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ABSTRACT 

Conventionally,  robot  control  algorithms  are  divided  into  two 
stages, namely, p a t h   p l a n n i n g  and p a t h   t r a c k i n g  (or p a t h  c o n -  
tml). This division  has  been  adopted mainly as  a means of  allevi- 
ating  difficulties  in  dealing  with  complex,  coupled  robot arm 
dynamics.  Unfortunately,  the  simplicity  obtained  from  the  division 
comes at  the  expense  of  efficiency in utilizing  robot's  capabili- 
t ies. 

To remove at  least  partially  this  inefficiency,  this  paper  con- 
siders  a  so!ution to  the problem  of moving a  robot arm in minimum 
time  along  a specified  geometric  path  subject  to  input 
torque/force  constraints.  We  first  describe  the  robot arm dynam- 
ics  using  parametric  functions  which  represent  geometric  path 
constraints  to  be  honored  for  collision  avoidance  as  well  as  task 
requirements.  Secondly,  constraints on input  torques/forces  are 
converted  to  those on the parameters.  Finally, the minimum-time 
solution  is  deduced in an algorithm  form  using  phase-plane  tech- 
niques. 

1. lntroduction 

During the  past  several  years  a  great  deal  of  attention has 
been  focused on industrial  automation  techniques,  especially  the 
use  of  general-purpose  robots.  Since  the  purpose  of  industrial 
robots  is  to  increase  productivity, an obvious  question t o  ask  is 
how  robots  should  be  controlled so as to  produce as many units 
as  possible  per  dollar  invested. The usual  assumption  is  that 
f ixed  costs dominate the  cost per  item  produced, so that  it is 
desirable t o  produce  as many units as  possible  in  a  given  time. 

There  are  a  variety  of  algorithms  available  for minimum-time 
or  near-minimum-time  robot arm controi.  These  algorithms  usually 
assume that  the  control  structure  of  the  robot  has  been  divided 
into  two  levels. The first  level is  called p a t h   p l a n n i n g ,  and the 
second  level is  called p a t h  c m f r o l  or p a t h   t r a c k i n g  The  usual 
definition  of  path  control  is  the  act  of  attempting  to make the 
robot's  actual  position and velocity  match  desired  values  of  posi- 
tion  and  velocity;  the  desired  ,values  are  provided  to  the  con- 
troller  by  the  path planner. The path planner receives as input 

control[ 11, resolved  acceleration  control[2],  and  various  adaptive 
techniques[3]-[5]. 

Unfortunately,  the  simplicity  obtained  from  the  division  into 
path  planning  and  path  tracking comes at  the  expense  of  eff i-  
ciency.  The  source  of  the  inefficiency  is  the  path  planner.  In 
order t o  use  the  robot  efficiently,  the  path  planner  must  be  aware 
of  the  robot's dynamic  properties,  and  the more accurate  the 
dynamic model is,  the  better  the  robot's  capabilities  can  be  used. 
However,  most  of the  path planning  algorithms  presented to   date 
assume very  little  about  the  robot's  dynamics. The usual  assump- 
tion  is  that  there  are  constant or piecewise  constant  bounds on 
the  robots  velocity and  acceleration [6,7]. In  fact,  these  bounds 
vary  with  position,  payload mass,  and even  with  payload  shape. 
Thus in order to  make the  constant-upper-bound  scheme  work, 
the upper  bounds  must  be  chosen to  be  global  greatest  lower 
bounds  of  the  velocity and  acceleration  values; in other  words, 
the  worst  case limits  have to  be  used.  Since  the  moments  of 
inertia  seen  at  the  joints of the  robot, and  hence  the  acce;eration 
limits, may vary  by  a  factor  of  three or more, such  bounds  can 
result  in  considerable  inefficiency  or  under-utilization  of  the 
robot. 

To alleviate  the  inefficiency,  this  paper  presents  a  solution 
to   t he  minimum-time robot arm path  control problem subject  to 
constraints on its  geometric  path  and  input  torques/forces.  The 
solution  will  be in the form  of  a path planning  algorithm,  and  will 
take  into  account  the  detai!s of the dynamics  of  the  robot arm. 
The output  of  the  path planner  will be  the  true minimum-time solu- 
tion,  and so will  be  useful as a  standard  against  which  the  perfor- 
mance  of  other  path  planning  algorlthms may be  measured.  Note 
that  the problem  and its  solution  considered  in  this  paper  are  dif- 
ferent from the near minimum-time control  methods  in  [8,9]. 

The remainder  of  this  paper  is  divided  into five  sections. 
Section 2 describe;; a  method  for making the  robot arm dynamic 
equations more tractable  and  a  method  for  handling  input  torque 
constraints.  Section 3 contains  a  detailed  formulation  of  the 
minimum-time control problem. In  Section 4, the form  of the 
optimal  solution  is  deduced  using  phase-plane  techniques.  Sec- 
tion 5 presents  the  highlight  of  this  paper,  that  is, an a!gorithm  for 
generating optima.l(i.e. minimum-time) trajectories. The  final  sec- 
tion is  a  discussion  of  the  significance  of  the  results. 

some sort  of  spatisl  path  descriptor from  which it  calculates  a 
time  historv  of  the  desired Dositions  and velocities. The oath 2. Robot 'ynamics with Constraints 
tracker  thLn  takes  care  of  any  deviations  of  the  actual pos'ition  Before  delving  headlong  into the problem  of minimum-time 
and  velocity  from  the  desired  va:ues.  control,  consider  the  behavior  of  the  system  to  be  controlled,  that 

The for dividing the control scheme in this way is that is, a  dynamic model of the  robot arm. There  are  a number of  ways 
the process of robot  control,  if  sonsidered  in  its  entirety,  is very of  obtaining  the dynamic equations  of  a  robot arm, i.e. the  equa- 
complicated, Since the dynamics of all but the simplest robots are tions  which  relate  joint  forces  and  torques  to  positions,  veloci- 
highly  and  coupled, ~i,,idi,,~ the  controller  into  the two ties,  and  accelerations.  The  two  most common methods  are  the 
parts makes  the  whole process simpler.  ~h~ path  tracker is fie- Lagrange  method  and  the  Newton-mer method.  The  Newton-Euler 
quently a linear controller(e,g, a controller), While the  method  is  cornputationally  efficient,  but  is  a  recursive  formulation 
linearities of robot arm dynamics frequently are not taken into which is hard t o  deal  with  in  control  problems.  The  Lagrange  for- 
account at this  level,  such  trackers can generally  keep  the  robot mulation,  while  not  computationally  efficient,  does  yield  a  set  of 
arm fairly to the  desired More sophisticated  differential  equations  which  are  easy to  manipulate  for  robot  con- 
methods can be  used, though, such as resolved motion rate trol  problems.  Since  the  dynamic  equations  will  be  used  here  only 

t o  obtain  analytical  results,  we  have  used  Lagrange's  method  to 
' The  work  reported  here I S  supported 1 0  ,?art by the U S  AFOSR contract  Nc. derive the following robot arm dynamic  equations[' 23 ' 3i' 

