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ABSTRACT 

This paper  presents  a  solution to  the problem of minimizing 
the  cost  of moving  a  robotic  manipulator  along  a  specified 
geometric path subject  to  input  torque/force  constraints,  tak- 
ing  the  coupled,  nonlinear  dynamics of  the manipulator into 
account.  The  proposed  method  uses dynamic programming (DP) 
to  find  the  positions,  velocities,  accelerations, and torques  that 
minimize cost.  Since  the  use  of  parametric  functions  reduces  the 
dimension of  the  state  space from 2n for an n-jointed manipula- 
tor  to t u o ,  the DP method  does  not  suffer  from  the  "curse  of 
dimensionality".  While  maintaining the  elegance  of  the  path 
planning  methods  in  [1],[11], the DP method  offers  the  advan- 
tages  that it can  be  used  in  the  general  case  where (i) the 
actuator  torque  limits  are  dependent on one  another,  (ii) the  cost 
functions  can  have an arbitrary form, and  (iii) there  are  con- 
straints on the jerk, or derivative  of  the  acceleration. 

As a  numerical  example, the  path planning  method  is simu- 
lated  for  a  two-jointed  robotic manipulator.  The  example  consid- 
ers  first  the minimum-time problem,  comparing the  solution  with 
that  of  the phase  plane  plot  method  in [ll]. Secondly,  the  sen- 
sit ivity of the  path  solutions  to  the  grid  size  is examined. Finally, 
the DP method  is  applied to  cases  with  interactions  between 
joint  torque  bounds  and  with  cost  functions  other  than minimum- 
time, demonstrating its  power and flexibility. 

1. INTRODUCTION 

Efficient  control of industrial  robots  is  a  key  to  the  success 
of contemporary  industrial  automation,  which  is  built  around 
robotic  manipulators.  The  problem  of  robot  control  is  very com- 
plex  because  of  the  nonlinearity  and  couplings  in  robot  dynamics 
and  is  therefore  usually  solved by  a  two-stage optimization.  The 
first  stage is called path or trajectory planning, and the 
second  stage  is  called control or path tracking. The path 
tracker is  responsible  for  making the  robot's  actual  position  and 
velocity  match  desired  values of position  and  velocity  [9],[13]; 
the  desired  values  are  provided to  the  tracker  by  the  path 
planner. The path planner receives as input  a  spatial  path 
descriptor [5],[6] from  which it calculates  a  time  history  of  the 
desired  positions  and  velocities. 

Earlier path planners, such as those  presented  in  [7],[8] 
use linear  and/or  non-linear programming to  generate  desired 
positions,  velocities,  and  accelerations.  These  methods assume 
that  the desired  path  is  given  in  terms of the  path's endpoints 
and  a set  of  intermediate, or corner,  points. Along each  segment 
of  the  path  the  (constant) maximum accelerations  and  velocities 
are  given.  Since worst-case bounds for  the whole  segment  must 
be used, these  constant bounds may be  quite  inaccurate  for 
some parts of the  segment.  Additionally,  these  methods  provide 
no  rigorous means of obtaining  the maximum accelerations  and 
velocities;  thus  once  the  path  planning  process  has  been com- 
pleted,  the  solution must be  validated  to make certain  that  the 
robot's  capabilities  are  not  exceeded [2]. 

The  algorithms presented in [ l ]  and [l 11 do not  suffer from 
either  of  these problems, since  they  calculate  acceleration and 
velocity  limits  directly  from  the  given  path  and  the  robot's 
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dynamic equations  and  actuator  characteristics.  These  methods 
use  phase  plane  plots to  construct  the minimum-time trajectory 
for  a  given  robot  path.  It is  assumed that  the  path is  given  in 
parameterized form, that  the  actuator  torque  limits  are  functions 
only of  the  position  and  velocity  of  the  manipulator, and that  the 
actuator  torque limits  are  independent of one  another. The tech- 
nique for  determining  switching  points in [l 11  is  different  from 
that  used in ;1]. It is more direct,  but  requires  that  the  torque 
bounds be  at most  quadratic  in  the  velocity. In practice  this  is 
usually  the  case, so the  limitations on the forms of  the  torque 
bounds  should  not  significantly limit the  applicability  of  the 
method.  However, the  method  in [ l  11 can  handle the  general 
case  where  the  feasible  regions  in  the  phase  plane  are  not sim- 
ply  connected,  whereas  that in [l] cannot. 

While these  methods  are  quite  elegant,  they  have  three 
drawbacks:  First,  they  work  only  for minimum time problems. In 
situations  where  driving  the  robot  consumes  large  amounts  of 
power,  the  assumption  that minimum time  is  equivalent to minimum 
cost may not  be valid.  Second, i t  is  assumed that  the  joint 
torques  can  be  changed  instantaneously. This is  only  approxi- 
mately  true,  and  indeed  it  is  desirable  to limit the  derivatives  of 
the  joint  torques (or,  equivalently,  the  jerk, or derivative  of  the 
acceleration)  to  prevent  excessive mechanism wear. Third, they 
are  unable t o  handle  the  general  case  where  the  actuator  torque 
limits  are  dependent on one  another.  This  dependency  occurs, 
for  example,  when  a  robot  uses  a common power  supply  for  the 
servo amplifiers for all  joints. 

