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Using the adaptive model following control (AMFC) technique, a

control system is developed to obtain high performance of an

industrial manipulator that has wide variations in its payload and

spatial configuration. The main advantage of this technique over

other methods is simplicity in computation, which provides the

capability of real-time control calculation with today's
microprocessors. Moreover, it guarantees automatically the stability
of the overall system without requiring any additional stability
analysis.

In order to demonstrate the capability of this technique, we have

conducted a computer simulation for the Unimation PUMA 600

series manipulator. The simulation results agree well with the

expected high performance of the control system: (1) computational

requirements are much less than other existing ones, and (2) it

provides the capability of adapting to large variations in payload
and spatial configuration. Also presented is a comparison of the

amount of its required computation with that of other methods.
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Application of robots to industrial automation has
emerged as a major research and development task in
both industry and universities. This trend is motivated
mainly by a desire for increasing productivity and for
improving the worker's life as a whole. However, there
are many technical issues and problems to be solved
before the desire is met. One of these problems is to
design robotic manipulator controllers that can drive
manipulators more effectively and efficiently than the
contemporary controllers (e.g., in terms of operating
speed, use of energy, capability of dealing with various
tasks, accuracy, etc.). The contemporary controllers used
,by robot manufacturers are largely based on simple
conventional feedback control techniques that are unable
to cope with complex, uncertain dynamics of the
manipulator and its interaction with other machinery. On
the other hand, most of the proposed advanced controllers
are either based on unrealistic approximations or on
requirements that demand too much computation to
implement on inexpensive computers.

The recent development of small. low-cost, high-
performance microprocessors and memories using the
fast-developing semiconductor technology has widened
the application horizon of real-time computer control such
as numerical control, process control, etc. Such
microprocessors and memories can also be used for
implementing the controllers (in real time) which enable
manipulators to perform complex manufacturing tasks
automatically with high speed, accuracy and low energy.
This paper considers the design of such a controller that
(1) can cope with the complex manipulator dynamics, and
(2) requires only a simple computation structure for
which microcomputers are suitable.

The manipulator control problem can be classified
into four different categories depending upon the need of
collision avoidance and adherence to a given trajectory
[13]. However, it is frequently specified as the problem
of finding appropriate forces/torques to drive the
associated actuators so that the manipulator may follow a
prespecified trajectory with a given velocities schedule
(this is called the inverse problem).

Presently there are three well-known methods that
provide position control of a manipulator and are all
kinematically oriented. In resolved motion position
control (RMPC) [81, the desired joint positions are
determined directly by solving the inverse kinematic
equations, and then the related joint velocities and
accelerations are calculated from the positions. In
resolved motion rate control (RMRC) [1 1, 12], the linear/
angular velocities needed to maintain the desired end-
effector position and orientation are mapped into joint
rates by the inverse Jacobian matrix, and then the joint
accelerations are computed from the velocities. In
resolved motion acceleration control (RMAC) [6],
corrective Cartesian accelerations are calculated and
resolved into joint accelerations, and the joint positions

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. AES-19, NO. 6 NOVEMBER 1983 805

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 17:53:12 UTC from IEEE Xplore.  Restrictions apply. 



and rates are measured. All of these motion control
schemes resolve the control into generalized joint
coordinates denoted by q, q, and q. Given q, q, and 4,
joint torques can be obtained by the Lagrangian
formulation [9] or Newton-Euler formulation [7] of
manipulator dynamics. Although recently more efficient
algorithms for computation of dynamics have been
proposed [3. 71, these methods still require a considerable
amount of computation during the motion. Furthermore,
these methods may include modeling error-discrepancies
between the dynamic model and actual manipulator
dynamics thus requiring additional intelligent controllers
to compensate for this error. Also, note that even if
accurate modeling is possible the dynamic model has to
be a function of the task being performed (e.g., payload
and positions of the end effector). This fact results in
either very complex dynamic models or inaccurate but
simplified models; neither of the two is desirable.

