
Proceedings of 23rd Conference
on Decision and Control
Las Vegas, NV, December 1984

FP4 - 4:30
ROBOT PATH PLANNING USING DYNAMIC PROGRAMMING'

Kang G. Shin and Neil D. McKay

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 481 09

ABSTRACT

This paper presents a solution to the problem of minimizing
the cost of moving a robotic manipulator along a specified
geometric path subject to input torque/force constraints, tak-
ing the coupled, nonlinear dynamics of the manipulator into
account. The proposed method uses dynamic programming (DP)
to find the positions, velocities, accelerations, and torques that
minimize cost. Since the use of parametric functions reduces the
dimension of the state space from 2n for an n-jointed manipula-
tor to t u o , the DP method does not suffer from the "curse of
dimensionality". While maintaining the elegance of the path
planning methods in [1],[11], the DP method offers the advan-
tages that it can be used in the general case where (i) the
actuator torque limits are dependent on one another, (ii) the cost
functions can have an arbitrary form, and (iii) there are con-
straints on the jerk, or derivative of the acceleration.

As a numerical example, the path planning method is simu-
lated for a two-jointed robotic manipulator. The example consid-
ers first the minimum-time problem, comparing the solution with
that of the phase plane plot method in [ll]. Secondly, the sen-
sit ivity of the path solutions to the grid size is examined. Finally,
the DP method is applied to cases with interactions between
joint torque bounds and with cost functions other than minimum-
time, demonstrating its power and flexibility.

1. INTRODUCTION

Efficient control of industrial robots is a key to the success
of contemporary industrial automation, which is built around
robotic manipulators. The problem of robot control is very com-
plex because of the nonlinearity and couplings in robot dynamics
and is therefore usually solved by a two-stage optimization. The
first stage is called path or trajectory planning, and the
second stage is called control or path tracking. The path
tracker is responsible for making the robot's actual position and
velocity match desired values of position and velocity [9],[13];
the desired values are provided to the tracker by the path
planner. The path planner receives as input a spatial path
descriptor [5],[6] from which it calculates a time history of the
desired positions and velocities.

Earlier path planners, such as those presented in [7],[8]
use linear and/or non-linear programming to generate desired
positions, velocities, and accelerations. These methods assume
that the desired path is given in terms of the path's endpoints
and a set of intermediate, or corner, points. Along each segment
of the path the (constant) maximum accelerations and velocities
are given. Since worst-case bounds for the whole segment must
be used, these constant bounds may be quite inaccurate for
some parts of the segment. Additionally, these methods provide
no rigorous means of obtaining the maximum accelerations and
velocities; thus once the path planning process has been com-
pleted, the solution must be validated to make certain that the
robot's capabilities are not exceeded [2].

The algorithms presented in [l] and [l 11 do not suffer from
either of these problems, since they calculate acceleration and
velocity limits directly from the given path and the robot's

No. f 4 9 6 2 0 - 8 2 - C - 0 0 6 9 and Robot Systems Division, Center f o r Robotics and in-
' T h e work reporter7 here i s supported in part by the U. s. AFOSR Contract

tegrated Manufacturing (CRiM), The University of M i c h i g a n , Ann Arbor, M i c h i g a n .

dynamic equations and actuator characteristics. These methods
use phase plane plots to construct the minimum-time trajectory
for a given robot path. It is assumed that the path is given in
parameterized form, that the actuator torque limits are functions
only of the position and velocity of the manipulator, and that the
actuator torque limits are independent of one another. The tech-
nique for determining switching points in [l 11 is different from
that used in ;1]. It is more direct, but requires that the torque
bounds be at most quadratic in the velocity. In practice this is
usually the case, so the limitations on the forms of the torque
bounds should not significantly limit the applicability of the
method. However, the method in [l 11 can handle the general
case where the feasible regions in the phase plane are not sim-
ply connected, whereas that in [l] cannot.

While these methods are quite elegant, they have three
drawbacks: First, they work only for minimum time problems. In
situations where driving the robot consumes large amounts of
power, the assumption that minimum time is equivalent to minimum
cost may not be valid. Second, i t is assumed that the joint
torques can be changed instantaneously. This is only approxi-
mately true, and indeed it is desirable to limit the derivatives of
the joint torques (or, equivalently, the jerk, or derivative of the
acceleration) to prevent excessive mechanism wear. Third, they
are unable t o handle the general case where the actuator torque
limits are dependent on one another. This dependency occurs,
for example, when a robot uses a common power supply for the
servo amplifiers for all joints.

