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ABSTRACT
In this paper we consider the roliback
propagation and the performance of a
fault-tolerant multiprocessor with a rollback
recovery mechanism (FTMR?M)[1], which was

designed to be tolerant of hardware failure with

minimum time overhead. Rollback propagation
between cooperating processes is usually required
to ensure correct recovery from failure. To

minimize the waste of processor time and storage
overhead required for handling sophisticated
rollback propagations, the FTMRZM always keeps
one recoverable state. Approaches for evaluating
the recovery overhead and analyzing the
performance of FTMR2M are presented. Two
methods for detecting rollback propagations and
multi-step rollbacks between cooperating
processes are also proposed.

1.INTRODUCTION

Due to the increasing demand for reliability
and survivability in the modern computing arena,
it is highly desirable to have a recovery scheme
which enables the computing system to
automatically recover from various faults. The
requirements of fault recovery speed as well as
storage size are known to be the most difficult
problems  faced by the system designer,
especially in real-time applications. To meet these
requirements, an approach based on a
multi-microprocessor system, which has inherently

reliable LSI components and system
reconfigurability, has been considered as a
solution. The Fault-Tolerant Multiprocessor with

a Rollback Recovery Mechanism (FTMR*M) [1]
was designed to be tolerant of hardware faults
with minimum time overhead. In this paper we
investigate the performance of FTMR2M and the
treatment of multi-step rollbacks.
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The organization of FTMR?M is based on
the backward recovery method and the recovery
block. The recovery block, proposed by Randell
[2], is a program structure that is composed of
recovery points, acceptance tests, and
alternative processes for a given task. The
alternative processes may be different algorithms
started from the same state. |f a process fails
the acceptance test or if an error is detected
during execution, the system will roll back to
the previously recorded state and try one of the
other alternatives. Several aspects in this area
have been studied; for example, the technique
for evaluating and minimizing overhead developed
by Chandy and Ramamoorthy [3], the strategies
for inserting recovery points by O'Brien [4],
the conditions for avoiding the domino effect and
purging the old recovery block by Kant and
Silberschatz in [5], and other designs, with
emphasis on programmer transparency, have been
proposed by Meraud and Browaeys [6], and Kim
[7, 8].

The concept of the recovery block is also
useful for tolerating hardware faults in a
reconfigurable system. In general, process states

are defined by the internal registers and the
variables in memory at the end of each
instruction execution. To generate the recovery
block, we attempt to record these states
consecutively and  concurrently during the
execution of the process with a special
state-save mechanism. After a fault is detected

and isolated, the system will be reconfigured to
replace the failed processor module (PM). By
loading the program code and migrating the
recorded states into the replacement PM, the
original process can be resumed. Thus every
interval between two consecutive state-savings

can be regarded as a recovery block.

To resume the execution of a task
comprised of cooperating processes from a
fault-free and consistent state, the rollback of

the failed processor may have to propagate to
other processors or to a further recorded state.
The worst case is when an avalanche of rollback
propagations, namely the domino effect, occurs.
We may be able to eliminate the domino effect by
restricting interactions and by making an a



priori analysis of interactions, which bring about
higher overhead in storage and execution time.
If the probability of the domino effect is small,
it seems better to restart the whole task when
the domino effect occurs than to prevent the
domino effect. This seems true even for the case
when rollback propagates more than one step
(note that the domino effect is a special case of
this). Consequently we adopted a method called
automatic rollback recovery which constructs the
recovery blocks automatically and allows the task
to roll back only a single step; if a
multiple-step rollback is required, then the task
has to be restarted. !n this method an additional

measure to detect the domino effect or
multiple-step rollback must be taken prior to
recovery.

This paper is organized as follows. Section
2 briefly reviews the architecture of FTMR?ZM,
and Section 3 discusses the detection of rollback
propagation and domino effect. Section 4 deals
with the estimation and analysis of performance

in terms of the expected execution time. A
conclusion is presented in Section 5.
2.REVIEW OF FTMR*M ARCHITECTURE
The FTMR?M architecture has been
introduced in our earlier work [1], but for
convenience the basic organization of this
multiprocessor is presented in Fig. 1. It s

similar to the Cm* system [9, 11].
aspects are briefly described below.

