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Recursive Least Squares Estimation of Cell
ine ic Paramet ers using Se uentia

Measurements of Cell DNA Contents

KANG G. SHIN, MEMBER, IEEE, AND MYUNGHWAN KIM

Abstract-The proliferation dynamics of a growing cel population can
be represented by a discrete-time state model. An application of recrive
least squares algorithms to the estimation of important cel cycle kinetic
parameters is considered. Cell kinetic parameters are estimated recursively
by the following steps: 1) decomposition of state and output spaces, 2)
separation of identification of the unperturbed cell system from that of the
perturbed cell system, and 3) application of a recursive least squares
algorithm for the identification of each decomposed system. This method is
feasible due to the availability of a new technology called flow microfluo-
rometry (FMF) which is capable of providing large amounts of quantitative
data within a short time period. Emphasis is placed on the construction of
a computationally efficient and stable lgoithm. The FMF deoxyribonu-
cleic acid (DNA) data of a Chinese hamster ovary (CHO) cell population
is used to demonstrate the potential value of the method developed.

I. INTRODUCTION

C ELL KINETICS is an important area of cancer
research which deals with the quantitative aspects of

the growth behavior of proliferating cell populations and
their responses to chemical and physical agents. Cell
kinetics already plays an important role in the develop-
ment of a rational, scientifically grounded approach to
cancer therapy, a role which will assume more importance
as experimental methods improve.

Extensive efforts in experimental cell kinetics (see [28]
for an overview) have been made to produce quantitative
data, and a number of mathematical models (for an
excellent review, see [I]) have been proposed to provide a
theoretical framework for their interpretation of data. All
of these models have been either unrealistically simple or
were not fully developed due to the lack of abundant
quantitative data. The recent spread of flow microfluo-
rometry (FMF) devices [8], [21], [31] is beginning to
provide data of sufficient quantity and statistical accuracy
to justify further development of the mathematical mod-
els.
Modern control theory has become a very useful tool in

analytical cell kinetics since Hahn [14] proposed a state-
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space model to describe the proliferation dynamics of a
cell population. This model contains multiple compart-
ments and provides more accurate description of cell
movements through the cell cycle than others (most of
existing models) dealing with only total populations or
small numbers of subpopulations, such as that of GI, S,
and G2 +M cells. We extended this model to include
output equations (the cell size and deoxyribonucleic acid
(DNA) distributions) and control functions (the cancer
treatment) and derived the optimal cancer treatment
schedules under the assumption that all cell kinetic
parameters are known [4], [16], [17]. Also Gray [12] pre-
dicted the changes in cell-DNA distribution from the
assumed initial cell age distribution and cell kinetic
parameters determined by trial and error.

If the cell kinetic parameters and initial age distribution
are not known, then all of the above methods fail. Cell
kinetic parameters have to be estimated by means of the
measurements of a given cell system, i.e., identification of
parameters must be done. Modern control theory can
contribute to this part of the cell kinetics problem, be-
cause system identification is one of its very important
and active areas (for excellent overviews see Astrdm and
Eykhoff's survey [21, Sage and Melsa's book [291, and the
December 1974 special issue of the IEEE TRANSACTIONS
ON AUTOMATIC CONTROL).
We also investigated research in the area of bilinear

system identification to find ways to exploit the bilinear
nature of our system. Bruni et al. [5] reduced the de-
terministic parameter identification problem for bilinear
systems to a nonlinear multipoint boundary value prob-
lem (MPBVP) and suggested the quasilinearization algo-
rithm for solving this problem. Baheti et al. [31 developed
an algorithm to estimate parameters of a class of discrete-
time bilinear systems using second-order correlations. Re-
cently, Karanam et al. [15] used a finite orthonormal
expansion to approximate input and output functions for
the identification of a bilinear system where the dimen-
sion of the state space is equal to that of the output space.
However, neither was applicable to our problem, the
structure of which can be exploited in identifying cell
kinetic parameters.
We have made a considerable effort to determine the

best estimates, in least square sense, of the cell kinetic
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parameters, using the quasilinearization algorithm and
orthogonal transformation [19], [20]. These methods did
not take advantage of the structure of the cell system and
resulted in computational inefficiency and numerical in-
stability. In this paper we intend to correct these draw-
backs by

1) decomposing the state and output spaces into sub-
systems of smaller dimension,

2) separating the identification of undisturbed cell sys-
tem from that of disturbed cell system, and

3) applying a recursive least squares algorithm for the
estimation of parameters in each subsystem.

A Chinese hamster ovary (CHO) cell population is used to
demonstrate the utility of this method.

