
ROLLBACK PROPAGATION DETECTION AND PERFORMANCE EVALUATION

OF FTMR2M -- A FAULT-TOLERANT MULTIPROCESSOR

Yann-Han9 Lee and Kan9 G. Shin

Electrical, Computer, g. System Engineering Dept.

Rensselaer Polytechnic Inst i tute, Troy, NY 12181

ABSTRACT

In this paper we consider the rollback
propagation and the performance of a
fau l t - to lerant multiprocessor with a rollback
recovery mechanism (FTMR2M) [1] , which was
designed to be tolerant of hardware fa i lure with
minimum time overhead. Rollback propagation
between cooperating processes is usually required
to ensure correct recovery from fai lure. To
minimize the waste of processor time and storage
overhead required for handling sophisticated
rollback propagations, the FTMR2M always keeps
one recoverable state. Approaches for evaluating
the recovery overhead and analyzing the
performance of FTMR2M are presented. Two
methods for detecting rollback propagations and
mult i-step rollbacks between cooperating
processes are also propo'sed.

1. INTRODUCTION

Due to the increasing demand for re l iabi l i ty
and surv ivab i l i t y in the modern computing arena,
it is highly desirable to have a recovery scheme
which enables the computing system to
automatically recover from various faults. The
requirements of faul t recovery speed as well as
storage size are known to be the most d i f f icu l t
problems faced by the system designer,
especially in real-time applications. To meet these
requirements, an approach based on a
mult i-microprocessor system, which has inherent ly
reliable LSI components and system
reconfigu rabi l i ty , has been considered as a
solution. The Faul t -Tolerant Mult iprocessor with
a Rollback Recovery Mechanism (FTMR2M) [1]
was designed to be tolerant of hardware faults
with minimum time overhead. In this paper we
investigate the performance of FTMR2M and the
treatment of mult i-step rollbacks.

All correspondence should be directed to Prof.
Kang G. Shin, ECSE Department, Rensselaer
Polytechnical Inst i tute, Troy, NY 12181.

The organization of FTMR=M is based on
the backward recovery method and the recovery
block. The recovery block, proposed by Randell
[2] , is a program structure that is composed of
recovery points, acceptance tests, and
al ternat ive processes for a given task. The
al ternat ive processes may be d i f fe rent algorithms
started from the same state. If a process fai ls
the acceptance test or if an er ror is detected
dur ing execution, the system will roll back to
the previously recorded state and t r y one of the
other al ternat ives. Several aspects in this area
have been studied; for example, the technique
for evaluating and minimizing overhead developed
by Chandy and Ramamoorthy [3] , the strategies
for insert ing recovery points by O'Brien [4] ,
the conditions for avoiding the domino effect and
purging the old recovery block by Kant and
Silberschatz in [5] , and other designs, with
emphasis on programmer t ransparency, have been
proposed by Meraud and Browaeys [6] , and Kim
[7, 8].

The concept of the recovery block is also
useful for to lerat ing hardware faults in a
reconfigurable system. In general, process states
are defined by the internal registers and the
variables in memory at the end of each
instruct ion execution. To generate the recovery
block, we attempt to record these states
consecutively and concurrent ly dur ing the
execution of the process with a special
state-save mechanism. Af ter a fault is detected
and isolated, the system will be reconfigured to
replace the failed processor module (PM). By
loading the program code and migrat ing the
recorded states into the replacement PM, the
original process can be resumed. Thus every
interval between two consecutive state-savings
can be regarded as a recovery block.

To resume the execution of a task
comprised of cooperating processes from a
fau l t - f ree and consistent state, the rollback of
the failed processor may have to propagate to
other processors or to a fu r the r recorded state.
The worst case is when an avalanche of rollback
propagations, namely the domino effect, occurs.
We may be able to eliminate the domino effect by
restr ict ing interactions and by making an a

0149-7111/82/0000/0171500.75 © 1982 IEEE

171

p r i o r i analys is of i n te rac t i ons , which b r i n g about
h i ghe r overhead in s torage and execut ion t ime.
I f the p r o b a b i l i t y of the domino e f fec t is small ,
i t seems b e t t e r to r e s t a r t the whole task when
the domino e f fec t occurs than to p r e v e n t the
domino e f fec t . This seems t rue even fo r the case
when ro l lback p ropaga tes more than one step
(note tha t the domino e f fec t is a special case of
t h i s) . Consequen t l y we adopted a method cal led
automat ic ro l lback recove ry which cons t ruc ts the
recovery b locks au tomat ica l l y and al lows the task
to rol l back on ly a s ing le s tep; i f a
mu l t i p l e - s t ep ro l l back is r e q u i r e d , then the task
has to be r es ta r t ed . In th is method an add i t iona l
measure to de tec t the domino e f fec t o r
mu l t i p l e - s t ep ro l l back must be taken p r i o r to
recove ry .

Th is pape r is o rgan i zed as fo l lows. Sect ion
2 b r i e f l y rev iews the a r c h i t e c t u r e of FTMR2M,
and Section 3 d iscusses the de tec t ion of ro l l back
p ropaga t ion and domino e f fec t . Section 4 deals
w i th the est imat ion and analys is of pe r fo rmance
in terms of the expec ted execut ion t ime. A
conclus ion is p resen ted in Section 5.

