implementation Details In order to construct a DLG in Android, we need to

track apps’ access to various OS-level information as well as IPCs between apps.

Next, we describe how we achieve this by instrumenting different components of the

Android framework.

Apps access most identifying information, such as IMEI and MAC, by interact-

ing with different system services. These system services are parts of the Android

framework and have clear interfaces defined in AIDL (Android Interface Definition

Language). By instrumenting the public functions in each service that return persis-

tent identifiers, we can have a timestamped record of which app accessed what type

of identifying information via which service. Fig. 3.2 gives a detailed view of where

to instrument using the Wi-Fi service as an example.

On the other hand, apps access some identifying information, such as Android ID,

by querying the content providers maintained by the system. Android framework has

a universal choke point for all access to remote content providers — the server-side

stub class ContentProvider.Transport. By instrumenting this class, we know which

database (uri) an app is accessing and with what parameters and actions. Fig. 3.4

illustrates how an app accesses remote Content Provider and explains which part to

modify in order to log the information we need.

Apps can launch IPCs explicitly, using Intents. Intent is an abstract description

54

of an operation to be performed. It can either be sent to a specific target (app compo-

nent), or broadcast to the entire system. The Android framework provides a central-

ized filter which enforces system-wide policies for all Intents. We choose to extend this

filter (com.android.server.firewall.IntentFirewall) to record and intercept all

Intent communications across apps (see Fig. 3.3). In addition to Intents, Android also

allows an app to communicate explicitly with another app by binding to one of the ser-

vices it exports. Once the binding is established, the two apps can communicate under

a client-server model. We instrument com.android.server.am.ActiveServices in

the Activity Manager to monitor all the attempts to establish service bindings across

apps.

Apps can also conduct IPCs implicitly by exploiting shared persistent storage.

For example, two apps can write and read the same file in the SD card to exchange

identifying information. Therefore, we need to monitor read and write access to

persistent storage. External storage in Android are wrapped by a FUSE (Filesystem

in Userspace) daemon which enables user-level permission control. By modifying this

daemon, we can track which app reads or writes which files (see Fig. 3.5). This allows

us to implement a Read-Write monitor which captures implicit communications via

reading a file which has previously been written by another app. Besides external

storage, our Read-Write monitor also considers similar indirect communications via

system Content Providers.

We described how to monitor all formal ways an app can interact with system

components (Services, Content Providers) and other apps (Intents, service bindings,

and indirect RW). This methodology is fundamental and can be extended to cover

other potential linkability sources (beyond our list) as long as a clear definition is

given. By placing hooks at the aforementioned locations in the system framework,

we get all the information needed to construct a DLG. For our measurement study,

we simply log and upload these statistics to a remote server for analysis. In our

55

Figure 3.5: We customize the FUSE daemon under /system/core/sdcard/sdcard.c to
intercept apps’ access to shared external storage.

countermeasure solutions, these are used locally to derive dynamic defense decisions.

3.4 Linkability in Real World

In this section, we study app-level linkability in the real world. We first present an

overview of linkability, showing the current threats we’re facing. Then, we go through

the linkability sources and analyze to what extent each of the sources is contributing

to the linkability. Finally, we shed light on how these sources can be or have been

exploited for reasons unrelated to app functionalities. This paves the way for us to

develop a practical countermeasure.

3.4.1 Deployment and Settings

We prototyped DLG on Cyanogenmod 11 (based on Android 4.4.1) and installed

the extended OS on 7 Samsung Galaxy IV devices and 6 Nexus V devices. We

recruited 13 participants from the students and staff in our institution, spanning

over 8 different academic departments. Of the 13 participants, 6 of the participants

are females and 7 are males. Before using our experimental devices, 7 of them were

Android users and 6 were iPhone users. Participants are asked to operate their devices

normally without any extra requirement. They are given the option to temporarily

56

 0

 5

 10

 15

 20

 25

 0 10 20 30

#
 o

f
a
p
p
s
 i
n
s
ta

lle
d

of days from deployment

average

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15

#
 o

f
s
o
u
rc

e
s
 a

c
c
e
s
s
e
d

of days since installed

average

Figure 3.6: For an average user, more than 80% of the apps are installed in the first two
weeks after deployment; each app accesses most of the linkability sources it’s interested in
during the first day of its installation.

turn off our extension if they want more privacy when performing certain tasks. Logs

are uploaded once per hour when the device is connected to Wi-Fi. We exclude built-

in system apps (since the mobile OS is assumed to be benign in our threat model)

and consider only third-party apps that are installed by the users themselves. Note

that our study is limited in its size and the results may not generalize.

3.4.2 Data and Findings

We observed a total of 215 unique apps during a 47-day period for 13 users. On

average, each user installed 26 apps and each app accessed 4.8 different linkability

sources. We noticed that more than 80% of the apps are installed within the first two

weeks after deployment, and apps would access most of the linkability sources they

are interested in during the first day of their installation (see Fig. 3.6). This suggests

that a relative short-term (a few weeks) measurement would be enough to capture a

representative view of the problem.

Overview: Our measurement indicates an alarming view of the threat: two random

apps are linkable with a probability of 0.81, and an adversary only needs to control 2.2

apps (0.2 additional app), on average, to link them. This means that an adversary in

the current ecosystem can aggregate information from most apps without additional

57

 0

 0.2

 0.4

 0.6

 0.8

 1

IP A
n
d
ro

id
ID

In
te

n
t

In
d
ire

ctR
W

A
cco

u
n
t

IM
E

I

M
A

C

L
o
ca

tio
n

S
u
b
scrib

e
rID

N
e
a
rb

yA
P

L
in

e
1
N

u
m

b
e
r

IccS
e
ria

lN
u
m

b
e
r

B
in

d
in

g

Linking Ratio (LR)
% of apps accessing each source

Figure 3.7: The percentage of apps accessing each source, and the linkability (LR) an app
can get by exploiting each source.

efforts (i.e., controlling a third app). Specifically, we found that 86% of the apps a

user installed on his device are directly linkable to the Facebook app, namely, his real

identity. This means almost all the activities a user exhibited using mobile apps are

identifiable, and can be linked to the real person.

Breakdown by Source: This vast linkability is contributed by various sources in

the mobile ecosystem. Here, we report the percentage of apps accessing each source

and the linkability (LR) an app can acquire by exploiting each source. The results

are provided in Fig. 3.7. We observed that except for device identifiers, many other

sources contributed to the linkability substantially. For example, an app can be

linked to 39% of all installed apps (LR=0.39) using only account information, and

36% (LR=0.36) using only Intents. The linkability an app can get from a source

is roughly equal to the percentage of apps that accessed that source, except for the

case of contextual information: IP, Location and Nearby APs. This is because the

contextual information an app collected does not always contain effectively identifying

information. For example, Yelp is mostly used at infrequent locations to find nearby

restaurants, but is rarely used at consistent PoIs, such as home or office. This renders

58

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

IP IccS
e
ria

lN
u
m

b
e
r

M
A

C

A
n
d
ro

id
ID

IM
E

I

S
u
b
scrib

e
rID

L
in

e
1
N

u
m

b
e
r

L
o
ca

tio
n

N
e
a
rb

yA
P

A
cco

u
n
t

B
in

d
in

g
In

d
ire

ctR
W

In
te

n
t

L
in

k
in

g
 E

ff
o
rt

 (
L
E

)

Figure 3.8: The (average) Linking Efforts (LE) of all the apps that are linkable due to a
certain linkability source.

location information useless in establishing linkability with Yelp.

The effort required to aggregate two apps also differs for different linkability

sources, as shown in Fig. 3.8. Device identifiers have LE=0, meaning that any two

apps accessing the same device identifier can be directly aggregated without requiring

control of an additional third app. Linking apps using IPC channels, such as Intents

and Indirect RW, requires the adversary to control an average of 0.6 additional app as

the connecting nodes. This indicates that, from an adversary’s perspective, exploiting

consistent identifiers is easier than building pair-wise associations.

Breakdown by Category: We group the linkability sources into four categories

— device, personal, contextual, and IPC — and study the linkability contributed by

each category (see Table 3.3). As expected, device-specific information introduces

substantial linkability and allows the adversary to conduct across-app aggregation ef-

fortlessly. Surprisingly, the other three categories of linkability sources also introduce

considerable linkability. In particular, only using fuzzy contextual information, an

adversary can link more than 40% of the installed apps to Facebook, the user’s real

identity. This suggests the naive solution of anonymizing device ids is not enough,

59

Category GLR GLE LRFacebook
Device 0.52 (0.13) 0.03 (0.03) 0.68 (0.12)

Personal 0.30 (0.10) 0.30 (0.11) 0.54 (0.11)
Contextual 0.20 (0.13) 0.33 (0.20) 0.44 (0.25)

IPC 0.32 (0.13) 0.78 (0.06) 0.59 (0.15)

Table 3.3: Linkability contributed by different categories of sources.

<?xml version=’1.0’ encoding=’utf -8’ standalone=’yes’ ?>

<map>

<long name="timestamp" value="1419049777098" />

<long name="t2" value="1419049776889" />

<string name="UTDID">VJT7MTV268gDACiZN6xEh8af </string >

<string name="DID">356565055348652 </string >

<long name="S" value="1634341681" />

<string name="SI">310260981039000 </string >

<string name="EI">356565055348652 </string >

</map>

Figure 3.9: Real-world example of indirect RW: an app (fm.qingting.qradio) writes user
identifiers to an xml file in SD card which was later read by three other apps. This file
contains the IMEI (DID) and SubscriberID (SI) of the user.

and hence a comprehensive solution is needed to make a trade-off between app func-

tionality and privacy.

3.4.3 Functional Analysis

Device identifiers (IMEI, Android ID, MAC) introduce vast amount of linkabil-

ity. We manually went through 162 mobile apps that request these device-specific

identifiers, but could rarely identify any explicit functionality that requires accessing

the actual identifier. In fact, for the majority of these apps, their functionalities are

device-independent, and therefore independent of device IDs. This indicates that

device-specific identifier can be obfuscated across apps without noticeable loss of app

functionality. The only requirement for device ID is that it should be unique to each

60

device.

As to personal information (Account Number, Phone Number, Installed Apps,

etc.), we also observed many unexpected accesses that resulted in unnecessary linka-

bility. We found that many apps that request account information collected all user

accounts even when they only needed one to function correctly; many apps request

access to phone number even when it is unrelated to their app functionalities. Since

the legitimacy of a request depends both on the user’s functional needs and the spe-

cific app context, end-users should be prompted about the access and make the final

decision.

The linkability introduced by contextual information (Location, Nearby AP) also

requires better regulation. Many apps request permission for precise location, but not

all of them actually need it to function properly. In many scenarios, apps only require

coarse-grained location information and shouldn’t reveal any identifying points of

interest (PoIs). Nearby AP information, which is only expected to be used by Wi-

Fi tools/managing apps, is also abused for other purposes. We noticed that many

apps frequently collect Nearby AP information to build an internal mapping between

locations and access points (APs). For example, we found that even if we turn off all

system location services, WeChat (an instant messaging app) can still infer the user’s

location only with Nearby AP information. To reduce the linkability introduced by

these unexpected usages, the users should have finer-grained control on when and

how the contextual information can be used.

Moreover, we found that IPC channels can be exploited in various ways to es-

tablish linkability across apps. Apps can establish linkabililty using Intents, sharing

and aggregating app-specific information. For instance, we observed that WeChat re-

ceives Intents from three different apps right after their installations, reporting their

existence on the same device. Apps can also establish linkability with each other via

service binding. For example, both AdMob and Facebook allow an app to bind to

61

its service and exchanging the user identifier, completely bypassing the system per-

missions and controls. Apps can also establish linkabililty through Indirect RW, by

writing and reading the same persistent file. Fig. 3.9 shows a real-world example: an

app (fm.qingting.qradio) writes user identifiers to an xml file in the SD card which

was later read by three other apps. The end-user should be promptly warned about

these unexpected communications across apps to reduce unnecessary linkability.

3.5 LinkDroid: A Practical Countermeasure

Based on our observation and findings on linkability across real-world apps, we

propose a practical countermeasure, LinkDroid, on top of DLG. We first introduce the

basic design principle of LinkDroid and its three major privacy-enhancing features:

install-time obfuscation, runtime linkability monitoring, and unlinkable mode support.

We then evaluate the effectiveness of LinkDroid with the same set of participants as

in our measurement study.

Figure 3.10: An overview of LinkDroid. Shaded areas (red) represent the parts we need
to extend/add in Android. (We already explained how to extend A, B, C and D in Sec-
tion 3.3.4.)

3.5.1 Design Overview

LinkDroid is designed with practicality in mind. Numerous extensions, paradigms

and ecosystems have been proposed for mobile privacy, but access control (runtime for

62

iOS and install-time for Android) is the only deployed mechanism. LinkDroid adds a

new dimension to access control on smartphone devices. Unlike existing approaches

that check if some app behavior poses direct privacy threats, LinkDroid warns users

about how it implicitly builds the linkability across apps. This helps users reduce un-

necessary links introduced by abusing OS-level information and IPCs, which happens

frequently in reality as our measurement study indicated.

As shown in Fig. 3.10, LinkDroid provides runtime monitoring and mediation of

linkability by

• monitoring and intercepting app behaviors that may introduce linkability (in-

cluding interactions with various system services, content providers, shared ex-

ternal storage and other apps);

• querying a standalone linkability service to get the user’s decision regarding this

app behavior;

• prompting the user about the potential risk if the user has not yet made a

decision, getting his decision and updating the linkability graph (DLG).

We have already described in Section 3.3.4 how to instrument the Android frame-

work to build the monitoring components (corresponding to boxes A, B, C, D in

Fig. 3.10). In this section, we focus on how the linkability service operates.

3.5.2 Install-Time Obfuscation

As mentioned earlier, app functionalities are largely independent of device identi-

fiers. This allows us to obfuscate these identifiers and cut off many unnecessary edges

in the DLG. In our case, the list of device identifiers includes IMEI, Android ID and

MAC. Every time an app gets installed, the linkability service receives the app’s uid

and then generates a random mask code for it. The mask code together with the

types of obfuscated device identifiers will be pushed into the decision database. This

63

way, when an app a tries to fetch the device identifier of a certain type t, it will only

get a hash of the real identifier salted with the app-specific mask code:

IDa
t = hash(IDt +maska).

Note that we do this at install-time instead of during each session because we

still want to guarantee the relative consistency of the device identifiers within each

app. Otherwise, it will let the app think the user is switching to a different device

and trigger some security/verification mechanisms. The user can always cancel this

default obfuscation in the privacy manager (Fig. 3.12) if he finds it necessary to reveal

real device identifiers to certain apps.

3.5.3 Runtime Linkability Monitoring

Except for device-specific identifiers, obfuscating other sources of linkability is

likely to interfere with the app functionalities. Whether there is a functional interfer-

ence or not is highly user-specific and context-dependent. To make a useful trade-off,

the user should be involved in this decision-making process. Here, LinkDroid pro-

vides just-in-time prompts before an edge creates in the DLG. Specifically, if the

linkability service could not find an existing decision regarding some app behavior,

it will issue the user a prompt, informing him: 1) what app behavior triggers the

prompt; 2) what’s the quantitative risk of allowing this behavior; and 3) what’re the

opt-out options. Fig. 3.11 gives an illustrative example of the UI of the prompt.

Description of App Behavior Before the user can make a decision, he first needs

to know what app behavior triggers the prompt. Basically, we report two types of

description: access to OS-level information and cross-app communications. To help

the user understand the situation, we use a high-level descriptive language instead of

the exact technical terms. For example, when an app tries to access Subscriber ID or

64

Figure 3.11: The UI prompt of LinkDroid’s runtime access control, consisting of a behav-
ioral description, descriptive and quantitative risk indicators, and opt-out options.

IccSerialNumber, we report that “App X asks for sim-card information.” When an

app tries to send Intents to other apps, we report “App X tries to share content with

App Y”. During our experiments with real users (introduced later in the evaluation),

11 out of the 13 participants find these descriptions clear and informative.

Risk Indicator LinkDroid reports two types of risk indicators to users: one is

descriptive and the other is quantitative. The descriptive indicator tells what apps

will be directly linkable to an app if the user allows its current behavior. By ‘directly

linkable,’ we mean without requiring a third app as the connecting nodes. The quan-

titative indicator, on the other hand, reflects the influence on the overall linkability of

the running app, including those apps that are not directly linkable to it. Here, the

overall linkability is reported as a combination of the linking ratio (LR) and linking

effort (LE):

La = LRa × e−LEa .

65

Figure 3.12: LinkDroid provides a centralized linkability manager. The user can review
and modify all of his previous decisions regarding each app.

The quantitative risk indicator is defined as ∆La. A user will be warned of a

larger risk if the total number of linkable apps significantly increases, or the average

linking effort decreases substantially. We transform the quantitative risk linearly into

a scale of 4 and report the risk as Low, Medium, High, and Severe.

Opt-out Options In each prompt, the user has at least two options: Allow or

Deny. If the user chooses Deny, LinkDroid will obfuscate the information this app

tries to get or shut down the communication channel this app requests. For some types

of identifying information, such as Accounts and Location, we provide finer-grained

trade-offs. For Location, the user can select from zip-code level (1km) or city-level

(10km) precision; for Accounts, the user can choose which specific account he wants

to share instead of exposing all his accounts. LinkDroid also allows the user to set

up a VPN (Virtual Private Network) service to anonymize network identifiers. When

the user switches from a cellular network to Wi-Fi, LinkDroid will automatically

initialize the VPN service to hide the user’s public IP. This may incur additional

energy consumption and latency (see Section 3.5.5). All choices made by the user will

66

be stored in the decision database for future reuse. We provide a centralized privacy

manager such that the user can review and change all previously made decisions (see

Fig. 3.12).

3.5.4 Unlinkable Mode

Once a link is established in DLG, it cannot be removed. This is because once a

piece of identifying information is accessed or a communication channel is established,

it can never be revoked. However, the user may sometimes want to perform privacy-

preserving tasks which have no interference with the links that have already been

introduced. For example, when the user wants to write an anonymous post in Reddit,

he doesn’t want it to be linkable with any of his previous posts as well as other apps.

LinkDroid provides an unlinkable mode to meet such a need. The user can start

an app in unlinkable mode by pressing its icon for long in the app launcher. A new

uid as well as isolated storage will be allocated to this unlinkable app instance. By

default, access to all OS-level identifying information and inter-app communications

will be denied. This way, LinkDroid creates the illusion that this app has just been

installed on a brand-new device. The unlinkable mode allows LinkDroid to provide

finer-grained (session-level) control, unlinking only a certain set of app sessions.

3.5.5 Evaluation

We evaluate LinkDroid in terms of its overheads in usability and performance,

as well as its effectiveness in reducing linkability. We replay the traces of the 13

participants of our measurement study (see Section 3.4), prompt them about the

privacy threat and ask for their decisions. This gives us the exact picture of the same

set of users using LinkDroid during the same period of time. We instruct the user

to make a decision in the most conservative way: the user will Deny a request only

when he believes the prompted app behavior is not applicable to any useful scenario;

67

 0

 0.2

 0.4

 0.6

 0.8

 1

Device Personal Contextual IPC All
G

lo
b

a
l
L

in
k
in

g
 R

a
ti
o

 (
G

L
R

) Normal
LinkDroid

Figure 3.13: The Global Linking Ratio (GLR) of different categories of sources before and
after using LinkDroid.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12

G
lo

b
a

l
L

in
k
in

g
 R

a
ti
o

 (
G

L
R

)

User Index

Normal LinkDroid

Figure 3.14: The Global Linking Ratio (GLR) of different users before and after using
LinkDroid.

otherwise, he will Accept the request.