Il. PROBLEM STATEMENT

The cell cycle and proliferation kinetics of a tumor cell
population under the effect of antitumor drugs can be
described by

x(k+ 1)=4p+ u(k)]x(k), x()=XO. (1)

The basic concepts underlying the equation are briefly
given as follows (see [4], [14], [16], and [17] for further
details). The cell cycle is divided into N physiological age
intervals called age compartments, and the physiological
age distribution is represented as an N-dimensional vector
called the state vector, the ith component of which repre-
sents the number of cells in the ith age compartment.
Usually, the state vector xe R' has additional compart-
ments to include noncycling cells such as resting and dead
cells (n > N).
The aging of the population is represented by ad-

vancing cells down the compartments into mitosis, dou-
bling the number of mitotic cells which are then entered
into the first age compartment. This cycling process oc-
curs in discrete steps. Since all cells do not age physiologi-
cally at the same rate, during one unit time interval, the
cell fractions fi, 6, and a are advanced by 0, 1, and 2
compartments, respectively. The probability of a cell's
advancing by more than two compartments in one unit
time is assumed to be negligible. This cycling process for
proliferating cells is described by the transition matrix Opp
in Fig. 1, making a distinction among the aging rates in
different phases of the cell cycle. Likewise, the state
transition matrix (F describes the changes in the cell age
state vector over one unit time period.
Whenever antitumor drugs are applied some cells are

known to be killed (cell-killing effect) or blocked from
growing past a certain age boundary in the cell cycle
(progression delay effect). These cells have to be reas-
signed to certain nonproliferating and proliferating com-
partments. The input transition matrix I represents the
reassignment of cells affected by the presence of anti-
tumor drugs during one unit time interval.

u(k) is the external disturbance or control function,
indicating the amount of a treatment given during interval
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Fig. 1. Example of age state transition matrix. State transition matrix
4pp represents changes inside proliferating cell population over one
unit time period where neither cell death nor cell arrest occurs. It is
easy to modify this matrix so that matrix includes noncycling group.
In above matrix P1, p5, and P2 represent the number of age compart-
ments in GI, S, and G2 +M phases, respectively; a, denotes probabil-
ity that cell advances two age compartments in one time interval, fi
that for no advancement, and 8i =1-, -,Bi is probability for normal
progress for i= 1, s, and 2 (namely, GI, S, and G2 + M).

k. Since there must always be a safe limit to the drug
dosage, one can assume u(k)E [0, 1] for all k without loss
of generality. u(k)=0 implies that at interval k no drug is
present while O<u(k)< I indicates the presence of the
drug.
Although the cell age state cannot be directly observed,

the size and DNA content of a cell are experimentally
measurable. Hence the cell age state has to be monitored
indirectly through the use of cell size or cell DNA infor-
mation. The strategy of most experimental methods of cell
cycle analysis is to introduce a marker into selected cells
and to observe the progress of the labeled cohort of cells
around the cycle. All methods but recently developed
FMF technique are generally known to be time-consuming
and statistically inaccurate. Consequently, in this paper
the FMF DNA data will be considered as a sole means of
monitoring both cell age states and cell kinetic parame-
ters. This measurement system is characterized by

y(k)=Dz(k) (2a)
z(k) = Qx(k) (2b)

where y ER' is the experimentally measured FMF DNA
vector, the jth entry of which represents the number of
cells found in the jth channel; D is the transformation
matrix describing the measurement noise due to the errors
in both staining and devices (see [7], [10], [12], [18], [20]
for details); z = Rm is the dispersion-free or "true" DNA
vector [16]; S is the transformation matrix relating the cell
age state to the cell DNA state (for details, see [16], [18]).
The model enables one to predict the time course of the

cell age and cell DNA distributions of a cell population
under consideration. When the parameters in the model
and the initial age distribution are determined, it can
provide an insight into the behavior and movement of
cells under chemotherapy in different cell age and DNA
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compartments. Since the susceptibility of a cancer cell to
most antitumor drugs depends on its position in the cell
cycle, the knowledge of the cell kinetic parameters and the
initial cell age distribution is of the utmost importance.
Therefore, the problem is to determine the transition
matrices 4) and I and the initial cell age state xo through
the use of the input-output pairs of the cell system;
namely, it is to select the parameters in the model (1)
which best agree, in some sense, with input-output data.
This concept leads to the construction of a criterion or a
loss function which measures the deviation of model out-
put from system output.
The least squares criterion is chosen in this paper to

estimate the cell kinetic parameters. Then the problem
may be stated as follows.

Problem (P): Given a cell system l with input-output
pair {u(k), y(k)) described by (1) and (2), determine a
parameter vector O* in F such that the loss function
2k=P-olI y(i)-ym(i)j 2 iS minimized and

lim 11 y(k)>Ym(k)II =0
k-)oo

where y denotes FMF DNA data; y,,,, model output; jj . Jj,
two-norm; and F is the feasible region of cell kinetic
parameters.

Remarks:
1) In addition to the well-known advantages in using

least squares criterion [6], the key reason for the use of the
two-norm criterion is the property of preserving its norms
under orthogonal transformations, which provides an ex-
tremely easy and stable tool for recursive computation.

2) In our previous work [181, we showed how to com-
pute the transformation matrices D and Q. Accordingly,
they are assumed known throughout this paper.

3) Since a particular form of 4), due to the physical
sense of x, is important, one cannot assume that 4 has a
canonical form.

4) The cell kinetic parameters under consideration are
determinable by examining a number of sequential ob-
servations (see [11]). Hence this paper will focus on the
method of determining the parameters without rigorous
discussion of identifiability as in [301.
The solution to the above problem may be roughly

divided into two parts. The first part (Section III) is
structural decomposition of the cell system on the basis of
the system's special nature, which provides a great deal of
reduction in computation and storage requirements. The
second part (Section IV) is recursive computation of the
cell kinetic parameters for decomposed sub-systems by
making use of sequential triangularization, namely, or-
thogonal transformation. This part presents an extremely
easy and stable algorithm for the computation of cell
kinetic parameters.