The  correction  of  these  deficiencies  is  the aim of  this 
paper.  The  method  proposed  here  is t o  use  dynamic programming 
[3], rather  than  the  methods  described  above, to  f ind  the optimal 
phase  plane  trajectory. Unlike those methods,  dynamic  program- 
ming places no restrictions  on  the  cost  function  that is to  be 
minimized. Putting  limits on jerk  is also  possible,  and  inter- 
dependence  of  torque  bounds  can  be  handled  fairly  painlessly, 
as will  be  seen  later. 

The  remainder  of  this  paper  is  divided  into  four  sections. 
Section 2 gives  a  detailed  description  of  the problem. Section  3 
presents  a  solution  algorithm  using  dynamic programming. Sec- 
tion 4 presents numerical  examples.  Although  a simple two- 
jointed manipulator  is  used  in  these  examples, it is  sufficient  to 
show  the  significance  of  the  method  developed in this  paper. 
Using these  numerical  examples,  first,  we  compare  the  results  of 
the  direct minimum-time phase  plane  methods [l 11 with  those  of 
the dynamic programming technique.  Secondly,  we  examine  the 
sensitivity  of  the  path planning  solution to  the grid  size. Third, 
the dynamic programming method  is  epplied to  the general case 
where (i) cost  functions  other  than minimum time, and  (ii)  cou- 
pling among the  actuator  torque bounds  are  considered.  Finally, 
Section 5 states  conclusions  drawn  from our results. 

2. PROBLEM STATEMENT 
The goal of automation  is to  produce goods at  as low  a  cost 

as  possible. In  practice,  costs may be  divided  into  two groups: 
f ixed and  variable.  Variable  costs  depend  on  details  of  the 
manufacturing  process,  and  include,  in the  cases  where  robots 
are  used, that  part  of  the  cost  of  driving  a  robot  that  varies  with 
robot motion, and some maintenance  costs.  Fixed  costs  are 
those  that remain constant on  a  per-unit-time  basis,  such  as 
taxes  and  heating  costs.  If  one assumes that  the  fixed  costs 
dominate,  then  one  obtains  the  usual  assumption, namely that 

1629 CH2093-3/84/0000-  1629  $1.00 0 1984 IEEE 

Authorized licensed use limited to: University of Michigan Library. Downloaded on January 19,2023 at 21:11:50 UTC from IEEE Xplore.  Restrictions apply. 



cost  per item  produced  will  be  proportional  to  the  time  taken t o  
produce  the item. The minimum time path planning  problem is, 
then,  a  special  case  of the minimum cost problem. 

A loose statement of the minimum-cost path planning  prob- 
lem is  as  follows: 

What  control  signals  will  drive  a  given  robot  from  a  given  ini- 
tial  configuration t o  a  given  final  configuration  with  as  low  a 
cost as  possible,  given  constraints on the magnitudes  and 
derivatives  of  the  control  signals  and  constraints on the 
intermediate  configurations  of  the  robot, i.e. given  that  the 
robot  must  not  hit  any  obstacles? 

While the problem of  avoiding  obstacles in the  robot's 
workspace [5],[6] is  not  a  conventional  control  theory problem, 
the problem of minimizing the  cost of moving a  mechanical  system 
is. One way  to  sidestep  the collision  avoidance problem, then,  is 
t o  assume that  the  desired  path  has  been  specified apr ior i ,  for 
example  as  a  parameterized  curve in the  robot's  joint space.2 If 
this  assumption  is  added,  then  one  obtains  a  second,  slightly  dif- 
ferent problem statement: 

What  controls  will  drive  a  given  robot along a  specified 
curve  in  joint  space  with minimum cost,  given  constraints on 
initial and final  velocities and  on control  signals and their 
derivatives? 

This  form of the problem reduces  the  complexity  of  the con- 
trol problem by  introducing  a  single  parameter  that  describes  the 
robot's  position. The  time  derivative  of  this  parameter and the 
parameter  itself  completely  describe  the  current  state  (joint 
positions  and  velocities) of the  robot.  The  control problem then 
becomes  a ~JJI dimensional  minimum-cost control problem with 
some state and input  constraints. 

More  formally,  assume that  the geometric  path  is  given in 
the form  of  a  parameterized  curve: 

q' = f ' (X), 0 I X I X,,, (1)  

where qa is  the  position  of  the iuL joint, q=[q1,q2, . , , , qnIT 
represents  the  joint  position  vector  for an n- jo inted manipulator, 
and the  initial and final  points on the geometric path correspond 
to  the  points X=O and h=h,,. Also assume that  the  set  of  real- 
izable  torques  can  be  given  in  terms  of  the  robot's  position and 
velocity. Then we  require  that 

u = ( U l , W ,  ' ' ' , u n y  E E(q,d, (2) 

where xis  the  f i rst  derivative  of q with  respect  to time,  and ui 
is  the i actuator  torque/force. E is  a  function  from R n x R n  to  
the  space  of  sets in. Rn.  The torques u, are  realizable  for  posi- 
tion q and velocity q if  and only if  the  torque  vector u is in the 
se t  E (q, d. 