One possible technique to reduce the complexity of
the motion equations is the parameterization of these
equations using a table look-up technique I1, 10 1. This
method is limited by its inherent finite dimensionality
and, in addition, requires a prohibitively large storage
space if payload changes are to be included [161.

As a remedy for the problems mentioned above, we
have employed an adaptive control technique. This
control technique has an important advantage in that (I) it
does not require an exact dynamic model of the
manipulator, and (2) it requires much less computation
than the most efficient existing methods. Note that
attempts with a similar notion have been made by others.
Koivo used the self-tuning adaptive scheme to control the
manipulator [4], which is composed of a system
parameter identifier and a controller based on the
identified system parameters. No results are given on the
effects of payload and no comparison is made with other
control methods. Horowitz and Tomizuka [14] employed
an explicit adaptation in which the manipulator
parameters are identified with a double integrator
reference model and then used for an adaptive control,
compensating for the nonlinearity and decoupling the
manipulator dynamics. This method requires
computations for both parameter identification and
adaptive control law. Also, the gravity effect was omitted
in their study. An adaptive control scheme using a
reference model was also proposed in [2], where the
controller is to drive the manipulator to follow the
reference model as closely as possible. It employed the
steepest descent method in the adaptation mechanism, and
the stability analysis was done separately using a
linearized model. However, this design method cannot be
applied in general practice since stability analysis for each
application is necessary but difficult to perform.

In this paper, we have developed a control scheme to
overcome the above problems using the adaptive model
following control (AMFC) technique [51 which provides
computational speed and automatic system stability
regardless of variations in payload and spatial

configuration. First, a class of control structures which
assure overall system stability is determined. Then, out of
these structures a manipulator controller is designed that
has high performance and automatic stability yet requires
only a small amount of computation. This control scheme
has an advantage over [2] in that the stability of the
overall system can be assured automatically using the
hyperstability and positivity concepts. Thus one can
eliminate the need of separate study of the system
stability. Also it has an advantage over [14] in that an
implicit adaptation scheme is employed, thereby not
requiring any computation for parameter identification.
The reference model in the present scheme is a general
second-order linear system which may be more suitable
than the pure double integrator for specifying the desired
manipulator performance such as rise time, overshoot,
damping, etc. Note that the manipulator dynamics are
represented as a nonlinear second-order system.

This paper is organized as follows. Section 11 gives
the problem and a solution algorithm for the adaptive
model following control, Section 111 presents computer
simulation of the Unimation PUMA 600 manipulator in
order to demonstrate the capability of the method
developed, Section IV analyzes the amount of require
computation and compares with other methods, and
Section V contains the conclusion.

II. ADAPTIVE MODEL FOLLOWING CONTROL

The first step in the development of any manipulator
control system is to derive an analytical model of
manipulator dynamics. Using the Lagrangian mechanics
[9]. one can derive explicit dynamic equations which
represent generalized forces/torques in terms of the joint
positions, velocities, and accelerations:

D(q)q + h(q, q) + g(q) - u (1)

Where a is an n x 1 generalized force/torque vector and
q, q, q are vectors of generalized coordinates, velocities,
and accelerations, respectively. D(q) is an n x n inertial
matrix, h(q, q) is an n x I Coriolis and centrifugal force
vector, g(q) is an n x I gravitational loading vector, and
n is the number of joints in the manipulator. The inertia,
the gravity loading, and the Coriolis and centrifugal terms
depend on the position of each joint as well as on the
mass, the first moment, and the inertia of each link. Also
note that these terms are functions of manipulator payload
(i.e., tool and parts). The inertia and the gravity terms
are dominant at slower operating speeds. At faster speeds
the Coriolis and centrifugal effects become significant
[7]. In general, the design of manipulator controllers has
been hampered by the inherent nonlinearity and the joint
couplings as evidenced in (1).