The overhead of LinkDroid mainly comes from two parts: the usability burden of

dealing with UI prompts and the performance degradation of querying the linkability

service. Our experimental results show that, on average, each user was prompted

only 1.06 times per day during the 47-day period. The performance degradation

introduced by the linkability service is also marginal. It only occurs when apps access

certain OS-level information or conduct cross-app IPCs. These sensitive operations

happened rather infrequently — once every 12.7 seconds during our experiments.

These results suggest that LinkDroid has limited impact on system performance and

usability.

68

We found that after applying LinkDroid, the Global Linking Ratio (GLR) dropped

from 81% to 21%. Fig. 3.13 shows the breakdown of linkability drop in different cat-

egories of sources. The majority of the remaining linkability comes from inter-app

communications, most of which are genuine from the user’s perspective. Not only

fewer apps are linkable, LinkDroid also makes it harder for an adversary to aggre-

gate information from two linkable apps. The Global Linking Effort (GLE) increases

significantly after applying LinkDroid: from 0.22 to 0.68. Specifically, the percentage

of apps that are directly linkable to Facebook dropped from 86% to 18%. Fig. 3.15

gives an illustrative example of how DLG changes after applying LinkDroid. We

also noticed that that the effectiveness of LinkDroid differs across users, as shown in

Fig. 3.14. In general, LinkDroid is more effective for the users who have diverse mo-

bility patterns, are cautious about sharing information across apps and/or maintain

different accounts for different services.

LinkDroid takes VPN as a plug-in solution to obfuscate network identifiers. The

potential drawback of using VPN is its influence on device energy consumption and

network latency. We measured the device energy consumption of using VPN on a

Samsung Galaxy 4 device, with Monsoon Power Monitor. Specifically, we tested two

network-intensive workloads: online videos and browsing. We observed a 5% increase

in energy consumption for the first workload, and no observable difference for the

second. To measure the network latency, we measured the ping time (average of 10

trials) to Alexa Top 20 domains and found a 13% increase (17ms). These results

indicate that the overhead of using VPN on smartphone device is noticeable but not

significant. Seven of 13 participants in our evaluation were willing to use VPN services

to achieve better privacy.

We interviewed the 13 participants after the experiments. Questions are designed

on a scale of 1 to 5 and a score of 4 or higher is regarded as “agree.” Eleven of

the participants find the UI prompt informative and clear and nine are willing to

69

(a)

(b)

Figure 3.15: DLG of a representative user before (a) and after (b) applying
LinkDroid. Red circle represents the Facebook app.

use LinkDroid on a daily basis to inform them about the risk and provide opt-out

options. However, these responses might not be representative due to the limited

size and diversity of the participants. We also noticed that users care a lot about

the linkability of sensitive apps, such as Snapchat and Facebook. Some participants

clearly state that they do not want any app to be associated with the Facebook

app, except for very necessary occasions. This also supports the rationale behind the

design of LinkDroid’s unlinkable mode.

70

3.6 Related Work

There have been other proposals [29, 60] which also address the privacy threats of

information aggregation by mobile apps. They shift the responsibility of information

personalization and aggregation from mobile apps to the mobile OS or trusted cloud

providers, requiring re-development of mobile apps and extensive modifications on

the entire mobile ecosystem. In contrast, LinkDroid is a client-side solution which

is compatible with existing ecosystem — it focuses on characterizing the threat in

current mobile ecosystem and making a practical trade-off, instead of proposing new

computation (advertising) paradigm.

Existing studies investigated linkability under several domain-specific scenarios.

Arvind et al. [79] showed that a user’s profile in Netflix can be effectively linked to

his in IMDB, using long-tailed (unpopular) movies. Sebastian et al. [58] described

how to link the profiles of the same user in different social networks using friends

topologies. This type of linkability is restricted to a small scope, and may only exist

across different apps in the same domain. Here, we focus on the linkability that are

domain-independent and ubiquitous to all apps, regardless of the type and semantics

of each app.

The capability of advertising agency on conducting profiling and aggregation has

been extensively studied [45, 98]. Various countermeasures have been proposed, such

as enforcing finer-grained isolation between ad library and the app [86, 95], or adopting

a privacy-preserving advertising paradigm [10]. However, unlike LinkDroid, they only

consider a very specific and restricted scenario — advertising library — which involves

few functional trade-offs. LinkDroid, instead, introduces a general linkability model,

considers various sources of linkability and suits a diverse set of adversaries.

There have also been numerous studies on information access control on smart-

phone [18, 31, 33, 49, 53, 81, 101]. Many of these studies have already proposed to pro-

71

vide apps with fake identifiers and other types of sensitive information [49, 81, 109].

These studies focus on the explicit privacy concern of accessing and leaking sensi-

tive user information, by malicious mobile apps or third-party libraries. Our work

addresses information access control from a very different perspective, investigating

the implicit linkability introduced by accessing various OS-level information and IPC

channels.

Many modern browsers provide a private (incognito) mode. These are used to

defend against local attackers, such as users sharing the same computer, from steal-

ing cookies or browse history from each other [3]. This is inherently different from

LinkDroid’s unlinkable mode which targets unregulated aggregation by remote at-

tackers.

3.7 Discussion

In this chapter, we proposed a new metric, linkability, to quantify the ability of

different apps to link and aggregate their usage behaviors. This metric, albeit useful,

is only a coarse upper-bound of the actual privacy threat, especially in the case of

IPCs. Communication between two apps does not necessarily mean that they have

conducted, or are capable of conducting, information aggregation. However, deciding

on the actual intention of each IPC is by itself a difficult task. It requires an automatic

and extensible way of conducting semantic introspection on IPCs, and is a challenging

research problem on its own.

LinkDroid aims to reduce the linkability introduced covertly without the user’s

consent or knowledge — it couldn’t and doesn’t try to eliminate the linkability explic-

itly introduced by users. For example, a user may post photos of himself or exhibit

very identifiable purchasing behavior in two different apps, thus establishing link-

ability. This type of linkability is app-specific, domain-dependent and beyond the

control of LinkDroid. Identifiability or linkability of these domain-specific usage be-

72

haviors are of particular interest to other areas, such as anonymous payment [106],

anonymous query processing [77] and data anonymization techniques.

The list of identifying information we considered in this work is well-formatted

and widely-used. These ubiquitous identifiers contribute the most to information ag-

gregation, since they are persistent and consistent across different apps. We didn’t

consider some uncommon identifiers, such as walking patterns and microphone signa-

tures, because we haven’t yet observed any real-world adoption of these techniques by

commercial apps. However, LinkDroid can easily include other types of identifying

information, as long as a clear definition is given.

DLG introduces another dimension — linkability — to privacy protection on mo-

bile OS and has some other potential usages. For example, when the user wants

to perform a certain task in Android and has multiple optional apps, the OS can

recommend him to choose the app which is the least linkable with others. We also

noticed some interesting side-effect of LinkDroid’s unlinkable mode. Since unlinkable

mode allows users to enjoy finer-grained (session-level) unlinkability, it can be used

to stop a certain app from continuously identifying a user. This can be exploited to

infringe the benefits of app developers in the case of copyright protection, etc. For

example, NYTimes only allows an unregistered user to read up to 10 articles every

month. However, by restarting the app in unlinkable mode in each session, a user can

stop NYTimes from linking himself across different sessions and bypass this quota

restriction.

3.8 Conclusion

In this chapter, we addressed the privacy threat of unregulated aggregation from a

new perspective by monitoring, characterizing and reducing the underlying linkability

across apps. This allows us to measure the potential threat of unregulated aggregation

during runtime and promptly warn users of the associated risks. We observed how

73

real-world apps abuse OS-level information and IPCs to establish linkability, and

proposed a practical countermeasure, LinkDroid. It provides runtime monitoring

and mediation of linkability across apps, introducing a new dimension to privacy

protection on mobile device. Our evaluation on real users has shown that LinkDroid is

effective in reducing the linkability across apps and only incurs marginal overheads.

74

CHAPTER IV

Enabling Unlinkability of Mobile Apps in

User-level

4.1 Introduction

In the last chapter, we systematically studied the issue of unregulated aggregation

of mobile app usages, when a curious party covertly links and aggregates a user’s be-

havioral information collected from independent sources — across sessions and apps

— without his consent or knowledge. The severity and prevalence of this threat are

rooted at the nonexistence of unlinkability in the smartphone ecosystem. By exploit-

ing various levels of consistency provided by device identifiers, software cookies, IPs,

local and external storages, an adversary can easily correlate app usages of the same

user and aggregate supposed-to-be ‘isolated islands of information’ into a comprehen-

sive user profile, irrespective of the user’s choice and (dis)approval. However, from

the user’s perspective, only app usages that are functionally-dependent should be

linkable. For example, for GTalk, app usages under the same login should be linkable

to provide a consistent messaging service. For Angry Birds, usage of the same app

should be linkable to allow the user to resume from where he stopped. In contrast,

for most query-like apps, such as Bing and Wikipedia, which neither enforce an ex-

plicit login nor require consistent long-term ‘memories’, app usages should be globally

75

unlinkable by default.

Moreover, existing mobile OS vendors may be unlikely to adopt changes/exten-

sions that can improve the privacy of users because the entire mobile ecosystem is

fueled by the abundance of user information. To bridge this gap in a timely manner,

we propose Mask, the first user-level solution that allows the user to negotiate to what

extent his behavior can be linked and aggregated. Specifically, Mask introduces a set

of private execution modes that allow the users to maintain multiple isolated profiles

for each app. Each app profile can be temporary, being recycled after each session,

or enduring, persists across multiple sessions. Upon invocation of each app, a user

can apply one of the following modes to the current app session (from the start to

termination of the app), according to his usage scenario. If he wants to:

• Use this app while logged in, choose the identifiable mode. All app usages under

the same login are now linkable and the app delivers uncompromised personal

services while disallowing aggregation across unrelated apps.

• Keep states or use the states saved before, apply the pseudonymous mode. In

this mode, a user can maintain multiple profiles and only app usages in the

same profile are linkable.

• Execute this app without leaving any trace, apply the anonymous mode. Each

session is treated as independent and app usages are confined within the current

session.

All user behaviors originate from the mobile apps, either directly or indirectly.

By enabling the aforementioned private execution modes which isolate app usages at

this very source, Mask provides a client-side solution without requiring any change to

the existing ecosystem. We have implemented Mask on Android at user level, without

requiring any modifications on the Android framework. This is achieved by enforcing

a lightweight user-level sandbox that creates an isolated runtime environment with

76

stripped account information, anonymized device IDs & software cookies, and isolated

persistent storage. Our solution is able to bring privacy benefits to more than 70% of

the apps and incurs negligible overhead in the app’s runtime performance. Our user

study on 27 users find that more than 60% of them find it useful to maintain multiple

isolated profiles for mobile apps and 11 of them are willing to use this feature on a

daily basis.

The rest of this chapter is organized as follows. The next section introduces the

background of unregulated aggregation of mobile app usages with a focus on the prac-

tical challenges encountered. Section 4.3 presents a high-level design of Mask, while

Section 4.4 describes our user-level implementation on Android as well as some eval-

uation results. Section 4.5 covers the related work, and finally Section 4.6 concludes

the chapter.

4.2 Background & Challenges

4.2.1 Unregulated Aggregation

In current mobile ecosystems, an interested/curious party can covertly link and

aggregate app usages of the same user over time, without his consent or knowledge,

which we call unregulated aggregation of app usages. Here, we describe three major

adversaries — mobile apps, A&A agencies, and network sniffers — and show how

they aggregate app usages in practice.

4.2.1.1 Smartphone Applications

Smartphone apps aggregate users’ app usages mainly for personalization. By

tracking app usages over time and feeding them to domain-specific mining/learning

algorithms, smartphone apps can deliver contents tailored to each user. Even if

a user doesn’t give an explicit consent (by logging in), apps can still identify and

77

aggregate usages of the same user. In fact, if only for the purpose of user tracking,

mobile apps have options far easier and simpler than enforcing login. Specifically, a

smartphone app can use device IDs or system IDs, such as IMEI and Android ID,

as a consistent user identity to aggregate his app usages remotely on the server, or

exploit the consistent & persistent storage on the device and achieve the same goal

locally.

4.2.1.2 Advertising & Analytics Agencies

To enable targeted advertising, A&A agencies are also interested in aggregating

personal interests and demographics disclosed in app usages. Specifically, app devel-

opers include clients of these ad agencies—ad libraries—into their apps and proac-

tively feed sensitive information requested by these libraries [98]. Moreover, since

an ad library shares the same permission with its host app, it can also access and

collect private information on its own. To identify and aggregate information of the

same user, third-party libraries embed user identifiers into the traffic they send to

the back-end servers. Such a user identifier can be the hash value of a device/system

ID or a local cookie. These A&A agencies can be more dangerous than smartphone

apps as they can aggregate usage behaviors across multiple apps carrying the same

library.

4.2.1.3 Network Sniffers

Unlike the aforementioned parties, a network sniffer cannot collect information

directly from the user’s device on its own and can only extract information from raw

network traffic. Moreover, from the sniffer’s perspective, the network traffic can be

really messy: some are directly marked with the actual device ID, some are tagged

with hashed ones, some only embed app-specific ID (such as a craigslist user ID)

while some others are encrypted and completely useless. However, as MOSAIC [108]

78

Ad Library Ad Library

Network Sniffer

1) Link Across Sessions

2) Link Across Apps

3) Link Across Apps &

Ad Networks

App App App

Figure 4.1: How usages in different app sessions (circles in the figure) are collected, aggre-
gated and propagated by smartphone apps, A&A agencies and network sniffers.

shows, by exploiting the relative consistency of IP, it can associate different IDs

that represent the same user. This way, even the traffic marked with different and

seemingly unrelated user IDs can be aggregated. As publicized recently, a similar

technique is used by government agencies (e.g., US NSA and GCHQ) for public

surveillance.

In summary, these parties have an increasing scope of information collection and

aggregation, and decreasing control on the client side (mobile device). Besides, they’re

not independent parties, but operate more like subordinates of an integrated adver-

sary. Fig. 4.1 illustrates the information flow among these parties.

4.2.2 Practical Challenges

The following practical challenges need to be addressed when developing a solu-

tion.

4.2.2.1 Intermingled Interests of Different Parties

Free apps dominate mobile app stores with 91% of the overall downloads [1], and

app developers include ad libraries to monetize these free apps. Therefore, smart-

phone apps share the same financial interest with A&A agencies, and should thus not

79

be trusted. In fact, smartphone apps may deliberately collude with A&A agencies and

feed them user demographics, such as age and gender, which ad libraries wouldn’t be

able to know on their own. On the other hand, OS vendors, whose popularity highly

depends on the activeness of app developers, are reluctant to add privacy-enhancing

features that may undermine the app developers’ financial interests. Therefore, any

defense that requires extensive OS-level modifications/cooperations will be impracti-

cal and not deployable.

4.2.2.2 Overpopulated User Identifiers

Unlike the web case where users are usually identified and tracked using cookies,

smartphone apps have much more choices. Exploiting the consistency provided by

numerous device and system IDs (some of which do not even require a permission

to access), they can track app users both consistently and persistently. Moreover,

since apps have arbitrary control over their persistent storage, they can perform local

aggregation of users’ information which doesn’t even require any type of ID.

4.2.2.3 Trade-off between Functionality & Privacy

Enhancement of privacy often implies sacrifice of functionality. Similarly, opt-out

unregulated aggregation, while providing a better privacy guarantee, also impairs

personalized user experience. This trade-off, instead of being context-invariant, is

subject to an app’s nature as well as the user’s preference. Thus, one must make a

useful and adjustable trade-off between privacy and functionality.

These fundamental issues greatly reduce the set of tools and techniques a practical

solution can use, rendering most existing proposals ineffective in practical settings (see

Section 5 for the state-of-art).

80

4.3 MASK: A Client-side Design

4.3.1 Basic Design Idea

The basic idea behind Mask’s design is to allow only those app usages that are

functionally dependent on each other to be linkable while keeping others unlinkable

by default. This is achieved by introducing a set of private execution modes through

which app users can provide explicit consent, on whether and within which scope the

app usages in current session can be aggregated. The private execution modes are

introduced based on our observation of how apps are actually used. Specifically, we

first classify app-usage scenarios according to the levels of linkability required by app

functionality and then introduce different private execution modes according to these

app usage patterns.

4.3.2 App Usage Patterns

In Mask, the basic unit of a user’s app usage is session, which represents a series

of continuous active interactions between the user and an app to achieve a specific

function. On Android, this typically corresponds to the activities between the invoca-

tions of function calls onCreate and onDestroy. The duration of a session is relatively

short. Therefore, personal information in a single session can be very limited, and

hence, different parties are devoted to linking and aggregating different sessions of

the same user.

Mask classifies app usage patterns depending on whether and to what extent app

usages in different sessions should be linkable. The three app usage patterns intro-

duced below—stateless, durative and exclusive—characterize app’s increasing need on

the level of consistency in its runtime environment.

81

4.3.2.1 Stateless Pattern

the user’s activity in one session does not depend strongly on the states of, and

information from other sessions. By ‘not strongly’, we mean the the app is able to

deliver its main functionality without any information from previous sessions, possibly

at the expense of reducing optional personalized features. A wide spectrum of apps fit

this pattern, including query-like apps such as Wikipedia and Yelp, apps from most

news media such as NYTimes and CNN, and simple games such as Doodle Jumps

and Flappy Bird.

4.3.2.2 Durative Pattern

the user requires persistent states and long-term ‘memories’ of an app to perform

his current activities, but does not need to reveal his real-world identity. This pat-

tern fits note-keeping apps, music player, books & magazines, complex games with a

storyline or levels that need to be unlocked (such as Angry Birds), and etc.

4.3.2.3 Exclusive Pattern

the user must execute the app with an explicit identity, such as a user ID or ac-

count, and is willing to take the accompanied privacy risk. It covers most of social

apps, such as Facebook and Twitter, as well as communication apps including What-

sApp, Yahoo Messenger, etc. If an app fits this pattern, the corresponding usages

can and should be linkable across all the sessions that share the same account.

Note that the different users might apply different patterns when using the same

app. This is subject to the preference of each specific user.

4.3.3 Aligning Usage Pattern with Privacy

Let’s first discuss the default scenario in a contemporary mobile OS, using Android

as an example. An app can track a user via device IDs such as IMEI or MAC address,

82

Table 4.1: The gap of linkability: Expectation vs. Reality

Scenario
Linkable

Across Sessions Across Apps

stateless single single
durative some - all single
exclusive all single - some

default (reality) all all

which typically require permission, or via system IDs such as SERIAL number and

android ID, which do not require any permission at all. If an app or an ad library

wants, it can always export a cookie to its local storage, or more persistently, to

external storage. These persistent anchors in the app’s runtime allow an adversary

to link and aggregate usage across all apps and sessions. However, from the user’s

perspective, this linkability is far too strong for most app functionalities.

For apps executed statelessly, linkability is not needed even in the weakest form

since each session is inherently independent. For apps executed duratively, linkability

is only needed across (some, not necessarily all) sessions of the same app—for example,

a user may wish to maintain two separate instances for the same gaming app. Even for

apps executed exclusively there are additional privacy issues. When a user executes

an app with login, its app usages should only be linkable within the app, or at most

across apps using the same login — instead of across all sessions and apps. Table 4.1

summarizes this gap between expectation and reality.

