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ABSTRACT 

Even  if  a  manipulator  does  not  have t o  follow  a  prespecified 
path  (i.e.  a  geometric  path  and  a  velocity  schedule),  due  to  the 
complexity  and  nonlinearity  of  the  manipulator  dynamics,  control 
of  manipulators  has  been  conventionally  divided  into  two  sub- 
problems, namely path  planning  and  path  tracking,  which  are  then 
separately  and  independently  solved.  This may result  in 
mathematically  tractable  solutions  but  can  not  offer  a  solution 
that  utilizes  manipulators' maximum capabilities  (e.g.  operating 
them at  their maximum speed). 

To combat  this  problem,  we  have  developed  a  suboptimal 
method  for  controlling  manipulators  that  provides  improved  per- 
formance  in  both  their  operating  speed  and  use  of  energy. The 
nonlinearity  and  the  joint  couplings in the manipulator  dynamics-- 
a major  hurdle in the design  of  robot  control--are  handled  by  a 
new  concept  of  averaging  the  dynamics  at  each sampling inter- 
val.  With  the  averaged dynamics, we  have  derived  a  feedback 
controller  which  (i)  has  a  simple  structure  allowing  for  on-line 
implementation  with  inexpensive  microprocessors,  and  (ii)  offers 
a  near minimum time-fuel(NMTF)  solution, thus  enabling  manipula- 
tors  to  perform  nearly up to  their maximum capacity  and  effi- 
ciency. 

As a  demonstrative  example,  we  have  applied  the  method  to 
control  the Unimation PUMA 600 series  manipulator  and  simulated 
its performance on a DEC VAX-1 1 /780. The simulation  results 
agree  with  the  expected high  performance  nature of the  control 
method. 

1. INTRODUCTION 

Recently,  robotics  has  emerged  as  a  hot  field in engineering 
mainly because  of  its  potential  for improving  both  manufacturing 
productivity  and  working  environment.  Industrial  manipulators  are 
computer-controlled  mechanical  devices  and  are  the  primary com- 
ponent  in  contemporary  automation  systems. It is  therefore 
essential  to  design  optimal manipulator  systems  with  a  suitable 
performance  criterion  which  is  consistent  with  the  foregoing  goal. 

The performance  of  manipulators  can  be  bettered  by  improv- 
ing  their  mechanical  construction  and/or  by  using more ef fect ive 
controllers.  In  this  paper  we  are  only  concerned  with  the  latter, 
Although  manipulator  control  problems  can in general  be  classified 
into  four  different  types  depending upon i f  (i) they  have  to  follow 
a  prespecified  path  and/or  if  (ii)  they  operate in a  collision-free 
workspace  (see  Luh[lO]  for  detail),  there  are many applications 
which  do  not  require  robotic  manipulators to   s t r ic t ly  follow  a 
prescribed  path and, also,  collision  with  obstacles  can  be  avoided 
by specifying  a  few  appropriate  intermediate  points  in  the 
workspace  for  the manipulator to  pass  through[ l l ] .  Conse- 
quently,  in  such  a  case  the  manipulator  control problem  can  be 
converted  to  a more general  form  in  which  the  manipulator  is 
given  freedom to  move  along  any  path  between  two  given  inter- 
mediate  or  end  points. 

the Korea Science and Engineering Foondation, Republic of Korea,  the U S  AFOSR 
' T h e  work  reported  here i s  supported i n  part by the Postdoctcrai  Program of  

Contract No, F49620-82 -C-3089  and Center  for  Robotics and integrated 
Manufactur ing,  T h e  University of Michigan,  Ann Arbor,   Michigan.  A / /  correspon- 
dence  should  be  addressed t o  Prof. Kang S. Shin, 

In  view  of  the  preceding  fact,  for  most  cases  manipulators 
are  desired to  move from  one  point to another as fast  as  possi- 
ble.  Consequently, i t  is  important to design an efficient  controller 
which  requires  less  time  and  energy,  thus  pushing  the manipula- 
tors  to  be  operated  at near maximum capacity. This considera- 
tion  naturally  leads  to an optimal  control problem of  robotic mani- 
pulators  with  a minimum time-fuel  criterion.  However,  it  is in gen- 
eral  very  difficult  to  obtain an exact  closed-form  optimal  solution 
to   the problem  since the dynamics of  manipulators  are  highly  non- 
linear,  coupled  functions  of  their  positions  and  velocities,  and 
also of  their  payloads.  There  are  two  alternative  approaches 
conceivable  for  this  problem: 

(1) off-line minimum time path planning  followed  by 
on-line path  tracking, and 

(2)  derivation of  a  suboptimal  controller  with  realistic 
approximations  of  the  manipulator  dynamics. 