F49E23-82-C-0089 and Robot Systems 31 vision, Center for Robotics and Integrat- 
ed h?a~ufactur ,ng(CRIM),  The Universt t j  of Mich igan,  Ann Arbor, Michigan. Any 
opinions, f .<togs, and conclusions OT recommendations  in  this paper are  those ot 
t b  authors and do not  necessvi ly  ref lect  the  view of the  funding  agencies.  
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(1 a) 

~ = ~ , ~ ( n ) V J + ~ , ~ ~ j + ~ ~ ~ ~ ( n ) d v t + ~ , ( n )  ( 1  b) 

where 
q! =it’ generalized  coordinate 
v‘ =ith generalized  velocity 
Q =if’ generalized  force 
Jij = the  inertia  matrix 
G, = gravitational  force on the it’ joint 
ci,, = Coriolis force  array 
K j  = viscous  friction  matrix 

The  Einstein summation convention  has  been  used,  and  all  indices 
run  from one to  n inclusive  for an n-degree-of-freedom  robot. 

The  elements of  the  inertia  matrix J,j are  constants  of  pro- 
portionality  which  relate  the  torque/force  exerted on the ifh joint 
to  the  acceleration  of  the j t h  joint.  The  entries ci,k of  the 
Coriolis array  describe  the  force  felt  at  joint i due to  the  veloci- 
ties  of  joints j and k. The  viscous  friction  matrix qj gives  the 
frictional  force  felt  at  joint i due to  the  velocity  at  joint j .  Note 
that  this  matrix  is diagonal, and  all the  entries  are  non-negative. 

The  motion of  the  robot arm will  not,  of  course, be  completely 
unconstrained.  In  fact, it will  later  be assumed that  the  robot arm 
must be  constrained  to  a  f ixed  path in joint  space,2  and  that  the 
path  is  given  as  a p a m r n e t e r i z e d  c u m e .  The  curve  is  assumed 
to  be  given  by  a  set  of R. functions of a  single  parameter A, so 
that  we  are  given 

q* = f i ( h ) ,  0 I x < A,, (2) 

where A= a  parameter  for  describing  the  desired  path,  and it is 
assumed that  the  coordinates q‘ vary  continuously  with A and 
that  the  path  never  retraces  itself  as X goes  from 0 t o  A,,,, i.e. 

It should be  noted  that in practice  the  spatial  paths  are 
given  in  Cartesian  coordinates. While it is  in general  difficult  to 
convert  a  curve in  Cartesian  coordinates to   that  in joint  coordi- 
nates, it is  relatively  easy  to  perform  the  conversion  for  individual 
points. One can  then  pick  a  sufficiently  large number of  points on 
the  Cartesian  path,  convert  to  joint  coordinates, and use some 
sort  of  interpolation  technique (e.g. cubic  splines) t o  obtain  a 
similar path in joint  space  (see[lO]  for an example). 

Returning to   the problem a t  hand, we may use  the parame- 
terization  of  the q* and  differentiate  with  respect  to time, giving 

h(O)=O, h(tj)=hm,,. 

where p=h. The equations  of motion  along the  curve (Le. the 
geometric  path)  then  become 

h = p  (4a) 

d h  d h   d h  

Note that  i f  h is  used  to  represent arc  length  along  the  path,  then 
/.L and p are  the  velocity  and  the  acceleration along the  path, 
respectively. 

With  this  parameterization,  there  are  two  state  variables, i.e. 
h and p, but (n + 1) equations. One way  to look  at  the  system  is 
to choose  the  equation h=p  and one of  the remaining equations 
as  state  equations,  regarding  the  other  equations  as  constraints 
on the  inputs  and  on p. However,  a better  way of obtaining  a  sin- 
gle  state  equation from the n equations  given  is t o  multiply the  

i~ equation by and sum over i, giving 
d h  

Csrtesian  space  to  joint  space  is  needed  here.  Since any detailed  treatment of the 
2 A  path  is normally  described  in  Cartesian  space and the  conversion  from 

mnversion  is  cut  of  the scope of this  paper, oniy brief  remarks on this a r e g i v e n   i n  
the next   pararaph.  

This  formulation  has  a distinct  advantage. Note that  the  coeffi- 
cient  of p is  quadratic  in  the  vector  of  derivatives  of  the  con- 
straint  functions.  Since  a smooth  curve3  can  always  be 
parameterized in such  a  way  that  the  first  derivatives  never  all 
disappear  simultaneously,  and  since  the  inertia  matrix  is  positive 
definite,  the whole  equation  can  be  divided  by  the non-zero,  posi- 
t ive  coefficient  of p, providing  a  solution  for p in  terms  of h and 
p. Now there  are  only  two  state  equations,  and  the original 
equations  can  be  regarded  as  constraints  on  the  inputs  and  on p 
(more on this  will  be  discussed  later). 

With  this  formulation, the  state  equations become 

h = p  (6a) 

(6b) 

Consider now  the  constraints on the  inputs, namely 
1 %  1 < u& and  (4b). The  dynamic equation  (4b)  can  be  viewed 

as  having  the  following form: u, = g,(h),u + 4 ( h ,  p). For a  given 
state,  i.e. given h and ,u, this is just  a  set  of  parametric  equations 
for  a line, where  the  parameter  is p. The  admissible  controls,  then, 
are  those  which  are  on  this  line  in  the  input  space  and  also  are 
inside  the  rectangular  prism  formed  by  the  input  magnitude  con- 
straints. Thus the  rectangular prism puts  bounds  on p. The rea- 
son  for  converting  from bounds  on  the  input  torques/forces to  
bounds on the  pseudo-acceleration p is  that  all  the  positions, 
velocities,  and  accelerations  of  the  various  joints  are  related  to 
one  another  through  the  parameterization  of  the  path,  and so the 
joints in  some sense impose restrictions on one  another.  Given the 
current  state (A+), the  quantity p, i f  known, determines  the  input 
torques/forces  for all of the  joints  of  the  robot, so that manipula- 
tion  of  this  one  scalar  quantity  can  replace  the manipulation of n 
scalars  (the  input  torques) and a set  of  constraints  (the  path 
parameterization  equations). 

For evaluating  the bounds  on /. explicitly,  we  can  use 
-&, I u, I +u& so that 

(7a) 

Introducing some shorthand  notation,  let 

Mi E J i j  dfl 
d h  

Ri=q. dfl 
d h  

S . = G .  a -  1 

We  then  have 

the star:ing and destination  points. if i t  is not, still  we  can  divide  the  path  into 
3We assumed to have a  smwth  curve  for  describing  the  given path  between 

smooth  subpths.  Then,  the  above  assumption  becomes  valid. 
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-u;= s M ~ ~ / * + Q ~ ~ ~ + R , ~ + S ,  I +u;= (7b) 

Note that  the  quantities  listed  above  are  functions  of h. For the 
sake  of  brevity,  the  functional  dependence  is  not  indicated in 
what  follows. 