The dynamics equation (1) can be converted into a
state-variable representation with 2n-dimensional state
vector y - [yPy.]T - [qTqTT (T denotes transpose) as
follows:
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y = Apy + BP (y)u + Cp,(y) (2)

where

Ap 0 IlA, =[g ]

Bp(y) IK (Y)1

C,1(y) [ -D -(y)[g(y)+h(y)I]

These equations show that the manipulator dynamics
are highly nonlinear coupled functions of positions and
velocities of the manipulator joints. The nonlinear
coupled characteristics of the manipulator dynamics cause
the design of any controller to be complex and
computationally demanding, thereby making its real-time
implementation extremely difficult if not impossible. To
overcome this difficulty without appealing to complex
controllers, we have adopted the adaptive model
following control (AMFC) method [5] in this paper.
Considering the manipulator dynamics (1), the reference
model is chosen to be a set of n uncoupled linear time-
invariant second-order systems (i.e., one for each of n
joints), which are described as follows:

x, + 24wi,x, + w7xi = w2ri for i= 1,2, ..., n (3)

where for each joint i, xi is the position produced by the
reference model (i.e., the desired position), ri is the
command input to the reference model, ,i is the damping
ratio, and wi is the natural frequency.

Note that the order and the structure of the reference
model are the same as those of the manipulator dynamics
in (1). The reference model can be regarded as a means
of supplying the manipulator positions and velocities with
desired characteristics of rise time, overshoot, and
damping. Then the AMFC problem is to design an
adaptive controller that drives the manipulator to follow
the desired positions and velocities generated by the
reference model as closely as possible. In such a case,
the reference model can be considered as a trajectory
planner that provides the manipulator controller with
information on a preplanned path and its timing. Hence
we can apply command inputs ri to the reference model
so that the reference model generates the desired positions
and velocities. For example, we can simply apply a (soft)
saturated ramp input r(t)' to generate a trajectory for the
manipulator to move from one point to another so that the
velocity profile of the reference model has segments of
acceleration, cruise, and deceleration (similar to a
trapezoidal velocity profile) by selecting adequate values
of (i, wi (see Fig. 3(a) for this). In the foregoing sense

'A saturated ramp input r(t) is defined as

(t) ctIT for O' t < T
r for t T

where c is the distance to move, T is the time interval of interest, and t

stands for actual time.

the model reference adaptive controller can be regarded
as similar to most conventional controllers solving the
inverse problem. It is, however, important to observe that
the model reference adaptive controller requires neither
accurate modeling of manipulator dynamics nor solving
the dynamics equations (which is known to be difficult
and computationally demanding). This is the novelty of
the present method.

The reference model equations can be converted into
a state variable form as follows:

x =Ar x +Ber

where

(4)

+ = xi for i= 1,2., n

tn= 2I -2;wJ1

BttB [2I]

Notice that letter I in the above expressions is used to
mean the following: I is an n x n identity matrix

w2l = diag[w2 ...2]

(XI = diag[ Iwl ... 4,J,
The AMFC problem is now to design an adaptive

controller that guides the manipulator to follow the
reference model as closely as possible. There are three
basic approaches to the AMFC design problem. The first
approach uses local parametric optimization to derive an
adaptive law but provides no guarantee on the stability of
the resulting adaptive system, thus requiring a separate
stability analysis which is often very difficult if not
impossible. The work reported in [2] is an example of
this approach. The second approach is based on the use
of Lyapunov functions in order to design stable adaptive
systems. However, it is in practice impossible to find a
Lyapunov function with the best performance. In the third
approach one can obtain a large family of stable adaptive
systems using the hyperstability and positivity concepts
[5]. Then an adaptive controller with the best
performance can be selected from them. On the other
hand, an adaptation mechanism for the AMFC problem
may require an explicit model (this is called an explicit
adaptation) or may not require such a model at all (this
method is called an implicit adaptation), depending upon
the design objectives. The former requires an explicit
model to be identified as a generating part of the control
law. This approach normally requires additional time for
the model identification and was adopted in [14]. The
latter specifies the design objective only for the
computation of the control law without requiring any
explicit model.
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Since our present main objective lies in the design
a manipulator controller which can (I) compensate for
nonlinearity, joint couplings, and uncertainty in the
dynamics. and (2) be implemented in real time on
inexpensive microcomputers, we have chosen here the
third approach with implicit adaptation.