2.REVIEW OF FTMR2M ARCHITECTURE

The FTMR2M a r c h i t e c t u r e has been
i n t r oduced in our ea r l i e r w o r k [1] , bu t f o r
convenience the basic o rgan iza t i on of th is
mu l t i p rocesso r is p resen ted in Fig. 1. I t is
s imi la r to the Cm* system [9, 11]. The major
aspects are b r i e f l y desc r ibed below.

2.1 Processor Module and State Saving

A basic p rocessor module in the
mu l t i p rocesso r system under cons idera t ion
consists of a p rocessor , a local memory• a local
sw i t ch , s ta te -save memory uni ts and a swi tch
mon i to r . Each PM can execu te a process of the
g iven task and can communicate w i th o the r
processes a l located in o t h e r PMs. The p rocessor
module saves i ts states (i . e . va r iab les and
s ta tus) at var ious stages of execu t ion , cal led a
s ta te -save . A t r e g u l a r i n te rva l s of d u r a t i o n , Tss

an ex te rna l c lock s t imula tes e v e r y p rocessor
module to save its states as soon as i t completes
the c u r r e n t i n s t r u c t i o n . Then the p rocesso r
executes a va l ida t ion tes t . I f the p rocesso r
su rv i ves the tes t , the saved state wou ld be
rega'rded as the recove ry po in t f o r the nex t
i n t e r va l . I f the p rocessor fa i ls the va l ida t ion
tes t , i t w i l l rol l back to the p r e v i o u s l y saved
state. The deta i led opera t ions in the ro l l back
recove ry are shown in Fig. 2.

Du r i ng a s ta te -save i n t e r v a l , besides the
normal execut ion of i n s t r u c t i o n s , cer ta in
opera t ions are au tomat ica l l y execu ted ; f o r
example, a p a r i t y check is done wheneve r the
buses are used. Some r e d u n d a n t e r r o r de tec t ion
uni ts are accompanied w i th the p rocessor module

[10] , e . g . d u a l - r e d u n d a n c y compar ison•
a d d r e s s - i n - b o u n d check, etc. These uni ts are
expec ted to de tec t a mal funct ion as soon as the
co r respond ing func t ion un i t is used. An
add i t iona l va l ida t ion process re f reshes the
she l ters to gua ran tee the sav ing of a f a u l t - f r e e
state and thus ensures sa fegua rd ing aga ins t f au l t
p ropaga t ion .

To minimize the t ime overhead requ i r ed fo r
s ta te -save , the sav ing is done c o n c u r r e n t l y w i th
process execu t ion . Every update of va r iab les in
the local memory is recorded in the s ta te -save
memory un i t s imul taneous ly . Two such s ta te -save
memory un i ts , cal led SSU 1 and SSU 2, are used
f o r sav ing states at two consecu t i ve i n te r va l s .
Thus each PM always keeps one va l id s tate
saved in one un i t and stores the c u r r e n t l y
chang ing state in the o the r . The two SSU's t ha t
save the old and c u r r e n t states respec t i ve l y wi l l
be swi tched fo l low ing the complet ion of e v e r y
s ta te -save . The mon i to r swi tch is used to rou te
the c u r r e n t state to one SSU and to manage the
s ta te -sw i t ches .

Since the update of dynamic elements is
copied in on ly one SSU, the o the r SSU is
i gno ran t of i t . Th is fact may b r i n g about a
ser ious prob lem: the newly upda ted va r iab le may
be lost . In o r d e r to avoid t h i s , i t is necessary
to make the contents of two SSU's ident ica l at
each s t a t e - s w i t c h i n g ins tan t o r to copy the
var iab les tha t have been changed in the p rev ious
i n te rva l in to the c u r r e n t s ta te -save un i t . A
solut ion to th is p rob lem has been proposed in
the p rev ious paper [1] . A t each s ta te - sw i t ch
ins tan t , the c u r r e n t SSU conta ins not on ly the
c u r r e n t l y upda ted va r iab les b u t also the
p r e v i o u s l y updated va r iab les . So, the contents of
the c u r r e n t SSU always rep resen t the newest
state of the PM.

2.2 System Organ iza t ion

The s ta te -save of a task tha t is
d i s t r i b u t e d ove r p rocessor modules PM i
(i=I N) impl ies the s ta te -save of each PM.
The resumpt ion of a fa i led process may need
cooperat ion f rom o the r processes due to the
c o n c u r r e n t execut ion of processes and
interprocessor communicat ion. Fault r ecove ry in
the task level could invo lve the ro l lback of the
fa i led process and o the r re la ted processes. Since
(1) coopera t ing PMs can have a r b i t r a r y
in te rac t ions and (2) each PM saves i ts s tates
asynch ronous l y w i th o the rs , i t is poss ib le to
r e q u i r e mu l t i - s t ep ro l l back . I f the p r o b a b i l i t y of
a mu l t i - s t ep ro l lback is small, i t may be p ra t i ca l
to s imply r e s t a r t the whole task when a
mu l t i - s t ep ro l lback occurs , instead of
c o n s t r u c t i n g more complex mechanism to a l low
mu l t i - s t ep ro l lbacks fo r ques t ionab le r e t u r n . To
make the fau l t r ecove ry successful in th is case,
the system should check the ro l lback p ropaga t i on
and mu l t i - s t ep ro l l back , as wel l as the m ig ra t i on
of fa i led process to the rep lacement PM.