Manipulation  of  these  inequalities  gives  (assuming  that 
MI f 0) 

-uk,-sgn ('.!,)[QIp2+R,p+S,] (7c) 

M I  
I P  

+ ~ , , - s 3 n ~ . , 1 , ~ [ ~ , p 7 + ~ ~ ~ p + ~ ~ ~  
I 

Mi 

Using the  additional  shorthand  abbreviations 

LB, yn, - 1  i -U-,,-ssn:q:[&,p2t~'p+SI~~ 
UBI = M I  ~ - '  +u~,-sgn:.:l,)[Q,p2+RIp+~~, 

and 

i 11 
we  have LBI 6 p I i'BI. Since  these  constraints must  hold for  all 
n  joints, p must  satisfy max L B i  5 ,u I m h  L.BI, or 

GLB ( h , p )  c: c( 2 i ! B  ( h , p )  (7e) 

The difference  between  the  path planning  algorithm to  be 
presented  and  those  which  are  conventionally  used  can  be  seen 
in terms  of  the  equation  above. Assume that  the  parameter h is 
arc  length in Cartesian  space. Then p is  the  speed  and p the 
acceleration  along  the  geometric  path.  Since  conventional  path 
planners  put c o n s t a n t  bounds on the  acceleration  over some 
particular(frequent1y  the  entire)  interval,  one  would  have 

1 1 

, .  

GLB(+) S pmlr. 5 p I ,una, I Lb 'B(h ,p )  
where Lmin and  are  constants.  The  conventional  techniques, 
then,  restrict  the  acceleration more than  is  really  necessary. 
Likewise,  constant  bounds on the  velocity  will also be more res- 
trictive  than  necessary. 

3. Formulation  of  Optimal  Control  Problem 

Now that  we  have  the dynamic equations  of  the  robot arm 
along the  geometric  path and the  constraints on i t s  inputs,  we 
can  address  the  actual  control problem.  In controlling  a  robot arm, 
it is  desirable t o  minimize the  cost  of  production  subject  to  what- 
ever  physical  constraints  the  robot arm dynamics  impose.  Such 
problems can  be  expressed  very  naturally in the  language  of 
optimal  control  theory.  The  usual  method  of  solving  such  a problem 
is t o  employ Pontryagin's maximum principle[l 11. The  maximum 
principle  yields  a  two-point  boundary  value  problem  which is, 
except in  some  simple cases,  impossible to  solve in  closed form, 
and  may be  difficult t o  solve  numerically as  well. We will attempt 
to  apply  the maximum principle,  but  with  the  intention  of  obtaining 
q u a l i t a t i v e   r e s u l t s  rather  than  analytic or numerical  solutions. 
The  results  will  be  used  later  to  develop an  algorithm for  generat- 
ing  the minimum-time trajectory. 

In  the  case  considered here, minimum cost  is  equated  with 
minimum time, thus maximizing the  operating  speed  of  the  robot. 
The cost  function  can  then  be  expressed  as 

tJ 
C= f l . d t  (8) 

0 

where  the  final time t f  is left  free. The cost  function C must be 
minimized subject  to  the  three  sets  of  constraints  given  below. 
The first  set  is  a  set  of  differential  equation  constraints, namely 
the dynamic equations  of  the  robot arm(i.e. (sa)  and  (6b)). The 
second  set  is a set  of  input  constraints.  Since  the  robots  joint 
actuators  have some upper  bound  on  the  torque  which  they,can 
provide, the  inputs  to  the  robot arm are  bounded (i.e. ~ u, !su&=). 
The  third  set  of  constraints  is a set  of  spatial  constraints.  The 
robot  must  get  to  its  desired  final  position  without  colliding  with 
any  obstacles. It will  be  assumed  here  that  the  desired  geometric 

path  of  the  robot arm has  been  pre-planned,'  and is provided  to 
the minimum-time controller  in p a r a m e t r i c  f o rm,  as described 
earlier(i.e.  Eq. (3)). I t  will be assumed that  the qi are  parameter- 
ized  in  such  a  way  that  the  initial  point  corresponds  to h=O, the 

final  point  corresponds  to h=h,,,, and that  the  never all 

become  zero  simultaneously. This guarantees  that  the  state 
equations  (6a)  and  (6b)  exist, and  also  guarantees that as h 
increases from 0 to  hnZX the  path  never  retraces  itself. 

Given  this form for  the dynamic equations,  we  have  the 
Minimum  Time Path Planning (MTPP) problem as follows. 

Prob lem MTPP:  Find x' = (A ' ,@*)  and ui' by minimizing (8) 
subject  to  (6a), (6b), u, I U & ~ ~ ,  0 I X I A,,,, and the  boundary 
conditions 

d h  

P:o)=Pic> l*(tf)'Pf (Sa) 

x:o)=G, h ( t f  )=A,,, (9b) 

3.1. Application  of  the  Maximum  Principle 

In  order t o  apply  the  state  constraint Osh~h,,,, it  is  con- 
venient  to  add  a  third  state  equation. Call the  third  state v, and 
let  the  third  equation  have  the form 

I/=X'1(-h)+(h,,,-X)Z1:h-X,,,) (1 0) 

where 
, 

Note  that b>G, so that  the  boundary  conditions v(O)=v(t,)=G 
force 1- to  be  identically zero.  But the only way  for v to  be  Identi- 
cally  zero  is to  have O<hIX,,,, thus  forcing h t o  remain  in the 
desired  interval. 

Before doing  any further  manipulations  on  the state  equa- 
tions,  define  the  functions 

U (A)  =u, c 
d h  

S(A)=G,;h)  q 
d h  

Again, for  convenience  the  dependence  of  the  above  coefficients 
on h will  be  omitted  in  the sequel. Now rewrite  the  state  equa- 
tions  in  the  following  form 

h=p  ( 1   l a )  

The .U term  is  a  quadratic  form  reminiscent  of  the  expression 
for  the  robot arm's kinetic  energy.  In  fact, if the  parametric 
expressions  for  the Q are  plugged  into  the  formula  for  kinetic 
energy,  one  obtains  the  expression K = M p z / 2 .  The Q term 
represents  the components  of the Coriolis  and  centrifugal  forces 
which  act along the  path plus the  artificial  forces  of  constraint 
generated  by  the  parameterization. The R term  represents  fric- 
tional  components,  and S gives  the  gravitational  force along the 
path. i/ is  the  weighted  input  term. 

Under the  above  setting  the problem MTPP can  be  converted 
to   t he  following. 