The major

2.1 Processor Module and State Saving

A basic
multiprocessor

processor module in the
system under consideration

consists of a processor, a local memory, a local
switch, state-save memory units and a switch
monitor. Each PM can execute a process of the
given task and can communicate with other
processes allocated in other PMs. The processor
module saves its states (i.e. variables and
status) at various stages of execution, called a

state-save. At regular intervals of duration, Tgg
, an external clock stimulates every processor
module to save its states as soon as it completes
the current instruction. Then the processor
executes a validation test. If the processor
survives the test, the saved state would be
regarded as the recovery point for the next
interval. If the processor fails the validation
test, it will roll back to the previously saved
state. The detailed operations in the rollback
recovery are shown in Fig. 2.

state-save interval, besides the
execution of instructions, certain
operations are automatically  executed; for
example, a parity check is done whenever the
buses are used. Some redundant error detection
units are accompanied with the processor module

During a
normal
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[10], e.g. dual-redundancy comparison,
address-in-bound check, etc. These units are
expected to detect a malfunction as soon as the
corresponding  function unit s used. An
additional validation process refreshes  the
shelters to guarantee the saving of a fault-free
state and thus ensures safeguarding against fault
propagation.

To minimize the time overhead required for
state-save, the saving is done concurrently with
process execution. Every update of variables in
the local memory is recorded in the state-save
memory unit simultaneously. Two such state-save

memory units, called SSUj and SSUj, are used
for saving states at two consecutive intervals.
Thus each PM always keeps one valid state
saved in one unit and stores the currently

changing state in the other. The two SSU's that
save the old and current states respectively will
be switched following the completion of every
state-save. The monitor switch is used to route
the current state to one SSU and to manage the
state-switches.

Since the update of dynamic elements is
copied in only one SSU, the other SSU is
ignorant of it. This fact may bring about a

serious problem: the newly updated variable may

be lost. In order to avoid this, it is necessary
to make the contents of two SSU's identical at
each state-switching instant or to copy the

variables that have been changed in the previous

interval into the current state-save unit. A
solution to this problem has been proposed in
the previous paper [1]. At each state-switch

instant, the current SSU contains not only the
currently updated variables but also the
previously updated variables. So, the contents of

the current SSU always represent the newest
state of the PM.
2.2 System Organization

The state-save of a task that is
distributed over processor modules PM ;
(=1,..... ,N) implies the state-save of each PM.
The resumption of a failed process may need
cooperation from other processes due to the
concurrent execution of processes and
interprocessor communication. Fault recovery in
the task level could involve the rollback of the

failed process and other related processes. Since

M cooperating PMs can have arbitrary
interactions and (2) each PM saves its states
asynchronously with others, it is possible to

require multi-step rollback. If the probability of
a multi-step rollback is small, it may be pratical

to simply restart the whole task when a
multi-step rollback occurs, instead of
constructing more complex mechanism to allow

multi-step rollbacks for questionable return. To
make the fault recovery successful in this case,
the system should check the rollback propagation
and multi-step rollback, as well as the migration
of failed process to the replacement PM.



The system contains three data paths that
connect PMs at two-level hierarchy. The
intra-cluster bus, a time-shared parallel bus,
groups PMs into a cluster. The inter-cluster link
forms a modular computer network which permits
expansion. Another data path, formed by the
DMA controller and DMA channel, is used to
transfer the program code and process states
such that the loading and migration of a process
can be handled without interfering with the
intra-cluster bus.

The cluster node is composed of a switch
and a monitor. This switch element, called the
cluster switch, handles the external references
and records these references to analyze rollback
propagations. The cluster monitor manages the
PM pool in the cluster. It receives the request
from the host and loads a process via the DMA
data path to a PM. It also receives reports from
PMs in the cluster as to the state-save
operations and PMs' conditions. Once a failure is
detected, the cluster monitor will signal "retry"
to the PM in question. If the same failure is
detected again, a permanant fault is declared
and the following steps are taken by the cluster
monitor and cluster switch:

1. Stop all other PMs that are executing
processes of the same task.
2. Make a decision on the rollback

propagation.

