QUEUEING ANALYSIS OF A CANONICAL MODEL OF REAL-TIME
MULTIPROCESSORS

C. M. Krishna and K. G. Shin

Computing Research Laboratory
Department of Electrical and Computer Engineering
The University of Michigan
Ann Arbor, Michigan 48109

ABSTRACT

Multiprocessors are beginning to be regarded increasingly favorably as candi-
dates for controllers in critical real-time control applications such as aircraft. Their
considerable tolerance of component failures together with their great potential for
high throughput are contributory factors.

In this paper, we present first a logical classification of multiprocessor struc-
tures with control applications in mind. We point out that one important subclass has
hitherto been neglected by the analysts. This is a class of systems with a common
memory, minimal interprocessor communication and perfect processor symmetry.

The performance characteristic of the greatest importance in real-time applica-
tions is the response time distribution. Indeed, we have shown in a separate paper
[2] how it is possible to characterize rigorously and objectively the performance of a
real-time multiprocessor given the application and the multiprocessor response time
distribution and component failure characteristics. We therefore present here a com-
putation of the response time distribution for a canonical model of real-time multipro-
cessor.

To do so, we approximate the multiprocessor by a blocking model and present a
means for efficient analysis. Two separate models are derived: one created from the
system's point of view, and the other from the. point of view of an incoming task. The
former model is analyzed along largely conventional lines. For the latter model, an
artificial server is used, and the system is transformed into a queueing network. '

1 This work was supported In part by NASA Grant No. NAG 1-296. Any oplnions, flndings, and conclu-
slons or recommendations expressed here are those of the authors and do not necessarily reflect the views
of NASA. :

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-112-1/83/008/0175 $00.75

175

1. Introduction

With semiconductor component costs falling and microprocessors becoming ever
more reliable and powerful, multiprocessors are beginning to be attractive for a
variety of applications. One of the major hurdles encountered in general-purpose
applications is the task of optimal (or sub-optimal) program partitioning. Parallelizing
compilers that translate code written in von-Neumann languages to exploit any possi-
ble parallelism are frequently inefficient in the sense that the compiler overhead is
usually considerable and that it is difficult, if not impossible, to find every possible
parallielism.

However, there are applications where program partitioning arises quite naturally
and no parallelizing compiler is necessary. One such application is real-time control,
where the global control function divides naturally into weakly interacting fasks or
atom functions [1]. Indeed, it is proper to regard the control function as a well-
defined set of tasks, each relatively independent of the others. The tasks can be
triggered by a variety of sources: environmental stimuli, timers, or operators, and
" correspond to some specific software packages being run. In most cases, the

triggering by stimuli is random? and can be characterized by probability distributions.
The major characteristics of a muiltiprocessor control system are therefore that (a)
the control function consists of a number of weakly-interacting and well-defined
tasks, and (b) the load can be characterized stochastically with reasonable accu-
racy. The second characteristic enables us to obtain performance evaluations more
accurately than would otherwise be the case; while the first influences the architec-
ture of the interconnection structure.

How well a multiprocessor controller performs clearly depends on the require-
ments of the application. We showed in [2] how controller performance could be
rigorously and objectively evaluated, given the control application and multiprocessor
response time distribution. Keeping this foundation in mind, we evaluate in this paper
the performance of a canonical model of multiprocessors for real-time control.

Because the entire set of programs that the control system will ever execute is
well-defined, the designer has an option: the system can either have a common, or
mass, memory that contains all the applications software -- thus requiring the

transfer of the relevant software upon a task trigger3 -~ or every processor can hold
in its private memory all the applications software it will ever need. The latter alter-
native eliminates the need to transfer software, thus reducing overall response time.
Choosing this alternative presents the designer with two sub-alternatives: either
provide each processor with a private memory so large that the set of control pro-
grams required in the control of the process can be held in it in its entirety, or preal-
locate tasks to specific processors.

Based on the above observation, the following can be considered to be canoni-
cal logical models of multiprocessors used in real-time control.