The correction of these deficiencies is the aim of this
paper. The method proposed here is t o use dynamic programming
[3], rather than the methods described above, to f ind the optimal
phase plane trajectory. Unlike those methods, dynamic program-
ming places no restrictions on the cost function that is to be
minimized. Putting limits on jerk is also possible, and inter-
dependence of torque bounds can be handled fairly painlessly,
as will be seen later.

The remainder of this paper is divided into four sections.
Section 2 gives a detailed description of the problem. Section 3
presents a solution algorithm using dynamic programming. Sec-
tion 4 presents numerical examples. Although a simple two-
jointed manipulator is used in these examples, it is sufficient to
show the significance of the method developed in this paper.
Using these numerical examples, first, we compare the results of
the direct minimum-time phase plane methods [l 11 with those of
the dynamic programming technique. Secondly, we examine the
sensitivity of the path planning solution to the grid size. Third,
the dynamic programming method is epplied to the general case
where (i) cost functions other than minimum time, and (ii) cou-
pling among the actuator torque bounds are considered. Finally,
Section 5 states conclusions drawn from our results.

2. PROBLEM STATEMENT
The goal of automation is to produce goods at as low a cost

as possible. In practice, costs may be divided into two groups:
f ixed and variable. Variable costs depend on details of the
manufacturing process, and include, in the cases where robots
are used, that part of the cost of driving a robot that varies with
robot motion, and some maintenance costs. Fixed costs are
those that remain constant on a per-unit-time basis, such as
taxes and heating costs. If one assumes that the fixed costs
dominate, then one obtains the usual assumption, namely that

1629 CH2093-3/84/0000- 1629 $1.00 0 1984 IEEE

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:11:50 UTC from IEEE Xplore. Restrictions apply.

cost per item produced will be proportional to the time taken t o
produce the item. The minimum time path planning problem is,
then, a special case of the minimum cost problem.

A loose statement of the minimum-cost path planning prob-
lem is as follows:

What control signals will drive a given robot from a given ini-
tial configuration t o a given final configuration with as low a
cost as possible, given constraints on the magnitudes and
derivatives of the control signals and constraints on the
intermediate configurations of the robot, i.e. given that the
robot must not hit any obstacles?

While the problem of avoiding obstacles in the robot's
workspace [5],[6] is not a conventional control theory problem,
the problem of minimizing the cost of moving a mechanical system
is. One way to sidestep the collision avoidance problem, then, is
t o assume that the desired path has been specified apr ior i , for
example as a parameterized curve in the robot's joint space.2 If
this assumption is added, then one obtains a second, slightly dif-
ferent problem statement:

What controls will drive a given robot along a specified
curve in joint space with minimum cost, given constraints on
initial and final velocities and on control signals and their
derivatives?

This form of the problem reduces the complexity of the con-
trol problem by introducing a single parameter that describes the
robot's position. The time derivative of this parameter and the
parameter itself completely describe the current state (joint
positions and velocities) of the robot. The control problem then
becomes a ~JJI dimensional minimum-cost control problem with
some state and input constraints.

More formally, assume that the geometric path is given in
the form of a parameterized curve:

q' = f ' (X), 0 I X I X,,, (1)

where qa is the position of the iuL joint, q=[q1,q2, . , , , qnIT
represents the joint position vector for an n- jo inted manipulator,
and the initial and final points on the geometric path correspond
to the points X=O and h=h,,. Also assume that the set of real-
izable torques can be given in terms of the robot's position and
velocity. Then we require that

u = (U l , W , ' ' ' , u n y E E(q,d, (2)

where xis the f i rst derivative of q with respect to time, and ui
is the i actuator torque/force. E is a function from R n x R n to
the space of sets in. Rn. The torques u, are realizable for posi-
tion q and velocity q if and only if the torque vector u is in the
se t E (q, d.

In practice, it is desirable to limit the derivatives of the
joint torque (or, equivalently, derivative of the acceleration, or
the j e rk) to prevent excessive mechanism wear. This need
introduces inequalities:

14; 'K' (3)

where Ki is a constant.

The manipulator dynamic equations usually take the form

4 = J,j$ + qjk$$ + Rj$ + Gi (4)

where the Einstein summation convention is used, and

Jij = the inertia matrix
Gjk = the array of centrifugal and Coriolis coefficients
% the viscous friction matrix
Gi I the gravitational loading vector

If the equations of the parameterized path are plugged into
these dynamic equations, then they become

2The t s k planner generates a sequence of Cartesian points Md additional

In joint space [TO] . These joint points are then interpOlated to form a geometric
Intermediate knot points whlch, I f necessary, are transformed pointruise to polnk

p&h In joint space e.g., 141. Howewer, thls process i s not in the scope of the
present p w r .