The generalized state error e is defined by

e = x -y.

The adaptive model following control signal a is

u l K, +±AK,(e,t)jy + [K, + AK,(e,t) jr

where K! and K, represent linear gains, and AK, and j
represent adaptive gains. Note that the terms with
subscript v constitute feedback gains for position and
velocities of the manipulator, and those with subscript
feedforward gains for the command input. The
generalized error is used here as a driving force to the
adaptation mechanism.

The objective of the adaptation mechanism for
generating two time-varying matrices AK,.(e, t) and
AKr(e,t) is to assure that the generalized state error e
goes to zero as t xc under certain conditions. The
adaptation mechanism assuring the above convergence
can be derived by using the approach in [5] as follows:

v = He
ft

-AK,,(e, t) = AK,,(v,t) - p I (v, t, ) d-r

AK,(v,t) JFv(Gy)Tc(t + F'v(Gy)T + AK,(O)

AKr(v,t) = Mv(Nr)T dt + M'v(NR)T + AKr(O)

(10)

(1 1)

where F, M, G, and N are positive definite matrices, and
F' and M' are positive semidefinite matrices with
appropriate dimensions. The stability of this system can
be assured by choosing a matrix H that satisfies

H - BLIP
(6)

where P is a positive definite matrix satisfying
K,' ATP+PA,,p - Q

(12)

(13)

for a given positive definite matrix Q. Note that the
above choice of H guarantees the hyperstability and
positivity of the system (see [5] for a detailed discussion
and proof).

A block diagram of the adaptive model following
control system of the manipulator discussed thus far is
given in Fig. 1 with K, - [K,,, K,.j. The values of the

(7)

(8)+ p2(v.t) + AK,(0)

AKKr(e,t) -= AK,.(v,t) = L i (V,(t,T) dT

+ kf2(V, t) + AKr(0) (9)

where

AK, (0) - O (v! t, ) dT

AKr(0) - f (VJ(v,tT) dT.

In these equations, the integrand matrices (pPI and 4i
represent a nonlinear time-varying integral relation
between the two matrices AK, (v, t) and AK, (v, t) and the
values of v(X) for 0T't, which reflects the memory of
the adaptation mechanism. This integral adaptation
assures zero steady-state errors of the manipulator
position and velocity. Matrices 'P2 and 4'2 denote a
nonlinear time-varying proportional relation between the
two matrices AK,,(v, t) and AKr(v, t) and the values of
v(t), which are transient terms vanishing at the end of the
adaptation process. (That is, the adaptation process ends
when v = 0 and therefore (p2(0,t) = 0 and t]i2(0,t) = 0
for all t.) Also note that p,(O,t,r) = 4I(0,t,T) = 0 for
all t and T.

The above adaptation law can be actually designed by

Fig. 1. Adaptive model following control of a manipulator.

linear model following gains K!,, Kr are computed from
the linear model following criterion for a typical
manipulator position:

Kl - Bp (A, -AP)
Kr =BP Bln
where B, = (B, BP) -'BT is the left Penrose pseudo-
inverse of Bp [5]. By choosing appropriate values of the
design variables F, F', M, M', G, and N, one can form
a separate decoupled adaptation mechanism for each
joint. A high ratio of the proportional gain to the integral
gain leads to a high speed in reducing the error e, which,
however, requires larger control energy. The larger the
proportional and integral gains the faster adaptation
becomes. However, the increase of these gains is limited
by the saturation on the control input and also by the
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imperfect characterization of the manipulator dynamics.2
It is therefore necessary to have a tune-up stage for
choosing the design (gain) parameters in the adaptation
mechanism.

More significantly, each separate adaptation
mechanism automatically takes care of the interjoint
coupling effects on the corresponding joint. The coupling
effects are implicitly compensated in the gain adaptation
(our simulation results in the next section demonstrate
this capability) by using the actual manipulator position
and velocity in e. This is a considerable advantage of the
present method, particularly because any direct handling
of the couplings results in a very complex controller
which is too computationally demanding to implement in
real time on inexpensive microprocessors.