In  practice, it is  desirable  to limit the  derivatives of the 
joint  torque (or, equivalently,  derivative  of  the  acceleration, or 
the j e rk  ) to  prevent  excessive mechanism  wear.  This need 
introduces  inequalities: 

14; 'K' (3) 

where Ki is  a  constant. 

The  manipulator  dynamic equations  usually  take  the form 

4 = J,j$ + qjk$$ + Rj$ + Gi (4) 

where  the  Einstein summation convention  is used,  and 

Jij = the  inertia  matrix 
Gjk = the  array  of  centrifugal and  Coriolis coefficients 
% the viscous  friction  matrix 
Gi I the  gravitational loading vector 

If the  equations  of  the  parameterized  path  are  plugged  into 
these dynamic  equations,  then  they  become 

2The t s k  planner generates  a  sequence of Cartesian  points  Md  additional 

In joint space [TO] .  These  joint  points are then  interpOlated  to  form  a  geometric 
Intermediate knot points  whlch, I f  necessary, are transformed pointruise to polnk 

p&h In joint  space  e.g., 141.  Howewer, thls process  i s  not  in  the  scope of the 
present p w r .  

Here, p is  the  time-derivative  of  the  parameter X, i.e. p-X. 
The cost C will  have  several  components. Obviously, one 

component  will be  proportional  to  traversal time, T .  Another  com- 
ponent  will  be  proportional  to  frictional losses.  This  suggests the 
form 

where rf and T, are  f ixed and variable  rates  of  expenditure. 
Note that  although  this form bears  practical importance  and  is 
therefore  used  throughout  this  paper, our approach  is  applicable 
t o  any form of  cost  that  can  be  expressed in  terms of the time- 
integral  of a function  of  the  robot's  states. 

The path planning  problem then becomes that  of minimizing 
the  cost C given by  Eq. (6) subject  to  the ( 5 ) ,  the  torque  con- 
straints (2), and the  inequalities Eq. (3). 

3. OPTIMIZATION  USING  DYNAMIC  PROGRAMMING 

To see  how dynamic  programming can  be  applied t o  this 
problem, first  note  that  by  using  the  parameterized  path ( 1  ), the 
dimensionality  of the problem has  been  reduced;  there  will  be 
only two s ta te  variables h and p, regardless  of  how many joints 
the  robot has.  The "curse  of  dimensionality"  has  therefore  been 
avoided. To apply  dynamic programming,  one f i rst  must  divide the 
phase  plane (A-p plane)  into  a  discrete grid.  Then, the  costs  of 
going  from  one  point on the grid to   the  next  must be  calculated. 
Note that  the  last terms  of Eq. (6) are  given  strictly in  terms  of 
the  state  variables X and p; thus  the  cost  computation  can  be 
done entirely in phase  coordinates.  Once  costs  have  been com- 
puted,  the  usual dynamic  programming  algorithm can  be applied, 
and  positions,  velocities and torques  can  be  obtained from the 
resulting  optimal  trajectory  and Eqs. (1) and ( 5 ) .  

The  informal  description  given  above  describes the  general 
approach to  the problem. In detail, there are  some  complications. 
Therefore, some simplifying but  realistic assumptions  will be 
made  as we  proceed.  First,  rewrite Eq. (5) in a more convenient 
form: 

u, = Mi; + Qipz f R i p  t Si (7) 

where Mi = J i j  E, Q, = Jij d2fl + Cijk -& d j d f "  d X  , R , =  I. - 
d h  d X2 

R,- 5, and Si - G,. Note that Ai,, Q, Ri ,  and Si are  all 

functions of the parameter A; their  dependencies on X are  omit- 
ted  throughout  this  paper  for  notational simplicity. 

Now choose  the  grid's  X-divisions  ,to  be small  enough so 

that  the  functions Mi,  Qi,  R,, Si, and $$ do not  change  signif- 

icantly  over  a  single  interval. Then Eq. (7) effectively  has con- 
stant  coefficients of p, pz, and p. We may also  form a  single 
equation  from Eq. (7) by  taking  the  projection  of  the  input  torque 

vector u, onto  the  velocity  vector w ,  obtaining  the  single 
equation d h  

Using the  fact   that  p-A, we may divide Ea. (8) by p to  obtain 

L U = M F + Q ~ ~ L + R + - S  1 
P CL /L 

9 
or, using  the  identity E = dt = * we  have 

p a d h  
d t  
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M* + Q p +  R + :(S - G ) = O  
d h  CL 

Using this as our (single)  dynamic  equation,  and  noting  that M ,  
Q ,  R ,  and S are  approximately  constant  over  one  A-interval,  we 
need  to  find  a  solution  to ( 8 )  which  meets  the  boundary  condi- 
tions 

p : A k ) = / L O ~  p ( A k + l ) = p l  (1 1) 

in the  interval [ hk, h k + l ] .  In  order to  do this, some form for  the 
inputs u, needs  to  be  chosen. It should be  noted  that  as  the DP 
grid  becomes  finer, the  precise form  of the  curves  joining  the 
points  of  the  grid  matters  less. As long as the  curves  are smooth 
and monotonic, the  choice  of  curves makes  a smaller and smaller 
difference  as  the  grid  shrinks.  The  implication  of  this  is  that  we 
may choose  virtually  any  curve  that  is  convenient,  and  as  long 
as  the  grid  size  is small, the  results should be  a good  approxima- 
tion  to  the  optimal  trajectory. 