Here, p is the time-derivative of the parameter X, i.e. p-X.
The cost C will have several components. Obviously, one

component will be proportional to traversal time, T . Another com-
ponent will be proportional to frictional losses. This suggests the
form

where rf and T, are f ixed and variable rates of expenditure.
Note that although this form bears practical importance and is
therefore used throughout this paper, our approach is applicable
t o any form of cost that can be expressed in terms of the time-
integral of a function of the robot's states.

The path planning problem then becomes that of minimizing
the cost C given by Eq. (6) subject to the (5) , the torque con-
straints (2), and the inequalities Eq. (3).

3. OPTIMIZATION USING DYNAMIC PROGRAMMING

To see how dynamic programming can be applied t o this
problem, first note that by using the parameterized path (1), the
dimensionality of the problem has been reduced; there will be
only two s ta te variables h and p, regardless of how many joints
the robot has. The "curse of dimensionality" has therefore been
avoided. To apply dynamic programming, one f i rst must divide the
phase plane (A-p plane) into a discrete grid. Then, the costs of
going from one point on the grid to the next must be calculated.
Note that the last terms of Eq. (6) are given strictly in terms of
the state variables X and p; thus the cost computation can be
done entirely in phase coordinates. Once costs have been com-
puted, the usual dynamic programming algorithm can be applied,
and positions, velocities and torques can be obtained from the
resulting optimal trajectory and Eqs. (1) and (5) .

The informal description given above describes the general
approach to the problem. In detail, there are some complications.
Therefore, some simplifying but realistic assumptions will be
made as we proceed. First, rewrite Eq. (5) in a more convenient
form:

u, = Mi; + Qipz f R i p t Si (7)

where Mi = J i j E, Q, = Jij d2fl + Cijk -& d j d f " d X , R , = I. -
d h d X2

R,- 5, and Si - G,. Note that Ai,, Q, Ri , and Si are all

functions of the parameter A; their dependencies on X are omit-
ted throughout this paper for notational simplicity.

Now choose the grid's X-divisions ,to be small enough so

that the functions Mi, Qi, R,, Si, and $$ do not change signif-

icantly over a single interval. Then Eq. (7) effectively has con-
stant coefficients of p, pz, and p. We may also form a single
equation from Eq. (7) by taking the projection of the input torque

vector u, onto the velocity vector w , obtaining the single
equation d h

Using the fact that p-A, we may divide Ea. (8) by p to obtain

L U = M F + Q ~ ~ L + R + - S 1
P CL /L

9
or, using the identity E = dt = * we have

p a d h
d t

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:11:50 UTC from IEEE Xplore. Restrictions apply.

M* + Q p + R + :(S - G) = O
d h CL

Using this as our (single) dynamic equation, and noting that M ,
Q , R , and S are approximately constant over one A-interval, we
need to find a solution to (8) which meets the boundary condi-
tions

p : A k) = / L O ~ p (A k + l) = p l (1 1)

in the interval [hk, h k + l] . In order to do this, some form for the
inputs u, needs to be chosen. It should be noted that as the DP
grid becomes finer, the precise form of the curves joining the
points of the grid matters less. As long as the curves are smooth
and monotonic, the choice of curves makes a smaller and smaller
difference as the grid shrinks. The implication of this is that we
may choose virtually any curve that is convenient, and as long
as the grid size is small, the results should be a good approxima-
tion to the optimal trajectory.

We will use the form

U, = Qip2 t R i p + 1: (1 2)

for the input, where the V, are constants that may be chosen to
make the solution meet the boundary conditions (1 1 1. Form (1 2)
was chosen because it yields particularly simple solutions.

In what follows, we obtain first a solution without the
torque bound interaction, and then extend the solution to accom-
modate torque constraints of a much more general type.

3.1. Case of Mon-Interacting Torque Bounds

(2) are given by
When the joint torque bounds do not interact, the sets E in

Taking the projection of the input torque vector, as given

by (121, onto the velocity vector gives

U = Qp2 + R p + i', where V = 1: c. Plugging thls into the
differential Eq. (1 0) gives

d b
d A

Solving this equation, we have A = K - L p 2 . Evaluating

the constant of integration K and the input V so that the boun-
dary conditions (1 1) are met and solving for p in terms of A, one
obtains3

2(S -V)

Now that the path is known over one A-interval, we need to
know the inputs u, and the components of the incremental cost.
The incremental cost has two parts, one proportional to the
traversal time and one proportional to the traversal speed. Thus

we need the two integrals f - d A and / '*+'pdh. Evaluating
the first integral, *k P

h k + ! 1
Ak

hk t 1 - h T = Z -
I L I + P C

The second integral is

In [f 1] we proved that !AZO i s a'ways true.