Prob lem MTPP':  Find y' = (h ' , ,u* ,v*)  and Li' by minimizing 
(8) subject   to  (1  1 a), (1 1  b),  (1 IC), (7d),  (sa),  and  (Sb). 

meet  task  requirements 
4This i s  done  at  the  stage of task  planning io avoid cclllsion as ne// as to 
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For the MTPP' problem the Hamiltonian  now  becomes 

1 
Or using  the  foregoing  substitutions,  the Hamiltonian  is 

Differentiating  with  respect  to p, we  obtain 

Differentiating  with  respect  to X, 

p i =  - = - - - - p  aH P Z  ai.: d~ - -p-  d~ d-c 
ah M ah d h  d h  d h  

M 

Finally, differentiating  with  respect  to v, 

Thus if  we  are  to  apply  the maximum principle  to  this problem, we 
must minimize H in  (12b).  In addition,  constraints  (1 l a ) ,  (1 lb ) ,  
(1  1  c),  (gal,  (9b), and (7d) must be  met, and H must sat isfy  the 
boundary  condition. 

Here, the  state  vector y is the  vector ( h , p , v ) ,  and we  have  a  sin- 

gle  input  term U ( t f ) = q  (Amzx)  - d f  ' (Ama). In  (1 4) we  used  the 
d h  

fact   that  H does  not  explicitly  depend upon t .  Also one  can  see 
y(tf) = (Amzx, p l ,  O ) T  from the boundary  conditions (9), and  the 
condition v(t,)=O. 

Note that  the Hamiltonian functional  (12b) is linear  in l J ,  and 

1: is bounded  because  of  the  boundedness  of u, and d f c  in 

[ O ,  Amax]. This  implies that   the optimal  solution  for I: should fol- 
low a  bang-bang  policy.  That  is, a t  any  point on the optimal t ra-  
jectory  the  quantity li in  (1  2b) must  assume its maximum or 
minimum. The  extremum  of [ I  can  be  obtained  by maximizing or 
minimizing itself  with  respect  to  the u,. S,ince we may write  the 
equality  constraints  on  the u, as  q=g,(A)pth,(h,p),  we  have 

d h  

Because of the  bang-bang  nature  of  the  control Ii , and because 
for  a  given  state (A+) the  quantity I; is  linearly  related  to /. 
through the  above equation,  will  also be  bang-bang.  Therefore 

p will  be  equal t o  either GLB(?,p)  or LL'B(h,p) .  Thinking of  the 
three dimensional case again, p must put  the  input  at  one  of  the 
points  where  the line  formed by  the  input  equality  constraints 
meets  one  of  the  sides  of  the prism  formed by  the  inequalities.  If 
the i- th joint  input  is on one of  the sides of  the  constraint  box, 
then it is  driven  at  its maximum capability,  while  the  others in 
general  are  not.  The  slowest  joint,  then,  is  pushed as hard  as it 
will go  while  the  others  exert  the  proper amount of  force  to  keep 
the  robot arm  on the  right  path. 

The above  discussion  is  valid  whenever  the  coefficient  of 
the  input  term  is  not zero,  i.e. when p2 in (1  3a) is  not zero. If p2 
is  zero at  isolated  points only,  then the optimal  control  is  deter- 
mined  almost everywhere. On the  other hand, if p z  is  zero  on some 
interval,  we  have  the  following theorem. 

Theorem 1: I f  pz  is  zero  on some interval ; t l , t 2 ]  ( t , < t 2 )  then p2 
is zero on the  interval [ t i , - ) ,  and  a  time-optimal  solution  does  not 
exist.  

Proof: Suppose that p 2  is ze,ro  on some interval : t , , t 2 ] .  Over  this 
interval,  we  have  p2=0  and pe=O. But  in  order for  this  to  be  true, 
we must  also have p,=p,=O from (13a) and (13b).  Since  the 
boundary  conditions on v prevent  the  coefficient  of p 3  from  ever 
being non-zero, this would force p, and p 2  to   be  zero  on the 
interval [ t i , = ) .  This  gives H ( y ( t ) , p ( t ) ,  U ( t ) ) = l ,  t 2 t , ,  which 
means that  the  boundary  condition H ( y ( t f ) , p ,  , O . p ( t f ) , C J ~ t  ))=O. 
cannot  be met. It follows  that  there  can  be  at most  one ' f  slngular 
interval, and that  if  there  is  a singular  interval,  then no solution to  
the optimal  control problem exists.  If  there  is no  singular  interval, 
then  the minimum-time solution  is unique. Q.E.D. 

it is also possible  to  deduce  the  signs  of p 2 ( 0 )  and p 2 ( t f ) .  
Thus we  have  another theorem. 

Theorem 2: If li,,,(O)>S(O)>li,,,(O) then  p2(0)<0 and 
PZ(tf)>O. 

Proof: It is  known  that Olhlh,,, so tha t   a t  t = t f  we must have 
pl0. Otherwise,  since p(t,)=O, we would have  to  have  had 
p(t)<O for some t <tf. The robot arm would then  have  had  to  be 
moving backwards along the  path  when it reached  the  destination 
A,,, and  would therefore  have  to  have come  from  some point 
h>hmax. But a t  tf we  have ,u(t,)=M-'(C;-S)<O. Since M > O ,  
this  gives U-StO. Now the  value  of H at  time tf is 0, so that  

If p 2 ( t f ) s 0 ,  then H(t,)>O, so we must have  pz[tZ)>O. 
To determine the  sign  of  p2(0),  consider  the  quantity b(0). 

By  an  argument  similar to  that  given above, p(O)>O. This gives  the 
result C:-S>O. Since  the  control  is  bang-bang,  we  must  have 
U=L:,,,, since  otherwise L J =  C7fin and U,,-S<O. But if 
U = U m a x ,  then p2 must be  less  than zero. Therefore  pz(0)<O. 
Q.E.D. 

One consequence  of  these theorems is that   the number of 
switching  points  is odd. If  the number of  switching  points  were 
even,  then  the  sign  of p z ( t f )  would be  the same as  that  of  p2(0), 
since s3n(p2:tf))=(-l)msgn(p2(0)), where m is  the number of 
slgn  changes. 

4. Phase  Plane Interpretat ion 
A t  this  point, i t  is  instructive  to look at  the  system's 

behavior  in  the  phase  plane. The equations  of  the  phase  plane 
trajectories  can  be  obtained  by dividing  equation (1 1 b) by  (1  1 a). 
This  gives 

It is  interesting  to  note  that  the  total  time T that  it takes  to go 
from  initial  to  final  states is 

The  idea,  then, is to minimize this  integral  subject  to  the  given 
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constraints.  We  therefore  want  to make p as  large  as  possible,  a 
result  which  would  be  expected  intuitively. 