3. Resume the execution of processes that are
not affected by roliback propagation.

4. Find a free PM to replace the failed PM.

5. Migrate the process in the failed PM to the
replacement PM.

6. Roll back the processes
rollback of the failed PM.

affected by the

7. Any interaction directed to the failed PM
must wait for the resumption of the
process in the new PM. Old and
unserviced interactions issued by these
rolled-back PMs, which are still queued in
the cluster node, are cancelled.

There are several tables that will be
involved in the rollback recovery. First, the
processor-task table (PTT) is used for
associating the processes being executed in the
PMs with a task and identifying the PMs'
conditions. Second, the task-processor table

(TPT) groups all PMs executing processes of a
task. Both tables can provide the information of
the relations between physical PMs and a logical

task. The third table is the address mapping
table for external references. To avoid updating
the whole mapping table after the
reconfiguration, an associated rerouting table

(RT) is used to map addresses directed to faulty
PMs into their replacements.
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3. PROPAGATION AND DETECTION OF ROLLBACK

in FTMR2M, each interaction between
cooperating processes is regarded as a reference
to shared variables. These shared variables, a
portion of dynamic data, can be located in an
arbitrary PM. The state of process P; should
include the shared variables that are accessed
by process Pi' To roll back a failed process, it
is necessary to provide the consistent contents
of the shared variables as well as those of the

process's local variables and internal states.
Since the shared variables may reside outside
the associated PM, two related aspects, namely
the rollback propagation and the multi-step

rollback, must be considered.

3.1 Rollback Propagation and Multi-step Rollback

Suppose a shared variable X resides in PMj
which  executes process Pj, and process P; has

accessed X in its current state-save interval.
One can consider the following three ways in
which the rollback may affect other processes.
1. If Pj rolls back and if P; has already
changed X, the reexecution of P; requires
X to contain the old value prior to the
change by P, Hence P; should also roll
back.
2. If process P; rolls back after it has

i
written to variable X, this new value of X

should be discarded since the write
operation may be faulty and is cancelled
by the rollback of P;. The process Pj has
to roll back so as to recover the previous
value of X.

3. If P; reads X during a state-save interval
when Pj fails, we can not ensure the
correctness of the value read by process
P;- To avoid a possible fault propagation,
process P; has to roll back.

Even if the roilback does not propagate in
the case that process P has read variable X and
then fails, this case is treated the same as
above to simplify the detection of rollback
propagation. We assume that the cooperating
processes must roll back if there exists an
interaction during the current state-save interval
of one of the involved processes. This
propagation is denoted as Pj--->Pjif rollback of

P; induces rollback of Pj An example is
presented in Fig. 3, where process Pq fails at
time t(f). Since there is an interaction between

Py and Py during the time interval (t(n1), t(f)),
process P2 must roll back to enable the
interaction in the reexecution of Pq, denoted by
Pq --->Py The rollback of process Po will
propagate further to other processes, in this
example, P2——->P4, P1——->P3, and P3--->P2.

Because of asynchronous state-save nature,
the rollback may propagate further to the state



beyond the previous state. In the above

example, Py must roll back to the state at t(n2
-1) because of the propagation P3--->Py; namely
this failure requires a multi-step rollback. In the

worst case, this fact may introduce unbounded
rollback propagations (eventually to the
beginning of the processes). In the automatic
rollback recovery mechanism, we only
accommodate one saved state in each PM to
minimize the storage overhead. Hence the whole
task has to be restarted if a multi-step rollback
is required.

3.2 The Detection of Rollback Propagation

Since every interaction is managed by the
cluster node, the cluster node should take
responsibility for detecting rollback propagation
and deciding if a multi-step rollback is needed.
Let a given task be decomposed into N
cooperating processes that are assigned to N PMs
and executed simutaneously. Two detection
methods are proposed as follows:

A. Method 1

Let the array element K(i,j) represent the
number of interactions between P; and P; during
the current state-save interval of P;. Because of
the time disparity in saving states for P; and P;
, the wvalues of K(i,j} and K(j,i} may be
different. The cluster node counts the number of
interactions and checks the array when failure
occurs as follows.