In the  f i rst approach, i t   is assumed that  there  are  known 
optimal  path  planners  which minimize the  total  traveling time  for  a 
given  sequence  of  specified  positions  (describing  the  desired 
path)  in  joint  coordinates [2], or in Cartesian  coordinates  [3]. 
And then,  one  can  use  one  of many well-known,  on-line  path 
tracking algorithms [4], [5], [9 ]  which  force  the manipulator t o  
follow  the  path  with  the  prescheduled  velocities.  There  are  path 
tracking  algorithms  which  take  the  manipulator  dynamics  into  con- 
sideration,  but  there  are no known  methods  for  path  planning 
which  include  the  manipulator  dynamics. This implies that  path 
planning  has  to  be made with  a  global  least  upper  bound  for mani- 
pulators'  capabilities.  Note  that  the  capability  of  a  manipulator 
changes  with  its  position,  payload,  etc. For example, an optimal 
path  for  a manipulator  has to  be  generated on the  basis of the 
maximum speed  allowed  under  the  worst  (global)  condition,  since 
i t  may otherwise  not  be  able to  follow  the  prespecified  path  with 
the  prescheduled  velocities. It means that  the  full  capacity  of 
the manipulator  cannot  be  utilized  if  this  approach  is  used. 

The second  approach  can  be  adopted to  nearly  fully  utilize 
the  capacity  of individual  manipulators. Only a  few  attempts 
have  been made in this  context due mainly t o  the  difficulty in 
obtaining  amenable  solutions. Kahn and Roth[ l ]  linearized  the 
manipulator  dynamics at  the  final  target  point,  and  used  the 
decoupled  dynamic model to  derive  the minimum-time controller. 
This  method  suffers from the  fact  that  the linearized  dynamic 
equations  would  not  be  valid  if  the  manipulator  is  not  located  in 
the  vicinity of the  final  target.  Hence  this  method  is  acceptable 
only  when  manipulator motion is  confined  to  a small region in the 
neighborhood  of  the  target  point.  Lynch[G]  developed  a 
minimum-time controller  for  sequential  axis  operation. Only one 
axis  was moved a t  one  time,  which  simplifies  the  dynamic  equa- 
tions  of  the manipulator  (e.g.  linear  time-invariant  equations  for  a 
2-axis  cylindrical manipulator)  and  hence  the  controller.  How- 
ever, the  controller  requires much more time  (approximately  n 
times more for an n  jointed manipulator) than  the minimum-time 
controller  allowing  simultaneous  operation  of all axes. 

Also some results  were  derived on the  basis  of minimum 
energy  control  with  a  fixed  terminal  time [ 7 ] ,  [8],  in  which  they 
used  over-simplified  dynamic models without  considering 
manipulator's  operating  speed. 

The second  approach  with  a  suitable  suboptimal  controller,  if 
possible,  is  highly  desirable  due to  its  capability  of almost  full 
utilization  of  the  manipulator  capacity. In this  paper, we have 
adopted  the  second  approach  and  developed  a  suboptimal f e e d -  
b a c k  C O T L ~ T O L L E T  for  industrial  manipulators  with  the  weighted 
minimum time-fuel(MTF)  criterion.  The  choice  of  this  criterion  is 
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justif ied  by  its  direct link to  the goal o f  improving productivity 
and  saving  energy. The near minimum time-fuel(NMTF)  controller 
is  derived in a f e e d b a c k   f o r m  with  a  judicious  approximation  in 
the  calculation  of  the manipulator  dynamics.  Although the  optimal 
controller is developed  for  continuous  time domain, the manipula- 
tor  dynamics  are  updated  at  each  of  discrete  sampling  instants. 
The  approximation  is  based on the  fact  that any  manipulator  con- 
trol  algorithm  has to   be  implemented on a  digital  computer  in 
discrete form. Namely, t o  cope  with  the  nonlinearity  and  joint  cou- 
plings  in the manipulator  dynamics, the model parameters  of  the 
manipulator  are  updated  continually at  each sampling interval  on 
the  basis  of  the  feedback  information  of  positions  and  velocities. 
Then, an a v e r a g e d   d y n a m i c s  concept -- which  utilizes all avail- 
able  dynamic  information  of  the  current  and  the  final  states  to 
update  the dynamics  continually -- is  newly  introduced t o  design 
the  proposed NMTF controller.  Since the approximation  error at  a 
sampling instant  is  compensated  at  the  next  iteration  through 
feedback,  this  approximation  can  effectively handle the non- 
linearity  and  joint  couplings  in  the  manipulator  dynamics.  Note 
that  this  approximation  is  extremely  simple  and  thus  suitable  for 
real-time  implementation  with  inexpensive  microprocessors  as  we 
shall  see. 

