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ABSTRACT

A cyber-physical system (CPS) with both autonomous and manual control capabilities,

or a semi-autonomous (SA) system, is one of the most commonly seen types of system in

our daily lives, such as cars, airplanes and ships. While having the benefits of autonomous

control to enhance safety/comfort of transportation and the flexibility of manual control to

handle safety-critical situations, SA systems inevitably inherit the vulnerabilities embed-

ded in both control types. That is, an SA system will also suffer from component failures or

design/software bugs (e.g., crashes of Boeing 737 MAX) and potential attacks (e.g., sensor

spoofing) as a general CPS does. Moreover, since mechanical components are gradually

being replaced by their electronic counterparts in SA systems, this trend also introduces

new reliability and security risks — increasing adoption of multiple heterogeneous com-

munication interfaces widens attack surfaces that an adversary can exploit.

Considering the potential security and safety concerns caused by system faults/flaws,

human error, and malicious attacks, we develop a suite of mechanisms/systems for detec-

tion and resolution of system anomalies by cross-validating the sensor data and the context

information to enhance the security and safety of SA systems from three key perspec-

tives that can directly influence the operation of SA systems — system operation, received

information, and control decisions. In this thesis, we propose both domain-general de-

sign for SA systems and its domain-specific realization using SA vehicles as a concrete

case study. From the system operation perspective, we propose CADD, a context-aware

anomaly detection system, to capture abnormal system behavior under various operation

contexts while considering practical scenarios where some (context) information cannot be

observed by the SA system. We then present DiVa, a diagnostic system that pinpoints/iden-

xix



tifies the anomalous source(s) after an anomaly is detected. It exploits the cyber-physical

correlation or causality between the internal data of the SA system to narrow down the

origin of anomaly while assuming no data can be entirely trusted. From the received in-

formation perspective, we propose EDRoad, an easy-to-use system for verification of the

data received from external sources to ensure no compromised data will be used to provide

services to the SA systems. Finally, from the control decision perspective, we introduce

CADCA, a system for detecting and resolving control actions that may potentially lead to

unstable system states or safety-critical situations.
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CHAPTER I

Introduction

While more and more autonomous functions are getting added to modern vehicles, we

are now officially in the era of semi-autonomous (SA) cyber-physical systems — cyber-

physical systems with both autonomous control and manual control capabilities. In this

thesis, we explore and develop mechanisms and algorithms for enhancing the security and

safety of SA cyber-physical systems based on detection and resolution of data anomalies.

1.1 Semi-Autonomous Cyber-Physical Systems

Semi-autonomous cyber-physical systems — simply called SA systems — are one of

the most commonly seen types of systems in our daily lives, such as cars, airplanes and

ships. In a typical SA system, autonomous control is responsible for common routine oper-

ations assisting human operators (e.g., drivers, pilots or helmsmen) to reduce their burden

of controlling an SA system (e.g., the autopilot and self-driving functions in an airplane

and a car, respectively), or it is designed to respond to certain conditions to avoid/mitigate

safety risks (e.g., the automatic emergency braking system in a car). On the other hand,

while coexisting with autonomous control, manual control provides the human operators

with the ability to perform fine-grained controls that cannot yet be performed by its au-

tonomous counterpart, and it also acts as a fail-safe design to take over the system when

the autonomous control fails.
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1.1.1 Typical Deployment Scenario

Cloud

Edge

Endpoints

Roadside Unit Base Station

Vehicles

Air Traffic 
Control Tower Satellite

Airplanes

Figure 1.1: A typical deployment scenario of SA systems and the communication links
between different entities, where the dashed lines indicate the links may or
may not exist in real-world deployment.

Fig. 1.1 shows a typical deployment architecture in which at least three types of entities

can influence the operation of an SA system — endpoints (i.e., the ego SA system and

other SA systems), edge, and cloud. While optional inter-entity communications may exist

to assist the operation of SA systems, the three fundamental elements that can directly

influence the operation of an SA system are i) the (cyber-)physical implementation of the

SA system, ii) the control decisions generated by the human operator or the autonomous

functions, and iii) the service provided by infrastructure (i.e., edge + cloud).

1.1.2 Safety and Security Threats

While embracing the comfort and convenience brought by autonomous control and the

capability of fine-grained control provided by human operators, SA systems also inevitably

inherit the vulnerabilities of both control types.

From the (autonomous) system perspective, there have been multiple reports of (fa-

tal) accidents caused by design flaws/bugs and run-time component failures/faults in au-

tonomous control. Crashes of Boeing 737 MAX [48] and Toyota’s “unintended accelera-
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tion” [154] are two examples of such cases while the former was caused by sensor failures

and the latter is suspected to be the result of a single bit flip. On the other hand, while

there is no perfect system that is immune to failures caused by its algorithm design or bugs,

human control is also far from being perfect due to the possibility of having unintended

errors or even malicious manual control (e.g., Germanwings Flight 9525 [108]).

The replacement of mechanical components with their electronic counterparts also in-

troduces new reliability and security risks because of the adoption of new communication

interfaces that can potentially be exploited as attack surfaces. The Jeep Cherokee hack [87]

is one of the most widely publicized example in which the vehicle was controlled remotely

by the hacker’s exploitation of the vulnerability in an onboard infotainment system. That

is, even if an SA system has a well-designed autonomous control function, it can still make

an unsafe decision based on compromised/erroneous input.

1.1.3 Security and Safety Enhancement

As there will never be a perfect system that is free of design flaws and is immune to all

the attacks, an SA system must be designed to deal with run-time anomalies to ensure its

robustness and safety. Specifically, the enhancement of security and safety of an SA system

can also be addressed from three perspectives, each of which is one integrity verification

problem that corresponds to one element that can directly influence the operation of SA

systems.

• System Operation. How can a system confirm the integrity of its operation? That is, how

can a system make sure it is acting normally and there is no anomaly or compromised

component within the SA system that makes the SA system deviate from its normal

behavior.

• Information from External Entity. While infrastructure and SA systems may utilize the

information from other entities to support their function, the correctness of their function
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relies on the integrity of the input data. How can the infrastructure or SA systems ensure

that the received information is authentic (i.e., without error and manipulation), and

hence can be used in safety-critical applications?

• Control Decision. How can the SA system determine whether a control decision is

safe to execute under potential data anomalies that feed incorrect information to the

SA system? What should the SA system do when it discovers a conflict or disagreement

between the control decisions made by a human operator and by its autonomous function

since both of them cannot be entirely trusted?

1.2 State-of-the-Art and Design Challenges

We now discuss the prior work and the challenges associated with the three integrity

verification problems.

1.2.1 Prior Work of Verification of System Operation

An adversary can exploit the vulnerabilities in communication interfaces to inject mes-

sages into the in-system network of the SA system (i.e., a data injection attack) or manipu-

late the data value to be incorrect (i.e., a data manipulation attack) by directly compromis-

ing the components or spoofing the sensor.

Because commercial vehicles are one of the most commonly seen SA systems, Koscher

et al. [70] conducted a detailed study discussing the potential attack surfaces within a ve-

hicle, and Miller et al. [87] demonstrated the scenario where a data injection attack will

trigger unexpected vehicle behavior (e.g., turning off the ignition of the car). To detect

compromised components within a vehicle system, researchers have also proposed de-

fenses against data injection attacks on Controller Area Network (CAN) bus [22, 92, 93].

They utilize the unique characteristics on the transmission side of CAN messages for their

detection. Mutter et al. [92, 93] propose the use of transmission pattern (i.e., entropy) of
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CAN messages with the same CAN ID to detect if any additional message is injected on

the CAN bus. Cho et al. [22] utilize the unique voltage profile of ECUs to identify any

messages that are not transmitted by their designated ECUs.

However, a pure change of system behavior (e.g., how a vehicle accelerates after the

driver applies the gas pedal) and a data manipulation attack from a compromised transmis-

sion module will only change the payload value in existing messages, without changing

the message transmission pattern on in-system networks. This characteristic makes them

more difficult to detect than a usual injection attack. Because a component failure/fault can

always be mapped to an equivalent data manipulation attack when observed in data level,

most approaches for detecting abnormal component/system behavior can also be utilized

for the defense against data manipulation attacks. According to their detection targets, the

prior work related to detection of abnormal system behavior can be classified further as

either fault detection and isolation (FDI) [8, 18, 30, 47, 55, 89, 97, 99, 143, 156] or general

anomaly detection (AD) [2, 5, 22, 23, 45, 50, 79, 90, 92, 93, 101, 102, 124, 144, 146, 153,

157]. FDI approaches focus on the detection of faulty components and their localization.

They are widely adopted in both automotive, robotic, and industrial control systems (ICS).

On the other hand, AD approaches aim to detect anomalies of any kind in the system,

including faulty components and malicious attacks.

While the detection target of AD is a superset of that of FDI, their fundamental differ-

ence lies in the assumptions that the anomaly in FDI is the result of faulty/compromised

components in a plant (i.e., actuators, processes, and sensors) and the effect of the fault

will propagate to other components from its origin and there are known/trustworthy con-

trol inputs/setpoints available to the detection system. In contrast, an anomaly in AD can

be caused by attacks that only target the data in the cyberspace, making the aforemen-

tioned assumptions no longer valid. Also, AD approaches mainly focus on development

of efficient observers to detect anomalies while considering the data of interest as a group

without further identifying the anomalous source(s). Note that the removal of FDI’s as-
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sumption of the trustworthy sources will make FDI become AD without the capability of

isolating/identifying the source of an anomaly.

While the defense against data-injection attacks has been explored extensively, the ap-

proaches for detecting data manipulation or abnormal system behavior have one of the

following drawbacks:

• They rely on impractical requirements to function in modern commercial systems,

such as cars, because they either require detailed measurements that are not always

available to the SA system; or

• They can only achieve moderate performance (<80% TPR and >15% FPR [144]),

thus rendering them infeasible for real-world deployment.

1.2.2 Prior Work of Verification of Received Information

Because SA systems may require support from other entities or infrastructure, there

have also been defense schemes proposed for the SA system itself and for the infrastructure

to verify data received from other entities. Prior work on integrity verification of received

information in cyber-physical systems can be classified into two categories, depending on

the methods used to verify the received information.

In the first category, the received system state is inferred from wireless measurements,

such as received signal strength (RSS), angle of arrival (AoA), and Doppler shift [1, 118,

126, 147, 151]. Given the relationship between transceiver distance and RSS, Xiao et

al. [147] and Yao et al. [151] proposed infrastructure-assisted and infrastructure-free po-

sition verification schemes to address vehicle-to-vehicle sybil attacks, respectively. Sim-

ilarly, RSS is used by So et al. [126] to verify the position information reported in basic

safety messages (BSMs). Abdelaziz et al. [1] thoroughly analyzed the fundamental limit

of AoA estimation and developed an AoA-assisted position verification scheme accord-

ingly based on Wald test statistics. In [118], Schäfer et al. proposed the use of Doppler
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shift measurements at multiple positions to verify the position and velocity reported by the

transmitter.

The second type of scheme attempts to estimate the ground truth of the system state

based on multi-modal sensor fusion [13, 24, 127, 129, 152]. Bißmeyer et al. [13] proposed

a scheme based on particle filters to combine GPS with various sensor readings, such as

Radar, to track and verify the motion of neighboring vehicles. Yavvari et al. [152] designed

a detection system to identify abnormal sensor readings, such as position, speed, and ac-

celeration, reported in BSMs based on the sensor data and vehicular attributes contained

in previously received BSMs. Stübing et al. [127] proposed a two-stage data verification

scheme for position and velocity. To address the incorrect decisions caused by sudden ma-

neuver controls, the authors complement Kalman Filter-based motion prediction with prob-

abilistic maneuver recognition. Choi et al. [24] proposed a control invariant (CI) scheme

to detect sensor (e.g., GPS and inertial sensors) spoofing attacks. In the CI-based scheme,

control invariants and thus a state-space model are first extracted from vehicle’s physical

properties, the adopted control algorithms, and physical laws, to predict the control out-

put. Then, the expected output is compared with the actual observation to determine if the

sensors have been attacked.

As discussed above, most existing schemes either are designed as a fixed system to ver-

ify a specific (set of) data or require cooperation (e.g., computation resources or outputs)

from other entities to function. While there can be various regulations and requirements

for different applications, these deployment characteristics will make the existing schemes

not able to function if any of their prerequisites are not met. That is, a practical verifica-

tion system aiming at supporting SA systems should be flexible and can adapt to different

deployment requirements.
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1.2.3 Prior Work of Verification of Control Decision

There are also approaches that focus on detection of abnormal control decisions, espe-

cially in the (autonomous) vehicle domain. They are usually designed to be deployed in an

infrastructure or in a vehicle with communication capability to perform anomaly detection

on other entities by capturing the general trend of vehicle behavior in the vicinity and deter-

mining if any of the vehicle deviates from this general trend [20, 44, 158]. There are also

approaches targeting detection of abnormal control behavior of the ego vehicle (i.e., the

SA system itself) by determining if the current control input matches a certain driving pat-

tern (e.g., aggressive or dangerous driving) [4, 21, 60, 71, 74, 76, 80, 121, 123, 125, 160].

However, they can only tell whether current control input poses a potential risk to the ve-

hicle in a normal operation scenario, but do not determine whether the vehicle behavior

is a reaction to a behavioral context and the aggressive control input is actually safer than

maintaining a regular driving pattern.

To the best of our knowledge, no prior work focuses on the detection of human control

anomalies that also targets the ego vehicle (i.e., the SA system itself), instead of detecting

the misbehavior of other entities, while also considering that there can be system anomalies

(e.g., faulty sensor readings and attacks). However, a system must simultaneously consider

the detection of human control anomaly for the ego system while considering 1) behavioral

and operational context, 2) erroneous system control behavior and faulty components, and

3) malicious attack.

1.2.4 Design Challenges

In general, there are four design challenges in developing practical solutions for the

three integrity verification problems in SA systems:

• (C1) No deterministic normal behavior. The operation of SA systems is dependent on

its operation context. Unlike Industrial Control Systems (ICSes) that usually operates in
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controlled environments, SA systems usually operate in diverse environments with different

contexts and, as mentioned earlier, those contexts are not necessarily available to the SA

system. For example, applying 50% of gas pedal when a vehicle is traveling at 50kph will

generate a different longitudinal acceleration depending on whether the vehicle is traveling

on a flat road or going uphill. A change of system behavior may be the reason for the

change of operation context, a component failure, or even an attack. A system must be able

to differentiate them to generate correct results.

• (C2) Limited data availability. Not all the information related to the operation state of

an SA system can be easily accessed for the following two reasons. First, cost-conscious

OEMs often include only those sensors or components that are directly related to the core

functions of SA systems to reduce manufacturing cost. For example, while road grade (i.e.,

inclination) is a major factor that can influence the acceleration of a vehicle, commodity

cars usually do not have a built-in inclinometer. Second, due to the real-time communica-

tion constraints and the bandwidth limitation in the SA systems, only certain types of data

will be transmitted through in-system networks. For example, CAN, the de facto standard

for in-vehicle communication, has only limited bandwidth, i.e. 1Mbps with a high-speed

CAN [62] and 5–12Mbps with a CAN-FD [61].

• (C3) Uncertainty of future deployment. Unlike mobile devices (e.g., smartphones or

tablets) that have unified API supports in OS level (i.e., Android or iOS) for requesting data,

SA systems have little to no standards related to what data or hardware should be available

in the system. For example, the format and information included in CAN messages in cars

are proprietary to, and treated as OEM secrets. The data types available in CAN messages

may be different not only between car brands but also even between car models/make of the

same brand [26]. That is, designing a system with a fixed assumption of data availability

will not be useful to another SA system even if they both belong to the same type of SA

system (e.g., cars).
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• (C4) No information can be trusted entirely. Last but not the least, since there is no unified

redundancy design or secure components across the same type of SA system, assuming a

fixed trusted source in the system may result in an incorrect system output in an SA system

that does not satisfy the requirement. Also, since an adversary is shown to be able to

compromise communication interfaces [70, 87, 113], any data may be manipulated and no

data can be trusted entirely.

1.3 Thesis Contributions

1.3.1 Thesis Statement

Realizing the security and safety concern in SA systems and the lack of practical sys-

tems to address the three essential integrity verification problems, the main objective of

this thesis is to develop a suite of mechanisms and systems to detect and further resolve

the abnormal behavior and data anomalies that may lead to fatal accidents or critical mis-

sion failures while addressing the aforementioned challenges. Specifically, we have the

following thesis statement:

Thesis Statement: Cross-validating sensor data and the operation context can
enhance the robustness and safety of semi-autonomous cyber-physical systems.

1.3.2 Contributions

As shown in Fig. 1.2, there are four inter-related research problems/components in this

thesis — CADD, DiVa, EDRoad, and CADCA — where each component contributes

to solving one of the integrity verification problems in SA systems introduced in Chap-

ter 1.1.3.

From a functional point of view, the proposed systems can be implemented as three

(add-on) function blocks embedded in SA systems and their supporting infrastructure.

Each function block provides a specific robustness and safety enhancement to the origi-

10



Integrity Verification of 
Control Decision

• CADCA: Detection and Resolution 
of Control Decision Anomalies

- Challenges: C1 – C4

Integrity Verification of 
Received Information

• EDRoad: Easy-to-Use System for 
Received Information Verification

- Challenges: C3 – C4

Integrity Verification of 
System Operation

• CADD: Context-Aware Detection 
of Abnormal System Behavior

- Challenges: C1 – C4
• DiVa: Anomalous Source 

Identification
- Challenges: C1 – C4

Figure 1.2: Components in this thesis.

nal SA system deployment. Fig. 1.3 shows an overview of how the proposed systems can

be integrated in the existing deployment of SA systems, where the white blocks indicate

the original components in the SA system and the gray blocks are the new components pro-

posed in this thesis. Specifically, Entity Operation Verifier (Block A), the combination of

CADD and DiVa, is designed for verifying the integrity of system operation; EDRoad, the

design of Reported Data Verifier (Block B), is designed for verifying the integrity of data

received from other entities; and CADCA, the design of Control Decision Maker (Block

C), is developed to solve the problem of control decision integrity. In each research compo-

nent, there will be both i) a domain-general design for SA systems and ii) a concrete case

study with domain-specific design based on semi-autonomous vehicles.

CADCA
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Figure 1.3: Overview of our system design.
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We call the combination of all proposed components as SafeSA, short for Safe Semi-

Autonomous system. While SafeSA is designed to solve the integrity verification problems

in SA systems, an anomaly (i.e., the detection target) considered in SafeSA is defined as

the occurrence of the following (anomalous) conditions.

AC1. System Operation Anomaly:

AC1.1 (Physical Space) A change of the system behavior that does not originate

from the adjustment of hardware/settings, the control input from the operator,

or the change of execution contexts. For example, if the vehicle changes its

acceleration due to an abnormal torque output from the engine, then it will be

considered as an anomaly. However, if the low acceleration is caused by driving

on an uphill or slippery road, it will not be an anomaly.

AC1.2 (Cyber Space) Any inconsistency between the reported system state and the

real one in data level while their difference exceeds a predefined error tolerance.

AC2. Received Information Anomaly: Similar to the definition of A1.2, an anomaly in

received information is defined as the condition that the received data deviate from

their ground-truth values by more than their predefined thresholds.

AC3. Control Decision Anomaly: Any control decision that will lead to an unstable sys-

tem state, or endangering user safety is considered to be a control decision anomaly.

For example, a pilot increases the angle of attack of an airplane too much (i.e., ex-

ceeding certain critical value) is considered to be a manual control anomaly because

this control can result in a stall (i.e., an unstable system state).

1.3.3 Basic Operation

We now describe the operation of SafeSA (Fig. 1.3). Entity Operation Verifier (Block

A) is designed to detect and identify anomalies related to the behavior of the ego SA system

(Anomalous Condition AC1). It continuously monitors the correlation/causality between
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the control inputs and the resulting system state. If any inconsistency is detected, SafeSA

will further look into whether the change of system behavior is caused by a context change.

If yes, Entity Operation Verifier will return to its routine monitoring; otherwise, it will enter

diagnostic mode to further identify the origin(s) of the anomaly. Entity Operation Verifier

will then output the verified data to the autonomous control system to generate a control

decision.

After receiving a control decision, Control Decision Maker (Block C) will determine

whether there is certain risks associated with the input control (Anomalous Condition

AC3). If there is only one control input and there is no imminent risk associated with

its execution, Control Decision Maker will pass the decision to the actuators. If the system

receives more than one control input (e.g., there are both autonomous and manual control

inputs) with conflicting decisions, it will identify and execute the safer one according to the

probable operation contexts.

On the infrastructure side, Reported State Verifier (Block B) continuously detects and

corrects the anomalous data received from the SA systems (Anomalous Condition AC2)

by cross-validating its sensing results with the received data to prevent the use of incorrect

information in services that support SA systems.

Next, we introduce the four components proposed in SafeSA.

1.3.4 CADD: Context-Aware Detection of Abnormal System Behavior

The functional goal of Entity Operation Verifier (Block A) is to verify the integrity

of system operation. That is, it is designed to detect and locate any anomalies that may

indicate a system failure or an attack. Entity Operation Verifier focuses on verifying the

correctness of the data measured by the entity itself, including the entity state measurements

and the control inputs. There are two parts in the design of Entity Operation Verifier —

CADD and DiVa, where the former is responsible for detecting system control anomalies

and the latter is responsible for identifying the source(s) of the anomaly after the anomaly
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is detected.

We propose CADD to capture abnormal system behavior under various operation con-

text while considering the practical deployment scenarios where some information cannot

be directly observed by the SA system. While direct prediction of normal system behavior

may be infeasible due to incomplete input information, CADD performs anomaly detection

based on context estimation, i.e. checking whether the operation from different parts of the

SA system matches with the same context. By doing so, CADD inherently takes context

into consideration and do not utilize a fixed trusted source for its detection.

In the case study of SA vehicles, CADD determines whether or not the vehicle dy-

namics match the received control inputs (i.e., gas and brake pedal positions) from the

driver or the autonomous driving system under different driving contexts (i.e., road incli-

nation, tire slippage, and total mass). CADD utilizes four sets of sensor data to estimate

the current context, cross-validates their anomaly detection results, and narrows down the

space of search for anomalous groups/components. Our extensive evaluation with >87,000

test-cases has shown CADD to achieve >96% recall and <0.5% false positive rate. Fur-

thermore, CADD can efficiently pinpoint, or narrow down the anomalous group of data

with >95% accuracy (i.e., the ratio of correct classifications to the total testing data) when

the vehicle’s behavior deviates 0.07g from its normal pattern.

1.3.5 DiVa: Anomalous Source Identification

While more and more electronic components are being added to SA systems, their

integration becomes complex and introduces new attack surfaces, thus making it harder

to identify the source/cause of anomalous system behavior. To mitigate this difficulty, we

propose a forensic system, called DiVa, that traces down the source(s) of anomalies.

Identification of anomalous source(s) is a crucial functionality in SA systems because

this information can be used to determine the level of graveness of the anomaly so that the

SA system can respond to it accordingly. DiVa constructs hierarchical detection sets (i.e.,
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data groups that describe certain correlation/causality of the system operation) that overlap

with each other. By capturing the cyber-physical characteristics in each detection set, DiVa

is able to cross-validate the data of interest and identify the anomalous one even when no

data can be trusted entirely.

In the case study, DiVa is designed to identify the source(s) of anomaly related to

vehicle maneuvers based on the consistency of input-to-dynamics causality and powertrain

operation. Our extensive (with 10,800+ test cases) evaluation shows that DiVa is able to

pinpoint the exact anomalous data with 0.91 probability under a value-setting attack, and

also narrow down the search space to an average of 1.33 sensors with less than 0.1s median

detection delay.

1.3.6 EDRoad: Easy-to-Use System for Received Data Verification

While communication between SA entities and infrastructure is essential for enabling

advanced applications and services for SA systems, it is important for the infrastructure

to verify the integrity of the received data since using incorrect information in services

designed to support SA systems can degrade the operation efficiency/security/safety of the

SA systems, such as reducing traffic throughput or even causing fatal accidents.

To address this critical problem, Reported State Verifier (Block B) is responsible for

detecting and correcting any anomalous data received by the infrastructure. We propose

EDRoad, a concrete design of Reported State Verifier and an ensemble learning frame-

work for verifying the integrity of individual data segments in the received messages and

restoring the identified anomalous data, if any. Specifically, EDRoad is designed to signif-

icantly reduce engineers’ development effort, at design time, in setting up data verification

schemes while meeting the various requirements of different applications.

In the case study of supporting Intelligent Transportation Systems (ITSs) via vehicle-

to-infrastructure (V2I) communications, EDRoad determines whether or not the vehicle

status information (e.g., vehicle location, speed, acceleration, etc.) received by the in-
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frastructure is trustworthy and can be used in ITSs. Our extensive evaluation has shown

EDRoad to achieve >95% recall and <4% fall-out in identifying compromised data in ve-

hicular communication messages and to restore the data in question with a <7% deviation

from the ground truth (even when false-positives exist) while providing the salient features

that have not been seen/achieved before.

1.3.7 CADCA: Detection and Resolution of Control Decision Anomalies

Since both human and autonomous controls can be erroneous/malicious, we must an-

swer an important question: which of control decisions should the SA system follow if

autonomous and human controls disagree with each other when both of them cannot be

trusted entirely and there can be attacks or component failures that feed the system incor-

rect inputs?

The answer to this question is not as simple as always choosing the “safer” option

because the safety of an action also depends on the context information that needs to be

inferred from the perceived data, which can possibly be faulty or compromised as well.

While safety features in modern SA systems are usually implemented based on static as-

signment of control priority, this design may lead to catastrophic accidents when accompa-

nied with erroneous/compromised sensor inputs. CADCA, the design of Control Decision

Maker (Block C), has the ultimate goal of preventing malicious/erroneous human and sys-

tem controls to be executed in SA systems. CADCA detects both data manipulations and

malicious/erroneous control inputs to identify the risks associated with the control inputs.

In the case study of semi-autonomous vehicles, our evaluation (>15,700 test-cases) has

shown CADCA to achieve 98% success rate in preventing the execution of incorrect con-

trol decisions caused by component failures and/or malicious attacks in the most common

scenarios.
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1.4 Outline

The rest of this thesis is organized as follows. Chapter II introduces CADD, a sys-

tem design for context-aware anomaly detection. Chapter III presents DiVa, an diagnostic

system for identifying the anomalous source(s) after detecting an anomaly. Chapter IV

discusses EDRoad, an easy-to-use ensemble learning framework specifically designed for

verifying SA data on the infrastructure side. Chapter V introduces CADCA, a control deci-

sion maker that helps SA systems to resolve control conflicts. Finally, this thesis concludes

in Chapter VI.
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CHAPTER II

CADD: Context-Aware Anomaly Detection

2.1 Introduction

As we are entering the era of semi-autonomous (SA) systems, many components in

cyber-physical systems, such as commercial vehicles, are gradually replaced by their elec-

tronic counterparts to provide advanced services, such as adaptive cruise control. This de-

crease of mechanical components makes SA systems increasingly rely on the correctness of

their implementation and the messages exchanged within the SA system to perform control-

related functions, especially in vehicles with drive-by-wire capabilities. While embracing

the convenience brought by the new technologies, there have been multiple incidents of un-

expected vulnerabilities caused by the electronic components (i.e., software bugs/glitches

and cyber attacks) to the vehicles. The consequences of exploiting such vulnerabilities can

range from confusing the driver to jeopardizing the safety of drivers and passengers. One of

the most publicized incidents is Toyota’s “unintended acceleration”, where a single bit flip

or a memory/buffer overflow is suspected to lead to fatal accidents [154]. Furthermore, at-

tacks, such as in-vehicle data injection and sensor spoofing, are shown to cause unexpected

vehicle behavior [70, 113] or even seize the control of a vehicle [87].

Recognizing these risks of anomalous system behavior, researchers have been exploring

ways of characterizing/modeling the normal system behavior that can be used to detect

anomalous behaviors, especially for SA vehicles. According to their detection targets,
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the proposed solutions can be categorized as the detection of Message Injection (MI) or

Data Anomaly (DA), where the former [3, 22, 92, 93, 145] focuses on the detection of any

(malicious) message injection into the in-vehicle network (IVN) and the latter [8, 23, 28, 45,

47, 50, 54, 90, 101, 102, 144, 146, 156] focuses on the detection of anomalies observed in

the data level. Specifically, the MI solutions focus on detecting anomalous behavior on the

IVN and can achieve high (> 97%) true positive rate (TPR) and low (< 1%) false positive

rate (FPR) in exposing the message sent by a malicious/malfunctioning Electronic Control

Unit (ECU), but they cannot detect/identify the condition in which only the system/vehicle

behavior or the data values in messages are changed.

On the other hand, the DA solutions are designed to detect anomalies by capturing in-

consistencies between their data of interest. They model the correlation/causality between

data and report a misbehavior detection if the correlation between the data does not hold.

Therefore, they are capable of detecting the conditions in which the anomaly does not orig-

inate from the network level or only the data value in a message is manipulated while other

message transmission characteristics remain intact. However, to the best of our knowl-

edge, existing DA solutions, especially the prior work in the vehicle domain, either require

detailed in-vehicle measurements that are usually not accessible through the in-vehicle net-

work (e.g., wheel torque [54] and brake torque [23]), or they can only achieve moderate

performance when limited/insufficient data availability is taken into account (Chapter 2.2).

There are three major technical challenges in developing an efficient end-to-end DA

solution:

C1: Missing Context Information. Unlike industrial control systems (ICSs) that usually

operate in a controlled environment and are equipped with sensors to capture all major

factors of influencing the system state, commercial systems like cars usually operate in

diverse environments with different contexts (e.g., road conditions) and, for most of the

time, there does not exist any sensor that can detect such context information directly.

Furthermore, the SA system depends strongly on its operating environment. For example,
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the level of acceleration resulting from pressing a gas pedal at 50% level when the vehicle

is traveling steep uphill, will be much less than that of traveling on a flat road. Therefore, it

is important for the system to estimate, and account for the “context” for reliable detection

of anomalies.

C2: Limited Data Availability. Even if the context information can be obtained, the

availability of in-system data is often limited, and only coarse-grained or specific data can

be accessed. We will use commercial vehicles as a concrete example. First, the standard-

ized on-board diagnostic II (OBD-II) messages based on SAE J1979 only cover the data

types related to transmission. Second, CAN, the de facto standard for in-vehicle commu-

nications, only has limited bandwidth, i.e. 1Mbps and 5–12Mbps with a high-speed CAN

[62] and CAN-FD [61], respectively. Also, the data types available in CAN messages may

be different not only between car brands but also even between car models/make of the

same brand [26]. Utilization of detailed measurements that cannot be obtained through

standard OBD-II messages or a simple add-on to the vehicle is infeasible for real-world

deployment (see Chapter-2.8 for more background information). This fundamental limi-

tation of data availability is the very reason why most, if not all, model-based detection

schemes (e.g., system-invariant approaches [25, 104]) have only focused on robotic (not

commodity) vehicles (Chapter 2.2).

C3: Training Difficulty. While detailed internal design of SA systems is available to

neither third-party developers, the detection system must learn/estimate the normal behav-

ior of the target SA system based only on partial/incomplete information (C1 & C2) for

anomaly detection. Also, the system must be able to work correctly even if it encounters a

situation it never saw/experienced before since training for all possible situations is practi-

cally impossible. Even if the system is designed as a cloud-based solution to collect data

for the training purpose, constructing a unified model that fits all systems with the same

model/make is not possible because of customization/adjustment or different permissible

error of components in each individual entity.
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Realizing the lack of an efficient DA solution, we propose a system, called Context-

aware Anomaly Detection in system Dynamics (CADD), for detecting anomalies in SA

systems under the constraint of limited data accessibility. Unlike traditional approaches

that perform detection based on direct comparison between the perceived and the expected

system behavior, CADD performs its detection based on context estimation. Specifically,

CADD estimates its operation context from multiple aspects and determines whether the

context estimations match with each other. By doing so, CADD avoids the possibility that

it may make an incorrect normal behavior prediction due to some missing/incorrect context

information and output an incorrect detection result.

Based on this domain general design, we also develop a case study based on semi-

autonomous vehicles that verifies whether or not the control inputs (i.e., gas and brake

pedal positions) from the driver or an autonomous car (i.e., engine torque) [64] match

the resulting vehicle dynamics (i.e., acceleration) by determining if there is any vehicular

behavior that deviates from its normal operation. Fig. 2.1 depicts the functional overview

of CADD in this case study. In the case study, CADD’s design stresses deployability and

practicality based on two design principles.
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Figure 2.1: Functional overview of CADD.

P1: With the goal of requiring no to minimum support from OEMs nor modification to

vehicles to facilitate its deployment, CADD eliminates the requirement of controller set-

point or output, which was commonly required in prior work as input, for the detection of

anomalies. That is, neither detailed measurements (e.g., wheel/brake torque) nor vehicle

parameters (e.g., gear transition curve) are required for CADD’s deployment and the un-
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known characteristics of normal behavior considered in CADD can all be obtained during

its training.

P2: CADD considers three fundamental contexts — road inclination (RI), tire slippage

(TS), and total mass (TM) of the vehicle including passengers and cargo — that influence

a vehicle’s longitudinal acceleration behavior regardless of how the vehicle is maneuvered.

While these contexts are by no means exhaustive, they are known to be the most influential

factors of a vehicle’s behavior [53, 65, 69, 81, 82, 91].

To address C1–C3 and follow P1–P2, we propose a detection mechanism based on con-

text estimations, instead of utilizing the common “predict-then-compare” approach (e.g.,

[28, 104]). CADD estimates the context information from four sets of data and then de-

termines if there is an anomaly by checking whether the context estimations are consistent

with each other. That way, CADD i) eliminates the requirement of knowing the correct

context before performing anomaly detection, ii) takes the operation context into account,

and iii) does not require a fixed set of trusted sources for its detection (meeting C1 & P2).

Also, CADD only needs to be trained while the vehicle is traveling on a road with known

inclination (e.g., via a map or GPS) but without excessive tire slippage (i.e., a common

scenario). The normal operation models constructed by CADD are described based on the

common mechanical design of modern vehicles and the laws of physics. Therefore, only

the vehicle’s (not the driver’s) behavior will be captured, enabling CADD to automatically

extend the thus-constructed models without requiring any actual training under the exact

same condition (meeting C3). Also, other than the optional input (i.e., brake), all required

data can be directly obtained from standard OBD-II messages or by an external device (e.g.,

an OBD-II dongle or smartphone) if some data are not available on IVN/OBD-II messages

(meeting C2 & P1).

This chapter makes the following main contributions:

• A novel system, called CADD, for anomaly detection with limited data availability based

on context estimation (Chapter 2.4).
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• A novel system for verifying the relationship between control inputs and vehicle dynam-

ics based on estimated contexts;

– Efficient models for capturing vehicle normal behavior and context estimation

(Chapter 2.5); and

– Mechanisms for inconsistency detection and anomalous source/group identification

(Chapter 2.6).

• Demonstration of CADD’s performance in detecting data inconsistencies and anomalous

source via extensive evaluation. CADD is shown to be able to achieve >96% recall and

<0.5% false-positive rate. CADD efficiently identifies the anomalous group of data with

>95% accuracy (Chapter 2.7).

2.2 Related Work

Since there are already two comprehensive surveys of anomaly detection in general

control systems [46, 150], we only discuss the approaches directly related to CADD.

2.2.1 Data Anomaly (DA) Detection

The DA solutions can be categorized further as fault detection and isolation (FDI)

[8, 47, 156] or anomaly detection (AD) [23, 28, 45, 50, 54, 90, 101, 102, 144, 146]. FDI

focuses on the detection and identification/isolation of the faulty source(s) while AD fo-

cuses only on the detection of abnormal behavior caused by both component failures and

malicious attacks.

The most common framework used in FDI describes the system of interest using tech-

niques like Bond Graph [156], and formulates the causal relationships between components

as a system with a set of equations. Each equation in the detection system is an observer

designed to capture specific aspects of failures. While treating the failures as unknown

variables, the source of failure(s) can be identified/isolated efficiently by solving the sys-

tem equations [8, 47, 156]. FDI focuses on modeling the interaction between components
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while requiring detailed component design or architecture to function.

AD exploits the correlation between vehicle data to construct a normal behavior model

for anomaly detection. The authors of [50, 90, 101, 102] focus on the detection of the en-

gine while Xi et al. [146] and Cho et al. [23] focus on the transmission and brake system,

respectively. While these studies focus on a single functional group, Ganesan et al. [45]

proposed an anomaly detection system that covers multiple functional groups. They con-

sidered pair-wise data correlation and used clustering to determine the context (i.e., traffic

pattern) for the detection of abnormal vehicle behavior. Similarly, Guo et al.[54] proposed

a detection system, EVAD, which is reported to achieve 98.8% TPR and 1% FPR based on

pair-wise correlation of detailed in-vehicle measurements. However, some detection pairs

in [54] also utilize data that are not commonly available on IVNs, such as ⟨wheel torque,

acceleration⟩ and ⟨brake torque, brake pedal⟩. [144] proposed using neural networks to de-

tect anomalies in vehicle speed and engine rpm/torque. However, it is reported to achieve

only moderate performance with <80% TPR and >15% FPR in detecting anomalies. Dash

et al. [28] proposed a detection system, called PID-Piper, based on a long short-term mem-

ory (LSTM) learning architecture for control behavior monitoring.

Since (i) PID-Piper is one of the latest control invariant (CI) approaches based on ma-

chine learning and (ii) EVAD [54], a correlation-based approach, covers data types most

similar to those in CADD and, to the best of our knowledge, provides the best performance

among all prior work, we will use them for a baseline comparison in Chapter 2.7.

2.2.2 Context Estimation (CE)

We now discuss the related work of Context Estimation in vehicle domain. Since road

inclination (RI) and tire slippage (TS) caused by insufficient road friction (RF) are very

important for control systems to enhance system stability and reduce fuel consumption,

several approaches have been proposed for their estimation. Mangan et al. [82] proposed

a method utilizing a vehicle’s physical/kinematic model to estimate RI based on the vehi-
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cle’s speed, longitudinal acceleration, brake pressure, and engine torque by computing the

difference between the expected acceleration on a flat road and the actual measured accel-

eration. Mahyuddin et al. [81] proposed a method that utilizes vehicle speed and driving

torque, and adopts filtering and adaptive observer techniques for the estimation. Jauch et

al. [65] proposed an IMU-based method for RI estimation. Specifically, RI (θ ) is estimated

based on i) the difference between measured longitudinal acceleration and the derivative

of the vehicle’s speed relative to the ground: θ = arcsin [(aX −dv/dt)/g]; and ii) altitude

difference ∆h (obtained from GPS) divided by the traveled distance ∆ℓ: θ = arcsin[∆h/∆ℓ].

For pure RF estimation, Muller et al. [91] proposed a slip-based approach to estimate the

maximum friction when the brake is pressed. Similarly to [65], the authors of [69] and [53]

utilized measurements of vehicle dynamics along with filtering techniques to estimate RI

and RF/TS.

2.2.3 Comparison of CADD’s Case Study with Prior Work

1) System Scope: To the best of our knowledge, there is no prior work on data

anomaly (DA) detection that has the same system scope as CADD — a model-based end-

to-end (i.e., control-to-dynamics) detection with driving context (i.e., road inclination, tire

slippage, and mass change) considered.

While many prior approaches utilize physical consistency between (vehicle) dynamics

data for anomaly detection (e.g., vehicle speed should be consistent with vehicle accelera-

tion, etc.), they are only applicable to scenarios in which the attack/anomaly will cause in-

consistencies between different sensor data. However, since the detection target of CADD

is the vehicle’s control-to-dynamics behavior (Chapter 2.3.1), relying only on physical con-

sistency modeling cannot cover this detection target. For example, if a component failure

causes the vehicle to generate less engine torque than it normally does, the vehicle speed

and acceleration will still match each other. On the other hand, pure machine learning

approaches cannot efficiently adapt to different driving contexts that are not included in
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their training data (to be shown in Chapter 2.7). Therefore, CADD models the vehicle’s

(acceleration) behavior based on the common vehicle architecture and utilizes supervised

machine learning to capture the detailed individual behavior that may vary from vehicle to

vehicle. Also, instead of directly comparing the predicted and the received vehicle behav-

ior, CADD performs its detection by determining whether all data point to the same driving

context, avoiding inaccurate behavior prediction with insufficient/compromised data.

2) Context Awareness: There is also no easy way to combine DA and CE to form a

context-aware anomaly detection because the latter usually assumes the detailed vehicle

parameters and operation mechanisms known to the estimation system (e.g., gear and fi-

nal drive ratio in [82]) while the former does not have such information. Since prior DA

approaches do not consider CE in the first place, they do not have any the training mech-

anism to obtain those parameters either. Besides the availability of necessary information,

a detection system must also consider all three major contexts simultaneously. However,

incorporating all three contexts in a detection system is not as easy as including different

CE approaches in the system. For example, [69] can be used to perform road inclination

estimation and detect tire slippage while [81] focuses on the estimation of vehicle mass.

However, since [81] is not designed to operate when a tire slippage occurs, a combination

of the two approaches cannot be utilized to detect anomalies when there is a tire slippage.

Thus, prior CE approaches cannot be applied directly to CADD for context estimation. As

a result, instead of trying to utilize the models in prior CE approaches, we develop be-

havior models to account for the effect of driving context to address the aforementioned

challenges. The proposed models in CADD can not only capture the vehicle’s normal be-

havior under different contexts but also be used to perform context estimation. That way,

all the necessary parameters can be obtained from CADD’s training phase, facilitating its

deployment.

3) Data Requirement: CADD is designed based on limited data accessibility, and re-

quires minimum deployment effort and no to minimum support from the first party. Due
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to the nature of their design, prior DA approaches, including control/system invariant and

residual design [7, 25, 39, 137], focus on mechanisms that are inherently tied to their re-

quired data, and hence there is no easy way to change them without re-designing the system.

While the data commonly available on IVNs are control inputs and dynamic measurements,

the lack of final control output, such as wheel torque, will render the aforementioned prior

work ineffective or dysfunctional.