Type 1: A Type 1 multiprocessor controller is one in which the processors do not spe-
cialize; in other words, tasks are not reserved for specific processors, and each pro-
cessor in the system may be allocated any task. The process of task allocation is
typically dynamic. This type is divided into two subclasses depending on the size of
processors' private memory. In a Type la system, the private memory of the proces-
sors is large enough to hold both the applications and executive software in its

2 In the case of timer~generated triggers, the triggering is deterministic, but this can be regarded as
a& speclal case of random triggering.

3 The operating environment Is modejled as the source of a stream of task triggers, /.e. stimull that
cause a partlcular set of tasks to be performed by the multiprocessor.

176

entirety.4 This system is ideal for applications in which a small humber of relatively
independent and small tasks form the job mix. One example of the Type 1a system is
the CM?FCS [8] system of the United States Air Force.

In a Type 1b system on the other hand, the private memory is too small to hold
all the applications software and requires the transfer of software with each task
trigger. This transfer can be either single, or involve paging.

The tradeoff between requirements of memory size and task execution time in
this subclassification is clear. As a general rule, the processors allocated a task exe-
cute it in its entirety without interruption unless some of the processors fail. There is
thus little or no interaction between the individual processors in this type of system.

The best known Iimplementation of the Type 1b structure is the Draper
Laboratory's Fault-Tolerant Multiprocessor (FTMP) [5].

Type 2: In a Type 2 system, the processors are preallocated specific tasks (or sub-
tasks) and the software related to these is loaded in their private memory. With the
identification of specific tasks with particular processors comes the problem of real-
location of tasks on processor failure. Thus, the system of this type is too inflexibie
to easily reconfigure itself upon failure but its reliability is obtained in general through
physical redundancy in system components. In general, Type 2 is used when the
individual tasks have significantly different time/safety criticality (e.g. flight control
and navigation tasks in aircraft applications). Processor interaction can be consider-
able.

Type 3: AType 3 system is a composite of a Type 1 and a Type 2 system.

Figure 1 shows graphically the above classification of muiltiprocessors. Notice
that the classification is logical and is different from most conventional ones that
are usually based on physical interconnection structures.

A considerable body of literature has developed around the problem of analyzing
mulitiprocessors. Almost invariably, the procedure is to use a Markov model of the sys-
tem to solve for such performance measures as throughput, reliability,. availability,
etc. Type 1a systems have been the focus of a great deal of attention. The ten-
dency of almost all authors is to assume identical processors and an identical
exponential service time distribution for all job classes, upon which the system
degenerates into an M/M/m queue. This analysis is then embedded in a determina-
tion of the multiprocessor performance. One good example is the work on closed-form
estimations of performability by Meyer [3].

Type 2 systems can be modelled as queueing networks, and there is a large
body of literature on this topic.

Type 1b, however, has been almost totally neglected. This is odd, considering
that one of the few multiprocessors actually to be constructed (i.e. FTMP[5]) is an
example of this type of system. Also, it is likely that Type 1b systems will grow in
importance as time progresses since it is ideal when the job mix is composed of a
large number of tasks, each called relatively infrequently. Again, the analysis of
Type 3 systems requires, as a prerequisite, the analysis of Type 1 systems. In this
paper, we shall analyze an important subclass of the Type 1b system.

This paper is organized as follows. In Section 2, we analyze an important sub-
class of multiprocessors, obtaining an approximate expression for its response time.
We conclude in Section 3 by describing briefly some extensions of this work

4 with memory densities rising and costs failing, this may be no longer as expensive as it once
seemed.

177

presently being undertaken, and their implications for real-time multiprocessor design.

2. Response-Time Analysis of Type 1b System Without Paging
2.1. Description of the Real-Time Multiprocessor

The multiprocessor we analyze is shown in Figure 2. It has a dispatcher allocat-

ing tasks to c identical processors.® Service at the dispatcher is FCFS, and all the
tasks place an identical (statistically speaking) demand upon the computational
resources of the system.

When a processor is assigned a task, it first sends to the common mass memory
for the relevant applications software. This is the only reference the processor
makes to the common memory during a single execution. Task arrival is modelled as a
Poisson process with rate A, and all service time distributions are exponential (in the
sequel we also consider non-exponential service times): at the processors the mean
service rate is u, and at the memory the mean software transfer rate (per task) is
Mm- Note that 4 represents the actual execution rate for an individual task on a sin-
gle processor; it does not take into account software transfer time.