4.3.4 Private Execution Modes

Having understood the user’s requirement on linkability, we present an intuitive

way for the user to give explicit consent. Specifically, Mask introduces a set of private

execution modes. Whenever a user starts an app, he can choose which mode to apply

on the current session, implicitly specifying whether and within which scope his app

usages can be aggregated.

83

App X

App Z

App Y

App Y

App X App X App X App X

App Z

Anonymous Mode

Pseudonymous Mode

Identifiable Mode

P
ro

fi
le

 A

App Y

Stateless Pattern

Durative Pattern

Exclusive Pattern

M
A

S
K

X

Y

X

Y

Z Z

P
ro

fi
le

 B

Figure 4.2: Mask provides different private execution modes for each usage pattern we
classified and only app sessions that are functionally dependent on each other are linkable.

Mask provides three types of private execution modes—identifiable, pseudonymous

and anonymous—which are mapped to the three usage patterns we defined earlier and

provide increasing levels of unlinkability of the user’s app usages. An ordinary user

can make this decision by following a few simple rules, without any domain-specific

knowledge. Specifically, when an app starts execution and the user wants to:

• Use this app while logged in, he should choose the identifiable mode. Assuming

all app usages under the same login are linkable, Mask allows an app to deliver

uncompromised personal services while disallowing aggregation across unrelated

apps.

• Keep states or use the states saved before, he should apply the pseudonymous

mode. In this mode, a user can maintain multiple context-based profiles and

only app usages in the same profile are linkable.

• Execute this app without leaving any trace, he should apply the anonymous

mode. Each session is treated as independent and app usages are confined

within the current session.

Fig. 4.2 presents an overview of Mask’s design. Note that our design is not re-

84

stricted to any specific mobile OS or platform since its rationality is rooted in the

general notions of app usage patterns. Different choices of Mask’s implementation only

reflect emphasis on different aspects, such as performance, robustness or practicality.

4.4 Implementation & Evaluation

The principle that drives every decision in our implementation is deployabil-

ity without any unrealistic dependencies or assumptions on other parties, such as

platform-level support or collaboration with A&A agencies. This is important be-

cause (1) the privacy threat under consideration is prevalent and needs to be dealt

with urgently and users should be given a choice to opt out right away; and (2) as

we discussed earlier, there exist intermingled benefits among different parties in the

current mobile app ecosystem and counting on any of them may degrade the practi-

cality of a solution. Guided by this principle, we developed a client-side prototype of

Mask on Android (4.1.1) at the user level. Next, we provide the technical details and

challenges of our user-level implementation.

4.4.1 User-Level Sandbox

To enable the aforementioned private execution modes, we need to provide an

isolated runtime environment. Since practicality is priority in our implementation

and users are less likely to use a custom ROM or root their device solely for privacy

protection, we need a user-level sandbox implementation.

As proposed by the system communities [100], the dynamic linking process can

be exploited to support program customization. Any dynamically linked executable

keeps a mapping between external function symbols and the corresponding memory

addresses, known as the global offset table (GOT). By rewriting entries in the GOT,

access to any external function symbols can be redirected to a user-specified function.

This makes it possible to intercept library calls in user-level and deliver security and

85

privacy features [110].

We adopt this user-level technique to achieve two goals: intercepting inter-process

communications (IPCs) between system services and apps to strip personal and device

identifying information that enable aggregation at the server side; and provide an

isolated per-sandbox storage to break local (on-device) aggregation.

4.4.1.1 IPC (Intent) Interception

IPC is the only supported mechanism in Android that allows an app to interact

with other processes and exchange information. Any explicit communication, using

Intents, or implicit ones, such as getting information from system services using high-

level APIs, are supported by this IPC mechanism. To strip personal and device

identifying information an app could get, we need to be able to intercept, understand

and modify any IPCs between this app and other parties. This brings some technical

challenges and requires a good understanding of how IPC works in Android.

In Android, the design of IPC, Binder, is conceptually a lightweight RPC mecha-

nism which allows one process to invoke routines in another process. It consists of two

components: the shared library libbinder.so in user space and the Binder driver in

kernel space. They communicate with each other according to the Binder protocol

via the bionic libc call ioctl. All high-level objects such as Intents are packed into a

container object (Parcel) and then sent through the binder protocol as a byte array.

By intercepting the ioctl function call in libbinder.so, we can exercise arbitrary

user-level control. Specifically, we overwrite the GOT in libbinder.so and redirect

ioctl to a wrapper function. This wrapper allows us to intercept both incoming and

outgoing communications, both are indispensable to achieve our goal. Intercepting

outgoing traffic lets us know what request this app sends while intercepting the in-

coming traffic allows us to change the results returned. Fig. 4.3 summarizes this

process.

86

Sandbox Library

ioctl / Libc

Android Framework

Binder Driver / Linux Kernel

App

Libbinder.so

Shared Libraries

 MASK?

YES

NO

IPC Filter & Intercept

Figure 4.3: How to achieve Binder IPC interception.

On top of this interception mechanism, we can impose control over any intra-

or inter-app communications as well as the app’s interactions with system compo-

nents. Here, we focus on the latter because in Android, identifying information is

centrally managed by system services. Table 4.2 summarizes the list of identifiers

Mask anonymizes. It contains the most commonly-used IDs but may not be a com-

plete list of all potential identifying information. However, the associated technical

underpinning is general enough to cover other identifiers, if necessary. We also exclude

quasi-identifiers, such as IP or location, because compared to the the explicit identi-

fiers addressed in Mask, they are far less consistent and reliable [11, 108], especially

in the mobile context. Moreover, there are already independent lines of research on

these subjects, such as IP anonymization and location anonymity.

4.4.1.2 Persistent Storage Isolation

Isolating persistent storage for each sandbox is necessary because it prevents local

aggregation of the user’s app usages, and also break the consistency of software cook-

ies. Android provides the following options for persistent storage: Shared Preferences,

Internal Storage, External Storage and SQLite Databases.

All of these storage options are built upon file system primitives provided by

Bionic Libc, such as open, stat, mkdir, chmod, etc. By intercepting these primitives

87

Sandbox Library

File System Primitives / Libc

Persistent Storage Sandbox Storage

Android Framework

Linux Kernel

User

Perference

External

Storage

Internal

Storage
Database

App

libjavacore libsql libdvm...

Shared Libraries

 MASK?

YES

NO

Filesys Redirection

Figure 4.4: How to achieve persistent storage redirection/isolation.

Table 4.2: List of commonly-used identifiers Mask anonymizes

ID System Service Permission

IMEI/MEID iphonesubinfo READ PHONE STATE

SUBSCRIBER ID iphonesubinfo READ PHONE STATE

PHONE NUMBER iphonesubinfo READ PHONE STATE

MAC ADDR wifi ACCESS WIFI STATE

ACCOUNTS accounts GET ACCOUNTS

ANDROID ID settings NONE

SERIAL settings* NONE

and modifying the corresponding input parameters, we can exercise arbitrary control

over the app’s interactions with the file system. Specifically, we create shadow direc-

tories which resemble the initial states of the app for each sandbox upon its creation,

and then redirect all upcoming file system operations from the app-specific directories

to the corresponding shadow directories. Figure. 4.4 illustrates this process.

4.4.2 Sandbox Manager

So far, we have introduced how a user-level sandbox is implemented to provide an

isolated runtime environment. Next, we describe how these sandboxes are created,

executed and destroyed to deliver the private execution modes in Mask.

88

4.4.2.1 Sandbox Management

The lifecycle of each sandbox is centrally controlled by a sandbox manager. The

sandbox manager maintains a meta file for each sandbox, which contains sandbox-

specific parameters: paths to the designated shadow directories, anonymized values

of the persistent identifiers. When a sandbox is created, the manager generates a

sandbox-specific meta file and allocates it shadow directories both in the local storage

and the SD card. Then, any resources required for the initial states of this app will

be copied into the shadow directories. The sandbox is then ready to start. When a

sandbox is executed, the manager will initialize the runtime with information stored

in the sandbox’s meta file and activate the library-call interception mechanism. When

a sandbox is destroyed, the sandbox manager first clears the local storage designated

for the sandbox and then deletes the corresponding meta file.

Whenever an app is executed in anonymous mode, a new sandbox is created

and applied; the sandbox will be immediately destroyed after the current session

terminates. Note that, in Android, the termination of a session (onDestroy) is auto-

matically controlled/optimized by the system. The user can force the current session

to terminate by removing the app from the recent apps list. If an app is executed

in pseudonymous mode, the user can choose to reuse an existing sandbox or create

a new sandbox; a sandbox will only be destroyed when a user explicitly specifies it.

If an app is executed in identifiable mode, a designated sandbox gets initialized; the

user always runs the same sandbox.

4.4.2.2 Multi-process Support

For an app with only one process, its execution in a sandbox is simple; but for

apps with multiple processes, it can be complicated. Since what we implemented is

a per-process sandbox and Android allows an app to host multiple processes, an app

will crash if different processes are executed with inconsistent runtime environment.

89

Figure 4.5: The UI design of Mask.

Therefore, we equip our sandbox with multi-process support. Each time an app

process starts, the sandbox manager will first tell whether a sandbox is already created

for this app (by maintaining a lock file in this app’s local storage). If so, the new

process will join the existing sandbox and share the same runtime environment.

4.4.2.3 UI Design

The logic of sandbox manager is hidden behind an intuitive UI. Mask’s UI is

displayed right before the launcher activity of an app starts, and is executed as an

independent process isolated from all other components of the app. It offers a nice and

intuitive way for end-users to manage profiles without revealing too much details. As

shown in Fig. 4.5, Mask provides three execution modes—identifiable, pseudonymous

and anonymous. For identifiable and anonymous modes, the user can simply click-

and-use; for pseudonymous mode, Mask allows the user to maintain multiple profiles

on the same device.

4.4.3 APK Rewriter

So far, we described how to build a user-level sandbox in Android that provides

unlinkable runtime environments. Next, we describe how to merge our sandbox com-

90

ponent seamlessly into an app, using the APK rewriter we developed.

Specifically, we use apktool to decompile an Android application package file

(APK) into human-readable smali codes, include our sandbox component and then

recompile the files back into an executable APK. This is difficult because each APK is

an integral structure, and including our sandbox component is not as easy as copying

all the files — we have to make sure each component serves its designed functionality

at the right place, and this can be challenging especially when we need to consider

the integration of UI. This brings the following technical challenges:

4.4.3.1 Sandbox Initialization

The APK rewriter needs to make sure that the sandbox component will be ini-

tialized before any component of the original application executes. This is achieved

by exploiting an application base class which is provided by Android to maintain

global application states. The nice property of this base class is that it is the first

user-controlled component that gets initialized for any process of the app. Our APK

rewriter will go through the app’s existing codes and checks whether the application

base class already exists. If exists, we modify the existing application base and make

it a subclass of the application base defined by us; otherwise, we directly insert our

application base. The sandbox initialization logic is programmed into the static code

section of this application base class and is guaranteed to be the first to execute.

4.4.3.2 UI Integration

All UI elements integrated in an app are referenced with a universal unique id,

indexed under res/values/ids.xml and res/values/public.xml. To integrate new UI

elements into an existing app, our APK rewriter automatically tracks and assigns

the empty slots within the existing ids. Moreover, the APK rewriter needs to ensure

control will be returned to the app after our UI cuts in line. It works by going

91

Table 4.3: UI & Sandbox Management Overhead

Category Response Time

Load UI 169.2 ms
Create Sandbox 68.7 ms
Run Sandbox 382.2 ms

Destroy Sandbox 26.8 ms

through the manifest file, identifying the app launcher activity and statically writing

an initialization logic for the launcher activity into the onDestroy functions in our

UI activity.

Finally, the APK rewriter also parses the manifest file to get the list of processes

this app hosts. This information will be hard-coded into the smali codes of the

sandbox manager to enable Mask’s support for multiple processes.

4.4.4 Performance Overhead

Mask incurs two types of performance overhead: on sandbox management when a

sandbox is created, destroyed or executed; and during application runtime, after an

app starts execution in a sandbox of the user’s choice.

The overheads on sandbox management are measured by instrumenting a testing

app with Mask and timers. Then we perform selected sandbox management tasks

and log the output of these timers. As the results in Table 4.3 show, the most

time-consuming actions in sandbox management are loading UI and running a sand-

box, each taking a few hundred milliseconds. However, since these actions happen

only once during a session, the cumulative overhead on sandbox management is still

minor—far less than one second.

The overhead on apps’ runtime originates from Mask’s user-level sandbox compo-

nent when it intercepts inter-process communications (IPCs) and file system oper-

ations. To measure the overhead incurred by redirecting file system operations, we

choose a benchmark app, AndroBench [6], which is designed for measuring storage

92

Table 4.4: Mobile App Runtime Overhead

Category Bench Unit Overhead (%)

File

Seq Read MB/s < 1%
Seq Write MB/s 1.3%

Rand Read MB/s < 1%
Rand Write MB/s < 1%

Create TPS 2.1%
Delete TPS 4.7%

Database
Insert TPS 2.3%

Update TPS 9.0%
Delete TPS 3.4%

IPC
Filter TPS < 1%

Reformat TPS 37.8%
TPS: Transactions Per Second

performance on Android devices. Besides the test benches included in AndroBench,

we added two more tests to measure the performance of creating and deleting files.

Each test bench is executed 10 times with Mask enabled and disabled. To evaluate

the overhead caused by intercepting IPCs, we use a synthesized benchmark which

contains two test benches, measuring the overheads incurred by IPCs filtering and

reformatting, respectively. IPC filtering differentiates the IPCs we are interested in,

such as getting device ID, from those we are not, such as getting location updates,

while IPC reformatting reconstructs a low-level binary sequence into high-level ob-

jects and modifies the corresponding persistent identifiers. The IPC filtering incurs

overhead to any IPC between an app and other parties, while the IPC reformatting

overhead is incurred only for those IPCs that return personal or device identifying

information to the app.

The results on application runtime overheads are summarized in Table 4.4. The

performance degradation on file system operations is minor because the only over-

head incurred is for transforming the paths in the app’s original storage to the paths

in the sandbox’s shadow storage. This transformation is much lighter-weighted com-

pared to file system IOs. We also found the IPC filtering overhead to be negligible,

93

meaning that Mask does not affect the performance of most ‘uninteresting’ IPC calls.

By contrast, the IPC reformatting overhead is significant (more than 37%) because

parsing byte array into high-level objects, for example java objects, is expensive.

However, since we only reformat a very small portion of all the IPCs—only those

return persistent identifiers—the overall performance degradation is found negligible.

4.4.5 Applicability

Mask applies different private execution modes for mobile applications with differ-

ent usage patterns (exclusive, durative or stateless). Here, we case studied the top

200 free apps in Google Play and study how many of them can be used with Mask.

We assume a privacy-aware user who always selects the usage pattern that delivers

the highest privacy level without compromising the major functionality of the app.

We classify the apps according to the usage patterns and further break down the

numbers into each functional category, as shown in Fig. 4.6. To sum up, 29% of the

apps can be used statelessly, 43% can be used duratively and 25% have to be used

exclusively. To note, Mask is only applicable to 97% of all the apps, excluding apps

designed for system usage, such as file explorer, anti-virus software, etc. Sandboxing

these apps fundamentally violates their functionalities and results in unpredictable

results or even crashes.

We also conducted a study on 27 mobile users who had neither prior knowledge

of the Mask project nor domain-specific expertise. The users are recruited by posting

surveys in our university library. Our findings are summarized as follows:

• 80% of the mobile users are aware that app developers or advertising libraries

may conduct user profiling. 40% of the mobile users consider this as a moderate

or serious privacy threat, 45% as a minor privacy threat while 15% of them are

not concerned with it at all.

• 60% of the mobile users believe maintaining multiple isolated profiles for the

94

 0

 5

 10

 15

 20

 25

 30

P
ro

d
u
ctivity

E
n
te

rta
in

m
e
n
t

S
p
o
rts

R
a
cin

g
S

h
o
p
p
in

g
S

p
o
rts G

a
m

e
s

F
in

a
n
ce

B
u
sin

e
ss

P
h
o
to

g
ra

p
h
y

C
a
rd

s &
 C

a
sin

o

A
rca

d
e
 &

 A
ctio

n

M
u
sic &

 A
u
d
io

L
ife

style
T
ra

ve
l &

 L
o
ca

l

S
o
cia

l
H

e
a
lth

 &
 F

itn
e
ss

B
ra

in
 &

 P
u
zzle

M
e
d
ia

 &
 V

id
e
o

C
o
m

m
u
n
ica

tio
n

B
o
o
ks &

 R
e
fe

re
n
ce

W
e
a
th

e
r

P
e
rso

n
a
liza

tio
n

T
o
o
ls

C
a
su

a
l

N
u

m
b

e
r

o
f

a
p

p
s

Stateless Durative Exclusive

Figure 4.6: Breakdown of apps according to their usage patterns on a per-category basis

same mobile app will provide better privacy protection. Of these people, more

than 70% are willing to take actions if theyre given such an option.

4.5 Related Work

There have been numerous studies on information access control on smartphones

[18, 31, 33, 49, 81]. They focus on detecting and defending illegitimate collection of

sensitive user information, by malicious mobile apps or third parties. Orthogonal to

these studies, Mask focuses on unregulated aggregation of sensitive user information,

irrespective of how it is collected. There also exist other efforts on the issue of

information aggregation in the mobile ecosystem [40, 45, 86, 95, 98]. Most of them only

target a restricted scenario — advertising agencies — and assume mobile apps are

trustworthy. Different from these works, Mask considers a more general and realistic

scenario and and breaks unregulated aggregation by both mobile apps, advertising

agencies and network sniffers. Linkdroid [40] tries to solve a similar problem but

95

requires extensive modifications on the smartphone OS. Mask, instead, utilize the

usage patterns of apps and strikes a useful trade-off by delivering private execution

modes in the user-level.

MoRePriv [29], πBox [60] also focused on resolving the conflict between privacy

and personalization of mobile apps. MoRePriv argued that personalization should be

provided by the OS instead of apps. Similarly in principle, πBox shifts the respon-

sibility of protecting privacy from the app and its users to the platform itself. By

contrast, Mask neither advocates a new ecosystem, nor requires modification to the

existing one. It provides a practically deployable design which allows end-users to

‘negotiate’ with the mobile app at the client side.

4.6 Conclusion

In the current mobile app ecosystem, app usages of a user are linkable by default.

This allows an interested/curious party to conduct unsolicited user profiling, targeted

advertising or public surveillance. In this chapter, we designed and implemented a

practical solution called Mask, allowing users to unlink app usages that are function-

ally independent of each other. Specifically, we introduce a set of private execution

modes and give users options to specify whether and within which scope his current

app session should be linkable. We presented the technical details and challenges of

our user-level implementation, and evaluated the performance and applicability of

Mask.

96

CHAPTER V

Continuous Authentication for Voice Assistants

5.1 Introduction

Siri, Cortana, Google Now, and Alexa are becoming our everyday fixtures. Through

voice interactions, these and other voice assistants allow us to place phone calls,

send messages, check emails, schedule appointments, navigate to destinations, con-

trol smart appliances, and perform banking services. In numerous scenarios such

as cooking, exercising or driving, voice interaction is preferable to traditional touch

interfaces that are inconvenient or even dangerous to use. Furthermore, a voice inter-

face is even essential for the increasingly prevalent Internet of Things (IoT) devices

that lack touch capabilities [76].