We  will  use  the  form 

U, = Qip2 t R i p  + 1: (1 2) 

for  the  input,  where  the V, are  constants  that may be  chosen to  
make the  solution  meet  the  boundary  conditions ( 1  1 1. Form (1  2) 
was  chosen  because it yields  particularly simple solutions. 

In  what  follows,  we  obtain  first  a  solution  without  the 
torque  bound  interaction,  and  then  extend  the  solution  to  accom- 
modate  torque  constraints  of  a much more general  type. 

3.1. Case of Mon-Interacting  Torque  Bounds 

(2) are  given  by 
When the  joint  torque bounds do not  interact,  the  sets E in 

Taking  the  projection  of  the  input  torque  vector, as given 

by (121,  onto  the  velocity  vector  gives 

U = Qp2 + R p  + i', where V = 1: c. Plugging  thls  into  the 
differential Eq. (1 0 )  gives 

d b  
d A  

Solving  this  equation,  we  have A = K - L p 2 .  Evaluating 

the  constant  of  integration K and the input V so that  the boun- 
dary  conditions  (1  1)  are  met and solving  for p in  terms  of A, one 
obtains3 

2(S -V)  

Now that  the  path is  known  over  one  A-interval,  we  need to  
know the  inputs u, and the components of  the  incremental  cost. 
The incremental  cost  has  two  parts, one  proportional to  the 
traversal time  and  one  proportional to  the  traversal  speed. Thus 

we  need  the  two  integrals f - d A  and / '*+'pdh.  Evaluating 
the  first  integral, *k P 

h k + !  1 
Ak 

hk t 1 - h  T = Z -  
I L I + P C  

The second  integral  is 

In [ f 1 ] we proved that !AZO i s  a'ways true. 

(1 6) 

To evaluate  the  input,torques,  we may use Eq. (7)  and the 

value  of b. Noting  that F= .A=/*. * and Eq. (1  31, we  obtain 
A d h  

(1 8 )  

The quantities M and S are  given, and, using E-qs. (1 4) and (1 81, 

V can  be  calculated  to  be V = S  + - '  " - 'O" , which  gives 
2 A k + l  

P =  
!2 - cL8 (1 9) 

2 ( A k + l  - 
Therefore, the equations  for u, become 

Assuming the  joint  torque limits  are  independent,  determin- 
ing  whether  joint i ever demands any  unrealizable  torques 
requires that  we  know  the maximum and minimum values  of u, 
over  the  interval : h k , A k + l ]  (or  equivalently  over  the  interval 
[ p c , p I ]  since h is  a monotonic function  of p over  the  interval 
under  consideration). The maxima/minima may occur  at  one  of 
three p values, namely pLc, pl, and that value  of p that maximizes 
or minimizes u, over  the  unrestricted  range  of p. In  the  latter 

case,  the  value  of p is p, = -- R, 
2 Q, 

. If  the  condition 

min(pc,pl)  5 pm 5 max(pc,pl) holds,  then the  point pm needs 
to  be  tested.  Otherwise  the  torques  must  be  computed and 
checked only at  the  endpoints  of  the  interval. 

With  these  formulae  at hand, it is  now  possible to  state  the 
dynamic programming algorithm  in  detail.  Initially,  the  algorithm 
will  be  stated  for  the  case in which  there  are  no  limits  on  the 
time derivatives  of  the  torques.  These  constraints  will  be  con- 
sidered  later  in  Section 3.3. The algorithm,  given the dynamic 
equations (51, the  equations of the  curve (11, the  joint  torque 
constraints (21, and the  coefficients rf and rV in Eq. (6) is: 

s1.  

52. 

s3. 
54. 

s5. 
S6. 

57. 
S 8 .  

s9. 

s10 
S l l .  
s 1  2. 

Determine the  derivatives dfl of the  parametric  functions 
d h  

f i ( A ) ,  and  from  these  quantities and the dynamic  equa- 
tions  determine  the  coefficients  of  Eqs. (7) and (8). 

Divide the (A,/*) phase  plane  into  a  rectangular  grid  with 
;Vh divisions on the A-axis and .!' divisions  on the  p-axis. 
Associate  with  each  point on the  grid  a  cost C,, 
and  a  "next  row"  pointer P,,. Set all costs C,, to  infin- 
ity,  except  for  the  cost of the desired  final  state,  which 
should  be set   to  zero. Set  all  the  pointers P,, t o  null, i.e. 
make them  point  nowhere.  Set  the column counter a to S A .  

If the column counter a is zero, then  stop. 

Otherwise, set  the  current-row  counter j3 t o  0. 

I f  ,B = .vp, go to  s12. 

I f  7 = iVP go to  s1 1. 

Otherwise,  set  the  next-row  counter 7 to 0. 

For rows p and 7, generate  the  curve  that  connects  the 
(a-1,p) entry  to  the ( a , ~ )  entry. For this  curve,  test, as 
described  in  the  previous  paragraphs, to  see  if  the 
required  joint  torques  are in the  range  given  by  inequalities 
(2). If they are not, go to  S10. 