III. SYSTEM DECOMPOSITION

The transition matrices 4) and I have a large number
of rows and columns, i.e., the dimension of the state
vector is high. This high dimensionality is necessary to

predict accurately the time course of the cell age distribu-
tion rather than a coarse prediction of the behavior of the
total population with small number of subpopulations,
such as that of GI, S, and G2 +M cells. Because of the
high dimensionality, computation is very costly. This diffi-
culty can be circumvented by decomposing the cell system
into several subsystems.
The decomposition mentioned above is based upon the

special nature of the cell process as follows. A cell repli-
cates its chromosomes by synthesizing DNA only during
the S phase and not in either G1 or G2 + M. Since the
change of DNA content of a single cell is experimentally
detectable, the cell cycle parameters in the S phase can be
rather easily determined. In order to take advantage of
this special property of cell process, the state-space model
(1) can be rearranged as follows, including four subsys-
tems I1, 11 12, and Em:

xl(k+ 1)

x(k+1)= x5(k+ 1)
xx(k+ 1)
X2(k+ 1)
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u(k)

(3)

where 2i for i= 1, s, 2, m denotes the cell subpopulation
systems of G1, S, G2+M, and the nonproliferating cells,
respectively; x, E RPi, the age state vector in the subsys-
tem l:;4)1j for i3j represents cell transition from E. to
2i; tIa, the transformation matrix for expressmg the
chemotherapeutic effects on the subsystem 2,; *Ij for i#j
is the input transition matrix describing cell transition
from Ij to 1: due to the chemotherapy.
One can observe that zeros in the partitioned transition

matrix in (3) are introduced due to physical considera-
tions and the assumption that no cycling cells can be
arrested in S. This assumption is widely supported in the
literature [1], [11], [221. It is also assumed, without loss of
generality, that the state-space model is constructed such
that p5 > 2.
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Experimentally
measured DNA -

distribution

(FM F DNA data)

Fig. 2. Block diagram used for estimating states and parameters of

unperturbed cell system.

It is possible to separate the identification of from
that of by simply setting u(k) = 0; that is, the cell
process without chemotherapy can be identified first, and
then the effects of the antitumor drugs on the cell system

will be determined.
According to the motivation of state decomposition, the

true DNA vector is considered as the target for the output
decomposition. The transformation matrix Q which re-

lates the age vector to the true DNA vector can be
computed from the knowledge of DNA synthesis rate
during the S phase and the locations in the cell cycle
where the cycling cells may become resting cells [181. At
present our information is limited, but it is commonly
assumed that cycling cells can be arrested at three points
in the cell cycle: in early G1, in late G1, and in late G2
[1 1].

Following this assumption, the true DNA vector z can

be decomposed into three subsystems or (p, + 2) subpopu-
lations as follows:

Pt

z'k)= E Xli(k)+Xm1(k)+Xm2(k)
i=l1

zs(k) =xs(k)
P2

Z (k)= YX2i(k)+Xm3(k) (4)
*=1

where z1 represents the total number of cells that have not

yet started to synthesize DNA, Z2 the number of cells

which completed DNA synthesis but which have not yet
divided, and zs the cell DNA distribution in the S phase;
Xmi for i= 1, 2, and 3 are the subpopulations of resting
cells arrested in early G1, late G1, and late G2, respec-
tively. Observe that the contribution of dead cells to the

DNA distribution is assumed to be negligible. It is rea-

sonable to assume this since dead cells which do absorb

dye will fluoresce at a considerably different rate and do

not distort the data [7].
It should be particularly noted from (4) that the age

state in S is identical to the true DNA vector in S. This
can be assumed, without loss of generality, since z, can be

expressed by z5= Q,5x for some matrix Q5 with rank

(Q,)=dim(x,), and thus one can always compute x5 by
X= (QTQ) - 'QTZs. As will be seen later, this information

is very useful for the estimation of cell cycle parameters in

the S phase. The great advantage of the decomposition

will become apparent in the detailed computational algo-

rithms in the subsequent discussions.

IV. RECURSIVE ESTIMATION OF PARAMETERS AND

STATES

With the previously discussed system decomposition,
the parameters and states for the unperturbed cell system

are estimated recursively by the following steps. For nota-

tional convenience let Oi denote the cell kinetic parameters

in the subsystem 2, for i= 1, s, 2, and m.

1) Estimate the true DNA distribution from the ex-

perimental (FMF) DNA data.
2) Estimate O, and x, from the true DNA distribution.
3) Compute 01, 02, and Om from the knowledge of the

true DNA data, O, and x,.
4) Compute xl, x2, and xm using the estimates in 1),

2), and 3).

This estimation procedure is depicted by the block dia-
gram in Fig. 2. Note that all these estimators are recursive
in measurements and deal with only small dimensional
data.