With sound being an open channel, voice as an input mechanism is inherently

insecure as it is prone to replay, sensitive to noise, and easy to impersonate. Exist-

ing voice authentication mechanisms, such as Google’s “Trusted Voice” and Nuance’s

“FreeSpeech” used by banks,1 fail to provide the security features for voice assistant

systems. An adversary can bypass these voice-as-biometric authentication mecha-

nisms by impersonating the user’s voice or simply launching a replay attack. Recent

studies have demonstrated that it is possible to inject voice commands remotely with

1https://wealth.barclays.com/engb/home/international-banking/insight-
research/manage-your-money/banking-on-the-power-of-speech.html

97

mangled voice [19, 104], wireless signals [55], or through public radio stations [72] with-

out raising the user’s attention. Even Google warns against its voice authentication

feature as being insecure,2 and some security companies [14] recommend relinquish-

ing voice interfaces all together until security issues are resolved. The implications of

attacking voice-assistant systems can be severe, ranging from information theft and

financial loss [71] all the way to inflicting physical harm via unauthorized access to

smart appliances and vehicles.

In this chapter, we propose VAuth, a novel system that provides usable and con-

tinuous authentication for voice assistant systems. As a wearable security token, it

supports on-going authentication by matching the user’s voice with an additional

channel that provides physical assurance. VAuth collects the body-surface vibrations

of a user via an accelerometer and continuously matches them to the voice commands

received by the voice assistant. This way, VAuth guarantees that the voice assistant

executes only the commands that originate from the voice of the owner. VAuth offers

the following salient features.

Continuous Authentication VAuth specifically addresses the problem of continu-

ous authentication of a speaker to a voice-enabled device. Most authentication mech-

anisms, including all smartphone-specific ones such as passwords, PINs, patterns,

and fingerprints, provide security by proving the user’s identity before establishing a

session. They hinge on one underlying assumption: the user retains exclusive control

of the device right after the authentication. While such an assumption is natural for

touch interfaces, it is unrealistic for the case of voice assistants. Voice allows access for

any third party during a communication session, rendering pre-session authentication

insufficient. VAuth provides ongoing speaker authentication during an entire session

2When a user tries to enable Trusted Voice on Nexus devices, Google explicitly warns
that it is less secure than password and can be exploited by the attacker with a very similar
voice.

98

by ensuring that every speech sample recorded by the voice assistant originates from

the speaker’s throat. Thus, VAuth complements existing mechanisms of initial session

authentication and speaker recognition.

Improved Security Features Existing biometric-based authentication approaches

tries to reduce time-domain signals to a set of vocal features. Regardless of how de-

scriptive the features are of the speech signal, they still represent a projection of

the signal to a reduced-dimension space. Therefore, collisions are bound to happen;

two different signals can result in the same feature vector. For example, Tavish et

al. [104] fabricated mangled voice segments, incomprehensible to a human, but map

to the same feature vector as a voice command so that they are recognizable by a

voice assistant. Such attacks weaken the security guarantees provided by almost all

voice-biometric approaches [85].

In contrast, VAuth utilizes an instantaneous matching algorithm to compare the

entire signal from accelerometer with that of microphone in the time domain. VAuth

splits both accelerometer and microphone signals into speech segments and proceeds

to match both signals one segment at a time. It filters the non-matching segments

from the microphone signal and only passes the matching ones to the voice assis-

tant. Our theoretical analysis of VAuth’s matching algorithm (section 5.8) demon-

strates that it prevents an attacker from injecting any command even when the user is

speaking. Moreover, VAuth overcomes the security problems of leaked or stolen voice

biometric information, such as voiceprints. A voice biometric is a lifetime property

of an individual, and leaking it renders voice authentication insecure. On the other

hand, when losing VAuth for any reason, the user has to just unpair the token and

pair a new one.

Usability A user can use VAuth out-of-the-box as it does not require any user-

specific training, a drastic departure from existing voice biometric mechanisms. It

99

only depends on the instantaneous consistency between the accelerometer and mi-

crophone signals; therefore, it is immune to voice changes over time and in different

situations, such as sickness or tiredness. VAuth provides its security features as long

as it touches the user’s skin at any position on the facial, throat, and sternum3 ar-

eas. This allows us to incorporate VAuth into wearables that people are already using

on a daily basis, such as eyeglasses, Bluetooth earbuds and necklaces/lockets. Our

usability survey of 952 individuals revealed that users are willing to accept the differ-

ent configurations of VAuth, especially when they are concerned about the security

threats and when VAuth comes in the forms of which they are already comfortable.

We have implemented a prototype of VAuth using a commodity accelerometer and

an off-the-shelf Bluetooth transmitter. Our implementation is built into the Google

Now system in Android, and could easily extend to other platforms such as Cortana,

Siri, or even phone banking services. To demonstrate the effectiveness of VAuth, we

recruited 18 participants and asked each of them to issue 30 different voice commands

using VAuth. We repeated the experiments for three wearable scenarios: eyeglasses,

earbuds and necklace. We found that VAuth:

• delivers almost perfect results with more than 97% detection accuracy and close

to 0 false positives. This indicates most of the commands are correctly authen-

ticated from the first trial and VAuth only matches the command that originates

from the owner;

• works out-of-the-box regardless of variation in accents, mobility patterns (still

vs. jogging), or even across languages (Arabic, Chinese, English, Korean, Per-

sian);

• effectively thwarts mangling voice attacks and successfully blocks unauthenti-

cated voice commands replayed by an attacker or impersonated by other users;

3The sternum is the bone that connects the rib cage; it vibrates as a result of the speech.

100

and

• incurs negligible latency (an average of 300ms) and energy overhead (requiring

re-charging only once a week).

The rest of the chapter is organized as follows. Section 5.2 discusses the related

work while Section 5.3 provides the necessary background of human speech models.

Section 5.4 states the system and threat models and Section 5.5 details the design

and implementation of VAuth. We discuss our matching algorithm in Section 5.6,

and conduct phonetic-level analysis on the matching algorithm in Section 5.7. We

further study the security properties of the matching algorithm in Section 5.8 using a

theoretical model. Section 5.9 evaluates VAuth’s effectiveness. Section 5.10 discusses

VAuth’s features. Finally, the chapter concludes with Section 5.11.

5.2 Related Work

Smartphone Voice Assistants Many researchers have studied the security issues

of smartphone voice assistants [30, 55, 88, 104]. They have also demonstrated the pos-

sibility of injecting commands into voice assistants with electromagnetic signals [55]

or with a mangled voice that is incomprehensible to humans [104]. These practical

attack scenarios motivate us to build an authentication scheme for voice assistants.

Petracca et al. [88] proposed a generic protection scheme for audio channels by track-

ing suspicious information flows. This solution prompts the user and requires manual

review for each potential voice command. It thus suffers from the habituation and

satisficing drawbacks since it interrupts the users from their primary tasks [38].

Voice Authentication Most voice authentication schemes involve training on the

user’s voice samples and building a voice biometric [12, 22, 28, 57]. The biometric may

depend on the user’s vocal features or cultural backgrounds and requires rigorous

101

training to perform well. There is no theoretical guarantee that they provide good

security in general. Approaches in this category project the signal to a reduced-

dimension space and collisions are thus inherent. In fact, most companies adopt these

mechanisms for the usability benefits and claim they are not as secure as passwords

or patterns [78]. Moreover, for the particular case of voice assistants, they all are

subject to simple replay attacks.

Mobile Sensing Many researchers have studied the potential applications of ac-

celerometers for human behavior analysis [9, 70, 84, 111]. Studies show that it is pos-

sible to infer keyboard strokes [9], smartphone touch inputs [111] or passwords [9, 84]

from acceleration information. There are also applications utilizing the correlation

between sound and vibrations [62, 75] for health monitoring purposes. Doctors can

thus detect voice disorder without actually collecting the user’s daily conversations.

These studies are very different from ours which focuses on continuous voice assistant

security.

5.3 Background

We introduce some basic concepts and terminology regarding the generation and

processing of human speech, which will be referenced consistently throughout the

chapter.

5.3.1 Human Speech Model

The production of human speech is commonly modeled as the combined effect of

two separate processes [46]: a voice source (vibration of vocal folds) that generates

the original signal and a filter (determined by the resonant properties of vocal tract

including the influence of tongue and lips) that further modulates the signal. The

output is a shaped spectrum with certain energy peaks, which together maps to a

102

0.1 0.12 0.14

time (sec)

a
.u

.

signal

glottal pulses

(a) Source

2 4 6 8

frequency (kHz)

-10

0

10

20

30

G
a

in
 (

d
B

)

LP Filter

(b) Filter

Figure 5.1: The source–filter model of human speech production using the vowel {i:}
as an example.

specific phoneme (see Fig. 5.1b for the vowel {i:} – the vowel in the word “see”).

This process is widely used and referred to as the source-filter model.

Fig. 5.1a shows an example of a female speaker pronouncing the vowel {i:}. The

time separating each pair of peaks is the length of each glottal pulse (cycle). It also

refers to the instantaneous fundamental frequency (f0) variation while the user is

speaking, which is the pitch of speaker’s voice. The value of f0 varies between 80 to

333Hz for a human speaker. The glottal cycle length (being the inverse of the funda-

mental frequency) varies 0.003sec and 0.0125sec. As the human speaker pronounces

different phonemes in a particular word, the pitch changes accordingly, which becomes

an important feature of speaker recognition. We utilize the fundamental frequency

(f0) as a reference to filter signals that fall outside of the human speech range.

5.3.2 Speech Recognition and MFCC

The de facto standard and probably the most widely used feature for speech

recognition is Mel-frequency cepstral coefficients (MFCC) [63], which models the way

humans perceive sounds. In particular, these features are computed on short-term

windows when the signal is assumed to be stationary. To compute the MFCCs, the

103

speech recognition system computes the short-term Fourier transform of the signal,

then scales the frequency axis to the non-linear Mel scale (a set of Mel bands). Then,

the Discrete Cosine Transform (DCT) is computed on the log of the power spectrum

of each Mel band. This technique works well in speech recognition because it tracks

the invariant feature of human speech across different users. However, it also opens

the door to potential attacks: by generating mangled voice segments with the same

MFCC feature, an attacker can trick the voice assistant into executing specific voice

commands without drawing any attention from the user.

5.4 System and Threat Models

5.4.1 System Model

VAuth consists of two components. The first is an accelerometer mounted on a

wearable device which can be placed on the user’s chest, around the neck or on the

facial area. The second component is an extended voice assistant that issues voice

commands after correlating and verifying both the accelerometer signal from the

wearable device and the microphone signal collected by the assistant. This system

is not only compatible with smartphone voice assistants such as Siri and Google

Now, but also applies to voice systems in other domains such as Amazon Alexa and

phone-based authentication system used by banks. We assume the communications

between the two components are encrypted. Attacks to this communication channel

are orthogonal to this work. We also assume the wearable device serves as a secure

token that the user will not share with others. The latter assumption is known as

security by possession, which is widely adopted in the security field in the form of

authentication rings [105], wristbands [68], or RSA SecurID. Thus, the problem of

authenticating the wearable token to the user is orthogonal to VAuth and has been

addressed elsewhere [23]. Instead, we focus on the problem of authenticating voice

104

commands, assuming the existence of a trusted wearable device.

5.4.2 Threat Model

We consider an attacker who is interested in stealing private information or con-

ducting unauthorized operations by exploiting the voice assistant of the target user.

Typically, the attacker tries to hijack the voice assistant of the target user and de-

ceive it into executing mal-intended voice commands, such as sending text messages

to premium phone numbers or conducting bank transactions. The adversary mounts

the attack by interfering with the audio channel. This does not assume the attacker

has to be physically at the same location as the target. It can utilize equipment

that can generate a sound on its behalf, such as radio channels or high-gain speakers.

Specifically, we consider the following three categories of attack scenarios.

Scenario A – Stealthy Attack The attacker attempts to inject either inaudible

or incomprehensible voice commands through wireless signals [55] or mangled voice

commands [19, 104]. This attack is stealthy in the sense that the victim may not even

be aware of the on-going threat. It is also preferable to the attacker when the victim

has physical control or within close proximity of the voice assistant.

Scenario B – Biometric-override Attack The attacker attempts to inject voice

commands [85] by replaying a previously recorded clip of the victim’s voice, or by

impersonating the user’s voice. This attack can have a very low technical barrier:

we found that by simply mimicking the victim’s voice, an attacker can bypass the

Trusted Voice feature of Google Now within five trials, even when the attacker and

the victim are of different genders.

Scenario C – Acoustic Injection Attack The attacker can be more advanced,

trying to generate a voice that has a direct effect on the accelerometer [102]. The

105

intention is to override VAuth’s verification channel with high energy vibrations. For

example, the attacker can play very loud music which contains embedded patterns of

voice commands.

5.5 VAuth

We now present the high-level design of VAuth, describe our prototype implemen-

tation with Google Now, and elaborate on its usability aspects.

5.5.1 High-Level Overview

VAuth has two components: (1) a wearable component, responsible for collecting

and uploading the accelerometer data, and (2) a voice assistant extension, responsible

for authenticating and launching the voice commands. The first component easily

incorporates into existing wearable products, such as earbuds/earphones/headsets,

eyeglasses, or necklaces/lockets. The usability aspect of VAuth will be discussed

later in this sectiontoken that the user does not share with others. When a user

triggers the voice assistant, for example by saying “OK, Google” or “Hey, Siri”, our

voice assistant extension will fetch accelerometer data from the wearable component,

correlate it with signals collected from microphone and issue the command only when

there is a match. Fig. 5.2 depicts the information flows in our system. To reduce the

processing burden on the user’s device, the matching does not take place on the device

(that runs the voice assistant), but rather at the server side. The communication

between the wearable component and the voice assistant takes place over Bluetooth

BR/EDR [15]. Bluetooth Classic is an attractive choice as a communication channel,

since it has a relatively high data rate (up to 2Mbps), is energy-efficient, and enables

secure communication through its pairing procedure.

The design of VAuth is modular and compatible with most voice assistant sys-

tems. One can thus customize any component in Fig. 5.2 to optimize functionality,

106

Figure 5.2: The high-level design of VAuth, consisting of the wearable and the voice
assistant extension.

107

(a) Wireless (b) Eyeglasses

Figure 5.3: Our prototype of VAuth, featuring the accelerometer chip and Bluetooth
transmitter, (a) compared to US quarter coin and (b) attached to a pair of eyeglasses
belonging to one of the authors.

performance or usability. Here, we elaborate how to integrate this into an existing

voice assistant, using Google Now as an example.

5.5.2 Prototype

We first elaborate on our design of the wearable component. We use a Knowles

BU-27135 miniature accelerometer with the dimension of only 7.92×5.59×2.28mm

so that it can easily fit in any wearable design. The accelerometer uses only the

z-axis and has an analog bandwidth of 11kHz, enough to capture the bandwidth of

a speech signal. We utilize an external Bluetooth transmitter that provides Analog-

to-Digital Conversion (ADC) and Bluetooth transmission capabilities to the voice

assistant extension. To reduce energy consumption, BinderCrackerstarts streaming

the accelerometer signal only upon request from the voice assistant. Our prototype

communicates the microphone and accelerometer signals to a Matlab-based server

which performs the matching and returns the result to the voice assistant. Fig. 5.3

depicts our wireless prototype standalone, and attached to a pair of eyeglasses.

108

Our system is integrated with Google Now voice assistant to enable voice command

authentication. VAuth starts execution immediately after the start of a voice session

(right after “OK Google” is recognized). It blocks the voice assistant’s command

execution after the voice session ends until the matching result becomes available. If

the matching fails, VAuth kills the voice session. To achieve its functionality, VAuth

intercepts both the HotwordDetector and the QueryEngine to establish the required

control flow.

Our voice assistant extension is implemented as a standalone user-level service.

It is responsible for retrieving accelerometer signals from the wearable device, and

sending both accelerometer and microphone to our Matlab-based server for analysis.

The user-level service provides two RPC methods, start and end, which are triggered

by the events generated when the hotword “OK Google” is detected, and when the

query (command) gets executed, respectively. The first event can be observed by

filtering the Android system logs, and we intercept the second by overriding the

Android IPC mechanisms, by filtering the Intents sent by Google Now. Also, since

some Android devices (e.g., Nexus 5) do not allow two apps to access the microphone

at the same time, we need to stream the voice signal retrieved by the voice assistant

to our user-level service. We solve this by intercepting the read method in the

AudioRecord class. Whenever Google Now gets the updated voice data through this

interface, it will forward a copy of the data to our user-level service via another RPC

method.

Note that the modifications and interceptions above are necessary only because

we have no access to the Google Now source. The incorporation of VAuth is straight-

forward in the cases when developers try to build/extend their voice assistant.

5.5.3 Usability

VAuth requires the user to wear a security-assisting device. There are two gen-

109

(a) Earbuds (b) Eyeglasses (c) Necklace

Figure 5.4: The wearable scenarios supported by VAuth.

eral ways to meet this requirement. The first is to ask users to wear an additional

device for security, while the other is to embed VAuth in existing wearable products

that the users are already comfortable with in their daily lives. We opted for the

latter as security has always been a secondary concern for users [107]. Our prototype

supports three widely-adopted wearable scenarios: earbuds/earphones/headsets, eye-

glasses, and necklace/lockets. Fig. 5.4 shows the positions of the accelerometer in

each scenario. We select these areas because they have consistent contact with the

user’s body. While VAuth performs well on all facial areas, shoulders and the sternal

surface, we only focus on the three positions shown in Fig. 5.4 since they conform

with widely-adopted wearables.

We have conducted a usability survey to study the users’ acceptance of the differ-

ent configurations of VAuth. We surveyed 952 individuals using Amazon Mechanical

Turk. We restricted the respondent pool to those from the US with previous expe-

rience with voice assistants. We compensated each respondent with $0.5 for their

participation. Of the respondents, 40% are female, 60% are employed full-time, and

67% have an education level of associate degree or above. Our respondents primarily

use voice assistants for information search (70%), navigation (54%), and communica-

tion (47%). More than half (58%) of them reported using a voice assistant at least

once a week.

110

Survey Design: We follow the USE questionnaire methodology [64] to measure

the usability aspects of VAuth. We use a 7-point Likert scale (ranging from Strongly

Disagree to Strongly Agree) to assess the user’s satisfaction with a certain aspect

or configuration of VAuth. We pose the questions in the form of how much the

respondent agrees with a certain statement, such as: I am willing to wear a necklace

that contains the voice assistant securing technology. Below, we report a favorable

result as the portion of respondents who answered a question with a score higher than

4 (5,6,7) on the 7-point scale. Next to each result, we report the portion of those

surveyed, between brackets, who answered the question with a score higher than 5 (6

or 7).

The survey consists of three main parts that include: demographics and experience

with voice assistants, awareness of the security issues, and the perception towards

VAuth. In Section 5.9, we will report more on the other usability aspects of VAuth,

such as matching accuracy, energy, and latency.

Security Awareness: We first asked the respondents about their opinion regard-

ing the security of voice assistants. Initially, 86% (63%) of the respondents indicate

that they think the voice assistants are secure. We then primed the respondents about

the security risks associated with voice assistants by iterating the attacks presented in

Section 5.4. Our purpose was to study the perception of using VAuth from individuals

who are already aware of the security problems of voice assistants.

After the priming, the respondents’ perceptions shifted considerably. 71% (51%) of

the respondents indicate that attacks to voice assistants are dangerous, and 75%(52%)

specified that they would take steps to mitigate the threats. Almost all of the latter

belong to the set of respondents who now regard these attacks as dangerous to them.

Wearability: In the last part of the survey, we ask the participants about their

preferences for wearing VAuth in any of the three configurations of Fig. 5.4. We have

the following takeaways from the analysis of survey responses.