The main contribution  of  this  paper  lies  in  that  (a)  the com- 
plexity  of  the manipulator  dynamics--which  has  been  a  major  hur- 
dle  in  the  design  of  robot  control--is  handled  effectively  by  con- 
tinuous  update  of  the  dynamics  with  the  averaging  method,  (b) 
Its  structural  simplicity  allows  for  on-line  implementation  with 
microprocessors,  (c) it has  high potential  for improving the mani- 
pulator  performance  (e.g.  operating  speed),  and  (d) it  results in a 
closed-loop  feedback  controller,  whereas  most  existing  ones  for 
manipulators  are  open-loop MTF controllers. 

This  paper  is  organized as follows:  In  Section  2  the  algorithm 
for  suboptimal  control  of m.?nipulators with  the MTF criterion  is 
derived,  and  the  method  of  updating  the  manipulator  dynamics 
with  the  averaging  concept is  presented. Also considered  is  the 
synchronization  of  each  joint  controller  for  simultaneous  conver- 
gence  of all  manipulator joints  to  a  target  point.  Section 3 
applies  the NMTF controller  to  the Unirnation PUMA 600 series 
manipulator  and  simulates its  performance  on  a DEC VAX-l1/780, 
and  then  conclusions  follow  in  Section 4. 

2. The  Near  Minimum  Time-Fuel  Controller 

2.1. Derivation  of  the  Weighted  Near Minimum  Time-Fuel  Con- 
troller 

Using the Lagrangian  mechanics,  one  can  derive  explicit 
manipulator  dynamic  equations  which  represent  generalized 
forces/torques in terms of  the  joint  positions,  velocities,  and 
accelerations: 

D(q)q t h(q, $I t g(q) = u (1) 

where u is  an n x l  generalized  force/torque  vector, q, 4, q are 
vectors  of  generalized  coordinates,  velocities,  and  accelera- 
tions,  respectively. D(q) is an nxn  inertia  matrix, h(q, n) is  an 
n x l  Coriolis  and centrifugal  force  vector, g(n) is an n x l  gravi- 
tational  loading  vector,  and  n  is  the number of  joints  in  the 
manipulator. The inertia,  the  gravity  loading,  and  the  Coriolis  and 
centrifugal  terms  depend  on  the  position  of  each  joint  as  well as 
on the mass, f irst moment, and  inertia  of  each  link.  These  terms 
are  also  functions  of  manipulator's  payload (Le. tool  and  parts). 
The dynamic  equations (1) can  be  converted  into  a  state- 
variabl?  representation  with  a  2n-dimensional state  vector 
y = [y6 y;']' = ;q' q']' (T  denotes  here  'transpose')  as  follows: 

Y = 4 Y )  + B(y)u (2) 

where 

electric motor or by  a hydraulic motor, and  naturally  there  exist 
certain limits  in the magnitudes  of  driving  forces or torques. 
Hence constraints on the  input  vector u can  be  represented  in 
general: 

u- 5 u < u+ (3) 

where u- , ut are nxl  vectors  representing  the minimum and  the 
maximum values  of  input  force/torque,  respectively. 

The weighted  time-fuel  optimal  control  problem  can  be 
stated as  follows: 

P r o b l e m  1. Find  control u'(t), to 5 t s t, , such  that  the 
system  given  by Eq. (2) is steered  to  a  given  target  point 

A t f )  = Yf ( 4) 

from  a  given  initial  point 

Y(td = Yo 

while minimizing the  performance  index 

J(u)  = Lo [ X  + ' ui ~ ] d t  ti 

i=  1 

subject  to  the input  constraint (3). 