172

The system contains th ree data paths tha t
connect PMs at two- leve l h ie ra rchy . The
i n t r a - c l us te r bus, a t ime-shared paral le l bus,
groups PMs into a c luster . The i n te r - c lus te r l ink
forms a modular computer network which permits
expansion. Ano the r data path, formed by the
DMA cont ro l le r and DMA channel , is used to
t r ans fe r the program code and process states
such that the loading and migrat ion of a process
can be handled w i thou t i n te r fe r i ng wi th the
i n t ra -c lus te r bus.

The c lus ter node is composed of a switch
and a moni tor . This switch element, called the
c lus te r swi tch, handles the externa l references
and records these references to analyze ro l lback
propagat ions. The c lus ter moni tor manages the
PM pool in the c luster . I t receives the request
f rom the host and loads a process via the DMA
data path to a PM. I t also receives repor ts from
PMs in the c lus ter as to the s tate-save
operat ions and PMs' condi t ions. Once a fa i l u re is
detected, the c lus ter moni tor wi l l signal " r e t r y "
to the PM in quest ion. If the same fa i l u re is
detected again, a permanant fau l t is dec lared
and the fo l lowing steps are taken by the c lus te r
moni tor and c lus ter switch:

1. Stop all o ther PMs tha t are execut ing
processes of the same task.

2. Make a decision on the ro l lback
propagat ion .

3. Resume the execut ion of processes that are
not af fected by ro l lback propagat ion .

4. Find a f ree PM to replace the fa i led PM.

5. Migrate the process in the fa i led PM to the
replacement PM.

6. Roll back the processes af fected by the
ro l lback of the fa i led PM.

7. Any in teract ion d i rec ted to the fa i led PM
must wai t fo r the resumption of the
process in the new PM. Old and
unserv iced in teract ions issued by these
ro l led-back PMs, which are st i l l queued in
the c lus ter node, are cancel led.

There are several tables that wi l l be
invo lved in the ro l lback recovery . F i rs t , the
processor- task tab le (PTT) is used fo r
associat ing the processes being executed in the
PMs with a task and i den t i f y i ng the PMs'
condi t ions. Second, the task-processor tab le
(TPT) groups all PMs execut ing processes of a
task. Both tables can p rov ide the informat ion of
the relat ions between physical PMs and a logical
task. The t h i r d tab le is the address mapping
tab le for ex te rna l references. To avoid updat ing
the whole mapping tab le a f ter the
reconf igu ra t ion, an associated re rou t ing tab le
(RT) is used to map addresses d i rec ted to f au l t y
PMs into the i r replacements.

3. PROPAGATION AND DETECTION OF ROLLBACK

In FTMR2M, each in teract ion between
cooperat ing processes is regarded as a re ference
to shared var iab les . These shared var iab les , a
por t ion of dynamic data, can be located in an
a r b i t r a r y PM. The state of process Pi should
inc lude the shared var iab les that are accessed
by process P.. To rol l back a fa i led process, i t
is necessary I t o p rov ide the consistent contents
of the shared var iab les as well as those of the
process's local var iab les and in terna l states.
Since the shared var iab les may reside outs ide
the associated PM, two related aspects, namely
the ro l lback propagat ion and the mul t i -s tep
ro l lback, must be considered.

3.1 Rol lback Propagation and Mul t i -s tep Rol lback

Suppose a shared var iab le X resides in PMj
which executes process P j , and process P has
accessed X in its curren-t s ta te-save in terva .
One can consider the fo l lowing th ree ways in
which the ro l lback may af fect o ther processes.

1. I f P i rol ls back and if Pi has a l ready
changed X, the reexecut ion of P.j requi res
X to contain the old va lue p r i o r to the
change by Pi " Hence P i should also rol l
back.

2. If process Pi rol ls back a f te r i t has
wr i t ten to var iab le X, th is new value of X
should be d iscarded since the wr i te
operat ion may be fau l t y and is cancelled
by the ro l lback of P i " The process Pj,has
to rol l back so as to recover the prev ious
va lue of X.

3. I f P i reads X du r ing a state-save in terva l
when Pj fa i ls , we can not ensure the
correctness of the value read by process
P i" To avoid a possible fau l t p ropagat ion ,
process Pi has to rol l back.

Even i f the ro l lback does not propagate in
the case tha t process Pi. has read var iab le X and
then fa i ls , th is case Is t reated the same as
above to s impl i fy the detect ion of ro l lback
propagat ion . We assume tha t the cooperat ing
processes must rol l back if there exists an
in teract ion du r ing the cu r ren t s tate-save in terva l
of one of the invo lved processes. This
propagat ion is denoted as P i - - - > P j i f ro l lback of
Pi induces ro l lback of Pi • An example is
presented in Fig. 3, where" process P1 fai ls at
t ime t [f) . Since there is an in teract ion between
P1 and P2 du r i ng the time in terva l (t (n 1) , t (f)) ,
process P2 must rol l back to enable the
in teract ion in the reexecut ion of P I ' denoted by
P 1 - - - > P 2 • The ro l lback of process P2 wi l l
p ropagate f u r t h e r to o ther processes, in this
example, P2--->P4, PI - - ->P3 , and P3--->P2.

Because of asynchronous state-save nature ,
the ro l lback may propagate f u r t h e r to the state

173

beyond the prev ious state. I n the above
example, P2 must rol l back to the state at t (n~
-1) because of the propagat ion P3-- ->P2; namelC~
this fa i l u re requi res a mul t i -s tep ro l lback. In the
worst case, this fact may in t roduce unbounded
ro l lback propagat ions (even tua l l y to the
beg inn ing of the processes). In the automatic
ro l lback recovery mechanism, we on ly
accommodate one saved state in each PM to
minimize the storage overhead. Hence the whole
task has to be restar ted i f a mul t i -s tep ro l lback
is requ i red .