Compute the  cost  of  the  curve  by adding the  cost C,, to 
the  incremental  cost of joining  point :a-l,p) to  point (a,7), 
calculated  using Eq. (1 7). If this  cost  is  less  than  the  cost 
C,-iB, then  set C,-l,B to  this  cost,  and  set  the  pointer 
Pa- , ,B  t o  point to  that grid entry (a , r )  that produced  the 
minimum cost, i.e. se t   to  7. 
Increment  the  next-row  counter y and go t o  S 7 .  
increment  the  current-row  counter ,9 and go to  S5. 
Sxrement  the column counter a and go to  S3. 

1631 
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Finding the optimal trajectory from the grid  is  then  a  matter 
of  tracing  the  pointers Pmn from the  initial  to  the  final  state. If 
the  first  pointer  is null, then  no  solution  exists;  otherwise,  the 
successive  grid  entries  in  the  pointer  chain  give  the  optimal  tra- 
jectory. Given the optimal trajectory,  it  is  then  possible  to  calcu- 
late  joint  positions,  velocities,  and  torques. 

3.2. Case of Interacting  Torque  Bounds 

I t  has  been  assumed  in  the  preceding  discussion that  the 
joint  torque  limits do not  interact, i.e. that increasing  the  torque 
on  one  joint  does  not  decrease  the  available  torque  at  another 
joint. This assumption  manifests  itself  in  the form of  the  torque 
constraint  inequalities  (2a). This assumption  is  probably  correct 
in many cases,  but  in  others  it  certainly is  not. Here it will  be 
assumed that  the  inequalities  (2a)  are  replaced  with  the  con- 
straint (21, namely (u1,u2, ' ' ' ,u,)? E E(q,q). 

There  are  a number of  situations  in  which  joint  torque  limits 
might interact. Consider, for example,  a  robot  that  has  a common 
power  supply  for  the  servo  amplifiers  for  all  joints.  The  power 
source  will  have some finite limit on the  power it can  supply, so 
that  the sum of  the  power consumed by all the  joints must  be 
less  than that limit. A similar situation  arises  when  a  single pump 
drives  several  hydraulic  servoes. The pump will  have  finite  limits 
on both  the  pressure and the volume flow  it  can produce.  Such 
interacting  torque  bounds must be  considered along with  the 
non-interacting bounds, such as servo motor  saturation  limits. It 
is interesting  to  note  that  the limits  described  above all produce 
set  functions E in Eq. (2)  which  are c o n v e z .  For example,  if the 
sum of  the  power  consumed  (or  produced) .in all the  joints is 
bounded, one obtains  the  bounds P M n  I qq'  I P,,,. For any 
given  velocity,  this  is  just  the  region  between  a  pair  of  parallel 
hyperplanes in the  joint  space.  Likewise,  for  independent  torque 
bounds, the realizable  torques  are  contained  in  a  hyper- 
rectangular prism, another  convex  region.  Since the  intersection 
of  any number of  convex  sets  is  a  convex  set,  any combination 
of  these  constraints  will  also  yield  a  convex  constraint  set. In 
this Ijght, it is  reasonable to  make the assumption that  the  set 
E(q,q) is  convex. This assumption  is  important  in  the  analysis 
that  follows. 

To see  how we may make use  of  this  convexity condition, 
consider  the  test  for  realizability  of  torques  used  in  the  method 
presented  thus  far.  This tes t  made explicit  use  of  the assump- 
tion that  the  torque bounds do not  interact. In  order t o  handle 
interacting  torque  bounds  using an approach  like that  of  Section 
3.1, it must be  possible t o  determine  whether all torques  are 
realizable  over  any  given  X-interval. If the  torques  have  the 
form  used  in Eq. (121, then  this  is  in  general  not  possible  with 
any  finite number of  tests;  even in the two-dimensional  case, the 
torques trace  out  conics in  the  input  space,  and  there  is no gen- 
eral  way t o  determine  whether  a  segment of  a  conic  is  entirely 
contained  within  a  convex  set. 

Though the  question  of  whether  a  set  of  torques  is  realiz- 
able  cannot  in  general  be  given  a  definite  answer,  the  realizabil- 
i ty  question  can  be  answered in some cases. To see how this 
can  be done, consider  again the  tests  for  realizability  previously 
described. The maximum and minimum torques  for  each  joint  are 
determined,  and these  torques  are  checked.  While Eq. (1  2) 
describes  a  curve  in  the  joint  torque  space,  the  individual  torque 
limits  describe  a  box-shaped volume. The curve  describing  the 
joint  torques  will  be  entirely  contained  inside  this  box. Thus if 
every  point  in  the  box  is admissible, then so is  every  point on the 
curve. This "reduces"  the problem of  determining  whether ev'ery 
point  of  a  one-dimensional set  is realizable to   the problem of 
determining  whether every  point  of  a  higher-dimensional set  is 
realizable.  However,  this  higher-dimensional  set  has  a  special 
shape; it is  a  convex  polyhedron,  and  will  be  contained  in  the 
(convex)  set E if and  only if all its  vertices  are in E .  Thus by 
testing  a  finite number of points, the question of whether  a  par- 
ticular  set  of  torques  is  realizable may sometimes be  given  a 
definite  "yes"  answer. 