Note that  this  is  an  open  terminal-time problem, and the 
parameter X is  introduced  to  set  a  relative  weight  between  time 
and  fuel. When the  value  of h approaches zero, this  becomes  the 
fuel-optimal  control problem, and  when the  value  of X becomes 
infinity,  this  approaches  the  time-optimal  control problem. 

Using  Pontryagin's maximum principle[l2],  we  can  derive 
necessary  conditions  for  the  optimal  solution,  which  results  in  a 
4n-dimensional differential  equation  with  the  optimal  state  and 
costate  vectors and the boundary  conditions  described  by  Eqs. 
(4) and (5), which  result  in  a  two-point  boundary  value  problem; 
this  is  in  general  very  difficult,  if  not  impossible, t o  solve.  Only 
numerical  solutions  for  all  but  extremely  simple  cases may be 
obtained  due  to  the  nonlinearity and  inertial  couplings  in the mani- 
pulator  dynamics. 

In  order  to  overcome  this  difficulty,  we  consider  first  optimal 
control  of an approximated  dynamic  system  for  each  individual 
axis and  then  update  the  concerned dynamics with  feedback 
information to compensate  for  the  errors  induced  by  the  approxi- 
mation  as  well  as  for  the  nonlinearity  in  the  dynamics.  The  sys- 
tem dynamic model, i.e.  Eq.(l),  can  be  rewritten: 

= td',:(q)u; - rl(q,$I, i = l ,  ' ,n  (7) 

where 91 is the  i-th  element  of q , d'ij(n) is  the  i j - th element  of 
D-'(q) , ri(q, q) is  the  i- th element  of D-'(q)[g(q) t h(q,q)] 

The  control  inputs  are  coupled  in Eq. (PI, direct  use  of 
which  complicates  the  control  system design.  Instead,  we  rear- 
range Eq. ($) into: 

q i  = al(q)u, t P,(q, q ,  u), i=i ,  ' , n  ( 8.) 

j= 1 

where al(q) = d'il(q) and &(q, q ,  u) = e d'ij(q)uj - ri(q, d. 
The  second  term  of Eq. (a) represents  the  coupling  effects from 
other  joints on the  i-th  joint  as  well as Coriolis, centrifugal,  and 
gravitational  forces  which  are  a major  hindrance in obtaining 
amenable opt@) solutions to  the manipulator  control  problem. 
However, Eq. could  be  regarded  as  an  uncoupled  subsystem 
model, for  the  i- th  joint  of  the manipulator i f   the value  of 
&(q, q, u) is  calculated or  approximated b y  some  judicious 
means. In  such  a  case Problem I can  be  solved  and  will  therefore 
yield  a  computationally  simple  solution  that  can  be  implemented 
with  microprocessors. To this end, we  will  in  this  paper  pursue  a 
method  for  calculating  approximate  values  of  both ai(d , and 
&(q,  q, u), which  are  nonlinear  functions  of  the  manipulator  posi- 
tion, velocity,  and  the  control  input. 

The  optimal  control problem for  each  joint  system  of  the 
manipulator is  then  stated as follows. 

j = l . j t i  

Each  joint  of  the manipulator  is separately  driven  by an 
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P r o b l e m  // Find the  control u,*[t), 0 I t I tf , such  that 
the  i- th  joint  system  with  the  state  vectsr 
( X l P ,  X], )? = :a q, )T 

xip = X], (9) 

Xi, = a i ( d u i  + P1:q 4 U) 

is  steered  to  a  given  target  point xIr = (ar. if)' from  a  given 
initial  point xlc = i,pc aC)'. while minimizing the  performance 

index J,(u,) = 1 + u , ' ] d t  subject  to  the  input  con- 
straint u, I u, 2%: . 