3.2 The Detect ion of Rol lback Propagat ion

Since every in teract ion is managed by the
c lus ter node, the c lus ter node should take
respons ib i l i t y for detect ing ro l lback propagat ion
and dec id ing i f a mul t i -s tep ro l lback is needed.
Let a g iven task be decomposed into N
cooperat ing processes that are assigned to N PMs
and executed s imutaneously. Two detect ion
methods are proposed as fol lows:

A. Method 1

Let the a r ray element K (i , j) represent the
number of in teract ions between P and Pi du r i ng
the cu r ren t s ta te-save in te rva of Pi- Be6ause of
the time d i spa r i t y in saving states fo r Pi and P i

the values of K (i , j) and K (j , i) may b~ t

d i f f e ren t . The c lus ter node counts the number of
in teract ions and checks the a r ray when fa i lu re
occurs as fol lows.

1. When process Pi saves its state and moves
to the next s tate-save in te rva l , reset
K (i , j)=0 fo r j = I , 2 . . . N .

2. When the c lus ter d i rects a re ference issued
by process Pi to Pj, K (i , j) and K (j , i)
are incremented by 1.

3. When Pi fa i ls or is af fected by another
ro l lback, the c lus ter node examines K (i , j)
f o r j = I , 2 . . . N . If and on ly i f K (i , j)=0 ,
the re is no d i rec t propagat ion from Pi to
~ I f K (i , j)#0 and K (i , j) = K (j , i) , then aPn j

to rol l back one step. If K { i , j) f 0 d
K (i , j) # K (j , i) , the ro l lback wi l l p ropagate
more than one step.

The condi t ion under which ro l lback
propagates more than one step occurs when (1)
there is an in teract ion across the d i f f e r e n t
s tate-save in terva ls of Pi and Pj (see an example
in Fig. 3, where P3 in teracts wi th P2 in the
in terva l (t (n 3) , t (n ?))) , and (23 Pi and P j both
need to rol l b a c k . -

From steps 1 and 2, K (i , j) represents the
number of in teract ions between Pi and Pi in the
cu r ren t s ta te-save in terva l of P . To p rove the
correctness of this method, all possib e cases are
considered in Fig. 4. For cases (a) and (b) , i t
is obv ious tha t Pi does not have to rol l back.
For case (c) , P j ~us t rol l back, leading to the
fact tha t the in teract ions du r i ng the present

state in te rva l of P i and Pj are reproduced. For
the cases in (d) , (e) and (f) , the re are
in teract ions between the s tate-save instants of
P'I and P-j. The s ing le-s tep ro l lback of Pi o r Pi is
not su f f i c ien t to cover the all in terac t ions needed
in the reexecut ion . In the above example of Fig.
3, the a r ray of K4x 4 at t ime t (f) is

2 0 0 1
1 1 0 0
0 1 0 0

If the processor execut in 9 P fai ls at t (f) , the
examinat ion of a r ray K4x4Concludes tha t P2, P3
and P4 have to rol l back. Since K (3 ,2)#K (2 ,3)
and K(3 ,2)#0 , a mul t i -s tep ro l lback is requ i red .

The time requ i red fo r dec id ing i f the
processes have to rol l back o r not, cal led
decision de lay , depends on the number of
comparisons in Step 3. The number of
comparisons is determined by the in teract ion
pat terns among processes. Since the checkin 9 of
K (j , i) is not necessary i f P i - - - > P j , the maximum
number of comparisons would be N (N - 1) / 2 fo r N
cooperat ing processes. The memory space fo r
s to r ing the K a r ray increases p r o p o r t i o n a l l y to
N 2. If N is large, the storage overhead and the
decision delay may become a burden to system
per formance.

B. Method 2

Two condi t ion a r ray elements KC(i , j) and
KP(i , j) are used to represent the in teract ions
between processes Pi and Pj . Both ar rays are
composed of N*N b i ts , each a r ray element
consist ing of a s ingle b i t . I f an in teract ion
occurs from P i t o P: du r i ng the cu r ren t
s ta te-save in te rva l o f ~oth Pi and PJi then
K C (i , j) = I . I f th is in teract ion occur red n P j ' s
prev ious s tate-save in te rva l , then K P (i , j) = I . The
steps fo r set t ing these a r ray elements and
checking the ro l lback propagat ion are as fo l lows:

1. When an in teract ion is issued by P i and
d i rec ted to P j , then KC(i , j) and KC(j , i)
are set to 1.

2. I f process P i saves its states and moves to
the nex t s tate-save in te rva l , then fo r
j = 1 , 2 . . . N

(a) . K P (j , i) : = K P (j , i) ÷ KC(i , j)
KC(j , i) :=0

(b) . K C (i , j) : = 0
KP(i , j) :=0

where + is logical OR operat ion and step
(a) is clone before step (b).

3. When P i rolls back, the cluster node
checks two rows in each array, namely
KC(i,j) and KP(i,j) for j=I ,2. . .N. There
are three possibilities: l) . If KP(i,j)=I,
then a multi-step rollback occurs. 23. If
KP(i,j)=0 and KC(i,j)=I, process P: has to
roll back a single step. 3). If JKP(i,j)=
KC(i,j)=0, then there is no direct rollback
propagat ion from P i to Pj.