A point técitly made in almost all work in this area is that the input process is
Poisson, and that all service times are exponential. The principal reasons for such an
assumption are that (i) while both input and service distributions are non-exponential
in practice, they can sometimes be approximated well by Poisson and exponential
assumptions, and (ii) that analysis of a system with general arrival and service distri-
butions is almost impossibly difficult.

The first point ensures that the exponential assumption leads to at least an
approximate model of reality. It is important, however, to check this fact for each
particular model by employing alternative approaches, eg., simulation. In this paper,
we carry out this task by means of a simulation program that assumes Weibull service
distributions. The exponential distribution is a special case of the Weibull. By varying
the standard deviation of the service distribution while keeping the mean constant,
we obtain an indication of the range of lnput intensities for which the exponential
assumption is a good approximation.

In this model, there is the problem of simultaneous possession of resources by
the tasks. That is, there is a period when, immediately after being allocated a proces-
sor by the dispatcher, the processor queues up for service at the common memory for
the applications software. During this period, the processor is forced to remain idle.
The present system does not involve multiprogramming.

Since there is a period when a task is in possession of both a processor and the
common memory, this multiprocessor does not fit into any of the well-behaved queue-~
ing models (such as M/M/m, G/M/m, etc.). There are two approaches to obtaining a
solution for the response time distribution. The first is iferatfive and employs the
method of surrogate servers as in [4]. The second, which we present here, also
involves surrogate or artificial servers but is non-iterative in nature. It consists of
approximating the multiprocessor by a model in which simultaneous possession of
resources does not occur, but where blocking takes place. We have thus translated
our problem into the context of a blocking model. An important consequence of this
is that the analysis of the case where paging is allowed for can be handled by an
immediate extension of this approach. To solve this problem, we employ artificial
servers. Artificial or fictitious servers have been used in a -number of models. In [6],
they are employed in the analysis of an open queueing network with blocking. Our
analysis, although superficially similar, is non-iterative and treats a system with
parallel servers with blocking. In such a setting, the iterative technigue presented in

5, Since processors may fall durlng a mission lifetime, ¢ Is a random varlabje,

178

[6] is not applicable (without analytical expressions for the response times for the
M/COX2/n system for n>1) and the artificial server approach must be combined with
some means of determining the state of the system.

We begin by noting that the system as shown in Figure 2 can be approximated
by that in Figure 3. The approximation is justified since the time spent by a task
receiving service (as distinct from waiting in the queue) at the dispatcher is negligi-
ble compared to the memory service time. According to our approximate model, an
incoming task waits in the Memory-Dispatcher (M.D.) queue, and, provided it is admit-
ted® receives service first from the memory and then is assighed a processor for
execution. Tasks are processed by the M.D. only when the number of tasks already
admitted is less than the number of processors. The M.D. waits for a processor to
become free, then begins to transfer the relevant software to the target processor.

To analyze this model, we portray it from two complementary points of view. The
first, which is the system-oriented model is as in Figure 3. On the other hand, Figure
4 depicts the system as seen by an incoming task, i.e., it is a task-oriented model.
We consider each of the models in turn. The system-oriented model will first be
analyzed to provide quantities that will then be used in the task-oriented model to
obtain task response time distributions.

2,2, System-Oriented Model

Denote by p;;(t) the probability at time t that there are | tasks in the M.D. queue
(including the one receiving service at memory if no blocking is taking place), and
that j processors are executing (i.e. the applications software has been transferred
to these j processors and actual execution is taking place). In this section, we

determine the steady-state values pi_j=1impi'j(t).7
t+

Blocking of incoming tasks begins to occur when i+j=c and a new task arrives
before any admitted task has been completed.

Unless otherwise stated, a variable in the sequel is assumed to be zero if one or
more of its subscript indices become negative. The state-transition diagram appears
as Figure 5 and assuming steady-state is achieved, the following global balance
equations can be written down:

APo,o = 4Po,1 (1)
(AMjw)pog = (i+1)upo st + HmP1j—1 for 0<j<e (2)
(A+eu)Poe = MmP1,c-1 | (3)
(A+4m)Pio = APj-1,0tH4Pi1 for i>0 (4)
(A+juttm)Pij = APi-1jFEmPis1 -1+ (j+1)upijey for 0<j<e, i>0 (5)

6 A task Is said to be admitted when it Is either in the process of accessing the common memory or
executing at a processor.