2.3 Threat Model and Detection Scope

2.3.1 Detection Scope

Because, we will use a case study of SA vehicles to illustrate CADD’s design, we first

introduce terminologies to be used throughout the chapter. We define the end-to-end (i.e.,

control-to-dynamics) acceleration behavior of a vehicle as the vehicle’s behavior (VB).

Let Data Of Interest (DOI) be the data or measurements that CADD uses in its anomaly

detection, including:

• Major Detection Target (i.e., VB data):

– Control Input: gas pedal or throttle position (ga), brake pedal position or master cylin-

der pressure (br)1, gear level (gr), and engine torque (Tq);

– Dynamics Measurements: longitudinal acceleration (aX ), and speed (v);

• Assistance Data: vertical acceleration (aZ) and a sensor for road grade (θd) estimation,

e.g., GPS (standalone or with maps) or inclinometer.

Specifically, ga, Tq, gr and v can be retrieved directly from standard OBD-II messages [115]

and the rest are commonly available on IVN in drive-by-wire vehicles [26]; otherwise, aX ,

aZ , and GPS can also be obtained from an external device like a smartphone. As mentioned

earlier, unlike prior work, CADD does not assume access to the final system output (e.g.,

wheel/brake torque) since it is not commonly available.

1br is treated as an optional target data since it is not included in the standard OBD-II message.
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Figure 2.2: Information flow in CADD, where the lightning icons are the anomaly (attack)
interfaces covered by CADD.

CADD is designed to detect VB anomalies in the data level (Fig. 2.2). An anomaly

(i.e., the detection target) considered in CADD is defined as the occurrence of:

A1. A change of the vehicle’s response to control input that does not come from the change

of driving contexts (i.e., RI, TS and TM); or

A2. (Cyber Space) An inconsistency between the VB pattern and the driving context in the

data level.

For example, if the vehicle changes its acceleration due to an abnormal torque output from

the engine, then it will be considered as an anomaly. However, if the low acceleration

is caused by driving on an uphill or slippery road, it would not be an anomaly. For A1,

longitudinal acceleration (aX ) deviating by more than xg from its normal value is defined as

an anomaly, where x is a design parameter and g is the gravitational acceleration. Similarly,

input information of road inclination (θd) deviating by more than y° from its ground truth

is defined as an anomaly in A2, where y is also a design parameter related to x. To see the

effects of these design parameters, we will in Chapter 2.7 evaluate CADD’s performance

while changing x and y. Note that CADD’s case study focuses on a vehicle’s control-

to-dynamics behavior, but not on how the autonomous system reacts to different traffic

conditions or faults/attacks that do not change VB.
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2.3.2 Threat Model

In addition to component failures that fundamentally change the vehicle’s response to

control inputs (i.e., A1), we assume the adversary has the goal of influencing the state es-

timation/prediction of the vehicle to make it deviate from its set course or waypoints and

launches remote attacks by either i) spoofing sensors (Arrow 1 in Fig. 2.2) or ii) manipulat-

ing a set of chosen DOIs on in-vehicle networks to any value s/he wants (Arrow 3). CADD

is designed to detect anomalies when at least one status measurement (i.e., dynamic mea-

surements and assistance data defined in Chapter 2.3.1) is correct without the requirement

of knowing which one. Note that the above setting is a fundamental requirement of all

data-driven approaches (i.e., not just CADD). That is, there must be at least one degree of

freedom (DoF) in the target system that the attacker cannot fully control. Finally, CADD

is designed to identify the anomalous source when only vehicle’s response to control input

or one of the assistance data is compromised (e.g., a component fault or a naı̈ve attack).

This threat model meets the real-world condition of commercial vehicles (or SA sys-

tems in general) for the following reasons. First, while spoofing GPS is shown to be plau-

sible from a distant location, spoofing an accelerometer to generate a specific waveform

(i.e., not random values) requires a learning process for phase tuning based on the feedback

from the accelerometer itself [133]. That is, spoofing an accelerometer is proven difficult

without direct physical access to the vehicle’s internal component. Second, while prior

work [87] only showcases the possibility of data injection/manipulation through a single

ECU attached to the infotainment system, using a single ECU to mimic data transmission

of multiple ECUs can be prevented with MI approaches [3, 22, 145]. Third, since most

ECUs have limited communication capability, attackers must have physical access to those

internal ECUs to manipulate their core operation. Nevertheless, we still assume a stronger

attacker (than existing attack examples) to have the capability to manipulate all data but

one status measurement.
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2.4 System Overview

2.4.1 Domain-General Design

We propose a detection mechanism based on context estimations, instead of the direct

predict-then-compare approach. There are two phases in CADD’s basic operation: train-

ing and detection (Fig. 2.3). During the training phase, CADD captures SA system’s basic

operation and builds multiple models for context estimations from different aspects. In

the detection phase, CADD first detects whether there is an anomaly and further identi-

fies whether the anomaly is caused by an abnormal system behavior or incorrect context

information.

Normal Model 
Training

Anomaly 
Detection

Anomalous 
Group 

Identification

Training Phase Detection Phase

Figure 2.3: Basic operation of CADD.

Specifically, every model constructed in the training phase is presented by specific

groups of data, called context estimation groups (CEGs), each of which estimates a cer-

tain operation context of the SA system. If the estimated contexts are not consistent with

each other, CADD will report an anomaly detection. This way, CADD takes the context

information into account and does not require any trusted input for context estimation to

perform its detection as in traditional predict-then-compare approaches. Fig. 2.4 shows

the block diagram of CADD’s detection procedure. There are two major function blocks

— Context Estimator and Context Matcher. The former is responsible for capturing com-

mon contexts while the latter is responsible for detecting special cases and reporting the

occurrence of an anomaly.

In Context Estimator, CADD performs context estimations based on the models (MCEG’s)

that capture the correlation between CEGs and the target context. For example, the road
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Figure 2.4: CADD’s domain-general design.

inclination θ (i.e., the target context) can be estimated based on i) the difference between

the expected longitudinal acceleration when a vehicle is travelling on a flat road (âX ) and

the measured longitudinal acceleration (aX ): θ̂ = arcsin((âX − aX)/g) or ii) the vertical

acceleration (aY ) compared to the gravitational acceleration (g): θ̂ = arccos(aY/g). After

context estimations are made, Context Matcher will further compare the estimations (Ĉ’s)

to see whether they match each other. If not, Special Context Detector will proceed to

check whether the pattern of the mismatch between the estimations matches with a special

context. If no such condition can be identified, Special Context Detector will conclude that

there is an anomaly and activate CADD’s anomalous group identification process.

2.4.2 Domain-Specific Design — a Case Study of Commercial Vehicles

We now introduce how to utilize CADD to build a system for detection of vehicle ma-

neuver anomalies. During the training phase, CADD captures a vehicle’s basic operation

of regular driving. No specific constraint is imposed on how the driver/system should ma-

neuver the vehicle as long as there is no tire slippage during the training phase which is

the usual/regular driving scenario. Furthermore, according to our experimental results, a

5km drive suffices for capturing the vehicle’s normal operation. Ideally, this training needs

only once for each car unless some physical modification or maintenance is made to the
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car. The user can also choose to perform training periodically to account for component

aging/wear-out. However, it is the user’s choice whether to do so since a positive detection

reported by CADD can also be the indication that the vehicle requires maintenance.

The normal vehicle’s behavior can be described by two models, Mgb and Mtg. The

former captures the relationship between longitudinal acceleration and the drivers’ con-

trol input (Chapter 2.5.2) while the latter captures the relationship between longitudinal

acceleration and the engine torque, which is the common output for speed control [64]

(Chapter 2.5.3).
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Figure 2.5: System structure of CADD’s detection phase of the case study.

Fig. 2.5 shows the system structure for the detection phase. CADD performs the

anomaly detection by estimating the contexts (i.e., RI, TS, and TM) and comparing them

to check if they are consistent with each other. Specifically, CADD first assumes that all

vehicle’s behavioral changes are caused by the road inclination (RI). So, CADD estimates

RI from four perspectives independently: (i) the difference between measured (longitudi-

nal) acceleration (aX ) and expected acceleration based on gas/brake pedal position input

(âX ,gb); (ii) the difference between aX and expected acceleration based on engine torque

and gear level (âX ,tg); (iii) RI information provided by GPS/map; and (iv) the difference
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between measured vertical acceleration (aZ) and gravity (g). If these four estimations of

RI match each other, CADD will conclude that the vehicle behaves normally. Otherwise,

CADD will check further if the change of the vehicle’s behavior is caused by the other two

contexts (i.e., TS and TM) by cross-validating the RI estimations and the control input data.

If the anomalous behavior is determined not caused by any of the contextual changes,

CADD will report the detection of an anomaly and send the potential anomalous data/com-

ponent group to the user or the autonomous driving system. The choice of data utilized in

CADD is based on their functional roles in the speed control and their accessibility. We

chose gas and brake pedal positions as they are the direct inputs from the drivers. Also,

engine torque and gear level can be used to derive the wheel torque, which is a common

output of the speed control system [64].

2.5 Normal Behavior Model

2.5.1 Fundamentals of Vehicle Acceleration

𝜃
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Figure 2.6: Forces related to vehicle acceleration.

In general, there are six types of forces that can directly influence a vehicle’s accelera-

tion (Fig. 2.6) [82]:

• Drive force (FE): force generated from engine torque (Tq);

• Brake force (FB): force generated from braking;

• Aerodynamic drag (FD): force caused by air resistance;
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• Rolling drag (FR): force required for tires to roll passively;

• Normal force (FN): supportive force perpendicular to the contact surface; and

• Gravitational force (FG): force caused by gravity.

Therefore, the vehicle acceleration a can be described by:

ma = FE +FB +FR +FD +FN +FG +FO, (2.1)

where m is the vehicle’s total mass, FO is the aggregated effect from other minor factors, and

the terms in bold fonts represent vectors. If we look at the vehicle’s longitudinal direction

(presented by subscript X) and plug it in the detailed expression of each force based on the

available DOI of CADD, then Eq. (2.1) can be rewritten as Eq. (2.3) when |FE +FB| ≤

µFN :

m(Σ)aX = FE −FB−FR−FD−FG,X +FO,X (2.2)

=
Tqigi f

R(Σ)
SE(Σ)−brkb(Σ)SB(Σ)− f(Σ)m(Σ)gcosθ

−0.5 σ(Σ)c(Σ)A(Σ)v
2−m(Σ)gsinθ +ψ(Σ), (2.3)

where µ is the coefficient of friction between the tires and the road surface, ig is the gear

ratio, i f is the final drive ratio, and R is the tire radius. kb is the brake force coefficient,

and SE (SB) is the adjustment on FE (FB) due to vehicle steering. f is the coefficient of

the vehicle’s rolling resistance. σ is the air density, c is the vehicle’s drag coefficient, and

A is the vehicle’s cross-section area. Finally, ψ is the aggregated effect of other minor

factors, and the terms with subscript (Σ) indicate that their values can be influenced by

contexts/operation that are not available to CADD.

While performing anomaly detection with complete cyber-physical information is rather

easy/trivial, it is a major challenge that how can CADD perform anomaly detection when

only limited data can be accessed. Our contribution lies in developing novel mechanisms
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and models that describes vehicle’s operation behavior for context estimation and end-to-

end anomaly detection with such a constraint. The unobservable adjustments caused by (Σ)

will be treated as model noise (i.e., value deviation between the constructed model and the

ground truth model caused by not having enough data during training or execution) during

deployment. However, they can be incorporated if they become standardized data. See

Chapter-2.8 for more discussion. To facilitate a more concise presentation, we omit (Σ) in

the following sections.

2.5.2 Mgb{ga,br,v,aX}

1) Model Formulation: Mgb captures the relation between aX and drivers’ control

inputs (i.e., ga and br). We first combine FD, FR, and FG,X together:

FR +FD +FG,X = ( f mgcosθ +
σcAv2

2
)+mgsinθ (2.4)

≈ f mg+0.5σcAv2︸ ︷︷ ︸
TR,D(v)

+mgsinθ︸ ︷︷ ︸
TG(θ).

(2.5)

We can make the approximation in Eq. (2.5) because tanθ ≤ 0.07 according to the US

government’s guideline for road construction [6]. We then use the function form to present

FE =TT (Tq,gr) and FB =TB(br,v). Since the engine torque (Tq) is controlled by the throttle

while gear ratio is determined by the gear level (gr) which is correlated with the vehicle

speed (v) and throttle position (ga), FE can be described by a function of ga and v. Finally,

we can obtain the model formulation of Mgb by plugging Eq. (2.5) into Eq. (2.3):

aX =
1
m
[TT (Tq,gr)−TB(br,v)−TR,D(v)−TG(θ)] (2.6)

=HT (Tq,gr)︸ ︷︷ ︸
HE(ga,v)

+HB(br,v)+HR,D(v)+HG(θ) (2.7)

where Hi is the aggregated effect of Ti on aX .

2) Training: To simplify the model training process, we divide the Mgb model into two
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submodels — Mu and Md , where the former focuses on modeling the vehicle’s behavior

when only gas pedal is applied and the latter focuses on any other situation. Since HG is

not dependent on any vehicle state, we can compute its effect on aX by training on any road

with a known slope. Also, since modern automatic transmission is usually controlled based

on vehicle speed (v) and throttle position (ga) [146], the aggregated effect of HT (Tq,gr)+

HR,D(v)=HE(ga,v)+HR,D(v)=Γ(ga,v) can be obtained by only considering the training

data when the brake is not pressed. So, we can now express the simplified model Mu as:

aX = Γ(ga,v)+HG(θ), if br = 0. (2.8)

Training Mu is to identify Γ given the training data {ga[t],v[t],aX [t]}. Since the acceleration

characteristics vary with vehicles, we do not use a fixed model form to approximate the

function Γ. Instead, we model the VB based on the vehicle’s speed. That is, we assign

a function Γk to describe the correlation between ga and aX in each speed interval v ∈

[vk,vk+1), where vk = δv× (k− 1) and δv is the size of each group (Fig. 2.7a). This way,

we can model Γ without committing to a specific model form and achieve the flexibility of

this approach. We set δv = 5km/h in our implementation.

(a) (b)

𝑎! 𝑎!

𝑣 𝑣𝑔" 𝑔"

Figure 2.7: (a) The acceleration characteristics partitioned by v. (b) Mu’s final model ex-
ample.

Since any function can be approximated by its Taylor expansion form, we use a poly-
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nomial approximation:

Γk(ga[t]) = ck,0 + ck,1ga[t]+ ck,2g2
a[t]+ · · · , (2.9)

where coefficients [ck,0,ck,1,ck,2, · · · ]T = ck are determined by minimizing the loss func-

tion:

Lk = Σ
tn
t0(aX [t]− ck

T Ga[t])2 +λ |ck|2, (2.10)

where v[t] ∈ [vk,vk+1) and Ga[t] = [1,ga[t],g2
a[t], · · · ]T . Fig. 2.7b shows the final model

form, where the lines are Γk in the speed interval k.

We use another model Md to capture VB when the brake is applied:

aX =HR,D(v)+HE(ga,v)+HB(br,v)+HG(θ) (2.11)

= Γ(ga,v)+HB(br,v)+HG(θ) (2.12)

Since HG(θ) =−gsinθ can be compensated by performing the training process on a road

with known inclination, the main idea is to determine the parameter values under different

speed conditions by approximating Eq. (2.12) as we did to obtain Mu:

a′X = bX ,o,0(v)+
Ng

∑
i=1

bX ,g,i(v)gi
a +

Nb

∑
j=1

bX ,b, j(v)b j
r (2.13)

where a′X = aX −HG(θ), and Ng (Nb) are the orders of Taylor expansion forms of Γ (HB).

Theoretically, we can perform a similar procedure of Mu to obtain the parameters. How-

ever, because the amount of time the brake is pressed is usually only a small portion of time

during driving, the amount of total training data needed to construct a usable model will

be huge according to our preliminary experimentation. Therefore, we treat the parameters

(bX ’s) as functions of v to make up for the missing scenarios in the training data instead of

directly training them for every v interval as in Mu.
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CADD partitions the data into small segments by a fixed time window size (Tw). For

each segment, the next step is to perform the ridge regression [12] to estimate bX ,o,0,

{bX ,g,n}, and {bX ,b,n} in this segment:

b̂k = argminbk
(a′X ,k−bk

T
ωk)

2 +λ |ωk|2, (2.14)

where k is the index of the segment,

bk = [b(X ,o,0,k),b(X ,g,1,k), . . . ,b(X ,g,Ng,k),b(X ,b,1,k), . . . , b(X ,b,Nb,k)]
T ,

ωk = [1,ga(tk,1), . . . ,ga(tk,NT ),br(tk,1), . . . , br(tk,NT )]
T ,

NT is the total number of data items in the segment, a′X ,k = aX ,k−HG(θk), and λ is the

regularization term. Finally, CADD performs regression again to identify the mapping

from speed to the values of parameters.

Note that our implementation uses Mu to model the VB when only the gas pedal is

pressed, and uses Md for other situations. This design is based on the fact that the formu-

lation of Mu is capable of capturing more detailed acceleration behavior resulting from the

application of gas pedal than Md .

2.5.3 Mtg{Tq,gr,v,aX}

1) Model Formulation: Mtg captures the relation between engine output and aX .

When the brake is not pressed, the formulation can be directly obtained from Eq. (2.3) as:

aX =HT (Tq,gr)+HD,R(v)︸ ︷︷ ︸
HT,gr (Tq,v)

+HG(θ) (2.15)

where HT,gr is the aggregated acceleration component contributed by engine torque at gear

level gr.

2) Training: Training Mtg is equivalent to identifying HT,gr for each gear level. We
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can further express HT,gr as:

HT,gr(Tq,v) = hgr,0 +hgr,1Tq +hgr,2v+hgr,3v2. (2.16)

Similarly to the training of Mgb, we can utilize the ridge regression to obtain

hgr = [hgr,0,hgr,1,hgr,2,hgr,3]
T by minimizing the following loss function:

L j = Σgr[t]= j(aX [t]−hj
T Y[t])2 +λ |hj|2, (2.17)

where j is the target gear level and Y = [1,Tq,v,v2]T .

2.5.4 RI Estimation based on Mgb and Mtg

Using Mgb and Mtg for RI estimation is simple. Since we can separate the acceleration

contribution of RI (i.e., HG(θ)) from other DOI in the model formulation, all CADD has

to do is to compute the expected acceleration (âX ) based on DOI while assuming θ = 0,

and take an arc sine of the difference between âX and the actual aX divided by gravity:

θ̂ = sin−1[(âX −aX)/g]. (2.18)

This estimation is valid only when TM remains the same as the training phase, and there is

no tire slippage. If TM changes, say from m to m′, the expected acceleration will need to

be calibrated by a factor of m′/m to obtain the correct slope estimation (Eq. (2.3)). If there

is a tire slippage, the total force can be generated from FE and FB will be capped at µFN .

Therefore, pressing more gas or brake pedal will not generate higher acceleration and this

will lead to a larger/smaller RI estimation magnitude than the actual value, depending on

which control input is applied. CADD utilizes this characteristic in its anomaly detection to

identify whether a TM change or tire slippage occurs by comparing the RI estimations from

VB models with that from vertical acceleration (i.e., θZ = cos−1(aZ/g)) and RI directly
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obtained from GPS/map (θd). Our preliminary evaluation shows that Mgb and Mtg are

able to capture the vehicle behavior accurately and produce RI estimation with merely 0.1°

median error.

2.6 Context-Aware Anomaly Detection

2.6.1 Detection Procedure

CADD performs anomaly detection based on the context estimations. As shown in

Fig. 2.5, CADD first estimates RI utilizing the VB models while assuming the vehicle is

traveling without tire slippage and the mass in the vehicle remains the same as the training

phase. If the estimated RIs do not match each other, CADD further looks into the data to see

if the inconsistency is the result of other contexts. Specifically, CADD first estimates the

RI from four perspectives (Chapter 2.5.4): i) θgb from Mgb, ii) θtg from Mtg, iii) θZ from

aZ , and iv) θd from GPS/map (Block A in Fig. 2.5). If the estimations match each other

(i.e., maximum and minimum differences of the estimations are smaller than a threshold

ηRI), CADD will report the pass of verification and keep monitoring the DOI. Otherwise,

CADD looks further into whether it is the change of TM that leads to the inconsistencies of

slope estimations (Block B in Fig. 2.5). Note that ηRI is a design parameter that can be set

by developers according to their preference. We will discuss more on ηRI in Chapter 2.7.

As discussed in Chapter 2.5.4, θgb and θtg will be different from θZ and θd if TM

changes. However, θgb and θtg will match each other since they are both estimated from

the difference between âX and aX . Therefore, CADD utilizes this characteristic to check

whether {θgb,θtg} and {θZ,θd} form two separate groups to determine if the mismatch of

RI estimation is caused by TM change. Since a mass change other than fuel consumption2

is not likely to occur during a trip (i.e., from the vehicle starts to move to the vehicle stops

moving), CADD filters out the false positives caused by the mass change due to passengers

2Negligible during a short trip. See Chapter 2.8 for more on this.
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Figure 2.8: Example of tire slippage.

and cargo by checking whether the ratio (aX −gsinθ(d or Z))/(aX −gsinθ(gb or tg)), which

is the mass ratio of training time mass to current mass derived from Eq. (2.18), remains at a

constant level during a trip. Note that the above filtering mechanism is an optional function

since mass change can also be an indication of system tampering.

If RI estimations fail to match TM change, CADD further determines if there are sig-

natures indicating tire slippage (Block B2 in Fig. 2.5). Specifically, CADD checks if:

• |θZ−θd|< ηRI;

• θgb,θtg > (<) mean(θZ,θd) when gas (brake) pedal is applied; and

• aX remains at the same level.

These signatures are determined based on the fact that tire slippage occurs when the friction

between the tires and road surface cannot provide the force required to perform intended

acceleration. Therefore, the decrease of acceleration will make θgb,θtg to overestimate

(underestimate) RI when gas (brake) pedal is applied. In the meantime, |aX | will be capped

at µFN . Fig. 2.8 is an example of showing the signatures of tire slippage.

2.6.2 Identification of Anomalous DOI

Upon detection of an anomaly, CADD further determines whether the anomaly is

caused by the DOI related to VB itself or that used to estimate the context. The output
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of this identification can be one of the following four possibilities:

S1. aZ is anomalous;

S2. The direct RI measurement (i.e., θd) is anomalous;

S3. Vehicle behavior (VB) is anomalous; or

S4. All DOIs are potentially anomalous.

CADD identifies the source/group of anomaly by finding the outlier(s) in RI estimations.

That is, CADD will determine whether a set of DOIs is anomalous if the RI estimation

based on them deviates from other RI estimations by clustering. Specifically, CADD sorts

the four estimations based on their values and computes the differences between the sorted

values. CADD then finds the largest difference between the sorted estimations and divides

the group into two subgroups. If there is one group (group A) that only contains one

estimation and the largest difference between the estimations in the other group (group B)

is less than ηRI , CADD will report that the DOI used to provide the estimation of group

A is the potential anomalous source. For example, the sorted estimations are 1,2,3 and 6°.

The differences between the estimations are 1, 1, and 3. Since the largest difference is 3,

CADD will divide the estimations into two groups, {1,2,3} and {6}. Since the maximum

difference of the first group is 3−1 = 2≤ ηRI = 2 (i.e., the estimations in this group match

each other), CADD will determine that the DOI used to estimate 6° is anomalous. CADD

also determines if the two subgroups are {θgb,θtg} and {θZ,θd}, and if the differences in

each group are less than ηRI . If yes, CADD will conclude that VB is anomalous (S3). If no

aforementioned conditions can be found (i.e., RI estimations are not consistent with each

other at all), CADD will determine that all DOIs are potentially anomalous (S4).
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2.7 Evaluation

2.7.1 Experimental Setup

We utilize both i) the data from real-world driving and ii) that generated from CarSim

[109] to perform two sets of evaluation. While the first set of evaluation (E1) provides

us with performance evaluation when CADD is directly applied to vehicles with limited

GPS support, the second set (E2) shows the true potential of CADD when it is applied to

advanced vehicles with more accurate GPS/map (or sensors like inclinometer).

2.7.1.1 Generation of Ground Truth Data.

The first set of evaluations (E1) utilize 13 real-world driving traces we collected by

OpenXC VI [98], a commercial off-the-shelf OBD-II dongle. One of these traces is used

as training data and the rest as testing data. The training trace consists of 5.1km driving

data in an urban area and the testing data include hilly/bumpy roads in freeway, urban, and

downtown areas with up to 3.7km (3.8min) traveling distance (time) per trace. The vehicles

are driven by 3 different drivers and the roads have up to 5° slope.3 The vehicle data are

directly read off from the CAN bus without any additional information provided from other

devices or cloud. Therefore, the road slope (θd) required by CADD is computed based on

the GPS elevation measurements. Note that the elevation measurements from GPS only

have coarse-grained accuracy [130]. In the collected traces, the maximum resolution is

3.05m (10ft) and the update rate is ≈1Hz, which can cause up to 14° error to θd if the

vehicle is traveling at≥45km/h on a flat road. Therefore, we use 14° as our main threshold

setting. Due to safety concerns, we did not manually induce tire slippage for E1. Instead,

we evaluate the scenarios with tire slippage in E2.

The second set of evaluation (E2) utilizes data from E1 with CarSim simulation. We

chose CarSim because it can simulate realistic vehicle behavior and road condition (e.g.,

3In addition to the driver, three traces have no passenger and others have 1 passenger with a total of five
⟨driver, passenger⟩ combinations.
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auto-generated pot holes or cracked/bumpy roads), and it is used by 7 major OEMs for

design testing [109]. It also allows us to adjust RI and RF without relying on the weather or

physical location of testing and, the most important of all, we can test dangerous scenarios

(e.g., experiencing excessive tire slippage) without jeopardizing driver safety. We use the

driving profiles (with v ≤ 94.5km/h and aX ≤ 0.3g) collected from E1 to create realistic

driving behaviors. That way, our test cases are made close to the vehicle’s real-world

operations.

We created 10 testing elevation templates. Each template has 10 segments with various

RI ranging from -5 to 5° slope (≈7% grades, which is the maximum (urban) RI suggested

in the road design guideline specified in Table 8-1 of [6]). The length of a segment pro-

jected on the horizontal plane is 250 to 1000m. For each template, we further set the

friction coefficient µ to 0.2–0.5, and 0.9, thus creating a total of 50 RI–RF combinations as

testing contexts. Together with the driving profile captured in E1, we use CarSim for VB

simulation. To account for the worst-case scenario in which the vehicle has poor sensing

quality or is traveling on bumpy roads, we tested the scenarios where there can be excessive

measurement (or environmental) noise by injecting AWGN noise with 63% mean and 8%

median error to the collected traces. The average length of testing data is 7.5km and the

traveling time is 7–8min per trace. The training data consists of 28.25km traveling distance

and 41min traveling time on a separate training map (flat road with µ = 0.9).

2.7.1.2 Data Manipulation.

We consider the cases where the vehicle behavior/acceleration (aX ) and assistance data

(i.e., θd and aZ) can all be manipulated, spoofed or inaccurate (on top of measurement

errors), and see if CADD is still able to tell whether the anomaly is caused by the VB

related DOI or the incorrect input from other sensors. Table 2.1 lists the manipulation sce-

narios and thresholds (ηRI) we tested for E1 and E2. Detection threshold (ηRI) also defines

the minimum behavior change CADD is able to detect (∆aX ,min): ∆aX ,min ≈ g×ηRI . For
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Thresholds E1: ηRI = 7°,11°, 14° E2: ηRI = 1°,2°, 3°
Data Unit Behavior/Data Deviation
Long. Acc. 0.01g 5, 15, 20, 25, 30 5, 6, 7, 8, 9
GPS Slope ° 8, 10, 12, 14, 16 2, 2.25, 2.5, 2.75, 3
Vert. Acc. 0.01g 1, 2, 5, 10, 50 1, 2, 3, 4, 5

Table 2.1: Testing scenarios.

example, ∆aX ,min’s of ηRI = 7°, 11°, and 14° are 0.12g, 0.19g, and 0.24g, respectively.

However, setting a small threshold is not always a good choice since it may induce more

false positives. For each scenario, we generate 50 (100) test cases for E1 (E2) where the

data manipulation starts randomly and lasts for <1min (1–5min), which is equivalent to an

average of 63.9% (12.9–64.5%) travelling time. Since CADD neither combines consecu-

tive results during detection nor relies on specific attack patterns for its detection, it is the

deviation from the normal vehicle behavior (or data value) that matters to CADD’s detec-

tion, not how the data are manipulated/attacked in time domain. We introduce anomalies

by data-manipulation attacks (i.e., modifying the data values to deviate from their original

values). Note that a coordinated attack on both VB and an assistance data is equivalent to

the other assistance data deviating from its normal value (from a data-level perspective).

Since any manipulation in time domain can be considered as a combination of different

shifting manipulations, we can directly extend the results of data shifting to other types of

attacks by dividing them into smaller segments as individual shifting attacks.

2.7.1.3 Baseline Comparison.

For baseline comparisons, we also implemented EVAD [54] and PID-Piper [28], be-

cause, to the best of our knowledge, EVAD is reported to yield the best performance and

covers the most similar data types as CADD while PID-Piper is the state-of-the-art CI based

on machine learning and can be adapted to cover the same detection scope of CADD. For

a fair comparison, they have access to the same data types as CADD does, but they cannot

access those detailed data that are not commonly available on in-vehicle networks.
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While EVAD [54] has already covered similar data as CADD, we implemented the

correlation pairs in EVAD that cover the available data listed in Chapter 2.3.1. For PID-

Piper [28], its Feed-Forward Controller (FFC) and Feed-back Controller (FBC) are both im-

plemented based on long short term memory (LSTM) machine learning as in [28]. Specif-

ically, the prediction output of FFC is the vehicle’s acceleration (aX ) while other available

data listed in Chapter 2.3.1 are treated as its input. Similarly, the prediction outputs of FBC

are the values of gas (ga) and brake (br) pedals while other available data are treated as

FBC’s input.

2.7.1.4 Evaluation Metrics.

We use the following metrics for evaluating the detection performance of CADD.

• Detection Rate (True Positive Rate): the probability that the anomaly is successfully de-

tected: TPR = TP / (TP + FN), where T (F) is true (false) and P (N) is positive (negative).

• False Positive Rate: the probability that CADD identifies a normal behavior as an anomaly:

FPR = FP / (FP + TN).

• Detection Latency or Delay (DL): the time between the anomaly occurs and the time

CADD determines that an anomaly is taken place. This metric tells us how long it takes

for CADD to detect an anomaly.

Note that we use a single data sample as a unit to compute TPR and FPR, instead of using

the entire trip/attack duration.

For CADD’s identification performance, we use:

• Accuracy of Identification (Accid): the probability of identifying the exact group of

anomalous DOIs.

• Accuracy of Inclusion (Accin): the probability of classifying the anomalous DOI group

as potentially anomalous.

Note Accid ≤ Accin. By comparing the two metrics, one can tell whether CADD is able to

identify the exact group of anomalous DOIs or it just determines all the DOIs as potentially
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anomalous all the time.

2.7.2 Performance in Traditional Vehicles (E1)

2.7.2.1 Detecting VB Change.

Let us consider CADD’s performance when it is directly applied to modern vehicles.

We use “∆” in front of a DOI to indicate the amount of manipulation/deviation applied to

that DOI/VB. While using ηRI = 14° and ≤1min data manipulation as our main evaluation

setting, Fig. 2.9 also shows the receiver operating characteristic (ROC) when ηRI is set to

7° and 11°. One can observe that TPRs are always higher than 60% if the manipulation is

greater than the minimum detectable value derived by the detection threshold. Even though

60% might seem to be underwhelming, it is actually the result of using each sampling time

as one unit to compute TPR. Since CADD generates a detection result every detection

cycle, the definition of TPR presented here is equivalent to the ratio of the number of cycles

CADD correctly detects an anomaly to the total number of cycles that a data manipulation

is active. If we directly examine whether a single session of data manipulation can be

detected before the session ends, there will be 0 false negatives, meaning that each and

every manipulation can be captured by CADD.
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Figure 2.9: ROC curves with aX manipulation in E1.

FPR is affected by the choice of detection threshold. CADD sets ηRI to lower than
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the target manipulation level, and higher than the average difference/error between actual

road slope and the input slope data. As mentioned in Chapter 2.7.1, since there can be

≥14° error when GPS is used to provide θd information, we should set ηRI to be ≥14°.

With this setting, CADD achieved very low (∼6%) FPR while achieving >80% (>60%)

TPR in detecting 0.3g (0.25g) manipulations. We will later discuss how to further reduce

false-positives.

2.7.2.2 Detecting Anomalous Assistance Data.

Metric
∆aZ (g)

0.01 0.02 0.05 0.10 0.50
TPR (%) 10.39 27.47 72.82 74.70 74.22
FPR (%) 6.20 6.10 6.49 6.68 6.98
DL (ms) 16204 5666 2495 2311 2759

Metric
∆θd

8° 10° 12° 14° 16°
TPR (%) 8.18 12.94 32.04 54.87 70.40
FPR (%) 6.28 6.56 6.12 6.08 6.17
DL (ms) 17780 14948 9418 7148 6530

Table 2.2: Performance when aZ and θd is manipulated in E1.

Table 2.2 shows the results when aZ and θd are under data manipulation and ηRI is set to

14°. These conditions can also simulate the situation when GPS or accelerometer is spoofed

by a malicious party. The TPR remains stable once ∆aZ reaches 0.05g, indicating CADD’s

capability of capturing data manipulation consistently after this level. As mentioned before,

since we only have coarse-grained θd input in both temporal and magnitude perspectives

and the choice of threshold ηRI is bounded by the error level of this input, CADD seems

to yield lower TPR. However, from the identification results in Table 2.3, CADD is shown

to be able to achieve an excellent identification rate even if the data manipulation does not

reach the theoretical detection level thanks to the low FPR. Specifically, CADD is able to

achieve 90.67 and 94% rates of anomaly source identification (Accid) when ∆aX = 0.15g
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and ∆aZ = 0.02g, respectively.4

Target Accid Accin Accid Accin Accid Accin

aX
∆aX = 0.05g ∆aX = 0.15g ∆aX = 0.20g

49.33 49.33 90.67 90.67 91.67 91.67

aZ
∆aZ = 0.01g ∆aZ = 0.02g ∆aZ = 0.05g

64.83 64.83 94.00 96.17 96.67 97.67

θd
∆θd = 12° ∆θd = 14° ∆θd = 16°

30.83 30.83 66.33 66.33 76.80 76.80

Table 2.3: Identification performance in E1 (ηRI = 14°).

2.7.2.3 Baseline Comparison.
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Figure 2.10: ROC comparison between CADD and prior studies in E1, where the labels
are the threshold settings of EVAD and PID-Piper, c̄ (σ ) is the mean (standard
deviation) of correlation coefficients of data pairs utilized in EVAD, and the
tuple ([x,y]) indicates the number of standard deviations to report (x) and can-
cel (y) an anomaly alarm in PID-Piper.

We now compare the performances of CADD, EVAD, and PID-Piper (Fig. 2.10). CADD

can achieve similar or up to 21.5% higher (absolute) TPR with only a half of EVAD’s FPR.

The lower TPR and higher FPR of EVAD are the results of EVAD’s inability to account

for the influence of context when detailed measurements are not available. The results pre-

sented here also showcase a major drawback of correlation-coefficient-based approaches:

they usually do not have any efficient threshold selection mechanism since correlation co-

efficients are not directly linked to any cyber-physical properties of the vehicle system.
4Modern sedans can achieve >0.5g acceleration (0-60 mph in 3.2s) [132].
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That is, we cannot adjust EVAD further to achieve a higher TPR or a lower FPR while

maintaining meaningful detection results (i.e., TPR > FPR). On the other hand, PID-Piper

is shown to achieve a similar TPR as CADD (with a 5–10% difference depending on the

settings). We would like to stress again that basic CADD does not rely on consecutive

results for its detection, and hence its TPRs are equivalent to the probability that CADD

detects an attack based on one single data sample regardless of how attacks/manipulations

are launched in time domain. However, because both EVAD and PID-Piper do rely on

consecutive observations for their detection, their TPRs presented here are the best-case

performance when there is a persistent attack lasting for a certain period of time (i.e., larger

than their DLs). A further look at the DLs of PID-Piper and EVAD in Table 2.4 reveals

that they require more than 7s on average to detect an anomaly while CADD incurs ≤20%

of PID-Piper’s/EVAD’s DL when considering the settings to achieve low FPR and ∆aX ≥

0.25g. These results indicate that a short-lived attack (<7s) will have a high probability to

evade PID-Pipers’s/EVAD’s detection and showcase CADD’s superiority to both.

Scenario
∆aX : Amount of Manipulation to aX

0.05g 0.15g 0.20g 0.25g 0.30g
CADD (7°≈ 0.12g) 2576 901 417 376 361
EVAD (c̄) 12943 10027 11001 10422 10217
PIDPiper ([3,1.5]) 1054 1104 1044 1102 1155
CADD (11°≈ 0.19g) 6282 4272 1652 977 559
EVAD (c̄−2σ ) 18664 11829 11626 12457 11581
PIDPiper ([5,2]) 7242 7225 7219 7207 7193
CADD (14°≈ 0.24g) 18076 6573 5571 2171 1628
EVAD (c̄−6σ ) 19068 13503 12118 12613 12730
PIDPiper ([5,3]) 7254 7212 7213 7208 7194

Table 2.4: Detection delay (ms) in E1. Note that some test cases do not exceed the detection
threshold (i.e., ηRI or ∆aX ,min).

2.7.3 Performance with Map Support (E2)

We now explore CADD’s performance when more accurate θd (i.e., inclination estima-

tion) support is available. As mentioned in Chapter 2.3.1 and Fig. 2.5, θd does not have
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to be obtained from the elevation data of GPS (as in E1). That is, it can also come/com-

puted from other available sensor data, such as i) the combination of GPS and Map, ii) an

inclinometer, or iii) LIDAR/camera as long as the inclination is not computed based on a

subset of other data groups in Fig. 2.5. For example, Wang et al. [142] showed that Google

Earth can achieve 1.32m mean absolute error in the US while Khalid et al. [33] showed that

Google Earth can achieve as low as 0.51m mean error in some specific regions (e.g., Dabaa

City, Egypt), which can be translated to 2.7 and 1.05° error when the vehicle is traveling

at 100km/h and 1Hz update rate, respectively. Commercial inclinometers are claimed to

achieve 0.1–2° error [107, 111, 112] and slope estimation based on vision sensors (e.g.,

camera) is shown to achieve 0.2° error [139]. Even though the above technologies may not

be available to every car and everywhere on earth, they indicate that a more accurate θd

(than E1) can be obtained for CADD to realize its true potential in future.

2.7.3.1 Without Tire Slippage.
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Figure 2.11: ROC curves without tire slippage in E2.

In E2, we use ηRI = 2° as our target evaluation scenario based on the noise level ob-

served in the training data. Fig. 2.11 shows ROC curves when ηRI is set to 1 – 3° (marked

on each curve) and the curves indicate different levels of behavior deviation. CADD is

able to achieve a high TPR (75%) even if the deviation (∆aX ) is only 0.05g and its FPR is

only 4% (ηRI = 2°). Note that we injected a large amount of noise (i.e., 13% of data have
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larger than 50% noise) in our test cases, which will inevitably generate false positive de-

tection. CADD can efficiently detect any behavior deviation greater than 0.07g with 97%

TPR while the mean DL is less than 1s (Table 2.5).

ηRI
∆aX : Amount of Manipulation to aX

0.05g 0.06g 0.07g 0.08g 0.09g
1° 524 396 409 414 325
2° 1905 1034 802 745 620
3° 11597 2642 1908 1175 957

Table 2.5: Detection delay (ms) without tire slippage in E2.

Developers can also plot the ROC curve (from the training data) as a guideline for

setting ηRI . For example, if we assume Fig. 2.11 were the ROC obtained from training

phase and a developer wishes to detect any behavior deviating from its norm by 0.06g with

>60% TPR and <2% FPR, then, according to the ROC curves, s/he should set ηRI to 3°.

2.7.3.2 In the Presence of Tire Slippage.

Let us consider CADD’s detection performance in the presence of tire slippage (TS),

simulating the vehicle traveling under different weather conditions that can cause different

levels of road friction. Table 2.6 shows CADD’s performance when µ is set to 0.2–0.5 and

0.9, where 0.9 is the road condition we used in Chapter 2.7.3.1. The average time of TS

(in percentage of the entire trip) is also listed in Table 2.6. We can observe that CADD’s

performance is almost identical to the condition without TS when there is no excessive TS

during the trip (i.e., µ = 0.3–0.5). Even when there is up to 34% of TS time (µ = 0.2),

CADD is able to achieve ∼92% of TPR and only ∼7% of FPR when the ∆aX = 0.07g.

That is, CADD is able to significantly reduce the occurrence of false-positive detections

(from potentially up to 34%) to only 7%. The slightly lower TPR than the scenario without

TS (µ = 0.9) is due to TS’s cancellation of the effect of an aX change. When aZ or θd is

anomalous (Table 2.7)5, CADD is able to achieve almost identical TPRs and FPRs with or
5We omit the results when µ= 0.3–0.5 in these two tables because they are almost identical to µ=0.9 as in

Table 2.6.
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Metric
∆aX : Amount of Manipulation to aX

0.05g 0.06g 0.07g 0.08g 0.09g
µ = 0.9 (No Tire Slippage)

TPR (%) 75.05 87.65 97.03 96.59 97.83
FPR (%) 4.02 4.24 4.53 4.60 4.67
DL (ms) 1905 1034 802 745 620

µ = 0.5 (< 1% Slippage Time)
TPR (%) 74.90 87.63 96.98 96.36 96.12
FPR (%) 4.07 4.31 4.48 4.75 4.72
DL (ms) 1680 1124 895 746 771

µ = 0.4 (< 1% Slippage Time)
TPR (%) 75.02 87.50 97.94 97.77 96.96
FPR (%) 4.09 4.34 4.61 4.61 4.78
DL (ms) 1663 1168 799 764 613

µ = 0.3 (< 1% Slippage Time)
TPR (%) 75.11 87.48 97.07 96.97 96.68
FPR (%) 4.28 4.47 4.70 4.79 5.06
DL (ms) 1608 1032 863 712 786

µ = 0.2 (5∼ 34% Slippage Time)
TPR (%) 68.27 80.39 91.88 93.49 94.09
FPR (%) 6.08 6.29 6.63 6.69 6.85
DL (ms) 2027 1663 1315 1226 998

Table 2.6: Detection performance in E2 (aX anomalous).

without TS. That is, CADD is able to distinguish TS from the actual anomaly and output

the correct results. Note that since CADD does not combine consecutive results for its

detection, the performance of traveling on a road with changing µ can be approximated by

considering small road segments with different µ .