174

The proof of Method 2 can be done
s imi lar ly to the f i r s t one. A l though the va lue of
KC(i , j) is always equal to K C (j , i) , we added
this redundancy to speed up the detect ion
process and make the hardware implementat ion
easy. Two ar rays are a r ranged as Fig. 5 such
that the checking of a row can be per formed at
one t ime. Hence the maximum number of row
checkings would be N fo r N cooperat ing
processes.

4. ESTIMATION AND ANALYSIS OF
PERFORMANCE

4.1 Performance Estimation

To evaluate the per formance of the
automatic ro l lback recovery mechanism, the
expected execut ion time of a g iven task has to
be determined. Since cer ta in addi t ional processes
are inser ted into the normal processes, and since
mul t i -s tep rol lbacks are in ten t iona l l y avo ided, the
time overhead and the r isk of res tar t should be
s tud ied. Suppose a task is par t i t i oned into N
processes which are al located to N PMs and
executed s imul taneously. Let Tnd represent the
time spent to complete th is task under a
f au l t - f r ee condi t ion. The real execut ion t ime, T t ,
includes Tnd, as well as the time overhead fo r
genera t ing recovery blocksp Toy I and the time
requ i red to recover f rom fa i lu res , T r e c . An
expression of expected execut ion t ime, E(T t ITnd
), is der ived under the fo l lowing assumptions:

1. The time in te rva l between two consect ive
fa i lu res can be descr ibed by an
exponen t ia l l y d i s t r i bu ted random var iab le
wi th a mean of I/~.. For s impl ic i ty an e r r o r
is assumed to be d iscovered immediately
whenever i t occurs. The re fo re the
occurrence of recovery can be modelled as
Poisson process wi th a mean time between
recovery or res tar t that equals 1/~,.

2. The system has a su f f i c ien t number of
processor modules so tha t the task may be
executed con t inuous ly f rom s tar t to
complet ion. The t ime needed fo r f a u l t - f r e e
task execut ion, T n d , is assumed to be
independent of system recon f igu ra t ion . This
is t r ue if the fa i led process is migrated to
the replacement PM in the same c lus ter as
the fa i led PM.

3. In addi t ion to the set -up t ime fo r the
newly con f igured system, a f u r t h e r fa i l u re
may occur when the task is reexecuted
fo l lowing the recovery from a fa i l u re .

For purpose of comparison, the model
proposed by Cast i l lo and Siewiorek [12] is
in t roduced fo r a system w i thou t a ro l lback
mechanism. In this model the processes must be
restar ted whenever fa i l u re occurs. A typ ica l
sequence of processing is shown in Fig. 6b. The

expected recovery t ime, E (T r e c) , fo r a g iven
f au l t - f r ee execut ion time Tnd is expressed by

E (Trec) = (t su* I /) ,) (exp (kTnd) - I) - T n d - - - (I)

where tsu is the time requ i red to set up the
res tar t opera t ion . Since there is no time
overhead fo r genera t ing recovery b locks (i . e . Toy
=0), the expected execut ion time can now be
expressed by

E (T t l T n d) = E (T n d)+E(T rec)=Tnd+E(Trec)

= (t su+ l /~) (e x p (k T n d) - l) - - - (2)

For a system wi th a ro l lback recovery
mechanism, an addi t ional overhead is in t roduced
into the normal process due to the va l idat ion
process and state-save operat ion. Since the
s tate-save operat ion is done in a " n e a r l y "
concur ren t manner, and some e r r o r detect ions
are embedded in the execut ion of processes, the
s ign i f i can t fac tor should be the execut ion of
va l idat ion process. I f there is an erroneous state
that is not uncovered by the embedded e r r o r
detect ion mechanism, the ro l lback mechanism may
not work fo r t ime-cr i t i ca l appl icat ions. The
va l idat ion process is used to ensure the
correctness of saved state and thus p reven t
e r r o r propagat ion to subsequent recovery blocks.
The va l idat ion process can be simple and shor t
i f the embedded e r r o r detect ion mechanism covers
most sources of e r ro r .

Assuming tha t a total t ime T t is requ i red
to complete a g iven task and Tss is the dura t ion
between two consecut ive state-save invocat ions,
we can represent the t ime overhead as fo l lows:

Tov_<(Tt/Tss) (tv+ t s) - - - (3)

where T o y is the t ime overhead fo r the
const ruc t ion of recovery blocks, t v is the t ime
requ i red to execute the va l idat ion process, and
t s i s the t ime used fo r s tate-save. Both sides are
equal when there is a s ta te-sav ing immediately
fo l lowing each state-save invocat ion, t s can be
expressed as the sum of the time needed to save
the in terna l state of a p rocessor (t i s) and the
t ime needed fo r the t r ans fe r or update of
s ta te-save , uni ts (t s s u) . With the scheme
descr ibed in Section 2, the t r ans fe r of updated
elements is executed in paral le l wi th
non-memory -upda te operat ions. Note that the
number of non-memory-updates is genera l l y
g rea te r than the number of m e m o r y - u p d a t e s .
There fo re , tssuCan be assumed neg l ig ib le . Then
the t ime overhead becomes

TovSTt (T s v / T s s) - - - (4)

where T =t ÷t .
SV V S

In FTMR2M, processes may rol l back to the
p rev ious ly saved state or res tar t the whole task
a f ter a fa i l u re . Fig. 6a shows the sequence of
processing in which the processes may have to
res tar t or rol l back a f te r a fa i l u re . Let the