III. SIMULATION RESULTS

As a numerical example, a PUMA 600 series
manipulator is simulated on DEC VAX- 1 1/780 to
demonstrate the capability of the AMFC method
discussed thus far. The PUMA manipulator is
manufactured by Unimation and consists of six rotational
joints, each of which is driven by a dc servomotor.

Using the Lagrangian formulation the dynamics of the
first three joints of the manipulator (i.e., (1)) can be
described by
n n n

E dij (q) ij + E E h,Ik (q) qj qk + gi (q)
j= j=l k=1

= ui, i=1,2,. n (14)

where dij(q) is the inertial term acting on joint i due to
joint], hijk(q) ijqk represents the Coriolis or centrifugal
force on joint i caused by joint j and k, and gi(q) is the
gravitational force acting on joint i. Some of the typical
terms have the following form:

d11(q) Jlll + JI33 + J233 + 2 J234d, + J24d

+ J322 + J333 + J334 d?
+ (J211 + 2 J214a2 + J24a + J344al) Cl

+ 222 S +(J31I J333) 23

+ 2 J334a2 C2 S23

h2- (J21 - J222 + 2 J214a2 + J24452 + J344a2) S2C2

+ (J311 J333) C23 S23

- J334a2 (C2 C23 - S2 S23)

2 =- (a2m3 + a2m2+m2 2) C2g m33S23 g

2Note that, strictly speaking, the AMFC theory is valid only for
time-invariant systems, although it can be extended for practical purpose
to time-varying systems without theoretical proof (e.g., slowly time-
varying systems). So, time-varying systems like the present one are
characterized by some (approximate) models for which the AMFC
method works.

where Jijk is the (j,k)th element of the 4 x 4 inertia tensor
J, for the ith joint; x;, vi,7 represent the coordinate of the
center of mass of joint i with respect to its coordinate
frame. d2, a2 are lengths related to the arm coordinate
frame, and for i,j= 1,2 ..., n, C, = cos(q1), S, =

sin(qi), Cq = cos(qi + qj), Sij = sin(q1 + qj). The
remaining three joints are not considered here for
computational convenience. Although these three joints
may affect the first three joints through the joint
couplings, their main functions are to orient the end
effector and, therefore, do not play as an important role
as the first three joints in the area of our present concern
(i.e., inertia changes due to its payload and spatial
configuration). Also, note that the simulator is not a part
of the controller and will be replaced by the manipulator
in case of actual implementation.

The simulator computes the current position and
velocity of each joint with nonlinear coupled dynamics of
the manipulator given by (14), and these values are
supplied to the adaptive controller. The adaptation
mechanism generates adaptive feedback and feedforward
gains which are then used by the controller. (That is, it is
an implicit adaptation since the system parameters are not
directly computed or used.) This procedure is executed
once every sampling interval.

Numerical values used in this simulation are as
follows.

(1) The mass, center of mass, and inertia of each
joint of the PUMA manipulator are set as in Table I.

(2) Q is a diagonal matrix with diag Q =
[10 10 10 1 1 11]. This value of Q will result in
more weight on the position following than the velocity
following. Namely, accuracy in positioning is more
emphasized than that in velocity. Depending upon the
application tasks one can adjust relative weightings
between the accuracies in position and velocity.

(3) Parameters in the reference model are (i = 1.0,
and wi = 3.0 (5.0 for the saturated ramp response) for i
- 1, 2, ... ,6 to obtain critically damped responses for
each joint.

Note that the choice of these parameters is somewhat
arbitrary for the sake of numerical demonstration and any
of such choices does not change the basic performance of
our manipulator control method.

Responses for the Step Input. The first simulation
shows the results when a step command input r is applied
from an initial joint angle (-60°, - 1800, 90°) (i.e., a
horizontally flat position) to a final joint angles (- 1200,
- 1350, 1350) (i.e., a position with the lower arm 450
upward and the upper arm vertically standing) to
demonstrate the performance of the proposed adaptive
control scheme.