Next, we compare CADD’s FPR performance with EVAD by adjusting EVAD’s thresh-

old settings to have the same level of TPR as CADD (Fig. 2.12). Similar to the results

shown in E1, CADD’s FPR is only 34.5–38.5% of that of EVAD regardless of (non-

)occurrences of tire slippage. For PID-Piper, it can only achieve <30.7% TPR when having

a similar FPR (∼4%) as CADD (Fig. 2.12). If we adjust PID-Piper’s settings to achieve

similar TPR (>90% when ∆aX ≥ 0.07g) as CADD, its FPR increases to >90%. Even for

given special training data with 10 different RI conditions, PID-Piper still suffers a 66.95%

FPR. This result further shows a major drawback of a ML-based approach without physical
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Figure 2.12: Comparison between CADD and prior work in E2.
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Figure 2.13: Detection latency (seconds) of CADD and prior work when ∆aX = 0.05 ∼
0.09g in E2.

modeling: its detection will be ineffective when operating in a constantly changing envi-

ronment because of the training difficulty and the lack of necessary data access. On the

other hand, since CADD’s and EVAD’s detection is based on the vehicle’s physical model

and data correlation, there will be no significant performance degradation under such a con-

dition. Furthermore, CADD is shown to achieve <51% of EVAD’s/PID-Piper’s DL thanks

to CADD’s model-based detection mechanism (Fig. 2.13).
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∆aZ (0.01g) ∆θd (°)
1 2 3 4 5 2 2.25 2.5 2.75 3

µ = 0.9 (No Tire Slippage)
TPR 87.8 88.6 91.2 92.7 92.7 78.7 95.5 98.0 98.6 99.1
FPR 4.5 4.7 4.7 4.8 4.7 3.6 3.5 3.6 3.7 3.6
DL 7.38 7.54 7.21 7.41 7.44 0.79 0.26 0.07 0.08 0.02

µ = 0.2 (5∼ 34% Slippage Time)
TPR 88.3 89.1 91.1 93.1 93.3 79.1 96.8 98.4 98.9 99.0
FPR 7.0 7.0 7.1 7.1 7.2 5.7 5.7 5.8 5.8 5.9
DL 7.58 7.16 7.32 7.71 7.47 0.57 0.15 0.09 0.07 0.06

Table 2.7: Detection results of E2 (aZ or θd anomalous), where TPR, FPR, and DL are
presented in %, %, and s, respectively.

2.7.3.3 Identifying an Anomalous Group

We now look at CADD’s end-to-end performance in not only detecting the occurrence

of an anomaly but also pinpointing the anomalous group. First, we consider the condition

in which aX is anomalous as in Chapter 2.7.3.1. We then test the conditions in which

aZ and θd are anomalous, simulating the scenario that the sensor data used for context

estimations are faulty. The purpose of this evaluation is to see whether CADD can correctly

identify the group of anomalous DOIs. In this evaluation, we set CADD to output an

identification result when each trip ends. This identification result is determined by taking

the majority of anomalous groups captured in the identification process (i.e., S1–S4 in

Chapter 2.6.2) within a single trip. Table 2.8 summarizes the results of identifying an

anomalous group. Since the results of µ = 0.3–0.9 are, in general, identical, we only present

the results of µ = 0.9 and 0.2 here. The “Ano” column is the anomalous DOI, and the “AD”

column is the anomalous duration in minutes. We tested the cases with 1, 2.5, or 5min AD,

which translate to 12.9, 32.3, and 64.5% anomalous duration ratio (ADR), respectively.

The second row (Dev. Lvl.) of the table indicates the level of deviation (k) from the ground

truth. The actual deviation is given by ∆aX = [0.04 + 0.01k]g, ∆aZ = [0.01k]g, and ∆θd

= [1.75 + 0.25k]°. While |Accin−Accid| < 0.1 holds for all the scenarios we have tested,

indicating the rare occasion of CADD’s inability to determine an anomalous DOI, here we
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only show the values of Accid .

Ano | AD µ = 0.9 µ = 0.2
Dev. Lvl. 1 2 3 4 5 1 2 3 4 5

aX

5 100 100 100 100 100 97.5 99.5 99.5 100 100
2.5 94.4 97.0 97.7 99.3 99.1 89.1 95.2 96.8 97.1 99.5
1 90.8 96.5 98.8 98.5 99.0 97.5 98.0 99.5 100 99.5

aZ

5 100 100 100 100 100 98.9 100 100 100 100
2.5 100 100 100 100 100 91.8 92.2 93.2 93.0 90.0
1 97.5 95.8 98.5 94.8 96.0 62.7 62.5 67.5 68.2 62.0

θd

5 100 100 100 100 99.9 95.0 99.2 99.4 98.9 98.2
2.5 93.4 96.5 94.5 93.1 90.7 75.7 85.8 85.4 82.5 81.3
1 81.2 85.5 84.0 80.2 79.5 55.4 63.9 67.0 63.5 62.7

Table 2.8: CADD’s source identification results (Accid) in E2. See Chapter 2.7.3.3 for de-
tailed description.

When µ = 0.9 (i.e., without TS) and aX or aZ is anomalous, CADD is able to identify

the exact source of anomaly with ≥94.4% Accid if ADR ≥ 32.3%. Even if ADR = 12.9%,

CADD can still achieve≥90.8% Accid . These results show CADD to be able to identify the

anomalous source even when the anomaly lasts only for 1 min (ADR = 12.9%). Compared

to the condition without TS, CADD has lower Accid , especially in view of the performance

when aZ or θd is anomalous. The lower Accid is the result of CADD’s tendency to de-

termine the source of anomaly as aX when TS occurs. That is, CADD won’t be able to

distinguish whether the anomaly is caused by anomalous aX or the other two DOIs, and it

will determine the source to be aX because ∆θgb and ∆θtg caused by TS will be larger than

∆θd in our testing scenarios, where ∆θX is the deviation of estimation θX from the ground

truth. Nevertheless, CADD is still able to achieve ≥75.7% Accid when ADR≥ 32.3% and

∆θd = 2°.

2.7.4 Remark

2.7.4.1 Attack Stealthiness

Note the attacks considered here are already stealthy (or small enough) in that i) their

manipulation levels are within the common permissible error and ii) they can evade detec-
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Data Unit Magnitude of Manipulation or Deviation
∆aX 10−2g 5 6 7 8 9 15 20 25 30
∆v 10−2km/h 18 21 25 28 32 53 71 88 106
∆X 10−4m 25 29 34 39 44 74 98 123 147

Table 2.9: This table shows the resulting effects (per data sample taken at a 10Hz rate) of
data-manipulation attacks, where ∆aX is the attack magnitude, ∆v and ∆X are
the resulting (maximum) speed and location deviation/errors perceived by the
vehicle based on physical modeling.

tion by prior approaches with >7s DL in E1 (∆aX = 0.3g) or >1.7s in E2 (∆aX = 0.09g).

Table 2.9 shows the speed and location deviation under different levels of data manipula-

tion tested in this section. Specifically, even if we look at the maximum manipulation (i.e.,

∆aX = 0.3g), the attack will only generate a 0.0147m location deviation and a 1.06 km/h

speed deviation every 0.1s while pure GPS localization is known to have meter-level error

(4.9m [52]) and the European law (ECE-R39) only requires the speedometer to report with

less than 0.1vGT + 4 km/h error, where vGT is the ground truth of the vehicle speed. Note

that CADD is shown to require only one anomalous data sample to detect an anomaly in

>70% test cases as shown in Fig. 2.14.
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Figure 2.14: CDF of the required data count for CADD to detect an anomaly (as an alter-
native way to present detection latency) when ∆aX is anomalous.
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ADR Metric µ = 0.9, FPR = 4.41% µ = 0.2, FPR = 6.51%
Manipulation 0.01g 0.02g 0.03g 0.01g 0.02g 0.03g

64.5
TPR 4.27 8.62 20.57 7.58 10.05 20.65

Accid 71 92 100 90 96 100

32.3
TPR 4.27 8.43 19.93 7.14 10 20.29

Accid 70.6 81.6 99.4 90 93.8 99.8

12.9
TPR 4.29 7.77 18.93 7.05 9.83 19.87

Accid 71.8 76.6 95 90 91.2 96

Table 2.10: This table shows the detection and identification performance (%) of CADD
when ∆aX is smaller than the detection threshold (∆aX ,min = 0.035g).

2.7.4.2 Resilience against Different Attacks

Let us consider the case when the attacker knows the parameter settings in CADD and

tries to evade CADD by manipulating data within the thresholds or manipulating multiple

data at the same time. Table 2.10 shows CADD’s detection and identification performance

when ∆aX is smaller than the detection threshold (ηRI = 2 or ∆aX ,min = 0.035g). As ex-

pected, CADD can only achieve moderate TPR since the data manipulation is below the

detection threshold. However, CADD is shown to achieve ≥71.8% Accid even if ADR is

only 12.9%. These results indicate that even with data manipulation equal to only 28.6%

of detection threshold, CADD can still capture/pinpoint the data in question with good ac-

curacy. However, any manipulation under the detection threshold should not be considered

as a valid attack since, in a practical deployment scenario, the detection threshold should

also account for the error tolerance of the vehicle system.

As described in Chapter 2.3, a natural limitation of CADD is that it cannot detect a

full-scale data manipulation, which is a common characteristic of all approaches without

the data of final control output/setpoint (or a trusted data source). However, when map

support is also available to the vehicle in the future, a real-time full-scale attack will be

very difficult, if not impossible, to evade CADD’s detection for the following reasons.

To generate a full-scale attack in real time, it requires the attacker to change the road

inclination context θd utilized in CADD to match DOI after manipulation. With map sup-
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port, θd will not be directly computed based on the elevation measurements embedded in

the GPS data on IVN. Instead, CADD will use the geo-coordinates to look up θd on the

map, meaning that the attacker will need to find a series of geo-coordinates with exactly

same θd’s that match the manipulated DOI (if such series of geo-coordinates even exists).

Even if θd is obtained from other estimation methods as described in Chapter 2.7.3, map

can be used as a source for sanity check. Since any value gap between two consecutive GPS

data is also an indication of a data manipulation, launching such an attack is infeasible. On

the other hand, to launch a replay attack or a pre-computed attack, unless every data in the

beginning of the recorded trace used by the attack exactly matches every DOI of CADD

when the attack is launched, there will be value gaps between before and after the replay

attack is launched, thus leaving an obvious signature of data manipulation.

Based on the above discussion, we also tested the condition where all dynamics mea-

surements and the assistance data, except for θd , are manipulated simultaneously. Note that

the evaluation settings here are basically the same as in E2, except that all aforementioned

data are manipulated simultaneously to match the normal (physical) data correlation (e.g.,

vehicle acceleration now perfectly matches DOIs other than θd while ignoring measure-

ment noise) and the vehicle behavior tested in the test cases are indeed captured from the

normal vehicle behavior but in a different driving context (i.e., RI). As shown in Fig. 2.15,

CADD’s TPRs are almost identical to those shown in Fig. 2.12. EVAD and PID-Piper,

however, can only achieve <20% TPR because the former does not have any special de-

sign to consider driving context and the latter cannot efficiently account for θd to detect

the anomaly while other data match their normal correlation. As a result, they also have

significantly higher detection delays than CADD (Table 2.11).

We now consider the condition in which the adversary tries to evade CADD’s detec-

tion by disguising the attack as a mass change to the vehicle. Note any vehicle behavior

change caused by total mass (including passengers and cargoes) change must be consistent

throughout the entire trip as described in Chapter 6.1. Therefore, in order for an attack
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Figure 2.15: Comparison of TPRs between CADD and prior work under (coordinated)
multi-data manipulation attacks. Since the FPRs will not be influenced by
the attacks, the FPR comparison is the same as Fig. 2.12.

Scenario (µ) 0.05g 0.06g 0.07g 0.08g 0.09g
CADD (0.9) 870.0 238.0 8.8 7.4 8.4
CADD (0.2) 849.8 212.4 16.6 25.4 70.0
EVAD (0.9) 58707.8 56852.2 57956.2 56511.0 57471.6
EVAD (0.2) 44644.6 46727.8 46164.4 41862.8 46385.4
PID-Piper (0.9) 13547.8 16276.6 16913.2 14846.4 16472.0
PID-Piper (0.2) 13771.8 17128.4 16763.8 15688.4 16159.4

Table 2.11: This table shows the detection latency (ms) of CADD and prior work under
(coordinated) multi-data attacks.

to disguise as a mass change, the manipulated acceleration must be maintained at a con-

stant ratio, compared to the ground-truth acceleration, throughout the entire trip. This will

further lead to the requirement of simultaneously manipulating vehicle speed and GPS to

evade a simple consistency check between those sensor readings. However, the road grade

information from a map (looked up by using GPS readings) cannot be controlled by the

attacker and, therefore, the inconsistency between road grade and vehicle acceleration can

be detected by CADD

Also, for an attack to disguise as a tire slippage by manipulating both control input

and longitudinal acceleration, the adversary needs to further manipulate both road grade

estimation (e.g., GPS or GPS and map) and vertical acceleration readings simultaneously
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to match proper tire slippage features w.r.t. to the road grade estimation obtained from

gas/brake and engine torque. This will lead to manipulating all the status measurements

considered in CADD, which is outside of CADD’s detection scope.

2.7.4.3 False-Positives

In general, a detection system may have false-positives because of i) imperfect model-

ing caused by limited data availability and accuracy or ii) transient noise in sensor read-

ings that exceeds the detection threshold. While CADD has already considered the for-

mer and utilizes the threshold setting that is above the average measurement error level

(Chapter 2.7.1), most reported false-positives are caused by transient noise. Based on this

observation, CADD’s FPR can be reduced further by a false-positive filtering mechanism

(FPFM) even though CADD can already achieve low FPR under excessive noisy condi-

tions. Specifically, since any effective attack must last for a certain period of time to pass

through a low pass filter (i.e., a common practice of data/signal processing to reduce the

effect of noise), CADD can choose to report an anomaly detected only when there are α

consecutive positive detections, where α is a design parameter to balance between the FPR

and the detection delay.
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Figure 2.16: CADD’s performance after applying FPFM.

Fig. 2.16 shows CADD’s detection performance when ∆aX = 0.07g under different α

values. We can observe that FPFM can effectively reduce FPR (from 4.5% to 0.5%) when
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α = 1→ 50 detection cycles. Furthermore, this makes no significant impact on overall

TPR (from 97.0% to 96.0%), proving its effectiveness in enhancing CADD’s performance.

Since FPR is independent of the manipulation/attack level, there is no need to adjust α

according to the target detection level. However, a larger α incurs a larger detection delay

while providing a better FPR performance. Specifically, Fig. 2.17 showcases CADD’s

detection latency with FPFM applied. The results have shown CADD to successfully report

an anomaly right after the observation window of FPFM in 50–80% (>40%) test cases even

when α = 1–40 (α = 50), indicating CADD can still capture anomalies immediately most

of the time (α = 1–40) right after their occurrences (but just chooses to report them at a

later time).
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Figure 2.17: CDFs of CADD’s detection latency with FPFM.

If CADD is implemented as an alarm system, detection delay will not be a major con-

cern, and the application developers should provide the flexibility to users to adjust how

aggressive FPFM should be according to their preference. On the other hand, if CADD

is to be used for on-line defense that directly integrates into the vehicle’s control system,

the value of α should also depend on the system requirement/characteristics, including the

maximum tolerable detection delay and the maximum tolerable attack duration, which are

known to the component suppliers or car makers. In other words, even if the attacker tries

to evade CADD’s detection when FPFM is applied by shortening its attack duration, the
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system should be able to handle the absence of correct data during that period of time.

2.8 Discussion

2.8.1 Deployment and Application of CADD

CADD is designed with easy deployment in mind. Since all the required data can be

obtained entirely from the vehicle itself, or from the combination of the vehicle and an

external device equipped with GPS/INS (e.g., a smartphone) inside the vehicle, CADD can

be implemented in a module attached to the CAN bus in the vehicle or as a dongle plugged

in the OBD-II port. While the former is targeted at the first-party implementation as a

built-in function in the vehicle, the latter is likely a third-party add-on implementation. As

a first-party, there will be no problem retrieving all the necessary data from the vehicle’s

internal components and, therefore, this implementation does not need any extra sensors

to be installed. On the other hand, while implemented as a third-party solution, the data

required by CADD may not be accessible from the standard OBD-II messages (e.g., ac-

celeration). Therefore, an extra IMU is required in the implementation. While insurance

companies want to prevent accidents to increase their profits, they will have incentives to

deploy CADD to alert their customers about potential anomalies. Furthermore, since most

of the OBD-II dongles provided by insurance companies already have built-in IMUs, they

will not incur additional hardware cost to add CADD in their dongle.

There are two aspects of safety enhancement, especially in the cyber-physical system

(CPS) domain like cars, trains and planes. The first is an early warning and suggestion of

preventive measures. An anomaly detection system will try to identify any early sign of

anomaly and warn/advise the users to perform further inspection in order to prevent a more

severe, safety-critical situation in the near future. This type of safety enhancement does not

necessarily need to be done in real time. The second aspect is on-line protection dealing

with a more strict timing constraint. While CADD can achieve <100ms detection delay, it
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can be utilized as a on-line protection system if FPFM is set to use a small α . On the other

hand, the application of FPFM with a larger α will be more leaning towards preventive

safety enhancement.

The other potential application of CADD is to detect modifications to driving traces for

an application (e.g., usage-based insurance as mentioned earlier). For example, while rely-

ing only on the IMU of a OBD-II dongle to detect reckless driving can be easily deceived

by sensor spoofing (e.g., using a speaker [96]), the combination of in-vehicle data and the

IMU readings will raise the level of difficulty to deceive the application.

While there will never be a perfect detection system that can capture all types of attack,

CADD’s limitation is that it cannot detect a full-scaled manipulation attack as discussed

earlier. However, CADD is able to significantly raise the bar to launch a successful attack.

Furthermore, it can also be utilized as a general fault detection system to detect early signs

of component failure.

2.8.2 Consideration of Other Context (Σ)

2.8.2.1 Steering

As part of our future work, we discuss how to improve our model formulation if more

data types become available to CADD in the future. First, we look at the adjustments that

can be influenced by vehicle steering (i.e., SE(Σ) and SB(Σ) in Eq. (2.3)). Specifically, since

the force generated by wheel torque will now contribute to both longitudinal and lateral ac-

celeration when the vehicle has lateral movement, SE(Σ) and SB(Σ) will be dependent on the

steering angle (i.e., the angle φT between the tire direction and the vehicle’s body direction)

which is determined by the steering wheel angle (φs) and its corresponding steering ratio

k(φs) [77]:

φT = φs/k(φs). (2.19)
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SE(Σ) (SB(Σ)) can then be presented as a function of φs as SE(Σ)(φs) (SB(Σ)(φs)). The reason

for utilizing φs instead of φT is: i) the former is more commonly available on IVN in

drive-by-wire vehicles and ii) modern vehicles usually have different φT ’s between tires

to maintain a consistent center of turning circle (O) as shown in Fig. 2.18 [68]. Note that

we preserve (Σ) in the presentation since there are still other factors that can influence

SE , such as sideslip caused by the deformation of the tires. For a generic steering design,

CADD can utilize the training data when the vehicle is on a straight road to obtain Mgb and

Mtg without the adjustment of SE(Σ) and SB(Σ), and then performs training with data when

φs ̸= 0 to obtain SE(Σ) and SB(Σ). However, to account for a more sophisticated steering

assistance system, CADD can utilize a similar training procedure of Mgb as described in

Chapter 2.5.2 that partitions the training data according to both v and φs (instead of just v)

to capture the steering adjustment in different driving scenarios.

Figure 2.18: Example of steering angles (Ackermann steering geometry [68]).

2.8.2.2 Fuel Consumption and Mass Change

While fuel level is not a common data that can be easily retrieved from IVN, CADD by

default treats the mass change due to fuel consumption as a model noise. This assumption is

grounded on the fact that modern (medium size) vehicles usually weigh more than 3000lbs
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(1360.7kg) [95] and the average fuel consumption is 30.8mpg (miles per gallon) [138].

That is, there will be only 0.2% mass change for every 30.8 miles (49.57km) of travel.

However, if fuel-level information is available, it can be accounted for by Mass Change

Detector.

2.9 Conclusions

We have presented CADD, an anomaly detection system that utilizes multiple sets of

data for detection of context information (i.e., road inclination, tire slippage and total mass)

and determines whether an anomaly has occurred by comparing the context estimations. It

not only detects the occurrence of an anomaly but also narrows down the search space of the

anomaly source by comparing the estimations and excluding the group of data that match

each other from the search space. Our extensive evaluation (87,000+ test cases, including

trace- and simulation-based evaluations) has shown CADD to achieve high (>96%) de-

tection rate (TPR) and low false positive rate (<0.5%) even in the presence of excessive

measurement noise. CADD can also identify the anomaly source with accuracy of >95%

even if the anomalous duration is only 32.3% of the observation time (∆aX = 0.07g).
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CHAPTER III

DiVa: Identification of Anomalous Source(s)

3.1 Introduction

SA systems, such as commercial vehicles, are getting equipped with an increasing num-

ber of sensors and communication interfaces to provide advanced services like advanced

driver-assistance systems or autonomous driving. Car makers are also gradually replacing

the traditional mechanical components with their electronic counterparts for vehicle con-

trol. While the increase of electronic components and communication interfaces enables

advanced services [83], it also comes with reliability/security concerns. Unsafe situations

can occur due to faulty hardware or buggy software components (e.g., Toyota’s unintended

acceleration [154]) or even malicious attacks (e.g., Jeep Cherokee hack [87]).

Considering the safety risks associated with anomalous system behavior, researchers

have been exploring how to automatically determine if the behavior of a target system

deviates from its normal operation. To detect attacks initiated from in-vehicle networks

(IVNs), researchers have also been developing intrusion detection systems (IDSes) for ve-

hicles [3, 22, 92, 93, 145]. Since every electronic control unit (ECU) in a vehicle can only

transmit a fixed set of messages, such IDSes are designed to detect the messages transmit-

ted by rogue ECUs by exploiting the data transmission characteristics, such as transmission

rates [92, 93] or voltage signatures of ECUs [22]. They can achieve good detection perfor-

mance, but cannot detect the anomalous vehicle behavior that does not alter the transmis-
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sion patterns/characteristics on IVNs and cannot be applied to other types of systems with

different network configurations.

To detect the conditions (e.g., pure data or behavior anomalies) the aforementioned ID-

Ses cannot cover, various data-driven schemes [2, 5, 22, 23, 45, 50, 54, 79, 90, 92, 93, 101,

102, 124, 146, 153, 157] have been proposed to identify general abnormal system behav-

ior instead of focusing only on abnormal data-transmission patterns on in-system/vehicle

networks. However, there still does not exist any practical data-driven approach that can

simultaneously achieve i) good performance, ii) anomalous source identification, and iii)

easy deployability without requiring unavailable or difficult-to-access data.

We will use an SA vehicle as a concrete example. Specifically, while the standardized

on-board diagnostic II (OBD-II) messages based on SAE J1979 cover only the data types

related to transmission, and the controller area network (CAN), the de facto standard IVN,

has only limited bandwidth.1 The commonly available data on IVNs are limited to cer-

tain control inputs, powertrain component states and dynamic measurements. Note that the

controller setpoints and the measurements of actuator outputs (i.e., wheel/brake torque),

which are necessary inputs for most prior work, are not commonly available on IVNs (see

Chapter 3.2). This unrealism/limitation of data availability is also the very reason why ex-

isting detection schemes, including control/system invariant approaches, cannot be directly

applied to real SA systems without incorporating proper system models from control inputs

to setpoints or dynamics while taking practicality and deployability into account.

As the human’s/driver’s control and monitoring has been decreasing or even disap-

pearing, automatic detection and identification of the source(s) of anomalies (i.e., attacks

and faults) become critically important. An SA system must be able to automatically per-

form diagnostic and report the results to system owners/managers for further inspection

because early discovery of anomaly and location of its source can prevent the occurrence

of safety-critical situations caused by the same vulnerability exploitation in the future. The

11Mbps with a high-speed CAN [62] and 5–12Mbps with a CAN-FD [61].
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Figure 3.1: This figure depicts DiVa’s functional overview and an example of DiVa’s out-
put (using a vehicle as a concrete example), where the colored blocks indicate
the time when the data is determined to be a potential anomaly source and the
last row indicates the ground truth (GT) when the gas pedal is the anomaly
source.

identification of anomalous data is important for SA systems to “signal” how serious the

condition may be, depending on the anomaly source. Without this capability, the SA sys-

tem can only issue an alarm and inform drivers or mechanics to conduct a full inspection

of the car, which can be time-consuming and costly.

To address the lack of a practical approach that focuses on the forensics of SA anoma-

lies, we propose a novel approach, called DiVa. The goal of DiVa is to provide a func-

tion akin to a root cause analysis that can be used to identify (or track down) the source

of anomaly. Specifically, DiVa is designed to detect and narrow down the source(s) of

anomaly to the level of functional groups/components and practicality is its key feature.

DiVa takes the data of interest as input and outputs i) a set of time-series data indicat-

ing potential anomaly sources(s) as shown in Fig. 3.1 and ii) a list of potential anomaly

sources sorted by the length of time window during which DiVa determined the data to be

anomalous based on the system user/consumer’s need.

Besides limited data availability, there are two main technical challenges in developing

DiVa:

C1: Detailed system parameters are not easy to acquire without the first-party’s support.

Prior solutions usually require a detailed system model for the design of residual sig-

nals, which is proprietary to car-makers. Even with the first-party’s support, those
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parameters may still not be the same even for the same car model due to customization,

adjustment and component replacement. The system must, therefore, learn the normal

behavior of each SA system.

C2: Since the mechanisms of identifying anomalous data in prior approaches [8, 18, 47,

55, 89, 99, 143, 156] usually have direct ties to their (detailed) model formulation,

limited data availability will also degrade/disable their ability of identifying anomaly

sources and there is no easy way to modify their formulation without re-designing the

system.

To avoid the need for detailed causality modeling that requires difficult-to-access data

for the identification of anomalous data, DiVa features separation of the identification pro-

cess from the detection process, rendering the former independent of the causal correlation

between data used in the latter. That way, DiVa further removes the observability require-

ment2 for narrowing down the search space for anomaly sources. This design also facili-

tates easy upgrade of DiVa if engineers or car-makers want to expand DiVa’s detection to

include more types of data in the future.

Like all other data-driven approaches, DiVa also takes time to observe vehicle behav-

ior before outputting its detection result, and hence it is designed to detect early signs

of abnormal behavior so as to prevent future accidents/failures that origin from the same

vulnerability, instead of providing a real-time defense or fix. DiVa’s main purpose is to

signal/tell (e.g., periodically or after a trip) which of vehicle components may be anoma-

lous and provide vehicle owners/mechanics hints to locate and fix the anomaly source(s) as

efficiently and as quickly as possible.

For the case study of semi-autonomous vehicles (SAVs), since there are only limited

data types that can be accessed through the IVN (e.g., CAN bus) or standard OBD-II mes-

sages [26, 115], DiVa makes best of those data that are commonly accessible through the

IVN (i.e., without requiring unavailable or hard-to-access data) (Chapter 3.4). Specifically,
2Having sufficient observers or outputs (that can limit the degrees of freedom in system models) to identify

internal system state. See Chapter 3.2 for more on this.
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DiVa focuses on the detection of two major vehicle maneuvering behaviors:

• Input-to-response consistency: how control inputs of the vehicle (i.e., gas pedal, brake,

and steering) affect the vehicle dynamics (i.e., speed, acceleration, yaw rate); and

• Powertrain operation: how gear level and engine RPM react to the control inputs and

how they affect the vehicle dynamics.

This chapter makes the following contributions:

• Development of DiVa, a forensic system and a concrete case study of SAVs, that include

– (Meeting C2) An efficient algorithm for anomaly source identification with formal

mathematical formulation (i.e., a Boolean equation system) and performance proof

(Chapter 3.4);

– (Meeting C1) Detection sets (DSs) to capture anomalous vehicular behaviors and

their formal formulation for anomaly detection (i.e., the distance function D defined

in each DS) with limited data availability and without the requirement of knowing

detailed vehicle specifications (Chapters 3.5, and 3.6); and

• Evaluation of DiVa’s performance with the real-world data collected from 2 test vehicles

and 1 publicly available data set, demonstrating DiVa’s i) performance as an anomaly

detection system, ii) ability to narrow down the search space for the anomaly source(s),

and iii) end-to-end performance as a forensic/diagnostic system (Chapter 3.7).

3.2 Related Work

While the focus of DiVa is data-driven anomaly detection and source identification,

its related work can be categorized into Fault Detection and Isolation (FDI) and general

Anomaly Detection (AD) in either vehicle systems or generic control systems (e.g., robotic

vehicles and industrial control systems). The authors of [46] and [150] conducted compre-

hensive surveys on prior FDI and AD studies in general control systems, respectively, and

the authors of [3] and [145] also conducted comprehensive surveys on security of IVNs,
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including the summaries and comparisons of detection scope and performance of different

schemes. So, here we only introduce the work that has similar detection scope and does

not require any cloud support as DiVa.

Fault Detection and Isolation (FDI): FDI [8, 18, 47, 55, 89, 99, 143, 156] focuses on

the detection and diagnostics of anomalies caused only by component faults. They usually

model the system of interest in detail (e.g., by Bond Graph [72]) and design observers to

capture any occurrence of inconsistency and formulate a system of (differential) equations

while treating the faults as unknown variables [8, 47, 156]. The faults can then be identi-

fied by solving for the unknown variables in the (differential) equation system. They are

able to pinpoint the faulty components efficiently, but require detailed knowledge of the

target system (i.e., design, architecture, and parameter settings) and detailed system state

measurements and control setpoints to function as intended.

Specifically, FDI approaches usually have the following formulation:

x[k+1] = A(x[k])+B(u[k])+ξp[k]+µ[k] (3.1)

y[k] =C(x[k])+ξm[k]+ψ[k], (3.2)

where x is the ground-truth system state, y is the measurement output, u is the control in-

put/setpoint, µ is the process noise, ψ is the measurement error, and ξp and ξm are the

attack vectors (i.e., that specifies the attack magnitude) corresponding to system process

and measurement, respectively. A, B, and C are the transformations that capture the corre-

lation/causality between system state, control input and measurements. The above formu-

lation treats u as a trusted/known data and, therefore, the attack vectors can be obtained by

solving the equation system E of Eqs. (3.1) and (3.2).

If we use incorrect control input as “u” when they can also be manipulated, the resulting

ξp and ξm may be incorrect. However, if we treat them as elements in y, there will be

insufficient information in E to determine uniquely (i.e., there can be multiple solutions
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that can satisfy E). Prior work (e.g., [122]) usually transforms E further to an optimization

problem and solve it numerically and this will make the solving process to stop/stuck at the

first solution it finds without identifying other potential anomaly sources.

The main difference between DiVa and a typical FDI is that DiVa identifies or narrows

down the source of an anomaly/fault by solving a Boolean equation system derived from

the results of its detection phase. That way, DiVa does not rely on the causal correlation to

identify the anomalous data as in vehicle FDI approaches, enabling it to correctly identify

the anomalous source under an attack (e.g., data manipulation), and nor does it require

detailed system layout and measurements to work.

General Anomaly Detection (AD): AD schemes [2, 5, 23, 45, 50, 54, 79, 90, 101, 102,

124, 146, 153, 157] explore the correlation between multiple vehicle data and construct

their normal models/behaviors for anomaly detection. There have been proposals to detect

anomalies in a single component or functional group (e.g., engine [50, 90, 101, 102], brake

[23, 79] and gear system [146]). They are specialized to model the components of interest

based on the mechanical design and physical correlation of the components. They can

achieve accurate detection, but are difficult to deploy due to their requirement of detailed

in-component measurements that are not commonly available on in-vehicle networks.

There have also been system/control/physical invariant approaches proposed to model

the control behavior of a cyber-physical system (CPS) for anomaly detection. They usually

model the CPS as a typical control system shown in Fig. 3.2a and develop mechanisms

to capture the system’s control behavior. Choi et al. [25] proposed a detection framework

by capturing the causality among target state/setpoint input u(t), internal system state s(t),

and observed system state y(t) based on a PID controller model, where u(t) and y(t) are

designed to point to the same measurement in its design. Similarly, Quinonez et al. [104]

proposed use of a nonlinear physical invariant for detecting anomalous system behavior,

i.e., u(t)→y(t). Although the above approaches are applicable to robotic/customized ve-

hicles, they cannot be applied to commercial SA systems, such as commercial vehicles,
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due to the lack of data and/or system models they require. Specifically, the data commonly

available on IVNs are limited to i) specific control inputs I(t), ii) partial powertrain com-

ponent state s(t), and iii) dynamics measurements y(t). In other words, most of the data

they require, such as (the target and/or measured) wheel/brake torque, are not available on

IVNs.

To overcome the absence/lack of efficient models/mappings from I(t) to y(t), the au-

thors of [45] and [54] cross-validated vehicle data in different functional groups to ensure

that in-vehicle data are authentic by focusing on the pair-wise correlation between data

types. While they aim at anomaly detection in vehicle maneuvering behavior, the authors

only considered pair-wise, linear correlations between vehicle data without providing any

effective way to identify the sources of anomalies. From a technical point of view, EVAD

[54] (i.e., the approach with the best performance among prior data-driven approaches) per-

forms detection based directly on the pair-wise correlation coefficients and power spectrum

densities. However, it still requires closely-coupled data that are not commonly available

on IVNs (e.g., ⟨brake torque, brake pedal⟩ and ⟨wheel torque, acceleration⟩) to achieve ef-

fective detection. Dash et al. proposed PID-Piper [28] based on long short-term memory

(LSTM) machine learning for controller behavior modeling without the requirement of de-

tailed physical modeling. However, as we will show in Chapter 3.7, this approach cannot

effectively capture vehicle’s behavior for anomaly detection with limited data availability.

In contrast, DiVa constructs normal behavior models based on commonly available data

on IVNs. It is important to note that data availability is not an easy requirement to meet

because IVNs (e.g., CAN bus) are usually designed to meet the real-time requirements of

messages using priority-based network access. Adding new data may require a re-design of

message priority assignment, which may, in turn, require the modification of multiple ECUs

[29, 100]. Also, since ECUs are usually deployed on different in-vehicle (sub)networks

of different types (Fig. 3.2b), accessing detailed data from different IVNs may require a

fundamental change of IVN architecture which is infeasible/unacceptable for cost reasons.
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3.3 Threat Model and Case Study

3.3.1 Threat Model

DiVa is designed to detect anomalies in system behavior, not attack patterns, and iden-

tify or narrow down their sources from the cyberspace. Specifically, the anomalies consid-

ered in DiVa can occur under one of the following conditions:

A1. A change of the system’s reaction to control inputs owing to a faulty or compromised

component;

A2. A sensor failure or a sensor spoofing attack; or

A3. A data manipulation attack from a compromised component.

Data Manipulation (DM) is defined as the act of modifying the value of a message

transmitted on the in-system networks (e.g., IVNs) to a (wrong) value that does not rep-

resent the actual system state. The main difference between anomalies caused by data

manipulation and a component failure is that the anomalous operations of the latter will

propagate to other components in the control flow. In contrast, a data manipulation may

not have such a causality relationship between the input and the output since data on IVN

are not necessarily directly involved in control components (e.g., only for diagnostics or

information display). Note that data manipulation is not equivalent to Data Injection (DI),

i.e. the detection target of IDSes [3, 145]. They may lead to similar consequences from

a control perspective when the injected messages are also under manipulation attacks, but

data injection will generate additional messages, which will inevitably change the message

transmission pattern.

Since insufficient data availability prevents DiVa from accurately capturing all aspects

of system state, and also different vehicles are equipped with different types/levels of re-

dundancy, DiVa does not rely on the assumption of a fixed, trusted (set of) data. As a

common and natural limitation of all data-driven approaches that do not rely on any sin-

gle trustworthy data, DiVa is designed to detect anomalies as long as the adversary cannot
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compromise all data at once and identify their sources if the majority of its input data are

not manipulated coordinately.

3.3.2 Case Study

We use data types (DTs) to indicate a specific data types from the SA entity and avoid

confusion with a single data sample. DiVa’s case study focuses on the following vehicular

DTs (or VDTs) that are related to vehicle maneuvers:

• Control Inputs (CI) — throttle or gas pedal position (ga), brake position (br), and steering

wheel angle (θS);

• Powertrain Components (PC) — engine RPM (rm) and gear level (ge); and

• Vehicle Dynamics (DYN) — longitudinal acceleration (aX ), lateral acceleration (aY ),

speed (v) and yaw rate (ωZ).

DiVa chose these VDTs based on the standard vehicle repair procedure/information

(i.e., OBD-II) and the common data availability without significant modification in the

vehicle architecture or the model-specific parameters of the vehicle.

The limitation of DiVa’s detection described in Chapter 3.3.1 should not diminish

DiVa’s value and practicality for two reasons. First, as we will later demonstrate in Chap-

ter 3.7, the prior work with the best reported performance still cannot effectively detect

a single behavior anomaly with limited data availability. Furthermore, most, if not all,

of prior approaches designed for detecting stealthy attacks are not directly applicable to

commercial vehicles without the mechanisms/models proposed in DiVa to detect naı̈ve

anomalies, let alone the detection of stealthy ones. Second, the VDTs covered in DiVa

are associated with at least three different ECUs (e.g., engine control module, transmis-

sion control module, and gateway module) and the recently reported attack only showcases

data injection/manipulation through a single ECU that has communication interfaces with

external entities, i.e., the infotainment system. A successful attack that can evade DiVa’s

detection/identification requires the attacker to manipulate all (or a great majority) of the
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data in DiVa by compromising or matching the transmission characteristics of all ECUs

involved with the target data simultaneously. However, using a single ECU to mimic other

ECUs’ transmissions or generating additional messages to coordinate the attack can easily

be caught by the existing IDS/DI approaches [3, 22, 145].

3.4 System Design

3.4.1 Detection Sets

Instead of considering all data as a single correlation group for system behavior mod-

eling, DiVa performs anomaly detection on a set of combinations of DTs, called detection

sets (DSs). DSs are so designed that each of them may capture one or more important

system characteristics and the data of each detection set may overlap with those of other

DSs for cross-validation of data integrity.

DS
Type

CI PC DYN
Index ga br θS rm ge aX aY ωZ v
∗ 1

CI×DYN
✓ ✓ ✓ ✓

2 ✓ ✓ ✓

3 ✓ ✓ ✓

∗ 4
PC×DYN

✓ ✓ ✓

5 ✓ ✓

6 ✓ ✓

7
CI×PC

✓ ✓ ✓

8 ✓ ✓ ✓

9 All ✓ ✓ ✓

∗ 10
CI×DYN

✓ ✓ ✓

∗ 11 ✓ ✓ ✓

12 DYN ✓ ✓ ✓

Table 3.1: Detection sets of DiVa, where ∗ indicates an always-on detection set.

Table 3.1 summarizes 9 VDTs (ga,br, . . . ,v) and 12 DSs DiVa considers in its case

study. Specifically, DS1–DS3 capture the input-to-response consistency related to the vehi-

cle’s acceleration in longitudinal direction while DS10–DS12 capture the lateral maneuver

characteristics of steering control. DS4–DS6 capture the relation between the output of
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powertrain components and their resulting vehicle dynamics. DS7 and DS8 capture how

the control inputs interact with powertrain components. Finally, DS9 models the automatic

transmission’s behavior.

These 12 DSs capture the most fundamental vehicle operations and, therefore, are di-

rectly applicable to the vehicles commonly seen on the roads (e.g., sedans and SUVs). Fur-

thermore, if a first-party carmaker wants to integrate DiVa into its vehicles, more detailed

DSs can be added to the existing DSs for more fine-grained identification. In case more

fine-grained data become available, we provide a performance proof in Chapter 3.4.4.3.

3.4.2 Overview of System Workflow

Normal 
Model 

Training

1st Stage:
Detection

(Always-On DSs)

2nd Stage:
Identification

(All DSs)

Anomaly 
Detected

Training Execution

Threshold
Training

(Optional)

Figure 3.3: DiVa’s workflow.

DiVa’s basic workflow consists of training and execution phases as shown in Fig. 3.3.

In the training phase, DiVa monitors/collects the data in the SA system and constructs

the system’s normal behavior model for each detection set. After constructing the normal

behavior models, DiVa provides an option for system developers to automatically derive

the thresholds to be used during run-time. During the execution phase, DiVa performs

anomaly detection continuously. It first detects anomalies based on some selected DSs.

To filter out transient false positives, DiVa reports an anomaly only after α consecutive

positive detections.3 If an anomaly is detected, DiVa attempts to identify the anomaly

source/cause by combining the detection results from all the DSs.

This two-stage mechanism is designed based on the fact that not every detection set

holds the same level of causal relation (or correlation) between their data and some of the
3α is a design parameter that can be set to the developer’s/user’s preference or obtained during the optional

parameter training.
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detection sets are available only when a certain event occurs, e.g., DS2 can only work when

the gas pedal is pressed. The detection sets selected for reporting an anomaly (i.e., the 1st

stage) are DS1, DS4, DS10, and DS11, which we call always-on detection sets. By perform-

ing detection only on always-on detection sets first, DiVa’s overall false positive rate will

not be influenced by the false positives from other DSs with weaker causal correlation. In

the case study, we choose always-on DSs because they:

• collectively cover all the VDTs considered in the case study;

• all have a common VDT (i.e., speed “v”); and

• have deterministic causal correlation/models between their VDTs.