111

Figure 5.5: A breakdown of respondents’ wearability preference by security concern
and daily wearables. Dangerous and Safe refer to participants’ attitudes towards the
attacks to voice assistants after they’ve been informed; the Dangerous category is
further split according to the wearables that people are already wearing on a daily
basis; Yes and No refer to whether participants are willing to use VAuth in at least
one of three settings we provided.

112

• 70%(47%) of the participants are willing to wear at least one of VAuth’s config-

urations to provide security protection. These respondents are the majority of

those who are strongly concerned about the security threats.

• 48% (29%) of the respondents favored the earbuds/earphone/headset option,

38% (23%) favored the eyeglasses option and 35% (19%) favored the neck-

lace/locket option. As expected, the findings fit the respondents’ wearables in

their daily lives. 71% of the respondents who wear earbuds on a daily basis

favored that option for VAuth, 60% for eyeglasses and 63% for the necklace

option.

• There is no discrepancy in the wearable options among both genders. The gen-

der distribution of each wearable option followed the same gender distribution

of the whole respondent set.

• More than 75% of the users are willing to pay $10 more for a wearable equipped

with this technology while more than half are willing to pay $25 more.

• Respondents were concerned about the battery life of VAuth. A majority of

73% (81%) can accommodate charging once a week, 60% (75%) can accommo-

date once per 5 days, and 38% (58%) can accommodate once each three days.

In Section 5.9, we show that the energy consumption of VAuth matches the

respondents’ requirements.

Fig. 5.5 presents a breakdown of the major findings in our usability survey. These

results demonstrate that users are willing to accept the different configurations of

VAuth, especially when they are concerned about the privacy/security threats and

when VAuth comes in the forms of which they are already comfortable with.

113

-0.5

0

0.5
a

.u
.

acc

0 5 10

time (sec)

-0.5

0

0.5

a
.u

.

mic

(a) Raw input signals

-0.5

0

0.5

1

a
.u

.

s1 s2 s3 s4

acc

energy

envelope

0 2 4 6

time (sec)

-0.5

0

0.5

1

a
.u

.

s1 s2 s3 s4

mic

envelope

(b) Energy envelopes

Figure 5.6: Pre-processing stage of VAuth’s matching.

5.6 Matching Algorithm

The matching algorithm of VAuth (highlighted in Fig. 5.2) takes as input the

speech and vibration signals along with their corresponding sampling frequencies. It

outputs a decision value indicating whether there is a match between the two signals

as well as a “cleaned” speech signal in case of a match. VAuth performs the matching

in three stages: pre-processing, speech segments analysis, and matching decision.

In what follows, we elaborate on VAuth’s matching algorithm using a running

example of a male speaker recording the two words: “cup” and “luck” with a short

pause between them. The speech signal is sampled by an accelerometer from the

lowest point on the sternum at 64kHz and recorded from a built-in laptop microphone

at a sampling frequency of 44.1kHz, 50cm away from the speaker.

114

5.6.1 Pre-processing

First, VAuth applies a highpass filter, with cutoff frequency at 100 Hz, to the

accelerometer signal. The filter removes all the artifacts of the low-frequency user

movement to the accelerometer signal (such as walking or breathing). We use 100Hz

as a cutoff threshold because humans cannot generate more than 100 mechanical

movements per second. VAuth then re-samples both accelerometer and microphone

signals to the same sampling rate while applying a low-pass filter at 4kHz to prevent

aliasing. We choose a sampling rate of 8kHz that preserves most acoustic features of

the speech signal and reduces the processing load. Thus, VAuth requires an accelerom-

eter of bandwidth larger than 4kHz. Then VAuth applies Fig. 5.6a shows both raw

signals immediately after both signals are filtered and resampled. As evident from the

figure, the accelerometer signal has a high-energy spike due to the sudden movement

of the accelerometer (e.g., rubbing against the skin), and small energy components

resulting from speech vibrations. On the other hand, the speech signal has two high-

energy segments along with other lower-energy segments corresponding to background

noise.

Second, VAuth normalizes the magnitude of both signals to have a maximum

magnitude of unity, which necessitates removal of the spikes in the signals. Otherwise,

the lower-energy components referring to the actual speech will not be recovered. The

matching algorithm computes a running average of the signal’s energy and enforces a

cut-off threshold, keeping only the signals with energy level within the moving average

plus six standard deviation levels.

After normalizing the signal magnitude, as shown in the top plot of Fig. 5.6b,

VAuth aligns both signals by finding the time shift that results in the maximum

cross correlation of both signals. Then, it truncates both signals to make them have

the same length. Note that VAuth does not utilize more sophisticated alignment algo-

rithms such as Dynamic Time Warping (DTW), since they remove timing information

115

critical to the signal’s pitch and they also require a higher processing load. Fig. 5.6b

shows both accelerometer and microphone signals aligned and normalized.

The next pre-processing step includes identification of the energy envelope of

the accelerometer signal and then its application to the microphone signal. VAuth

identifies the parts of the signal that have a significant signal-to-noise ratio (SNR).

These are the “bumps” of the signal’s energy as shown in the top plot of Fig. 5.6b.

The energy envelope of the signal is a quantification of the signal’s energy between

0 and 1. In particular, the portions of the signal with average energy exceeding 5%

of maximum signal energy map to 1, and other segments map to 0. This results in

four energy segments of the accelerometer signal of Fig. 5.6b. The thresholds for

energy detection depend on the average noise level (due to ADC chip’s sampling and

quantization) when the user is silent. We chose these thresholds after studying our

wireless prototype’s Bluetooth transmitter.

Finally, VAuth applies the accelerometer envelope to the microphone signal so

that it removes all parts from the microphone signal that did not result from body

vibrations, as shown in the bottom plot of Fig. 5.6b. This is the first real step

towards providing the security guarantees. In most cases, it avoids attacks on voice

assistant systems when the user is not actively speaking. Inadvertently, it improves

the accuracy of the voice recognition by removing background noise and sounds from

the speech signals that could not have been generated by the user.

5.6.2 Per-Segment Analysis

Once it identifies high-energy segments of the accelerometer signal, VAuth starts

a segment-by-segment matching. Fig. 5.6b shows four segments corresponding to the

parts of the signal where the envelope is equal to 1.

For each segment, VAuth normalizes the signal magnitude to unity to remove the

effect of other segments, such as the effect of the segment s1 in Fig. 5.6b. This

116

a
.u

.

acc

pulses

1.65 1.7 1.75 1.8 1.85

time (sec)

a
.u

.

mic

(a) Non-matching segment s1

a
.u

.

acc

pulses

3.35 3.4 3.45

time (sec)

a
.u

.

mic

pulses

(b) matching segment s4

Figure 5.7: Per-segment analysis stage of VAuth.

serves to make the energy content of each segment uniform, which will elaborate on

later in Section 5.8. VAuth then applies the approach of Boersma [16] to extract

the glottal cycles from each segment. The approach relies on the identification of

periodic patterns in the signal as the local maxima of the auto-correlation function of

the signal. Thus, each segment is associated with a series of glottal pulses as shown

in Fig. 5.7. VAuth uses information about the segment and the corresponding glottal

pulses to filter out the segments that do not correspond to human speech and those

that do not match between the accelerometer and microphone signals as follows.

1. If the length of the segment is less than 20ms, the length of a single phoneme,

then VAuth removes the segment from both accelerometer and microphone sig-

nals. Such segments might arise from sudden noise.

2. If the segment has no identifiable glottal pulses or the length of the longest con-

tinuous sequence of glottal pulses is less than 20ms (the duration to pronounce

a single phoneme), then VAuth also removes the segment. Fig. 5.7a shows the

segment “s1” at a higher resolution. It only contains five pulses which could

117

not have resulted from a speech.

3. If the average glottal cycle of the accelerometer segment is larger than 0.003sec

or smaller than 0.0125sec, then VAuth removes the segment from both signals.

This refers to the case of the fundamental frequency falling outside the range

of [80Hz, 333 Hz] which corresponds to the human speech range.

4. If the average relative distance between glottal pulse sequence between the

accelerometer and microphone segments is higher than 25%, then VAuth removes

the segment from both signals. This refers to the case of interfered speech

(e.g., attacker trying to inject speech); the instantaneous pitch variations should

be similar between the accelerometer and microphone [74] in the absence of

external interference. For example, it is evident that the pitch information is

very different between the accelerometer and microphone of Fig. 5.7a.

After performing all the above filtering steps, VAuth does a final verification step

by running a normalized cross correlation between the accelerometer and microphone

segments. If the maximum correlation coefficient falls inside the range [-0.25,0.25],

then the segments are discarded. We use this range as a conservative way of specifying

that the segments do not match (correlation coefficient close to zero). The correla-

tion is a costlier operation but is a known metric for signal similarity that takes into

consideration all the information of the time-domain signals. For example, the seg-

ment “s4” depicted in Fig. 5.7b shows matching pitch information and a maximum

cross-correlation coefficient of 0.52.

5.6.3 Matching Decision

After the segment-based analysis finishes, only the “surviving” segments comprise

the final accelerometer and microphone signals. In Fig. 5.8a, only the segments “s2”

and “s4” correspond to matching speech components. It is evident from the bottom

118

-0.5

0

0.5
a

.u
.

acc

0.5 1 1.5 2

time (sec)

-0.5

0

0.5

a
.u

.

mic

(a) Output signals

-2 -1 0 1 2
0

0.2

0.4

ρ

Post-processing XCorr

-2 -1 0 1 2

time shift(sec)

0

0.2

0.4

ρ

Pre-processing XCorr

(b) Cross correlation

Figure 5.8: Matching decision stage of VAuth’s matching.

plot that the microphone signal has two significant components referring to each word.

The final step is to produce a matching decision. VAuth measures the similarity

between the two signals by using the normalized cross-correlation, as shown in the

top plot of Fig. 5.8b. VAuth cannot just perform the cross-correlation on the input

signals before cleaning. Before cleaning the signal, the cross-correlation results do

not have any real indication of signal similarity. Consider the lower plot of Fig. 5.8b,

which corresponds to the cross-correlation performed on the original input signals

of Fig. 5.6a. As evident from the plot, the cross-correlation shows absolutely no

similarity between the two signals, even though they describe the same speech sample.

Instead of manually constructing rules that map the cross-correlation vector to

a matching or non-matching decision, we opted to utilize a machine learning-based

classifier to increase the accuracy of VAuth’s matching. Below, we elaborate on the

three components of VAuth’s classifier: the feature set, the machine learning algorithm

and the training set.

119

Feature Set In general, the feature vector comprises the normalized cross-correlation

values (h(t)) of the final accelerometer and microphone signals. However, we need to

ensure that the structure of the feature vector is uniform across all matching tasks.

To populate the feature vector, we identify the maximum value of h(t), and then

uniformly sample 500 points to the left and another 500 to the right of the maximum.

We end up with a feature vector containing 1001 values, centered at the maximum

value of the normalized cross-correlation.

Formally, if the length of h(t) is te, let tm = arg max
t
|h(t)|. Then, the left part

of the feature vector is hl[n] = h(n.tm
500

), 1 < n < 500. The right part of the feature

vector is hr[n] = h(tm + n.(te−tm)
500

), 1 < n < 500. The final feature vector can then be

given as h[n] = hl[n] + h(tm).δ[n− 501] + hr[n− 502].

Classifier We opted to use SVM as the classifier thanks to its ability to deduce

linear relations between the cross-correlation values that define the feature vector.

We utilize Weka [44] to train an SVM using the Sequential Minimal Optimization

(SMO) algorithm [89]. The SMO algorithm uses a logistic calibrator with neither

standardization nor normalization to train the SVM. The SVM utilizes a polynomial

kernel with the degree equal to 1. We use the trained model in our prototype to

perform the online classification.

Training Set Here, it is critical to specify that our training set has been generated

offline and is user-agnostic; we performed the training only once. We recorded (more

on that in Section 5.7) all 44 English phonemes (24 vowels and 20 consonants) from

one of the authors at the lower sternum position using both the accelerometer and

microphone. Hence, we have 44 accelerometer (acc(i)) and microphone (mic(i)) pair

of recordings corresponding for each English phoneme. To generate the training set,

we ran VAuth’s matching over all 44 × 44 accelerometer and microphone recordings

120

to generate 1936 initial feature vectors, (fv), and their labels as follows:

∀i : 1 ≤ i ≤ 44; ∀j : 1 ≤ j ≤ 44;

fv[j + 44(i− 1)] = match(acc(i),mic(j))

label[j + 44(i− 1)] = 1i=j.

The generated training dataset contains only 44 vectors with positive labels. This

might bias the training process towards the majority class (label = 0). To counter

this effect, we amplified the minority class by replicating the vectors with positive

labels five times. The final training set contains 236 vectors with positive labels and

1892 vectors with negative labels. We use this training set to train the SVM, which,

in turn, performs the online classification.

VAuth’s classifier is trained offline, only once and only using a single training set.

The classifier is thus agnostic of the user, position on the body and language. In

our user study and rest of the evaluation of Section 5.9, this (same) classifier is used

to perform all the matching. To use VAuth, the user need not perform any initial

training.

After computing the matching result, VAuth passes the final (cleaned and normal-

ized) microphone signal to the voice assistant system to execute the speech recognition

and other functionality.

5.7 Phonetic-Level Analysis

We evaluate the effectiveness of our matching algorithm on phonetic-level match-

ings/authentications. The International Phonetic Alphabet (IPA) standardizes the

representation of sounds of oral languages based on the Latin alphabet. While the

number of words in a language, and therefore the sentences, can be uncountable,

the number of phonemes in the English language are limited to 44 vowels and con-

121

sonants. By definition, any English word or sentence, as spoken by a human, is

necessarily a combination of those phonemes [61]; A phoneme4 represents the small-

est unit of perceptual sound. Our phonetic-level evaluation represents a baseline of

VAuth’s operation. Table 5.1 lists 20 vowels and 24 consonants p honemes, with two

words representing examples of where the phonemes appear.

Table 5.1: The IPA chart of English phonetics.5

Vowel Examples
Conso-
nants

Examples

2 CUP, LUCK b BAD, LAB
A: ARM, FATHER d DID, LADY
æ CAT, BLACK f FIND, IF
e MET, BED g GIVE, FLAG
@ AWAY, CINEMA h HOW, HELLO

3:r TURN, LEARN j YES, YELLOW
I HIT, SITTING k CAT, BACK
i: SEE, HEAT l LEG, LITTLE
6 HOT, ROCK m MAN, LEMON
O: CALL, FOUR n NO, TEN
U PUT, COULD N SING, FINGER
u: BLUE, FOOD p PET, MAP
AI FIVE, EYE r RED, TRY
AU NOW, OUT s SUN, MISS
eI SAY, EIGHT S SHE, CRASH
oU GO, HOME t TEA, GETTING

OI BOY, JOIN úS
CHECK,
CHURCH

e@r WHERE, AIR T THINK, BOTH

I@r NEAR, HERE D
THIS,

MOTHER

U@r
PURE,

TOURIST
v VOICE, FIVE

- - w
WET,

WINDOW
- - z ZOO, LAZY

- - Z
PLEASURE,

VISION
- - ãZ JUST, LARGE

We study if VAuth can correctly match the English phoneme between the ac-

celerometer and microphone (true positives), and whether it mistakenly matches

phoneme samples from accelerometer to other phoneme samples from the microphone

(false positives).

We recruited two speakers, a male and a female, to record the 44 examples listed

in Table 5.1. Each example comprises two words, separated by a brief pause, both

representing a particular phoneme. We asked the speaker to say both words, not just

the phoneme, as it is easier for the speaker to pronounce the phoneme in the context

of a word. Both participants were 50cm away from the built-in microphone of an HP

4https://www.google.com/search?q=define:phonemes
5copied from: http://www.antimoon.com/resources/phonchart2008.pdf

122

0

0.5

1

1.5

2

2.5

R
e
la

ti
v
e
 E

n
e
rg

y

Cons.

male

Cons.

female

Vowel

male

Vowel

female

(a) Relative energy of accelerometer signal
to microphone signal

0

5

10

15

20

25

#
 o

f
p
h
o
n
e
ti
c
s

Cons.

male

Cons.

female

Vowel

male

Vowel

female

Fail

Negative

Positive

(b) ASR accuracy for accelerometer signal

Figure 5.9: Analysis of the vibrations received by the accelerometer.

workstation laptop. At the same time, both speakers were wearing VAuth, with the

accelerometer taped to the sternum. The microphone was sampled at 44100 Hz, and

the accelerometer at 64000 Hz.

5.7.1 Accelerometer Energy & Recognition

Phonemes originate from a possibly different part of the chest-mouth-nasal area.

In what follows, we show that each phoneme results in vibrations that the accelerom-

eter chip of VAuth can register, but does not retain enough acoustic features to sub-

stitute a microphone speech signal for the purpose of voice recognition. This explains

our rationale for employing the matching-based approach.

We perform the pre-processing stage of VAuth’s matching algorithm to clean both

accelerometer and microphone signals for each phoneme. After normalizing both

signals to a unity magnitude, we compute the accelerometer signal’s energy relative

to that of the microphone. Fig. 5.9a depicts the average relative energy of the vowel

and consonants phonemes for both the female and male speakers.

All phonemes register vibrations, with the minimum relative energy (14%) coming

123

from the OI (the pronunciation of “oy” in “boy”) phoneme of the male speaker. It is

also clear from the figure that there is a low discrepancy of average relative energy

between vowels and consonants for the same speaker. Nevertheless, we notice a higher

discrepancy between the two speakers for the same phoneme. The female speaker has

a shorter distance between the larynx and lowest point of the sternum, and she has a

lower body fat ratio so that the chest skin is closer to the sternum bone. It is worth

noting that the energy reported in the figure does not represent the energy at the

time of the recording but after the initial processing and normalization. This explains

why in some cases the accelerometer energy exceeds that of the microphone.

While the accelerometer chip senses considerable energy from the chest vibrations,

it cannot substitute for the microphone. To confirm this, we passed the recorded

and cleaned accelerometer samples of all phonemes for both speakers to the Nuance

Automatic Speaker Recognition (ASR) API [82]. Fig. 5.9b shows the breakdown

of voice recognition accuracy for the accelerometer samples by phoneme type and

speaker. Clearly, a state-of-the-art ASR engine fails to identify the actual spoken

words. In particular, for about half of the phonemes for both speakers, the ASR fails

to return any result. Nuance API returns three suggestions for each accelerometer

sample for the rest of the phonemes. These results do not match any of the spoken

words. In only three cases for consonants phonemes for both speakers, the API returns

a result that matches at least one of the spoken words.

The above indicates that existing ASR engines cannot interpret the often low-

fidelity accelerometer samples, but it does not indicate that ASR engines cannot be

retrofitted to recognize samples with higher accuracy. This will, however, require

significant changes to deploying and training these systems. On the other hand,

VAuth is an entirely client-side solution that requires no changes to the ASR engine

or the voice assistant system.

124

Table 5.2: The detection accuracy of VAuth for the English phonemes.

microphone accelerometer TP (%) FP (%)

consonants consonants 90 0.2

consonants vowels - 1.0

vowels consonants - 0.2

vowels vowels 100 1.7

all all 94 0.7

20 40 60

time (sec)

-600

-400

-200

0

200

400

a
.u

.

(a) Low energy and white noise

20 40 60

time (sec)

-600

-400

-200

0

200

400

a
.u

.
(b) High energy and periodic noise

Figure 5.10: Examples of tested noise signals.