(1 6)

To evaluate the input,torques, we may use Eq. (7) and the

value of b. Noting that F= .A=/*. * and Eq. (1 31, we obtain
A d h

(1 8)

The quantities M and S are given, and, using E-qs. (1 4) and (1 81,

V can be calculated to be V = S + - ' " - 'O" , which gives
2 A k + l

P =
!2 - cL8 (1 9)

2 (A k + l -
Therefore, the equations for u, become

Assuming the joint torque limits are independent, determin-
ing whether joint i ever demands any unrealizable torques
requires that we know the maximum and minimum values of u,
over the interval : h k , A k + l] (or equivalently over the interval
[p c , p I] since h is a monotonic function of p over the interval
under consideration). The maxima/minima may occur at one of
three p values, namely pLc, pl, and that value of p that maximizes
or minimizes u, over the unrestricted range of p. In the latter

case, the value of p is p, = -- R,
2 Q,

. If the condition

min(pc,pl) 5 pm 5 max(pc,pl) holds, then the point pm needs
to be tested. Otherwise the torques must be computed and
checked only at the endpoints of the interval.

With these formulae at hand, it is now possible to state the
dynamic programming algorithm in detail. Initially, the algorithm
will be stated for the case in which there are no limits on the
time derivatives of the torques. These constraints will be con-
sidered later in Section 3.3. The algorithm, given the dynamic
equations (51, the equations of the curve (11, the joint torque
constraints (21, and the coefficients rf and rV in Eq. (6) is:

s1.

52.

s3.
54.

s5.
S6.

57.
S 8 .

s9.

s10
S l l .
s 1 2.

Determine the derivatives dfl of the parametric functions
d h

f i (A) , and from these quantities and the dynamic equa-
tions determine the coefficients of Eqs. (7) and (8).

Divide the (A,/*) phase plane into a rectangular grid with
;Vh divisions on the A-axis and .!' divisions on the p-axis.
Associate with each point on the grid a cost C,,
and a "next row" pointer P,,. Set all costs C,, to infin-
ity, except for the cost of the desired final state, which
should be set to zero. Set all the pointers P,, t o null, i.e.
make them point nowhere. Set the column counter a to S A .

If the column counter a is zero, then stop.

Otherwise, set the current-row counter j3 t o 0.

I f ,B = .vp, go to s12.

I f 7 = iVP go to s1 1.

Otherwise, set the next-row counter 7 to 0.

For rows p and 7, generate the curve that connects the
(a-1,p) entry to the (a , ~) entry. For this curve, test, as
described in the previous paragraphs, to see if the
required joint torques are in the range given by inequalities
(2). If they are not, go to S10.

Compute the cost of the curve by adding the cost C,, to
the incremental cost of joining point :a-l,p) to point (a,7),
calculated using Eq. (1 7). If this cost is less than the cost
C,-iB, then set C,-l,B to this cost, and set the pointer
Pa- , ,B t o point to that grid entry (a , r) that produced the
minimum cost, i.e. se t to 7.
Increment the next-row counter y and go t o S 7 .
increment the current-row counter ,9 and go to S5.
Sxrement the column counter a and go to S3.

1631

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:11:50 UTC from IEEE Xplore. Restrictions apply.

Finding the optimal trajectory from the grid is then a matter
of tracing the pointers Pmn from the initial to the final state. If
the first pointer is null, then no solution exists; otherwise, the
successive grid entries in the pointer chain give the optimal tra-
jectory. Given the optimal trajectory, it is then possible to calcu-
late joint positions, velocities, and torques.

3.2. Case of Interacting Torque Bounds

I t has been assumed in the preceding discussion that the
joint torque limits do not interact, i.e. that increasing the torque
on one joint does not decrease the available torque at another
joint. This assumption manifests itself in the form of the torque
constraint inequalities (2a). This assumption is probably correct
in many cases, but in others it certainly is not. Here it will be
assumed that the inequalities (2a) are replaced with the con-
straint (21, namely (u1,u2, ' ' ' ,u,)? E E(q,q).