A. Elimination of Instrumental Dispersion

Flow microfluoremetry [8], [21], [31] is of great impor-
tance in cell kinetics studies because of its potential for
rapidly and accurately measuring selected characteristics
in individual cells of a cell population in suspension;
nevertheless, FMF DNA data may contain staining errors

and errors due to measurement devices. Frequently, the
dispersion is characterized by a Gaussian distribution [10],
[12]. Ideally, this characterization may not be valid, but
practically it does not impose any problem in the FMF
analysis [12]. A Gaussian distribution is completely de-
scribed by its mean and its coefficient of variation. These
parameters can be determined from various kinds of sta-
tistical inferences. In this paper, it is assumed that the
complete characterization of the dispersion, described by
the matrix D in (2a), is available.

It is desired to determine the true DNA distribution
from FMF DNA data and (2a). This problem can be cast
into a typical weighted least squares problem as follows:
find j(k)>0 such that J=IIDz(k)-y(k)II2-(k) attains
its minimum at z(k)=iz(k) where IIll denotes the two-
norm and R-(k) is the weighting matrix.

A A
,x

-s '-s

A A A

-11-29m

A A A
" 'x 2,s
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FMF DNA data

Prefilter the
experimental
DNA data

A
y

QR decomposition of
the measurement
dispersion matrix D

Solve the upper
triangular system
using back substitution

z

true DNA data

Fig. 3. Procedure for computing the true DNA distribution from the
FMF DNA data.
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(UCLS) algorithm yields the nonnegative solutions for
z(k). The true DNA distribution is therefore easily calcu-
lated by solving the triangular system with back substitu-
tion, following the Householder triangularization of the
matrix D. It should be noted that the computation re-
quired for the NNLS problems is costlier than that for the
UCLS ones. Fig. 3 shows the UCLS procedure used for
the computation of true DNA distributions, and Fig. 4
presents an experimental (FMF) DNA distribution and its
true DNA distribution computed by the UCLS algorithm.

B. Estimation of Es and x5

Now the cell kinetic parameter vector and the cell age
state vector in the subsystem 2, denoted by OS and x,
respectively, are to be estimated from the true DNA
distributions. One can see that the age state vector x5 in
the subsystem Es is known, and thus only Os remains to be
determined.
From the foregoing system decomposition, one can

obtain the following equations
xs(i+ 1) = DsIx(i) +4.,xs(i)

Zs(i) =Xs(i).
It is noted that all but the right upper corner entries of the
matrix jsl are zeros. Using the above equations one can
obtain a simple equation which is linear in Es as follows:

FiO5-J, for i=2,3,-*-
where Fi and f are data matrices determined from two
consecutive true DNA vectors, i.e., Fi

A

Fi(z,(i), z/(i- 1))
andf - f(z,(i- 1)).
The problem of estimating OS from (6) can be cast into a

typical least squares problem:

2

Channel No. DNA

Fig. 4. (a) Measured FMF DNA distribution. (b) Computed true DNA
distribution.

Note that R(k) would be the covariance matrix of the
uncorrelated white Gaussian noise if the measurement
system has such additive noise. In such cases, the minimi-
zation of J would be equivalent to the maximization of the
probability density function, namely, z(k) would make
y(k) most likely to be produced.

Numerical solution of this type of problems, namely,
nonnegative least squares (NNLS) is excellently discussed
by Lawson and Hanson [21]. Their discussion was based
upon the Kuhn-Tucker lemma for optimal solutions [9]
and the orthogonal transformation. Since the dispersion
matrix D is of full rank, the above problem yields a
unique solution.
The constraint of nonnegativeness, z(k)>0, is needed

because its components represent the number of cells.
However, for most cases the unconstrained least squares

minimie
3 A subject to 0.CEFs.

Tlhe parameter vector O is restricted to a feasible region F,
since ES represents the probabilistic parameters. This is a
constrained least squares problem which is commonly
solved by making use of Kuhn-Tucker conditions and
orthogonal transformations such as QR decomposition
and singular value decomposition [23], [26], [32].
We want to obtain a sequence of solutions for a data

set, i.e., ([F,: fl]; 1=2, 3,.* *, i}, to which new data (i.e.,
[Fi, I: Jfi 1]) are being sequentially added. A requirement
for this type of computation arises in the class of prob-
lems called recursive (or sequential or on-line) estimation,
filtering, or identification. Such methods provide a means

of conserving computer storage for certain types of prob-
lems involving voluminous data.
A recursive method for determining OS is developed here

by making use of the augmentation methods which have
excellent properties of numerical stability. This is in con-

trast to many published approaches to this problem that

(5a)
(5b)

(6)

(7)
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[24]. The recent work of Paige and Saunders [26] is an
excellent reference for the sequential triangularization
method in comparison with other literature regarding Kal-
man filtering.

C. Estimation of Parameters and States of I, 2' and Im
The parameters and states of the subsystems I, 21

and Im are to be determined using the true DNA distribu-
tions and the knowledge of O and xs. The computational
algorithm for estimating these parameters is more com-
plicated than that for OS and xs, since one cannot obtain a
simple equation of these variables.
The dynamics of the reduced system, made up of E,
2, and Em~ can be compactly described by

s(k+ l)= s(k)+ i5(k) (1 1)

Exit

Fig. 5. Flowchart for estimating cell kinetic parameters in S.

are based on the notion of updating the inverse of a

matrix.
The detailed algorithm is as follows. For notational

convenience let [RO: bo] denote a null matrix having no

rows. At the beginning of the ith stage of the algorithm,
one has the triangular matrix [Ri_I: bi_I] from the previ-
ous stage and the new data matrix [Fi: f]. Form the
augmented matrix