Fig. 2(a) shows the response of the proposed adaptive
controller. It shows the response of joint 2 and other
joints have shown similar characteristics and hence are
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TABLE I
Mass, First Moments, and Inertias of the First Three Joints for the PUMA 600

Manipulator

Mass Center of Mass Inertia

M . - 1, 1 1
Link (kg) (m) (m) (m) (kg m) (kg m2) (kg.m2)

1 2.27 0.0 0.0 0.075 0.00376 0.00376 0.0169
2 15.91 - 0.216 0.0 0.0 0.9897 0.1237 0.1237
3 11.36 0.0 0.0 0.216 0.0074 0.0074 0.7067
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Fig. 2. (a) Controller responses of joint 2 with step command.
--: command input; -:-- response of the reference model

response of the manipulator. (b) Position errors on

magnified scale with step command. no load;-,---

omitted here. The gross dotted line represents the step

command input that describes the position and timing
information for the reference model to follow, and the
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---- load of 5 kg. (d) Adaptive feed-forward gain of joint 3 with

step command. :no load; ----: load of 2.5 kg;
--: load of 5 kg.

fine dotted line depicts the response of the reference
model. We also plotted the manipulator responses with
solid lines for three cases:
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(1) when there is no load
(2) when there is a maximum load of 2.5 kg (about 5 lb,

given by the manufacturer3)
(3) when a load of 5 kg is considered.

The result shows that the three solid lines are virtually
indistinguishable from the fine dotted line, demonstrating
that the manipulator closely follows the behavior of the
reference model regardless of the load it is carrying.
Case (3) is included to show the adaptive capability of
our method, although it may bear little practical
importance. The errors between the model and the
manipulator responses are magnified for the above three
load conditions in Fig. 2(b) (again, only the errors for
joint 2 are presented), showing that the errors are always
less than 1 degree regardless of the load condition. The
maximum position tracking errors for each joint and each
load condition are summarized in Table lI. Fig. 2(c)

TABLE II
Maximum Position Tracking Errors with a Step Command

Load (kg) Joint 1 (deg) Joint 2 (deg) Joint 3 (deg)
0 0.123 0.399 0.223
2.5 0.712 0.692 0.458
5 1.407 0.959 0.793

depicts the corresponding control inputs for joint 2. Fig.
2(d) shows a typical adaptive gain of AK,3 (the feed-
forward gain of the joint 3), indicating the adaptation
capability of the proposed controller. (The choice of joint
3 for this is arbitrary.)

Responses for the Saturated Ramp Input. In this
simulation, the first three joints of the manipulator are
commanded with a saturated ramp input from initial joint
angles (-60°, -1800, 900) to final joint angles (-120°,
- 135°0 135°), with time interval T of 2 seconds as in
Fig. 3(a). This command input r drives the reference
model to move to the target point within about 3 s.

Fig. 3(a) shows the response of the proposed adaptive
controller for joint 2. Again, this result exhibits that the
manipulator closely follows the behavior of the reference
model regardless of its load condition. Fig. 3(b) shows
the position error in a magnified scale, showing the errors
always less than I degree for this joint irrespective of its
load condition. The maximum position tracking errors for
each joint and each load condition are summarized also in
Table IlI. The maximum error in positioning is always
less than 1.5 degrees for all joints and load conditions.
Fig. 3(c) depicts the corresponding control inputs for joint
2. Fig. 3(d) shows an adaptive gain of AKr3.

As a whole this simulation exhibits that the proposed
control method has a potential for high performance with
a very simple structure.

3As one referee pointed out, the allowable maximum load for a
simulated manipulator may be much higher than this due to the
inaccuracy in the simulated frictions.