1. When process P; saves its state and moves
to the next state-save interval, reset
K{(i,j)=0 for j=1,2...N.

2. When the cluster directs a reference issued
by process P; to Py, K(i,}) and K(j,i)
are incremented by 1.

3. When P; fails or is affected by another
rollback, the cluster node examines K(i,j)
for j=1,2...N. If and only if Ki,j)=0,
there is no direct propagation from P; to
P.. If K(i,j)#0 and K(i,j)=K(j,i), then P.
hgs to ‘roll back one step. If K(i,j)#0 and

K(i,j)#K(j,i), the rollback will propagate

more than one step.

The condition under which rollback
propagates more than one step occurs when (1)
there is an interaction across the different
state-save intervals of P; and P: (see an example
in Fig. 3, where P3 interacts’ with Pg in the
interval (t(n3),t(n2))), and (2) P; and 'Pj both
need to roll back.

the
the
the

From steps 1 and 2, K(i,j) represents
number of interactions between P; and Pj in
current state-save interval of Pi. To prove
correctness of this method, all possible cases are
considered in Fig. 4. For cases (a) and (b), it
is obvious that P; does not have to roll back.
For case (c), P j must roll back, leading to the
fact that the interactions during the present

174

state interval of P; and P; are reproduced. For
the cases in (d), (e) “and (f), there are
interactions between the state-save instants of

Pjand Pj. The single-step rollback of P; or P; is
not sufficient to cover the all interactions needed
in the reexecution. In the above example of Fig.
3, the array of K4x4 at time t(f) is

O=NO
= =0ON
OOO =
OO =O

If the processor executing P fails at t(f), the
examination of array Kg,4concludes that P, P3
and P4 have to roll back. Since K(3,2)#K(2,3)
and K(3,2)}#0, a multi-step rollback is required.

The time required for deciding if the
processes have to roll back or not, called
decision delay, depends on the number of
comparisons in Step 3. The number  of
comparisons is determined by the interaction

patterns among processes. Since the checking of
K(j,i) is not necessary if Pj--->P;, the maximum
number of comparisons would be I{I(N-1)/2 for N
cooperating processes. The memory space for
storing the K array increases proportionally to
N2, If N is large, the storage overhead and the
decision delay may become a burden to system
performance.

B. Method 2

Two condition array elements KC(i,j) and
KP(i,j) are used to represent the interactions
between processes P; and Pj. Both arrays are
composed of N*N bits, each array element
consisting of a single bit. If an interaction
occurs from P; to P;j during the current
state-save interval of both P; and Pj , then
KC(i,j)=1. If this interaction occurred ‘in Pj's
previous state-save interval, then KP(i,j)=1. The
steps for setting these array elements and
checking the rollback propagation are as follows:

1. When an interaction is issued by P; and
directed to Pj, then KC(i,j) and KC(j,i)
are set to 1.

2. If process Pj saves its states and moves to

the next state-save interval , then for
j=1,2...N
(a). KP(j,i):=KP(j,i) + KC(i,j)
KC(j,i):=0
(b). KC(i,j):=0
KP(i,j):=0

where * is logical OR operation and step
(a) is done before step (b).

3. When P; rolls back, the cluster node
checks two rows in each array, namely
KC(i,j) and KP(i,j) for j=1,2...N. There
are three possibilities: 1). If KP(i, j)=1,
then a multi-step rollback occurs. 2). If
KP(i,j)=0 and KCU(i,j)=1, process Pj has to
roll back a single step. 3). If “KP(i,j)=

KC(i,j)=0, then there is no direct roliback
propagation from Pi to Pj'



of Method 2 <can be done
Although the value of

The proof
similarly to the first one.
KC(i,j) is always equal to KC(j,i), we added
this redundancy to speed up the detection
process and make the hardware implementation
easy. Two arrays are arranged as Fig. 5 such
that the checking of a row can be performed at
one time. Hence the