(8)

and reduce this matrix to triangular form by Householder
triangularization as follows:

Q,[F j=[ R.i: bi] (9)

The estimate of OS at the ith stage, denoted by 05(i), is
obtained by solving the least squares problem

RiO -bi subject to OS eF. (10)

This completes the ith stage of the algorithm.
If there are more data to be processed, then the above

procedure is repeated until the data are exhausted. This
procedure is depicted by the flowchart in Fig. 5.
The algorithm constructs a sequence of triangular

matrices [Ri: bi] for i= 2, 3,.-, with the property that
the least squares problem R i ,-bi has the same solution
set and the same residual norm as the problem
FT... FT)TO _( T... fT)T The significant point per-

mitting a saving storage is the fact that, for each i, the
matrix [Ri: bi] can be constructed and stored in the
storage space previously occupied by the augmented ma-

trix [Fi: Jf].
It should be noted that the augmentation method for

estimating linear parameters is numerically more efficient
and stable than other recursive least squares techniques

where

S=(xT 4T: xT)TS (X X2 Xm)

=(°T: (D2sz )T; OT)T

4>DlI 412 (D Im

(D = ° 022 02m.

Dml Dm2 4mim

Observe that s is the state vector for the reduced system,
and Z5 is the known input from the previous estimation
steps.

D and s in (11) must be determined from observing the
change of DNA distributions in the S phase together with
zI and Z2 in (4). Therefore, the output equations for the
reduced system are

z5(k+ 1)-T5sszs(k)= slxl(k)

zl(k) = Xli(k)+Xml(k)+Xm2(k)
i= 1

P2

Z2(k) = E X2i(k)1 +Xmk)
i =1

(12a)

(12b)

(12c)

In order to obtain a recursive estimate of the parame-

ters in and 0,1, it is necessary to eliminate the state
vector s from (11) and derive an equation which recur-

rently relates the observations to the parameters (for an

example, see [25]).
Since the system under consideration is observable, we

know that it is possible to obtain such relationships. Once
this equation is obtained, we can apply the sequential
least squares method as in Section IV-B. Using a sequence
of measurements one can obtain the equation, since cells
in G2 +M move into G1, cells in the GI phase pass
through the S phase, and the cell age distribution in the S
phase is directly observable.
The final step of identifying the cell system without

chemotherapy is to compute the state vector s for the
reduced system. Now all parameters but s are available
from the previous discussion. Commonly, s can be ob-
tained by solving normal equations [6], [23] after a se-

quence of DNA data is accumulated (also note that this

Solve the least
squares problem
Ri Os = bi subject
to as eFs at the
ith iteration.

866

Ri- 1: bi- Ifi: f =

Fi: f
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accumulation is related to the observability matrix [27]).
This method may not be attractive in practice, for the
following reasons: 1) it is not recursive; namely, it is
necessary to solve the normal equations again without
taking advantage of computations undergone in the previ-
ous steps whenever new data are acquired, and 2) the
solution may become numerically unstable. As was seen
in Section IV-B, the sequential triangularization provides
recursive and numerically stable solutions to linear least
squares problems. This method is thus the best remedy to
the shortcomings mentioned above. With minor algebraic
manipulations, one can make use of the procedure in Fig.
5 to recursively compute s.

This completes the estimation of parameters and states
for the cell system without chemotherapy. It is convenient
to recall that the identification of 1 in (1) was separated
from that of chemotherapeutic effects on a cell popula-
tion.
The effects of chemotherapy on cell dynamics are com-

plicated but commonly classified as cell-killing, progres-
sion delay, and prolongation of cell cycle times. Although
the generation of "preterminal" cells [20], [33] may account
for the third effect, the present study includes only the
first two effects. Hence the chemotherapeutic effects are
here expressed in terms of the cell-killing and the cell-
blocking rates.
We have to estimate the parameters describing che-

motherapeutic effects on the basis of measurements and
the information on the cell system without chemotherapy.
This paper is concerned only with cell cycle stage specific
drugs (CCSS) [17] because of their popularity. This fact
produces simple equations which are linear in chem-
otherapeutic parameters. Only straightforward calcula-
tions are required to solve these equations for the prob-
abilistic parameters, as shown in the following section.

V. ESTIMATION OF CELL KINETIC PARAMETERS AND
CELL AGE DISTRIBUTIONS FOR CHINESE HAMSTER

OVARY CELLS

A Chinese hamster ovary cell population is selected as
an application example for the cell kinetic analysis dis-
cussed thus far. This analysis requires

1) a mathematical model of cell cycling process,
2) the relationship between cell age and cell DNA

states,
3) the effect of instrumental and preparative errors on

the DNA distributions, and
4) estimation of both the cell kinetic parameters and

the initial cell age distribution, based on the system
decomposition and the recursive least- squares
method.