Other than reducing false positives, the essence of selecting these always-on DSs is to

prevent a coordinated or colluded attack from going undetected. If an attacker wants to

mount certain attacks that can fool an always-on DS, s/he must also manipulate/match

speed. In the meantime, other always-on DSs will detect the anomaly as long as the attack

does not manipulate all of the data coordinately, which is not in the scope of this thesis,

and is impossible for any data-oriented system to detect without assuming certain trusted

data.

After an anomaly is detected in the 1st stage, DiVa performs anomaly detection on

the remaining DSs and executes its source identification algorithm based on the detection

results from all the DSs to narrow down the search space of anomalous data source.

3.4.3 Anomaly Detection in Detection Sets

We now introduce two mechanisms that DiVa utilizes to perform anomaly detection.
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3.4.3.1 Detection by Distance to Normal Model

This approach is designed to identify system behaviors that significantly deviate from

normal operation. Assume a DS is governed by a model Mtr in the form of

x′(t) = F(x1(t),x2(t), . . . ,xn(t)), (3.3)

where x1(t),x2(t), . . . ,xn(t) are data in the DS and x′(t) is another data in the same DS or a

derived characteristic.

DiVa utilizes Mtr and the testing data xte,1(t), xte,2(t), . . ., xte,n(t) to obtain an estima-

tion of x′te(t), denoted as x̂′te(t). DiVa then computes d = D(xte, x̂′te) to Mtr, where D(·)

is the function that compares x̂′te and x′te and outputs a scalar d, indicating how much x′te

deviates from Mtr. Finally, DiVa reports an anomaly if d is greater than a threshold Γ. D(·)

can be expressed with the notion of tuple using multiple distance definitions and threshold

values. In a given D(·) = ⟨D1(·),D2(·), . . .⟩, DiVa will report an anomaly if any distance

element exceeds its corresponding threshold.

3.4.3.2 Detection by Model Change

This detection is designed to identify a minor change of behaviors over a long period of

time that is undetectable by the previous approach. This detection is performed periodically

to ensure that DiVa can capture minor changes over a long period of time. Like the previous

example, suppose DiVa obtains the model Mtr with model parameters {ptr,1, ptr,2, . . ., ptr,k}

after the training phase. DiVa takes the testing data {xte,1(t), xte,2(t), . . ., xte,n(t)} as inputs,

uses the same model training procedure as in the training phase, and derives a testing model

Mte with model parameters {pte,1, . . . , pte,k}. DiVa compares the parameters of training and

testing models one-by-one and reports an anomaly detection if any |ptr,k− pte,k|> ΓM,k.
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3.4.4 Identification of Anomaly Source(s)

Let us first introduce some notations before presenting the identification algorithm. Let

DSz be a DS with index z, DSz → ✓ (DSz → ✗) represents the case when DSz succeeds

(fails) in matching the normal behavior, and dsz(t) be the time-series data of DSz.

3.4.4.1 Problem Formulation

Our goal is to classify DTs (i.e., x1, . . . ,x9) as a potential anomalous set (P) or a correct

set (Q). xi ∈P indicates that x̄i (i.e., an indicator of xi) can be either anomalous (0) or correct

(1), while xi ∈ Q indicates that x̄i can only be equal to 1. The problem of identifying an

anomaly source can be formulated as that of finding P and Q that satisfy the system of

Boolean equations constructed based on the detection results on DSs:


∧

xi∈DS j

(x̄i) = 1, if DS j→✓ (3.4)

∧
xi∈DS j

(x̄i) = 0, if DS j→ ✗, (3.5)

where
∧

denotes AND operation. Since only the elements in P can produce a 0 detection

and Eq. (3.4) can always be satisfied, this problem can be simplified further as that of

identifying all possible xi ∈ P such that

∨
xi∈DS j

(¬x̄i) = 1, if DS j→ ✗, (3.6)

where
∨

denotes OR operation. That is, the goal is to identify at least one anomalous

DT in a DS upon detection of an anomaly. While this formulation may seem similar to the

hitting set problem [30, 31, 97], there exist two main differences that make the identification

problem unique. First, the hitting set problem does not consider the condition in which

there can be incorrect detection (i.e., false positives or negatives). Second, our goal is to

find the DT that is most likely to be anomalous during the period of interest, instead of
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finding a minimum number of anomalous DTs from a single detection.

3.4.4.2 Identification Algorithm (IA)

We have developed an efficient algorithm to solve Eq. (3.6) with computation complex-

ity of O(NK), where N (K) is the number of DTs (DSs).

The first step of anomaly source identification is to combine the detection results in DSs

by creating a table as shown in Table 3.2 and marking each cell according to their results.

DiVa labels all the DTs in DSz to be 1 if DSz→✓, and 0 otherwise. The value 1 means that

the DT matches the normal behavior while 0 means the DT’s integrity to be determined.

Then, DiVa performs a column-wise OR operation on the result table as shown in the “All”

row of Table 3.2 and outputs all the DTs with value 0 as potential anomaly source(s).

Ideally, the detection results should correctly capture the anomaly in each DS. However,

it is possible that some DSs have incorrect detections. Therefore, DiVa performs a sanity

check before generating the final detection result. Erring on the safer side of detection,

DiVa is biased to determine that a DT is a potential anomaly source when a conflicting

detection (CD) occurs. A CD is defined as the condition that a DSz does not match its

normal behavior, but all other DSs that have overlapping data with DSz pass the detection.

In case of a CD, DiVa will set all the data in DSz to be anomalous.

DiVa performs the above procedure and marks the potential anomaly source(s) when-

ever an anomaly is detected. Users will be able to select the time period of their interest

and obtain a summary of that period. For example, if a user is interested in his last trip,

DiVa will create a chart as shown in Fig. 3.1 and rank the vehicle data according to their

likelihood of being the anomaly source(s) based on the time DiVa determined them to be

anomalous (called anomalous time).
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DS Result ga br θS rm ge aX aY ωZ v
1 ✓ 1 1 - - - 1 - - 1
4 ✗ - - - 0 0 - - - 0

10 ✓ - - 1 - - - 1 - 1
11 ✓ - - 1 - - - - 1 1

2 ✓ 1 - - - - 1 - - 1
3 ✓ - 1 - - - 1 - - 1
5 ✓ - - - 1 - - - - 1
6 ✗ - - - - 0 - - - 0
7 ✓ 1 1 - 1 - - - - -
8 ✗ 0 0 - - 0 - - - -
9 ✗ 0 - - - 0 - - - 0

12 ✓ - - - - - - 1 1 1

All ✗ 1 1 1 1 0 1 1 1 1

Table 3.2: Example of combining detection results while assuming only gear data (ge) is
anomalous.

3.4.4.3 Detection Correctness and Performance Guarantee

Before discussing the properties of the identification algorithm (IA), we first introduce

some terminologies. Correct detection indicates the condition that the consistency check

(i.e., whether or not the data passes the anomaly detection) will fail iff at least one of the

DTs in a DS is anomalous. Weak detection indicates the condition that the consistency

check will pass if all the DTs in a DS are correct (i.e., without manipulation) and the

consistency check will fail if not all the data in a DS are manipulated. A representative

condition of weak detection is the adversary launching a sophisticated attack that targets a

certain set of DSs to evade DiVa’s detection. The correctness and effectiveness of IA can

be stated as Properties 3.4.1–3.4.2 and 3.4.3–3.4.5, respectively. Note that the properties

discussed here are the general characteristics of IA and they always hold irrespective of DS

design under consideration (even when including more than the original ones) as long as

there exists a set of always-on DSs such that all DSs in this set (i) collectively cover all the

DTs and (ii) share a common DT.
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Property 3.4.1. (Detection Guarantee) If not all DTs are manipulated, IA is guaranteed to

detect anomalies under weak detection.

Proof. Since not all DTs are manipulated, there must exist an always-on DS that contains

at least one correct DT and one manipulated DT because of the DS requirement described

earlier. According to the definition of weak detection, the DS contains at least one correct

DT and one manipulated DT will fail the consistency check. Therefore, the anomaly will

be detected.

Property 3.4.2. (Correctness) The result obtained from IA (i.e., P and Q) always satisfy

Eq. (3.6) under weak detection.

Proof. Assume there is a solution of IA that does not satisfy Eq. (3.6). That is, ∃ k

s.t.
∧

xi∈DSk
(x̄i) = 1 always holds and DSk→ ✗. This indicates all xi ∈ DSk are in Q, which

violates the condition of sanity check, and hence this solution cannot be a result from IA.

Therefore, the assumption must be false.

Property 3.4.3. (Suspect with Reason) Under weak detection, there must exist some DS j→

✗ and xi ∈ DS j for all xi determined to be in P.

Proof. Assume ∃ xi ∈ P s.t. ∀DS j ∋ xi, DS j→ ✓. Since DS j→ ✓ for all DS j ∋ xi, x̄i must

be 1 before the sanity check. Also, the sanity check will only change x̄i to 0 if xi in one of

the DSs that fail the consistency check. Therefore, xi must be in Q. This result contradicts

the assumption, and hence the assumption must be false.

Property 3.4.4. (Guarantee of Correct Detection) IA is guaranteed to include all the

anomalous data in P under correct detection.

Proof. Assume ∃ xi s.t. xi ∈ Q and xi is anomalous. Since IA will only classify a DT in Q

if ∃ DS j s.t. DS j → ✓ and xi ∈ DS j, this contradicts the assumption of correct detection

that the consistency check will always fail if there is at least one anomalous data in the DS.

Therefore, the assumption must be false.
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Property 3.4.5. (Guarantee of Weak Detection) Under a weak detection, IA guarantees

that all the anomalous data will be included in P as long as they are not in a DS that is

under a coordinated attack.

Proof. Assume ∃ xi s.t. xi ∈ Q and xi is anomalous. Since IA will only classify a DT in

Q if ∃ DS j s.t. DS j → ✓ and xi ∈ DS j, this contradicts the assumption of weak detection

that the consistency check will always fail if there is at least one anomalous data in the DS

when not under a coordinated attack. Therefore, the assumption must be false.

Property 3.4.3 guarantees that IA will not include unnecessary data in P while Proper-

ties 3.4.4 and 3.4.5 make sure that IA will include all the suspected anomalous data in P.

In what follows, we explore the DSs proposed in DiVa and describe how they can be used

to model the normal vehicle behavior for anomaly detection.

Next, we detail the DSs used in DiVa’s case study.

3.5 Input-to-Response Detection Sets

The models in this class of DSs describe the causal relations between the control inputs

and the vehicle dynamics. Specifically, the model M has the form of:

xp(t) = F(x1(t), . . . ,xp−1(t),xp+1(t), . . . ,xn(t)), (3.7)

where {x1, . . . ,xn} is the set of VDTs in the DS and xp is a VDT of DYN.

3.5.1 DS1 {ga,br,aX ,v}

Model: DS1 explores the causal relation between the control inputs and the vehicle

dynamics in longitudinal direction. Specifically, DS1 describes how longitudinal accelera-

tion will change if the gas pedal or brake is pressed. According to Newton’s second law and

the general vehicle’s physical model [82], the vehicle’s acceleration can be expressed as the
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effect of the engine’s drive force (FE), braking force (FB), resistance force (FR), including

aerodynamic drag and wheels’ rolling drag, and other unobservable contexts (FO):

ma⃗X = F⃗E + F⃗B + F⃗R + F⃗O. (3.8)

FE (FB) is determined by the vehicle state and the amount of gas (brake) pedal pressure

applied while FR is determined solely by the vehicle state. Therefore, the model of DS1

(MDS1) can be described as:

âX(t) = B0(v(t))+Bg(v(t),ga(t)) Kg(ga(t))

+Bb(v(t)) Kb(br(t)), (3.9)

where Kg and Kb are the functions that reflect how the pedal positions influence the acceler-

ation; B0, Bg, and Bb represent the scaling effects which depend on the state of the vehicle.

Note that the rationale behind the design of Bg(·) is related to capturing the gear transition

behavior (Chapter 3.6.6).

We then approximate the functions in Eq. (3.9) with their Taylor expansions:

âX(t) = B0(v(t))+
Ng,B

∑
i=0

Bg,i (v(t))gi
a×

Ng,K

∑
p=0

kg,p gp
a

+
Nb,B

∑
j=0

Bb, j (v(t))b j
r×

Nb,K

∑
q=0

kb,q bq
r (3.10)

where the N’s are the orders of the approximation. Eq.(3.10) can be further simplified as:

âX(t) =C0(v(t))+
Ng

∑
i=1

Cg,i(v(t))gi
a +

Nb

∑
j=1

Cb, j(v(t))b j
r ,

where Ng = Ng,B +Ng,K and Nb = Nb,B +Nb,K. (3.11)

The training of DS1 can then be performed by identifying the scaling effect (i.e., the C’s)
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with regard to v based on machine learning techniques, such as ridge regression.

We introduce the process of training C0, {Cg,i}, and {Cb, j}. DiVa utilizes a similar

training process as CADD, but without road inclination calibration, to identify the param-

eters based on their values at different speeds. Specifically, it partitions the data into small

segments with a predefined time window (10s in our implementation) and performs ridge

regression [12] to estimate C0, {Cg,i}, and {Cb, j} in each segment:

Ĉk = argminCk
(aX ,k−CT

k ωk)
2 +λ |ωk|2, (3.12)

where k is the segment index, Ck = [C(0,k),C(g,1,k), . . . ,C(X ,g,Ng,k),C(b,1,k), . . . , C(b,Nb,k)]
T ,

ωk = [1,ga(tk,1), . . . ,ga(tk,NT ),br(tk,1), . . . , br(tk,NT )]
T , NT is the total number of data in

each segment, and λ is the regularization term.

The final step is to find a mapping between the speed and the parameter values. DiVa

utilizes the average speed as the speed in the target segment. That way, we can plot the

values of parameters and speed on a 2D space, and identify the mapping by performing

regression. Fig. 3.4 shows an example of using a third-order polynomial to approximate

the mapping between the parameters and the vehicle speed. In this example, we can observe

that the data points form clear patterns, indicating our model’s ability to correctly capture

the correlation between the data considered in DS1.
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Figure 3.4: Example of estimating parameters of DS1 model. The data in this example are
extracted from Comma AI’s open dataset [27].
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The D function of DS1 is defined as the absolute difference between the predicted and

the actual acceleration:

DDS1 := |âX(t)−aX(t)|. (3.13)

3.5.2 DS2 {ga,aX ,v} and DS3 {br,aX ,v}

The models of DS2 and DS3, denoted as MDS2 and MDS3 , respectively, are simplified

versions of MDS1 . Instead of considering both gas and brake pedals at the same time, MDS2

(MDS3) focuses on the time when only the gas (brake) pedal is pressed. Since the operations

of training and detection are basically the same as in DS1, we omit their details.

3.5.3 DS10 {θS,aY ,v} and DS11 {θS,ωZ,v}

DiVa exploits the characteristics of circular motion to model the lateral motion of the

vehicle. The yaw rate (ωZ) and the steering wheel angle (θS) of the vehicle follows the

following equation [77]:

ωZ = v× sin(θS/k)/l, (3.14)

where k is the steering ratio and l is the vehicle length. Specifically, when making turns, the

lateral acceleration (aY ) induced by the centripetal force is proportional to the square of the

yaw rate × the turning radius (r): aY ∝ ω2
Zr. Since r is determined by θS, DiVa constructs

MDS10 and MDS11 as:

MDS10 : âY (t) = bY,1(v(t)) bY,2(θS(t)) and

MDS11 : ω̂Z(t) = bZ,1(v(t)) bZ,2(θS(t)). (3.15)

Similarly to MDS1 , DDS10 and DDS11 are defined as:

DDS10 := |âY (t)−aY (t)|, and (3.16)

DDS11 := |ω̂Z(t)−ωZ(t)|. (3.17)
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3.5.4 DS12 {aY ,ωZ,v}

Unlike the other DSs in this category, DS12 is designed to check the consistency be-

tween the vehicle dynamics in lateral direction. Utilizing the circular motion that the

centripetal acceleration is proportional to the product of angular speed and the velocity

(aY ∝ ωZv), DiVa constructs MDS12 as:

MDS12 : âY (t) = s×ωZ(t)× v(t), (3.18)

where s is the model parameter that is obtained by the ridge regression during the training

phase. Fig. 3.5 shows an example of the linear correlation between the VDTs in DS12.

P

𝑑

Figure 3.5: This figure shows an example of Sedan’s linear correlation between aY and
ωZ× v.

DDS12 is defined as the distance between a given data P = (ξ (t),η(t)) = (ωZ(t)×

v(t),aY (t)) and the curve y = sx:

DDS12 := d = |η(t)− sξ (t)|/
√

1+ s2. (3.19)

3.5.5 Correlation and Energy Differences

We have thus far discussed DSs with a strong (causal) correlation. While all of their

models have the same form as described in Eq. (3.7), a direct comparison of the predicted

value (x̂′(t)) and the recorded value (x′(t)) may sometimes result in a high false positive

rate due to transient noises. To account for this, DiVa performs additional detection if
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D(x̂′(t),x′(t)) > Γ within an observation window (TW =10s). DiVa computes i) the corre-

lation coefficient, and ii) the energy difference between x̂′(t) and x′(t), t ∈ TW . While the

former measurement checks whether the features of x̂′(t) and x′(t) match each other, the

latter measurement detects whether there is an extra scaling or shifting between the two

data. The energy difference is defined as:

ED =
∫
TW

|x′(t)2− x̂′(t)2|dt. (3.20)

Similarly, if one of the measurements exceeds the detection threshold, DiVa will report the

detection of an anomaly.

3.6 Powertrain Operation Detection Sets

For powertrain control operations, DiVa constructs models to extract vehicle behav-

ior characteristics (VBC), such as gear-switch timing and ratio of vehicle speed to engine

RPM. Specifically, DiVa derives the VBC according to the VDTs in the detection sets:

γ = F(x1(t),x2(t), . . . ,xn(t)), (3.21)

where γ is the target vehicle characteristics.

3.6.1 DS4 {rm,ge,v}

3.6.1.1 Model:

MDS4 captures the speed-to-rpm ratio in each gear level. To construct MDS4 , DiVa

exploits the fact that i) there is a one-to-one mapping between gear levels and the equivalent

gear ratio of the gear-train system and ii) the wheel speed is proportional to the product of

engine RPM and gear ratio [124]. That is, the vehicle speed (v) will be proportional to the

engine RPM (rm) given a fixed gear level (ge). Specifically, there exist step-shaped patterns
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Figure 3.6: v(t)/rm(t) matches ge(t) from a real-world trace.

in the observed value of gr = v/rm that indicate the gear level (Fig. 3.6). DiVa captures the

average of gr in each gear level to construct MDS4:

ρ(ge(t)) = v(t)/rm(t), (3.22)

where ρ(k) = grk is the mapping between gear level k and speed-to-rpm ratio grk.

3.6.1.2 Detection:

DiVa reports detection of an anomaly when speed-to-rpm ratio of testing data does not

match the normal model. DDS4 is defined to be the absolute difference between the recorded

gr and the estimated gear ratio ĝr using ρ(·):

DDS4 := |gr(t)−ρ(ge(t))|. (3.23)

Similarly, DiVa continuously monitors grk of the testing data (i.e., grk,test) and report the

detection of an anomaly by model change if grk,test deviates from the normal model.
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3.6.2 DS5 {rm,v}

There is no apparent correlation between these two VDTs when we only consider en-

gine RPM and speed. Sometimes they have a high correlation coefficient, while they do

not at some other times, depending on whether or not the gear is in transition. To con-

struct MDS5 , DiVa computes gr(t) = v(t)/rm(t) and then determines the gear level at any

given time by identifying the closest value of grk obtained from DS4. After determining

the gear level, DiVa considers only those time periods Ts when gr(t) stays stable (Fig. 3.7)

by filtering out the time when the gear is in transition. MDS5 is designed to be the average

correlation coefficient between speed and RPM in the stable period as well as the range of

speed and RPM value in each gear level:

γv,rpm = corr(rm,v), t ∈ Ts,

εv,k = [min(vk(t)),max(vk(t))], t ∈ Ts,

εr,k = [min(rm,k(t)),max(rm,k(t))], t ∈ Ts, (3.24)

where corr is the function that computes the correlation coefficient between the input data

and subscript k indicates that the time when the gear level is determined to be k.

DDS5 is defined to be the difference of correlation coefficients of speed and engine RPM

between the training (γtr) and testing (γte) phases and how much the recorded values of v

and rm differ from εv,k and εr,k, respectively:

DDS5 := ⟨|γtr− γte|, v(t)⊖ εv,k,rm(t)⊖ εr,k⟩, (3.25)

where εX ,k = [εX ,k,min,εX ,k,max] and X(t)⊖ εX ,k =

max(|max(0,Xk,max− εX ,k,max)|, |min(0,Xk,min− εX ,k,min)|).
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the gear is not in transition (marked by the black boxes).

3.6.3 DS6 {ge,v}

Unlike the condition in DS5, gear and speed show a strong correlation when the gear is

in transition, but not when the gear remains in the same level. MDS6 has the form of:

γgear,v = corr(ge,v), t ̸∈ Ts. (3.26)

DDS6 is defined to be the difference of correlation coefficients of speed and rpm between

the training (γtr,gear,v) and testing (γte,gear,v) phases:

DDS6 := |γtr,gear,v− γte,gear,v|.

3.6.4 DS7 {ga,br,rm}

DS7 is one of the DSs with VDTs that do not have any strong correlation with each

other when only the included VDTs are considered. So, DiVa does not construct any

specific model for the vehicle and performs generic anomaly detection that is applicable to

vehicles. DiVa monitors the change of engine RPM when three events occur:

• Tgs — the time between the gas pedal is just pressed and the percentage of gas pedal

position starts to decrease;
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• Tge — the time between the gas pedal position starts to decrease and the gas pedal is

completely released; and

• Tb — the time when the brake pedal is pressed.

The choice of events is based on the fact that engine RPM will be affected by the

change of control input before transmission and, therefore, the transient change of engine

RPM when these events occur is less likely to be the result of change of transmission. That

is, the RPM will increase when the first event occurs and the RPM will decrease when the

latter two events occur. DDS7 is defined as the change of RPM during Tgs,p, Tge,q, and Tb,r

in the detection window, where p, q, and r the event indices:

DDS7 := ⟨∆rm(Tgs,1), . . . ,∆rm(Tge,1), . . . ,∆rm(Tb,1), . . .⟩. (3.27)

In normal condition, ∆rm(Tgs,p) should be greater than 0; ∆rm(Tge,q) and ∆rm(Tb,r) should

be less than 0. DiVa will determine that an anomaly has occurred when any of the above

relations does not hold.

3.6.5 DS8 {ga,br,ge}

Similarly to DS7, DS8 utilizes generic vehicle characteristics that the gear level will

only increase when there is a positive acceleration, and decrease when there is a negative

acceleration to perform anomaly detection. While the positive (negative) acceleration is

the result of applying gas (brake) pedal in most of the scenarios, DiVa monitors whether

gas/brake pedal is pressed during a gear change.

Specifically, DiVa computes the difference of the durations when the gas and brake

pedals are pressed and the gear is changing. Therefore, DDS8 is given as:

DDS8 := ⟨|Tg,u,1|− |Tb,u,1|, . . . , |Tg,d,1|− |Tb,d,1|, . . .⟩,

where the subscript g (b) indicates that the gas (brake) pedal is pressed and subscript u (d)
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indicates the occurrence of up-shift (down-shift) events. DiVa reports the occurrence of an

anomaly when |Tg,u,p|− |Tb,u,p|< 0 or |Tg,d,r|− |Tb,d,r|> 0.

3.6.6 DS9 {ga,ge,v}

3.6.6.1 Model:

MDS9 captures the gear shifting behavior (GSB) of the vehicle. The GSB of a vehicle

with automatic transmission can be described by a set of curves that mark the threshold

of throttle position and vehicle speed when a gear shift occurs [146]. Since the throttle is

controlled by the gas pedal, DiVa utilizes gas pedal position to capture the GSB. Fig. 3.8 is

an example of GSB graph, where the data points are the recorded gear shift events and the

dotted curves are the thresholds that the vehicle makes a gear shift. MDS9 is then designed

as:

ĝa(t) = GS(v(t),ge(t)), t ∈ Tg, (3.28)

where GS(·) is the set of equations that describes GSB threshold curves and Tg is the time

when the vehicle makes gear shifts. DDS9 is then defined to be the minimum distance

between the recorded gear shift point P to the corresponding GSB curves. Training MDS9

is equivalent to obtaining GS(·) for each gear level k given the training data in each gear

level {(v,ga)k} by performing piece-wise regression [12].

3.6.6.2 Training:

Suppose there is a set of training data {(v,ga)k}, a record of speed and gas pedal position

when the vehicle makes a certain gear shift (e.g., gear level 1 to 2). Since GSB of the

vehicles is a car maker’s proprietary design that does not have any standard, it is challenging

to model the GSB with limited training data. Furthermore, since the GSB curves may have

segments that are parallel to either of the axes of v or ga, a naive piece-wise regression will

not work in this case.
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Figure 3.8: Upshift curve of Sedan’s gear transition.

To meet these challenges, DiVa needs to have an effective way to 1) divide the training

data into segments, 2) perform some regression algorithms, and then 3) combine the results

from the segments to form a complete GSB curve.

Divide data into segments: The first step of training MDS9 is to normalize v and ga to the

range of [0,1] to avoid any computational bias towards one of the data. DiVa then performs

principal component analysis (PCA) to identify the first principal component (P⃗C1) in the

speed–gas plane where the data varies the most. DiVa then projects all the training data on

P⃗C1 and divides them into a predefined number of segments.

Perform regression on the ℓth segment: To avoid the condition that the data points

in a segment only align with the y-axis in the speed–gas plane, DiVa performs a PCA

analysis and then projects the data points onto the coordinate system defined by the 1st

and the 2nd principal components. DiVa will then perform a ridge regression to obtain

the approximation of GSB curve in the segment. The model parameters recorded for the

segments are their 1st and 2nd principal components (P⃗Cℓ,1 and P⃗Cℓ,2) and the regression

results.
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3.6.6.3 Detection:

Given a testing data P = (vte,ga,te), DiVa will project P on P⃗C1 to identify the segment

of the GSB curve P residing in (Fig. 3.8). DiVa then computes the distance ∆g (∆s) between

P and the GSB curve along the gas-axis (speed-axis) and set d = min(∆g,∆s), where ∆g

and ∆s are normalized distances to the GSB curve. The physical meaning of this distance

is the normalized deviation of speed or gas pedal position of the vehicle that should make

a gear shift.

3.7 Evaluation

We first introduce our evaluation setup (Chapter 3.7.1) and then present the evaluation

of DiVa’s performance from three perspectives. Specifically, we evaluate: i) DiVa’s ability

to detect anomalies as a pure detection system (Chapter 3.7.3); ii) DiVa’s ability to identify

the anomaly source(s) while considering the source identification as a stand-alone function

(Chapter 3.7.4); and iii) DiVa’s system-wide performance as a complete forensic system

(Chapter 3.7.5).

3.7.1 Experimental Setup

3.7.1.1 Data

To ensure DiVa can be applied to more than one specific vehicle model/make, we use

three sources of data for evaluation: i) data collected from 2 vehicles — 1 sedan (Lincoln

MKZ) and 1 SUV (Ford Escape) — using commercial off-the-shelf (COTS) OBD-II inter-

faces, i.e., OpenXC reference VI [98] with 10Hz sampling rate, and ii) Comma AI open

dataset [27]. Table 3.3 shows the statistics of the data used in our evaluation. The vehi-

cles’ operation scenarios include driving in urban/suburban areas and highways, and do not

contain repeated paths in different routes/traces. Also, the vehicles are driven by multiple

drivers to avoid the bias of driving behavior.
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Source Total Dist Trace # Training Testing Driver #

Sedan 55.88 km 7 22.18 km 33.70 km 3
SUV 247.25 km 5 43.76 km 203.50 km 2

Comma 262.07 km 6 16.85 km 245.22 km Unknown

Table 3.3: The data used in our evaluation (10Hz sampling rate).

While most DSs can generate a detection result using a single data sample, those

DSs utilizing correlation coefficients in their detection use a 10s-observation window for

detection-by-distance and all DSs use a 100s-observation window for detection-by-model-

change. For each data source, our evaluation is based on training and testing steps as

follows.

3.7.1.2 Training

DiVa first generates normal behavior models for detection sets directly based on the

training data. Instead of using a set of preset thresholds, DiVa performs the (optional)

threshold training to obtain the necessary parameters for its operation automatically based

on the detection preference set by the developers.

One of the most important questions in any detection system is how to set the thresholds

for reporting the detection. If a threshold is set to too low, the system will have a high

detection rate but will also inevitably have more false positives. On the other hand, if

the threshold is set to too large, the system will have less false positives, but more miss

detections.

DiVa will automatically generate the training cases and find a threshold combination

that minimizes a pre-defined objective function based on the design choice or even system

developers’ preferences. All a developer needs to do is to set i) the target deviation levels

that DiVa should consider as an anomaly (i.e., the detection target) and ii) the preference

tuple (w). For example, the levels can be set to values smaller than (or equal to) the maxi-

mum tolerable error for the vehicle’s internal components so that any larger manipulation
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which may lead to unstable system state will be considered as an anomaly. Note that this

detection target should also consider the behavior change caused by different driving con-

texts, such as the total mass of the vehicle including cargoes and passengers. For example,

there can be a 5.2% mass change (per additional passenger)4 to the vehicle. The detection

target of 1.5m/s2 for aX is the result of considering the fact that the vehicle can have at least

400kg payload tolerance (i.e., the driver, passengers, and cargoes) and can be traveling on

a road with ≤20% road grade. We would like to stress that the target detection settings

will not limit DiVa’s detection to those target values. As we will introduce next, DiVa will

automatically adjust the threshold settings to obtain the best TPR and FPR preferences set

by the user and these thresholds may be smaller/tighter than the target detection setting;

this is the very reason why DiVa can still achieve >79% median TPR even if the adversary

adjusts the attacks to match the detection settings (Fig. 3.9).

DiVa utilizes the preference tuple w = [w1, w2, w3]
T for each DS to specify the pref-

erence for i) true positive rate (TPR), ii) false positive rate of distance to model detection

(DFPR or FPR-D), and iii) false positive rate of model change detection (MFPR or FPR-

M), respectively. DiVa selects the thresholds (Γ) for each DS by minimizing the following

objective function:

f (Γ) = wT R(Γ), (3.29)

where R(Γ) = [(1−T PR(Γ))2,DFPR(Γ)2,MFPR(Γ)2]T .

While DiVa utilizes always-on DSs to detect the occurrence of an anomaly, always-on

DSs and their parameters are chosen to achieve high accuracy (i.e., high detection rate and

low false positive rate). On the other hand, since other DSs are utilized to narrow down the

search space, their parameters can be chosen to focus on high detection rate. The rationale

behind this design choice is to reduce the probability that DiVa incorrectly rules out data

4Computed based on the average weight of a sedan (1360kg[95]) and 75kg per person: 5.2% = (Per Person
Weight) / (Car + Driver).
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as the source of anomaly. We choose the default setting of DiVa to be (1,1,1) for always-on

DSs and (2,1,1) for identification-assistance DSs (i.e., other DSs that are not always-on

DSs).

Specifically, DiVa adopts 2-fold cross-validation to avoid overfitting the training data,

and the basic steps are:

• (Step 1) Create a dataset DT for threshold selection by performing data manipulation

based on the detection target set by system users/developers (see the description after the

basic steps);

• (Step 2) Use an optimization algorithm and a half of DT to find a set of {p} that minimizes

f (p); and

• (Step 3) Use the second half of DT to find the specific p′ ∈ {p} that minimizes f (p).

In our evaluation, the detection target is set to the “Shift” row in Table 3.4. Therefore,

during Step 1, DT will be randomly manipulated to deviate from its original values by the

values specified in Table 3.4. This way we are actually simulating the worse-case scenario

that an attacker knows DiVa’s detection target and tries to manipulate the data right on that

value(s). Since the detection target presented in this section is already a very tight bound,

system developers can directly use these settings in their deployment.

In Step 2, we use a genetic algorithm [85] with 400 elements in each generation and

as the optimization algorithm and it is set to terminate after the 5th generation to preserve

variations between elements. Finally, the top 10 fitting elements will be used in Step 3. The

parameters used in the genetic algorithm are chosen based on our preliminary experiment

in which thresholds can already converge with this setting. Therefore, picking a larger

number of elements of generations will not provide any practical benefit.

If there are some specific vehicle modes or features that will change the vehicle’s nor-

mal behavior (e.g., the speed capping function or sports mode), the developers should set
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the training process to consider those modes by including them in the training data and im-

plementing DiVa to have multiple sets of normal behavior models (i.e., DiVa should report

the detection of an anomaly only when the vehicle does not match any set of the normal

behavior models).

α is chosen based on two metrics during the training phase: i) the desired false-positive

performance and ii) the maximum tolerable detection latency. Because DiVa’s default ap-

plication is for vehicle diagnostics, say, after a trip, we use i) in our evaluation. Specifically,

α is obtained when DiVa reaches a 0% median false positive rate.

3.7.1.3 Test Cases

Since DiVa is designed to detect vehicle behavior anomalies (not the attack patterns),

the test cases are designed (and presented) based on the resulting data/behavior deviation

that will be perceived by DiVa after an attack is launched (instead of how the attack is

launched). That way, we can objectively evaluate DiVa’s performance with regard to dif-

ferent behavioral changes without relying on a certain assumption of ⟨controller design,

attack⟩, and the results presented here can be extended to predict DiVa’s performance un-

der attacks that generate the same post-effect.

Type ga br θS rm ge aX aY ωZ v
Unit % Lvl. m/s2 rad/s kph

Set
S1 S2 S3 S4 S5 S6 S7 S8 S9

10 1 1.5 0.5 12

Rand
S10 S11 S12 S13 S14 S15 S16 S17 S18

[0,100] [1,6] [-5,5] [-5,5] [0,120]

Shift
S19 S20 S21 S22 S23 S24 S25 S26 S27

10 1 -1.5 1 0.5 12

Table 3.4: The basic testing scenarios in our evaluation.

Table 3.4 summarizes the basic scenarios considered in our evaluation. Since there is

no limit to how anomalous the vehicle behavior can be or how data can be manipulated, we

evaluate DiVa’s performance while VDTs under consideration can be anomalous in three
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representative conditions. These evaluation cases are designed based on the successful

attacks reported before. According to [70, 88, 140], there are two steps to incorrectly

trigger vehicle functions (e.g., auto parking or diagnostic mode) in modern vehicles — i)

setting certain vehicle state data (e.g., ga and v) to a specific value/range before triggering

the vehicle mode and ii) sending a (malicious) command to trigger the vehicle mode. Thus,

we first evaluate the cases when any type of data can be set/manipulated (denoted as Set) to

a certain value (e.g., A3 in Chapter 3.3). Second, we consider the cases when the data can

have random values (denoted as Rand) within a certain range to simulate sensor failure or a

naı̈ve attack (e.g., A2). Finally, we evaluate the cases when any type of data can be shifted

by a certain amount of offset, denoted as Shift, which simulates conditions in which the

attackers move the data or change the ECU/controller behavior to the target range without

changing the correlation between VDTs (e.g., A1). Shift attacks are also stealthy in that

they are controlled to manipulate the vehicle data/behavior right at DiVa’s target detection

settings (i.e., only a small behavior deviation) and can thus evade the previous detection

schemes with only <56% detection rate and a long detection time required.

Note we only listed the basic evaluation settings used in Chapter 3.7.3 and other more

sophisticated cases will be evaluated in Chapter 3.7.5. For each testing scenario, we gen-

erate 10 different test-cases, creating a total of 4,860 and 147,420 different ⟨trace/route,

anomaly⟩ test-cases in Chapters 3.7.3 and 3.7.5, respectively. The anomaly will start at a

random time and last up to 5 minutes. The choice of 5min is to facilitate measurements up

to, but not just for 5min because the metrics used in our evaluation are computed at every

sampling time, not by considering the entire attack duration as a whole. Also, as we will

show later, DiVa usually requires only a single data sample to detect an anomaly.

3.7.2 Post-Attack Effects

Unlike drones or aerial vehicles that have a clear definition of unsafe state (e.g., a stall

or crashing into the ground), whether or not an attack can cause some real harm to a car
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depends on its operating “context” (e.g., whether or not there are obstacles nearby into

which the car may crash). This is the reason why we directly presented the resulting effect

of attacks. In fact, the behavioral deviation caused by the attacks can be directly inferred

from Table 3.4. For example, a 12% vehicle speed deviation may make the driver think

s/he is driving at the speed limit while the car actually exceeds the speed limit by 12% or

the path planning of autonomous control will have a 12% estimation error for the traveling

time to reach a waypoint.

Here we present the real-world effects of the data manipulation presented in Table 3.4.

The upper bound of perception deviation caused by the manipulation of dynamics data is

given by:

• aX or aY manipulation: ∆L(X or Y ) =
∫ T

0
∫ t

0 ∆a(X or Y )(τ)dτdt, where ∆L(X or Y ) is the lo-

cation deviation in X or Y direction introduced to the vehicle whenever an acceleration

manipulation with magnitude ∆a(X or Y ) is made, and T is the attack duration;

• v manipulation: ∆L =
∫ T

0 ∆v(t)dt, where ∆v is the magnitude of speed manipulation;

and

• ωZ manipulation: ∆H =
∫ T

0 ∆ωZ(t)dt, where ∆H is the vehicle heading deviation and

∆ωZ is the magnitude of yaw rate manipulation.

For example, under a “Shift” attack with ∆aX = 1.5, the perception deviation of the vehicle’s

location is bounded by 0.75T 2 m. As we will show later, DiVa achieves 0 median detection

gap/latency under “Shift” attacks (i.e., DiVa is able to identify the first anomalous data

sample in more than 50% of the test cases), so the anomaly will be detected before the

vehicle deviates 0.75× (0.1)2m from its set course most of the time.

Note that since manipulating VDTs of control inputs will not violate the vehicle’s reac-

tion to control inputs (i.e., A1 in Chapter 3.3) if the vehicle directly executes the manipu-

lated control inputs, we consider them as pure data manipulation on the IVN and omit their

post-attack effects here.
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3.7.3 Performance of Detection

3.7.3.1 Metrics

We evaluate the detection performance of DiVa using the following metrics:

• True Positive Rate (TPR): TPR follows the standard definition of recall that represents

the ratio of the number of data samples the system correctly found anomalous to the

total samples of the anomaly. Note that the miss rate or false negative rate (FNR) = 1 -

TPR.

• False Positive Rate (FPR): FPR follows the standard definition of fall-out that represents

the fraction of samples the system incorrectly reports anomalous. Since DiVa utilizes

two detection mechanisms with different detection cycles, we report their FPRs individ-

ually, including the values of distance-to-model detection (FPR-D) and model-change

detection (FPR-M).

• Detection Gap (DG): The number of additional data samples after receiving the first

anomalous data that DiVa requires to report a positive detection and start the false-

positive filtering counter. This metric specifies the minimum data count for DiVa to be

able to detect the anomaly.

Since TPRs/FPRs are computed based on the sampling time, they can be considered as

the probabilities of true-/false-positives occurring at any given time, and DG is designed to

measure how DiVa reacts to the length/duration of attacks/anomalies.

3.7.3.2 Baseline Comparison

While we are not aware of any model-based approach that can be directly applied to

DiVa’s detection scope, we implemented EVAD [54] (i.e., a correlation-based approach

that has reported the best performance so far) and PID-Piper [28] (i.e., one of the latest

control invariant approaches based on machine learning and cumulative sum (CUSUM)

detection without the requirement of physical modeling) for a baseline comparison. For
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a fair comparison, EVAD and PID-Piper can only access those VDTs available to DiVa.

For EVAD, we added three correlation pairs (i.e., ⟨aY ,v×ωZ⟩, ⟨θS,aY ⟩, and ⟨ge,v/rm⟩)

based on EVAD’s pair-wise detection mechanism to ensure it covers the same detection

scope as DiVa. For PID-Piper, aX , aY , and ωZ are the prediction outputs of PID-Piper’s

feed-forward control (FFC) module while ga, br, and θS are those of PID-Piper’s feedback

control (FBC) module. For both modules, the VDTs that are not their prediction outputs

are their inputs.

3.7.3.3 Results

Fig. 3.9 summarizes DiVa’s detection performance when one VDT is anomalous at a

time (Table 3.4). In general, DiVa is able to achieve ≥93.03% TPR-All (i.e., the average

of median TPRs from all three attack types) and low (close to 0%) median FPR-D for all

data sources. The slightly lower TPR in individual attack results for detecting a Shift data

anomaly is due to our assumption of strong attacks under which the attacker knows DiVa’s

detection targets and manipulates the vehicle’s behavior at those targets to evade DiVa’s

detection. The results of SUV show a higher FPR-M (10.53%) is due to the activation of

speed capping function in some of the collected traces which were detected by DiVa as

anomalies. If such traces are excluded as shown in SUV∗, the median FPR-M decreases

to 0%. This result actually showcases DiVa’s ability to detect changes of the vehicle’s

real-world behavior which will be discussed more in Chapter 3.7.5. Since the acceleration

and yaw rate of Comma AI are collected using external IMUs, the change of IMU positions

may affect the performance of individual DSs. We conjecture the change of position of

IMUs happened in the data set, thus leading to a higher FPR-M (and lower TPR-Shift) in

this case. This assumption is based on the fact that the FPR-Ds and TPRs, except for the

Shift case, are similar to those of the data we collected.

Figs. 3.10 and 3.11 show the detection performance of EVAD and PID-Piper, respec-

tively. One can observe that EVAD can only achieve moderate performance with≤63.91%
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Figure 3.9: DiVa’s detection performance, where the TPRs and FPRs are presented using
their median values.
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Figure 3.10: EVAD’s detection performance, where the TPRs and FPRs are presented using
their median values.
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Figure 3.11: PID-Piper’s detection performance, where the TPRs and FPRs are presented
using their median values.