5.7.2 Phonemes Detection Accuracy

We then evaluate the accuracy of detecting each phoneme for each speaker as well

as the false positive across phonemes and speakers. In particular, we run VAuth to

match each accelerometer sample (88 samples — corresponding to each phoneme and

speaker) to all the collected microphone samples; each accelerometer sample must

match only one microphone sample. Table 5.2 shows the matching results.

First, we match the consonant phonemes across the two speakers as evident in the

first row. The true positive rate exceeds 90%, showing that VAuth can correctly match

the vast majority of consonant phonemes. This is analogous to a low false negative

rate of less than 10%. Moreover, we report the false positive rate which indicates

the instances where VAuth matches an accelerometer sample to the inappropriate

microphone sample. As shown in the same figure, the false positive rate is nearly

125

zero.

Having such a very low false positive rate highlights two security guarantees that

VAuth offers. It does not mistake a phoneme as another even for the same speaker. Re-

call that pitch information is widely used to perform speaker recognition, as each per-

son has unique pitch characteristics that are independent of the speech. VAuth over-

comes pitch characteristics similarity and is able to distinguish the different phonemes

as spoken by the same speaker.

Moreover, VAuth successfully distinguishes the same phoneme across the two

speakers. A phoneme contains speaker-independent features. VAuth overcomes these

similar features to effectively identify each of them for each speaker. The fourth row

of Table 5.2 shows comparable results when attempting to match the vowel phonemes

for both speakers.

The second and third rows complete the picture of phoneme matching. They show

the matching results of the vowel phonemes to the consonant phonemes for both

speakers. Both rows do not contain true positive values as there are no phoneme

matches. Nevertheless, one must notice the very low false positive ratio that confirms

the earlier observations. Finally, the fifth row shows results of matching all the

accelerometer samples to all the microphone samples. The true positive rate is 93%,

meaning that VAuth correctly matched 82 accelerometer samples matched to their

microphone counterparts. Moreover, the false positive rate was only 0.6%.

5.7.3 Idle Detection Accuracy

Last but not least, we evaluate another notion of false positives: VAuth mistak-

enly matches external speech to a silent user. We record idle (the user not actively

speaking) segments from VAuth’s accelerometer and attempt to match them to the

recorded phonemes of both participants. We considered two types of idle segments:

the first contains no energy from speech or other movements (Fig. 5.10a), while the

126

other contains significant abrupt motion of the accelerometer resulting in recordings

with high energy spikes (similar to the spike of Fig. 5.6a). We also constructed a high

energy noise signal with periodic patterns as shown in Fig. 5.10b.

We execute VAuth over the different idle segments and microphone samples and

recorded the false matching decisions. In all of the experiments, we did not observe

any occurrence of a false matching of an idle accelerometer signal to any phoneme

from the microphone for both speakers. As recorded phonemes are representative of

all possible sounds comprising the English language, we can be confident that the

false positive rate of VAuth is zero in practice for silent users.

5.8 Theoretical Analysis

In this section, we highlight the effectiveness of the per-segment analysis of VAuth’s

matching algorithm in preventing an attacker from injecting commands. We also show

that our matching algorithm ensures the phonetic-level results constitute a lower-

bound of sentence-level matching. We provide a formal analysis of this property,

which will be further supported in the next section using real user studies.

5.8.1 Model

We analyze the properties of VAuth’s matching algorithm which takes as inputs two

signals f(t) and g(t) originating from the accelerometer and microphone, respectively.

It outputs a final matching result that is a function of normalized cross-correlation

of f(t) and g(t): h(t) = f(t)?g(t)
E

, where E =
√
‖f(t)‖.‖g(t)‖, ? denotes the cross-

correlation operator, and ‖· ‖ is the energy of the signal (autocorrelation evaluated

at 0). For the simplicity of the analysis, we will focus on the most important feature

of h(t), its maximum value. We can then define VAuth’s binary matching function,

127

v(f, g), as:

v(f, g) =


v = 0, if 0 ≤ m = max(|h(t)|) ≤ th

v = 1, if th < m = max(|h(t)|) ≤ 1.

(5.1)

Each of the input signals comprises a set of segments, which could refer to the

phonemes making up a word or words making up a sentence, depending on the

granularity of the analysis. Let fi(t) and gi(t) be the ith segments of f(t) and

g(t), respectively. We assume that maximum length of a segment is τ , such that

fi(t) = 0, t ∈ (−∞, 0]
⋃

[τ,+∞). We can then rewrite f(t) as f(t) =
∑n

i=1 fi(t− iτ);

the same applies for g(t).

One can view the cross-correlation operation as sliding the segments gi(t) of g(t)

against those of f(t). The cross correlation of g(t) and f(t) can be computed as:

hc(t) = f(t) ? g(t) =
n−1∑
i =1

(
i∑

j=1

(fj ? gn−i+j(t− (i− 1)τ))

)

+
n∑

k =1

(fk ? gk(t− (n− 1)τ))

+
1∑

i =n−1

(
i∑

j=1

(fn−i+j ? gj(t− (2n− i− 1)τ))

)
.

The normalized cross correlation, h(t), is obtained by normalizing hc(t) to E =√
‖
∑n

i=1 fi(t− iτ)‖.‖
∑n

i=1 gi(t− iτ)‖. Since the segments of f and g do not over-

lap each other (by their definition), the energy of a signal is the sum of the energies

of its components, such that E =
√∑n

i=1 ‖fi(t)‖.
∑n

i=1 ‖gi(t‖). Finally, we expand E

to obtain the final value of the normalized cross correlation between f and g as:

h(t) =
hc(t)√∑n

i=1

∑n
j=1 ‖fi(t)‖.‖gj(t)‖

. (5.2)

To decide on the final outcome, VAuth computes max |h(t)|, which, according to

128

the triangle rule, becomes:

max |h(t)| ≤ max
|hc(t)|√∑n

i=1

∑n
j=1 ‖fi(t)‖.‖gj(t)‖

. (5.3)

We assume that the segments’ cross-correlation maximizes when they are aligned.

That is, max(fi ? gj) =
τ∑
t=0

fi(t)gi(t); otherwise, we can redefine the segments to

adhere to this property. We can then separate the components of Eq. (5.3) into

different components such as:

(5.4)

max |h(t)| ≤ 1

E
.max(hl, hm, hr),where

hl = max
i=1...n−1

(
i∑

j=1

|fj ? gn−i+j(t)|

)
,

hm = max |fk ? gk(t)|, and

hr = max
i=1...n−1

(
i∑

j=1

|fn−i+j ? gj(t)|

)
.

The above equation describes how the final outcome is related to the results of

running VAuth on the segments comprising f(t) and g(t). Two segments fi(t) and

gj(t) are positively matched when their maximum of normalized cross correlation,

mij, is between th and 1. Otherwise, there is a negative match.

The value of mij can be given as:

mi,j = max
|fi ? gj(t)|
‖fi(t)‖.‖gj(t)‖

. (5.5)

Let ei,j denote the product of the energies of fi and gj, such that ei,j = ‖fi(t)‖.‖gj(t)‖.

After applying the triangle rule to Eq. (5.4), the final outcome m = max |h(t)| can

be given as:

(5.6)

m ≤ 1

E
.max

(
max

i=1...n−1

i∑
j=1

mi,n−i+j.ei,n−i+j,

n∑
k=1

mkk.ekk, max
i=1...n−1

i∑
j=1

mn−i+j,j.en−i+j,j.

)

129

It is evident from Eq. (5.6) how the final outcome of VAuth depends on computing

the maximum of 2n− 1 distinct components. Each component,
i∑

j=1

mij.eij, is simply

the weighted average of the outcomes of VAuth when it matches the included segments.

Without loss of generality, let’s consider the case when n = 2:

m ≤ max

(
m11.e11
E

,
m12.e12 +m21.e21

E
,
m22.e22
E

)
, (5.7)

where mij are as defined in Eq. (5.5); m11 and e11 are the results of matching f1 and

g2, m12 and e12 are those of f1 and g1, m21 and e21 are those of f2 and g2, and m22

and e22 are those of f2 and g1.

Given the above model of the final outcome of VAuth as a function of the segments

composing the commands, we study the properties of VAuth as described below.

5.8.2 Per-segment Analysis

Eq. (5.7) reveals the importance of the per-segment analysis of VAuth. This step

thwarts an attacker’s ability to inject commands into the voice assistant system. The

attacker aims to inject segments to g(t) that do not bring m below th (so that VAuth

generates a positive match according to Eq. (5.1)). If there were no per-segment

analysis, an attacker could exploit matching segments to inject segments that do

not match. The middle component of Eq. (5.7) explains it. Assuming that m1,2.e1,2

is large enough, the attacker can inject g2(t) such that m1,2.e1,2 + m2,1.e2,1 is still

large, despite m2,1 being low. This happens when e2,1 is too low, implying that the

accelerometer did not record the injected segment.

The per-segment analysis of VAuth addresses this issue using three mechanisms.

First, it removes all portions of f(t) that fall below the running average of the noise

level. These removed portions will not even be part of Eq. (5.7). So, the attacker can-

not inject commands when the user is silent (no corresponding accelerometer signal).

130

Second, if the energy of some segment of f(t) is above the noise level, VAuth normalizes

its magnitude to 1, after removing the spikes. As such, it aims to make the energies

of the segments of f(t) uniform. The attacker cannot inject a command with very low

energy as it will not be recorded by the microphone of the voice assistant. This forces

e2,1 to be comparable to e1,2. As a result, a low value of m2,1 reduces the value of m

of Eq. (5.7).Third, and more importantly, The per-segment analysis of VAuth nullifies

those segments which have their maximum normalized cross-correlation falling below

a threshold (equal to 0.4 in our evaluation). These segments will not make it to the

final decision stage, and will not be part of Eq. (5.7).

5.8.3 False Positive Rate

The results of Section 5.7 show that the false positive rate of matching is not zero

for the English phonemes. Such a false positive rate opens up security holes in VAuth.

We show below that while the false positive rate is not zero at the phonetic level,

adding more phonemes to the command will drive the false positive rate closer to

zero. In other words, the more sounds the user speaks (i.e., the longer the command

is), the lower the false positive rate will be.

To show this, we will take another look at Eq. (5.6), where fi and gi represent

the phonemes making up the command. At the phonetic level, a false positive event

occurs when mi,j > th, given that fi does not match gj. As evident from Eq. (5.6),

when the values of ei,j are roughly uniform which we ensure from the per-segment

analysis, the value of m is simply an average of the values of mi,j. The final matching

result v(f, g), is a direct function of m. A false positive event occurs when v(f, g) = 1

or m > th, given that the underlying accelerometer (f(t)) and microphone (g(t))

signals do not match.

There are two cases available in Eq. (5.6): i < n (the first and third terms in the

max) and i = n (the middle term in the max). The former case is simple; the final

131

value of m is by definition a scaled-down version of the mijs. A lower value of m will

lower the false positive rate.

The latter case considers n segments (phonemes) composing the command. A false

positive event occurs when m = 1/n
n∑
k=1

mk,k > th, given that f(t) does not match

g(t). In the case of phonemes false positives, one can view all mi,js as being drawn

from the distribution PM(mi,j) = PM(M = mi,j|fi 6= gj), where the 6= operator indi-

cates non-matching; the false positive rate is simply PM(M > th|fi 6= gj). The false

positive rate of the whole command is then equal to PM(m) = PM(
∑n

k=1mk,k/n >

th|f 6= g). Our objective reduces to showing that PM(m) decays as n increases (i.e.,

more non-matching phonemes are added to the command).

The distribution PM(M = mij) is an arbitrary one that only satisfies two condi-

tions. First, it is bounded since the values of mi,j are limited to the interval [0, 1].

Second, the matching threshold, th, is larger than the mean of the distribution such

that th > E(mi,j). The empirical false positive distribution P (mi,j) that we estimated

in Section 5.7 satisfies both conditions.

We know from the Hoeffding bound that since mi,j are bounded, PM(
∑n

k=1mk,k−

n.E(m) > t) ≤ e
−2t2

n , for t ≥ 0. Substituting t = n.th−n.E(m) (which is larger than

0) yields:

PM(
1

n
.

n∑
k=1

mnk > th) ≤ e−2n(th−E(m))2 . (5.8)

The left-hand side of Eq. (5.8) is simply the false positive rate of the command

composed of n non-matching phonemes. Clearly, this false positive rate decays expo-

nentially fast in n. Our results from the user study further confirm this analysis.

5.9 Evaluation

We now evaluate the efficacy of VAuth in identifying common voice assistant com-

mands, under different scenarios and for different speakers. We demonstrate that

132

VAuth delivers almost perfect matching accuracy (True Positives, TPs) regardless of

its position on the body, user accents, mobility patterns, or even across different lan-

guages. Moreover, we elaborate on the security properties of VAuth, demonstrating

its effectiveness in thwarting various attacks. Finally, we report the delay and energy

consumption of our wearable prototypes.

5.9.1 User Study

Table 5.3: The list of commands.6

Command Command

1. How old is Neil deGrasse
Tyson?

16. Remind me to buy coffee at
7am from Starbucks

2. What does colloquial mean?
17. What is my schedule for
tomorrow?

3. What time is it now in Tokyo? 18. Where’s my Amazon package?
4. Search for professional
photography tips

19. Make a note: update my
router firmware

5. Show me pictures of the
Leaning Tower of Pisa

20. Find Florence Ion’s phone
number

6. Do I need an umbrella today?
What’s the weather like?

21. Show me my bills due this
week

7. What is the Google stock price? 22. Show me my last messages.

8. What’s 135 divided by 7.5?
23. Call Jon Smith on
speakerphone

9. Search Tumblr for cat pictures
24. Text Susie great job on that
feature yesterday

10. Open greenbot.com
25. Where is the nearest sushi
restaurant?

11. Take a picture
26. Show me restaurants near my
hotel

12. Open Spotify 27. Play some music
13. Turn on Bluetooth 28. What’s this song?
14. What’s the tip for 123 dollars? 29. Did the Giants win today?

15. Set an alarm for 6:30 am
30. How do you say good night in
Japanese?

To support the conclusions derived from our model, we conducted a detailed user

study of the VAuth prototype with 18 users and under 6 different scenarios. We

tested how VAuth performs at three positions, each corresponding to a different form

of wearable (Fig. 5.4) eyeglasses, earbuds, and necklace. At each position, we tested

two cases, asking the user to either stand still or jog. In each scenario, We asked

the participants to speak 30 phrases/commands (listed in Table 5.3). These phrases

represent common commands issued to the “Google Now” voice assistant. In what

follows, we report VAuth’s detection accuracy (TPs) and false positives (FPs) when

doing a pairwise matching of the commands for each participant. We collected no

6inspired from: http://www.greenbot.com/article/2359684/android/a-list-of-all-the-
ok-google-voice-commands.html

133

TP FP

0

0.2

0.4

0.6

0.8

1

(a) earbuds

TP FP

0

0.2

0.4

0.6

0.8

1

(b) eyeglasses

TP FP

0

0.2

0.4

0.6

0.8

1

(c) necklace

Figure 5.11: The detection accuracy of VAuth for the 18 users in the still position.

0 10 20 30

Command Idx

0

0.5

1

1.5

2

E
n

e
rg

y

×10
-3

outlier average failures

(a) User A

0 10 20 30

Command Idx

0

0.5

1

1.5

2

E
n

e
rg

y

10-3

outlier average failures

(b) User B

Figure 5.12: The energy levels of the outlier users (in Fig. 5.11c) compared to average
users. The circles represent commands of the outlier users that VAuth fails to match.

personally identifiable information from the individuals, and the data collection was

limited to our set of commands and posed no privacy risk to the participants. As

such, our user study meets the IRB exemption requirements of our institution.

Still VAuth delivers high detection accuracy (TPs), with the overall accuracy rate

very close to 100% (more than 97% on average). This indicates most of the com-

mands are correctly authenticated from the first trial and VAuth does not introduce

a usability burden to the user. The false positive rate is 0.09% on average, suggest-

ing that very few signals will leak through our authentication. These false positive

events occur because the per-segment analysis of our matching algorithm removes

134

all non-matching segments from both signals, which ensures the security properties

of VAuth. In these cases, when the remaining segments for the microphone signal

accidentally match what the user said and leak through VAuth, the voice recognition

system (Voice-to-Text) fails to pick them up as sensible voice commands. Fig. 5.11

shows the overall distribution of detection results for each scenario.

VAuth performs almost perfect in two wearable scenarios, eyeglasses and earbuds,

but has two outliers regarding the detection accuracy in the case of the necklace. We

looked into the commands that VAuth fails to recognize and found they happen when

there are significant energy dips in the voice level. Fig. 5.12 reports the energy levels

of the voice sessions for our two outlier users compared to the average across users.

This suggests both participants used a lower (than average) voice when doing the

experiments which did not generate enough energy to ensure the authentication.

Mobility We asked the participants to repeat the experiments at each position

while jogging. Our algorithm successfully filters the disturbances introduced by mov-

ing, breathing and VAuth’s match accuracy remains unaffected (see Fig. 5.13). In

fact, we noticed in certain cases, such as for the two outliers observed in our previous

experiments, the results are even better. We studied the difference between their

samples in the two scenarios and found both accelerometer and microphone received

significantly higher energy in the jogging scenario even after we filtered out the sig-

nals introduced by movement. One explanation is users are aware of the disturbance

introduced by jogging and try to use louder voice to compensate. This observation is

consistent across most of our participants, not just limited to the two outliers.

Language We translated the list of 30 commands into four other languages —

Arabic, Chinese, Korean and Persian — and recruited four native speakers of these

languages. We asked the participants to place and use VAuth at the same three

positions. As shown in Fig. 5.14, VAuth performs surprisingly well, even though the

135

TP FP

0

0.2

0.4

0.6

0.8

1

(a) earbuds

TP FP

0

0.2

0.4

0.6

0.8

1

(b) eyeglasses

TP FP

0

0.2

0.4

0.6

0.8

1

(c) necklace

Figure 5.13: The detection accuracy of VAuth for the 18 users in the moving position.

Arabic Chinese Korean Persian
0

0.2

0.4

0.6

0.8

1

TP

FP

(a) earbuds

Arabic Chinese Korean Persian
0

0.2

0.4

0.6

0.8

1

TP

FP

(b) eyeglasses

Arabic Chinese Korean Persian
0

0.2

0.4

0.6

0.8

1

TP

FP

(c) necklace

Figure 5.14: The detection accuracy of VAuth for the 4 different languages.

VAuth prototype was trained on English phonemes (Section 5.6.3). VAuth delivers

almost perfect detection accuracy, except for one case, with the user speaking Korean

when wearing eyeglasses. The Korean language lacks nasal consonants, and thus does

not generate enough vibrations through the nasal bone [113].

5.9.2 Security Properties

In Section 5.4, we listed three types of adversaries against which we aim to protect

the voice assistant systems. VAuth can successfully thwart attacks by these adversaries

136

Table 5.4: The protections offered by VAuth.

Scenario Adversary Example
Silent
User

Speaking
User

A Stealthy
mangled voice,
wireless-based

4 4

B
Biometric
Override

replay, user
impersonation

4 4

C
Acoustic
Injection

direct
communication,

loud voice

distance
cut-off

distance
cut-off

through its multi-stage matching algorithm. Table 5.4 lists the protections offered

by VAuth when the user is silent and actively speaking. Here, we use the evaluation

results in Section 5.9 to elaborate on VAuth’s security features for each attack scenario

and both cases when the user is silent and speaking.