The CHO cells are known to have the cell cycle consist-
ing of four distinct phases G,, S, G2, and M. The CHO
cell population also contains resting (Go) cells which are
noncycling but capable of regaining the cycling capability.
The dimension of the age state vector n is determined by

TABLE I
COMPARISON OF PHASE DURATIONS AND COEFFICIENTS

OF VARIATIONS (CV) FOR CHO CELLS ESTIMATED
BY DIFFERENT TECHNaQUES (FROM [13D

Method Tc(CVC) TG,(CVG) TS(CVS) TG2+M(CVG2+M)
1) Pulse label

and autora-
diography 125 6.9using frac-
tion of cells
in S

2) Method
using frac-
tion of cells 12.5 3.7 6.8 2.0in G 1, S,
G2 +M
(FCM)

3) RCS$ 12.9(0.16) - 6.5(0.29) -
4) FLM 12.7(0.12) 4.5(0.20) 6.3(0.20) 1.7(0.19)
5) Perturbed

cell cycle 12.1 3.4 6.2 1.3analysis
(FP1)

6) Perturbed
cell cycle 12.3(0.12) 3.6(0.20) 6.6(0.20) 2.1(0.19)analysis
(FCM)

1) the integral ratio among the phase durations and the
associated computational requirements, and 2) the num-
ber of nonproliferating compartments. Gray et al. [13]
excellently reviewed the methods of determining the cell
cycle time and phase durations (see Table I for the associ-
ated results). They reported that the durations for GI, S,
and G2 +M phases (TG, TS, and TG +M, respectively)
giving the best match were 3.6 h, 6.6 h, and 2.1 h,
respectively. Observe that this information yields an ap-
proximate integral ratio of the phase durations to be 4:7:2
(=TG,: Ts: TG2 +M). Considering this ratio and the availa-
ble data' for a CHO cell population taken at 1-h or 2-h
intervals, we have chosen the number of proliferating
compartments to be 13. This implies that 1) the mean
duration of one age compartment is one hour, and 2) GI,
S, and G2 +M phases are composed of 4, 7, and 2 age
compartments, respectively. Cells in the Go phase (i.e.,
resting cells) are reported to come from early GI, and thus
transition of cells in GI to Go and recruitment of Go cells
into GI are assumed to take place in the first age compart-
ment. This assumption, along with the number of pro-
liferating age compartments, determines the dimension of
x, n, to be 14 and also simplifies (3) and (4); namely,
42m=O0 m2=0, and xm2(k)=Xm3(k)=0 for all k. Note
that the disturbance in cell kinetics due to the dead cells is
assumed negligible [7], and therefore the dead cells are not
included in the model.
A cell has one unit of DNA content during the G,

phase and two units during the G2 +M phase while the
DNA content of the cell during the S phase increases
monotonically from one unit at the beginning of the S

'The data were obtained from both the Sloan Kettering Cancer
Institute, New York, NY, and the Lawrence Livermore Laboratory,
Livermore, CA.
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Fig. 6. Computed matrices (a) D for measurement dispersion. (b) Q for
relating cell-age to cell-DNA states.

phase to two units at the end of the S phase. The exact
relationship between cell age and cell DNA states can be
determined by the knowledge of 1) the rate of DNA
synthesis during the S phase and 2) the position in the cell
cycle where cells may be arrested and become dormant.
The relationship represented by the matrix Q in Fig. 6(a)
is computed using our previous method in [18] and an

assumption of constant DNA synthesis rate (the method
could calculate Q for any DNA synthesis rate curve).
There are two sets of FMF DNA data available for the

present work; one is the sequential DNA distribution of
an asynchronous CHO cell population, measured at one-

hour intervals, whereas the other is that of a synchronized
CHO cell population, taken at two-hour intervals. These
data were taken from the CHO populations without drug,
and thus the control function u(k) in all previous equa-

tions should set to zero. Note that the identification of the
unperturbed system was separated from that of the per-

turbed system (Section III), and consequently the above
data are both suitable for the identification of the unper-

turbed system. In reality, it is impossible to obtain 100
percent cell synchronization which gives the initial cell age

distribution, and the two-hour intervals of data takings

are less accurate than one-hour intervals to analyze a

CHO cell population. Therefore, the FMF DNA data for

the asynchronous population is used to estimate both the

cell kinetic parameters and the cell age distributions.

Measurement noise in this data, due to the imperfect

staining and instruments, is assumed to be distributed

normally and is characterized' by the matrix D in Fig.

6(b).
Using the above FMF DNA data, the cell kinetic

parameters are estimated, and the result is given in Table

II. As was expected, the augmentation method produces

estimates of the cell kinetic parameters with numerical
stability. Table II also shows the number of iterations

required for the convergence of estimates. Thus from such

a result one can determine how many sequential measure-

ments must be made to obtain good estimates of the cell
kinetic parameters. The calculation of parameters d2, f,

and y was started after the reasonable convergence in that

of a, /l, and d1 was obtained, as the estimated values of a,

,/, and d1 had to be used for the estimation of d2, f,

and .y.
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TABLE II
COMPUTrED RESULTS OF CELL KiNTC PARAmERS

FOR CHO CELL POPULATION

K

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

a

0.2286
0.2286
0.1711
0.2082
0.2109
0.2109
0.2109
0.2109
0.2112
0.3111
0.2111
0.2111
0.2111
0.2111
0.2110
0.2110
0.2110
0.2110