TABLE III
Maximum Position Tracking Errors with a Ramp Command

Load (kg) Joint 1 (deg) Joint 2 (deg) Joint 3 (deg)

0 0.089 0.303 0.244
2.5 0.259 0.511 0.467
5 0.592 0.734 0.731

IV. COMPUTATIONAL COMPLEXITY

The Lagrangian formulation or the Newton-Euler
formulation may be used to compute the applied torque/
force to control the manipulator. With both the recursive
Lagrangian formulation and the recursive Newtonian
formulation of the dynamics, the number of additions and
multiplications varies linearly with the number of joints,
whereas the Lagrangian formulation requires the
computation of order of n4 [3]. However, they require
computations of order of 1000 for n = 6, which is still a
challenging task for today's microprocessors to perform
in real time.

For the explicit adaptation scheme proposed by
Horowitz and Tomizuka [14], the major computational
burdens were on the parameter identification (i.e., N =
Na + Nm) and also on the matrix computation for the
inertia and Coriolis terms which results in 0(n3)
dependencies.

For the adaptive model following control technique
the number of computations also varies linearly with the
number of joints. However, the technique does not
require the solution of the inverse problem at all but
instead calculates adaptively both the feedforward and
feedback gains (i.e., implicit adaptation). The AMFC
algorithm reported in [2] is based on the steepest descent
optimization, and its minimal computational requirement
is about twice as high as that of the adaptive algorithm
developed in this paper. Note that this comparison states
only a lower bound since the method in [2] also has to
include additional overhead for the needed separate
analysis of stability.

The discrete-time version of [2] is presented in [15],
where the simplified version of the adaptive control in [21
is presented. However, there is only one adaptation loop
in this scheme, whereas three adaptation loops are
employed in our scheme, namely, .AKr, AKp, AK,,
making the discrete version [15] less capable yet
requiring an approximately the same amount of
computation as the present method.

For comparison purposes computational requirements
for different methods are given in Table IV.

V. CONCLUSION

We have presented the design of a manipulator
control system on the basis of the adaptive model
following concept. The design has focused on the
following three important features. First, unlike most
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other existing methods, changes in manipulator payload
can be handled effectively without requiring the payload
to be specified explicitly in the design of the manipulator
control system. In other words, the control system is
designed to provide any desired performance (e.g.,
accuracy in position and velocity) equally well for a wide
range of payload. This capability is important to many
manufacturing applications since any flexible automation
of medium-volume batch manufacturing, a prime target of
robotization, requires various parts to be handled,
assembled, and inspected. Second, it is conceptually and
computationally simpler than any other existing method
without loss of performance (actually with better
performance). Third, it guarantees the stability of the
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(d)

inputs for joint 2 with saturated ramp command. no load;
load of 2.5 kg; ------: load of 5 kg. (d) Adaptive feed-

forward gain of joint 3 with saturated ramp command.
no load; -- - load of 2.5 kg; ------: load of 5 kg.

manipulator controller, leaving control designers free
from the stability problem which is often very difficult to
an analyze if not impossible. Assurance of the
manipulator controller stability cannot be
overemphasized, especially in view of the potential
danger of human injury and loss of expensive equipment
as a result of the controller instability.

Traditionally, robot manufacturers have been mainly
concerned with more or less mechanical solutions to the
manipulator control problem (e.g., counterbalancing with
additional weight attachment). Controllers employed in
most industrial robots are rather simple and primitive. For
example, controllers in such robots assume constant
inertia and zero Coriolis force. Therefore, these
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TABLE IV
Comparison of Computational Requirements

Multiplications Additions

Lagrangian order of n4 order of 114
Recursive Lagrangian 412n-277 320n-201

Newton-Euler 150ni-4& 131 n-48
Horowitz and Tomizuka n 3 + 2n2 + lOn + N,, n3 + n2 + 8n + N,
Dubowsky and DesForges 33n 26n

Kim and Shin 14n 13n

controllers provide acceptable performance only in a
narrow operation range and are incapable of offering the
high level of performance required for diversified,
modem manufacturing applications. On the other hand,
solutions based on mechanics (e.g., Lagrangian
mechanics) and kinematics are often too complex to
implement with inexpensive microprocessors available in
today's market. Considering these facts, the manipulator
control method proposed here has high potential use-
due to its computational simplicity and high performance
capability in designing intelligent controllers for the
growing number of sophisticated industrial manipulators.
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