7 1t Is assumed to begin with that these |Imits exist. See Remark 2 below.

179

(A+eu)Pic = APi-1,ctMmPit1.c-1 for i>0 (6)

The boundary condition is:

©o C-
Y 2pi=1 (7
i=0 j=0 _
To solve for pi,p We use the method of generating functions.
Define
gi(z) = Lpiz (8)
i=0 :

Using generating functions and manipulating, we obtain the following recursion for
c>1:

AM1-2z)+un, m
1(z) = ‘(—"TZB_M— o(z) — &H‘Poo (9)
_ Mi-z)+jptim _ Bm
gi+1(2) = WG+ 1) gi(z) — Z5G+T) ———pg;1(z)
_Hm__ _Mm . (10)
/‘l'(]+ 1) Po,j + ZM(j+l) Poj-1 for 0<j<c
8:(2) = o () - b (11)

z[A(1—2)+cu] Be-1

‘From (9) and (10), we have

zZ[A(1=2)+cu] Po.c-1

g;(z) = Aj(z)go(z) + ii:lBj,i(z)po,i for O<j=<c (12)

.
where the coefficients are defined by the following recursion for 1 <j<c and
i<j~1:

Ag(z) = 1
A(2) = &1:_;%*'_“12
AMl-z)+ju+p,
Aj+1(Z) = (:()J‘l‘]]l.‘; ~]()'— (]+1) j l()
Bjy14(2) = Ml-:()j:]f;Mm B;i(2z) — m 1-1.i(2) (13)
_)\(1—2)+jl/‘+p’m Hm
B = TR B gD
_ Mm
Bj+l,j(z) = "m
In particular,
8.(z) = A(z)go(2) + ch.iPo.i (14)

Equating the right-hand sides of (11) and (14), we have:

1380

go(z) = {D(Z)Ac— (2)—Ac(Z)]— [ciz{ ¢.i(2) ~D(2)Bc- 11(2)]pol

i=0

+{Bg c—1{2) +D(Z)]POc 1] (1.5)

- Mrm
D(Z) = m (16)

The only remaining unknowns are the pg; for O<i<c—1. The equations required to
solve for these are derived as follows.

The boundary condition (7) yields the relation:

igj(l) =1 (17)

Also],_ghe generating functions g;(z) must converge in the unit disc |z|<1. All poles of
the generating functions lying in the unit disc must therefore be cancelled out by
corresponding zeros, The use of this condition yields further equations in the pg; for
O<i=<c—1 by (15) since the zeros of the generating function are functions of the
values taken by the pg; Note that no additional equations can be obtained from a
further invocation of (10) since the apparent additional pole at the origin in (10) is
cancelled out by a zero.

It can be shown that the above equations are sufficient to permit the computa-
tion of the py; values. The generating functions g; (z) are therefore completely deter-
mined. By inverting them (numerically, in most mstances), the steady state probabili-
ties { p;; § can be obtained.

Recall that the above analysis is for ¢>1. For the case when ¢=1 (this is also a
special case of the blocking problem considered in [6]), we have:

(Z) = Z/“'ma(z) =~ MMm
) Za(2)am(2) ~ bt

0,0
and

%), () - Hmp
M 0 /‘L 0,0

where
az) = AM(1-2) +
am(z) = N(1-2) +
and

Poo=1-—
° KL m

A+L}

FKemark 1:The dispatcher queue in physical implerﬁentations is clearly finite. How-
ever, by making it sufficI:\Iiently large, say N, it may be considered practically infinite as
C

long as the probability), zpj_j. Jis acceptably low.
i=0 j=0

Remark 2: In the above treatment of the system-oriented model, the existence of a
steady-state has been implicitly assumed. That is, it is assumed that limp;(t)
exists. From a theorem in stochastic processes (see, for example, [9]), |f*fb|lows
that since the underlying Markov chain is irreducible and aperiodic, any solution of
the balance equations that also satisfies the boundary condition is unique and
represents ltimpi'j(t).