Silent User When the user is silent, VAuth completely prevents any unauthorized

access to the voice assistant. In Section 5.7.3, we evaluate the false positive rate of

VAuth mistakenly classifying noise while the user is silent for all English phonemes. We

show that VAuth has a zero false positive rate. When the user is silent, the adversary

cannot inject any command for the voice assistant, especially for scenarios A and B of

Section 5.4. There is an exception, however, for scenario C; an adversary can employ

a very loud sound to induce vibrations at the accelerometer chip of VAuth. Note that,

since the accelerometer only senses vibrations at the z-axis, the attacker must make

the extra effort to direct the sound wave perpendicular to the accelerometer sensing

surface. Next, we will show that beyond a cut-off distance of 30cm, very loud sounds

(directed at the z-axis of the accelerometer) do not induce accelerometer vibrations.

Therefore, to attack VAuth, an adversary has to play a very loud sound within less

than an arm’s length from the user’s body — which is highly improbable.

We conduct experiments on the cut-off distances in two scenarios: the first with

VAuth exposed and the second with VAuth covered with cotton clothing. Fig. 5.15

137

0 20 40 60

distance (cm)

20

30

40

50

60

70

80

90

d
B

source: 90 dB

source: 82 dB

source: 70 dB

(a) Exposed accelerometer

0 20 40 60

distance (cm)

20

30

40

50

60

70

80

90

d
B

source: 90 dB

source: 82 dB

source: 70 dB

(b) Covered accelerometer

Figure 5.15: The magnitude of the sensed over-the-air vibrations by the accelerometer
as a function of the distance between the sound source and the accelerometer.

reports how the accelerometer chip of VAuth reacts to over-the-air sound signals of

different magnitudes at different distances. In each of these scenarios, we played a

white noise at three sound levels:7 2x, 4x and 8x the conversation level at 70dB, 82db

and 90dB, respectively. The noise is directed perpendicularly to the sensing surface

of the accelerometer. Fig. 5.15a shows the recorded magnitude of the accelerometer

signal as a function of the distance between the sound source and VAuth when it is

exposed. As evident from the plots, there is a cut-off distance of 30cm, where VAuth’s

accelerometer cannot sense even the loudest of the three sound sources. For the other

two sounds, the cut-off distance is 5cm. Beyond the cut-off distance, the magnitude

of the recorded signal is the same as that in a silent scenario. This indicates that

an adversary cannot inject commands with a high sound level beyond some cut-off

distance. These results are consistent with the case of VAuth covered with cotton, as

shown in Fig. 5.15b. The cut-off is still 30cm for the loudest sound. It is worth noting

that the recorded signal at the microphone does not change magnitude as drastically

as a function of the distance. At a distance of 1m from the sound source, the audio

7http://www.industrialnoisecontrol.com/comparative-noise-examples.htm

138

Figure 5.16: The flow of the mangling voice analysis.

signal loses at most 15dB of magnitude.

Speaking User On the other hand, the adversary may try to launch an attack on

the voice assistant system when the user is actively speaking. Next, we show how

VAuth can successfully thwart the stealthy attacks in scenario A. We will show, in the

most extreme case scenario, how VAuth can completely distinguish the accelerometer

samples of the voice spoken by the user from the reconstructed sound of the same

command, even when the reconstructed voice sounds the same to the human listener

as the original one.

Vaidya et al. [19, 104] presented an attack that exploits the gap between voice

recognition system and human voice perception. It constructs mangled voice segments

that match the MFCC features of an injected voice command. An ASR engine can

recognize the command, but not the human listener. This and similar attacks rely on

performing a search in the MFCC algorithm parameter space to find voice commands

that satisfy the above feature.

Performing an exhaustive search on the entire parameter space of the MFCC gen-

eration algorithm is prohibitive. Therefore, to evaluate the effectiveness of VAuth

against such an attack, we consider its worst-case scenario. Fig. 5.16 shows the eval-

uation flow. For each of the recorded command of the previous section, we extract

the MFCCs for the full signal and use them to reconstruct the voice signal. Fi-

nally, we execute VAuth over the reconstructed voice segment and the corresponding

139

accelerometer sample to test for a match.

We fixed the MFCC parameters as follows: 256 samples for the hop time, 512

samples for the window time, and 77 as the length of the output coefficient vector.

We vary the number Mel filter bands between 15 and 30. At 15 Mel filter bands, the

reconstructed voice command is similar to what is reported in existing attacks [104].

At 30 Mel filter bands, the reconstructed voice command is very close to the original;

it shares the same MFCCs and is easily identifiable when played back.

The question that we aim to address is whether reducing the sound signal to a

set of features and reconstructing back the original signal preserves all the acoustic

features needed for VAuth to perform a successful matching with the corresponding

accelerometer signal. If not, then the reconstructed sound will not even match the

voice it originated from. Therefore, any mangled voice will not match the user’s

speech as measured by VAuth, so that VAuth could successfully thwart the attack.

In all cases, while the original microphone signal matches accelerometer signals

near perfectly as indicated before, the reconstructed sound failed to match the ac-

celerometer signal in 99% of the evaluated cases. Of 3240 comparisons (2 Mel filter

band lengths per command, 90 commands per user and 18 users), the reconstructed

sound matched only a handful of accelerometer samples, and only in cases where we

used 30 Mel filter bands. Indeed, those sound segments were very close to the original

sound segment that corresponds to the matched accelerometer samples. To constitute

an attack, the mangled voice segment is not supposed to originate from the sound the

user is speaking, let alone preserving discernible acoustic features. This demonstrates

that VAuth matches the time-domain signals in their entirety, thwarting such attacks

on the voice assistant and recognition systems.

Last but not least, we tested VAuth with the set of mangled voice commands8 used

by Carlini et al. [19]. We asked four different individuals to repeat these commands

8http://www.hiddenvoicecommands.com/

140

while wearing VAuth. The accelerometer samples corresponding to each command do

not match their mangled voice counterparts.

In scenario B, an attacker also fails to overcome VAuth’s protection. We indicated

earlier in Section 5.7.2 and in this section that VAuth successfully distinguishes the

phonemes and commands of the same user. We further confirm that VAuth can

differentiate the same phoneme or command across different users. Moreover, even

if the user is speaking and the adversary is replaying another sound clip of the same

user, VAuth can differentiate between the microphone and accelerometer samples and

stop the attack. Finally, VAuth might result in some false positives (albeit very low).

As explained earlier, these false positive take place because the remaining segments

after the per-segment stage of VAuth match, and thus do not represent a viable attack

vector. It is worth noting that VAuth could use a more stringent classifier that is tuned

to force the false positive rate to be 0. This will come at the cost of usability but

could be preferable in high-security situations.

5.9.3 Delay and Energy

We measure the delay experienced at the voice assistant side and the energy con-

sumption of the wearable component, using our prototype. As shown in Fig. 5.2,

VAuth incurs delay only during the matching phase: when VAuth uploads the ac-

celerometer and microphone signals to the remote service and waits for a response.

According to our test on the same list of 30 commands, we found that a successful

match takes 300–830ms, with an average of 364ms, while an unsuccessful match takes

230–760ms, with an average of 319ms. The response time increases proportionally to

the length of the commands, but matching a command containing more than 30 words

still takes less than 1 second. We expect the delay to decrease further if switching

from our Matlab-based server to a full-fledged web server.

When the wearable component transmits accelerometer signals, it switches be-

141

0 5 10 15 20 25

Time (s)

0

20

40

60

80

C
u

rr
e

n
t

(m
A

) Idle Idle

Active

Figure 5.17: Current levels of the prototype in the idle and active states.

tween two states: idle state that keeps the connection alive and active state that

actually transmits the data. We connected our prototype to the Monsoon power

monitor and recorded the current levels of the prototype in these two states when

powered by a fixed voltage (4V). Fig. 5.17 illustrates the changes of the current levels

when our prototype switches from idle to active and then back to idle. We observed

that under active state, our prototype consumes as much as 31mA, while under idle

state, it only consumes an average of 6mA. Most of the energy is used to keep the

Bluetooth connection and transmit data (in the active state) — the energy consumed

by the accelerometer sensor is almost negligible.

Assuming the user always keeps the wearable open at daytime and sends 100 voice

commands per day (each voice command takes 10 seconds). Our prototype consumes

6.3mA on average. This might even be an overestimation since 90% of the users issue

voice commands at most once per day according to our survey. A typical 500mAh

Li-Ion battery used by wearables (comparable to a US quarter coin) can power our

prototype for around a week. 80% of the participants in our usability survey think

they have no problem with recharging the wearable on a weekly basis. We conducted

all the analyses on our prototype which directly utilizes off-the-shelf hardware chips

142

without any optimization, assuming that VAuth is provided as a standalone wear-

able. If incorporated into an existing wearable device, VAuth will only introduce an

additional energy overhead of less than 10mAh per day.

5.10 Discussion

In our prototype implementation, we enforce the same policy for all voice com-

mands: if the authentication passes, execute else drop the command. However, one

can implement customized policy for different commands. For example, some com-

mands, such as time/weather inquiry, are not privacy/security-sensitive, so VAuth

can execute them directly without going through additional authentication process;

other commands, such as controlling home appliances might be highly sensitive, and

hence VAuth should promptly warn the user instead of simply dropping the command.

This can be implemented by extending the Intent interception logic in our prototype

implementation, making VAuth react differently according to different Intent actions,

data, and types.

Besides its excellent security properties, VAuth has a distinct advantage over ex-

isting technologies — it is wear-and-use without any user-specific, scenario-dependent

training. Although we used machine learning to facilitate matching decision in our

algorithm, we only trained once (on English phonemes of a test user) and then applied

it in all other cases. Our evaluation demonstrates that VAuth is robust to changes in

accents, speed of speech, mobility, or even languages. This significantly increases the

usability of VAuth.

5.11 Conclusion

In this chapter, we have proposed VAuth, a system that provides continuous au-

thentication for voice assistants. We demonstrated that even though the accelerom-

143

eter information collected from the facial/neck/chest surfaces might be weak, it con-

tains enough information to correlate it with the data received via microphone. VAuth

provides extra physical assurance for voice assistant users and is an effective measure

against various attack scenarios. It avoids the pitfalls of existing voice authentica-

tion mechanisms. Our evaluation with real users under practical settings shows high

accuracy and very low false positive rate, highlighting the effectiveness of VAuth. In

future, we would like to explore more configurations of VAuth that will promote wider

real-world deployment and adoption.

144

CHAPTER VI

Conclusions And Future Works

As mobile becomes the central theme of our digital consumer market, new tech-

niques have been continuously invented for, and introduced to the mobile platform. In

this dissertation, we have demonstrated the risks when these techniques are directly

imported and applied without being aware of the trust relationship in the mobile

ecosystem. Specifically, we focused on various communication interfaces that enable

the information and control flow of the current mobile ecosystem.

6.1 Conclusions

In Chapter II, we conducted an in-depth analysis on a client-side IPC interface,

Android Binder. According to our analysis of more than 100 vulnerabilities on this

surface, we discovered a common misconception of where the security boundary is

for Android system services — many may assume the security/trust boundary is at

the client-side public APIs, and whatever happens thereafter is free from obstruction

since it is already in the system zone. This misconception is understandable since

Android provides the convenient abstraction of AIDL and automatically generates

codes in the IPC stack. In other words, even though Android system services depend

heavily on IPC, the developers are likely to be agnostic of that. We addressed this

problem with BinderCracker, a precautionary testing framework that achieves auto-

145

matic discovery of vulnerabilities. It supports context-aware fuzzing, automatically

resolves dependency across IPC transactions, and achieves 7x better effectiveness than

simple black-box fuzzing. We also highlighted the urgent need for attack attribution

for IPC-based attacks. Due to the lack of transparency, no one knows why a system

service crashed and who caused it. We proposed proper OS-level support by building

an OS-level runtime diagnostics tool on the binder surface. We believe it will be

essential for any in-depth runtime analysis. Our solutions are useful, practical, and

easily integratable in the development/deployment cycle of Android.

In Chapters III and IV, we demonstrated how to restrict the potential informa-

tion flow between apps by monitoring, characterizing and reducing the underlying

linkability across them. In Chapter III, we proposed the concept of DLG (Dynamic

Linkability Graph), which captures both the quality and quantity of the linkability

across apps. This allows us to measure the potential threat of unregulated aggrega-

tion during runtime and promptly warn users of the associated risks. We observed

how real-world apps abuse OS-level information and IPCs to establish linkability, and

proposed a practical countermeasure, LinkDroid. It provides runtime monitoring and

mediation of linkability across apps, introducing a new dimension to privacy protec-

tion on mobile device. Our evaluation with real users has shown that LinkDroid is

effective in reducing the linkability across apps and only incurs marginal overhead.

In Chapter IV, we further discussed an alternative solution, called Mask, in the user

level for the same problem of unregulated aggregation. It introduces a set of private

execution modes and give users options to maintain multiple isolated profiles of the

same app. Mask achieves this by enforcing user-level sandboxes and exploiting the dy-

namic linking process in Android. All user behaviors originate from the mobile apps,

either directly or indirectly. By enabling the proposed private execution modes which

isolate app usages at this very source, Mask provides a client-side solution without

requiring any change to the existing ecosystem.

146

In Chapter V, we secured an increasingly popular human-machine interaction

channel, the voice channel, for mobile voice assistants. We proposed VAuth, a sys-

tem that provides continuous authentication for voice assistants. We demonstrated

that even though the accelerometer information collected from the facial/neck/ch-

est surface might be weak, it contains enough information to correlate it with the

data collected from microphone. VAuth provides extra physical assurance for voice

assistant users, effectively thwarts mangling voice attacks and successfully blocks

unauthenticated voice commands replayed by an attacker or impersonated by other

users, It avoids the pitfalls of existing voice authentication mechanisms and has a

distinct advantage over previous technologies — it is wear-and-use without any user-

specific, scenario-dependent training. Our evaluation with real users under practical

settings shows high accuracy and very low false positive rate, regardless of variations

in accents, mobility patterns (still vs. jogging), or even across languages (Arabic,

Chinese, English, Korean, Persian).

6.2 Future Directions

In this thesis, we elaborated on the challenges encountered in an emerging mobile

ecosystem. Many of our experiences can be reused when dealing with other interfaces

in the mobile ecosystem or similar interfaces in other domains, such as vehicular

networks and Internet of Things (IoTs). This opens up new directions for future

explorations.

Apps make use of various sensory data provided by the mobile OS. However, most

of the apps naively assume that the sensory data received is authentic. This may

cause severe privacy and security problems, not only to the users who are currently

using the app, but also to businesses running the app. For example, the location

information is utilized by many important/sensitive apps or services, for social, search

or authentication purposes. However, it is very easy to fake location data in current

147

mobile OSes and attackers can utilize this loophole to spam nearby users, exploit

mobile games (e.g., Pokemon GO), and commit frauds. Similar exploitations are

prevalent in the current mobile ecosystem and we believe this is an interesting problem

worthy of further exploration.

Many of the problems we discussed in this thesis also exist in other domains and

deserve more attention. For example, in-vehicle communications work on top of the

CAN (Controller Area Network) bus. Overwhelmed by the unprecedented trend of

Internet-powered in-vehicle applications, the CAN protocol is significantly outdated

in terms of security or privacy. Essentially, the CAN protocol provides neither built-in

security nor (serious) sanity checks on the messages transmitted through the network.

It has been demonstrated that any component with access to the CAN bus can in-

troduce severe physical security issues, putting the driver’s and passengers’ lives in

danger [21]. This calls for the design and implementation of precautionary testing, as

well as runtime diagnostic tools on the CAN interface. The vehicle should at least be

able to trace attacks to specific ECU (Electronic Control Unit). Another potential

direction is introducing linkability tracking/control to IoT devices. IoT devices serv-

ing each household and each person are predicted to grow very fast and soon become

untraceable. All the devices will be connected to Internet and uploading private data

that can be attributed to users. It will be essential to ensure that information from

multiple IoT devices should not be linkable unless there are legitimate needs, and

users should be given the options to opt out. Without a proper scheme of enforcing

linkability, our life will become transparent eventually, and probably in an unwanted

way.

148

BIBLIOGRAPHY

149

BIBLIOGRAPHY

[1] Forecast: Mobile app stores, worldwide, 2013 update. http://

www.gartner.com/DisplayDocument?id=2584918.

[2] 2013: a look back at the year in acquisitions. http://vator.tv/news/2013-
12-07-2013-a-look-back-at-the-year-in-acquisitions.

[3] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh. An analysis of pri-
vate browsing modes in modern browsers. In Proceedings of the 19th USENIX
conference on Security, pages 6–6. USENIX Association, 2010.

[4] D. Amalfitano, A. R. Fasolino, and P. Tramontana. A gui crawling-based tech-
nique for android mobile application testing. In Software Testing, Verification
and Validation Workshops (ICSTW), 2011 IEEE Fourth International Confer-
ence on, pages 252–261. IEEE, 2011.

[5] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M.
Memon. Using gui ripping for automated testing of android applications. In
Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering, pages 258–261. ACM, 2012.

[6] Androbench. http://www.androbench.org/wiki/AndroBench.

[7] Android interface definition language (aidl). http://developer.android.com/
guide/components/aidl.html.

[8] Angry birds and ’leaky’ phone apps targeted by nsa and gchq for
user data. http://www.theguardian.com/world/2014/jan/27/nsa-gchq-
smartphone-app-angry-birds-personal-data.

[9] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith. Practicality of accelerometer
side channels on smartphones. In Proceedings of the 28th Annual Computer
Security Applications Conference, pages 41–50. ACM, 2012.

[10] M. Backes, A. Kate, M. Maffei, and K. Pecina. Obliviad: Provably secure
and practical online behavioral advertising. In Proceedings of the 2012 IEEE
Symposium on Security and Privacy, SP ’12, pages 257–271, Washington, DC,
USA, 2012. IEEE Computer Society.

150

[11] M. Balakrishnan, I. Mohomed, and V. Ramasubramanian. Where’s that
phone?: geolocating ip addresses on 3g networks. In Proceedings of the 9th
ACM SIGCOMM conference on Internet measurement conference, pages 294–
300. ACM, 2009.

[12] M. Baloul, E. Cherrier, and C. Rosenberger. Challenge-based speaker recogni-
tion for mobile authentication. In Biometrics Special Interest Group (BIOSIG),
2012 BIOSIG-Proceedings of the International Conference of the, pages 1–7.
IEEE, 2012.

[13] A. Bamis and A. Savvides. Lightweight Extraction of Frequent Spatio-Temporal
Activities from GPS Traces. In IEEE Real-Time Systems Symposium, pages
281–291, 2010.

[14] Y. Ben-Itzhak. What if smart devices could be hacked with just a voice? http:

//now.avg.com/voice-hacking-devices/, Sep. 2014.

[15] Bluetooth SIG. Specification of the Bluetooth System. Version 4.2,
Dec. 2014. https://www.bluetooth.org/en-us/specification/adopted-
specifications.

[16] P. Boersma. Accurate short-term analysis of the fundamental frequency and
the harmonics-to-noise ratio of a sampled sound. Institute of Phonetic Sciences
- University of Amsterdam, 17:97–110, 1993.

[17] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi. Xmandroid:
A new android evolution to mitigate privilege escalation attacks.

[18] S. Bugiel, S. Heuser, and A.-R. Sadeghi. Flexible and fine-grained mandatory
access control on android for diverse security and privacy policies. In Presented
as part of the 22nd USENIX Security Symposium, pages 131–146, Berkeley, CA,
2013. USENIX.