The constraints on have  two  effects. One e f fec t  is t o  
place  limits on the slope  of  the  phase  trajectory. The other is t o  

place limits  on the value  of p. To  obtain  the  limits on $, one 

simply  divicies the limits on ,u by b, since %& = fL 
To get  the  constraints on p, it  is  necessary  to  consider  the 

bounds on p .  If,  for  particular  values  of h and p, we  have 
L C B ; h , g j < G L B ; h , p )  then  there  are no permissible  values  of p. 
Therefore,  for  each  value  of h we  can  assign  a  set  of  values  of i-( 
as determined  by  the  inequality i!.~_R(h,p)-GLB(h,p)rO. This 
inequality  holds  if  and  only  if ! l ? , ( h , p j - L B j ( A , p ) ~ C  for all i and 
j .  The intersection  of  the  regions  determined  by  these  inequali- 
ties  produces  a  region  of  the  phase  plane  outside  of  which  the 
phase  trajectory must  not  stray. This region  will  hereafter  be 
referred  to  as  the admisszb ls  n g i m  of  the  phase  plane. Using 
the  equations  for  the  lower  and  upper  bounds  for all i and j ,  

d h  p' 

Dividing  this  equation  by Y, , 4 j  gives 

( 1  7a) 

The left  side  of  this  inequality IS a  quadratic in p, and  the  ine- 
quality  is  always  true  for p=O i f   i t  is true  that F, : Q L ~ ~ ~  for  all 
i. The  bounds on p may then  be  found from the  quadratic  formula. 

Introducing  yet more shorthand  notation,  let 

Do not  confuse C,] with  either  the  cost  function C or the 

A I ~ p 2 + B , p t C , j + D l j ~ 0  (1  7b) 

Note that, from the definitions, .4,j=-A,t, Blj=-Bj , ,  CIJ =Cjl, and 
Dt j=-DP.  Since  the  inequality  must  hold  for  all i and j ,  i and j 
can  be  Interchanged and the symmetry  or  anti-symmetry  of  the 
coefficients  used  to  get  the  inequality 

Coriolis array C I j k .  The inequality  now  becomes 

- A , ~ ~ - R , ~ ~ + C , ~ - D , ~ ~ G  ( 1  7c) 

Only the  cases  where i # j  need  be considered, so there  are 
n ( n  -:)/ 2 such  pairs  of  equations,  where n is the number of 

degrees  of  freedom  of  the  robot. 

I f  Ai = B,, = 0, we  have CII -DIj 2 0 and Cil +D,- ,2 0, which 
are  always  true  if  the  robot  is  "strong"  enough so that It can  stop 
and  hold its  position  at all points on the  desired  path.  If .4j = 0 
and B,j # 0, then  we  have  a pair  of  linear  inequalities  which 
determine  a  closed  interval  for p.  If -4, # 0, then,  without loss of 
generality,  we  can assume that .Aj >O.  Then the  left-hand  side  of 
the  inequality ( 1  7b) is  a  parabola  which  is  concave  upward, 
whereas  for (1 7c) it is  concave  downward. When the  parabola is 
concave  downward,  then  the  inequality  holds  when  is  between 
the  two  roots  of  the  quadratic.  If  the  parabola  is  concave  upward, 
then  the  inequality holds outside  of  the region between  the 
roots(Figure 1 ). Thus in  one case p must  lie  within  a  closed  inter- 
val  and in the  other it must  lie  outside an open  interval,  unless  of 
course  the  open  interval is  of  length  zero.  In that  case, the  ine- 
quality  constraint  is  always  satisfied and the  roots  of  the  qua- 
dratic  will  be  complex. 

Since  the admissible  values  of p are  those  which  satisfy all 
of   the inequalities,  the  admissible  values  must  lie  in the  intersec- 
tion  of all the regions  determined  by  the  inequalities.  There  are 
R (n -:)/ 2 inequalities  which  give  closed  intervals, so the  inter- 
section  of  these  regions is  also  a  closed  interval. The other 
n (%-:I/ 2 inequalities,  when  intersected  with  this  closed  inter- 
val,  each may have  the  effect  of 'punching  a ho le '  in  the 
interval(Figure 2). I t  is  thus  possible  to  have,  for any  particular 
value  of A, a  set  of admissible  values for p which  consists  of as 
many  as n(n+ I)/ 2 distinct  intervals. When the  phase  portrait 
of   the optimal  path  is  drawn, it may be  necessary  to  have  the 
optimal t ra jectory dodge the  little  "islands"  which  can  occur in 
the admissible  region  of  the  phase  plane.  (Hereafter,  these  inad- 
missible  regions  will  be  referred to  as i s lands  3f inadr'...LF.si.biiZty 
or just i s l a n d s )  I t  shoulc! be  noted,  though,  that  if  there  is no 
friction,  then P,j=O. which means tha.7 in the  concave  upward 
case  the  inequality  is  satisfied  for all  values  of k. Thus in this 
case  there  will  be no islands in the  admissible  region. 

In  addition to  the  constraints on ,LL described  above,  we  must 
also  have p 2 3. This can  be  shown  as  follows:  if p < 0, then  the 
t ra jectory has  passed  below  the  line p = 0. Below this line, the 
trajectories  always move to  the  left,  since p = d X /  cit < 9. 
Since  the  optimal  trajsctorj must  approach the  desired  final 
state  through  positive  values  of p, the  trajectory would  then 
have  to  pass through p = 0 again,  and  would  pass  from p < 0 to 
@ > 0 a t  a  point  to  the  left of  where it had  passed from p > C to 
p < 0. Thus in order to  get  to  the  desired  f inal  state,  the  trajec- 
tory  would  have  to  crcss  itself, forming  a  loop.  But,  then,  there  is 
no  sense  in  traversing  the loop; it  would  take  less time to   just  
use  the crossing  point  as  a  switching  point.  Thus  the  admissible 
region  of  the  phase  plane  includes  only  points  for  which p 2 0. 

Another  way  of  thinking  about  the  system  phase  portrait  is 
t o  assign  a  pair  of  vectors to  each  point in the  phase  plane. One 
vector  represents  the  slope  when  the  system is accelerating (i.e. 
p is maximized), and the  other  represents  the  slope  for 
dece1eratiodi.e. p is minimized). This  pair  of  vectors looks like  a 
pair  of  scissors,  and  as  the  position  in  the  phase  plane  changes, 
the angles of both  the  upper  and  lower  jaws  of  the  pair  of  scis- 
sors  change.  In  particular,  the  angle  between  the  two  vectors 
varies  with  position. The phase  trajectories must, at  every  point 
of the  phase  plane,  point  in  a  direction  which  lies  between  the 
jaws  of  the  scissors. A t  particular  points  of  the  phase  plane, 
though, the  jaws of the  scissors  close  completely,  allowing  only  a 
single  value  for  the  slope. A t  other  points  the  scissors may t ry   to  
go past  the  closed  position, allowing no trajectory  at all. This 
phenomenon,  and the  condition p 20,  determine  the  admissible 
region  of  the  phase  plane.  This  is  illustrated in Figure 3. Note that 
the boundary  of  the  admissible  region  passes  through  those 
points  which  have only  a  single  vector  associated  with  them, 
corresponding  to  those  states  where only  a  single  acceleration 
value  is  permitted. 