If th is  test  does  not  give  a  definite  answer,  then  the  set of 
inputs  in  question  must  be  discarded,  even  though  that  set may 
in fact   be realizable. However, as the  grid  size  shrinks,  the  size 
of  the bounding box  for  the  torques  also  shrinks, so that in the 
limit the  test becomes  a test  of  a  single  point.  Therefore as the 
grid  shrinks, the  percentage Y valid  torques  thrown  away 
approaches zero, end the optinis :;olut:on will  be  found. 

Tbi j  method of t:andlillg  interacting  torque  bounds  requires 
only  one  change  in the DP algorithm. Step S 8 ,  which  checks  to 
see  if  the  torques  are realizable,  must be  replaced  with  a  step 
that  generates all  corners  of the bounding box and tests  these 
points  for  realizability.  If  any  of  the  corners  does  not  represent 
a  realizable  set  of  torques,  then  the  test  fails. Thus we  have 

S 8 ' .  For rows p and 7, generate  the  curve  that  connects  the 
(a-l,@) entry  to  the ( a , y )  entry. For this  curve,  generate 
the maximum and minimum torques  at  each  joint. Check 
each  torque  N-tuple formed  from the maximum and minimum 
joint  torques.  (These  are  the  corners  of  the  bounding  box.) 
If any of  these  N-tuples  are  not  contained in the  set E ,  
then go to S 1 0 .  

3.3. Accommodation of Jerk  Constraints 

The  methods  described  thus far  have  ignored  the  jerk  con- 
straints (3) which limit the  derivatives  of  the  joint  torques.  Tak- 
ing  these  limits  into  account  effectively  requires  that  a  third 
state variable  be  added.  That  ,variable  can  be  taken to  be  the 
pseudo-acceleration p, say v=p.  Differentiating  the  equation  for 
the torque, one obtains 

& = r,,v t a i ;  t QJ f Z Q , ~ V  + ~~p t R,V f si (21a) 

Using the  identity * LC - = * p ,  this  equation  becomes 
d,r d h  

d t  d h  d t   d h  

d R  
f 1 k 2  f R,v f - p  

dX d h  
d Si 

If  there  are no jerk  constraints,  then  the  parameter  in Eq. 
(7)  can  be  manipulated as needed. When there  are  jerk  con- 
straints,  we must instead manipulate v in Eq. (21  b). Eq. (21 b) 
and constraints (3) then  give  constraints on u, just  as Eq. (7)  
and constraints (2) yield  constraints on p. 

To solve  the  optimization  problem  with  jerk  constraints  using 
dynamic programming, a  three-dimensional  grid  is  required,  with 
one dimension for  each  of, X, p, and u. Some form  must be 
assumed  for  the  "inputs" ui, as was done for ui when  there 
were  no  jerk  constraints, i.e.  Eq. ( 1  2). Because  the  grid  points 
that  the DP algorithm  must  join  form  a  pair of planes,  rather  than 
a  pair  of  lines or columns, as in the two-dimensional  case, the 
form of  the  input must  contain two  arbitrary  constants  instead  of 
one. If only  one  parameter is used,  then it will  not b e  possible to 
connect  arbitrarily  chosen  points in the DP grid. The problem  is 
thus  inherently more complicated  than  the  two-dimensional  case, 
at  least in  terms  of  the  algebra  required to  produce  a  solution. 
The procedure  is  otherwise  the same as that  for  the  two- 
dimensional case. 

3.4. Algorithm  Complexity 

Even  though  the dimension of  the  state  space  for  this  par- 
ticular  dynamic programming problem  is  only two,  the amount of 
storage  required  to implement the method  is  still  a  concern.  Note, 
however, that  the time  required  for  the  algorithm  is  not  a  major 
concern,  since  the  path  planning  is  done  off-line. 

It is  easy  to  compute  the  storage  requirements  for  the  algo- 
rithm. The memory allotted  to  the program itself is  essentially 
fixed. The size  of  the  grid  used  for  the  dynamic programming 
algorithm  varies  with  the  fineness  of  the  grid  and  the amount of 
storage  required per point on the grid. The grid  has N, rows and 
N, columns. Each entry must  contain  a  cost C and  a  pointer P. 
The size of an entry  will  then  be 

GS = S, + S, 

where GS is  the  storage requirement for  a  single  point  of  the 
grid  and S, and S, are the amounts  of  storage  required to  
record  the  cost and the  pointer  to  the  next row, respectively. 
Multiplying  this  by  the number of grid  entries  and  adding the 
amount of  storage PS required  for  the  program  gives  total 
storage T S  as 
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Calculating  the  time  required to  perform  the dynamic pro- 
gramming algorithm  is  somewhat more difficult. There  will be 
K, - : steps,  where  each  step  requires  testing  to  see  if  each  of 
the ."i,,points in one column can be  connected t o  each  of  the ;VZ 
points In the  next column. Each test  must be done, but some of 
the  tests are simpler than  others.  If  the  cost  at  the  next  grid 
point  is  infinite,  then  there  is  no  point in doing  any further  calcu- 
lations.  If  on  the  other  hand  the  cost is finite,  then  input  torque 
bounds  must be  checked,  and  if  the  input  torques  are admissible, 
then  costs must be  calculated and  compared.  Though actual 
computation  times  will vary  with  the  particular problem being 
solved,  the  way  the time varies  with  grid  size  can  be  roughly 
determined. To get  a bound on this time, assume that all the 
tests and  computations must be performed.  Then  each step  of 
the dynamic programming algorithm  requires K :Y: seconds, 
where K is  a  constant.  There  are 3', such  steps, so the time 
required  is  less  than -K(-YA - i).V:. 