Since  the  values  of a,(q), and p,(q q u) are  nonlinear  func- 
tions  of  the  manipulator  position,  velocity,  and  control  input,  it  is 
still impossible t o  obtain  a  closed  form  solution  to Problem II. 
However, i t  would be  possible  to  obtain  a  closed-form  optimal 
solution if  the  values  of a, and 9, are  time-invariant. Also, in this 
case,  we  can  synthesize  the  solution  in  a  feedback  form  which  is 
essential in robotic  applications  to  effectively  handle  the manipu- 
lator  dynamics  that  vary  widely  with  its  position  and  payload. 
Consequently  we  (i)  assume  both a, and F1 to  be  constant  over  a 
sampling  interval,  and  (ii)  update  the  both  at  each  sampling  time 
to  include  the  preceding nonlinear  dependence on q, q, and u. 
The latter  is made on the basis  of  position  and  velocity  feed- 
backs  and more on  this  will  be  discussed  in  Section 2.2. Hence 
Problem II  will  be  solved  for  a  constant,  continuous-time  system 
which  is  updated  at  each  of  discrete sampling  intervals. 

The optimal  solution to  Problem I 1  when a l (d  and p,(q, q u) 
are  constant, i.e., q, = a,u, + p i ,  can  be  synthesized in a  feed- 
back  form as follows.  (Note  that  this  system  is  controllable  and 
the  solution  has no singularity  region.  Subscript  i  is  omitted  for 
convenience): 

These  equations  indicate  that u*(t)  can be  deter- 
mined  in  a feedback form with  the  switching  curves as 
illustrated  in  Fig. 1, 

6. When p > h > 0; 

(i). When z, > 0 ; 

(ii). When z,  < 0 ; 

(1  2) 

These  equations  are  illustrated  in Fig. 2. 

C. When -g > h > 0; 

(i). When z, 2 0 ; 

',+ if zp < z:/ 2 p  

u- I f  2:/ 2g < zp 5 6+z ,2 /  27+ 

(1  4) 
u'(t) = 10 if zp = z,Z/ ~p or z p  > 6+z,2/ 2y+ 

(ii). When z, < 0; 

These  equations  are  illustrated  in Fig. 3. 

2.2. The  Averaged  Dynamics 

In  order to  utilize  the  above  solution  when a: and PI are  con- 
stant,  we  have  developed  a method  for  obtaining  their  average 
values  at  time t, h ( t )  = :Li,(t), p,{t)]', and  continuously  updating 
those  values  to  cope  with  the  variation  in  the manipulator  dynam- 
ics  due to  their nonlinear  dependence on q, q, and u. We call  this 
the averaged  dynamics  method,  which  is  described  below. A t  
time t , ,  using the  current  position yp( t l )  and  the  current  velocity 
y,(tl), and  the  previous  input u(t ,  - ATj, we  calculate an approx- 
imate  value  of pi( t l )  = [ a i ( t l ) .   p l ( t l ) ] ~  where AT denotes  the 
sampling  interval.  In  other  words,  the  inertial  couplings  at  time t ,  
among different  joints  are  approximated  with  the  control  input  at 
time t ,  -AT, and the nonlinear  dependence  of  the  manipulator 
dynamics on q, q is  taken  into  consideration  by  using 
manipulator's  actual  behavior  (i.e.  its  position  and  velocity). The 
latter implies that   the approximation  and  update  are made in a 
f e e d b a c k  form; so is the  resulting  controller. Any discrepancy  at 
a  sampling  time  between  the  approximated  and  the  real  dynamic 
parameters  will  be  compensated  at  the  next -iteration through 
feedback.  Observe  that pi(tr) = ;a,(tf), p,(tr)]- can  be  deter- 
mined a p r k r i  by  using  the  final  target  position  and  velocity. 
Then, the  arithmetic  average'  of  these  values  at  time t , ,  

pi(t1) + R ( t f )  
R ( t d  = ( 1  6) 

is used t o  determine the optimal  control  input, u*], using the 
switching  curve  shown 
in Figures 1 thru 3. 