175

probab i l i t ies of ro l lback and res tar t be Pb and Ps
• respect ive ly where Pb+Ps= l . Let the set up
time of a process a f te r each fa i l u re be constant
and equal to t sb fo r ro l lback (tsu fo r res ta r t) .
The amount of computat ion loss in ro l lback
recovery is equal to the operat ion that has been
done between the prev ious s tate-save ins tant and
the time ins tant of fa i lu re . This dura t ion• called
ro l lback distance• is a random var iab le
d i s t r i bu ted from 0 to Tss*Tsv . To s impl i fy the
der i va t ion of the expected execut ion t ime, the
ro l lback d istance fo r each fa i l u re is assumed to
be constant• denoted as r, and the completion of
the task wi l l be delayed by r as a resul t of
each ro l lback recovery (accord ing to our
s imulat ion, th is assumption has l i t t le ef fect on
per formance i f Tnd >> T s s) . The time Tss i s
assumed to be so large tha t there is always a
s ta te-sav ing fo r each s tate-save invocat ion. I f r
is set to T s s + T s v , the resu l t should be the
upper bound of the tota l execut ion t ime. The
results der i ved in the Append i x are g iven in the
fo l lowing :

E (T t l T n d) = (t s u + l / (k P s)) (m'~ Pr(m)
exp (XP s (Tnd*m (r+ tsb)) / (1 -v)) - t) - - - (5)

P r (m)=(1 /m!) (XPbTnd)m(l*mr/Tnd)m-1
exp(-XPbTnd) ---(6)

where v=Tsv/Tss• and Pr(m) is the p robab i l i t y of
occurrence of hav ing m rol lbacks before
completion of the task.

4.2 Discussion of Performance Models.

From the above est imat ion• several
dependent relat ions are s tud ied. In Fig. 7• the
p robab i l i t y dens i t y func t ion of Pr(m) is shown.
These curves are simi lar to those of a Poisson
process except fo r the s l igh t d i f fe rence due to
the recurs ive occurrences of fa i l u re fo l lowing the
recovery from a fa i l u re . Figures 8 and 9 express
the relat ion between the expected time wasted
fo r the recovery from faul ts and the time needed
fo r f a u l t - f r e e execut ion. The major ef fect of the
ro l lback recovery mechanism seems to be that the
the mean t ime between fa i l u re is en larged from
1/X to 1/(XPs).

In Eq. (5) the length of the s tate-save
invocat ion in te rva l , Tss , has two mutua l ly
conf l i c t ing ef fects. F i rs t , an increase of Tss wi l l
decrease the percentage of t ime overhead. On
the o ther hand, the average computat ion loss by
ro l lback is p ropor t iona l to the state-save
dura t ion because the occurrence of fa i l u re is
d i s t r i bu ted t h r o u g h o u t the s tate-save in te rva l .
Futhermore, the amount of in teract ion w i th in one
state-save in te rva l increases wi th the length of
th is i n te rva l . This increase implies a high
poss ib i l i t y of ro l lback propagat ions in case of
fa i l u re . The re fo re the increase of Tss , which
invokes longer s tate-save in terva ls• wi l l

in t roduce more computat ion loss and h igher
p robab i l i t y of res tar t . The optimal va lue of T ss
can be found in Fig. 10, where the percentage
of the time lost fo r fau l t recovery vs. the
percentage of t ime overhead fo r genera t ing
recovery blocks is p lo t ted. The curves seem to
be a s t ra igh t l ine i f Tss is small (namely Tsv /
Tss is large) unt i l t hey reach a minimum which
shi f ts to the r i gh t wi th increasing fa i l u re rate.
A f t e r th is minimal po in t , an increase of ro l lback
distance makes the recovery t ime increase
cons iderab ly .

The per formance of the ro l lback recovery
mechanism is s ign i f i can t l y dependent upon the
p robab i l i t y of res tar t . The p robab i l i t y of res tar t
a f te r a fa i l u re , Ps, is a random var iab le . The
d i s t r i bu t i on of Ps depends on th ree factors:

1. the h i t rat io w i th in each process,
2. the length of the s tate-save invocat ion

in te rva l (Tss)• and
3. t ime d ispar i t ies in the actual state-saves

among cooperat ing processes fo l lowing each
state-save invocat ion.

Apar t from the assignment of optimal Tss,
the p robab i l i t y of res tar t can be improved in
th ree ways:

1. Al locate a shared var iab le to a PM in
which the res ident process refers to th is
shared va r iab le most f r e q u e n t l y . Since the
re ference to a shared var iab le tha t resides
in the same PM can not be across d i f f e ren t
s ta te-save in te rva ls , the p robab i l i t y of
hav ing a mul t i -s tep ro l lback should
decrease.

2. Decompose the task into coopera t ing
processes such that the amount of
in teract ion is minimized. This aspect is one
of the major unsolved issues in any
mul t ip rocessor system. A su i tab le
decomposit ion wi l l ce r ta in ly enhance the h i t
rat io and decrease Ps.

3. Accommodate a t h i r d s tate-save un i t to
p rov ide two saved states fo r ro l lback. In
th is a r rangement a process is al lowed to
rol l back more than one step. If the
p robab i l i t y of res tar t in the s ing le -s tep
ro l lback env i roment is P s • then the
p robab i l i t y of res tar t wi th th ree s ta te-save
uni ts would be c lear ly less than Ps" To
detect a two-s tep ro l lback, add i t iona l
a r rays are needed to i den t i f y the
in teract ions d u r i n g the prev ious s ta te-save
in te rva l . When a ro l lback propagates
beyond the c u r r e n t s tate-save i n te rva l ,
these addi t iona l a r rays wi l l be examined by
the same methods in Section 3 to decide
whe the r the ro l lback propagates f u r t h e r or
not.