There are a number of situations in which joint torque limits
might interact. Consider, for example, a robot that has a common
power supply for the servo amplifiers for all joints. The power
source will have some finite limit on the power it can supply, so
that the sum of the power consumed by all the joints must be
less than that limit. A similar situation arises when a single pump
drives several hydraulic servoes. The pump will have finite limits
on both the pressure and the volume flow it can produce. Such
interacting torque bounds must be considered along with the
non-interacting bounds, such as servo motor saturation limits. It
is interesting to note that the limits described above all produce
set functions E in Eq. (2) which are c o n v e z . For example, if the
sum of the power consumed (or produced) .in all the joints is
bounded, one obtains the bounds P M n I qq' I P,,,. For any
given velocity, this is just the region between a pair of parallel
hyperplanes in the joint space. Likewise, for independent torque
bounds, the realizable torques are contained in a hyper-
rectangular prism, another convex region. Since the intersection
of any number of convex sets is a convex set, any combination
of these constraints will also yield a convex constraint set. In
this Ijght, it is reasonable to make the assumption that the set
E(q,q) is convex. This assumption is important in the analysis
that follows.

To see how we may make use of this convexity condition,
consider the test for realizability of torques used in the method
presented thus far. This tes t made explicit use of the assump-
tion that the torque bounds do not interact. In order t o handle
interacting torque bounds using an approach like that of Section
3.1, it must be possible t o determine whether all torques are
realizable over any given X-interval. If the torques have the
form used in Eq. (121, then this is in general not possible with
any finite number of tests; even in the two-dimensional case, the
torques trace out conics in the input space, and there is no gen-
eral way t o determine whether a segment of a conic is entirely
contained within a convex set.

Though the question of whether a set of torques is realiz-
able cannot in general be given a definite answer, the realizabil-
i ty question can be answered in some cases. To see how this
can be done, consider again the tests for realizability previously
described. The maximum and minimum torques for each joint are
determined, and these torques are checked. While Eq. (1 2)
describes a curve in the joint torque space, the individual torque
limits describe a box-shaped volume. The curve describing the
joint torques will be entirely contained inside this box. Thus if
every point in the box is admissible, then so is every point on the
curve. This "reduces" the problem of determining whether ev'ery
point of a one-dimensional set is realizable to the problem of
determining whether every point of a higher-dimensional set is
realizable. However, this higher-dimensional set has a special
shape; it is a convex polyhedron, and will be contained in the
(convex) set E if and only if all its vertices are in E . Thus by
testing a finite number of points, the question of whether a par-
ticular set of torques is realizable may sometimes be given a
definite "yes" answer.

If th is test does not give a definite answer, then the set of
inputs in question must be discarded, even though that set may
in fact be realizable. However, as the grid size shrinks, the size
of the bounding box for the torques also shrinks, so that in the
limit the test becomes a test of a single point. Therefore as the
grid shrinks, the percentage Y valid torques thrown away
approaches zero, end the optinis :;olut:on will be found.

Tbi j method of t:andlillg interacting torque bounds requires
only one change in the DP algorithm. Step S 8 , which checks to
see if the torques are realizable, must be replaced with a step
that generates all corners of the bounding box and tests these
points for realizability. If any of the corners does not represent
a realizable set of torques, then the test fails. Thus we have

S 8 ' . For rows p and 7, generate the curve that connects the
(a-l,@) entry to the (a , y) entry. For this curve, generate
the maximum and minimum torques at each joint. Check
each torque N-tuple formed from the maximum and minimum
joint torques. (These are the corners of the bounding box.)
If any of these N-tuples are not contained in the set E ,
then go to S 1 0 .

3.3. Accommodation of Jerk Constraints

The methods described thus far have ignored the jerk con-
straints (3) which limit the derivatives of the joint torques. Tak-
ing these limits into account effectively requires that a third
state variable be added. That ,variable can be taken to be the
pseudo-acceleration p, say v=p. Differentiating the equation for
the torque, one obtains

& = r,,v t a i ; t QJ f Z Q , ~ V + ~~p t R,V f si (21a)

Using the identity * LC - = * p , this equation becomes
d,r d h

d t d h d t d h

d R
f 1 k 2 f R,v f - p

dX d h
d Si

If there are no jerk constraints, then the parameter in Eq.
(7) can be manipulated as needed. When there are jerk con-
straints, we must instead manipulate v in Eq. (21 b). Eq. (21 b)
and constraints (3) then give constraints on u, just as Eq. (7)
and constraints (2) yield constraints on p.

To solve the optimization problem with jerk constraints using
dynamic programming, a three-dimensional grid is required, with
one dimension for each of, X, p, and u. Some form must be
assumed for the "inputs" ui, as was done for ui when there
were no jerk constraints, i.e. Eq. (1 2). Because the grid points
that the DP algorithm must join form a pair of planes, rather than
a pair of lines or columns, as in the two-dimensional case, the
form of the input must contain two arbitrary constants instead of
one. If only one parameter is used, then it will not b e possible to
connect arbitrarily chosen points in the DP grid. The problem is
thus inherently more complicated than the two-dimensional case,
at least in terms of the algebra required to produce a solution.
The procedure is otherwise the same as that for the two-
dimensional case.