The dependence  of  execution time on the number of  joints 
R is much more difficult  to  assess. The constant K in the  equa- 
tion  above  depends  on  both R and  the form of  the  curve  to  be 
traversed. The functions !dI and Ri depend  on the  matrices J 
and R respectively, and the Coriolis  term Qi depends on the 
three-dimensional  array C I j k .  In  general,  then, i t  might be 
expected  that  the  evaluation  of  the  function Qi might take time 
proportional to  the  cube  of  the number of  joints. However,  in 
practical  cases,  the number of  joints  would  usually  be no  more 
than  six, and  almost certainly would be  less  than  eight.  In  any 
case,  these  functions  only  need to  be  evaluated  once  per A- 
division of  the DP grid,  and so will  probably be  only  a minor part 
of  the  total time  consumed. This being  the  case,  the  dependence 
of  execution time on n is  not an important  factor. 

4. NUMERICAL EXAMPLES 

To demonstrate  the  use  of  the dynamic  programming  algo- 
rithm, we  present  several examples.  Although these  examples 
use  a simple two  degree-of-freedom  robot,  they are sufficient  to 
demonstrate  the method. This same robot  was  used in [12]   to  
demonstrate  the  phase  plane  method  for  obtaining minimum time 
trajectories, so a  direct comparison of  the methods  is  possible. 
In addition, several  examples  will  treat  cases  to  which  the  phase 
plane technique does not  apply. 

The robot  used  for  these  examples  is  shown  in Figure 1. I t  
has  one revolute and  one prismatic  joint, so the robot  moves in 
polar  coordinates. 

If  the  path  followed is a  straight line  from (1,:) t o  (i ,-1) in 
R?, then  the  equation  of  the  curve to   be  followed  is r = sec  25, 
and Ti ranges from to  - E .  One possible  parameterization is 

I j  = - A r = see{  7 - A) where h ranges from 0 to  

Differentiating  these  functions  with  respect  to time, using  the 
chain  rule to  obtain  time-derivatives  in  terms  of  A-derivatives, 
and  plugging into  the  robot dynamic equations  gives 

4 L 
7 i  

L t 2 

I \ 

(22a) 

See  [12]  for  a  detailed  derivation  of  these equations.  These 
equations  are Eq. (7) for  this  particular  robot, and  are used t o  
calculate  the  torques  required t o  move  from  one point  in  the DP 
grid to  another.  The DP algorithm  was  coded  in  the C programming 

language  and :un under the CAVIX4 operating  system on a VAX- 
11 1780. 

The first  examples  are  the same as  those found in [12];  the 
cost  function  is  strictly minimum time, i.e. rI = 1, r,  =0, and the 
torque and force bounds are  constants  for  each  joint. Figures  2 
anti 3 show  the  results  of  the dynamic programming method  when 
there  is no joint  friction,  plotted on the same axes as the  results 
of  the  phase  plane method.  Figure 2  shows the  results  for  a 
10 x 10 grid,  Figure 3 is  for  a 40 x 40 grid. Figures 4 and 5 show 
the  results when the r joint  has  a  friction  coefficient  of  15. 

Figures 6 and 7 show  the optimal trajectory when  a combi- 
nation  of minimum time  and minimum energy is used  as  a  cost 
function. The friction  coefficient on the r joint is 15, as it  was 
in Figures 4 and 5. However, the  cost  coefficients rI and r,  
were 1 and 500 instead  of  1  and 0. The effect,  as would be 
expected, is to  lower  the  velocity  of  the optimal trajectory  for 
those  parts  of  the  trajectory which  require  large motions of  the 
r joint.  Note  that  the  peak  of  the  curve, which occurs near the 
midpoint of  the  trajectory,  is  at  that  point  for which the  velocity 
of  the r joint  is zero. This is  what  would  be  expected,  since 
frictional  losses  are  zero  if  the  velocity  of  the r joint is  zero. The 
fixed-cost  penalty  then dominates, so that  a high velocity  gives 
minimum cost. 

The apparent  saturation  of  the  curve  at high velocities is 
probably  caused  by  discretization  effects.  If  the  actual  optimal 
trajectory has  a  sharp  peak,  then  the DP solution  will  only 
ascend  into  that  peak  until  the  squares  of  the  grid  are  wider 
than  the peak. This would  be expected  to  f latten  out  the  peaks. 