5 .  Determination of Optimal  Trajectories 

For illustrative  purposes,  we  first  present an algorithm for 
finding  the  optimal  trajectories  for an ideal,  frictionless  robot arm. 
Then, the algorithm  will be  extended  to include the general  case, 
In  the  case  of zero  friction,  we  have  a  set of R (n -:)/ 2 bounds 
on p, and  each  of  these  relations  is  symmetric  with  respect  to 
p=G. Also, there  are no islands  in  the  phase  plane  which  need  to 
be  dodged. The only  restriction,  then,  will  be  that p must  lie 
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between  a pair of  continuous  curves  with  piecewise  continuous 
derivatives.  The optimal trajectory  can  be  constructed  by  the 
following  steps  called  the Algw-ithrn for Cons t ruc t ing  Qtirnal 
Tra jec tor i e s ,  ivo  Frict ion  (ACOTNF) 

s1. 

s2. 

s3. 

s4. 

s5. 

S6. 

Start  at h=O, p=po and construct  a  trajectory  that has the 
maximum acceleration  value.  Continue  this  curve  until it 
either  leaves  the admissible  region  of the  phase  plane or 
goes past X=h,,,. Note  that  "leaves  the admissible  region" 
implies that  if  part  of  the  trajectory  happens  to  coincide 
with  a  section  of  the admissible  region's  boundary,  then  the 
trajectory should be  extended along the boundary. It is  not 
sufficient in this  case t o  continue  the  trajectory  only  until it 
touches  the  edge  of  the admissible  region. 

Construct  a  second  trajectory  that  starts  at h=A,,,, p = p f  
and proceeds b a c k w a r d s ,  so that  it  is  a  decelerating  curve. 
This curve should be  extended  until  it  either  leaves  the 
admissible  region or extends  past h=O. 
If  the  two  trajectories  intersect,  then  the  point  at  which  the 
trajectories  intersect  is  the  (single)  switching  point;  the 
optimal trajectory  consists  of  the  first  (accelerating)  curve 
from h=O to  the  switching  point, and the  second  (decelerat- 
ing)  curve from the  switching  point  to A=h,,,(Figure 4). The 
algorithm then  terminates. 
I f   the  two  curves under  consideration do not  intersect,  then 
they must  both  leave  the  admissible  region. Call the  point 
where  the  accelerating  curve  leaves  the admissible  region 
A,. This  is a  point on the  boundary  curve  of  the admissible 
region(Figure 5). If  the  boundary  curve  is  given  by p = g ( h ) ,  
then  search along the  curve,  starting  at A,, until  a  point  is 

found at  which 9 is  equal t o  *. (Note  that  since g (A) 

determines  the  boundary  of  the admissible  region, there  is 

only  one  allowable  value of  *). This point  is  the  next 
switching  point. Call it Ad.  d h  
Construct  a  decelerating  trajectory  backwards from Ad until 
it intersects an accelerating  trajectory. This gives  another 
switching  point  (see  point A in  Figure 6). 

Construct  an  accelerating  trajectory  starting from A d .  Con- 
tinue  the  trajectory  until it either  intersects  the  final 
decelerating  trajectory or it leaves  the admissible  region. If 
it  intersects  the  decelerating  trajectory,  then  the  intersec- 
tion  gives  another  switching  point  (see  point C in  Figure 6), 
and the  procedure  terminates.  If  the  trajectory  leaves  the 
admissible  region,  then go to   s tep  4. 

This algorithm  yields  a  sequence  of  alternately  accelerating 

d h  d h  

and  decelerating  curves  which  give  the  optimal  trajectory.  Before 
discussing  the  optimality  of  the  trajectory,  one  has  to  show  that 
all steps  of  the ACOTNF are  possible and that  the ACOTNF will  ter- 
minate. 

Addressing the  first  question,  steps 1, 2, 3, 5, and 6 are 
clearly  possible.  Step 4, however, requires  finding  a  zero  of  a 
function. Under the  given  conditions,  does  the  function  always 
have  at  least  one  zero? The answer  is  yes,  for  the  following  rea- 
son. Note  that  at h=h, the  trajectory  points  outward from the 
admissible  region.  Similarly, at  the  point h=A2 where the  
decelerating  curve  passes  outside  the  admissible  region,  the  tra- 
jectory must  point  inward.  If  the  slope  of  the  bounding  curve  of 
the admissible  region  is  continuous at  these points,  then  we  have 

> & @ !  I and * i  < w l  
d h  ;h=h1 d h  ;h=hl  d X /h=xP d h  ; A = A ~  

where g (A) is the  equation  of  the bounding  curve  of the admissi- 

ble region.  The  quantity %4 -&&)- must,  therefore,  change  sign 

between A, and A,. If g ( h )  has  a  continuous  derivative in this 
range, then  there  will be at  least one  zero.  However, g ( h )  is  in 
general  only  piecewise  differentiable, so that  there may be  points 
where  the  derivative is  discontinuous.  In  this  case,  there is a 
possibility  that zeros do not  exist.  In  fact, zeros  always  will exist,  
and  we  have  the  following theorem. 

Theorem 3a: Let p(X)= !!& - w ,  where  the  derivative  is d h   d h  

a left-hand  derivative. If p ( h , ) > O  and ~ p ( b ) < O ,  then p ( h )  must 

d h  d h  

have  at  least  one zero  in the  interval :h1,A2]. 

Proof :   I f  g (X) is  continuously  differentiable on ;h,,X2] then  there 
must  be  a zero. I f  g ( h )  is not  continuously  differentiable,  assume 
that no zero  exists. Then there are  one or more points  where g (x) 
has  a  discontinuity in its  derivative, and a  sign  change  must  occur 
a t  one or  more of  these  points.  If  this  were  not so, then  there 
would  have to  be  a  sign  change  at  a  point  where ?(A) is  continu- 
ous,  and hence  there would be  a zero.  Call the  f i rst  of  these 
points A d .  This being  the  first  (smallest)  value  of h where  a  sign 
change  occurs,  the  change  must  be from positive  to  negative. 
Then a t  Ad two of  the  (continuously  differentiable)  constraint 
curves  which  generate g (A) are  equal. Call the  two  act ive  con- 
straints g, and Y , ~ ,  g 1  being  active  for h<hd and g 2  being  active 
for h>hd. Then, smce llmv(X) > 0 > lim;s(h), we must have 

h 4 $  h+h$ 

But  then,  for some E > @  we would have 

Except  for higher  order  terms,  this  is  just g,(Xdtc! < g 2 ( h d + & ) .  
Since g (h)=rnln g, (A), this means that g is the  actwe  constraint 
for some h>hi, contrary  to  hypothesis.  Therefore  there must be 
at  least one  zero  of g ( h ) .  The graphical meaning of  this  theorem 
is  illustrated  in  Figure 7. Note  from the  figure  that  any  cusps in 
9 ( A )  must  point o u t  of  the admissible  region.  Also note  that ?(A) 
is piecewise  continuous,  and  that  at ail  discontinuities  of g ( h ) ,  
the  curve jumps upward. Q.E.D. 