176

5. CONCLUSION

Emphasis in the design of FTMR2M has
been placed on the fast state-save scheme that
allows rollback recovery with l i t t le time
overhead. To permit processes to be general and
to ensur.e programmer-transparency, recovery
points are established automatically and
regular ly. This approach does not require
high-level insert ion strategies or l imitations in
the setting of recovery points [4, 6, 7], and
also does not require synchronization of
state-save operations of d i f ferent PMs as does
the COPRA system [5]. But due to the lack of
synchronization among state-savings of processes,
the task may be required to restart af ter a
fai lure. This r isk would result in a substantial
influence on the performance (par t icu lar ly in
case of heavy interact ions).

Because of the reconfigu rabi l i ty of a
multiprocessor system, the fa i lure rate of a
processor can not represent the re l iabl i ty of the
system. Besides the soft- fai l capabi l i ty, the
system should be characterized by its
performance when a fa i lure occurs. The expected
execution time is useful to indicate performance
in this case. In the above analysis, an upper
bound of expected execution time is provided.
Precise analysis is d i f f icu l t because: (1) The
rollback distance is a random variable that
depends on the occurrence of er ror and the
error detection processes. Some errors can not
be discovered immediately fol lowing thei r
occurrence, in which case the rollback can not
be modelled as the Poisson process with the same
parameter, X, as the occurrence of fa i lure. (2)
Since certain processes of a given task are not
affected by the rollback of a failed process, the
increase of execution time by each rollback is
not equal to the rollback distance.

One major concern in the implementation of
an automatic rollback recovery mechanism is
modulari ty and simplicity. The individual rollback
mechanism associated with each processor module
offers system modular i ty and simplicity.
Hence the present fau l t - to lerant multiprocessor
has a high potential use for crit ical real-time
applications such as a i rcraf t or industr ial
control, among others.

REFERENCE

1. A. M. Feridun and K. G. Shin, "A
Fault-Tolerant Multiprocessor System with
Rollback Recovery Capabi l i t ies", Proc. 2nd
Int ' l Conf. on Distr ibuted Computing
System, Apr i l 1981.

2. B. Randell, "System Structure for Software
Fault Tolerance", IEEE Trans. on Software
Eng., Jun. 1975, pp. 220-232.

3. K. M. Chandy and C. V. Ramamoorthy,
"Rollback and Recovery Strategies for
Computer Program", IEEE Trans. on Comp.,
June 1972, pp. 546-5556.

4. F. T. O'Brien, "Rollback Point Insertion
Strategies", Proc. of the 6th Int ' l Symp. on
Faul t -Tolerant Computing, Pit tsburg, 1976,
pp. 138-142

5. K. Kant and A. Silberschatz, " E r r o r
Recovery in Concurrent Processes", Proc.
COMPSAC 80,, Fall 1980, pp. 608-614.

6. C. Meraud and F. Browaeys, "Automatic
Rollback Techniques of the COPRA
Computer", Proc. of 6th Int ' l Conf. on
Faul t -Tolerant Computing, 1976, pp. 23-29.

7. K. H. Kim, "An Approach to
Prog rammer-Transpa rent Coordination of
Recovering Parallel Processes and its
Eff icient Implementation Rules", Proc. 1978
lnt ' l Conf. on Parallel Processing, Aug.
1978, pp. 58-68.

8. K. H. Kim, "An Implementation of a
Programmer-Transparent Scheme for
Coordinating Concurrent Processes in
Recovery", Proc. COMPSAC 80, Fal l 1980,
pp. 615-621.

9. R. J. Swan, S. H. Fuller, and D. P.
Siewiorek,. "Cm*: a Modular
Mult i-Microprocessor", AFIPS Conf. Proc.,
Vol. 46, 1977, pp. 637-644.

10. K. H. Kim, "Er ror Detection,
Reconfiguration and Recovery in Distr ibuted
Processing System", Proc. Int ' l Conf. on
Distr ibuted Computing Systems, Oct. 1979,
pp. 284-295.

11. S. H. Fuller, J. K. Ornstein, L. Raskin,
P. I. Rubinfeld, P. J'. Swan,
"Mult i-Microprocessors: An Overview and
Working Example", Proceedings of the IEEE,
Vol. 66, No. 2, pp. 216-228, Feb. 1978.

12. X. Castil lo, D. P. Siewiorek, "A
Performance-Reliabi l i ty Model for Computing
Systems", 10th Int ' l Conf. on Faul t -Tolerant
Computing, 1980, pp. 187-192.

APPENDIX

1. The Derivation of Probabi l i ty of m Rollbacks,
Pr(m)

Suppose the rollback distances are the
same for every rollback, denoted by r. The time
between two successive rollbacks is assumed to
be a random variable with the exponential
distribution. The parameter of the distribution
would be XP b , the average rate of rollback
recovery. For a small t ime interval h, the
probability of having no rollback would be I-),P b,
h. The probability of having m rollbacks from
time 0 to t is governed by the following
difference equation.