[19] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields, D. Wagner,
and W. Zhou. Hidden voice commands. In 25th USENIX Security Sympo-
sium (USENIX Security 16), pages 513–530, Austin, TX, Aug. 2016. USENIX
Association.

[20] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application
communication in android. In Proceedings of the 9th International Conference
on Mobile Systems, Applications, and Services, MobiSys ’11, pages 239–252,
New York, NY, USA, 2011. ACM.

[21] K.-T. Cho and K. G. Shin. Fingerprinting electronic control units for vehicle
intrusion detection. In 25th USENIX Security Symposium (USENIX Security
16), pages 911–927, Austin, TX, Aug. 2016. USENIX Association.

[22] C. Cornelius, Z. Marois, J. Sorber, R. Peterson, S. Mare, and D. Kotz. Vocal
resonance as a passive biometric. 2014.

151

[23] C. Cornelius, R. Peterson, J. Skinner, R. Halter, and D. Kotz. A wearable
system that knows who wears it. In Proceedings of the 12th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys ’14, pages
55–67, New York, NY, USA, 2014. ACM.

[24] Cve-2015-1474. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-1474.

[25] Cve-2015-1528. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-1528.

[26] Cve-2015-6612. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-6612.

[27] Cve-2015-6620. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2015-6620.

[28] A. Das, O. K. Manyam, M. Tapaswi, and V. Taranalli. Multilingual spoken-
password based user authentication in emerging economies using cellular phone
networks. In Spoken Language Technology Workshop, 2008. SLT 2008. IEEE,
pages 5–8. IEEE, 2008.

[29] D. Davidson and B. Livshits. Morepriv: Mobile os support for application
personalization and privacy. Technical report, MSR-TR, 2012.

[30] W. Diao, X. Liu, Z. Zhou, and K. Zhang. Your voice assistant is mine: How to
abuse speakers to steal information and control your phone. In Proceedings of
the 4th ACM Workshop on Security and Privacy in Smartphones & Mobile
Devices, SPSM ’14, pages 63–74, New York, NY, USA, 2014. ACM.

[31] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios: Detecting privacy leaks
in ios applications. In NDSS, 2011.

[32] K. O. Elish, D. Yao, and B. G. Ryder. On the need of precise inter-app icc
classification for detecting android malware collusions. In Proceedings of IEEE
Mobile Security Technologies (MoST), in conjunction with the IEEE Symposium
on Security and Privacy, 2015.

[33] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. Sheth.
Taintdroid: An information-flow tracking system for realtime privacy monitor-
ing on smartphones. In OSDI, volume 10, pages 255–270, 2010.

[34] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth. Taintdroid: An information-flow tracking system for realtime privacy
monitoring on smartphones. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, OSDI’10, pages 1–6, Berkeley,
CA, USA, 2010. USENIX Association.

152

[35] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A study of android
application security. In Proceedings of the 20th USENIX Conference on Security,
SEC’11, pages 21–21, Berkeley, CA, USA, 2011. USENIX Association.

[36] K. Fawaz and K. G. Shin. Location privacy protection for smartphone users.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Com-
munications Security, pages 239–250. ACM, 2014.

[37] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions
demystified. In Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS ’11, pages 627–638, New York, NY, USA, 2011.
ACM.

[38] A. P. Felt, S. Egelman, M. Finifter, D. Akhawe, and D. Wagner. How to ask
for permission. In Proceedings of the 7th USENIX Conference on Hot Topics in
Security, HotSec’12, pages 7–7, Berkeley, CA, USA, 2012. USENIX Association.

[39] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner. Android
permissions: User attention, comprehension, and behavior. In Proceedings of the
Eighth Symposium on Usable Privacy and Security, SOUPS ’12, pages 3:1–3:14,
New York, NY, USA, 2012. ACM.

[40] H. Feng, K. Fawaz, and K. G. Shin. Linkdroid: reducing unregulated aggrega-
tion of app usage behaviors. In 24th USENIX Security Symposium (USENIX
Security 15), pages 769–783, 2015.

[41] Fuzzing android system services by binder call. https://www.blackhat.com/
docs/us-15/materials/us-15-Gong-Fuzzing-Android-System-Services-

By-Binder-Call-To-Escalate-Privilege.pdf.

[42] P. Golle and K. Partridge. On the anonymity of home/work location pairs. In
Proceedings of Pervasive ’09, pages 390–397, Berlin, Heidelberg, 2009. Springer-
Verlag.

[43] Google says there are now 1.4 billion active android devices world-
wide. http://www.androidcentral.com/google-says-there-are-now-14-
billion-active-android-devices-worldwide.

[44] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten.
The weka data mining software: An update. SIGKDD Explor. Newsl., 11(1):10–
18, Nov. 2009.

[45] S. Han, J. Jung, and D. Wetherall. A study of third-party tracking by mobile
apps in the wild. Technical report, UW-CSE, 2011.

[46] Haskins Laboratories. The Acoustic Theory of Speech Production: the
source-filter model. http://www.haskins.yale.edu/featured/heads/mmsp/
acoustic.html.

153

[47] Hey your parcel looks bad. https://www.blackhat.com/docs/asia-16/
materials/asia-16-He-Hey-Your-Parcel-Looks-Bad-Fuzzing-And-

Exploiting-Parcelization-Vulnerabilities-In-Android.pdf.

[48] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These aren’t the
droids you’re looking for: Retrofitting android to protect data from imperious
applications. In Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS ’11, pages 639–652, New York, NY, USA, 2011.
ACM.

[49] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall. These aren’t the
droids you’re looking for: retrofitting android to protect data from imperious
applications. In Proceedings of the 18th ACM conference on Computer and
Communications Security, pages 639–652. ACM, 2011.

[50] How mobile apps stack up against mobile browsers. http:

//www.emarketer.com/Article/How-Mobile-Apps-Stack-Up-Against-
Mobile-Browsers/1013462.

[51] C. Hu and I. Neamtiu. Automating gui testing for android applications. In
Proceedings of the 6th International Workshop on Automation of Software Test,
pages 77–83. ACM, 2011.

[52] Improving your code with lint. http://developer.android.com/tools/
debugging/improving-w-lint.html.

[53] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel, N. Reddy, J. S. Foster,
and T. Millstein. Dr. android and mr. hide: fine-grained permissions in android
applications. In Proceedings of Second ACM Workshop on Security and Privacy
in Smartphones and Mobile Devices, pages 3–14. ACM, 2012.

[54] D. Kantola, E. Chin, W. He, and D. Wagner. Reducing attack surfaces for
intra-application communication in android. In Proceedings of the Second ACM
Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM
’12, pages 69–80, New York, NY, USA, 2012. ACM.

[55] C. Kasmi and J. Lopes Esteves. Iemi threats for information security: Remote
command injection on modern smartphones. Electromagnetic Compatibility,
IEEE Transactions on, 57(6):1752–1755, 2015.

[56] J. Krumm. Inference attacks on location tracks. In Proceedings of the 5th
international conference on Pervasive computing, PERVASIVE’07, pages 127–
143, Berlin, Heidelberg, 2007. Springer-Verlag.

[57] M. Kunz, K. Kasper, H. Reininger, M. Möbius, and J. Ohms. Continuous
speaker verification in realtime. In BIOSIG, pages 79–88, 2011.

154

[58] S. Labitzke, I. Taranu, and H. Hartenstein. What your friends tell others about
you: Low cost linkability of social network profiles. In Proc. 5th International
ACM Workshop on Social Network Mining and Analysis, San Diego, CA, USA,
2011.

[59] B. Lee, L. Lu, T. Wang, T. Kim, and W. Lee. From zygote to morula: Fortifying
weakened aslr on android. In Proceedings of the 2014 IEEE Symposium on
Security and Privacy, SP ’14, pages 424–439, Washington, DC, USA, 2014.
IEEE Computer Society.

[60] S. Lee, E. L. Wong, D. Goel, M. Dahlin, and V. Shmatikov. πbox: a platform
for privacy-preserving apps. In Proceedings of the 10th USENIX conference
on Networked Systems Design and Implementation, pages 501–514. USENIX
Association, 2013.

[61] M. Liberman. Linguistics 001 – sound structure of language. http://

www.ling.upenn.edu/courses/ling001/phonology.html. Accessed: 2016-05-
23.

[62] Y.-A. S. Lien, C. R. Calabrese, C. M. Michener, E. H. Murray, J. H. Van Stan,
D. D. Mehta, R. E. Hillman, J. P. Noordzij, and C. E. Stepp. Voice relative
fundamental frequency via neck-skin acceleration in individuals with voice dis-
orders. Journal of Speech, Language, and Hearing Research, 58(5):1482–1487,
2015.

[63] M. B. Lindasalwa Muda and I. Elamvazuthi. Voice recognition algorithms us-
ing mel frequency cepstral coefficient (mfcc) and dynamic time warping (dtw)
techniques. Journal Of Computing, 2(3):138–143, 2010.

[64] A. M. Lund. Measuring usability with the USE questionnaire. Usability Inter-
face, 8:3–6, 2001.

[65] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation system
for android apps. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, pages 224–234. ACM, 2013.

[66] A. K. Maji, F. A. Arshad, S. Bagchi, and J. S. Rellermeyer. An empirical study
of the robustness of inter-component communication in android. In Proceedings
of the 2012 42Nd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), DSN ’12, pages 1–12, Washington, DC, USA,
2012. IEEE Computer Society.

[67] Majority of digital media consumption now takes place in mobile
apps. https://techcrunch.com/2014/08/21/majority-of-digital-media-
consumption-now-takes-place-in-mobile-apps/.

[68] S. Mare, A. M. Markham, C. Cornelius, R. Peterson, and D. Kotz. Zebra: zero-
effort bilateral recurring authentication. In Security and Privacy (SP), 2014
IEEE Symposium on, pages 705–720. IEEE, 2014.

155

[69] C. Marforio, A. Francillon, S. Capkun, S. Capkun, and S. Capkun. Application
collusion attack on the permission-based security model and its implications for
modern smartphone systems. Department of Computer Science, ETH Zurich,
2011.

[70] P. Marquardt, A. Verma, H. Carter, and P. Traynor. (sp) iphone: decoding vi-
brations from nearby keyboards using mobile phone accelerometers. In Proceed-
ings of the 18th ACM conference on Computer and communications security,
pages 551–562. ACM, 2011.

[71] A. Martin and G. Hugo. Banking biometrics: hacking into your account is
easier than you think. https://www.ft.com/content/959b64fe-9f66-11e6-
891e-abe238dee8e2.

[72] R. Martin. Listen Up: Your AI Assistant Goes Crazy For NPR
Too. http://www.npr.org/2016/03/06/469383361/listen-up-your-ai-
assistant-goes-crazy-for-npr-too, Mar. 2016.

[73] T. McDonnell, B. Ray, and M. Kim. An empirical study of api stability and
adoption in the android ecosystem. In Software Maintenance (ICSM), 2013
29th IEEE International Conference on, pages 70–79. IEEE, 2013.

[74] D. D. Mehta, J. H. V. Stan, and R. E. Hillman. Relationships between vo-
cal function measures derived from an acoustic microphone and a subglottal
neck-surface accelerometer. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 24(4):659–668, April 2016.

[75] D. D. Mehta, M. Zañartu, S. W. Feng, H. A. Cheyne, and R. E. Hillman. Mobile
voice health monitoring using a wearable accelerometer sensor and a smartphone
platform. Biomedical Engineering, IEEE Transactions on, 59(11):3090–3096,
2012.

[76] R. Metz. Voice Recognition for the Internet of Things. https:

//www.technologyreview.com/s/531936/voice-recognition-for-the-
internet-of-things/, Oct. 2014.

[77] M. F. Mokbel, C.-Y. Chow, and W. G. Aref. The new casper: query process-
ing for location services without compromising privacy. In Proceedings of the
32nd international conference on Very large data bases, pages 763–774. VLDB
Endowment, 2006.

[78] L. Myers. An Exploration of Voice Biometrics. https://www.sans.org/
reading-room/whitepapers/\\authentication/exploration-voice-
biometrics-1436, April 2004.

[79] A. Narayanan and V. Shmatikov. Robust de-anonymization of large sparse
datasets. In Security and Privacy, 2008. SP 2008. IEEE Symposium on, pages
111–125. IEEE, 2008.

156

[80] M. Nauman, S. Khan, and X. Zhang. Apex: Extending android permission
model and enforcement with user-defined runtime constraints. In Proceedings
of the 5th ACM Symposium on Information, Computer and Communications
Security, ASIACCS ’10, pages 328–332, New York, NY, USA, 2010. ACM.

[81] M. Nauman, S. Khan, and X. Zhang. Apex: extending android permission
model and enforcement with user-defined runtime constraints. In Proceedings
of the 5th ACM Symposium on Information, Computer and Communications
Security, pages 328–332. ACM, 2010.

[82] Nuance Cloud Services. Http services 1.0 programmer’s guide.
https://developer.nuance.com/public/Help/HttpInterface
/HTTP web services for NCS clients 1.0
programmer s guide.pdf, Dec. 2013.

[83] Number of apps available in leading app stores as of july 2015. http:

//www.statista.com/statistics/276623/number-of-apps-available-in-
leading-app-stores/.

[84] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang. Accessory: password
inference using accelerometers on smartphones. In Proceedings of the Twelfth
Workshop on Mobile Computing Systems & Applications, page 9. ACM, 2012.

[85] S. Panjwani and A. Prakash. Crowdsourcing attacks on biometric systems. In
Tenth Symposium on Usable Privacy and Security, SOUPS 2014, Menlo Park,
CA, USA, July 9-11, 2014, pages 257–269, 2014.

[86] P. Pearce, A. P. Felt, G. Nunez, and D. Wagner. Addroid: Privilege separation
for applications and advertisers in android. In Proceedings of the 7th ACM
Symposium on Information, Computer and Communications Security, pages
71–72. ACM, 2012.

[87] O. Peles and R. Hay. One class to rule them all: 0-day deserialization vul-
nerabilities in android. In 9th USENIX Workshop on Offensive Technologies
(WOOT 15), 2015.

[88] G. Petracca, Y. Sun, T. Jaeger, and A. Atamli. Audroid: Preventing attacks on
audio channels in mobile devices. In Proceedings of the 31st Annual Computer
Security Applications Conference, ACSAC 2015, pages 181–190, New York, NY,
USA, 2015. ACM.

[89] J. Platt. Fast training of support vector machines using sequential minimal
optimization. In Advances in Kernel Methods - Support Vector Learning. MIT
Press, January 1998.

[90] M. Rangwala, P. Zhang, X. Zou, and F. Li. A taxonomy of privilege escalation
attacks in android applications. Int. J. Secur. Netw., 9(1):40–55, Feb. 2014.

157

[91] R. Sasnauskas and J. Regehr. Intent fuzzer: Crafting intents of death. In
Proceedings of the 2014 Joint International Workshop on Dynamic Analysis
(WODA) and Software and System Performance Testing, Debugging, and An-
alytics (PERTEA), WODA+PERTEA 2014, pages 1–5, New York, NY, USA,
2014. ACM.

[92] Security updates and resources. https://source.android.com/security/
overview/updates-resources.html.

[93] A. Shabtai, Y. Fledel, and Y. Elovici. Securing android-powered mobile devices
using selinux. IEEE Security & Privacy, (3):36–44, 2009.

[94] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, and C. Glezer. Google
android: A comprehensive security assessment. IEEE Security and Privacy,
8(2):35–44, Mar. 2010.

[95] S. Shekhar, M. Dietz, and D. S. Wallach. Adsplit: separating smartphone
advertising from applications. In Proceedings of the 21st USENIX conference
on Security symposium, pages 28–28. USENIX Association, 2012.

[96] S. Smalley and R. Craig. Security enhanced (se) android: Bringing flexible mac
to android. In NDSS, volume 310, pages 20–38, 2013.

[97] Smartphone os market share, q4 2014. http://www.idc.com/prodserv/
smartphone-os-market-share.jsp.

[98] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen. Investigating user
privacy in android ad libraries. IEEE Mobile Security Technologies (MoST),
2012.

[99] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro. Copperdroid: Automatic
reconstruction of android malware behaviors. In NDSS, 2015.

[100] S. Tambe, N. Vedagiri, N. Abbas, and J. E. Cook. Ddl: Extending dynamic
linking for program customization, analysis, and evolution. In In Proc. Inter-
national Conference on Software Maintenance, 2005.

[101] O. Tripp and J. Rubin. A bayesian approach to privacy enforcement in smart-
phones. In Proceedings of the 23rd USENIX Conference on Security Symposium,
SEC’14, pages 175–190, Berkeley, CA, USA, 2014. USENIX Association.

[102] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu. WALNUT: Waging
doubt on the integrity of mems accelerometers with acoustic injection attacks. In
In Proceedings of the 2nd IEEE European Symposium on Security and Privacy
(EuroS&P 2017). To appear.

[103] Accusations fly between uber and lyft. http://bits.blogs.nytimes.com/2014/
08/12/accusations-fly-between-uber-and-lyft/.

158

[104] T. Vaidya, Y. Zhang, M. Sherr, and C. Shields. Cocaine noodles: exploiting the
gap between human and machine speech recognition. In 9th USENIX Workshop
on Offensive Technologies (WOOT 15), 2015.

[105] T. Vu, A. Baid, S. Gao, M. Gruteser, R. Howard, J. Lindqvist, P. Spasojevic,
and J. Walling. Distinguishing users with capacitive touch communication. In
Proceedings of the 18th Annual International Conference on Mobile Computing
and Networking, Mobicom ’12, pages 197–208, New York, NY, USA, 2012.
ACM.

[106] K. Wei, A. J. Smith, Y.-F. Chen, and B. Vo. Whopay: A scalable and anony-
mous payment system for peer-to-peer environments. In Distributed Computing
Systems, 2006. ICDCS 2006. 26th IEEE International Conference on, pages
13–13. IEEE, 2006.

[107] R. West. The psychology of security. Commun. ACM, 51(4):34–40, Apr. 2008.

[108] N. Xia, H. H. Song, Y. Liao, M. Iliofotou, A. Nucci, Z.-L. Zhang, and A. Kuz-
manovic. Mosaic: quantifying privacy leakage in mobile networks. In Proceed-
ings of the ACM SIGCOMM 2013 conference on SIGCOMM, pages 279–290.
ACM, 2013.

[109] Xprivacy - the ultimate, yet easy to use, privacy manager for android. https:

//github.com/M66B/XPrivacy#xprivacy.

[110] R. Xu, H. Säıdi, and R. Anderson. Aurasium: Practical policy enforcement for
android applications. In Proceedings of the 21st USENIX conference on Security
symposium, pages 27–27. USENIX Association, 2012.

[111] Z. Xu, K. Bai, and S. Zhu. Taplogger: Inferring user inputs on smartphone
touchscreens using on-board motion sensors. In Proceedings of the fifth ACM
conference on Security and Privacy in Wireless and Mobile Networks, pages
113–124. ACM, 2012.

[112] H. Ye, S. Cheng, L. Zhang, and F. Jiang. Droidfuzzer: Fuzzing the android apps
with intent-filter tag. In Proceedings of International Conference on Advances
in Mobile Computing & Multimedia, MoMM ’13, pages 68:68–68:74, New
York, NY, USA, 2013. ACM.

[113] K. Yoshida. Phonetic implementation of korean denasalization and its variation
related to prosody. IULC Working Papers, 8(1), 2008.

[114] H. Zang and J. Bolot. Anonymization of location data does not work: a large-
scale measurement study. In Proceedings of MobiCom ’11, pages 145–156, New
York, NY, USA, 2011. ACM.

159