TPR-All with high (median) FPR (≥16.99%). This is due to EVAD’s inaccessibility of

strongly correlated data pairs of target setpoints and vehicle dynamics, hence performing

detection based on loosely-correlated pairs of commonly-available data. Even though PID-

Piper shows a better performance than EVAD in detecting stealthy Shift attacks, it can only

achieve <57% median TPR and >12% median FPR, i.e., it cannot capture vehicle behavior

as efficiently as DiVa under the same training and testing condition. In contrast, DiVa is

equipped with efficient models to capture vehicle behaviors, achieving 79–100% median

TPR and 0–4.76% median FPR-D.
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We now compare the required numbers of data samples for DiVa, EVAD, and PID-Piper

to report the first (true-)positive detection (Table 3.5). DiVa is able to achieve 0 median DG

in all cases (i.e., DiVa can detect the anomaly with only the very first anomalous data most

of the time) while EVAD has ≥27 best-case median DGs and PID-Piper requires up to 175

median DGs to trigger a positive detection due to their reliance on the correlation coeffi-

cients and CUSUM detection. In summary, DiVa is shown to have significant advantages

over EVAD and PID-Piper in the case of limited data availability thanks to its efficient

models and detection mechanisms.

Data Approach
Median DG 75th Percentile DG

All Shift Set Rand All Shift Set Rand

Sedan
DiVa 0 0 0 0 18 53 0 0
EVAD 64 87 61 44 159 183 159 134
PID-Piper 3 6 3 1 31 44 40 8

SUV
DiVa 0 0 0 0 8 23 0 0
EVAD 58 38 32 105 188 199 199 165
PID-Piper 14 26 14 3 38 45 41 27

SUV*
DiVa 0 0 0 0 29 87 0 0
EVAD 86 128 103 27 199 199 199 199
PID-Piper 76 27 27 175 129 48 65 275

Comma
DiVa 0 0 0 0 47 128 0 13
EVAD 47 70 41 31 131 173 122 99
PID-Piper 2 3 2 0 11 14 17 3

Table 3.5: The median and 75th-percentile detection gap (DG) in sample counts of DiVa,
EVAD, and PID-Piper.

Tables 3.6 and 3.7 show more detailed statistics of performance of each detection set

and DiVa’s first stage performance. The 25th and 75th percentiles of each metrics are

shown along with their means and medians. For the identification-assistance DSs (i.e.,

the non-always-on DSs), they achieve a high average detection rate (90+%) but also higher

FPRs than the always-on DSs because of DiVa’s design choice of emphasizing the detection

rate. Note that higher FPR (10+%) of identification-assistance DSs will not affect the

system-wide false positive rate, because anomaly occurrences are detected by always-on

DSs, and the identification-assistance DSs are used for pinpointing the anomalous data.

Since the identification-assistance DSs perform event-driven detection and their DGs

depend highly on the timing of the target events (e.g., the vehicle performs a gear shift), we
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omit their DGs here.

3.7.4 Performance of Source Identification

3.7.4.1 Evaluation Metrics

Let us evaluate DiVa’s identification of anomaly sources (Chapter 3.4.4.2) as a stand-

alone function by exploring how well DiVa ranks the potential anomaly source(s):

• System Identification Index (SII): The average maximum ranking of the anomaly source(s)

in the output of DiVa. For example, if there are two anomaly sources and the output of

DiVa suggests that they are ranked 1 and 4, the maximum ranking in this case will be

4. Ideally, the ranking of the anomaly source(s) should be higher (i.e., having a smaller

value) than other VDTs.

• Search Range (SR): The search range of the anomaly source(s). It is defined as the

number of VDTs with the same as, or lower rank than the maximum rank of the anomaly

source(s). Using the same example as shown earlier, if there are two sensors ranked 4,

SR in this case will be 5. We use ASR to indicate the average SR.

The reason for adopting two different metrics in this case is to identify whether DiVa

tends to include other VDTs as the anomaly sources with the same rank as the real one(s).

Furthermore, (SII - n), where n is the number of manipulated data, is equivalent to how

many “false-positive” components are identified as an anomalous source before the actual

anomaly source is identified.

3.7.4.2 Results

To evaluate DiVa’s performance in locating anomaly source(s) as a stand-alone func-

tion, we control the input from the detection stage to have different levels of performance

(e.g., TPR and FPR) instead of directly using the results in Chapter 3.7.3. That way, we are

able to evaluate DiVa’s identification performance under different conditions. We evaluated
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DS
TPR FPR-D (%) FPR-M (%)
(%) Mean Median 25th 75th Mean Median 25th 75th

Se
da

n

2 99.21 0.47 0 0 0 8.85 0 0 14.29
3 100 3.09 0 0 2.86 13.35 14.29 0 25.00
5 100 35.26 35.57 27.14 50.00 15.27 14.29 0 28.57
6 100 1.40 0 0 2.62 6.70 0 0 0
7 99.05 13.63 11.11 0 25.00 0 0 0 0
8 97.94 29.81 29.94 14.29 45.21 0 0 0 0
9 100 8.75 8.33 2.08 13.89 15.75 6.25 0 28.57

12 99.68 11.17 11.43 0 18.75 2.66 0 0 0
avg 99.49 12.95 12.05 5.44 19.79 7.82 4.35 0 12.05

SU
V

2 97.78 14.43 14.50 11.22 20.41 24.81 26.32 0 39.53
3 96.89 11.57 12.50 7.14 15.83 7.47 0 0 15.00
5 98.67 5.29 4.76 1.96 7.14 17.96 16.28 7.63 20.00
6 97.00 13.06 13.12 8.33 18.18 8.46 10.00 0 15.79
7 91.56 6.89 5.88 4.59 8.94 0 0 0 0
8 91.56 10.47 12.24 6.86 14.80 0 0 0 0
9 85.33 19.51 17.20 11.76 33.16 8.67 6.98 0 15.00

12 96.67 2.23 0.69 0 5.39 3.53 0 0 5.26
avg 94.43 10.43 10.11 6.48 15.48 8.86 7.45 0.95 13.82

C
om

m
a

2 97.22 0.91 0.53 0 1.67 20.40 22.22 16.67 25.00
3 74.26 0 0 0 0 1.01 0 0 2.70
5 94.72 12.70 10.87 9.14 16.88 9.95 8.33 0 12.50
6 96.39 12.25 13.18 10.47 15.22 29.86 33.33 23.61 37.84
7 83.33 5.60 5.42 3.33 6.67 0 0 0 0
8 96.85 40.08 31.81 26.74 58.70 0 0 0 0
9 87.78 13.31 10.15 6.19 22.04 22.67 16.22 12.50 33.33

12 90.56 16.13 12.50 10.31 21.67 29.33 33.33 16.22 37.50
avg 90.14 12.62 10.56 8.27 17.86 14.15 14.18 8.63 18.61

Table 3.7: Performance results of identification-assistance DSs.

the scenarios when n (=1∼4) VDTs are manipulated while using the traces collected from

the vehicles to simulate the time when certain events like gear shifts occur. Similarly to

the evaluation in Chapter 3.7.3, we tested every case 10 times while all the anomalies start

randomly at the same time between the start and the end of each trace. All combinations

for given n are tested in our evaluation, i.e., 9, 36, 84, and 126 combinations are tested for

n=1, 2, 3, and 4, respectively.

TPR FPR n=1 n=2 n=3 n=4
(%) (%) SII ASR SII ASR SII ASR SII ASR
100 0 1.00 1.00 1.22 3.09 1.36 4.82 1.56 6.44
90 10 1.03 1.04 2.44 2.86 4.00 4.67 5.53 6.33
80 20 1.14 1.17 2.91 3.16 4.70 5.05 6.26 6.64

Table 3.8: DiVa’s identification performance.

Table 3.8 summarizes the results of SIIs and ASRs. When n=1, DiVa is able to pinpoint
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𝑛 = 1

𝑛 = 2

𝑛 = 3 𝑛 = 4

DR = 1.0, FPR = 0.0
DR = 0.9, FPR = 0.1
DR = 0.8, FPR = 0.2

Figure 3.12: CDF of search space under different attack scenarios, where DR represents
detection rate (i.e., true positive rate or TPR).

the source of anomaly (SII≈1, ASR≈1) even when the detection has only 80% TPR and

20% FPR. When n=2, DiVa typically narrows down the search space to 2–3 data. Theo-

retically, it will need C9
9−n = C9

7 = 36 DSs to exhaustively test all the cases when 2 data

are manipulated. As n increases to 3 and 4, the search range becomes to 4–5 and 6–7,

respectively. The results show that DiVa has better performance when 1 or 2 components

are anomalous and can still narrow down the search space even when close to half of the

data are anomalous.

Fig. 3.12 further shows the CDF of DiVa’s performance in narrowing down the search

space of the anomaly sources when there can be different numbers of manipulated data (n)

and detection performance. Specifically, DiVa can still narrow down the search space to

6 data in more than a half of the test cases when there are 4 manipulated data even if the

detection sets have a moderate (80%) TPR and a high (20%) FPR.

3.7.5 System-wide Performance

Besides the metrics used in Chapter 3.7.4, we include System Detection Gap (SDG) as

a metric. Like DG, SDG is the number of (additional) data between the first anomalous

data and the one that triggers DiVa to lock on the source.
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3.7.5.1 Single Data Manipulation

Table 3.9 shows DiVa’s performance when there is only one anomalous data. We first

compare the performance of different data sources. While the average SIIs of Sedan (1.38)

and Comma (1.53) are less than 2, that of SUV (2.35) is significantly larger than the other

two sources. This result indicates DiVa’s ability to identify the exact anomaly source for

Sedan and Comma in most of the time, but DiVa tends to rank another data higher than the

actual anomaly source in case of SUV.

Test
SII

Search Range (SR) SDG
Cases ASR Med. 25th 75th Avg. Med. 25th 75th

Se
da

n

Set 1.14 1.24 1 1 1 64.3 0 0 36
Rand 1.41 1.56 1 1 2 246.9 0 0 338
Shift 1.58 1.73 1 1 2 204.4 19.5 0 199
Avg 1.38 1.51 1 1 1 171.9 6.5 0 191

SU
V

Set 2.10 2.24 2 1 4 13.1 0 0 0
Rand 2.34 2.50 2 1 4 49.6 0 0 0
Shift 2.60 2.73 2 1 4 180.5 0 0 28
Avg 2.35 2.49 2 1 4 81.1 0 0 9.3

SU
V

*

Set 1.03 1.26 1 1 1 10.9 0 0 0
Rand 1.57 1.73 1 1 2 45.5 0 0 0
Shift 1.80 1.96 1 1 2 212.5 0 0 47
Avg 1.47 1.65 1 1 1.67 89.6 0 0 15.7

C
om

m
a Set 1.10 1.50 1 1 2 35 0 0 16

Rand 1.27 1.59 1 1 2 87.8 0 0 27
Shift 2.23 3.43 2 1 4 775.3 139 0 1219
Avg 1.53 2.17 1.33 1 2.67 299.4 46.3 0 420.7

Table 3.9: DiVa’s performance when one data/behavior is manipulated.

As mentioned earlier, the reason for this is that during some trips, the speed capping

function of SUV was activated (i.e., the vehicle will not exceed 75 mph even if the driver

presses the gas pedal). Since we use the data without speed capping for training, DiVa

identifies the speed capping as an anomaly. If we remove the traces with speed capping

(denoted by SUV*), the average SII reduces to 1.47, which is very close to those of other

data sources. This result not only corroborates our assumption of the cause of speed cap-

ping, but also demonstrates DiVa’s ability to capture abnormal behavior from the training

data in a practical real-life example. This phenomenon can also be observed by comparing

the SRs of SUV and SUV*. In what follows, we will consider the results of SUV* (instead
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of SUV) as the main results in the evaluation. 7 out of 9 data–attack combinations achieve

0 median SDGs, meaning that DiVa is able to “lock on” the anomalous source based on the

very first anomalous sample.

Now, we compare the search ranges (SRs) between different attack types. Since Set

and Rand will violate the correlation between VDTs, DiVa will have no difficulty in de-

tecting them. In 8 out of 9 data–attack combinations, the medians of search ranges are 1,

showing DiVa’s abilty to identify the source accurately most of the time in practical sce-

narios. Specifically, DiVa is able to identify the exact anomaly source with 0.91 probability

and narrow down the anomaly space to an average of 1.33 VDTs when a Set anomaly oc-

curs. Even in the shifting attack case, DiVa can still identify the anomalous data with 0.75

probability as the exact anomaly source.

3.7.5.2 Multi-Data Manipulation

Let us consider the case when an attacker knows DiVa’s operation and tries to evade

DiVa’s identification by manipulating multiple data simultaneously. Table 3.10 summa-

rizes the results when ≥2 data are manipulated to certain values simultaneously (based on

combinations of S1−S9 in Table 3.4). Other than slightly higher ASRs of Comma in n=2

cases due to the higher FPR-Ms as mentioned in Chapter 3.7.3.3, DiVa can identify anoma-

lies close to the theoretical value (90% TPR in Table 3.10), i.e., DiVa has good performance

in detecting and identifying generic multi-data manipulation attacks.

n=2 n=3 n=4
SII ASR SDG SII ASR SDG SII ASR SDG

Sedan 2.57 2.98 16 4.10 4.73 6.2 5.49 6.26 1.8
SUV* 2.52 3.42 30 3.65 5.18 0.9 4.64 6.67 0.7

Comma 4.00 4.25 78.7 5.59 5.91 2.4 6.79 7.13 0.9

Table 3.10: DiVa’s performance when multiple data are anomalous.
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3.7.6 Replay Attacks

We further assume a strong attacker who (1) knows the design of DiVa, the result of

DiVa’s model training, and the data covered by each DS and (2) directly targets the data in

a certain detect set to evade its consistency check. Once the attacker chooses a target DS,

all the VDTs covered by the target DS will be replaced by the recorded values from the

same vehicle (i.e., a replay attack) and, therefore, the correlation between the replaced data

will perfectly match the vehicle’s normal operation. Table 3.11 shows the detection and

identification results of replay attacks. DiVa is shown to be able to achieve high median

TPR (≥ 91.75% for sedan and SUV*) and 0 DG in all but one tested settings, i.e. DiVa

has no difficulty in capturing a sophisticated replay attack when the attacker utilized replay

attacks to target certain detection sets to evade DiVa’s detection. Note that because a replay

attack will only trigger weak detection as defined in Chapter 3.4 and the data will be divided

into two groups that perfectly preserve the vehicle’s normal behavior, DiVa will have higher

search range or even include all the data as potential anomaly sources.

Tables 3.12 and 3.13 summarize EVAD’s and PID-Piper’s performance when the at-

tacker manipulates the same VDTs as Table 3.11, respectively. Note that since EVAD

and PID-Piper utilize different data pairs/groups from DiVa to perform its detection, these

attacks will actually give advantage to EVAD/PID-Piper when we compare their perfor-

mances to DiVa. However, one can observe that DiVa can still achieve similar or up

to 46.5% and 82.14% increase of absolute (median) TPRs with much smaller FPRs than

EVAD and PID-Piper even if the attacks are specifically designed to evade DiVa’s (neither

EVAD’s nor PID-Piper’s) detection, respectively.
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Data
Targeted TPR (%)

SII
Search Range Detection Gap (Data Count)

DS Data Mean Median 25th 75th ASR Median 25th 75th Mean Median 25th 75th

Se
da

n

DS1 85.06 96.55 72.46 100 5.27 7.29 7 6 9 298.09 0 0 304
DS4 50.45 58.51 32.29 66.92 5 8.59 9 9 9 435.92 109 0 763
DS10 86.68 97.33 70.01 100 7.16 8.97 9 9 9 285.74 0 0 240
DS11 86.53 98.07 72.85 100 6.9 8.93 9 9 9 316.99 0 0 249

Summary 77.18 91.75 62.69 100 6.08 8.44 9 9 9 334.18 0 0 510

SU
V

*

DS1 94.79 100 93.50 100 5.8 7.6 8 6 9 6.15 0 0 0
DS4 45.87 48.32 28.23 60.63 3.8 9 9 9 9 273.47 0 0 191
DS10 98.07 100 99.45 100 7.7 9 9 9 9 0.7 0 0 0
DS11 93.84 98.93 93.49 100 7.6 9 9 9 9 20.7 0 0 0

Summary 83.14 98.67 76.71 100 6.23 8.65 9 9 9 75.26 0 0 0

C
om

m
a

DS1 57.80 55.91 33.09 89.74 5.83 8.67 9 9 9 348.61 0 0 278
DS4 57.15 58.33 37.02 79.99 5.43 9 9 9 9 260.22 0 0 81
DS10 90.37 100 86.67 100 7.82 8.93 9 9 9 127.05 0 0 0
DS11 58.06 60.00 34.84 81.79 7.18 8.82 9 9 9 310.43 0 0 416

Summary 65.84 69.89 40.59 95.52 6.57 8.85 9 9 9 261.58 0 0 65

Table 3.11: DiVa’s 1st-stage performance under targeted replay attacks, where the FPRs
are the same as the “1st Stage” shown in Table 3.6.

Data
Targeted TPR (%) FPR (%) Detection Gap (Data Count)
DS Data Mean Median 25th 75th Mean Median 25th 75th Mean Median 25th 75th

Se
da

n

DS1 71.97 75.32 60.88 90.20

32.26 27.51 18.58 42.74

295.19 179.5 0 587
DS4 76.00 74.62 68.72 100 377.81 247 0 754
DS10 86.01 89.25 75.44 100 359.87 281.5 0 700
DS11 84.09 84.87 71.41 100 310.3 217.5 0 612

Summary 79.52 79.70 70.47 100 335.79 238 0 673

SU
V

*

DS1 80.29 89.97 71.74 100

31.94 26.71 23.07 42.68

89.85 0 0 0
DS4 96.07 100 95.45 100 108.9 0 0 82
DS10 96.10 100 95.58 100 93.7 0 0 2
DS11 96.06 100 100 100 114 0 0 0

Summary 92.13 100 90.75 100 101.61 0 0 2

C
om

m
a

DS1 27.94 22.71 10.98 46.15

30.87 25.92 7.16 48.72

499.17 499 378 499
DS4 4.36 0.13 0.13 6.12 553.27 499 499 499
DS10 34.20 31.62 23.39 44.39 460.08 499 277 500
DS11 39.39 38.70 23.18 55.25 419.22 492 280 499

Summary 26.47 23.39 6.12 44.39 482.94 499 360 499

Table 3.12: EVAD’s detection performance under targeted replay attacks.

3.8 Discussion

3.8.1 Deployment and Limitations:

Since DiVa is designed as a software-based solution, it can be flexibly deployed within

vehicles as long as it can access the VDTs. Due to DiVa’s flexibility, it can be directly de-

ployed as an aftermarket or add-on solution for modern vehicles (e.g., the same method we

conducted the evaluation with an OBD-II interface). It can also be placed in an in-vehicle

network gateway or integrated into the existing ECU modules as a first-party solution.
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Data
Targeted TPR (%) FPR (%) Detection Gap (Data Count)
DS Data Mean Median 25th 75th Mean Median 25th 75th Mean Median 25th 75th

Se
da

n

DS1 20.70 14.32 9.46 20.79

18.02 12.84 9.22 25.60

261.07 15 2 129
DS4 29.27 28.96 18.95 36.69 196.17 26 4 155

DS10 29.18 29.28 21.12 38.69 324.39 61 3 247
DS11 27.22 27.71 17.71 35.59 259.73 42 2 114

Summary 26.60 25.69 15.23 35.22 260.34 38 3 143

SU
V
∗

DS1 12.31 13.66 2.48 20.94

33.30 33.44 18.06 56.64

319.3 27 16 489
DS4 11.97 7.01 0.88 16.03 525.87 171 56 1074

DS10 27.93 25.34 7.86 41.95 85.25 0 0 222
DS11 21.03 19.39 9.41 29.52 71.85 3 0 148

Summary 18.31 16.53 5.51 25.34 250.57 27 0 276

C
om

m
a

DS1 27.74 29.69 21.83 34.86

23.83 21.81 19.04 28.07

15.4 0 0 6
DS4 15.37 14.13 11.84 19.45 33.33 0 0 31

DS10 26.31 25.09 19.36 32.94 15.2 0 0 2
DS11 24.10 22.29 17.63 30.89 45.63 0 0 5

Summary 23.38 21.84 14.34 30.77 27.39 0 0 6

Table 3.13: PID-Piper’s detection performance under targeted replay attacks.

Besides the detection limitation discussed in Chapter 3.3, there is still room for im-

provement, such as finding the optimal time to react to a positive detection to avoid false-

positives from affected vehicle’s normal operation, if DiVa is to be used as a real-time

defense against safety-critical attacks. For example, if i) an anomaly is detected by model

change but not from detection by distance to model, ii) it is not from any of the control input

(CI), and iii) the deviation from the normal behavior is mild, it does not require an imme-

diate action since the anomaly has a high probability to have been caused by a component

wear-out. On the other hand, if the anomaly is detected by both detection mechanisms and

the anomalous component is in the scope of CI, DiVa should immediately notify the driver

and stop using any autonomous function related to the anomalous component.

3.8.2 Contexts and Operation Modes:

DiVa can automatically incorporate common operation contexts (e.g., acceleration de-

viations caused by road inclinations) into its threshold settings and make new adjustments

by training on the data from the entities’s daily routines right after a regular maintenance.

For different operation modes, DiVa can create different models for the same DS with the

training data divided by i) outlier tests (with limited data availability) or ii) operation-mode

data types (if available). DiVa can then report detection of anomalies only when no model
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matches the entity’s behavior. For example, it can be updated to account for i) road inclina-

tions by adding a calibration term in DS1-DS3 if inclinometer/elevation data is available and

ii) tire slippage by identifying the features of insufficient friction embedded in acceleration

measurements.

3.9 Conclusions

We have proposed DiVa, a new forensic tool for SA systems. DiVa operates on multiple

detection sets with overlapping data. DiVa can cross-validate the data and narrow down the

search space to identify the source(s) of anomaly. Our extensive experimentation based on

commercial vehicles has shown DiVa to have significant advantages over prior work in the

usual case of limited data availability and pinpoint the anomalous data with 0.75 probability

even in the case of sophisticated single-data manipulation. Furthermore, DiVa can narrow

down the search space for an anomaly source to an average of 1.33 sensors, and pinpoint

the exact anomalous data with 0.91 probability under a set-to-value attack.
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CHAPTER IV

EDRoad: Easy-to-Use System for Received Data

Verification

4.1 Introduction

SA systems or mobile Cyper-Physical Systems (CPSes) in general, such as ground and

air vehicles, are the most common, representative systems we rely on everyday. To run ex-

isting and emerging applications, communication interfaces have been integrated into mo-

bile CPSes and will be exploited to provide advanced functionalities in future CPS services.

For example, AERIS program (subcategory ECO-Signal Operation [134]) of the U.S. De-

partment of Transportation specifies a future Intelligent Transportation Systems (ITSes)

to perform smart traffic light control and provide maneuver/routing advice to individual

(autonomous) vehicles based on their reported locations via vehicular communications and

the timing information from traffic signal controllers for enhancing the smoothness of travel

and reducing fuel consumption (see Fig. 4.1). To support such ITS services, the infrastruc-

ture, such as roadside units (RSUs) and traffic light controllers, must monitor vehicles’

status/behavior on the road, especially their location, speed and heading, via standardized

messages like Basic Safety Messages (BSMs) from the vehicles on the road and/or other

sensors.

The integrity of data or information received from mobile CPSes like cars, especially
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RSU/BS Traffic Signal Controller

BSM

ITS Message
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ITS Message
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Measurement

ITS ServicesVerified Data

RSU/BS

Figure 4.1: An example of EDRoad’s application scenario in a typical ITS setup adapted
from [134].

the dynamic measurements, is critically important for the infrastructure to produce correct

output for CPS services. For example, prior work has shown that a larger discrepancy

between the actual and the perceived/received vehicle information may have more severe

influence on the ITS and can even completely negate the benefits brought by the ITS —

a single vehicle can cause a 68% increase of average waiting time at an intersection with

a smart traffic light controller [19]. Therefore, to ensure CPS services function correctly,

there must be an efficient way to verify if the received information is trustworthy. Such

a system should detect the existence of anomalous data (i.e., data that exceed a specified

level of error-tolerance), identify which data is anomalous, and restore the anomalous data

because simply discarding the anomalous data (or all received data) cannot help CPS ser-

vices capture the status of the target CPS (e.g., the vehicle location/speed/heading in the

aforementioned ITS example).

One of the most important CPS service properties is that the operation environment/re-

quirement of the infrastructure and mobile CPSes may vary with location and time, and

their hardware can also be continually upgraded to support emerging applications. For

example, because there is no universal standard on which sensors should be available in

RSUs and RSUs may be deployed to support various services and applications, different

RSUs will very likely need to verify different data types and sensor measurements. Fur-
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thermore, RSUs may also experience constant hardware upgrades, such as adding a new set

of cameras for traffic monitoring. However, existing anomaly detection systems with the

capability of determining which of the received data exceeds the error-tolerance level (in-

stead of directly treating all data as a single group) are usually tailored for a specific system

architecture (i.e., assuming a fixed set of data and verification formulations/procedures).

Therefore, they cannot easily expand their detection scope or adapt to different deployment

scenarios (Chapter 4.2).

To the best of our knowledge, there still does not exist any efficient way to set up

a system for detecting and restoring each anomalous data without requiring engineers to

manually design i) individual detectors/observers for their data of interest and ii) the verifi-

cation process, including how (and in what sequence) to identify and restore the anomalous

data (Chapter 4.2). This leads to an important question: Is there any efficient way to help

inexperienced engineers1 develop a system at design time for detection and recovery of

individual anomalous data while handling varying application requirements without man-

ually constructing/tailoring the verification process?

To answer this question, we propose EDRoad, a system and design concept that is

capable of detecting and recovering the individual anomalous data received from external

entities. Fig. 4.1 shows an application example, where EDRoad acts as a data corrector in

an RSU or a base station (BS) that corrects the anomalous data in BSMs received by the

RSU/BS to prevent their use in ITS services.

From a technical perspective, EDRoad can be viewed as a novel ensemble learning

framework tailored for multi-data verification. That is, given a group of data, EDRoad will

identify which of them are potentially anomalous (i.e., exceeding a specified level of error

tolerance) and, if anomalous, restore their correct values. It automatically constructs ob-

servers/classifiers that monitor the correlation between its data of interest and combines the

classification results to identify which data are anomalous and then restore them. Specif-

1Engineers with the domain knowledge of the correlation/causality between data but not how to design a
system for data integrity check.
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ically, it greedily maximizes the lower bound of average detection rate and minimizes the

upper bound of average false-positive rate in identifying individual anomalous data. Its

design enables the following three key features:

F1. Easy Deployment. EDRoad is designed to assist engineers with little to no knowl-

edge of how to construct a data verification system (i.e., EDRoad’s users need not construct

anomaly detectors/classifiers by themselves). All an engineer needs to do is to provide i)

the correlation or causality between the data to be verified, ii) the noise distributions under

normal operation, and iii) raw data traces for training purposes, i.e., engineers need not

manually adjust the training cases (Chapter 4.4.3). There are only two deployment require-

ments for EDRoad. First, there must exist a measurement/data that has bounded errors

when it is utilized to observe one or more target data dT to be verified. Second, every data

to be verified is correlated with some dT or another data.

F2. Easy Expansion. To expand or modify EDRoad’s detection scope, all engineers

need to do is to identify the cyber-physical correlation/causality between the new sensor/-

data and the existing ones without (re)designing the detailed detection mechanism and the

knowledge of anomaly detection. For example, if an engineer wants to verify vehicle accel-

eration (a) in addition to the original design that only verifies vehicle speed (v), s/he only

needs to include the formulation vk+1 = vk + ak∆t in EDRoad, where k is the time index

and ∆t is the sampling interval, and EDRoad will handle the rest of integration.

F3. Easy Configuration. EDRoad provides a straightforward (optional) mechanism

for engineers to set the error-tolerance level (i.e., detection threshold) for individual data

that matches their need. This feature may appear to be basic, but most prior approaches do

not provide any mechanism/mapping to adjust their thresholds since they utilize layers of

feature extraction (e.g., Power Spectral Density [54]) to perform detection that is no longer

directly associated with the original data.

Specifically, EDRoad takes a set of system descriptions that depict the domain-knowledge

of the target system/data (Chapter 4.4) and optional error-tolerance as inputs and transforms
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them into their corresponding classifiers. It further combines the classifiers to generate a

set of potential verification procedures and models to follow during its online execution.

Finally, EDRoad performs data verification and recovery while dynamically adjusting its

procedure and models to match its operating environment. In this chapter, we use BSM ver-

ification in an RSU with vehicle-to-infrastructure (V2I) communication as a concrete case

study to illustrate EDRoad’s design (Fig. 4.1). However, in addition to assisting monitor-

based services (e.g., reliable surveillance for ITSes [159] and path planning support based

on traveling time analysis [36]), EDRoad can also provide an extra layer of data integrity

check for mobile CPSes to verify their own status measurements while executing services

like collaborative sensing [148] and map construction [35]. For example, a vehicle can ask

the infrastructure with EDRoad for verification of its own GPS coordinates, or a vehicle

with EDRoad can act as an “anchor” in a fleet to verify received data from other entities.

This chapter makes the following main contributions:

• Development of EDRoad, a new ensemble learning design with expansibility for the

verification and recovery of individual status data in a multi-data system, including:

– A new concept of verification tree for achieving easy expansion and enhancing run-

time performance (Chapter 4.4); and

– New run-time data verification and recovery mechanism that will dynamically adapt

to the quality of run-time measurements (Chapter 4.4).

• Demonstration of EDRoad’s performance as an ensemble learning framework (Chap-

ter 4.5) and as a system approach with >95% recall and <4% fall-out via extensive

evaluation based on real-world trace data (Chapter 4.6).

4.2 Related Work

Prior work has taken two directions to verify the authenticity of a received data or mes-

sage: (1) by cryptography, such as Message Authentication Code (MAC), or (2) directly
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by the data value. Since EDRoad’s goal is to verify the data value instead of the integrity

of the message sender, we focus on the approaches of verifying data value. While data

verification can be considered as anomaly detection in the signal space where an anomaly

is defined as the deviation of certain data from its actual value, most prior anomaly de-

tection schemes can be directly applied as data verifiers in their corresponding application

scope. Since there are multiple comprehensive surveys summarizing different aspects of

(data) anomaly detection in vehicular communications [15, 105, 116, 141] and other CPSes

[3, 46, 145, 150], we only mention the prior work directly related to EDRoad.

4.2.1 Detection Only

Model-and-compare is the most commonly-used approach in data verification and anomaly

detection. Specifically, the verification system will first model the system behavior based

on physical/mathematical modeling or machine learning to predict the system state/output

and then determine whether the predicted system state matches the received measurements

[2, 5, 23, 45, 50, 54, 79, 90, 101, 102, 124, 146, 153, 157]. If not, the verification system

will report the detection of an anomaly. Note that since this type of verification system

usually models the target CPS system with a single (series of) equation(s), they can only

determine whether or not there is an inconsistency in the received data, but cannot identify

which data is anomalous. For example, SAVIOR [104] and PID-Piper [28] are the state-of-

the-art system-invariant approaches that can be used to construct a vehicle state verification

system. However, their design uses a group of data (e.g., vehicle’s old location, speed, and

acceleration) to predict another (group of) data (e.g., current vehicle location) and, there-

fore, they can only tell there is an anomalous data used in their formulation without telling

which data is anomalous.
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4.2.2 Detection and Isolation

Fault Detection and Isolation (FDI) [8, 18, 47, 55, 89, 99, 143, 156] not only focuses on

detecting anomalies in the system, but also isolates/identifies the data or measurement that

caused the anomaly. FDI usually models the target system as a (differential) equation sys-

tem and solves the equation system to pinpoint the data in question. Note that because most

FDIs are designed for a specific target system (e.g., steering system [156]), their formula-

tions are tied to a fixed set of architecture and parameter settings, thus becoming unable to

adapt themselves to other application scenarios without engineers’ manual adjustment of

the detailed system formulation.

4.2.3 Vehicular Communications (for Case Study)

While there are prior studies (e.g., [117]) focusing on detection of false alerts (e.g.,

emergency brake and blind spot warning) for connected vehicles by cross-validating the

received vehicle states, traffic predictions, and the received alerts, EDRoad’s case study

focuses on detecting incorrect/inaccurate vehicle states (e.g., location, speed, etc.) received

by an RSU. Utilizing wireless measurements, such as received signal strength (RSS), an-

gle of arrival (AoA), and Doppler shift, with multi-modal sensor fusion to perform vehicle

state estimation is common for data verification in vehicular communications [1, 13, 118,

126, 127, 129, 147, 151, 152]. These approaches are mainly tailored to work in specific

deployment scenarios with specific sensors and (multi-entity) cooperation requirement (Ta-

ble 4.1) and, therefore, they can be used for data verification in a fixed application settings

but cannot be easily adapted to different usage scenarios.

There have also been proposals of using rule-based detection [63, 78] and subjective

logic integration [32] to achieve expandable/adaptive detection scope. [63] proposed a

Kalman Filter-based detection framework that can also be extended to cover more data

types and has features similar to EDRoad. While a mix-and-match with prior system ap-

proaches (e.g., [1] and [63]) may cover more data types, there is no easy way to combine
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individual data verification/recovery and flexible detection scope simultaneously without a

complete system re-design and overhaul. Because most, if not all, of existing frameworks

only propose their system design at a conceptual level without providing any concrete al-

gorithms for actual system implementation/integration, engineers still need to handcraft

the algorithms/procedures to provide the required functionalities in addition to detecting

inconsistencies among the received data.

4.2.4 Ensemble Learning

Ensemble learning is commonly used to combine multiple (weak) classifiers to con-

struct a stronger classifier that achieves better performance. While anomaly detection sys-

tems can be considered as classifiers that output either “normal” or “anomalous”, they can

be combined with ensemble learning to expand their detection scope. Random forest [59]

is an iconic bagging algorithm that combines decision trees (i.e., the weak classifiers) to

form a strong classifier. Adaptive boosting (AdaBoost) [42] is another commonly used

technique that systematically generates a weight for each of its input classifier during its

training process. During run-time, the weight of each classifier is used as the weight of their

classification results and the class with the largest weighted sum will be chosen to be the

final output. While AdaBoost is originally designed to greedily minimizing the error rate

of classification, there are other algorithms designed to enhance AdaBoost w.r.t. different

optimization targets and application scenarios with imbalanced training data (e.g., Gentle

Adaptive Boosting [43] and Random Undersampling Boosting [119]).

4.2.5 Why EDRoad?

Specifically, EDRoad is different from prior work in five perspectives. First, EDRoad

is designed as a framework to help engineers build a verification system with an emphasis

on multi-data verification for identifying individual anomalous data instead of constructing

a system tailored for a single architecture like most FDIs and detection-only systems. Sec-
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ond, EDRoad does not require engineers to design observers or classifiers for performing

anomaly detection, but to only provide the correlation/causality between data (i.e., the do-

main knowledge). EDRoad has mechanisms to automatically transform those correlations

into observers/classifiers for detecting anomalous data. Third, EDRoad not only detects the

occurrences of data anomalies but also restores the thus-identified anomalous data. Fourth,

unlike most prior anomaly-detection schemes that do not provide a clear error-tolerance

setting and optimization goal, EDRoad provides mechanisms for engineers to configure

their preference, and maximizes (minimizes) the expected lower (upper) bound of average

detection (false-positive) rate under the thus-provided configuration.

Lastly, EDRoad can be directly used as an ensemble learning framework if advanced

observers/classifiers are already available and shows superiority to prior ensemble learning

[43, 58, 59, 66, 119] w.r.t. performance and stability in multi-data anomaly settings (Chap-

ter 4.5). Function-wise, while prior ensemble learning methods for classification can be

adapted for individual data verification by assigning each data type a classification label,

they neither recover anomalous data nor construct a classifier automatically. That is, even

though ensemble learning can be directly utilized to combine existing anomaly detection

schemes to expand their data coverage, engineers still need to (manually) design individual

detection mechanisms as the input to ensemble learning if s/he needs to include certain data

that are not covered by some readily available anomaly detection. Also, they do not pro-

vide feedback (during design time) w.r.t. whether the given classifiers can actually perform

individual data verification, leading to potentially producing the same label for a certain set

of data all the time without informing the user (Chapter 4.4.2.2). To the best of our knowl-

edge, there still does not exist any end-to-end framework to help engineers construct a data

verification system that treats different data types as individual elements and utilizing the

cyber-physical correlation/causality as additional information to enhance its performance

with concrete mathematical property descriptions (Chapter 4.4).
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4.3 Problem Formulation and Threat Model

Formulation. Given at least one measurement or an input data with bounded error,

EDRoad’s goal is to i) determine whether each data is normal (N ) or anomalous (A ) and

ii) restore the data determined to be anomalous. Specifically, a data anomaly is defined as

the condition in which a value recorded in a message Mk, denoted as xi,k, deviates from its

ground-truth value Xi,k by more than the error tolerance of that particular data type set by

the engineer, where i is the data type index. The error tolerance or detection threshold is

Γi (Λi) if it indicates an absolute (relative) deviation. So, data xi,k is said to be anomalous

(i.e., xi,k ∈A ) if

|xi,k−Xi,k|> Γi or
∣∣1− xi,k/Xi,k

∣∣> Λi; (4.1)

otherwise, data xi,k is said to be normal (i.e., xi,k ∈ N ). Γi’s and Λi’s should be set to

values smaller than the requirement of CPS services. If the target service does not have

any specific requirement, the thresholds can be set to the maximum noise level or a certain

percentile observed in the training data as in our case study (Chapter 4.6).

Case Study. To facilitate a better illustration while introducing our system design,

we will use BSM verification (Fig. 4.1) as concrete examples throughout this chapter and

it will also be used for our case-study evaluation. Specifically, EDRoad is assumed to be

deployed in an RSU for the verification of vehicle location (p), speed (v), acceleration (a),

yaw rate (ω), and heading (h) in the received BSMs. The RSU is also capable of angle-of-

arrival (AoA or φ ) measurement and have access to the road/map information (M) of the

surrounding region.

Threat Model. We assume a strong adversary with the full knowledge of EDRoad’s

design and parameters. The attacker has the goal of tricking a target entity, where EDRoad

is deployed, to use incorrect data to provide incorrect/inaccurate services to mobile CPSes.

S/he can manipulate any data transmitted by external entities (i.e., not ego entities). How-
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ever, s/he cannot fully control at least one “trusted” input to EDRoad (i.e., this input can

only be manipulated to deviate from the ground truth by a certain bound).2 In practice, a

trusted input can be obtained from one of the following sources:

• A sensor with secure hardware or redundancy design, which makes its signal inherently

hard to falsify without physical access to the sensor (e.g., AoA [149]);

• A system command/setpoint that only goes through the internal network of the ego sys-

tem (i.e., where the detection system is deployed), which is the implicit assumption of

most prior work (e.g., [55, 104]); or

• A static reference information (e.g., road/map information).

The adversary may simultaneously and continuously manipulate multiple data types

to evade EDRoad’s detection. We would like to stress that EDRoad is designed for

data verification, not for detecting every possible type of attack. An attack will only be

EDRoad’s detection target if and only if there is at least one manipulated data that can sat-

isfy the anomalous condition introduced earlier. However, this threat model still includes

the “stealthy attacks” (e.g., Drift-with-Devil [120]) as long as they eventually cause some

data to deviate from their ground truth by greater than the thresholds.

4.4 System Design

4.4.1 Workflow Overview

Like most detection systems, EDRoad consists of two phases (Fig. 4.2): Training and

Execution. During the training phase, EDRoad will ask the engineers to provide system

descriptions (SDs) that depict the domain-knowledge of the target data. Specifically, each

system description should capture a certain correlation/causality between two or more data

in the form of:

zτ = F
(
x1,k, . . . ,xn,k,x1,k′, . . . ,xm,k′

)
, (4.2)

2This is a requirement for all systems that design to identify individual anomalous data.
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Figure 4.2: System overview of EDRoad.

where xi,k/k′ is a data with timestamp index k/k′ and data-type index i, zτ is another data

with timestamp τ = k or k′, and F(·) is the function depicting the data correlation.

EDRoad will then take the SDs as inputs and transform them to their corresponding

classifiers, each of which checks if the data correlation/causality matches each SD at run-

time. These classifiers will first estimate the ground-truth values of their data of interest

and report the data to be normal or anomalous according to the criteria defined in Eq. (4.1).

Note that engineers can also directly input/supply classifiers to configure EDRoad to cus-

tomize the detection and skip the above step.

Next, EDRoad will use the generated classifiers and the training data to establish a

verification model. During this step, EDRoad will also provide feedback to the engineers

w.r.t. (i) whether the provided SDs can meet the requirement for individual data verifi-

cation and (ii) what types of SD are missing if the requirement cannot be met. Finally,

EDRoad will verify data based on the model obtained during the training phase. Specifi-

cally, EDRoad verifies the received data, one at a time, with different combinations of clas-

sifiers and further uses the verified/restored data to check another unverified data. EDRoad

will repeat this process until all received data are verified.
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4.4.2 Training Phase

4.4.2.1 Construction of Classifiers

The first step in EDRoad’s training (Fig. 4.2a) is to transform the SDs and the error

tolerance into classifiers. Specifically, each classifier takes the data types specified in the

corresponding SD as inputs and outputs a binary result, i.e., “normal” (0) or “anomalous”

(1).

EDRoad utilizes the estimate-then-compare approach to construct classifiers. Each SD

input will be transformed into a corresponding estimator which will be used to estimate the

ground-truth system state based on the received data. If the estimated state deviates from

the received data by a value greater than the error tolerance, this classifier will report the

detection of an anomaly. The default true state estimation that we use in EDRoad is based

on Maximum Likelihood Estimation (MLE) [86]. The choice of MLE is grounded on the

fact that performing MLE only requires the error distribution of the input data and it can be

utilized for both single-point-of-time and time-series data.