181

2.3. Task-Oriented Model

In this model, we employ an artificial server to account for blocking delay. This
yields an approximate solution for the response time distribution.

An incoming task views the system as expressed in Figure 4. With a probability
a, it is blocked. The blocking is expressed in terms of an artificial server, to which
the incoming task branches if it finds the system blocked, i.e., the service rate distri-
bution of the artificial server is the same as the departure rate distribution for the
tasks executing on the processors. When the service time at the processors is
exponentially distributed, the artificial server also has an exponential service time
distribution.

Implicit in this analysis is the assumption that the transients have died down and
a condition representative of steady-state exists at all times. This is patently not
true. In most cases -- considering that controllers of this type are generally lightly
loaded -- the probability of blocking is very small. However, once a blocking cycle
begins, the probability of its continuing is greater than « for obvious reasons. Even
so, it is likely that the transients in both the blocking or nonblocking mode will play a
not inconsiderable role in determining the queue behaviour. This is especially the case
when the input intensity is neither very low nor near to driving the system into
saturation. When in this intermediate range, one would expect the system to switch
from the blocked to the unblocked state and vice versa with a fairly high frequency.
Hence, any model that is based on the assumption of no transients would be
expected to provide less accurate results in the intermediate range of input intensity
than in the extreme ranges. (Indeed, the relative accuracy between analytical
results at two different intensities might be used to obtain some indication of the
frequency with which the system switches from the biocked to the unblocked state
and vice versa).

If we assume that non-transient behaviour is exhibited at all times, the problem
lends itself to a particularly simple solution and we obtain an approximation to the
true solution. It will be shown by simulation that this approximation yields reasonable
results.

Under the assumption of steady-state, the system may be regarded as the
queueing network shown in Figure 4. The artificial server represents the blocking
delay. Under the queueing rules for this model, there is no queueing for the proces-
sors once memory access is completed; a task is admitted into the memory only when
there is a free processor ready and waiting for it.

It only remains to compute the value of a and the artificial service rate, u,,.
it is easy to see that

a=1- Zpi,j (18)
i+ise
and
J 1 P,
b=) (19)
as 2 P,
it+j=c

If Re(s) is the Laplace transform of the response time distribution for the tasks
when the system has c processors functioning, we have:

o
S+lta

JHmag [M (20)

Re(s) = S+fmq S+

where

4 +1—-a

182

Ha = Mag—OA
and

Mmq = Mm—A (21
The response time density function for ¢c>0 is obtained by inverting R.(s).

2.4. Validation

In an attempt to validate the analytical resuits obtained above, a multiprocessor
with three processors was considered.

As a reference, a GPSS simulation model was developed for the system. The
input intensity was varied over a wide range and results obtained through simulation
compared with those obtained from analysis. in Table 1, we present the mean
response times from the simulation and the analysis.

Throughout the range of intensities studied, the analytical and simulation results
were acceptably close (to within 10% in most cases).

2.5. Non-exponential Service Rates

While the extreme complexity of analyzing systems with blocking and general
service distributions forces the analyst to assume exponential service distributions,
it is common knowledge that programs on many occasions have non-exponential ser-
vice requirements. This can be modelled by equating the mean of the actual service
time to a fictitious exponential quantity. In such instances, the sensitivity of the
model to this inaccuracy is crucial.®

We test the robustness of our model to non-exponential service time distribu-
tions by assuming those to be Weibull, which is a more general distribution than the
exponential. This distribution has the distribution function F,(t)=1—e~¢%". The mean
is

Hwe = T((n+1)/ 1)/ ¢

and the variance is

0% = [[((m+2)/ n)-T*((n+1)/)]/ &

where ['(s) is the gamma function.

The exponential and the Rayleigh distributions are special cases of the Weibull,
obtained by setting =1, and n=2, respectively. When <1, the variance is greater
than the mean, when =1, the variance equals the mean, and when 7>1, the variance
is less than the mean.