00
0.2078
0.2078
0.2698
0.1556
0.1811
0.1801
0.1802
0.1800
0.1807
0.1806
0.1806
0.1806
0.1806
0.1806
0.1806
0.1805
0.1805
0.1805

d0
0.0667
0.0667

-0.0823
0.0626
0.0493
0.0496
0.0496
0.0494
0.0492
0.0492
0.0492
0.0492
0.0492
0.0492
0.0493
0.0493
0.0494
0.0494

d2

-14.4319
0.0944
0.0984
0.0993
0.0996
0.0997
0.0997
0.0998
0.0998
0.0998

f

0.0595
0.0578
0.0558
0.0544
0.0537
0.0533
0.0531
0.0529
0.0529

a

0.1918
0.1319
0.0934
0.0753
0.0670
0.0628
0.0606
0.0594
0.0589

a denotes the probability that cells advance two age compartments in
one time interval, /3 that for no advancement; d1 and d2 are natural cell
death rates in the proliferating group and nonproliferating group, respec-
tively; f is the probability that cells lose cycling capability and become
resting cells in one unit time, y the probability that cells regain cycling
capability and return to the proliferating group.

The augmentation method is simple to implement and
provides the best estimates in the least square sense with
numerical stability. The method would be more valuable
for the case of a I=a. =a2 and fI =fSs=/2 which is com-
monly assumed in the literature [12], [14], [16]. Under this
assumption, we computed the initial cell age distribution
which is then used, together with identified parameters,

for calculating subsequent cell age, cell DNA, and FMF
DNA distributions. The results are plotted in Fig. 7(a)-(c).
It should be particularly noted that actual data points are
also plotted in Fig. 7(a), comparing with the computed
FMF data curve (generally, the computed data matches
the actual data well).
The estimation of chemotherapeutic effects is straight-

forward, as both the cell-killing and cell-blocking rates are
directly computable from measurements of cell DNA
distributions and the knowledge of cell kinetic parameters
of the cell system without drug. Simulated data are used
to demonstrate the above method of calculating che-
motherapeutic effects in the following. Cytosine arabino-
side (Ara-C) is applied, as an example, to the CHO cell
population. The Ara-C is known to kill cells only in the S
phase and to block cell progression at the boundary
between G1 and S (positions of cell blocking in the cell
cycle are different from one type of drug to another).
Because of this property of Ara-C, one can obtain simple
equations in terms of the cell-killing and the cell-blocking
rates. Let p be the probability that cells would be blocked
at the GI /S boundary as a result of chemotherapy, and
let c, be the cell-killing rate in the ith age compartment in
the S phase. Then one gets

xSl(k+l1)=(1-dl) (l-cj),8,x,l(k)
+ (1-p){8lxl,,(k) + aixlp, _ l(k)}

xs2(k+ 1) =(1 -dl)[ (1-C2)sXsA2(k)
+ (0 -CI)8xsIx(k) + (1 -p)aIxI,,(k)]

-sREAL FMF DATA POINTS
-SIMULATED

lo 20

AMOUNT OF FLUORESCENCE (CHANNEL)

(a)
Fig. 7. Cell distributions of CHO cell population at times 0, 1, 2, 3, 4, and 5 h.

distribution. (b) True cell-DNA distribution. (c) Cell-age distribution.
(a) Simulated and real FMF DNA
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(b)

HOUR

xs3(k+ 1)=(1-dl)[(l -c3)1s3x53(k)

+ (1-c2)s5xs2(k)+ (1-c)a5xsj(k)] (13)

Xsph(k+1)=d(-do ) (l-cPlt)hixsP(k)+(t-cpi-e)

*sSXSP _ 1(k) + (I-CPJ -2)asxsp5 2(k)]

where d, denotes the cell death rate in the proliferating

kGE

(C)
(Continued).

group. Note that all x5, for i= 1, 2, *, ps can be replaced
by z,1.

In order to determine the parameter p one can obtain
an equation,

influx to z-outflux from zl =z1(k+ 1)-z,(k) (14a)
i.e.,

z,(k+ 1) -z,(k) =(1 -dl)t12(k) + (1 -d)pt,1(k)- t(k)

-[ d1z,(k) +(d2 -dl)xm(k) -d1t5l(k)] (14b)
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Area specifying the number of cells killed

I I Area specifying the number of cells survived

10 20 2

FLUORESCENCE CELL-DNA CELL-AGE

Fig. 8. Computer simulation of cells killed and cells survived following application of drug.
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Fig. 9. Estimated transition matrices. (a) State-transition matrix (). (b) Input-transition matrix

where d, represents the cell death rate in the proliferating
group, and

t,1(k) =x1ax,pl (k) + (1-81,)x1p,(k)
t12(k) = 2(Y2X2p _- 1(k) + (1 -f32)X2p2(k)).

From (14b), the parameter p can be calculated by

p= t(k) lZ(k+1)/(l-dl)-zl(k)

d1 -dl
12(k m(k)J+I (14c)

where d2 represents the cell death rate in the nonpro-

liferating group. With the value ofp it is easy to compute
all ci for i= 1, 2, --, P from the equations in (13). Fig. 8

shows the computer simulation for cell distributions be-
fore and after the antitumor drug application, including
the cells killed and those that survived. The late G, peaks
of survival curves in Fig. 8 represent the accumulation of
cells at G,/S boundary as a result of progression delay.
This simulation made use of the identified parameter
values a=0.2110, fi=0.1805, di =0.0494, d2 =0.0998, f=
0.0529, y= 0.0589, p=0.9, and Cl= C2= C3= 0.850, C4 =
C5 = C6 = 0.800, C7 = 0.750. Also the identified system
matrices and are given in Fig. 9.