3.4. Algorithm Complexity

Even though the dimension of the state space for this par-
ticular dynamic programming problem is only two, the amount of
storage required to implement the method is still a concern. Note,
however, that the time required for the algorithm is not a major
concern, since the path planning is done off-line.

It is easy to compute the storage requirements for the algo-
rithm. The memory allotted to the program itself is essentially
fixed. The size of the grid used for the dynamic programming
algorithm varies with the fineness of the grid and the amount of
storage required per point on the grid. The grid has N, rows and
N, columns. Each entry must contain a cost C and a pointer P.
The size of an entry will then be

GS = S, + S,

where GS is the storage requirement for a single point of the
grid and S, and S, are the amounts of storage required to
record the cost and the pointer to the next row, respectively.
Multiplying this by the number of grid entries and adding the
amount of storage PS required for the program gives total
storage T S as

1632

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:11:50 UTC from IEEE Xplore. Restrictions apply.

Calculating the time required to perform the dynamic pro-
gramming algorithm is somewhat more difficult. There will be
K, - : steps, where each step requires testing to see if each of
the ."i,,points in one column can be connected t o each of the ;VZ
points In the next column. Each test must be done, but some of
the tests are simpler than others. If the cost at the next grid
point is infinite, then there is no point in doing any further calcu-
lations. If on the other hand the cost is finite, then input torque
bounds must be checked, and if the input torques are admissible,
then costs must be calculated and compared. Though actual
computation times will vary with the particular problem being
solved, the way the time varies with grid size can be roughly
determined. To get a bound on this time, assume that all the
tests and computations must be performed. Then each step of
the dynamic programming algorithm requires K :Y: seconds,
where K is a constant. There are 3', such steps, so the time
required is less than -K(-YA - i).V:.

The dependence of execution time on the number of joints
R is much more difficult to assess. The constant K in the equa-
tion above depends on both R and the form of the curve to be
traversed. The functions !dI and Ri depend on the matrices J
and R respectively, and the Coriolis term Qi depends on the
three-dimensional array C I j k . In general, then, i t might be
expected that the evaluation of the function Qi might take time
proportional to the cube of the number of joints. However, in
practical cases, the number of joints would usually be no more
than six, and almost certainly would be less than eight. In any
case, these functions only need to be evaluated once per A-
division of the DP grid, and so will probably be only a minor part
of the total time consumed. This being the case, the dependence
of execution time on n is not an important factor.

4. NUMERICAL EXAMPLES

To demonstrate the use of the dynamic programming algo-
rithm, we present several examples. Although these examples
use a simple two degree-of-freedom robot, they are sufficient to
demonstrate the method. This same robot was used in [12] to
demonstrate the phase plane method for obtaining minimum time
trajectories, so a direct comparison of the methods is possible.
In addition, several examples will treat cases to which the phase
plane technique does not apply.

The robot used for these examples is shown in Figure 1. I t
has one revolute and one prismatic joint, so the robot moves in
polar coordinates.

If the path followed is a straight line from (1,:) t o (i ,-1) in
R?, then the equation of the curve to be followed is r = sec 25,
and Ti ranges from to - E . One possible parameterization is

I j = - A r = see{ 7 - A) where h ranges from 0 to

Differentiating these functions with respect to time, using the
chain rule to obtain time-derivatives in terms of A-derivatives,
and plugging into the robot dynamic equations gives

4 L
7 i

L t 2

I \

(22a)

See [12] for a detailed derivation of these equations. These
equations are Eq. (7) for this particular robot, and are used t o
calculate the torques required t o move from one point in the DP
grid to another. The DP algorithm was coded in the C programming

language and :un under the CAVIX4 operating system on a VAX-
11 1780.

The first examples are the same as those found in [12]; the
cost function is strictly minimum time, i.e. rI = 1, r, =0, and the
torque and force bounds are constants for each joint. Figures 2
anti 3 show the results of the dynamic programming method when
there is no joint friction, plotted on the same axes as the results
of the phase plane method. Figure 2 shows the results for a
10 x 10 grid, Figure 3 is for a 40 x 40 grid. Figures 4 and 5 show
the results when the r joint has a friction coefficient of 15.