Based on the example that an RSU wants to verify the vehicle’s position (pk) in BSMk,

we use an SD that depicts the correlation between i) the AoA measurement (φk) and ii) the

relative locations of the RSU and the target vehicle (Fig. 4.3) to illustrate the process:

φk = ∠eNOpk, (4.3)

where eN is the North direction and O is the RSU’s location.

The first step of the process is to formulate the likelihood function L based on the prob-

ability of obtaining the received data while treating their ground truths as given variables:

L(Pk,Φk) = Pr(pk,φk|Pk,Φk) = Pr(pk|Pk) Pr(φk|Φk), (4.4)

where Pr indicates the probability density function (pdf) and Pk (Φk) is the ground truth of
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pk (φk). Note we use an upper-case letter to represent the ground truth and a lower-case

letter to represent the received/measured data. Eq. (4.4) is valid because p and φ are mea-

sured with different sensors (i.e., GPS in the vehicle and wireless transceiver in the RSU,

respectively)3 and, therefore, their measurement errors can be considered independent. The

next step is to substitute the data that is on the left-hand side of the SD (i.e., Eq. (4.3)) using

only the data on the right-hand side:

Eq.(4.4) = Pr(pk|Pk)×Pr(φk|∠eNOPk) (4.5)

= Pr(pk|Pk)×Pr
(

φk| tan−1 OX −Pk,X

OY −Pk,Y

)
= L′(Pk),

where subscripts X and Y represent coordinates in west–east and south–north directions,

respectively. The last step of the estimation process is to solve

P̂k = argmax
Pk

L′(Pk), (4.6)

and obtain Φ̂k by plugging P̂k into Eq. (4.3), where X̂ denotes X’s estimation. The classifier

can then compare the estimated values with the received ones to detect inconsistencies, if

3Note that the error distribution of pk can be obtained from the BSM Part I [114] and that of φk can be
obtained from the measurement error estimation.

133



any, which we call consistency check. EDRoad may also utilize a Kalman Filter for state

estimation if the SD is covering time-series data and the required covariance matrices are

available.

Note that EDRoad designs classifiers for engineers with little to no knowledge of how

to perform a data consistency check. Experienced engineers can design a sophisticated

classifier for a given SD, or a classifier may already be available from prior studies. In either

case, engineers can use the customized classifier as input to the training of verification

model.

4.4.2.2 Training of Verification Model

There are two steps to train the verification model. First, EDRoad generates a pro-

cedure template for determining the sequence of verifying each input data based on the

classifier inputs. Second, EDRoad obtains the detail parameters for combining the results

of the classifiers via a training process.

1) Generation of Procedure Template. The goal of generating a procedure template is

to explore all possible verification orders (i.e., which data to verify first) that EDRoad can

follow to maximize EDRoad’s detection performance. Because the procedure template

can be visualized by a tree data structure, we call this procedure template a verification

tree (VT) template. The VT template is constructed based on a simple rule — a classifier

can be utilized to perform a data consistency check if and only if all but one data in that

classifier have been verified. We will also use the example of BSM verification (i.e., “Ex1”

in Table 4.2) with Fig. 4.4 to illustrate the process of constructing a VT template.

First, EDRoad will create a root node and mark the initial trusted data/measurement

(φ ) in this root node (Node-1 in Fig. 4.4a). Each node, say Node-k, in the VT will also

maintain a list ℓk, recording the data that have been verified so far.

Next, EDRoad constructs the VT template node by node based on the classifier (C)

candidates that can be used to perform the consistency check in the current state. That
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Figure 4.4: An example verification tree (VT), where the numbers on the nodes are the
node indices and the tuples on the paths are ⟨ Classifiers | Youden’s Index J ⟩.
The static information M can be considered as common trusted information,
and hence is not specially marked in the root node.

is, after creating the root node, EDRoad will now try to find those candidates that have

only one additional data type compared to ℓ1. The candidates are C8, C9, and C12, and their

unverified data are p, p and v, respectively. Since there are only two unique data (i.e., p and

v) can be verified at this point, EDRoad adds two child nodes (i.e., Node-2 and Node-3)

to the root and marks the corresponding classifiers on the connected paths. The newly-

added child nodes will also add the data type marked on them as verified. For example,

Node-2 will have ℓ2 = {φ ,M, p} and Node-3 will have ℓ3 = {φ ,M,v} (see Fig. 4.4b).

EDRoad will repeat the process to all the newly-added nodes until no candidates can be

found (Fig. 4.4c). Fig. 4.5 shows another VT example constructed based on “Ex2” of

Table 4.2 while assuming Doppler Shift (∆ f ) is another available and trusted measurement.

Note that the SDs/classifiers provided by the engineers may not be enough to support

individual data verification. This condition can be determined by EDRoad unable to find a

classifier candidate to add a new child node for Node-k, but there are still unverified data.

EDRoad can then prompt a message to the user on the need of more SDs/classifiers to

depict the correlation between ℓk and the unverified data.

2) Parameter Training. The goal of parameter training is to obtain the models for

combining classifier results and provide information on which verification order EDRoad

should take at run-time. During run-time, EDRoad will verify one data at a time according
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Figure 4.5: VT template of “Ex2” in Table 4.2.

to the VT and this verification procedure is equivalent to finding a path from the root node

of the VT to a leaf node. Specifically, EDRoad will choose the path that has the best

expected performance to traverse down the tree, if possible. Therefore, for each path in VT,

the parameter training will obtain i) the models for verifying (MC) and correcting (MR) the

target data marked in the connected node and 2) its expected performance. The algorithm

of run-time verification and its design rationale will be introduced in Chapter 4.4.3.

Other than the classifiers and the VT template, the parameter training has two additional

inputs (Fig. 4.2):

− Training data. These are (untampered with) data collected during the deployment of

EDRoad for training the system. They can be regular messages recorded at the deployment

site by the engineers themselves.

− Error Information (Optional). EDRoad can adjust its operation based on the current

measurement/data quality. This input lets engineers specify the measurement error levels

or distributions that the system should consider during run-time to adjust its operation. For

example, if the GPS measurements at the deployment location can sometimes have up to

a 10m deviation from the actual vehicle location depending on the weather condition, then

engineers may set the GPS to have three measurement levels: ≤2.5m, ≤5m, and ≤10m.

Otherwise, engineers can omit this option and use the worst-case error. Note EDRoad will

create one VT for each error level because the classifiers may exhibit different detection

capabilities at run-time, leading to different training results. EDRoad will then choose the
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Figure 4.6: Classification model training process.

corresponding VT during its online execution.

Classification Model (MC) and Expected Performance Training. The goal of MC train-

ing is to obtain MC for combining detection results of classifiers on a single path in the VT.

Fig. 4.6 shows the workflow of MC training. The main idea of this training is to construct a

strong classifier through a modified version of AdaBoost for the detection of data anoma-

lies based on the classifiers. For example, the classifiers to be combined for the path from

Node-1 to Node-2 in Fig. 4.4 will be C8 and C9. To do so, EDRoad needs to prepare a

set of training data with anomalies and the ground truth (GT) labels indicating whether a

specific training data is anomalous. By default, EDRoad will first randomly select data

entries from the input training data, shift the data by the value of threshold input to create

anomalies, and mark the manipulated data as anomalous. This process simulates the worst-

case scenario where attackers know the detection thresholds and manipulate the data right

at the threshold values. Experienced engineers can also include any specific scenarios the

system should be aware of in the training process.

After generating the training data, the next step is to prepare the necessary inputs to

AdaBoost. The first input is the ground truth (GT) labels for each training data, which

are already available during the training data preparation. The second input is the matrix

of classification results, which can be obtained by directly applying the classifiers to the

training dataset. Fig. 4.7a shows an example input of MC training.

EDRoad then uses the following training process (adapted from the classic AdaBoost)

to assign each classifier a weight:

Step 1: Initialize all training data xi ∈ {0,1} to have an initial weight of wi = 1/ND, where i

is the index of the training data and ND is the number of training data.

Step 2: Compute the Youden’s Index J [155] for each classifier (see the following descrip-
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Figure 4.7: I/O examples of MC training.

tion).

Step 3: Select the classifier C∗ with the largest J and assign a weight α∗= 0.5ln[(1−ε∗)/ε∗]

to C∗, where ε∗ = ∑∀C∗(xi)̸=yi wi is the weighted error rate, yi ∈ {0,1} is the ground

truth label of xi, and C∗(xi) means applying C∗ to data xi.

Step 4: Update the weighting of training data wi← wiexp
(
−α∗(−1)yi+C∗(xi)

)
and further

normalize the sum of data weights to 1, i.e., wi← wi/(∑wi).

Step 5: Repeat Steps 2–4 until all classifiers have been assigned a weight.

The above training process greedily assigns a weight to the classifier with the best perfor-

mance in each iteration and emphasizes on the incorrectly classified data in the next itera-

tion by increasing their weights. We refer the interested readers to the original derivation of

AdaBoost [42] for the rationale and mathematical meaning behind the weight assignment

in Steps 3 and 4.

Input Expansion. Since there can be paths in a VT with only two or fewer classifiers,

performing AdaBoost on such paths is equivalent to only utilizing the classifier with better

expected performance and there will be no performance boosting over use of that particular

classifier. For example, if C8 and C9 cover different detection aspects, the best way to

integrate these two classifiers is to report a data anomaly if any of them detects an anomaly,

which is not covered by direct utilization of AdaBoost. Therefore, we introduce an optional

step to expand the input matrix before performing the training. The idea is to include not
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only the original output from the classifiers but also their combinations. Using the same

example, we can include an additional column of (C8||C9) as shown in Fig. 4.7b, where “||”

is the OR operation.

Youden’s Index. Another modification we made to AdaBoost is to change the classifier

selection (i.e., Steps 2 and 3) in each of its training iterations from the classifier with the

smallest error rate (i.e., the largest correct rate) to that with the largest Youden’s Index J

[155].

J = sensitivity− specificity−1 = TPR−FPR, (4.7)

where TPR and FPR are true and false positive rates of the weighted classification results,

respectively. This modification is made to improve the stability of training results, be-

cause the error rate will change according to the ratios of positive and negative samples

in the training data even if the classifier has a consistent TPR and FPR performance (i.e.,

the training results will be highly dependent on the positive sample ratio in the provided

training data). On the other hand, J will remain consistent if the classifier has a consistent

detection capability. This is also the reason why we choose J to represent the expected

performance for MC, and we will discuss more on the benefits of choosing J over other

performance metrics when we introduce EDRoad’s online execution in Chapter 4.4.3.

Finally, before assigning the training result M̂C as the final MC for a path, EDRoad

checks whether the grandparent of the connected node already provides a path with a better

classification model M′C to verify the same target data. If not, M̂C will be used as MC;

EDRoad will otherwise use M′C as MC. We will henceforth denote Path-i to represent the

path from some node to Node-i. For the example in Fig. 4.4c, Path-5 represents the path

from Node-3 to Node-5. If EDRoad is currently training MC for Path-5, it will check

whether there is any path from Node-1 that verifies the same data as Node-5 (i.e., p) but

with better performance. In this example, the existing model from Path-2 has a better
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detection performance than Path-5 (i.e., 0.65 > 0.61) and, therefore, the model of Path-5

will be replaced by the model of Path-2.

This mechanism ensures a data scheduled to be verified later will have the same level

or higher expected performance, which will further ensure the detection procedure during

runtime is equivalent to greedily maximizing the lower bound of TPR and minimizing the

upper bound of FPR (to be proved in Chapter 4.4.3). Note that the model-replacing mecha-

nism will always be valid (i.e., there are sufficient verified data to perform the detection for

the current path) because the set of verified data will monotonically increase when travers-

ing down the VT. While EDRoad can directly apply MC to the training dataset to obtain

the expected performance based on Youden’s Index, we choose to use a two-fold cross val-

idation to avoid over-fitting the training data in computing expected performance on each

path.

Data Recovery Model (MR) Training. Since EDRoad performs data recovery based

on Gradient Boosting algorithm [58], it follows the standard training process of Gradient

Boosting for its MR Training. The idea of data recovery is to estimate an unverified data

based on relevant verified data and EDRoad also performs MR Training for each path in

the VT. On each path, the data type to be restored (i.e., the data type marked in the con-

nected node) will be treated as the supervised signal and the other data types covered in the

classifiers of the target path will be the regular training input. Take the path from Node-2 to

Node-4 in Fig. 4.4c as an example, p, φ , and v will be included in the training data and v is

specifically treated as the supervised signal. The training result will be a Gradient Boosting

model of MR : (p,φ)→ v.

4.4.3 Data Verification

4.4.3.1 Runtime Verification

EDRoad can be set to perform data verification periodically or upon receipt of a mes-

sage containing one or more data types. EDRoad takes three inputs to perform data ver-

141



ification (Alg. 1). They are i) the VTs obtained from the training phase (V ), ii) the mes-

sages/data that need to be verified, and iii) the (optional) measurement quality estimation

(αv) upon receipt of each measurement/data (Fig. 4.2). Note that the received data/mea-

surement quality estimations are stored in buffers Q and E , respectively, before processing

them.

Since classifiers in EDRoad can sometimes involve data from two or more consecutive

messages, there may be cases that a data with timestamp k can only be verified when

another data with timestamp k+1 is received and verified. Take the classifier constructed

from the following SD as an example:

vk = |(p⃗k+1− p⃗k)|/∆t, (4.8)

The vehicle speed vk can only be verified when both vehicle locations pk and pk+1 are

verified. Based on this observation, we propose Forward Creation and Backward Execution

(FCBE) mechanism for performing data verification. Upon receiving a message, EDRoad

will create a new instance of VT corresponding to the measurement level at that time, which

records the verification progress of that particular message (Line 4 in Alg. 1), and then puts

it in treeQueue (Line 5). EDRoad will then perform verification on each VT in treeQueue

in reverse direction, meaning that the most recently created VT will be executed before the

previously created VT (Lines 8 and 10).

4.4.3.2 Verification Overview in a Single VT

The verification process in single VT (Alg. 2) is akin to finding the best path from the

root to a leaf node based on the models and the expected performance specified on each

path of the VT. Starting from the root, EDRoad will check whether the path with the best

expected performance (i.e., having the largest Youden’s Index J) is ready to perform data

consistency check (Line 5 in Alg. 2). If the path is ready (i.e., all required data for the clas-
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Algorithm 1: Runtime Data Verification — FCBE
1 Function: data verification (Q,E ,V );

Input : Message buffer (Q) and measurement error buffer (E )
VT set (V ).

Output: Results of verification (R).
2 treeQueue = { };
3 while ¬is empty(Q) do
4 tempVT = create tree(Q,V , E );
5 push(treeQueue,tempVT);
6 for idx from size(treeQueue) - 1 downto 0 do
7 if idx < (size(treeQueue) - 1) then
8 R[idx] = vt verification(treeQueue[idx], treeQueue[idx].Message,

R[idx+1]);
9 else

10 R[idx] = vt verification(treeQueue[idx], null, null);

11 return R;

sifiers marked in the tuple are received), it will perform consistency check with MC on that

path and try to traverse down to the connected node. That is, if no data anomaly is detected

by MC on the target path, EDRoad will move on to the connected node (Node-T) and report

the data marked in Node-T as normal; otherwise, EDRoad will report the data marked in

Node-T as anomalous and perform the same procedure to the path with the next largest J.

EDRoad will repeat this procedure (i.e., try to perform data verification to the path with

next largest J) until all the paths fail the consistency check or it encounters a path waiting

for further data (Line 6). If all the paths report data anomaly detected, EDRoad performs

data recovery to the target data on the path with the largest J via Gradient Boosting and

moves on to the connected node. Otherwise, EDRoad will quit the current verification

process of the current message and wait until either necessary data are available or a time-

out, a design parameter, is reached. If the timeout is reached, EDRoad will remove all

the paths still requiring additional data and perform the verification process only on the

remaining paths (Line 9).
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Algorithm 2: Verification in a Single VT
1 Function: vt verification (T ,Mk,Mk+1);

Input : VT instance (T ), message to be verified (Mk), and (partially) verified
next message (Ck+1).

Output: Verification result of Mk (i.e., Rk).
2 waiting = false;
3 while ¬waiting do
4 newNode = T .currentNode;
5 if largest J path ready(T ,Mk,Mk+1) then
6 newNode = traverse down(T ,Mk,Mk+1);

// Traverse down or switch path until encounter a blockage

(Sec. 4.4.3.2).

7 else
8 if timeout reached() then
9 newNode = timeout traverse down(T ,Mk,Mk+1);

10 if is equal(newNode,T .currentNode) then
11 waiting = true;
12 else
13 T .currentNode = newNode;

14 Rk = extract result(T );
15 return Rk;

4.4.3.3 Design Properties

Choice of Youden’s Index (J). J’s physical meaning is the distance between the

receiver operating characteristic (ROC) and the chance level (where TPR = FPR). It is a

commonly used metric to represent the system’s likelihood to make an informed detection

instead of making a random guess. The larger the value, the better detection results. The

range of J is [-1,1], where 1 indicates perfect detection (TPR=1 and FPR=0) and 0 indicates

that the detection is randomly predicting positive results (TPR=FPR) regardless of the input

(i.e., a random guess). Note that J ∈ [−1,0) indicates that the detection produces opposite

labels. Therefore, the system should reverse the detection results.

We now introduce the important properties of J that are exploited in EDRoad’s detec-

tion.

Property 4.4.1. J will not be affected by the positive ratio of the data if the classifier has
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consistent TPR and FPR.

Proof.

J = sensitivity+ specificity−1 (4.9)

= T P/(T P+FN)+T N/(T N +FP)−1 (4.10)

= T P/(T P+FN)− [1−T N/(T N +FP)] (4.11)

= T P/P−FP/N (4.12)

= TPR−FPR, (4.13)

where T (F) represents true (false) and P (N) is positive (negative). Since T PR and FPR are

computed by only looking P and N samples, respectively, J is independent of the positive

ratio of the data.

That is, unlike other metrics (e.g., F1 score) that stress the positive predictions and can

be influenced greatly by the ratio of positive cases, J provides a consistent summary of

system performance regardless of the positive sample ratio of the data. Furthermore, it

represents the performance bound of the system as stated in the following properties.

Property 4.4.2. J represents a classifier’s TPR lower bound.

Proof. TPR = J+FPR≥ J (∵ FPR≥ 0).

Property 4.4.3. J represents a classifier’s FPR upper bound.

Proof. J ≤ 1−FPR (∵ TPR≤ 1)⇒ FPR≤ 1− J.

The above properties further lead to EDRoad’s design to choose the path with the

largest J during the detection phase (Chapter 4.4.3.2). Below we formally state the perfor-

mance benefits brought by EDRoad’s design.
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Property 4.4.4. EDRoad greedily maximizes the potential growth of (average) TPR lower

bound by choosing the Path-α with the largest J from Path-1 to Path-K from Node-γ , where

K is the total number of paths originating from Node-γ .

Proof. Based on Property-4.4.2, the sum of TPR lower bounds for verifying the current set

of data (i.e., all data that can be verified immediately after Node-γ) after choosing Path-α

can be represented as

K

∑
i=1

J′i = Jα + ∑
i ̸=α

J′i =
K

∑
i=1

Ji + ∑
i ̸=α

εi, (4.14)

where Ji is the Youden’s Index of Path-i and J′i is the Youden’s Index for verifying xi

(i.e., the data that can originally be verified by Path-i) after choosing Path-α . εi is the

difference between Ji and J′i , and 0≤ εi≤ 1−Ji since our training design ensures Ji≤ J′i ≤ 1

(Chapter 4.4.2.2).

Maximizing the potential growth of average TPR lower bound can then be transformed

to maximizing the upper bound of Eq. (4.14):

K

∑
i=1

Ji + ∑
i ̸=α

εi ≤
K

∑
i=1

Ji + ∑
i̸=α

(1− Ji) = K−1+ Jα , (4.15)

⇒ argmax
α

(K−1+ Jα) = argmax
α

Jα . (4.16)

Since we have a fixed number of data to be verified, there is no difference in maximizing

the sum or the average of a target metric.

Property 4.4.5. EDRoad greedily maximizes the potential decrease of (average) FPR up-

per bound by choosing the Path-α with the largest J from Path-1 to Path-K from Node-γ ,

where K is the total number of paths originating from Node-γ .

Proof. This can be proved similarly to Property-4.4.4.
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4.4.3.4 Computation Cost Analysis

The computation cost of EDRoad during run-time is determined by the number of

data covered and the number of verification groups. While assuming EDRoad utilizes

MLE (with a closed-form solution) for true state estimation and Gradient Boosting for data

reconstruction, the worst-case computation cost for a single BSM verification is bounded

by O(N2 +K) where N is the number of the data types covered in EDRoad and K is the

number of SDs.

4.4.4 System Descriptions in Case Study

We introduce the SDs utilized in EDRoad’s case study according to the data types

involved in each SD. We assume that BSM with index k is received at time t and BSM with

index k+1 is received at time t +∆t.

4.4.4.1 Pure Vehicle Dynamics

As shown in Table 4.2, C1 – C5 and C10 form the basic correlation between vehicle state

and dynamics. While C1 describes the correlation between vehicle location and speed as

shown in Eq. (4.8), C10 describes that between vehicle speed and acceleration:

vk+1 = vk +ak∆t. (4.17)

On the other hand, C2 – C5 capture the correlation between vehicle location and other

vehicle state measurements. They follow the basic formulation of:

p⃗k+1 = p⃗k +

t+∆t∫
t

(vk +akτ) h⃗τ dτ, (4.18)

where h⃗τ = h⃗k + ω⃗kτ . Note that since not all the data in Eq. (4.18) are utilized in C2 –

C5 while assuming different data availablility, the data not covered in a certain SD will be
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replaced by 0 in Eq. (4.18) for that specific SD.

4.4.4.2 AoA (φ ) and Map Information (M)

C8 and C9 describe the correlation between vehicle location and the AoA measurements:

C8 : φk = ∠eNOpk;and (4.19)

C9 : pk = intxn(O,φk,M); (4.20)

where eN is the North direction (see Fig. 4.3a), O (p) is the RSU (vehicle) location, and

intxn(·) is the function used to identify the intersection point of the road that the vehicle is

traveling on and the virtual line of AoA measurement from the RSU.

Since one can use Eq. (4.20) to estimate the vehicle location, C12 combines the corre-

lation described in C1 and C9 for vehicle speed verification:

C12 : vk = |intxn(O,φk+1,M)− intxn(O,φk,M)|/∆t. (4.21)

4.4.4.3 Doppler Shift (∆ f )

C6, C7, C11, and C13 describe the correlation between vehicle dynamics and Doppler

shifts of received BSMs from the RSU side. They follow the formulation of:

∆ fk = [c/(c− vr,k)] fc, (4.22)

where c is the light speed, fc is the transmission carrier frequency of BSMs, and vr,k is

the relative speed between the vehicle and the RSU. Note that while Doppler shift is not

treated as a necessary requirement of EDRoad, we added these SDs to demonstrate the

expandable detection scope of EDRoad.
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4.5 Evaluation of Verification Frameworks

EDRoad’s evaluation is divided into two parts: a generic ensemble learning framework

(this section) and a system approach for our case study (Chapter 4.6).

4.5.1 Evaluation Settings

4.5.1.1 Training and Testing Data.

EDRoad (as a generic ensemble learning framework) takes a set of classifiers and train-

ing data (i.e., classification results and their ground-truth labels of the input classifiers) as

inputs and outputs a data verification model that determines whether individual data is nor-

mal or anomalous. The requirement of the ground-truth normality of each data in the clas-

sifiers for this evaluation forced us to generate synthetic datasets with different classifier

and sample space settings to make the evaluation of EDRoad’s performance independent

of a specific dataset with fixed properties. EDRoad will also be evaluated with real-world

datasets in Chapter 4.6.

…

𝐻

Region-3: Data-1 and Data-3 anomalous

Region-2: Data-1 and Data-2 anomalous

Region-1: Data-1 anomalous
(1,1)

(1,2)

(1,3)

(1,4)

…
Region Classifier-1 Classifier-2 Classifier-3 …

(1,1) 0.70, 0.10 0.70, 0.10 0.50, 0.10 …

(1,2) 0.75, 0.00 0.50, 0.10 0.75, 0.00 …

… … … … …

Region-1’s Classifier Performance Table

Sample Space

Figure 4.8: A sample space example for data generation.

We assume there are 13 classifiers and 8 data types with 2 trusted inputs as in the

case study of BSM verification and the classifiers can only yield moderate detection per-

formance of 0.5–0.75 TPR and 0–0.1 FPR. To generate different detection correlations

between classifiers, we first divide the sample space into H (28−2=26=64) regions, each of
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which is a possible data anomaly combination, e.g., only Data-1 is anomalous, or Data-

1 and Data-2 are anomalous. In each region, there can be up to G (=10) sub-regions of

different anomalous scenarios. For each sub-region, classifiers have different correlations

with each other. Fig. 4.8 illustrates an example sample space, where we use a tuple (i, j)

to represent a sub-region j within region i. For example, Classifier-1 and Classifier-2 have

similar TPRs and FPRs in (1,1), i.e., they are likely to have similar detection results, while

only Classifier-1 has a high TPR in (1,2). To create the training and testing datasets, we first

generate an array of ground-truths with ρ positive ratio and randomly assign a ground-truth

sample to each of (region, sub-region) combinations to generate i) the ground-truth labels

of individual data and ii) the results of each classifier based on its TPRs and FPRs specified

in the performance table of that region (Figs. 4.8 and 4.9).

Data-1 Data-2 …

1 0 …

0 0 …

0 0 …

0 1 …

… … …

GT

1

0

0

1

…

Region

(1,1)

(2,3)

(5,1)

(6,2)

…

Classifier-1 Classifier-2 …

1 1 …

1 0 …

1 0 …

0 1 …

… … …

+ +

Ground-Truth Label
& Region Assignment

Ground-Truth Label
for Individual Data

Classifier Results as
Testing or Training Data

Figure 4.9: An example of training and testing data generation.

4.5.1.2 Baseline Comparison.

We compare EDRoad with the most commonly-used or state-of-the-art ensemble learn-

ing, including AdaBoost [58], Random Forest [59], Gentle Adaptive Boosting [43], Lo-

gistic Boosting [43], Robust Boosting [66], and Random Undersampling Boosting (RUS-

Boost) [119]. They will be compared using the following metrics.

− True Positive Rate (TPR): The probability (per data type) that EDRoad successfully

detects the occurrence of data anomaly, also known as detection rate or recall.

− False Positive Rate (FPR): The probability (per data type) that EDRoad incorrectly
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reports occurrence of a data anomaly while it is not, also known as fall-out.

− Youden’s Index (J): See Chapter 4.4.3.3.

Note other metrics can be converted from TPR, FPR, and the positive sample ratio (ρ) of the

data, e.g. F1 = (2ρTPR)/[2ρTPR + (1-ρ)FPR+ρ(1-TPR)]. So, they are not explicitly shown

here. Also, while EDRoad has a more strict applicable scenarios than general-purpose en-

semble learning (Chapter 4.4), we only evaluate the test-cases in which EDRoad is able to

verify individual data.

4.5.2 Results

4.5.2.1 Detection Performance

We first evaluate EDRoad’s detection performance for an ideal scenario where the

training dataset has the same positive sample ratio ρ = 0.01 as the testing dataset, both

with 10,000 sample sets. Fig. 4.10 shows EDRoad’s performance in comparison with

existing ensemble learning frameworks. EDRoad is shown to outperform existing frame-

works in most testing scenarios by up to 0.51 absolute TPR and 0.48 absolute Youden’s

index. Even though RUSBoost shows better TPR and J when there is only one anomalous

data, EDRoad achieves better overall performance when there are more than one anoma-

lous data.

Other ⟨sample space, TPR, FPR, ρ⟩ settings show a similar pattern as in Fig. 4.10.

Figs. 4.12 and 4.13 compare the performance of EDRoad with other ensemble learning

frameworks under the condition in which the input classifiers have 0.8–1.0 TPR. Figs. 4.14

and 4.15 compare their performances under the condition in which the input classifiers have

0.6–0.8 TPR. Each testing scenarios have 10 different sample space test-cases and each test-

case has 10,000 sample sets of training and testing data. We can observe that they all show

similar patterns as Fig. 4.10, where RUSBoost has better performance under single-data

anomalies while EDRoad achieves better performance under multi-data anomalies.
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Figure 4.12: Performance comparison when input classifiers have 0.8–1.0 TPR and 0–0.1
FPR with training ρ = 0.05 and testing ρ = 0.01. The values in each anomaly
scenario from left to right are 1) AdaBoost, 2) Random Forest, 3) Gentle
Adaptive Boosting, 4) Logistic Boosting, 5) Robust Boosting, and 6) RUS-
Boost.

4.5.2.2 Performance Persistency

Next, we demonstrate the performance deviations of EDRoad and existing frameworks

when the training and testing datasets do not exhibit the same characteristics. We fixed the

testing data to have 10,000 samples with positive rate ρ = 0.01 while adjusting each set of

training data to have 10,000 samples with ρ = 0.005–0.1 (i.e., 0.5x–10x of that of the test-

ing data). We then compare the testing performance of EDRoad and prior approaches with

their corresponding performance when the training and testing data have the same positive

rate (i.e., ρ = 0.01). Finally, we show the maximum absolute performance deviation in

different anomaly scenarios (Fig. 4.11).

Ideally, the performance deviation should be close to 0, meaning that an algorithm is un-

affected by the dissimilarity/inconsistency between the training and testing data. Fig. 4.11

shows that EDRoad’s performance does not change much even if the testing data do not

exhibit similar statistical characteristics as the training data. Therefore, using EDRoad, en-

gineers do not have to fine-tune the training data to match the statistics of the actual online

execution to have good performance.
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Figure 4.13: Performance comparison when input classifiers have 0.8–1.0 TPR and 0–0.1
FPR with training ρ = 0.10 and testing ρ = 0.01. This figure shares the same
legend as Fig. 4.12.
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Figure 4.14: Performance comparison when input classifiers have 0.6–0.8 TPR and 0–0.1
FPR with training ρ = 0.05 and testing ρ = 0.01. This figure shares the same
legend as Fig. 4.12.

4.5.2.3 Remark

Unlike prior ensemble learning that determines the final model directly based on classi-

fication performance when classifiers are applied to the training data, EDRoad performs its

training and detection according to i) the data types included in the classifiers and ii) classi-

fier performance, making its online execution partially sequential instead of purely parallel

to avoid utilizing anomalous data for the verification of another data. While EDRoad shows

its superiority to existing frameworks for the verification of individual data, it does not al-

ways outperform existing frameworks in all possible scenarios. For example, RUSBoost
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Figure 4.15: Performance comparison when input classifiers have 0.6–0.8 TPR and 0–0.1
FPR with training ρ = 0.10 and testing ρ = 0.01. This figure shares the same
legend as Fig. 4.12.

will provide a better FPR performance than EDRoad in determining whether there is a data

anomaly while treating all received data as a single group. This is because if EDRoad di-

rectly reports an anomaly when any of the (individual) data is determined to be anomalous,

the thus-computed FPR is equivalent to representing the union of the false-positive condi-

tions of all data, instead of representing the common/intersecting false-positive conditions

as in a single-group setting.

4.6 Case-Study Evaluation

4.6.1 Experimental Settings

4.6.1.1 Data Preparation

As described in Chapter 4.3, we assume some malicious vehicles will transmit BSMs

with incorrect information to the RSU (i.e., where EDRoad is deployed) to prevent the RSU

from capturing the correct status of malicious vehicles. In this case study, EDRoad verifies

the data in BSMs transmitted by the vehicles within the RSU’s reception range based on

“CS” classifiers/SDs listed in Table 4.2 while assuming AoA and road/map information

are the only initial trusted data. To render our evaluation representative of the real-world
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100 ft
(30.48m)

Figure 4.16: Testing data on a map.

driving, we extracted 52 vehicle trips through the same urban road segment (of ∼190m)

with a total of 4336 BSMs (10Hz) from Safety Pilot Open Dataset [37]. We use 30 trips

(2439 BSMs) as the training data and the rest as the testing data. Fig. 4.3b shows the

relative location of the RSU and vehicle traces.

Next, we add Gaussian noises with standard deviation αm to the testing traces (to con-

trol/simulate different levels of natural measurement errors), and manipulate the data on

top of the traces with measurement errors to simulate attacks.

Attack Formulation. Adapted from the most powerful GPS/location spoofing re-

ported recently [120] that targets the detection schemes based on Multi-Sensor Fusion (i.e.,

those similar to EDRoad), we implemented an attack targeting vehicle location where all

the other data in the BSMs match the manipulated location data. Specifically, the attack

implemented in this paper is determined by solving the following optimization problem for

{(xa
k ,z

a
k)|k = 1, · · · ,n}:

argmin{za
k |k=1,··· ,n} Σ D(za

k ,zk)
2, (4.23)

where dk = D(xa
k ,Pk) and xa

k = M(xa
k−1,Pk +dk,za

k); (4.24)

where the subscript k is the timestamp index, the superscript a indicates the manipulated
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data during the attack, xa is the manipulated vehicle location, dk is the target deviation at

the time k, P is the ground truth of vehicle location and z represents other data in BSMs.

D(·) is the deviation between the ground truth and manipulated data, M(·) is the process of

a Kalman Filter to estimate the next location based on previous estimated location (xa
k−1),

current location measurement (Pk + dk), and other dynamics data in the received BSMs

(za
k), and the manipulated data should maintain the same noise level as if there were no

attacks. The attack starts at a random time after each vehicle enters the communication

range of the RSU and lasts for 5s. 5s is long enough to evaluate the time EDRoad needs to

detect the attack although EDRoad actually requires less time as we will show later.

The attack is optimal in the sense that the manipulated data in BSMs will perfectly

match each other before noise injection. Also, the attack will not introduce any additional,

unnecessary high frequency noise to the data. That is, this attack does not leave any tam-

pering evidence for the detection system to perform a side-channel detection by checking

if there is a sudden change in the noise level. The (falsified) locations will have drifts of up

to 7m (i.e., ≈2X the lane width in the US/European countries) from the actual location.

Baseline Comparison. We implemented [63] for comparison due to its most similar

design goal as EDRoad (i.e., potential to expand the detection scope) and, to the best of

our knowledge, it has the most practical deployment design that requires no inter-entity

resource sharing for basic deployment. While the basic design of [63] only covers BSM

data without incorporating wireless measurements, we expand its detection to further utilize

AoA. The basic system proposed in [63] is denoted as KFV and the one with AoA support

as KFV/AoA (i.e., the adapted version of [63] and [1]). In addition to TPR, FPR and J

(all computed per BSM, not the entire attack duration or a vehicle trip), we also include

Detection Latency (DL), i.e., the average amount of time required for EDRoad to detect an

attack, to evaluate EDRoad’s performance.
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4.6.2 Detection Performance

4.6.2.1 Basic Performance (7m Deviation)

Fig. 4.17 shows the comparison of EDRoad with KFV, and KFV/AoA while controlling

the location data to have varying (natural) measurement noises of αm =0.5, 1, or 2.5m. Dur-

ing run-time, EDRoad will automatically adjust its detection threshold to 2×EDRoad’s

estimated measurement error (αv). From the low TPR performance (<7%) of KFV, we

can confirm that the sophisticated location manipulation can indeed evade KFV’s detection

(i.e., a scheme based on Kalman Filter (KF) without any trusted measurement), corroborat-

ing the results shown in prior attack examples [120]. EDRoad and KFV/AoA, on the other

hand, are able to detect such an attack thanks to their utilization of AoA measurements.

At a first glance, KFV/AoA may seem to have a better TPR performance (86.87%) than

EDRoad (55.9% TPR) when αm = 2.5, but this TPR performance accompanies the ultimate

price of a significantly higher FPR than EDRoad. Specifically, while EDRoad achieves

≤4.45% FPR in all three scenarios, FPR of KFV/AoA can rise to 53.96% when αm = 2.5.

That is, EDRoad always has a performance advantage over KFV/AoA in F1 score (with

up to 0.33 more F1) as long as less than 46% of data are anomalous. As a result, EDRoad

outperforms KFV/AoA by ≥18.55% absolute Youden’s Index in all three scenarios. Note

that when EDRoad utilizes 2αv (= 2αm) as the detection threshold, the theoretical expected

FPR is 4.5% according to the property of a normal distribution, indicating that EDRoad

does not incur any significant FPR other than those caused by natural measurement noise.

Also, since EDRoad will recover/restore the data determined to be anomalous (as we will

show later), there is no real harm when EDRoad has false-positives. EDRoad outperforms

KFV/AoA because the latter requires a certain amount of consecutive untampered data

prior to the arrival of anomalous data for correct estimation of vehicle state, which cannot

be met in this V2I scenario when a sophisticated attacker can start data manipulation right

after the establishment of a V2I communication.
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Next, we look at the detection latency (DL) of the three schemes (Fig. 4.17b). EDRoad

is shown to achieve 0.04, 0.07 and 0.19s DL when αm =0.5, 1 and 2.5, respectively, indi-

cating EDRoad’s ability to capture the data manipulation with only 1 BSM in the first two

scenarios and with 2 BSMs in the last scenario. According to [19], the planning cycle for

signal control systems is typically limited to 5–7s. Since 95% of real-world systems only

use 1.2s for planning, EDRoad will have sufficient time to detect anomalies. We show

EDRoad’s detection performance of other data types in Table 4.3.

4.6.2.2 Performance of Varying Attack Magnitudes

We further investigate the performance when a data manipulation attack is mounted by

gradually drifting away up to 7m from the vehicle’s actual location. Specifically, Fig. 4.18

shows the performance snapshots where the drifting reaches i) less than one lane (1.4m), ii)

one lane (3.5m) and iii) two lanes (7m). EDRoad outperforms both KFV and KFV/AoA in

all three drift magnitudes by >15% absolute Youden’s index while maintaining <5% FPR.

When we examine the detection latency, EDRoad has no problem in detecting a sophis-

ticated location manipulation within 0.8s even with the attack magnitude as low as 1.4m.

Although KFV and KFV/AoA seem to have smaller detection latencies than EDRoad, this

comes from their tendency to generate (false-)positive detections. Specifically, they can

only achieve close to, or less than zero Youden’s Index, indicating their inability to pro-

duce meaningful detection results when the attack magnitude is only 1.4m and >50% of

their positive detections may be false-positives.

Next, suppose the attackers can also launch a side-channel attack to influence the er-

ror estimations (αv) of EDRoad (e.g., by wireless signal jamming or injecting additional

noises into data). Fig. 4.19 shows the change of detection performance when EDRoad

overestimates the errors embedded in the data by 100 and 400%. EDRoad is shown to

have less than 6% of performance change regardless of the attack magnitude, and there is

only a <0.05s difference in DL when the attack magnitude is 7m. These results demonstrate
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EDRoad’s resilience against i) attackers who try to tamper/interfere with the measurement

in the infrastructure and ii) cases when accurate αv is not obtainable/available.

4.6.2.3 Resilience against Missing Data

Fig. 4.20 showcases the scenario where the speed data are missing/corrupted, or may

be filtered out by an outlier test directly (due to an obvious value gap in time domain).

EDRoad exhibits no observable performance degradation since it inherently considers data

in smaller groups and EDRoad’s run-time design ignores the unavailable paths in the VT.

On the other hand, KFV/AoA’s FPR increases drastically, leading to a 30% (absolute value)

decrease in Youden’s Index.

This large performance degradation is caused by the fact that KFV/AoA is forced to de-

tect anomalies based on noisy acceleration and location measurements for state estimation

in the prediction phase of the Kalman Filter (KF) while the update phase is less effective

because of the missing data. Note that the results shown here do not indicate our state esti-

mation is better than KF (which is known to be optimal with Gaussian measurement noise)

in a general setting. Rather, since KF is not originally designed for data verification but

for state estimation given correct (but noisy) measurements, it is natural for a sophisticated

attacker to evade its detection.

4.6.3 Performance of Data Recovery

We use the settings in Table 4.3 and αm = 0.5m for GPS noise level to evaluate EDRoad’s

data recovery. 1183 BSMs are used for MR model training and another 1183 BSMs for

testing. Fig. 4.21 shows the CDFs of errors in restoring vehicle location and speed. The

yellow (leftmost) curve shows the theoretical performance bound computed based on a KF

with complete/correct prior measurement and measurement-error standard deviation. The

purple (rightmost) curve shows the performance with a KF under sophisticated/strong at-

tacks as shown in the previous evaluation. EDRoad is shown to significantly improve the

161



1
2

3
4

5
6

7
02040608010
0

TP
R

𝑑
=
7

TP
R

𝑑
=
3.
5

TP
R

𝑑
=
1.
4

FP
R

J-
In

de
x

𝑑
=
7

J-
In

de
x

𝑑
=
3.
5

J-
In

de
x

𝑑
=
1.
4

M
ea

su
re

m
en

t e
rro

r i
s 

ov
er

es
tim

at
ed

 b
y 

10
0%

M
ea

su
re

m
en

t e
rro

r i
s 

ov
er

es
tim

at
ed

 b
y 

40
0%

Performance (%)

1
2

3
0

0.
2

0.
4

0.
6

0.
81

M
ea

su
re

m
en

t e
rro

r i
s 

ov
er

es
tim

at
ed

 b
y 

10
0%

M
ea

su
re

m
en

t e
rro

r i
s 

ov
er

es
tim

at
ed

 b
y 

40
0%

𝑑
=
7

𝑑
=
3.
5

𝑑
=
1.
4

DL Change (s)

Fi
gu

re
4.

19
:P

er
fo

rm
an

ce
an

d
D

et
ec

tio
n

L
at

en
cy

ch
an

ge
w

ith
in

co
rr

ec
tα

v,
w

he
re

d
is

th
e

at
ta

ck
m

ag
ni

tu
de

.