Our test for model robustness takes the form of plotting the ratio of the mean
response time when 7 is 0.5 and 0.7 respectively to when n=1 (i.e., the exponential
distribution). The mean response time stays close to the exponential value for a rela-
tively large value of nominal input intensity. As expected, at high intensities, there is
a marked divergence from the value predicted by the exponential distribution. How-
~ ever, in critical control applications, the utilization is almost always very low to allow
sufficiently broad margins of safety. Note that the actual input intensity is greater
than the nominal value as defined in Figure 6, obtained by computer simulation.

8 Indeed, the success of such models as the central server Is due In a large measure to a relative in-
senslitivity to this inaccuracy.

133

3. Discussion

In this paper, we have presented a logical taxonomy for muitiprocessor systems
used in control applications, and analyzed one important class. It is clear from the
model developed here that what is ‘obtained is an upper bound for the actual
response times. There are two queues in this system: one in front of the artificial
server and the other in front of the Memory-Dispatcher. The model incorporates both
queues since when blocking occurs the task at the head-of-the-line (H.O.L.) position
is waiting for the first of the tasks admitted to the system to leave so that it can be
unblocked and begin to access the M.D. Tasks that have entered the queue after the
H.O.L. task have this latter task as an additional impediment to entry into the system.
The system represented in Figure 4 follows immediately from the above argument.

implicit to this model is the assumption of independence between the M.D. and
the processors. This is clearly a simplification, the blocking ensures that no such
independence exists. Due to the correlation between the activity of the M.D. and the
processors, the model tends to overestimate the response times. A more accurate
model should attempt to deal with this by subtracting a correction term to account for
the correlation.

Extension to Type 1b systems with |/O represented by paging and admitting of
multiprogramming, although nontrivial, is not difficult. One wouid have here three
classes of jobs: one in front of, or being served by, the memory-dispatcher, one
undergoing service, and the third class consisting of jobs either being served by the
memory after receiving a portion of their service at the processor or waiting to reac-
cess the processor. It is also not difficult to think of a number of different systems
based on variations of the above basic theme. For instance, one might obtain new
models based on assigning priorities to the tasks. in all these cases, the artificial
server approach can be used to advantage.

Taking account of multiple job classes with FCFS service and no priority distinc-
tion between the classes is, however, very difficult to do exactly since an
unmanageably large number of states results. Suitable approximations must there-
fore be sought. These are likely to be only moderately accurate. One approach might
be to use clustering techniques to identify "metaclasses' (groups of classes) and

then to employ some averaging techniques.g This method should be reasonably accu-
rate at low intensities. At high intensitites, an approach based on the diffusion
approximation should be explored.

Also, the reader should bear in mind that we have analyzed a logical family of
computer systems. This analysis is therefore valid for a wide range of physical imple-
mentations.

The model presented provides not only the mean response times, but is also a
means to obtain the response time distribution. This response time distribution, once
obtained, can be used in a number of ways. As already mentioned, we showed in [2]
how response time distributions together with a probabilistic model of the computer
and a full mathematical description of the control application can be processed to
provide rigorous and objective means for evaluating the performance of a real-time
multiprocessor system in the context of its application. '

Tradeoffs can also be studied and the multiprocessor system refined thereby.
For example, one might consider trading off processor number against processor
power [7]. :

9 For an example of a rather simple averagl/ng technique used in a slightly different context, see

[10].

Acknowledgements

The authors are indebted to Rick Butler and Milton Holt at the NASA Langley

Research Center for their financial and technical assistance, to Y.-H. Lee at The
University of Michigan for numerous technical discussions, and to the four referees
for their careful reading of the draft manuscript.

References

(1]

(2]

[3]

(4]

[s]

[6]

[7]

(el

[e]

K. G. Shin and C. M. Krishna, ""A Distributed Microprocessor System for Controlling
and Managing Fighter Aircraft”, Proc. Distributed Data Acquisition, Comput-
ing, and Control Symposium., Miami Beach, FL., December 1980, pp. 156-166.

C. M. Krishna and K. G. Shin, "Performance Measures for Multiprocessor Controll-
ers," Performance '83: Ninth Int'l Symp. on Computer Perf., Measurement
and Evaluation, pp. 229-250, May 1983.