in  order to  prove  that ACOTNF terminates,  we  must make 
some  assumptions  about the form of  the  functions f i ( h ) .  In  par- 
ticular, it will be assumed that  the f' are p i e c e w i s e   a n a l y t i c  and 
are  composed  of  a finite number of  pieces in  addition to  being 
real-valued.  Informally,  since  the  inertia  matrix, Coriolis array, 
gravitational  force  vector,  etc.  are  all  analytic  functions, and 
since  (by assumption) the  path  constraint  functions  are  piece- 
wise  analytic,  all  of  the  functions  we  have  dealt  with  are  also 
piecewise  analytic.  The  function ?(A), being  piecewise  analytic, 
will  therefore  either  be  identically zero  in each  piece or will  have 
a  finite number  of  zeros  in each  piece.  Because  the  trajectory  will 
follow  the  boundary  if g(h) is  identically zero over some interval, 
stopping  at  the  end  of  the  interval,  the  identically-zero  intervals 
cause no problems.  Only the  rightmost  point  of  the  interval could 
possibly  be  a  switching  point, so having  a  finite number of  such 
intervals  only  causes  a  finite number of  iterations  of ACOTNF. 
Thus convergence  is assured,  since  there  are  a  finite number of 
analytic  pieces.  More  formally, we  have  the  following theorem: 

Theorem 3b: If the  functions f i  are  composed of  a  finite 
number of  analytic,  real-valued  pieces,  then  the  function p(h)  has 
a  finite number of  intervals  over  which it is  identically  zero  and a 
f inite number o f  zeros  outside  those  intervals. 

P r o o f :  The inertia  matrix,  Coriolis  array,  and  gravitational 
loading vector  are all piecewise  analytic in the qi, and  since  the 
f ' ( h )  are  analytic in h, the  inertia  matrix,  etc.  when  expressed 
as as functions  of X (as in  Eqs. (4a)  and  (4b))  are  piecewise 
analytic and  have;a finite number of  analytic  pieces. The func- 
tions /d,Q,R,S of Eq. (7b) are, therefore,  also  piecewise  analytic. 
Since  a  real-valued  analytic  function  with no singularities in a  fin- 
ite  interval must  either  have  a  finite number of zeros  in that  inter- 
val or be  identically zero, the  quantities M, must  either  be  identi- 
cally  zero in the  interval  considered  or  have  a  finite number of 
zeros.  We cannot  have  all  of  the Mi zer,o, for  if  that  were  the 

case  we would have J i j  = Mi dfl = 0 which  is  not 
d h  d h  d h  

allowed  by  hypothesis. If only  one  of  the Mi is  non-zero, then 
there  is no boundary  curve  to  deal  with,  and so no  zeros.  With 
two or more not  identically zero, there  will  be  a  boundary  curve. 
The curve is given  by Eq. (1 7b)  (with "2" replaced  by "=") for 
some pair  of  indices i and j .  Since  the  coefficients -4,B,C, and D 
in Eq. (17b)  are  analytic  except  at  the zeros of  the Mi, and 
because M i  have  a  f inite number of zeros, we  can  divide  the 
interval under  consideration  further,  using  the  zeros  of  the idt as 
division  points.  Within  each  subinterval,  then,  only  one  of  the 
equations  (1  7b)  holds.  Since Eq. (1  7b)  determines p as an ana- 
lytic  function  of A within  this  interval,  the bounding  curve g ( A )  is 
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piecewise  analytic. The curve y ( X ) ,  then,  is  also  piecewise  ana- 
lytic and  is  either  identically  zero or has  a  finite number of  zeros 
in each  subinterval. Thus, since ?(X) either is  identically  zero  in 
each  subinterval or has  a  finite number of  zeros  in  the  subinter- 
val, the number of  subintervals is finite, and the number of  inter- 
vals  is  finite,  the number of  zeros  and  zero-intervals  is  finite. 
Q.E.D. 

Theorem 4: Any trajectory  generated  by  the ACOTNF is 
optimal in the  sense  of minimum time  control. 

Proof: Proof of  this  theorem is straightforward. Consider  a 
trajectory  which  has  a smaller travel  time  than  the  trajectory  pro- 
duced  by  the ACOTNF algorithm. From equation (81, there  must  be 
some h such that  the  point ( h . p ' )  on the  new  trajectory is  higher 
than  the  point [ h , p )  on the ACOTNF trajectory, i.e. p '>p .  Other- 
wise,  we  would  not  have  a  trajectory  with  a smaller travel  time. 
We  also  know  from the  analysis  using  the maximum principle  that 
the  solution  must  be  bang-bang, i.e. that  the  solution  will  consist 
of  a number of  curves  of maximum acceleration  and  deceleration, 
so we may deal  only  with  such  bang-bang  trajectories. Now there 
are  four  possibilities. (X,p) may  lie  over  a the  initial  accelerating 
ACOTNF trajectory, it may lie  over  the  final  decelerating ACOTNF 
trajectory,  or  it may lie  over some other  accelerating or 
decelerating  trajectory.  Consider  the  first  case.  In  this  case,  the 
initial  value  for  the  new  trajectory must be  greater  than  the  initial 
value  for ACOTNF. Otherwise,  the  new  trajectory  would  have  to 
accelerate  faster  than  the ACOTNF trajectory  at some point, 
which  is  impossible,  since  the ACOTNF trajectory has  the maximum 
allowable  acceleration. The new  trajectory  therefore  cannot meet 
the proper  boundary  conditions.  The  second  case  is similar. Since 
(X,p') lies  above  the ACOTNF trajectory,  it  would  have  to 
decelerate  faster  than  the ACOTNF trajectory in order t o  meet 
the same  final  boundary  conditions. This is  impossible,  since 
ACOTNF uses  the maximum deceleration.  In  the  third  case, ( X  k )  
lies  above some other  accelerating  trajectory.  In  this  case,  the 
trajectory  which  leads  to (A p') must  emanate  from the boundary 
of  the admissible  region.  Otherwise,  the  trajectory  would  have  to 
pass  through  the  accelerating ACOTNF trajectory,  since  that  tra- 
jectory  passes  through  a  point  on  the  boundary.  The  acceleration 
at   the point  of  intersection  would  be  greater  for  the  new  trajec- 
tory  than  for  the  old  one,  which  is, again,  impossible. A similar 
argument  holds for  the  last  case.  Either an accelerating or a 
decelerating  trajectory  starting  from (>.,p') would  have  to  either 
hit  the  boundary  of  the  admissible  region  or  decelerate  faster 
than  the ACOTNF decelerating  trajectory,  and  hence  would  not 
lead  to  a  solution. Q.E.D. 

This method  of  generating  the  optimal  trajectories  actually 
works  in any case  where  there  are no islands  of  inadmissibility  in 
the  phase  plane,  not  just  the  zero-friction  case. The whole  idea  is 
t o  come as close  as  possible to   the  edge  of  the admissible  region 
without  actually  passing  outside  it. Thus the  trajectories  just 
barely  touch  the  inadmissible  region.  In  practice  this  would,  of 
course,  be  highly  dangerous,  since  minute  errors  in  the  control 
inputs  or  measured  system  parameters  would  very  likely  make  the 
robot  stray  from  the  desired  path.  Theoretically,  however,  this 
trajectory  is  the minimum-time optimum. 