The  averaged  dynamics  method  is  illustrated in Fig. 4. A t  
time t l f ; O  tf], the  optimal  control  input  should  be  determined 
based on the information  of  parameter  function p,(t), for 
t l  5 t s tf. However, the  parameter  values  are  known  for  both 

the  current  state, p,[t,), and  the  f inal  state, pi(tf), but  unknown 
for t ,  < t < tt. Since the  switching times in  the  optimal  control 
are  determined  on  the  basis  of  the dynamic  equations in [t,,  tf], it 
is necessary  to  find  an  approximate  value  of  the  parameter  which 
represents  the  behavior  of  the  manipulator  during  the  entire 
remaining  time  period, i.e. [ t i ,  tf]. In  order to  obtain  such an 
approximate  value  of  the  parameter, R:t,), we  used  the  two 
known  values  of  the  parameter, i.e. p,(t l)  and p,(t,), and made a 
zero-th  order  approximation  of  the  parameter  function, R( t ) ,  for 

t ,  I t I tt  The  same  procedure is repetitively  applied  for 
t = tz ,   t J ,  ' . It is apparent from Figure 4 that  pl( t )  4 p,(tf) as 

The  averaged  dynamics  method  takes  advantage of the  fact  
that   the optimal  control  is  dependent on the  accumulation  of 
nonlinear  dynamics  from the  current  state  to  the  f inal  state,  and 
we  know  the  coefficients  of  the manipulator  dynamics  for the 
current  state  and  the  final  state. The modeling error  in the  aver- 
aged  dynamics  is  also  implicitly  compensated at   the time  of  the 
next  update  through  position  and  velocity  feedbacks  which  are 
used  in  the  averaging  process. 

t + tf. 

general   form would be pl:tl) = qR( t1 )  + (1 - v)R(tf)  where  0 5 7 )  I 1. 
* Actually, this does not have to be strictly an arithmetic  average. A more 
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2.3. Algorithm  of  the  Near Minimum  Time-Fuel  Controller 
Using (i) n  local  near minimum-time-fuel(NMTF) controllers  for 

an n-jointed manipulator, (ii)  the  synchronization  method  dis- 
cussed above,  and  (iii) the  continual  updating  of  the  parameters 
with  the  average dynamics  method, we  can  derive a  global  near- 
minimum-time-fuel feedback  controller as  in  Fig. 5, which  is 
described  below. 

1, Given  an initial  condition  and  a  final  condition,  compute 
parameters air, pir, and let  k = 0. 

2. Calculate  coefficients  of  the manipulator  dynamics 
using  the  current  state information. 

3. Compute a,(k) ,  &(k) using Eq. (20). 
4. Determine u,(k) using  the  switching  curves in  Equations 

5. Repeat  Steps 3 and 4 for  each  joint, i.e. for i 1 ,..., n. 
6. Let k = k + 1, and  repeat  Steps 2 thru 5 until  the 

(14) thru  (19). 

manipulator reaches  the  target  point. 

The NMTF control  proposed in this  paper  deviates  from  the 
exact optimal  solution  due to   the  following  reasons: 

(i). The NMTF control  is  based  on  the  averaged  dynamic  equa- 
tions,  and  thus may not  be an  optimal  control for  the  overall 
nonlinear  system. 

(ii).  Using the  value  of  inputs  at  sampling  time  k-1  for  calculating 
pj's, the  inertial coupling  terms  are  approximated and used 
for determining  optimal  control  at  sampling  time  k;  this may 
introduce  an  error  in  the  calculation  of  the  switching  times. 

3. SIMULATION  RESULTS 

We  have  performed  numerical  simulation on DEC V A X l l / 7 8 0  
for  the PUMA 600 series  manipulator.  The  manipulator  is  manufac- 
tured  by Unimation, Inc.  and  consists  of six rotational  joints,  each 
of  which  is  driven  by a DC servomotor. 

We  employed the Lagrangian  formulation t o  derive  the PUMA 
manipulator  dynamics  which  is then  used  to  simulate  the  behavior 
of  the  f irst  three  joints  of  the manipulator.  The  remaining three 
joints  are  not  considered  here,  since  they  are  used Only for 
orienting  the  end-effector and, therefore, do not  play an  impor- 
tant  role in the  area  of our present  concern.  Note  that  this simu- 
lator  for  the  forward dynamics of  the manipulator is not  a  Part Of 

the  controller and will  be  replaced  by  the manipulator  in case Of 

actual implementation. 
The controller  computes  first  the  parameters  associated 

with  the  final  position  when  both  the  initial  and  final  positions  are 
given. A t  each sampling  time, the  controller  computes  the Current 
values of the manipulator  dynamic  parameters,  and  then  deter- 
mines the  parameters  for  the  next  iteration  with  the  averaged 
dynamics.  Control  input is then  determined  using  the  switching 
Curves as  described  in Eqs. (1 4) thru (19) which  are  con- 
structed on the  basis  of  the  parameters  updated. 