177

Pr(m,t+h)=Pr(m,t) (1-XPbh)+Pr(m-l , t)XPbhPr(0, r) +

. +Pr(0, t) kPbhPr(m-1, r)

d pr (m,t))=),PbPr (m,t) +>,PbPr (m_ 1, t) Pr(O, r) then ~,~ (

÷, ÷XPbPr(O, r)P r (m- l , r)

From Pr(0, t)=exp(-) ,Pbt) , we can get

Pr(1, t)=(XPbt)exp(-kPb(t+r))

Pr(2,t)=2(kPbt) (1 +2r/ t)exp(-XPb(t÷2r))

Pr(m,t)=(1/m!) (kPbt)m(l+mr/ t) m-1

exp(-XPb(t+mr))

Tnd" the time spent for the rollback recovery,
and the time overhead for a state save.

Then E(Tt)=E(Treal+E(TreslTreal)) . From 14,

E(Tres|Treal)= (tsu+ l /Xs) (exp(xsTrea l) - l) -T rea l

Where 1/~ s is the mean time between restarts and
),s =XPs- For the case of having m rollbacks
before completion,

Treal,m=Tna.+m(r+tsb)+((Treal,m/Tss)Tsv)

where r represents the rollback distance.
Let Tsv/Tss=V, then

T =(T .+m(r+t .)) / (I - v) rea ,m ne SD

Then E(Tt l Tnd)=(tsu+l /Xs) (E(exp(XsTrea l)) - l)
oo

= (tsu+l/~'s) (E l Pr (m) exp ()'sT real, m) -1)

2. The Derivation of the Expected Execution
Time

Let Tt=Treal+Tres, where Tre s is the time
spent for the restart and Treal is the sum of

P = Processor
M = Local Memory

S = Local Switch

MS ffi Monitor Switch

SSU = State-save Memory Unit
CS = Cluster Switch
CM = Cluster Monitor
DMAC = DMA Controller

CH <

C l u s t e r 1 Cluster 2

T

Host Computer

,.IQ

IPH , E] --I,

: D 1
,

DI~t~C

I
Cluster 3

I
I

I
I
I
I
I
I
I
I
I
I
I
I

Fig. i. Rollback Recovery Multiprocessor Structure

178

Time

:~
4-

2 L ÷

Stats-save invocation

Complete the current instruction
Save internal state

Execute validation process

State switch berwen SSU's

Start normal process, SSU update,
SSU transfer, and error detection

Fall
..... Retry the process

Fall again

Declare permanent fault, stop processes,
check propagation, and migrate
failed process to other PM

• Resume process

Fig. 2. Sequence of a Rollback Recovery

Tlme

X ~ Failure

- State-savlng

>

Pt 0 ~ P1 0 X

" [1 "D I
(a) k t j = k i t = 0 (b) kt 1 - 0 , k j , = 1

Pt ~i- I-I

5_ lq
U

(c) k t j = k i t = 1 (a) k l j - 1 k j l - 0

Time
> Pl fails at

I t(n I) t(f)

pl i D , "
I '
, I i

e 2 . . . I ,,
' I I
I 1 '

I%,: !

P4 I
I
I
t
I State-save I 1 : State-save operation invocation U

Fig. 3. Example of Rollback Propagation

P1 P2 P3 PN

P1 KC(1 , j) : 0 1 1 1

KP(1 , j) : 0 0 1 0
P2 KC(2 , j) : t 0 1 1

KP(2, j) : 0 0 0 0

PN K C (N , j) : 1 0 0 0

K P (N , j) : 0 0 1 0

Fig. 5. The Ar rangement of A r ray KCNx N
and KPNx N

C

beg ln

T r e a 1 _

£su tsb t s b I

r,-- --,'1 P- -.-,,i I,- '.
,, ' 6 I A ~' : A:

r e s t a r t r o l l b a c k r o l l b a c k c o m p l e t e

(a) The case with rollback capability

Fig.

h H 5 N
U U

(e) k l j " 2, k j l = 1 (f) k l j - 1, k j i - 2

4. Various Conditions of Occurrence

of Interaction

0

b e g l n

(b)

F i g . 6 .

Tn d --~

l i

-I ~- -~ -~ ~-
.. : × i a,

restart restart restart complete

The case without rollback capability

The Sequence of Execution in Two

Structure

179

0

t

0.0

m = Number of rollbacks

~ffBF = 300.0 sec,

Rollback Distance = 0.5 sec

m=0

m=l

m=5

800 16oo ~4oo 3200

Tnd (sec)

|

Fig. 7. Probability of m Rollbacks

MYBF = 5000 (sec)
~sb = 2.0
tsu = 5.0
* : without rollback recovery P5 = 0

mechanism /

0 . 3

0 . 6

• 0 .9

I I • : : -

500 1000 1500 2000 2500

Tnd

Fig. 8. Effect of Automatic Rollback
Recovery (i)

o

!

4~

o Pb

Pb

P~

1.00 1.25 1.50 1.75 2.00

Fig.

Tnd = 1250 sec

tsb = 2.0 sec

tsu = 5.0 sec
~ ~Jithout rollback

recovery mechanism

Pb--0

b ~ 0 . 2

MTBF

Tnd

b

-- 0.6

0.9

9, Effect of Automatic Rollback
Recovery (2)

O

O

~O

0

00
o0.00

~ = 0.144
/,W" m : Tna/MTBF O. 072

J A : Tnd/MTBF = 0.036

: I J , ; !
0.~& 1.68 2.53 3.97 4.21

T

T
SS

Fig. iO. Relative Overhead vs. State-save
Invocation Interval

]80