We are  now  in  a  position t o  consider the general  case,  i.e. 
the  case in which  friction  is  sufficient  to  cause  islands in the 
phase  plane.  In  this  case,  the  algorithm  must  be  presented  in  a 
slightly  different form. Since  there may be  several  boundary 
curves  instead  of one, it is  not  possible  to  search  a  single  func- 
tion  for  zeros,  as  was  done  in ACOTNF. Thus instead  of looking  for 
zeros as the algorithm  progresses,  we  look  for  them all at  once 
instead,  and  then  construct  the  trajectories  which  "just miss' the 
boundaries, whether  the  boundaries  be  the  edges of the admissi- 
ble  region or the  edges  of  islands.  The  appropriate  trajectories 
can  then  be  found  by  searching  the  resulting  directed graph, 
always  taking  the  highest  path  possible,  and  backtracking  when 
necessary.  More  formally,  the Algorithm f o r  C c x s t r u c t i o n  3f 
@tima1 'rrapct9riEs (.KO?j is: 
s1. 

s2. 

53. 

Construct  the  initial  accelerating  trajectory. (Same  as 
ACOTNF.) 

Construct  the  final  decelerating  trajectory. (Same as 
ACOTNF.) 
Calculate  the  function y ( X )  for the  edge  of  the admissible 
region  and for  the  edges  of ali the  islands. A t  each  of  the 
zeros, construct a trajectory  for which the zero  is  a  switch- 
ing  point, as in ACOTNF steps S5 and S6. The switching 

s 4. 

s5. 

direction  (acceleration-to-deceleration  or  vice-versa)  should 
be chosen so that  the  trajectory  does  not  leave  the admissi- 
ble  region.  Extend  each  trajectory  until  it  either  leaves  the 
admissible  region,  or  goes past hnSx. 
Find  all intersections  of  the  trajectories.  These  are  potential 
switching  points. 

Starting  at h=O, p=p,-, traverse  the  grid  formed  by  the  vari- 
ous trajectories in such  a  way  that  the  highest  path from 
the  initial  to  the  final  points is  followed. This is  described 
below in the g r i d  traversal alg3rithm (GT.4,) 
Traversing  the  arid  formed  by  the  trajectories  aenerated  in 

steps S3 a n d S 4  above is a  seaich  of  a  directed graph,  where 
the goal to  be  searched  for  is  the  final  decelerating  trajectory.  If 
one imagines searching  the  grid  by  walking  along  the  trajectories, 
then one  would try  to  keep making left  turns,  if  possible.  If  a  par- 
ticular  turn  lead  to  a  dead  end,  then  it  would  be  necessary  to 
backtrack, and take  a  right  turn  instead. The whole  procedure  can 
best  be  expressed  recursively, in much the same manner as t ree 
traversal  procedures. 

The algorithm  consists of two  procedures, one  which 
searches  accelerating  curves and  one  which  searches  decelerat- 
ing  curves. The algorithm  is: 
AccSearch: 

On the  current  (accelerating)  trajectory,  find  the  last 
switching  point. A t  this  point,  the  current  trajectory  meets  a 
decelerating  curve.  If  that  curve  is  the  final  decelerating 
trajectory,  then  the  switching  point  under  consideration  is  a 
switching  point  of  the  final  optimal  trajectory.  Otherwise,  call 
DecSearch,  starting  at  the  current  switching  point.  If 
DecSearch is  successful,  then  the  current  point  is  a  switch- 
ing  point  of  the optimal trajectory.  Otherwise, move back 
along the  current  accelerating  curve  to  the  previous  switch- 
ing  point  and  repeat  the  process. 

DecSearch: 
On the  current  (decelerating)  trajectory,  find  the  first 
switching  point. Apply AccSearch.  starting on this  point.  If 
successful,  then  the  current  point is  a  switching  point  of  the 
optimal  trajectory.  Otherwise, move forward  to  the  next 
switching  point  and  repeat  the  process. 

These two  algorithms always  look  first  for  the  curves  with 
the  highest  velocity,  since AccSearch always  starts  at  the end 
of  an  accelerating  curve and DecSearch always  starts  at  the 
beginning  of  a  decelerating  curve.  Therefore  the  algorithm  finds 
(if  possible)  the  trajectory  with  the  highest  velocity,  and  hence 
the smallest  traversal  time. 

The proofs  of  optimality  and  convergence  of  this  algorithm 
are  virtually  identical  to  those  of ACOTNF, and  will  net  be 
repeated  here.  Note  that in the  convergence  proof  for ACOTNF 
the  fact  that  there  is  only  a  single  boundary  curve in the  zero- 
friction  case is  never  used;  the same proof  therefore  applies  in 
the  high-friction  case. 

6. Discussion and Conclusion 

In  this  paper  we  have  presented  a  method  for  obtaining  tra- 
jectories  for minimum-time control  of  a  mechanical arm  give11 the 
desired  geometric  path  and  input  torque  constraints. 

As was  already  pointed  out,  the  optimal  trajectory may actu- 
ally  touch  the  boundary of the admissible  region,  generating  a 
rather  dangerous  case.  However,  if  slightly  conservative  torque 
bounds  are  used in the calculations,  then  the  actual  admissible 
region  will be  slightly  larger  than  the  calculated admissible  region, 
giving some margin  for  error. 

The algorithm  has  been  presented  for  both  the  high-friction 
and  low-friction  cases.  In  both  cases,  the algorithms  produce 
trajectories  which  "just miss" the  inadmissible  region,  whether 
the  portion  of  the  inadmissible  region  missed is an island or the 
region  determined  by  the  upper  velocity  limit. 

Under the assumption that  the  torques or forces  at  the 
inputs  of  the  robot  are  bounded  we  derived an algorithm for 
determining  open-loop minimum-time controls  for  motion of a  robot 
along a given  spatial  path.  However, it should be possible to  
obtain  solutions  for  different  input  constraints.  Since  the 
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algorithm generates  the  true minimum-time solution,  rather  than an 
approximation to it, the  results  from  the  algorithm  can  provide an 
absolute  reference  against  which  other  path  planning algorithms 
can  be  measured. 
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Upper  arrows  give maximum acceleration 
Lower  arrows  give maximum deceleration 
Dashed  curve  is  boundary  of  admissible  region 

Figure 3. Phase  portrait  showing  acceleraJion  and 

deceleration  vectors  at  each  state 
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Figure 6. A complete  optimal  trajectory  formed  by ACOTNF 
with  three  switching  points 
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Figure 4. Case  when  accelerating  and  decelerating  curves 
Intersect  (with = 0) 

Situation (b) cannot  occur,  since  we  would  have 
g ( h )  = g 2 ( h )  = min(gl(h),  g 2 ( h ) )  for h<h,, contrary  to 
hypothesis 

Figure 7. Slope  discontinuities  in  boundary  curves 

Figure 5.  Case  when  accelerating  and  decelerating  curves 
do not  intersect 
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