Figures 6 and 7 show the optimal trajectory when a combi-
nation of minimum time and minimum energy is used as a cost
function. The friction coefficient on the r joint is 15, as it was
in Figures 4 and 5. However, the cost coefficients rI and r,
were 1 and 500 instead of 1 and 0. The effect, as would be
expected, is to lower the velocity of the optimal trajectory for
those parts of the trajectory which require large motions of the
r joint. Note that the peak of the curve, which occurs near the
midpoint of the trajectory, is at that point for which the velocity
of the r joint is zero. This is what would be expected, since
frictional losses are zero if the velocity of the r joint is zero. The
fixed-cost penalty then dominates, so that a high velocity gives
minimum cost.

The apparent saturation of the curve at high velocities is
probably caused by discretization effects. If the actual optimal
trajectory has a sharp peak, then the DP solution will only
ascend into that peak until the squares of the grid are wider
than the peak. This would be expected to f latten out the peaks.

Finally, Figure 8 shows the effect of interacting torque
bounds. Figure 8 shows a pair of trajectories, one for interacting
and one for non-interacting torque bounds. The lower trajectory
shows the time-optimal trajectory when the r and 6 joints are
limited t o sourcing or sinking a total power of half a Watt each,
with each joint independent of the other. The upper trajectory
was calculated for interacting torque bounds. In this case, the
sum of the absolute values of the powers for the two joints was
limited to one Watt. Since power may be distributed as needed
in the interacting case, the robot can move faster, even though
in both cases the total power consumption is limited to one Watt.
The trajectories were calculated with a iG x 40 grid, a pure
minimum time cost function, and zero friction.

The e f fec t of grid size on the quality of the results of the
dynamic programming algorithm is of practical importance. The
grid must be fine enough to give good results but not so fine that
the time required to perform the DP algorithm is excessive. Intui-
tively, varying the number of rows and number of columns in the
grid will have different effects on the results. Varying the
number of columns (the number of A-divisions) varies the accu-
racy of the dynamic model; using a smaller size yields a more
accurate approximation to the true dynamic model, since the
"pieces" in the piecewise-constant dynamic model will be
smaller. Varying the number of rows (the number of p-divisions)
varies the accuracy of the approximation to the true minimum-
cost solution; a finer grid size will in general yield a better
approximation.

Another important factor is the ratio of the number of rows
to the number of columns. If the number of columns is very large
and the number of rows is very small, then the slope of the
curves connecting one point in the DP grid to another must be
either zero or very large. Since the torque bounds induce bounds
on the slope of the curve, i t is possible that the DP algorithm
may not even be able to connect a point to its nearest diagonal
neighbor. In this case, the algorithm will give no solution a t all.
This in fac t happens for the example robot, with parameters se t
as for Figures 4 and 5, if a DP grid with 40 A-divisions and only
1 0 @-divisions is used. Therefore when choosing grid size, one
must (i) choose the A-divisions to be small enough to make the
piecewise-constant dynamic model of the robot sufficiently
accurate, (ii) choose the pi-divisions to be small enough so that
the resulting trajectory is a satisfactory approximation to the
true minimum-cost trajectory, and (iii) make sure that the p-
divisions are small enough so that the slope of a curve connect-
ing two adjacent points in the grid is small.

' U N I X I S a trademark of Bell LaboratorJes.

1633

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:11:50 UTC from IEEE Xplore. Restrictions apply.

5. CONCLUSIONS

We have presented a new, elegant robot peth planning
method for which dynamic programming is used as a main tool.
Because of the reduced dimensionality, use of dynamic program-
ming does not suffer from the "curse of dimensionality" and pro-
vides power and flexibility t o handle completely general cost
functions and constraints.

The results are significant in that the present method can
provide a simple approximation to the truly optimal path solution
t o any desired degree of accuracy, whereas the conventional
methods must resort to complex approximations or unrealistic
assumptions on constraints.

REFERENCES

11 1

c2 1

[3 1

c41

c51

J. E. Bobrow, S. Dubowsky, and J. S . Gibson, "On the
optimal control of robotic manipulators with actuator con-
straints", R o c . 1983 A m e r i c a n C o n t r o l C o n f e r e n c e ,
June 1983 , pp. 782-787

J. Hollerbach, "Dynamic scaling of manipulator trajec-
tories", R o c . 1983 A m e r i c a n C o n t r o l C o n f e r e n c e , June
1983, pp. 752-756.