Numerical values  used  in  this  simulation  are as follows. 

PUMA manipulator  are  given  in  Table 1. 

/ul 1 I 300 Nm, ~ u2 I I 400 Nm, and I ugi 200 Nm. 

(i). The  mass, center  of mass, and  inertia  of  each  joint Of the 

(ii). The bounds on the  control  input  torque  are assumed to   be  

Observe  that  the  choice of these  parameters  is made  almost 
arbitrary for the  sake  of numerical  demonstration  and any of  such 
choices  does  not  change  the  basic  performance  of our  manipula- 
tor  control method. 

In  order t o  examine  the  Performance  of  the NMTF controller 
for  different  ranges  of motion, the  f irst  three  joints  of  the mani- 
pulator  are commanded t o  move  from  various initial  points to  f inal 
points.  The  corresponding  simulation  results  are  given  in  Table 2 
and  show  that  the NMTF controller  performs  well  for  wide  range 
Of motions.  Particularly,  the  results  indicate  the  relative  insensi- 
tivity to   the  range  of  motion  and  are  therefore  in  sharp  contrast 
with  those  reported in [l] which  showed 20% or  more overshoots 
for a  small range  of motion. 

For the  case of  no  load,  Fig. 6 shows  the  response of each 
Joint Of the manipulator to  the NMTF controller command. 

The first  three  joints  of  the manipulator  are  now ordered  to 
move  from  initial  joint  angles (45O, -SO0, 150') t o  final  joint 
angles (oo, -60°, 210'). When the manipulator  picks  up  a  max- 

imum load (Le. 5 pounds f i  2.25 Kg 1, the simulation  reslut  shows 
the  capability  that,  even  with a maximum payload,  the  controller 
can  drive  the manipulator to  its  capacity. This result  is  not  unex- 
pected  since  the  precise  parameters  and  the  load  characteristics 
for  the manipulator  are  assumed to  be known to   the  NMTF con- 
troller.  If  these  are  unknown,  one  has to  appeal t o  an adaptive 
control  method similar to  those in Dubowsky and DesForges[l3], 
Koivo and  Guo[l4],  and Kim and  Shin[l5]. Table 3 summarizes 
the  simulated  effects on overshoot  in  each  joint  when  the 
weighting  factor, X, is  varied.  It  indicates  that  as  the  weighting 
factor  increases,  the NMTF controller  approaches  a  near  time- 
optimal  controller,  and tends  to  have a  slight  increase in 
overshoot. 

The effects  of  the  variation of the sampling interval  on 
overshoot are  simulated  and presented in  Table 4. Since the 
dynamic  models used  for  the NMTF controller  is  updated  at  every 
sampling  interval,  these ef fects  can  be employed t o  measure 
implicitly  the modeling errors  induced  by  the  averaging  process. 
The  sampling interval  is  varied from 0.001  second  to  0.02  second 
and  the  result  shows  that  as  the sampling interval  increases,  the 
overshoot  increases  accordingly. This result  is  expected;  the 
NMTF controller  is  derived  for  continuous-time domain with  the 
averaged dynamic  equations, and, therefore, it would  become 
more accurate  when  the sampling interval  gets smaller.  Hence, it 
is  desirable to  select   the sampling interval  which  (i)  provides 
acceptablelrequired  accuracy, and (ii) does not  require  exces- 
sive computation. 

Our simulation  results  have  indicated  that  the  manipulator 
can  be  driven  at high speed  with  reasonable  accuracy  regardless 
of  the load i t  is carrying. One can  observe  that  since our NMTF 
controller  is  developed  on  the  basis  of  the  averaged  dynamics 
method, it is  not  restricted  to  any  range of motion  (unlike the  one 
in [l]). In  addition to  high  operation  speed,  this  controller 
requires  very simple computations making the  implementation 
easier  and  less  expensive,  when  compared to  the  conventional 
two stage algorithms with  separate  path planning  and path 
tracking. As a  whole this simulation exhibits  that  the  proposed 
control  method  has  great  potential  for high  performance  with  the 
capability  of  coping  with  the  nonlinear,  coupled  dynamics  of  the 
manipulator. 