maximum number of row

checkings would be N for N cooperating
processes.
4. ESTIMATION AND ANALYSIS OF

PERFORMANCE
4.1 Performance Estimation

To evaluate the performance of the
automatic  rollback recovery mechanism, the

expected execution time of a given task has to
be determined. Since certain additional processes
are inserted into the normal processes, and since
multi-step rollbacks are intentionally avoided, the
time overhead and the risk of restart should be
studied. Suppose a task is partitioned into N
processes which are allocated to N PMs and
executed simultaneously. Let T4 represent the
time spent to complete this task wunder a
fault-free condition. The real execution time, Tg,
includes Tpg, as well as the time overhead for
generating recovery blocks, Tgy, and the time
required to recover from failures, Trec. An
expression of expected execution time, E(T¢|Tpg
), is derived under the following assumptions:
The time interval between two consective
failures can be described by an
exponentially distributed random variable
with a mean of 1/)x. For simplicity an error
is assumed to be discovered immediately
whenever it occurs. Therefore the
occurrence of recovery can be modelled as
Poisson process with a mean time between
recovery or restart that equals 1/X\.

2. The system has a sufficient number of
processor modules so that the task may be
executed continuously from start to
completion. The time needed for fault-free
task execution, Tpq, is assumed to be
independent of system reconfiguration. This
is true if the failed process is migrated to
the replacement PM in the same cluster as
the failed PM.

3. In addition to the set-up time for the
newly configured system, a further failure
may occur when the task is reexecuted
following the recovery from a failure.

For purpose of comparison, the model
proposed by Castillo and Siewiorek [12] s
introduced for a system without a rollback

mechanism. In this model the processes must be
restarted whenever failure occurs. A typical
sequence of processing is shown in Fig. 6b. The
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expected recovery time, E(T,.gc), for a given
fault-free execution time Tnd is expressed by

E(Trec)=(tsuﬂ/)‘)(eXp()‘Tnd)'”_Tnd ---(1)
where tgyis the time required to set up the
restart operation. Since there is no time

overhead for generating recovery blocks(i.e.
=0), the expected
expressed by

. . Tov
execution time can now be

E(Tt' Tnd)=E(Tnd) +E(Tr‘ec)=Tnd+E(Trec)

—(tsu+1/x)(exp(and) 1) 2)
For a system with a rollback recovery
mechanism, an additional overhead is introduced
into the normal process due to the validation
process and state-save operation. Since the
state-save operation is done in a "nearly”
concurrent manner, and some error detections

are embedded in the execution of processes, the
significant factor should be the execution of
validation process. If there is an erroneous state
that is not uncovered by the embedded error
detection mechanism, the rollback mechanism may
not work for time-critical applications. The
validation process is used to ensure the
correctness of saved state and thus prevent
error propagation to subsequent recovery blocks.
The validation process can be simple and short
if the embedded error detection mechanism covers
most sources of error.

Assuming that a total time Ty is required
to complete a given task and Tgss is the duration
between two consecutive state-save invocations,
we can represent the time overhead as follows:

+ -

TOVS(Tt/TSS)(tV ts) (3)
where T,y is the time overhead for the
construction of recovery blocks, t, is the time
required to execute the validation process, and
tsis the time used for state-save. Both sides are
equal when there is a state-saving immediately
following each state-save invocation. tg can be
expressed as the sum of the time needed to save

the internal state of a processor(tjs) and the
time needed for the transfer or update of
state-save . units (tgg, ). With the scheme
described in Section 2, the transfer of updated
elements is executed in parallel with

non-memory-update operations. Note that the
number of non-memory-updates is generally
greater than the number of memory - updates.
Therefore, tggycan be assumed negligible. Then

the time overhead becomes

TovsTt(Tsv/Tss) ---(4)

=t _*+t

where T .
SV V s

In FTMR2M, processes may roll back to the
previously saved state or restart the whole task
after a failure. Fig. 6a shows the sequence of
processing in which the processes may have to
restart or roll back after a failure. Let the



probabilities of rollback and restart be Py and Pg
, respectively where P *Pg=1. Let the set up
time of a process after each failure be constant
and equal to tgp for rollback (tgy for restart).
The amount of computation loss in rollback
recovery is equal to the operation that has been
done between the previous state-save instant and
the time instant of failure. This duration, called
rollback distance, is a random variable
distributed from 0 to Tsg*Tgy. To simplify the
derivation of the expected execution time, the
rollback distance for each failure is assumed to
be constant, denoted as r, and the completion of