Finally, Figure 8 shows  the  effect  of  interacting  torque 
bounds.  Figure 8 shows  a  pair  of  trajectories, one for  interacting 
and  one  for  non-interacting  torque  bounds. The lower  trajectory 
shows  the time-optimal trajectory  when  the r and 6 joints are 
limited t o  sourcing or sinking  a total  power  of  half  a  Watt each, 
with  each  joint  independent  of  the  other. The  upper trajectory 
was  calculated  for  interacting  torque bounds. In this  case,  the 
sum of  the  absolute  values  of  the  powers  for  the  two  joints  was 
limited to  one Watt.  Since  power may be  distributed as needed 
in  the  interacting  case,  the robot  can move faster,  even though 
in both  cases  the  total  power consumption  is  limited to  one Watt. 
The trajectories  were  calculated  with  a iG x 40 grid, a  pure 
minimum time cost  function,  and zero  friction. 

The e f fec t  of  grid  size  on  the  quality  of  the  results  of  the 
dynamic programming algorithm  is of  practical importance. The 
grid must be  fine enough to  give  good  results  but  not so fine  that 
the time  required to  perform  the DP algorithm  is excessive.  Intui- 
tively,  varying  the number of  rows  and number of columns in the 
grid  will  have  different  effects on the  results. Varying the 
number of columns (the number of A-divisions) varies  the  accu- 
racy  of  the dynamic model; using  a  smaller  size  yields  a more 
accurate approximation to  the  true dynamic model, since  the 
"pieces"  in  the  piecewise-constant dynamic model will  be 
smaller.  Varying the number of  rows  (the number of  p-divisions) 
varies the  accuracy  of  the approximation to  the  true minimum- 
cost solution;  a finer grid size  will  in  general  yield  a  better 
approximation. 

Another  important  factor is the  ratio  of  the number of  rows 
to   the  number of columns. If the number of  columns is  very  large 
and the number of rows is very small, then  the  slope  of  the 
curves  connecting  one  point  in  the DP grid to  another must be 
either zero  or very  large.  Since  the  torque bounds  induce  bounds 
on the  slope  of  the curve, i t  is  possible  that  the DP algorithm 
may not  even  be  able to  connect  a  point  to  its  nearest diagonal 
neighbor. In  this  case,  the  algorithm  will  give no solution a t  all. 
This in fac t  happens  for  the  example  robot,  with  parameters se t  
as  for Figures 4 and 5, if  a DP grid  with 40 A-divisions  and  only 
1 0  @-divisions  is  used.  Therefore  when  choosing  grid size,  one 
must  (i)  choose the A-divisions to   be  small  enough to  make the 
piecewise-constant dynamic model of  the  robot  sufficiently 
accurate,  (ii)  choose the  pi-divisions  to  be small  enough so that 
the  resulting  trajectory  is  a  satisfactory approximation to   the 
true minimum-cost trajectory, and  (iii) make  sure that  the p- 
divisions  are  small  enough so that  the  slope  of  a  curve  connect- 
ing  two  adjacent  points  in  the  grid is small. 

' U N I X  I S  a trademark of Bell LaboratorJes. 
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5.  CONCLUSIONS 

We have  presented  a new, elegant  robot  peth  planning 
method  for  which dynamic  programming is used  as  a main tool. 
Because  of the  reduced dimensionality, use  of dynamic  program- 
ming does not  suffer from the  "curse  of dimensionality"  and  pro- 
vides  power  and  flexibility t o  handle  completely  general  cost 
functions and constraints. 

The results  are  significant in that  the  present method  can 
provide  a simple  approximation to  the  truly optimal path solution 
t o  any  desired  degree  of  accuracy,  whereas  the  conventional 
methods  must  resort to  complex approximations  or  unrealistic 
assumptions on constraints. 
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Figure 2. TrJectory for sero friction, minimum time, lox 10 grid 
Upper curve generated by phare plane  method. 

Description 
Moment of inertia of 0 joint 
M a s s  of sliding rod 
Length of rod 
hloment of inertia of payload 
Payload mass 
Length of payload 
Maximum  force on r joint 
Maximum  torque on 0 joint 
Friction coefficient of r joint 
Friction coefficient of r joint 
Friction coefficient of B joint 

Value 
10-3 K ~ M  
4.0 Kg. 
2.0 M .  

1.0 Kg. 
0.1 
1.0 Kg.-M/acc2 

0.0 (low friction) 
15.0 (high  friction) 
0 .o 

1 0 - ~  K ~ . - M  

1.0 K ~ . - M ~ / ~ ~ ~ ~  

Table 1. Data for the example  robot 
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Figure 3. Trajectory for zero blctlon,  mlnlmum  tlme, 40x40 grld  Figure 4. Trajectory for k ,  = 15, mlnlmum  tlme, 1OX 10 grld 
Upper  curve  generated by phare  plane  method  Upper  curve  generated by phase  plane  method 
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Figure 5. Trajectory for k, = 15, mlnlmum  tlme, 40x40 grld 
Upper  curve  generated by phase  plane  method 
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Figure 6. TrsJectory for kr = 15, minimum  tlmcenergy, 

10x10 grld 
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Figure 7. TrsJeetory for k, = 15, minimum tlmeenergy, Figure 8. TrJectorla for Lero frletlon, mlnlmum  tlme. 
40x80 grld  Upper  cwve:  maximum power 1 Watt,  interacting  Jolntr 

Lower curve:  each  Joint  Umlkd to onehall  Watt. 
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