0
2

4
6

8
02040608010
0

0
2

4
6

8
02040608010
0

0
2

4
6

8
0

0.
2

0.
4

0.
6

0.
81

D
eB

i (
w

/ o
r w

/o
 S

pe
ed

) D
L

KF
V/

Ao
A 

D
L

KF
V/

Ao
A 

(w
/o

 S
pe

ed
) D

L

D
is

ta
nc

e 
to

 R
ea

l L
oc

at
io

n 
(m

)
D

is
ta

nc
e 

to
 R

ea
l L

oc
at

io
n 

(m
)

D
is

ta
nc

e 
to

 R
ea

l L
oc

at
io

n 
(m

)

Youden’s Index (%)

Detection Latency (s)

Percentage (%)

KF
V/
Ao

A
(w
o)

KF
V/
Ao

A

ED
Ro

ad

ED
Ro

ad
TP

R

ED
Ro

ad
FP

R

KF
V/

Ao
A

FP
R

KF
V/

Ao
A

TP
R

KF
V/

Ao
A

(w
o)

 F
PR

KF
V/

Ao
A

(w
o)

 T
PR

0
2

4
6

8
02040608010
0

0
2

4
6

8
02040608010
0

0
2

4
6

8
0

0.
2

0.
4

0.
6

0.
81

D
eB

i (
w

/ o
r w

/o
 S

pe
ed

) D
L

KF
V/

Ao
A 

D
L

KF
V/

Ao
A 

(w
/o

 S
pe

ed
) D

L

ED
R
oa
d

KF
V/
Ao
A

KF
V/
Ao
A
(w
o)

Fi
gu

re
4.

20
:P

er
fo

rm
an

ce
co

m
pa

ri
so

n
w

ith
m

is
si

ng
da

ta
,w

he
re

“w
o”

in
di

ca
te

s
th

e
ca

se
s

w
ith

m
is

si
ng

sp
ee

d
da

ta
an

d
E

D
R

oa
d

do
es

no
t

ex
pe

ri
en

ce
an

y
ob

se
rv

ab
le

ch
an

ge
ca

us
ed

by
m

is
si

ng
da

ta
.

162



data recovery performance over a KF-based estimator under the sophisticated attacks while

maintaining performance close to the theoretical bound.

Data Unit αm Γ ∆ TPR FPR J DL(s)
v kph 1 5 10 100 0.63 99.37 <0.1
a m/s2 0.1 1 2 97.64 1.14 96.50 <0.1
h ° 1 10 90 100 13.07 86.93 <0.1
ω rad/s 0.05 0.08 0.078 100 1.64 98.36 <0.1

Table 4.3: Detection performance (presented in %) of EDRoad, where ∆ indicates the max-
imum manipulation level.

0 20 40 60 80 100 120
x

0

0.2

0.4

0.6

0.8

1

F(
x)

(a) Distance to Real Location (m)

C
D

F EDRoad

Kalman Filter w/o 
Complete Prior 
Measurement

Kalman Filter with Complete 
Prior Measurement

0 10 20 30 40 50
x

0

0.2

0.4

0.6

0.8

1

F(
x)

(b) Speed Estimation Error (km/h)

Kalman Filter with Complete 
Prior Measurement

EDRoad

Kalman Filter w/o 
Complete Prior 
Measurement

C
D

F

Figure 4.21: Performance of data restoration.

Table 4.4 compares EDRoad’s performance of single and full-scale data reconstruc-

tion. In the case of full-scale attack, we assume the adversary has the goal to prevent the

RSU from getting the accurate vehicle status. Specifically, s/he manipulates every data to

deviate from their ground-truths by magnitudes larger than their corresponding thresholds

without trying to hide the data manipulation to purposely force EDRoad to execute Gradi-

ent boosting for data recovery, hoping that the restored data will have less accuracy. Even

under such full-scale attacks, the increase of deviation in data recovery is only marginal or

even negligible (e.g., the error of restored v increased only 1.5% compared to the ground

truth). In summary, it is possible that an attack can trigger a full-scale data recovery, but

will only have limited effect on EDRoad thanks to its flexible run-time operation. Fur-
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thermore, there are no practical benefits of doing so if the attacker is trying to stealthily

manipulate the data to further influence the operation of ITS (i.e., avoid EDRoad’s detec-

tion) since triggering the data recovery also signals EDRoad’s detection of an anomaly,

which defeats the attacker’s purpose.

Data Unit
Median Mean Difference

Single Full Single Full Median Mean
p m 5.34 N/A 13.45 N/A N/A N/A
v kph 3.88 5.17 4.59 6.45 0.71 1.28
a m/s2 0.06 0.06 0.08 0.08 <0.001 <0.001
h ° 0.07 0.07 0.08 0.08 <0.001 <0.001
ω rad/s 0.0218 0.0245 0.0276 0.0305 0.0058 0.006

Table 4.4: Deviation between GT and restored data. “Difference” presents the deviation
increment from “Single”-data attacks to “Full”-scale attacks.

4.6.4 Supplementary Evaluation Results

Figs. 4.22 – 4.24 show the detailed evaluation results on EDRoad’s detection perfor-

mance in capturing location manipulation (with and without speed data). Specifically, the

rows in each figure indicate the actual level of measurement error (αm) in BSMs while the

columns are the potential measurement quality estimation (αv) obtained from the RSU’s

wireless transceiver. The inner table of each cell specifies the performance under different

<threshold, attack> scenarios. Note that some of the scenarios have an attack level smaller

than the threshold and they are not considered as a valid attack. However, we still show

their results for an illustration purpose.

Similarly, Figs. 4.25 – 4.27 show the detailed evaluation results on KFV’s detection

performance. Figs. 4.28 – 4.30 show the detailed evaluation results on KFV/AoA’s de-

tection performance. Finally, Figs. 4.31 – 4.33 show the detailed evaluation results on

KFV/AoA’s detection performance while speed data is missing from the input.
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4.7 Discussions

4.7.1 Limitations of EDRoad

EDRoad is not suitable for pure anomaly detection for which we do not need to identify

anomalous data and restore it as mentioned in Chapter 4.5. If individual data verification

and restoration are not required for the target application, we suggest use of RUSBoost

[119], instead of EDRoad, for better FPR performance while treating all data as a single

group.

Another natural limitation of EDRoad is that engineers must input a set of SDs/classi-

fiers that provide sufficient correlation/causality to support its individual data verification.

The sufficient condition for deterministic verification of individual data is that SDs can be

transformed into an equation system with 0 degree of freedom. That is, even if the initial

SDs provided by the engineer is not sufficient for EDRoad to generate a VT template,

s/he should be able to find additional SDs derived from the initial SDs to fill in the gap

of VT template generation after receiving the hint provided by EDRoad (Chapter 4.4.2.2).

This step can also be done automatically by using an equation solver, such as Matlab or

Mathematica.

In case the system cannot provide sufficient trusted inputs for individual data verifica-

tion, EDRoad can choose to group a set of data together for constructing the VT template.

That is, a non-root node will now have multiple data-types marked in it. However, these

data-types will always have the same detection results.

4.7.2 Training Data Preparation

We now introduce the process that developers should follow during real-world deploy-

ment.

First, the developers should collect the (untampered with) messages from the deploy-

ment site. These (training) messages can just be the messages transmitted from developers’
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vehicles.

Second, developers should estimate the error distribution based on the collected mes-

sages and their corresponding measurements made by the RSU to determine the common

error levels that will be used in the training process. In our evaluation, the first two steps are

replaced by using Safety Pilot Dataset and injection of measurement errors, respectively.

Third, EDRoad will randomly manipulate the training messages to deviate from its

actual value by the amount equal to or larger than the detection thresholds, which are de-

termined by the application/service requirements. Note that developers may also include

additional training cases with different manipulation levels. During our evaluation of lo-

cation verification, the manipulation levels we use are up to 5m for both north↔south and

east↔west direction.

Finally, developers can now use the manipulated data for training.

4.8 Conclusions

We have developed EDRoad as an ensemble learning framework and also as a data veri-

fication system. Engineers can simply input system descriptions to establish individual data

verification and recovery with the capability of setting desired detection targets. Specifi-

cally, EDRoad automatically transforms its inputs to classifiers and further generates (a

set of) verification procedures for online execution. Our evaluation has shown EDRoad to

outperform existing ensemble learning systems in detecting multi-data anomalies. An in-

depth case study has shown EDRoad to achieve excellent detection (>95% TPR and <4%

FPR) and data restoration performance (with a <7% average deviation from the ground

truth).
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CHAPTER V

CADCA: Detection and Resolution of Control Decision

Anomalies

5.1 Introduction

As advanced driver assistance system (ADAS) and self-driving capabilities are gradu-

ally integrated into passenger and commercial vehicles, we have officially entered the era

of semi-autonomous vehicles (SAVs), which will be the most commonly seen SA systems

in the near future. In addition to enhancing passengers’ comfort and reducing fuel con-

sumption, the main reason for adopting autonomous functions in SA systmes/vehicles is

to ensure passengers’ safety.1 However, autonomous controls in SA systems still have a

long way to go as there can never be a perfect human-in-the-loop system that is free of de-

sign flaws which can be exploited by attackers (e.g., Jeep Cherokee hack [87]). Other than

attacks that directly send malicious control commands to SA systems, data manipulation

or sensor spoofing can also endanger their safety. In particular, there are three factors that

may jeopardize SA systems’ safety:

F1. Sensor failures and falsification attacks that generate incorrect inputs to the autonomous

system (i.e., no data can be entirely trusted!);

F2. Compromised/imperfect controllers or algorithms that generate dangerous controls

1Drivers are known to be the reason for up to 95% of car accidents [94].
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even with correct input; and

F3. Malicious/unsafe control inputs from the human operator.

Since neither autonomous nor manual control is perfect, a conflict or disagreement

between them may arise. To resolve such a conflict, state-of-the-art safety features are usu-

ally implemented with static assignment of priority. For example, an automatic emergency

braking can override the driver’s control if an object is detected in front of the vehicle [51].

However, this static priority assignment can lead to catastrophic accidents when accompa-

nied with incorrect sensor readings.

The crash of Boeing 737 MAX [48] is the most iconic example from which engineers

must learn for the design of SA systems. In 737 MAX’s original design, its Maneuver-

ing Characteristics Augmentation System (MCAS) was given priority over pilots’ control,

causing pilots to compete with MCAS for the control of the plane’s pitch angle when the

Angle-of-Attack (AOA) sensor malfunctions, eventually leading to two fatal crashes since

the pilots could not disable MCAS completely. Boeing’s updated MCAS [14] addresses

the above problem by using two (instead of only one) AOA sensors for data integrity veri-

fication and modifying MCAS to activate only once (i.e., MCAS alone will never override

pilots’ control). However, this countermeasure returns the control priority back to the pilot,

reversing the design to potentially allow malicious/erroneous manual control, e.g., the pilot

may intentionally or accidentally crash the airplane, like the Germanwings 9525 incident

[108].

Since the static assignment of priority to either manual or autonomous control input has

shown to fail in safety-critical situations, engineers need to answer the following critical

question: How can an SA system prevent the execution of malicious/unsafe controls (F2 &

F3) under attacks and failures (F1) that feed the system incorrect inputs?

We propose CADCA (Context-Aware Detection and resolution of Control Anomalies)

as an effective answer to this question. As shown in Fig. 5.1 with the example of an SAV,

CADCA is designed for use in SA systems equipped with both autonomous and manual
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control capabilities. CADCA can be considered as a standalone decision-maker (i.e., inde-

pendent of the autonomous control system) that can be deployed in the ego SA system and

aims at identifying the source(s) of anomalies in order to prevent use of their inputs/controls

for its operation.

Manual 
Control

Autonomous 
Control

CADCA Actuators Processes Sensors and/or
Wireless Media

Other Vehicles & Objects 
on the Road

Ego Vehicle’s Plant 
Control 
Decision

Sensor & BSM Data

Ego SAV
A3

A1

A2

A4

Figure 5.1: CADCA’s example application application.

There are two characteristics that differentiate SA systems from typical, stand-alone

cyber-physical systems (CPSes):

C1. Behavior consistency does not imply safety: Whether a control decision is safe or not

depends on its operation context, and hence checking whether i) an SA system acts

consistently with the control input (e.g., prior anomaly detection schemes [25, 28,

104]) or ii) the autonomous control always yields the same control decision with the

same sensor input is not enough to ensure the SA system’s safety. CADCA needs to

estimate the operation “context” based on potentially anomalous data to determine if

a control decision is safe to execute.

C2. Limited observability: The autonomous control in an SA system makes decisions

based on not only its own measurements but also the information/data received from

other SA systems, say, via Basic Safety Messages (BSMs), while it is the vision of

the governments [134–136], car manufacturers [40, 49], and chip makers [103] that

there will be vehicle-to-everything (V2X) communications, to support the Intelligent

173



Transportation Systems (ITSes) for future autonomous vehicles. Data received from

other SA systems do not have the same level of detail in information as those mea-

sured by the ego SA system itself. Also, the ego SA system usually does not know

other SA systems’ initial states and control decisions that have been used/assumed

by most prior work on estimation-based anomaly detection.

While prior studies of robotic vehicles or industrial control systems usually assumes ob-

servability,2 this setting enables them to perform deterministic state estimation under anoma-

lies/attacks while treating the process as solving a pure mathematical/optimization problem

based on an equation system depicting transitions and causalities between system states and

their outputs without considering the feasibility/difficulty of attacks. However, such an ap-

proach cannot work on SA systems since there can be multiple attack/anomaly scenarios

all lead to the same observations due to the lack of sufficient input and observations (Chap-

ter 5.2).

Therefore, CADCA employs a new design to first use the difficulties of attacks as a

context to eliminate uncertainties in the equation system by identifying a (set of) probable

anomaly scenario(s) and then restore the identified anomalous data in their corresponding

scenarios. That way, CADCA inherently takes attacks’ difficulties into account and avoids

i) blindly consuming computing resources to find all possible (including infeasible) solu-

tions that lead to the same observation, and ii) getting trapped with a single suboptimal/local

solution that does not match the ground-truth condition.

Specifically, CADCA will (i) determine if there is any potential anomaly embedded

in the received/perceived data, (ii) generate the most likely operation contexts that the SA

system may experience, (iii) perform risk assessment for most likely scenarios, and (iv)

aggregate the results from risk assessments to generate the final control decision. Using

an SAV as a concrete case study, CADCA cross-validates the received data to check if

any data can be incorrect (meeting F1) upon acquiring the ego SAV’s sensor readings and

2Whether the internal state of the target system can be deterministically identified by the observed output.
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the status reports embedded in the BSMs received from other entities in the vicinity. If any

inconsistency among the received data is detected, CADCA will restore the anomalous data

by constructing one or more local views that describe the most probable driving contexts

(e.g., the relative location, speed and heading of other vehicles). This way, CADCA can

capture the conditions that the ego SAV is most likely to encounter without restricting itself

to only one specific scenario. Finally, CADCA performs risk assessment based on all ⟨local

view, control input⟩ combinations and aggregate their results for selecting a final control

decision (meeting F2 & F3) based on a safety-first principle while ensuring maximum

flexibility of drivers’ control.

This chapter makes the following contributions:

• A novel control decision-maker, CADCA, that accounts for the difficulty of attack as a

context for determining probable operation scenarios, including:

– An efficient anomaly detection mechanism under C1 and C2 (Chapter 5.4.2);

– A mechanism for restoring local views to help the ego SA system comprehend its

operation context (Chapter 5.4.3);

– An efficient risk assessment for a given ⟨local view, control input⟩ setting and result

aggregation mechanisms under uncertain situations (Chapters 5.4.4); and

• Extensive evaluation of CADCA (with >15,700 test-cases), demonstrating its ability

to achieve 98% success rate in avoiding use of malicious control inputs and preventing

vehicle collisions in the most commonly seen driving scenarios under component failures

and/or attacks (Chapter 5.5).

Similar to previous chapters, we will use SAVs to illustrate CADCA’s design.
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5.2 Related Work

5.2.1 Risk Assessment and Collision Avoidance

Prior work on robotics and vehicle systems has explored ways of assessing risks to

prevent the system from entering unsafe states [75]. Fraichard and Asama [41] proposed

the concept of inevitable collision states for the analysis of navigation and motion planning.

Brännström et al. [16] proposed a model-based algorithm to estimate how the vehicle can

take actions to avoid collision with an object. Lawitzky et al. [73] developed a framework

for predicting the motion of vehicles to assist collision avoidance. [67] proposed how to

compute the trigger time for an automatic braking system to avoid at least three types of

collision scenarios. Berthelot et al. [11] developed an algorithm for efficient computation

of time-to-collision under the assumption that the received data have a multivariate normal

distribution. As one of the latest risk-assessment schemes, [9] proposed the utilization of

sensor fusion and inter-vehicle communications for predicting a vehicle’s trajectory.

While prior approaches can efficiently perform risk assessment under the condition they

are specifically designed for, they assume their data to be always trustworthy (i.e., having

bounded or known error distributions). In reality, however, this assumption does not hold

and there can be sensor failures or even malicious attacks (other than measurement noises)

that cause data to be erroneous. A system must, therefore, account for the situation where

any of input data can be anomalous/incorrect.

5.2.2 State Estimation and Anomaly Detection

A typical approach to anomaly detection in a cyber-physical system (CPS) is to formu-

late the target system with the following equation system [46, 122, 150]:


x[k+1] = A(x[k])+B(u[k])+ξp[k]+µ[k]

z[k] =C(x[k])+ξm[k]+ψ[k],
(5.1)
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where x[k] is the ground-truth system state with time index k, z is the observed output, u

is the control input/setpoint and µ and ψ are the process and measurement noises, respec-

tively. A, B, and C are functions/transformations used to capture the correlation/causality

between system states, control inputs, and measurement outputs and ξp and ξm are the vec-

tors depicting the effect resulting from an attack. Given the constraints of bounded process

and measurement noises (i.e., µ ≤ µ̄ and ψ ≤ ψ̄ are always true for some µ̄ and ψ̄), the

attack (i.e., ξ ’s) can then be identified by solving Eq. (5.1). Note x, z, u, µ , ψ , and ξ ’s

can all be in vector forms while A, B, and C have appropriate output dimensions. Utilizing

Eq. (5.1) to have a unique, deterministic solution requires u to be known to the detection

system and the CPS to have certain observability properties [122]. However, this require-

ment cannot be met in CADCA’s use case (C2) that involves multiple entities. That is,

the ego SA system does not have u in the first equation of Eq. (5.1) for all non-ego SA

systems in practice. Also, prior work (e.g., [122]) usually transforms Eq. (5.1) further to

an optimization problem and solves it numerically assuming the existence of only one so-

lution. This will make the process of finding the solution stop/stuck at the first (and maybe

incorrect) solution it identifies without searching for other feasible ones.

There are also approaches tailored for vehicles with special sensors under multi-entity

scenarios [15, 105, 116, 141]. They usually conduct a plausibility/consistency check to

their data of interest by cross-validating the received data with wireless/distance mea-

surements and motion prediction. Specifically, [63] proposed a data verification scheme

based on Kalman Filter (KF) to predict vehicle locations which reports the detection of an

anomaly if the prediction does not match the received data. Bißmeyer et al. [13] utilizes

the particle-filter to cross-validate vehicles’ location with radar readings to track and verify

the motion of neighboring vehicles. Stübing et al. [127] proposed a two-stage data verifi-

cation scheme for verifying position and velocity based on KF and motion prediction with

probabilistic maneuver recognition.

While most, if not all, of prior anomaly detection in vehicle domain focus only on de-
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tecting data anomalies, they usually consider the data of interest as a whole and neither

identify which data are anomalous nor restore them, thus missing one of the most crucial

functions required by CADCA. Also, when there is inconsistent information, multiple sce-

narios may all lead to the same observation by the ego vehicle as mentioned in Chapter 5.1.

This is also the very reason why a direct combination of prior anomaly detection (even if

it has the capability of restoring anomalous data) and risk assessment cannot work in prac-

tice. How to perform risk assessment with multiple control inputs while assuming no data

can be entirely trusted (F1), despite its importance, has not yet been fully addressed.

5.3 Deployment and Attack Models

5.3.1 Deployment Model

The ego SA system is assumed to perceive/receive three types of data: i) the measure-

ments of its own state, ii) the state report from other SA systems, and iii) its own measure-

ments/observations of other surrounding SA systems. Specifically, we use the following

equation system to capture all the observations/data the ego entity perceived/received:


z(e) =C(e)(x(e))+ξm(e)+ψ(e)

z( j) =C( j)(x( j))+ξm( j)+ψ( j)

z(e, j) =C(e, j)(x(e),x( j))+ξm(e, j)+ψ(e, j),

(5.2)

where x, z, ψ , C, and ξm’s are the same as in Eq. (5.1) while e and j represents the ego

entity and non-ego entity with index j, respectively, and the subscripts (e), ( j), and (e, j)

correspond to the three data types mentioned earlier, respectively. The measurement noise

ψ is assumed to have a certain bound ψ̄ under normal system condition.

The default system states (x’s) and measurements (z’s) considered in CADCA’s case

study of SAVs are vehicle location (p), speed (v), acceleration (a), heading (h), and yaw
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Vehicle-Ego:
• 𝑝("): location
• 𝑣("): speed
• 𝑎("): acceleration
• ℎ("): heading
• 𝜔("): yaw rate

Vehicle-1 Broadcasts:
• 𝑝($): location
• 𝑣($): speed
• 𝑎($): acceleration
• ℎ($): heading
• 𝜔($): yaw rate

Vehicle-Ego

Vehicle-1

Distance Sensing:
• 𝑑(",$)	: distance to Vehicle-1

Figure 5.2: CADCA’s basic deployment setting.

rate (ω). The ego SAV is also capable of making measurements with its own sensors, such

as RADAR, LIDAR, or cameras, to obtain the distances between itself and other SAVs

(Fig. 5.2). Because x’s, ξ ’s, and ψ’s are all unknown to the ego SAV, Eq. (5.2) does not

necessarily have a unique solution under attacks. That is, directly solving Eq. (5.2) to

deterministically determine the true state (i.e., x) of each SAV is not possible since there

can be multiple solutions that all lead to the same observations as in Eq. (5.2).

To facilitate deployability, the information shared between vehicles is limited to the

vehicle status information already embedded in standard Basic Safety Messages (BSMs)

[114], including the sender vehicle’s location (p), speed (v), acceleration (a), yaw rate (ω),

and heading (h). That is, CADCA is designed to run directly on a single vehicle (i.e., the

ego vehicle) without requiring cooperation (i.e., additional message exchange for obtaining

computation results) from other vehicles. To avoid confusion with a single data sample, we

use the term “data type” (DT) to denote a specific type of data from a specific vehicle (e.g.,

Vehicle-1’s location and Vehicle-Ego’s speed).

5.3.2 Attack Model

We use SAVs as a concrete illustration of CADCA’s threat model. Other than mali-

cious/erroneous human control and faulty autonomous control algorithms (A3 and A4 in

Fig. 5.1), we assume the adversary has the goal of causing collision to the ego SAV re-
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motely by i) transmitting BSMs with incorrect data from non-ego vehicles (A1) and/or ii)

remotely spoofing the sensors for object recognition and distance/dynamics measurements

of the ego vehicle (A2), including p, v, a, ω , and h. Specifically, CADCA assumes three

levels of threat an adversary can pose, depending on the adversary’s capabilities as shown

in Fig. 5.3. These threat levels are determined by the attack attributes that are directly

linked to the level of difficulty for the adversary to launch attacks.

The lowest threat level includes S1 and S2, where the (naı̈ve) adversary can only ma-

nipulate one DT (e.g., spoofing only the location/GPS of a vehicle) or manipulate multiple

DTs (e.g., both the location and speed of a vehicle) but s/he does not manipulate the DTs in

a way that matches the normal data correlation (e.g., the manipulated location and speed do

not match each other). An attack is said to match normal data correlation if the data under

the attack show the same correlation/causality in terms of the kinematics of rigid bodies

and control-to-dynamics responses as those before the attack (within a predefined error tol-

erance). In the medium threat level (S3–S4), the adversary can launch an attack or spoof

the DTs from a single entity and the anomalous data from that entity may be consecutively

manipulated to partially match the normal data correlation. For example, the adversary can

manipulate the location and speed in a BSM simultaneously so that the vehicle’s moving

distance matches the manipulated speed. In the highest threat level (S5–S6), the adversary

can further expand his/her attack target to the DTs of multiple vehicles. CADCA is de-

signed mainly to defend against the low and medium levels due to its assumption of no

trusted data.

Specifically, CADCA is not designed to operate when majority3 or all of the data from

multiple anomalous entities are manipulated to perfectly match their normal correlation/-

causality (see Chapter 5.5.8 for more analysis). Note that the above is a natural limitation

of all approaches in the absence of a trusted data. However, this limitation will not diminish

CADCA’s value for the following reason.

3Two-thirds of data in all anomalous entities in the case study.
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Unless the adversary has the complete control over non-ego vehicles’ BSM transmis-

sions, simultaneously spoofing all of their DTs (other than the location/GPS) to generate

specific values is proven very difficult, if not impossible, without the direct/physical access

to all the sensors. For example, spoofing a MEMS-based accelerometer requires direct

feedback from the sensor for phase tuning to generate a specific waveform/value [133].

That is, even though an adversary may have the capability described in the high threat

level, these types of attack will not be as scalable as the attacks in low/medium threat level

since the adversary needs to physically compromise multiple vehicles.

5.4 System Design

5.4.1 Operation Overview

The lack of trusted, complete u to solve Eq. (5.2) deterministically requires CADCA to

resolve the following questions:

Q1. How to detect a sensor failure or a data attack?;

Q2. How to identify potential operation contexts with manipulated/erroneous input data?;

and

Q3. How to detect a malicious/unsafe control input under uncertain operation contexts?

Consistency 
Check

Local View 
Construction

Risk 
Assessment

Control 
Decision

Received 
Data

Control Inputs

Figure 5.4: An overview of CADCA’s operation.

CADCA follows the design concept shown in Fig. 5.4, where each function block an-

swers one of Q1–Q3. First, it cross-validates the data acquired by the ego entity itself and

those received from other entities to detect if there is any inconsistency indicating the ex-

istence of a data anomaly or an attack. Second, upon detection of an anomaly, CADCA

will construct local views to establish models of its surrounding environment, each which
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describes a probable scenario when different combinations of data are anomalous but can

lead to the same observed inconsistency. The above two steps are equivalent to first iden-

tifying the ξ ’s in Eq. (5.2) to eliminate the uncertainties in the equation system and then

restoring the identified anomalous data based on the remaining correct ones under certain

attack scenarios. Finally, CADCA conducts risk assessments on all probable ⟨control in-

put, local view⟩ combinations, and then aggregates the assessment results to select a final

control decision.

5.4.2 Consistency Check

CADCA’s first function block is the consistency check of the input data, determining

if there are any inconsistencies among the received/perceived data by cross-validating the

correlation between them. While utilizing physical invariants for detecting inconsistencies

is not new, CADCA’s novelty lies in the consideration of input data in small DT groups,

instead of a single large group, and transformation of the result of each group’s consistency-

check into a corresponding equation in an equation system; solutions of the equation system

will directly indicate the potentially anomalous data. We call such DT groups Detection

Sets (DSs).

Table 5.1 shows an example of DSs when there are only two entities (i.e., the ego ve-

hicle and Vehicle-1). Specifically, DSE,1–DSE,5 (DSV 1,1–DSV 1,5) capture the correlation

between the dynamics measurements of the ego vehicle (Vehicle-1), and DSV 1,6 describes

the correlation between the distance measurement d(e,1) and the locations of the two vehi-

cles. If there is another vehicle, say Vehicle-2, the ego vehicle can have 6 more observations

(DSV 2,1–DSV 2,6) just like DSV 1,1–DSV 1,6. Note the DSs shown here are the default formu-

lations used in CADCA that are directly derived from the kinematics of rigid bodies [57].

Since CADCA is designed with expandability in mind, engineers may include additional

DSs in CADCA and the new DSs will be automatically incorporated in Local View Con-

struction.
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DS
Ego Dynamics z(e) Vehicle-1 Dynamics z(1) Dist.

p v a ω h p v a ω h d(e,1)
E,1 ✓ ✓ ✓ ✓ ✓

E,2 ✓ ✓

E,3 ✓ ✓

E,4 ✓ ✓

E,5 ✓ ✓

V1,1 ✓ ✓ ✓ ✓ ✓

V1,2 ✓ ✓

V1,3 ✓ ✓

V1,4 ✓ ✓

V1,5 ✓ ✓

V1,6 ✓ ✓ ✓

Table 5.1: This table shows examples of detection sets of the ego vehicle and Vehicle-
1, where d(e,1) is the distance between the two vehicles measured by the ego
vehicle.

A detection set, DSl , will have the following general form:

ẑ′[k′] = F (z[k],z[k+1]) , (5.3)

where F is the function describing the correlation between ẑ′[k′], the prediction of a data

z′ ∈ DSl with timestamp index k′ ∈ {k,k + 1}, and other observations (i.e., z[k] and/or

z[k+1], where the latter is optional in the formulation). Note F can be additional observers

designed by the engineers, or it can be directly derived from C’s in Eq. (5.2). For example,

DSV 1,6 checks whether the distance between the ego vehicle and Vehicle-1 matches the

received location data and has the form of d̂(e,1) = F(p(e), p(1)) = |p(1)− p(e)|2, where

“| · |2” denotes the Euclidean distance and F equals to C(e, j) when we have z(e, j) = d(e, j) in

Eq. (5.2).

Definition 5.4.1. A DS is properly designed if z′[k′] = ẑ′[k′] = F (z[k],z[k+1]) is always

true when there is no measurement noise or an attack in z′[k′], z[k], and z[k+1].

During run-time, CADCA will use the properly-designed F in Eq. (5.3) to compute

ẑ′[k′] and compare this prediction with the received value z′[k′]. Specifically, if |ẑ′[k′]−
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z′[k′]| > Γz′ where Γz′ is a detection threshold, CADCA will report an anomaly in the

detection set (DSl → ✗); otherwise, CADCA will report the detection set to have passed

the consistency check (DSl → ✓). Γz′’s should be set to values no larger than common

error bounds to avoid miss detections. While small thresholds may cause false-positives in

the consistency-check phase, it will not cause any significant influence on CADCA since

the data determined to be anomalous will be restored in the subsequent phase.

CADCA will then take the results from the consistency check to establish an equation

system E and its solution will tell which data may be anomalous. Each DS, say DSl , that

fails the consistency check will yield one equation:

∑
∀zi∈DSl

I(zi)≥ 1, (5.4)

where I(·) is the indicator function describing whether a received data zi is anomalous or

normal:

I(zi) =


1, if zi is anomalous.

0, if zi is normal.
(5.5)

This formulation describes the number of data that are potentially anomalous — if a DS

fails the consistency check, there will be at least one anomalous data in that DS. Since

DSs directly captures the data correlation based on the laws of physics, there are no false-

positives under properly designed DSs (i.e., there must be an anomaly regardless whether

it is caused by an attack, a fault, or measurement noise). Note that DSl → ✓ does not

necessarily mean no anomalous data is in DSl (i.e., it may be a false-negative detection

during a consistency check).

Property 5.4.2. For every solution to the equation system (E) constructed by Eq. (5.4)

under properly designed DSs, there exists at least one corresponding solution to Eq. (5.2).

Proof. Assume no valid solution to Eq. (5.2). ⇒ There exists some anomalous DSl (i.e.,
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DSl→ ✗) s.t. zi[k] =Ci(x[k]), ∀zi ∈DSl . However, the definition of properly designed DSs

tells us that DSl will pass the consistency check since all its data do not have measurement

noise or attack. This contradicts DSl → ✗. Therefore, the assumption must be false.

Next, CADCA will solve the equation system to construct local views for the subse-

quent risk assessment.

5.4.3 Construction of Local Views

5.4.3.1 Concept

A local view, as the name suggests, is what the ego entity thinks/estimates its current

operation context to be (e.g., the status of the ego SAV itself and the surrounding SAVs).

See Table 5.2 for an example local view in the form of a state table. In an ideal scenario

without component failures or attacks, the ego entity should be able to construct a perfect

local view that matches the ground truth (with the bounded deviation caused by measure-

ment noises). However, if the ego entity receives/perceives anomalous data, there may exist

some inconsistent information in the data received or locally perceived that may prevent the

ego entity’s construction of a correct local view. The basic idea of Local View Construction

is to i) identify potentially anomalous data and ii) correct the anomalous data, if any, based

on the normal data.

Vehicle-ID p v a ω h
Ego (0,30) 20 0.1 0 0° (North)

2 (30, 30) 19 0 0 180° (South)
... ...

Table 5.2: A local view example.

To identify the anomalous data that need to be restored, CADCA will solve the equation

system (E) to identify the data zi with I(zi) = 1. Since Eq. (5.2) may not have a unique

solution, there can be multiple solutions that satisfy E even in a perfect detection scenario

(i.e., with neither false-positives nor false-negatives during the consistency check phase).
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Therefore, CADCA constructs multiple local views, each of which corresponds to one valid

solution to E that represents a specific attack scenario. Note that solving E is equivalent

to the NP-Complete fitting set problem while assuming a perfect consistency-check phase

and considering all probable false-negative/positive situations will be equivalent to solving

multiple NP-Complete problems. Also, since not all the solutions have the same level of

feasibility given CADCA’s application context, we have designed six (heuristic) algorithms

to solve E for constructing local views (instead of blindly finding all probable solutions for

E).

Next, we provide an overview of these six algorithms. The Solution-Space algorithm

(Chapter 5.4.3.2) is designed to capture the search space of anomalous data and provide

the other 5 algorithms with a list of potential anomalous data as a starting point for identi-

fying the actual anomalous data. The Greedy (Chapter 5.4.3.3) and Anomalous-Individual

algorithms (Chapter 5.4.3.4) are designed to capture solutions to E that have the minimum

number of anomalous DTs and entities, respectively. The Trust-Ego (Chapter 5.4.3.5),

Anomalous-Ego-Only (Chapter 5.4.3.6), and Anomalous-Ego-and-Others (Chapter 5.4.3.7)

algorithms are designed to capture the special scenarios related to the normality of the ego

entity (i.e., S3–S6). While the six algorithms do not have any obvious, one-to-one map-

ping associated with the six attack scenarios, they do collectively cover S1–S6 defined in

Fig. 5.3, which we will introduce later.

5.4.3.2 Solution-Space Algorithm

The Solution-Space algorithm (Algorithm 3) is designed to capture the search space

of anomalous data and its basic operation is summarized as follows. First, it assumes no

false-negatives (i.e., miss detections) in the consistency-check phase and considers a data

to be normal as long as it is included in a DS that passed the consistency check (Line 8–10

in Algorithm 3). Second, those data in the DSs that fail the consistency check (denoted by

anomalous DSs) but not ruled out by the first step will be considered potentially anomalous
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Algorithm 3: Solution-Space Algorithm
1 Function: Solution Space (E);

Input : The observer equation system (E= ⟨Z,Y ⟩), where Z = (DS1,DS2, . . .) is
the definition of each DS in the equation system and Y = (y1,y2, . . .) is
the consistency-check result.

Output: A list of anomalous data (L ).
2

3 Set N← total number of DSs;
4 Set K← total number of DTs;
5 Set L ←{}; // Set L as an empty list.

6 Initialize arr1[N][K] to FALSE;
7 Initialize arr2[K] to FALSE;
8 for i As Integer = 1 UpTo N do
9 if yi == “✓” then

10 Set arr1[i][ j]← TRUE, ∀z j ∈ DSi;

11 for j As Integer = 1 UpTo K do
12 Set arr2[ j]←

∨N
i=1 arr1[i][ j]; // Column-wise ‘‘OR’’ operation to

arr1
13 if arr2[ j] equals FALSE then
14 Set L ←L

⋃
{z j};

15 for i As Integer = 1 UpTo N do
16 if arr2[i][ j] == TRUE, ∀z j ∈ DSi and yi == “✓” then
17 Set L ←L

⋃
DSi;

18 return L ;

(Line 11–14). Third, the Solution-Space algorithm will perform a sanity check (Line 15–

17) to see if all anomalous DSs contain at least one anomalous data. If there is an anoma-

lous DS that does not satisfy the above condition, then the Solution-Space algorithm will

conclude the existence of a false-negative in the consistency check and consider all the data

in that anomalous DS to be potentially anomalous. We call this step as normality inversion.

Property 5.4.3. (Correctness) L is a solution space of the equation system E (i.e., there

must exist a list of anomalous data LS ⊆L that is a solution to E), where E and L are,

respectively, the input and output defined in Algorithm 3.

Proof. (Proof by Contradiction.) Assume L is not the solution space of E, indicating at

least one equation in E cannot be covered by L . However, the sanity check (Lines 15–
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Algorithm 4: Greedy Algorithm
1 Function: Greedy(E,L );

Input : The observer equation system (E) and L = Solution Space(E).
Output: A list of anomalous data (LG).

2

3 Set LG←{};
4 Set LDS←{};
5 for all z j ∈L do
6 LDS←LDS

⋃
{i}, ∀DSi ∋ z j;

7 while LDS ! = {} do
8 zt ← the data z j ∈L that covers the most number of DSs in LDS;
9 L ←L \{zt};

10 LDS←LDS \{i},∀DSi ∋ zt ;
11 LG ←LG

⋃
{zt};

12 return LG;

17) of Solution-Space algorithm ensures every equation (or anomalous DS) in E will be

covered by L . Therefore, L must not be the output of Solution-Space algorithm.

5.4.3.3 Greedy Algorithm

Greedy algorithm (Algorithm 4) is designed to find a solution to E that requires as few

anomalous data as possible (i.e., argminI(zi)∑ I(zi) given Eq. (5.4) as the constraint) in a

greedy way. Specifically, it will identify the anomalous data starting from the list obtained

from Solution-Space algorithm (i.e., L ) and pick the anomalous data z j that covers the

most number of anomalous DSs. A DSi is said to be anomalous if ∃ zt ∈ (L ∩DSi). Greedy

algorithm will then remove all the data in ∪∀DSi∋z jDSi from L . Next, it will continue to

pick the data in L that covers the most remaining anomalous DSs and repeat the process

until all the anomalous DSs are covered.

5.4.3.4 Anomalous-Individual Algorithm

This algorithm is designed to capture a solution to E that requires the attacker to com-

promise the least number of entities. Unlike Greedy algorithm that directly selects the data
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Algorithm 5: Anomalous-Individual Algorithm
1 Function: Anomalous Individual(E,L );

Input : The observed equation system (E) and L = Solution Space(E).
Output: A list of anomalous data (LAI).

2

3 Set LAI ←{};
4 Set LDS←{};
5 Set LV ←{V0,V1, ...,VM}; // A list of all entities, where V0 is the

ego entity and M is the number of entities (excluding the

ego entity).

6 for all z j ∈L do
7 LDS←LDS

⋃
{i}, ∀DSi ∋ z j;

8 while LDS ! = {} do
9 Vt ← the entity Vj ∈LV that covers the most DSs in LDS;

10 while ∃ z j ∈L and z j belongs to Vt do
11 zt ← the data z j ∈L that covers the most DSs in LDS and z j belongs to Vt ;
12 L ←L \{zt};
13 LDS←LDS \{i},∀DSi ∋ zt ;
14 LAI ←LAI

⋃
{zt};

15 if z j does not belong to Vt , ∀z j ∈L then
16 break;

17 LV ←LV \{Vt};
18 return LAI;

covering the most number of anomalous DSs, Anomalous-Individual algorithm will first

identify the entity that covers the most number of anomalous DSs and follows the same

concept of Greedy algorithm to identify the anomalous data associated with that particu-

lar entity first. Next, Anomalous-Individual algorithm will target the entity that covers the

most number of anomalous DSs, excluding those already covered, and repeat the process.

5.4.3.5 Trust-Ego Algorithm

This algorithm (Algorithm 6) is designed to capture the situation in which no anomalous

data originated from the ego entity. The algorithm also starts to find a list of anomalous

data starting from the results obtained from Solution-Space algorithm, but it will only try

to construct a list of anomalous data (LT E) from non-ego entities’ data by following the
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Algorithm 6: Trust-Ego Algorithm
1 Function: Trust Ego(E,L );

Input : The observer equation system (E) and L = Solution Space(E).
Output: A list of anomalous data (LT E).

2

3 Set LT E ←{};
4 Set LDS←{};
5 for all z j ∈L do
6 LDS←LDS

⋃
{i}, ∀DSi ∋ z j;

7 while LDS ! = {} do
8 zt ← the data z j ∈L that covers the most DSs in LDS and z j does not belong

to ego entity;
9 L ←L \{zt};

10 LDS←LDS \{i},∀DSi ∋ zt ;
11 LT E ←LT E

⋃
{zt};

12 if LDS ! = {} and z j belongs to ego entity, ∀z j ∈L then
13 return NULL;

14 return LT E ;

same concept as the one in Greedy algorithm. Note that Trust-Ego algorithm may not find

a valid solution to E and outputs “NULL” when there is indeed anomalous data originated

from the ego entity.

5.4.3.6 Anomalous-Ego-Only Algorithm

This algorithm (Algorithm 7) is designed to capture the condition in which only the

ego entity is anomalous. Opposite to Trust-Ego algorithm, Anomalous-Ego-Only algorithm

tries to find the solution that satisfies the observed equation system assuming the anomalous

data can only originate from the ego entity. Like Trust-Ego algorithm, Anomalous-Ego-

Only algorithm may also return a “NULL” solution if some non-ego entity is anomalous.

5.4.3.7 Anomalous-Ego-and-Others (AEnO) Algorithm

This algorithm (Algorithm 8) is designed to capture the situation in which the ego entity

and at least one non-ego entity are anomalous. AEnO follows the same initial procedure
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Algorithm 7: Anomalous-Ego-Only Algorithm
1 Function: Anomalous Ego Only(E);

Input : The observer equation system (E).
Output: A list of anomalous data (LAEO).