4. CONCLUSION 

We have  presented  the design of  a  manipulator feedback 
control  system on the  basis  of  the minimum time-fuel  criterion, 
which  has  a  direct  link  to  the goal of  improving productivity  and 
saving  energy. The design  has  focussed on the  following  three 
important  features.  First,  unlike  most  other  existing  methods,  this 
control  method is not  based on a conventional,  separate  path 
planning  algorithm  which  does not  take  the manipulator  dynamics 
into  account and therefore  results in  low  utilization  of  the mani- 
pulator  capabilities.  The  design  of  the NMTF controller  has  placed 
emphasis,  particularly on the improvement of  the manipulator  per- 
formance  by  nearly  fully  utilizing  the  capacity o f  manipulators. 
This was made possible  with a  judicious  approximation  with  the 
averaging  of  the manipulator  dynamics.  Secondly, this  controller 
provides  a  feedback  control  algorithm  with  a  very  simple  struc- 
ture so that  it can be  implemented  on-line with  microprocessors. 
Primarily, this  controller  is  intended to  provide fast  operation 
speed  with  less  energy  as  well as reasonable  settling  accuracy. 

The averaged dynamics  method is a  good  engineering solu- 
tion to  one  of   the most difficult problems  in  robot  control,  namely 
the  nonlinearity  and  joint  couplings  in  the  manipulator  dynamics. 
This  is  a simple ye t  novel  departure  from  conventional  robot  con- 
trol  techniques  toward  the goal of efficient  control  of  the mani- 
pulator. 

Considering  all the  preceding  facts,  the manipulator  control 
method  proposed  here  has  great  potential  use--  due to   i t s  high 
performance  capability  and  simplicity  in  structure--  in  the  design 
of  intelligent  controllers  for  the  growing number of  sophisticated 
industrial  manipulators. 
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Table 1. Mass, f i rst moments,  and  inertias of the  f i rst   three  jo ints 

fw t h e  PUMA 600 rnanlpulator. 

Case I I i  1 1 1 1  

I 

initial 9, ( 0 )  60.0 1 45.0 -45.0 

condition 
q2(0) 

-80.0 
~ -30.0 45.0 

~ (deg) q3(0) 
80.0 , 150.0 60.0 

I 
I 

Final 
q,(ti) ~ 40.0 0.0 0 0  

condltion 
~ q2(ti) 

~ -90.0 -60.0 -45.0 

~ (deg) 
q3 ( t r )  1 90.0 210.0 150.0 

Sett l ing ' t 
time  (sec) ~ 

~ 0'11 ' 0.19 I 0.31 

I 
Overshoot 1 Joint 1 ~ 0.7 

I 
5.0  5.2 

I I I 
~ (%) 1 Joint 2 ' 6.5 0.0 5.9 1 

3.7  1.2 6.1 ~ 

I 

I 1 Joint 3 ~ 

Tabie 2. Simulation results  wlth  various  lnltlal  and  final  condltions. 

I 
~ h Loint 1 Jo!nt 2 I Jcint 3 

I I 

I I 
10 I 2.2 0.0 0.8 ~ 

100 5.0 , 0.0 I 1.3 

I 
1 000  6.9 I 

I ~ 

3.3 1 2.0 

1 100,000 I 12.2 3.3 ' 15.0 

1 
I 

Table 3. Effects  of the  weisnting  factor on overs'oot(7.) 

, 
I 

AT Joint 1 
~ 1 Jolnt 2 

I 
Joint 3 

~ 0.001 ~ 

I 
5.0 0.0 1.3 ~ 

I 
0.002  5.0 0.0 3.9 

0.005 12.6  0.0 I 2.2 ' , 
0.01 

I 
22.1  12.0  27.7 

t 

~ 0.02 
I 

!~ 25.2  22.0 29.7 I 

Table 4. Ef fec ts   o f  sampling interval (AT) on overshwt(%).  
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Fig. 1. Switching  curves  when h > 
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2 
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Fig. 2. Switching  curves  when p > X. 

t 2  =3 t : 
0 =, , Tine 

Fig. 4. The averaged dynamics method. 

Fig. 5. Block diagram of the near-minimum time-fuel  controller. 

Fig. 3. Switching  curves  when -@ > X. 

PC1sI:ltil 

Fig. 6. Manipulator  responses  with no load. 
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