VI. CONCLUSION AND DISCUSSION

We have developed a computationally efficient and
numerically stable method for the identification of cell
kinetic parameters used in the discrete-time model (1).
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This method has great potential for both the study of cell
kinetics and the design of optimal drug schedules, which
are very important areas in cancer research.
A considerable amount of effort was made to estimate

these parameters in our previous work [19], [20], yet the
resulting methods were neither computationally efficient
nor numerically stable. Such a result was mainly due to 1)
the calculation of the inverse of a large matrix, 2) nonre-
cursiveness of the estimation algorithms, and 3) high
dimensionality of the cell system, needed for the accurate
description of cell cycling process. A conventional recur-
sive least squares method as in [24] could cure some of the
above drawbacks. However, the problem of matrix inver-
sion, a main cause of numerical instability, remains un-
solved along with that of high dimensionality of the cell
system. As seen earlier, system decomposition and
sequential triangularization techniques have solved all the
drawbacks mentioned above and provided accurate esti-
mates (in least square sense) of cell kinetic parameters.

It is assumed that all parameters except the number of
cells remain constant with time; i.e., means and standard
deviations of phase durations, cell cycle dispersion param-
eters, probabilities of cell death, cell recruitment, etc., are
assumed to be constants. The system identification theory
leads to numerically manageable results only when this
assumption is made. This is the very practical reason why
many modelers make this assumption, which is sometimes
unrealistic from a biological point of view. In many cases,
however, it is possible to use stationary models if the cell
population parameters vary slowly.
The present method makes use of sequential data with

the measurement interval ATO, but it can be modified to
use any sequential data with a random measurement
interval jATo, where j is a positive integer. However, such
modifications may bring about computational difficulties
due to the high nonlinearity of associated equations.

In reality, the chemotherapeutic parameters may be
functions of the size of the population, the frequency of
drug dosage, etc. However, the method described in this
paper is based on our simple drug model in [17]. New
schemes for identifying chemotherapeutic effects may be
needed if the drug model is changed.

In spite of the speedy cell sorting capability of FMF
techniques, there are few published quantitative data
suitable for rigorous cell kinetic studies based on mathe-
matical models. This results from the fact that experi-
menters look for biological phenomena instead of sys-
tematic analysis of data that will be obtained. The present
work has suffered from the lack of abundant data, but
useful data of CHO cells were available to demonstrate
the utility of the method discussed in this paper. Further-
more, this paper gives experimenters an indication of the
kinds of measurements needed within the framework of
the state-space model to make a systematic study of cell
kinetics.

Because of extreme simplicity and recursiveness, the
algorithms discussed in this paper can be implemented in
real time by dedicated mini- or microcomputers. Conse-
quently, the method would be potentially invaluable to

the analysis of large amounts of FMF DNA data and can
be directly implemented with relatively simple laboratory
instruments.
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Attributed Grammar-A Tool for Combining
Syntactic and Statistical Approaches

to Pattern Recognition
WEN-HSIANG TSAI, MEMBER, IEEE, AND KING-SUN FU, FELLOW, IEEE

Abstract-Attributed grammars are defned from the pattern recogni-
don point of view and shown to be useful for descriptions of syntactic
stuctures as well as semantic attributes in primitives, subpatterns, and
patterns. A pattern analysis system using attributed grammars Is proposed
for pattern cdissfication and description. ibis system extracts primitives
and their attributes after preprocessing, performs syntax analysis of the
resuldng pattern representations, computes and extracts subpattern attri-
butes for syntactically accepted patterns, and fmialy makes decisions
according to the Bayes decision rule. Such a system uses a combination of
syntactic and statistical pattern recognition techniques, as is demonstrated
by illustrative examples and experimental results.

I. INTRODUCTION

OMBINING syntactic and statistical pattern recog-
nition approaches has been advocated by several

investigators [1-[4], [7], [22] in the past decade. The
motivation arises from the fact that neither the syntactic
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approach nor the statistical approach alone is adequate
for some practical applications; the former is weak in
handling noisy patterns and numerical semantic informa-
tion [10], [241, and the latter is unable to describe complex
pattern structures and subpattern relations. Since the ad-
vantage of one approach appears to be the disadvantage
of the other, a hybrid model is desirable that incorporates
the advantages of both and is thus more useful to real
applications. In this paper we propose the use of attri-
buted grammars as a tool for combining the syntactic and
the statistical approaches to pattern recognition.

Attributed grammars were first formulated by Knuth
[51 to assign semantics or meanings to context-free lan-
guages from the computational linguistics point of view.
Each production rule of an attributed grammar consists of
a syntactic rule and a semantic rule, the former being used
to specify language syntax and the latter to add contextual
semantics. Illustrative examples of applications of such
semantic formalism to patterns described by picture de-
scription languages (PDL) [6] are found in [7]. The necess-
ity of using pattern semantics to facilitate the utilization
of contextual information was also emphasized in [231,
although attributed grammars were not used there. Tang
and Huang [8] applied attributed grammars to image
understanding. You and Fu [9], [25] used attributed gram-
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