J. F. Meyer, "On Evaluating the Performability of Degrading Computer Systems,"”
IEEFE Trans. Comput., Vol. C-29, No. 6, pp. 501-509, June 1980.

P. Jacobson and E. D. Lazowska, "The Method of Surrogate Delays: Simultaneous
Possession in Analytic Models of Computer Systems," ACM Sigmetrics Perfor-
mance Fvaluation Review, Vol. 10, No. 3, pp. 165-174, September 1981.

A. L. Hopkins , ef. al, "FTMP -- A Highly Reliable Fault-Tolerant Multiprocessor for
Aircraft,” Proc. /[FEFE, Vol. 66, No. 10, pp. 1221 -1239, October 1978.

A. A. Nilsson and T. Altiok, "Open Queueing Networks with Finite Capacity
Queues,” Proc. 1981 Int'l Conf. Parallel Processing, pp. 87-91, August 25-
28, 1981.

P. J. B. King and I. Mitrani, "The Effect of Breakdown on the Performance of Mul-
tiprocessor Systems"”, Performance’'81: Proc. 8th Int'l Symp. Comp. Perfor-
mance Model., Meas. and Fual., November 1981, pp. 201-211.

S. J. Larimer and S.K. Maher, '"The Continuously Reconfiguring Multiprocessor,”
NATO-AGARD Meeting on Tactical Airborne Computing, Roros, Norway, 1981.

E. Cinlar, Introduction to Stochastic Processes, Prentice Hall, Englewood Cliffs,
Nd, 1975.

[10]P. Markenscoff, "A Multiple Processor System for Real Time Control Tasks,"

Ninth Annu. Symp. Comp. Arch., pp. 274-282, August 1982.

185

Real-Time Multiprocessor

Dynamic Static
Task Allocation Task Allocation
No Common Common
Memory Memory
Type la Type 1b Type 2

Figure 1

Controllers

Tasks Triggered by Environmental Stimuli

v
&~a" A
Processors @ @ Common Mass

Memory

Figure 2

Arrival Rate A

|

Dispatcher Queue

Task Dispatcher

Partly Dynamic
& Partly Static
Task Allocation

Type 3

Logical Classification of Multiprocessor

Application Software

\.\\\\ \\
~

To Qutput Devices,

186

Memory Queue

A Real-Time Multiprocessor Controller

Tasks Triggered by Environmental Stimuli
Arrival Rate A

|

Memory-~Dispatcher
Queue with Blocking

Combined
Memory-Dispatcher

Processors b e
VY v

To Output Devices

Figure 3 Approximate Model of the Real-Time Multiprocessor

Controller

Tasks Triggered by Environmental Stimuli
Arrival Rate A

\

Artificial

«—— 3 Single Path
Server nd

> Multiple Paths

N

I Memory-Dispatcher

Processors

To Output Devices ’ .

Figure 4 Task-Oriented Model

(§+2)u

Figure 5 State Transition Diagram
—rgure 2

Mean Response Time when
Weibull Parameter

=)
ST
=]
.“_5..
C-\,,n = -
‘_/-n = 0.7
=]
==
o |)
= Um = 5}
L
o
o
o
E;E" Ratic of Means =
Iodt
S1 Nominal Intensity
~t
_~—=:::::::0 - n=1
[o) N N + =
3 ‘ y b.60 0.80 1.00
.20 0.40 0. X .
b 020 NOMINAL INTENSITY
Fiqure 6 System Response with Weibull

Service Distributions

188

Mean Response Time when
Weibull Parameter

_ Mean Arrival Rate

" No. of Processors x u

Tablel. Comparison of Analytical and Simulation Mean Response Time

A Apalytical (x10°%) | Simulation (x10-%),
2.0 72.1 71.7
4.0 76.6 72.3
6.0 . 79.4 73.3
B.0 82.0 74.4
10.0 84.9 : 75.6
12.0 88.0 77.9
14.0 91.3 80.8
16.0 95.2 83.8
18.0 99.8 86.5
20.0 1056.3 92.9
22.0 112.1 98.4
24.0 120.6 108.2

260 131.9 121.4

1 =200 u,=500 ¢=3

189