0. E. Kirk, Optimal c o n t r o l t h e o r y : an i n t r o d u c t i o n ,
Prentice-Hall, Englewood Cliffs, New Jersey, pp. 53-106,
1971

C. - S . Lin, P. - R. Chang, and J. Y. S . Luh, "Formulation and
optimization of cubic polynomial ' I joint trajectories for
industrial manipulators", IEEE T r a n s . A u t o m a t i c C o n t r o l ,
Vol. AC-28, No. 12, Dec. 1983, pp. 1066-1 074.

T. Lozano-Perez, "Spatial planning: A configuration space
approach", IEEE T r a n s . on C o m p u t e r s , Vol. C-32, No.2,
pp. 108-1 19, Feb. 1983.

Flgure 1. Example of a two degreeof-fredom robot

[6] J. Y. S . Luh and C. E. Campbell, "Collision-free path plan-
ning for industrial robots", R o c . 21-st CDC, Dec. 1982 ,
pp. 84-88

[7] J. Y. S . Luh and C. S . Lin, "Optimum path planning for
mechanical manipulators", A S M E J o u r n a l of D y n a m i c
Systems, M e m r e m e n t , a n d C o n t r o l , Vol. 102, June
1981, pp. 142-1 51

[8] J. Y. S. Luh and M. W. Walker, "Minimum-time along the path
for a mechanical arm", R o c . 16-th CDC, Dec. 1977, pp.
755-759

[9] J. Y . S . Luh, M. W. Walker, and R. P. C. Paul, "Resolved-
acceleration control of mechanical manipulators", IEEE
P a m . A u t o m a t i c C o n t r o l , Vol. AC-25 No. 3, June 1980,
pp. 468-474

[l o] R. P. C. Paul, R o b o t m a n i p u l a t o r s : M a t h e m a t i c s , p r o -
g r a m m i n g , a n d c o n t r o l , MIT Press, Cambridge, Mass.,
1981

[1 11 K. G. Shin and N. D. McKay, "Minimum-time control o f a
robotic manipulator with geometric path ' I constraints",
h o c . ZZ-nd CDC, Dec. 1983, pp. 1449-1 457.

[l 21 .-, "Open-Loop Minimum-Time Control of Mechanical
Manipulators and Its Application", R o c . 1984 A m e r i c a n
C o n t r o l C o n f . , San Diago, CA, June 1984, pp. 1231 -1236.

[l 31 D. E. Whitney, "Resolved motion rate control of manipula-
tors and human prostheses", IEEE T r a n s a c t i o n s o n idan-
M a c h i n e S y s t e m s , Vol. MMS-10 No. 2, June 1969, pp.
47-53

f

- 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Figure 2. TrJectory for sero friction, minimum time, lox 10 grid
Upper curve generated by phare plane method.

Description
Moment of inertia of 0 joint
M a s s of sliding rod
Length of rod
hloment of inertia of payload
Payload mass
Length of payload
Maximum force on r joint
Maximum torque on 0 joint
Friction coefficient of r joint
Friction coefficient of r joint
Friction coefficient of B joint

Value
10-3 K ~ M
4.0 Kg.
2.0 M .

1.0 Kg.
0.1
1.0 Kg.-M/acc2

0.0 (low friction)
15.0 (high friction)
0 .o

1 0 - ~ K ~ . - M

1.0 K ~ . - M ~ / ~ ~ ~ ~

Table 1. Data for the example robot

1634

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:11:50 UTC from IEEE Xplore. Restrictions apply.

P
P

0.4

O ?

oc 0.0 1’
0.0 0.2 0.4 0.a 0.8 1.0 1.2 1.4 1.6

u . ;x

Figure 3. Trajectory for zero blctlon, mlnlmum tlme, 40x40 grld Figure 4. Trajectory for k , = 15, mlnlmum tlme, 1OX 10 grld
Upper curve generated by phare plane method Upper curve generated by phase plane method

o,51 A
P

0.4

Figure 5. Trajectory for k, = 15, mlnlmum tlme, 40x40 grld
Upper curve generated by phase plane method

0.3 1

0.2 .

0.0 0.2 0.4 0.a 0.8 1.0 1 . 2 1 . 4 1.8

Figure 6. TrsJectory for kr = 15, minimum tlmcenergy,

10x10 grld

0.5

0.4

0.3

0.2

0.1

. \ ,

0.0 0.2 0.4 0.5 0.8 1.0 1.2 1.4 1.6
> x

Figure 7. TrsJeetory for k, = 15, minimum tlmeenergy, Figure 8. TrJectorla for Lero frletlon, mlnlmum tlme.
40x80 grld Upper cwve: maximum power 1 Watt, interacting Jolntr

Lower curve: each Joint Umlkd to onehall Watt.

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:11:50 UTC from IEEE Xplore. Restrictions apply.