the task will be delayed by r as a result of
each  rollback recovery (according to our
simulation, this assumption has little effect on
performance if Tpd >> Tgs). The time Tggis

assumed to be so large that there is always a
state-saving for each state-save invocation. If r
is set to Tgg*Tsy, the result should be the
upper bound of the total execution time. The
results derived in the Appendix are given in the
following:

o0
BT T, @)=t 1/ P (Z P (m)
exp (AP (T *m(r+t 1)/ (1-9))-1) === (5)
- m ., m-1
P.(m)=(1/mD) P, T T (T*mr/T )

exp(-XPand) ---(6)

where v=Tsy/Tss, and Pr(m) is the probability of

occurrence of having m rollbacks  before
completion of the task.
4.2 Discussion of Performance Models.

From the above estimation, several
dependent relations are studied. In Fig. 7, the
probability density function of P.(m) is shown.
These curves are similar to those of a Poisson
process except for the slight difference due to

the recursive occurrences of failure following the
recovery from a failure. Figures 8 and 9 express
the relation between the expected time wasted
for the recovery from faults and the time needed
for fault-free execution. The major effect of the
rollback recovery mechanism seems to be that the
the mean time between failure is enlarged from
1/} to 1/(XPS).

In Eq. (5) the length of the state-save
invecation interval, Tgg , has two mutually
conflicting effects. First, an increase of Tgss will
decrease the percentage of time overhead. On
the other hand, the average computation loss by
rollback is proportional to the state-save
duration because the occurrence of failure s
distributed throughout the state-save interval.
Futhermore, the amount of interaction within one
state-save interval increases with the length of
this interval. This increase implies a high
possibility of rollback propagations in case of
failure. Therefore the increase of Tgg, which
invokes longer state-save intervals, will
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introduce more computation loss
probability of restart. The optimal

and higher
value of Tgs

can be found in Fig. 10, where the percentage
of the time lost for fault recovery vs. the
percentage of time overhead for generating

recovery blocks is plotted. The curves seem to
be a straight line if Tgg is small (namely Tgy/
Tgs is large) until they reach a minimum which
shifts to the right with increasing failure rate.
After this minimal point, an increase of rollback
distance makes the recovery time increase
considerably.

The performance of the rollback
mechanism is significantly dependent
probability of restart.

recovery
upon the
The probability of restart

after a failure, Pg, is a random variable. The
distribution of Ps depends on three factors:

1. the hit ratio within each process,

2. the length of the state-save invocation

interval (Tsg), and

3. time disparities in the actual state-saves
among cooperating processes following each
state-save invocation.

Apart from the assignment of optimal Tgg,

the probability of restart can be improved in
three ways:
1. Allocate a shared variable to a PM in

which the resident process refers to this
shared variable most frequently. Since the
reference to a shared variable that resides
in the same PM can not be across different

state-save intervals, the probability of
having a multi-step rollback should
decrease.

2. Decompose the task into  cooperating
processes such that the amount of
interaction is minimized. This aspect is one
of the major wunsolved issues in any
multiprocessor system. A suitable

decomposition will certainly enhance the hit
ratio and decrease Pg.

3. Accommodate a third state-save unit
provide two saved states for rollback.
this arrangement a process is
roll back more than one
probability of restart in the single-step
rollback enviroment is Pg , then the
probability of restart with three state-save
units would be clearly less than Pg. To
detect a two-step rollback, additional
arrays are needed to identify  the
interactions during the previous state-save
interval. When a roliback propagates
beyond the current state-save interval,
these additional arrays will be examined by
the same methods in Section 3 to decide
whether the rollback propagates further or
not.

to
In
allowed to
step. If the



5. CONCLUSION

Emphasis in the design of FTMR2M has
been placed on the fast state-save scheme that
allows rollback recovery with little time
overhead. To permit processes to be general and
to ensure programmer-transparency, recovery
points are established automatically and
regularly. This approach does not require
high-level insertion strategies or limitations in
the setting of recovery points [4, 6, 7], and
also  does not require  synchronization of
state-save operations of different PMs as does
the COPRA system [5]. But due to the lack of
synchronization among state-savings of processes,
the task may be required to restart after a
failure. This risk would result in a substantial
influence on the performance (particularly in
case of heavy interactions).