2

3 Set LAEO←{};
4 Set LDS←{};
5

6 L = Solution Space(E);
7

8 for all z j ∈L do
9 LDS←LDS

⋃
{i}, ∀DSi ∋ z j;

10

11 while LDS ! = {} do
12 zt ← the data z j ∈L that covers the most DSs in LDS and z j belongs to ego

entity;
13 if zt == NULL then
14 return NULL;

15 L ←L \{zt};
16 LDS←LDS \{i},∀DSi ∋ zt ;
17 LAEO←LAEO

⋃
{zt};

18 if LDS ! = {} and z j does not belong to ego entity, ∀z j ∈L then
19 return NULL;

as Anomalous-Ego-Only that focuses on the ego entity’s data first and then moves on to

examine the non-ego entities’ data.

5.4.3.8 Properties and Computational Complexity

As mentioned earlier, the above algorithms are designed to collectively cover S1–S6.

We now discuss their properties in the order of applicable scenarios. Specifically, Prop-

erties 5.4.4 and 5.4.12 specify the detection/identification guarantee of CADCA’s design,

and Properties 5.4.5–5.4.7 (Properties 5.4.8–5.4.11) specify the performance guarantees

and rule-out condition of S1 and S2 (S3–S6). Note that the combinations of performance

guarantees and ruling-out conditions show not only CADCA’s “inclusiveness” in identify-

ing the anomalous data/entities but also the “tightness” of its result (i.e., CADCA considers
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Algorithm 8: Anomalous-Ego-and-Others Algorithm
1 Function: Anomalous Ego(E);

Input : The observed equation system (E).
Output: A list of anomalous data (LAE).

2

3 Set LAE ←{};
4 Set LDS←{};
5

6 L = Solution Space(E);
7

8 for all z j ∈L do
9 LDS←LDS

⋃
{i}, ∀DSi ∋ z j;

10

11 while LDS ! = {} do
12 zt ← the data z j ∈L that covers the most DSs in LDS and z j belongs to ego

entity;
13 if zt == NULL then
14 return NULL;

15 L ←L \{zt};
16 LDS←LDS \{i},∀DSi ∋ zt ;
17 LAEO←LAEO

⋃
{zt};

18 if LDS ! = {} and z j does not belong to ego entity, ∀z j ∈L then
19 break;

20

21 while LDS ! = {} do
22 zt ← the data z j ∈L that covers the most DSs in LDS;
23 L ←L \{zt};
24 LDS←LDS \{i},∀DSi ∋ zt ;
25 LAE ←LAE

⋃
{zt};

the data/entity to be anomalous if and only if there is a reason to do so instead of blindly

considering the possibility of every data/entity to be anomalous.

Property 5.4.4. (All Scenarios: Detection Guarantee) As long as not all of the data are

simultaneously manipulated to match the normal data correlation, CADCA is guaranteed

to detect the anomaly.

Proof. Due to the special DS design as shown in Table 5.1, the DSs in CADCA cannot be
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partitioned into two groups, say GA and GB, such that

(
⋃

∀DS j∈GA

DS j)
⋂

(
⋃

∀DS j∈GB

DS j) = φ (a null set), (5.6)

meaning that there will always be DTs overlapping between the two DS groups. This

indicates that as long as not all the data are manipulated simultaneously, there will be at

least one DS containing both correct and anomalous data since there is no way to partition

the data into a normal and an anomalous groups based on the DSs.

Property 5.4.5. (S1: Data Identification Guarantee) Greedy algorithm is guaranteed to

identify the anomalous data xa under a single-DT anomaly if no two DTs are covered by

the exact same detection sets.

Proof. (Part-I: The first identified data must be xa.) Assume Greedy algorithm identifies

another normal data xn (̸= xa) first. Since the algorithm chooses xn first (i.e., xn must cover

the same number as, or more anomalous DSs than, xa) and no two data are covered by the

exact same detection sets, there must exist some anomalous DSk, such that xn ∈ DSk but

xa /∈ DSk. However, this contradicts the fact that xa is the only anomalous data since any

anomalous DS must contain at least one anomalous data.

(Part-II: Greedy algorithm must terminate after identifying xa.) If the Greedy algorithm

does not terminate after selecting xa, then there are other DSs that fail the consistency check

but do not contain xa, contradicting the fact that xa is the only anomalous data. Thus, the

assumption must be false.

Property 5.4.6. (S1 & S2: Entity Identification Guarantee) Solution-Space algorithm can

identify the anomalous entity under a naı̈ve attack.

Proof. Since no false-negatives can occur under a naı̈ve attack, no anomalous data will be

ruled out by the algorithm. Therefore, the anomalous entity must be identified.
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Property 5.4.7. (S1 & S2: Ruling-Out Condition) If the normality inversion (Line 17 of

Algorithm 3) is activated in Solution-Space algorithm, then there must be a false-negative

in the consistency check, i.e., CADCA is dealing with an attack of medium or high level

threat. (See

Proof. Assume no false-negative occurs in the consistency check, but the Solution-Space

algorithm activates the normality inversion for an anomalous DS (DSk). Then, there must

exist an xa such that I(xa) = 1 and xa ∈ DSk, but it is not included in the final result of

the Solution-Space algorithm, and hence must be ruled out by some DS j → ✓. However,

this contradicts the fact that DS j must fail the consistency check under a naı̈ve attack if

xa ∈ DS j. Thus, there must be a false-negative detection.

Property 5.4.8. (S3: Ruling-Out Condition and Entity Identification Guarantee) If no solu-

tion can be found by Anomalous-Ego-Only algorithm, there must exist an anomalous data

from a non-ego entity. (This can be proved by the design of the algorithm.)

Property 5.4.9. (S3 & S5: Entity Identification Guarantee) Trust-ego algorithm will iden-

tify any non-ego, anomalous entity/entity as long as not all the data of that entity are ma-

nipulated to match the normal data correlation.

Proof. Assume the output (LT E) of Trust-Ego algorithm does not contain any data from

an anomalous entity (Et) under the condition in the property description. Since the Trust-

Ego algorithm will not determine any data from the ego entity to be potentially anomalous

and there is no data of Et determined to be anomalous in LT E , all DSs associated with Et

must pass the consistency check, contradicting the fact that not all data of that entity are

manipulated to match the normal data correlation. Thus, LT E must contain at least one data

from Et .

Property 5.4.10. (S3 & S5: Ruling-Out Condition) If Trust-Ego algorithm cannot find

a solution, the ego entity must be anomalous. (This can be proved by the design of the

algorithm.)
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Property 5.4.11. (S4 & S6: Entity Identification Guarantee) Anomalous-Ego-and-Others

algorithm is guaranteed to identify the anomalous ego entity and any anomalous entity (Et)

if not all Et’s status data (i.e., the data excluding the distance measurement) are manipu-

lated to match the normal data correlation.

Proof. Since not all Et’s status data are manipulated to match the normal data correlation,

there must exist some DSk associated only with Et and DSk→ ✗. Therefore, AEnO algo-

rithm must identify at least one anomalous data xa ∈ DSk from Et to cover DSk.

Property 5.4.12. (All Scenarios: Entity Identification Guarantee) Anomalous-Individual

algorithm is guaranteed to include the anomalous entities as long as not all the data/mea-

surement of the anomalous source are manipulated coordinately. (This property can be

proved by a similar procedure as the proof of Property 5.4.11.)

Computational Complexity. All algorithms have an O(NK) computational complexity,

where K and N are the numbers of data types per vehicle and DSs, respectively.

Note that the above properties are the foundation of CADCA’s ability to determine

anomalous entities in the risk-assessment phase (Chapter 5.4.4).

5.4.3.9 Restoration of Anomalous Data

The final step in Local View Construction is to restore (or estimate) data identified as

anomalous and construct local views for each algorithm’s output. Specifically, CADCA

will directly utilize the data correlation captured in the detection sets for restoring anoma-

lous data if enough correct data are observed. Otherwise, CADCA will use the last (set of)

data determined to be correct to build the local view.

196



5.4.4 Risk Assessment

5.4.4.1 Basic Concept

The process of risk assessment will be turned on whenever an anomaly is detected or

CADCA receives more than one control input. Its goal is to identify whether there exists

any safety risk (i.e., possible collision) associated with the control inputs, and helps the

ego entity choose which of the control inputs to accept and execute. Adapting from the

common practice of collision warning/avoidance systems, CADCA’s case study deems the

existence of a safety concern if the estimated Time-To-Collision (TTC) is smaller than a

threshold TC = max(TS,TU +TR), where TS(=4.5s) is determined by the (medium) driver’s

reaction time while ensuring a smooth transition of control (e.g., no sudden braking all

the time) [17], TU is the minimum time required for the ego entity to avoid the collision

through speed control, and TR(=2.6s) is the driver’s reaction time in an urgent situation

[128]. TU is computed based on i) the relative speed v′(η) = v(η)−v(e) between the ego and

the target entities η , ii) η’s acceleration a(η), iii) the ego vehicle’s maximum acceleration

a+
(e) and deceleration a−

(e) capability, and iv) the relative location p′(η) of η with respect to

ego vehicle’s travelling direction:

TU =


|v′(η)|/(|a

−
(e)|+a(η)), if v′(η), p′(η) < 0;

|v′(η)|/(|a
+
(e)|−a(η)), if v′(η), p′(η) > 0;

0, otherwise.

(5.7)

Note that Eq. (5.7) does not consider every possible combination of ⟨v′(η),a(η), p′(η)⟩ be-

cause computation of TU is required only when there is a possibility of collision.

Unlike prior studies that assume a fixed input scenario, CADCA is designed to oper-

ate in an uncertain situation (i.e., there are multiple probable operation contexts). While

CADCA generates a local view for each of the algorithm’s result, it also performs risk

assessment for every ⟨local view, control input⟩ pair. Specifically, CADCA performs risk
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assessments for each control input by checking whether TTC ≤ TC if i) the ego entity ex-

ecutes the control input and ii) other entities maintain their current maneuvering behavior.

CADCA then determines which control input is safe to execute based on the following

(safety-first) rules:

Rule-1: If there is no safety concern in any of the combinations, execute the manual con-

trol input.

Rule-2: If only one control input has a safety concern (in any of the probable local views),

execute the other safe one.

Rule-3: If both control inputs have safety concerns, select the control input with a longer

time-to-collision under the most likely local view (see below).

Specifically, CADCA’s local view construction is equivalent to identifying the potential

states of the ego entity in the state space and CADCA’s risk assessment is equivalent to

determining which control input can potentially lead the ego entity to the unstable/unsafe

state. Next, CADCA will try to avoid any potential safety risk if possible; otherwise, it will

try to delay the occurrence of a safety-critical event as much as possible according to the

most likely condition.

5.4.4.2 Determine the Most Likely Local View

CADCA determines the local view that is most likely to capture the actual situation

(i.e., the “most likely” local view) based on a record of whether an entity has been de-

termined to be potentially anomalous before. Table 5.3 shows an example of this history

record. Specifically, each row of the record shows if an entity is determined to be poten-

tially anomalous (normal) at some time tk, and the entry will be marked with 1 (0) under

the tk column.

CADCA will consider a non-ego entity to be potentially anomalous if any algorithm

result (excluding the result from Solution-Space algorithm) determines the entity to be

anomalous. In contrast, the ego entity will be determined to be anomalous if Trust-Ego
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entity t1 t2 t3 t4 t5 t6 t7 ... WACk,i
Ego 0 0 0 1 1 1 1 ... 0.5

Entity-1 - - - 0 1 1 0 ... 0.1
Entity-2 1 1 1 1 1 1 1 ... 1.0

... ...

Table 5.3: This table shows an example of entity anomaly history, where WACk,i is the
WAC of the entity i at time tk.

algorithm cannot find a solution (Property-5.4.10) and it will be determined to be normal

if AEnO algorithm cannot find a solution. Otherwise, its integrity will be determined by

the Greedy algorithm. The rationale behind treating the ego entity differently is: i) the

observed equation system is centered around the ego entity and ii) Trust-Ego, Anomalous-

Ego-Only and AEnO algorithms are specifically designed to target special cases related to

the ego entity. Note that the “inclusiveness” and “tightness” in the above rules for determin-

ing anomalous entities is grounded on the collective effect of the rule-out conditions and

detection properties (i.e., Properties 5.4.6–5.4.12) introduced in Chapter 5.4.3.8. Specifi-

cally, the five algorithms of CADCA can consistently achieve a >99% identification rate

in detecting anomalous entities under low-level threats even with imperfect detections and

an >80% inclusion rate in identifying the anomalous entities under sophisticated attacks in

medium- and high-level threats (Chapter 5.5).

To identify the most likely scenario, CADCA summarizes the history of each entity and

uses a scalar to represent the likelihood of each entity being anomalous. Since this scalar is

computed based on a weighted sum of anomaly counts, we call it Weighted Anomaly Count

(WAC):

WAC = min(WA +WR,1) ∈ [0,1], (5.8)

where WA ∈ [0,1] is the weighted sum computed over all the history and WR is the additional

factor/weight used to account for the most recent anomaly detections. Specifically, WA ∈

[0,1] is the ratio of the number of anomalies (NA) to the total number of records (NT ). For
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example, since the ego entity in Table 5.3 has 7 records, four of which are marked to be

anomalous (=1), WA of the ego entity will be 4/7 ≈ 0.57. To avoid unstable WA when a

entity just enters the ego entity’s communication range, we design CADCA to compute WA

normally if there are ≥ Nmin records; otherwise, CADCA will fill in the “missing” records

with 1 (i.e., assuming the entity cannot be trusted initially):

WA =


(NA +Nmin−NT )/Nmin, if NT < Nmin ;

NA/NT , if NT ≥ Nmin .

(5.9)

WR controls the influence of most recent NR records:

WR = (1−α
NA,R)/(1−α

NR), (5.10)

where NA,R is the number of anomaly reports within the latest NR records and α is the

parameter designed to adjust how fast WR should increase if an anomaly report is received.

This design ensures that WR will i) increase while more and more “1” records are received

ii) gradually (but not drastically) decrease while the entity is determined to become normal

again before a certain number of “0” records are received.

The last step of identifying the most likely local view is to find a solution obtained

from the algorithms that has the best match with the WACs. Specifically, we can present

the WACs as a vector W⃗k = (WACk,e,WACk,V 1, . . .), where WACk,i is the WAC of entity

i at time tk, and this vector represents a snapshot of the entities’ normality perceived by

the ego entity. Similarly, we can present the solutions/results from the algorithms in a

vector form φ⃗k,A = (b(e),b(1),b(2), . . .), where b( j) is the normality of entity j determined

by algorithm A and b( j) = 1 (0) indicates the entity is anomalous (normal). For example, if

Greedy algorithm determines that the ego entity and Entity-2 are anomalous and Entity-1

is normal, its vector form will be φ⃗k,G = (1,0,1). While the most common way to compare

the similarity of two vectors, say φ⃗1 and φ⃗2, to a target vector (W⃗ ) is to compare their pair-
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wise inner products (i.e., W⃗ · φ⃗1 and W⃗ · φ⃗2), we need to ensure that the vectors are properly

normalized; otherwise, the vector with a larger magnitude will have an unfair advantage.

Therefore, we can use the following formula to compute the similarity (S) between the

entities’ normality perceived by the ego entity and the result of each algorithm:

Sk,A = (W⃗k · φ⃗k,A)/|φ⃗k,A|. (5.11)

Finally, CADCA selects the local view with the largest S as the most likely local view LM

and recommends the control input that has the largest TTC under LM if both of the controls

are determined to be unsafe.

5.5 Evaluation

5.5.1 Experimental Settings

We evaluate CADCA based on the case study of SAVs. Since CADCA is designed

to operate under safety-critical conditions with sensor failures or malicious attacks, we

use Simulink with the automated driving toolbox [84] to evaluate CADCA’s performance.

This simulation setting allows us to explore a wide range of dangerous scenarios and traffic

conditions, as car-makers commonly do for the evaluation of their algorithms before con-

ducting final field-tests [34, 106, 109]. Specifically, the ego vehicle is equipped with a front

camera for object recognition (including lane-mark detection) and radar for distance sens-

ing. The autonomous system controls both the steering and acceleration of the ego vehicle.

All vehicles periodically broadcast BSMs to inform other vehicles of their location, speed,

acceleration, heading, and yaw rate. To account for noisy sensor measurements in the real

world, the ego vehicle’s radar is assumed to have a maximum detection range of 174m,

range resolution of 2.5m, 90% detection probability and false alarm rate of 10−4%. The

ego vehicle’s camera generates 480×640 image frames every 0.1s and its object recogni-

tion algorithm has a 90% detection rate [56]. Note that the above settings will be altered to
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Figure 5.5: CADCA’s basic testing scenarios: (a) T1: front vehicle suddenly decelerates,
(b) T2: driving scenarios involving (unsafe) lane changes, (c) T3: a potential
side collision situation, and (d) T4: an (unsafe) encounter when Vehicle-Ego
enters an intersection. Note that we omitted different potential maneuvers of
the ego vehicle in the figures.

describe the conditions where the sensors are anomalous, or under the influence of a severe

weather condition, yielding a much worse object recognition performance.

Next, we introduce how to generate the test cases. The relative movements of two

moving SAVs can be categorized into either moving parallelly or non-parallelly. There-

fore, there will be four combinations of relative movements before a collision between two

entities can happen: i) Parallel Only, ii) Parallel → Non-Parallel, iii) Non-Parallel Only,

and iv) Non-Parallel→ Parallel. Based on this observation, we evaluate CADCA’s ability

of preventing unsafe controls based on the commonly seen (traffic) scenarios depicted in

Fig. 5.5 that collective cover all four combinations of relative movement types:

T1: (Parallel Only) As the most crucial scenario for collision avoidance, a vehicle in front

of the ego vehicle suddenly brakes;

T2: (Parallel→ Non-Parallel) The ego vehicle involves in an unsafe lane change;

T3: (Non-Parallel Only) A potential side-collision situation; and

T4: (Non-Parallel→ Parallel, Parallel→ Non-Parallel) At an intersection, the ego vehicle

may experience different safety-critical encounters with vehicles from other directions.

In each scenario, there are 1–5 non-ego vehicles in the vicinity of the ego vehicle. Since we

will directly introduce different controls to the ego vehicle during our experimentation, the

specific motion of the ego vehicle is not explicitly listed here. We evaluate the conditions
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in which both autonomous and manual controls can lead to a collision. Specifically, each

test case has a unique ⟨scenario, control input magnitude, control timing, attack/anomaly⟩

combination. In each test case, at least one control input will lead to a collision. Also, the

attack will start right after a test case begins and last until a collision occurs or until the test

case ends. See Table 5.4 for the statistics of the test-cases in each part of the evaluation.

We also implemented a baseline approach “RA-BSM”, which is adapted from [9] (i.e.,

one of the most recent risk assessments) that also utilizes both vehicle state estimation and

inter-vehicle communications for its risk assessment.

Scenario Unsafe Control Should-Block Should-Allow Total

Low Threat: Single-DT Manipulation (Chapter 5.5.4)

T1 Manual 582 822 1,404
T2 Manual 42 102 144
T3 Autonomous 42 9 51
T4 Autonomous 45 99 144

Subtotal - 711 1,032 1,743

Medium Threat: Attacks with Correlation Matching (Chapter 5.5.5)

T1 Manual 935 1,405 2,340
T2 Manual 70 170 240
T3 Autonomous 70 15 90
T4 Autonomous 45 75 120

Subtotal - 1,120 1,665 2,785

High Threat: Sensor Failures with Attacks (Chapter 5.5.6)

T1 Autonomous/Manual 1,160 5,265 6,425
T2 Autonomous/Manual 270 2,670 2,940
T3 Autonomous 595 260 855
T4 Autonomous 75 960 1,035

Subtotal - 2,100 9,155 11,255

Total - 3,931 11,852 15,783

Table 5.4: This table shows the number of cases tested, where each case has a 0–30s lead
time to the safety-critical situation.

CADCA’s performance is evaluated using two metrics:

• Success Rate (SR): the probability of successfully blocking the execution of a control
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input that will lead to a collision when TTC ≤ TC. The unsafe input can be either manual

or autonomous control.

• Incorrect Blockage Rate (IBR): the probability of unnecessarily disallowing a safe control

input. Note that this metric is considered only when both manual and autonomous controls

are safe, and thus the manual control should be allowed.

Note that CADCA does not treat the two types of controls differently if any of them is

deemed to be unsafe. Therefore, CADCA’s performance for blocking unsafe inputs will

not be influenced by which of the control types is unsafe in each test case.

5.5.2 Implementation: Detection Sets

We introduce the detailed formation of DSs used in the evaluation. We use j to indicate

the DS’s target vehicle. Note that j can be both the ego and non-ego vehicles for DS j,1–

DS j,5 and it can only be a non-ego vehicle for DS j,6.

5.5.2.1 DS j,1{p,v,a,ω,h}

DS j,1 captures the correlation between two consecutive vehicle locations,

pk = (p(X)
k , p(Y )k ) and pk+1 = (p(X)

k+1, p(Y )k+1), based on vehicle speed (vk), acceleration (ak),

yaw rate (ωk) and heading (hk), where the scripts k and k+1 are the (timestamp) indices of

the received data. Specifically, DS j,1 has the following formulation:

p(X)
k+1 = p(X)

k +
vk

ωk
[sin(h′k)− sin(hk)]+

ak∆t
ωk

sin(h′k)

− ak

ω2
k
[cos(hk)− cos(h′k)], (5.12)

p(Y )k+1 = p(Y )k +
vk

ωk
[cos(hk)− cos(h′k)]−

ak∆t
ωk

cos(h′k)

− a
ω2

k
[sin(hk)− sin(h′k)], (5.13)

h′k = hk +ωk∆t, (5.14)
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where ∆t is the time interval between pk and pk+1.

5.5.2.2 DS j,2{p,v} and DS j,3{v,a}

DS j,2 (DS j,3) captures the correlation between the vehicle speed and location (acceler-

ation):

DS j,2 : vk = |pk+1− pk|/∆t; and (5.15)

DS j,3 : vk+1 = vk +ak∆t. (5.16)

5.5.2.3 DS j,4{ω,h} and DS j,5{p,h}

DS j,4 (DS j,5) captures the correlation between the vehicle heading and yaw rate (loca-

tion):

DS j,4 : hk+1 = hk +ωk∆t; and (5.17)

DS j,5 : hk = direction from pk to pk+1. (5.18)

5.5.2.4 DS j,6{p(e), p( j),d(e, j)}

DS j,6 captures the distance d(e, j) between the ego vehicle e and a non-ego vehicle j:

d(e, j) = |p(e)− p( j)|2. (5.19)

5.5.2.5 Thresholds

As mentioned in Chapter 5.4.2, the consistency-check thresholds should set to values

no smaller than their typical estimation/measurement error bound. We use the following

threshold settings for CADCA’s evaluation (Chapter 5.5):

• Γp = 3m, where locations obtained from GPS has typical error of 4.9m [52];

• Γv = 5m/s, where the speed estimation (based on consecutive GPS readings with 1s
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Figure 5.6: An example of computing TTC, where D(e,1),k is the distance between the cen-
ters of the two vehicle circles at time tk.

update rate) can have 9.8m (= 4.9×2/1) error;

• Γh = π/16 rad, where the heading estimation based on consecutive GPS readings can

have up to π/4 rad (= tan−1(4.9/4.9)) error without having an orthogonal or opposite

direction; and

• Γd = 1m (based on the distance sensing in the simulation).

5.5.3 Implementation: Estimation of Time-to-Collision

To reduce the computation work load and account for the possibility that the ego vehicle

may not have the accurate information of (other) vehicles’ dimensions, CADCA treats

each vehicle as circles, instead of rectangles, in a 2-D plane and the diameters the circles

are required to cover the vehicle body. Fig. 5.6 shows an example where the circle of the

vehicles can just cover the vehicle body, i.e., (2r(e))2 = L2
(e)+W 2

(e) and (2r(1))2 = L2
(1)+

W 2
(1). Note that the vehicles’ dimensions (i.e., lengths and widths) can be obtained from

BSM Part-I or estimated from the ego vehicle’s LIDAR or camera.
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CADCA will then predict the future trajectory of vehicles using the following equa-

tions:

p(X)
k+1 = p(X)

k +
vk

ωk
[sin(h′k)− sin(hk)]+

ak∆t
ωk

sin(h′k)

− ak

ω2
k
[cos(hk)− cos(h′k)], (5.20)

p(Y )k+1 = p(Y )k +
vk

ωk
[cos(hk)− cos(h′k)]−

ak∆t
ωk

cos(h′k)

− a
ω2

k
[sin(hk)− sin(h′k)], (5.21)

vk+1 = vk +ak∆t, (5.22)

hk+1 = h′k = hk +ωk∆t, (5.23)

where subscripts k and k+1 are the timestamp indices of data, and p(X) and p(Y ) represent

the vehicle’s X (east-west) coordinate and Y (north-south) coordinate, respectively. Finally,

CADCA can determine TTC by checking the timing when the distance between the ego

vehicle and another vehicle is less than the sum of their circles’ radii (e.g., D(e,1),k < r(e)+

r(1) in Fig. 5.6).

5.5.4 Low Threat: Manipulation of a Single Data Type (DT)

We first evaluate CADCA’s performance when there is only one anomalous DT (the

low-level threat in Fig. 5.3) with (natural) measurement noises embedded in the sensor data.

This type of attack tries to trick the ego vehicle to assume a non-ego vehicle is traveling at

an incorrect speed (with the value deviation ∆v = 5–15 m/s) by manipulating/compromising

the BSM transmission of the non-ego vehicle. We will henceforth use “VSC” to denote the

vehicle that will cause a safety-critical situation and, unless specified otherwise, VSC will

also be the victim of an attack (i.e., VSC’s data perceived by the ego vehicle can be incorrect

or manipulated).

Under each of T1 – T4 scenarios, we design test-cases where the ego vehicle’s au-
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tonomous system may generate both safe and unsafe controls (due to imperfect control

algorithm design and sensors’ blind spots) and further inject manual controls that may ei-

ther cause or avoid collision. The speed manipulations are designed to mislead a vehicle

that performs risk assessment directly based on the received data (i.e., without CADCA)

to believe it has more time to react to the potential collision than that is actually available.

Specifically, in T1, the ego vehicle is travelling at 36-108 km/h when the VSC in front of

the ego vehicle suddenly stops, but the speed of VSC perceived by the ego vehicle will

be larger than the ground truth by ∆v. Similar to T1, the speed information embedded in

VSC’s BSMs will be larger than the ground truth by ∆v in T2, misleading the ego vehicle

to believe that the VSC will have an additional leeway to perform a lane change. To cre-

ate unsafe conditions in T1 and T2, we inject manual controls that make the ego vehicle

accelerate with 1 m/s2 when it needs to decelerate to avoid a collision with VSC.

In T3, the VSC will reach the intersection at the same time as the ego vehicle, but the

attack will make the ego vehicle assume VSC is moving towards the intersection at a speed

deviating from its ground truth by ∆v. Finally, VSC in T4 will make an unsafe right or left

turn at the intersection and the attack will make the ego vehicle assume VSC will finish its

turn earlier. To correct the unsafe decisions made by the autonomous control in T3 and T4,

we inject manual controls to decelerate (with -2 m/s2) the ego vehicle in order to delay its

entrance to the intersection.

Fig. 5.7 shows the SRs and IBRs of CADCA and RA-BSM. One can observe that

CADCA is able to achieve ≥92.86% SR (T2) in disallowing unsafe controls and the level

of data manipulation does not have any significant impact on CADCA’s performance.

CADCA is further shown to achieve >98% SR for T1, T3 and T4. On the other hand,

RA-BSM can only achieve 55.15% SR and its performance further deteriorates when the

perceived data deviates more from the ground truth, indicating it cannot properly perform

risk assessment when there is a data anomaly. Furthermore, CADCA is able to achieve 0%

IBR in all the test-cases, indicating CADCA will not unnecessarily disallow any of the safe
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controls. That is, CADCA will allow drivers to manually control the vehicle if the control

input is determined to be safe as if there were no additional “control-filtering” added to the

ego vehicle.

5.5.5 Medium Threat: Correlation Matching

Let us consider the condition in which the attacker may manipulate VSC’s (entire)

BSMs while targetting VSC’s location data to prevent the ego vehicle from performing

accurate risk assessment. The data in VSC’s BSMs after an attack will perfectly match

the dynamics correlation depicted in the DSs, leaving no trace of BSM tampering. Note

that the data manipulation considered here can be viewed as the final stage of Drift-with-

Devil (DwD) attacks proposed in [120], which is one of the strongest attacks against the

approaches utilizing state estimation. Specifically, VSC’s reported location in its BSMs

will be ∆X away from its ground truth and ∆X will maintain at a constant level once the

test case begins. Furthermore, other data types in VSC’s BSMs will match their ground

truth values. Similar to Chapter 5.5.4, the attacker will try to make the ego vehicle think

it has a larger leeway (i.e., the distance and time) than the ground truth to reacts to the

potential collision. In T1 and T2, VSC will manipulate locations in its BSMs to locations

that are ∆X away from their ground truths along the travelling direction of the ego vehicle.

In T3 and T4, the manipulated VSC locations will be ∆X away from their ground truths in

the opposite direction of VSC’s travelling direction. We use the same manual control design

as in Chapter 5.5.4 to create or eliminate the unsafe conditions. In this set of evaluations,

CADCA will face cases when it cannot deterministically identify anomalous data.

Fig. 5.8 shows the performance of CADCA, where the manual controls are injected

when VSC’s location drifts away from its actual location by ∆X = 10–25m. CADCA is

shown to achieve >92% SR in T1 and T3 while achieving 42–64% SR in T2 and T4. The

lower SRs in T2 and T4 are caused by the fact that it is harder for CADCA to predict

and reconstruct the maneuvering behavior of vehicles since the manipulated BSMs do not
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contain any useful information that reveals the actual VSC’s maneuvering behavior. That

is, CADCA cannot accurately predict VSC’s lateral movement based on the previously re-

ceived data. When CADCA’s IBR is compared with those under single-DT manipulation,

the IBRs in Fig. 5.8 are slightly larger due to CADCA’s safety-first design to always exe-

cute the safer control decision under an uncertain situation. Note that even though CADCA

can only achieve moderate SRs in T2 and T4, it still has a >40% (absolute) SR advantage

over RA-BSM.

5.5.6 High Threat: Sensor Failures and Attacks

Next, we investigate CADCA’s performance in the presence of both sensor/algorithm

failures and attacks. Specifically, we assume the attacker may tamper with VSC’s location

data (∆X = 5–25m) along with other data just like in Chapter 5.5.5 and simultaneously

spoof the sensors/algorithms of the ego vehicle using certain adversarial machine learning

techniques. To simulate this extreme condition, we purposely adjust the object detection

rates of RADAR/camera to 0.9, 0.5 and 0.1 and assume there can be measurement er-

rors (∆d = 6–10m) for the ego vehicle’s distance sensing. Note that the degradation of

sensing quality can also be the result of severe weather condition. CADCA is shown to

achieve 90.43–98.33% SR and ≤2.44 IBR in T1 while RA-BSM can only achieve ≤87.83

SR and ≤3.83 IBR (Table 5.5). We use the same set of ground-truth vehicle behaviors

within a ⟨scenario, detection rate⟩ case to capture the effects of anomalous distance sensing

on SafeSA’s performance. Specifically, it is worth noting that CADCA does not experi-

ence any noticeable performance degradation even if ∆d increases from 6 to 10, indicating

CADCA’s effective resolution of control conflicts irrespective of how much error is em-

bedded in the data once the anomaly is detected. RA-BSM, on the other hand, will yield a

much worse performance with larger data deviations. This observation further showcases

CADCA’s advantage in that its identification of anomalous data does not directly rely on

data causality. A similar pattern can also be observed in T2–T4. As expected, CADCA
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shows a slightly worse performance in T2 due to the unpredictability of VSC’s behavior.

However, it can still achieve up to 72.22(= 94.44 - 22.22)% absolute SR increase over

RA-BSM.

5.5.7 Computation Time Analysis

We evaluate CADCA’s computation time based on a 2016 MacBook Pro with 2.6 GHz

Quad-Core Intel Core i7 CPU. Specifically, CADCA is implemented in Matlab with single-

thread execution. We measure the execution time when there are 2–50 vehicles (including

the ego vehicle). Fig. 5.9 shows the average computation time linearly increasing with the

number of vehicles. This result matches our analysis in Chapter 5.4.3.8 that CADCA’s al-

gorithms have O(NK) ∝ O(N) computation complexity when K, the number of data types,

is fixed and N, the number of DSs, is proportional to the number of vehicles. Specifically,

even if CADCA operates in the scenario with 50 vehicles, it only requires a 33.3ms execu-

tion time on average, which is only 0.7% of TS (i.e., the medium time to achieve a smooth

control transition) and 1.2% of TR (i.e., the driver’s reaction time in an urgent situation).

0 10 20 30 40 50
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Average Computation Time

Average Computation Time (per Vehicle)

C
om

pu
ta

tio
n 

Ti
m

e 
(s

)

Number of Vehicles

Figure 5.9: The computation time of CADCA. The execution time is computed based on
the average of 10,000 executions under scenarios with the same number of
vehicles.
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5.5.8 Robustness Analysis

We now evaluate the robustness of CADCA in identifying anomalous entities as a

stand-alone function to understand if and how an adversary can mislead CADCA (i.e.,

incorrectly identifying entities as anomalous and lead to the identification of an incorrect

probable context). Specifically, we control the output of CADCA’s consistency check to

showcase its performance under different threat levels, assuming an attacker can always

achieve his/her goal in manipulating data without any constraint. We tested all possible

anomalous data combinations when there are up to 3 anomalous entities with ≤13 anoma-

lous data when there can be up to 10 vehicles.

Fig. 5.10 shows the inclusion rates (IRs) and exact identification rates (EIRs) of anoma-

lous entities under different attack/detection scenarios. IR is defined as the probability that

CADCA include all anomalous entities in its output and EIR is defined as the probabil-

ity that at least one algorithm introduced in Chapter 5.4.3 captures the exact anomalous

entities without any false-positives or false-negatives. Specifically, Fig. 5.10 shows that

CADCA can achieve 100% IRs and EIRs for an ideal/low-threat scenario of no false-

positives/negatives in consistency checks. CADCA can also achieve >98% IRs even if all

DSs can only achieve an 80–90% true-positive rate (TPR) and have a high (1–5%) false-

positive rate (FPR). Note the EIRs in Figs. 5.10b and 5.10c show an increasing trend when

there are less than 7 anomalous data types. This is the result of CADCA not being able

to accurately pinpoint the exact anomalous entities because the high FPR in the consis-

tency check phase will have more impacts on the local view construction if there are fewer

true-positives among all positive detections. That is, CADCA will determine some nor-

mal entities as potentially anomalous based on its design. Nevertheless, CADCA can still

achieve high IRs (>98%) as mentioned earlier.

We now consider mid/high-level attacks where the adversary can manipulate multiple

DTs simultaneously to evade the consistency checks of certain DSs. Specifically, Fig. 5.10d

shows CADCA’s performance under all possible multi-DT attacks and the TPR of a DS
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will be purposely set to 0% if all DTs in that DS are the targets of an attack. The results of

EIRs may not seem to have an obvious trend/pattern when the number of anomalous DTs

increases because the DSs considered in CADCA cannot exhaustively cover all possible

DT combinations. Therefore, the EIRs under mid/high-level threat will be influenced by the

design and the (imbalanced) coverage of the DSs w.r.t. to different data types. However,

CADCA can still achieve a good and stable (i.e., with a gradually decreasing trend) IR

performance thanks to its design to report all potentially anomalous entities based on the

output of local view construction. Specifically, even when two thirds of the data in all

anomalous entities are coordinately manipulated (i.e., the group of 12 anomalous data in

Fig. 5.10d), CADCA can still achieve ∼50% IR.

5.6 Discussion

Limitations and Future Work. As a natural limitation in the absence of trusted data,

CADCA cannot provide correct control decisions if all or majority (two-thirds of data in

anomalous entities) of the received/perceived data have been manipulated to match their

normal correlation. This will cause CADCA to identify the anomalous entities incorrectly

or determine all the data to be potentially anomalous, depending on the data manipulation.

Also, CADCA is less effective when the maneuver of non-ego vehicles drastically

changes during the attack as T2 and T4 shown in Chapters 5.5.5 and 5.5.6, and the cur-

rent design of CADCA will only choose the control with the largest TTC when all control

inputs are determined to be unsafe without recommending an alternative to avoid collision.

Integration of traffic/maneuver patterns for behavior prediction and control recommenda-

tion is thus part of our future work.

Practical Deployment. While CADCA can also have incorrect blocking of inputs/con-

trols, imperfect implementation and faults, engineers should implement a user-interface to

notify the driver whenever a control/input is blocked, and also design a fail-safe mecha-

nism to unblock the manual control of the vehicle, such as a panic button. However, this
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fail-safe mechanism must ensure the central control/management center4 will be notified

and can reactivate CADCA or take over the control of the vehicle, if necessary, to prevent

malicious drivers from abusing this fail-safe mechanism.

5.7 Conclusions

To reduce/eliminate the danger of static assignment of control priority in safety-critical

situations due to potential component failures/attacks and malicious driver’s input, we have

proposed CADCA, a control decision-maker for semi-autonomous systems, that can per-

form risk assessment and resolve control conflicts when any of the received/perceived data

is anomalous. Specifically, CADCA selects a control input that is safe to execute under un-

certain situations. Our extensive evaluation has shown CADCA to achieve a 98% success

rate in avoiding use of unsafe control inputs (T1) and have a ≥0.4 more success rate than

the latest representative prior work for most commonly seen scenarios (T2).

4The deployment of central control/management center is expected to be commonly used for future au-
tonomous vehicles and fleets [10, 38, 110, 131].
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CHAPTER VI

Conclusions and Future Directions

6.1 Conclusions

This thesis has demonstrated the feasibility of enhancing the robustness and safety of

SA systems by cross-validating the received data and the operation contexts. Specifically,

we proposed SafeSA, a framework that consists of four subsystems — CADD, DiVa,

EDRoad, and CADCA — for the integrity verification of system operation, received in-

formation, and control decisions.

6.1.1 Integrity Verification of System Operation (CADD and DiVa)

The adoption of electronic components introduces new vulnerabilities to modern SA

systems. To cope with this double-edged trend, we proposed CADD (Chapter II) to deter-

mine whether or not the system operation matches its control inputs. Specifically, while

the dynamics of SA systems depends heavily on its operation contexts and the sensors in

SA systems cannot always capture the correct information, CADD utilizes multiple data

groups to perform anomaly detection by cross-validating the estimations of the operation

contexts and narrow down the search space for anomalous groups or components. That

way, CADD i) eliminates the requirement of knowing the correct context before perform-

ing anomaly detection, ii) takes the operation context into account, and iii) does not require

a fixed set of trusted sources for its detection.
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After an anomaly is detected, DiVa (Chapter III) is proposed to further identify the data

or components that have caused the abnormal system behavior. DiVa constructs hierarchi-

cal detection sets (DSs), i.e., groups of data that describe certain correlation or causality of

the target SA system, to cross-validate the input data. DiVa is able to perform consistency

checks based on the DSs and formulate a Boolean equation system whose solution indi-

cates which data are potentially anomalous, in order to identify the anomaly source(s) even

when no data can be trusted entirely.

6.1.2 Integrity Verification of Received Information (EDRoad)

While future SA systems are expected to receive support from infrastructures and/or

other SA entities, using incorrect information in services designed to support SA systems

can degrade/risk their operation efficiency and security/safety. To address this critical prob-

lem, we proposed EDRoad (Chapter IV), a novel system and an ensemble learning frame-

work for verifying the integrity of individual data segments/types received from external

SA entities and restoring the identified anomalous data. EDRoad’s design can significantly

reduce engineers’ development effort, at design time, when setting up data verification

schemes under different application requirements.

6.1.3 Integrity Verification of Control Decision (CADCA)

Since neither autonomous nor manual control is perfect, a disagreement between them

may arise. To resolve such a control conflict, safety/mission-critical features in modern

SA systems are usually implemented with static priority assignment. However, this static

priority assignment can lead to catastrophic accidents when accompanied with faulty/com-

promised sensor readings (e.g., the crashes of Boeing 737 MAX). To mitigate the grave

danger of utilizing incorrect data for generating control decisions and learn from the in-

cidents/crashes of Boeing 737 MAX, we proposed CADCA (Chapter V), a novel control

decision-maker for SA systems, that detects both data manipulations and malicious/erro-
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neous control inputs with the ultimate goal of resolving conflicting control inputs to ensure

the system safety. CADCA utilizes the received data to establish an equation system for

identifying the probable operation scenarios and performs risk assessments for all potential

⟨control input, context⟩ scenarios to recommend a final (and safe) control decision.

6.2 Future Directions

Finally, we discuss three potential research directions that can be extended from this

thesis.

6.2.1 Identification of Context Correlation

While engineers must provide domain-specific formulations as inputs to SafeSA for its

real-world implementation, we expect this prerequisite can also be replaced by an automatic

training process. However, according to our evaluation in Chapters II to IV, there still does

not exist any effective solution to automatically capture the correlation between system

behavior and the operation context. Specifically, even EDRoad requires some manual

configuration to incorporate domain-specific knowledge into the detection system, but it

is a step forward in this direction. This training mechanism is expected to significantly

reduce engineers’ efforts in identifying new causal correlations between advanced sensors

and components that have yet to be integrated in modern SA systems.

6.2.2 Generation of Alternative Control and Limp Mode Support

In the current design of CADCA, it will only delay the occurrence of an unsafe system

state if all the control inputs are determined to be unsafe. A natural extension of CADCA

is to explore how to derive a safe control when no control inputs are safe to execute. In an

ideal scenario, this safe control should either resolve the safety-critical situation or make

sure that the SA system will not enter any unsafe state in the foreseeable future and can

keep operating until maintenance or repairment is available (i.e., the limp mode).
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6.2.3 SA Entity Cooperation

As (the current design of) SafeSA only assumes to passively receive information from

other SA entities, it is also worth exploring if there is a feasible approach to have the ego SA

system to actively request certain data from other entities while providing a sanity check to

ensure the received information is correct without the need of their direct measurements as

assumed in EDRoad. For example, an SA vehicle may request the camera image captured

by another SA vehicle one block ahead and make sure that the received image is correct and

accurate for its future path planning. This functionality can enable various future services

and applications in SA systems.
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