Because of the reconfigurability of a
multiprocessor system, the failure rate of a
processor can not represent the reliablity of the
system. Besides the soft-fail capability, the
system should be characterized by its
performance when a failure occurs. The expected
execution time is useful to indicate performance

in this case. In the above analysis, an upper
bound of expected execution time is provided.
Precise analysis is difficult because: (1) The
rollback distance is a random variable that
depends on the occurrence of error and the
error detection processes. Some errors can not
be discovered immediately following their

occurrence, in which case the rollback can not
be modelled as the Poisson process with the same
parameter, ., as the occurrence of failure. (2)
Since certain processes of a given task are not
affected by the rollback of a failed process, the
increase of execution time by each rollback is
not equal to the rollback distance.

One major concern in the implementation of
an automatic rollback recovery mechanism is
modularity and simplicity. The individual rollback
mechanism associated with each processor module

offers system modularity and simplicity.
Hence the present fault-tolerant multiprocessor
has a high potential use for critical real-time
applications such as aircraft or industrial
control, among others.
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APPENDIX

1. The Derivation of Probability of m Rollbacks,
P (m)
r

Suppose the rollback distances
same for every rollback, denoted by r.
between two successive rollbacks is

are the
The time
assumed to

be a random variable with the exponential
distribution. The parameter of the distribution
would be APy, the average rate of rollback
recovery. For a small time interval h, the

probability of having no rollback would be 1-APy
h. The probability of having m rollbacks from
time 0 to t is governed by the following
difference equation.



Pr(m,t*h)=Pr(m,t)(1-Xth)+Pr(m—1,t)XthPr(O,r)+
....... +Pr(O,t))\thl-"r(mJ,r)
then < (P (m, £))=AP, P (m,)*3P_P (m-1,)P (0, r)
LI +)\PbPr(0,r)Pr(m-1,r)
From Pr(O,t)=exp(—XPbt), we can get
Pr(1,t)=()~Pbt)exp(-)‘Pb(t+r))

Pr(2,t)?2()\Pbt) (1 *Zr/t)exp(—XPb(t*Zr))
P.(m,0)=(1/m1) P )™ (1+mr/t) ™

exp(-be(t+mr))

2. The
Time

Derivation of the Expected Execution

Let T4=Tyreal *Tres, where Trog is the time
spent for the restart and T egal is the sum of

Thd, the time spent for the rollback

, recovery,
and the time overhead for a state save.

Then E(Tt)=E(T +E(TreslT I)). From 14,

real

(tsu*1/xs) (exp(XsTreal) -D-T

rea

E(Tresn.real)= real

Where 1/)\g is the mean time between restarts and

As =APg. For the case of having m rollbacks
before completion,
Treal,m=Tnd+m(r+tsb)+((Treal,m/Tss)Tsv)

where r represents the rollback distance.
Let Tsv/Tsszv’ then

Tr‘eal,m=(-rnd+m(r“\tsb))/(1 -v)

Then E(TtlTnd)=(tsu+1/xs)(E(exp(XSTreal))-1)

oo
=(tsu+1/)‘s)(n,Z,,Pr(m)EXp()‘sT )-1)

real, m

P = Processor
M = Local Memory
S = Local Switch
MS = Monltor Switch . c
SSU = State-save Memory Unit ost Computer
CS = Cluster Switch
CM = Clyster Monitor
DMAC = DMA Controller s s
Mo ‘e DMAC
—_——b e - - - 4 — | — - - —_——a e me|———
- I |
i
Cluster 1 ' l Cluster 2 Ccs CM DMAC | |Cluster 3
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] 1
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Fig. 1. Rollback Recovery Multiprocessor Structure
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Time Time
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Fig. 2. Sequence of a Rollback Recovery P, KC(2,)): 1 0 1 1
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Time
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179



Probability of m Rollbacks

Ty ~ Tnd

T m = Number of rollbacks
MTBF = 300.0 sec.

Rollback Distance = 0.5 sec
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Fig. 7. Probability of m Rollbacks
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Fig. 8. Effect of Automatic Rollback
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