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Abstract-A computer-controlled system is a synergistic coupling of 
the controlledprocess and the controller computer. We have defined new 
performance measures for real-time controller computers based on this 
coupling. 

We present a systematic study of a typical critical controlled process in 
the context  of new performance measures that express the performance of 
both controlled processes and controller computers (taken as a unit) on 
the basis of a single variable: controller response time. Controller 
response time is a function  of current system state, system failure rate, 
electrical and/or magnetic interference, etc., and is therefore a random 
variable. Control overhead is expressed as monotonically nondecreasing 
function of the response time and the system suffers catastrophic failure, 
or dynamic fuilure, if tbe response time for a control task exceeds the 
corresponding system hurd deadline, if any. 

The controlled-process chosen  for study is an aircraft in the final stages 
of descent, just prior to landing. Control constraints are particularly 
severe during this period, and great care must be taken in the design of 
controllers that handle this process. First, the performance measures for 
the controller are presented. Second,  control algorithms for solving the 
landing problem are discussed, and finally the impact of  our performance 
measures on the problem is  analyzed, showing that the performance 
measures and the associated estimation method have potential use for 
designing and/or evaluating real-time controllers and controlled process. 
In common with all other control techniques, the computational complex- 
ity involved in obtaining these measures is susceptible to the curse of 
dimensionality. 

I. INTRODUCTION 

T HE use  of computers in the control of life-critical processes, 
such as aircraft or nuclear reactors, is  becoming popular 

owing to the increased capability and reliability, and the reduced 
cost, of modem computers and the increasing sophistication of 
controlled processes. 

It  is becoming increasingly apparent that the highly fuel- 
efficient aircraft that are expected to be in use in the next century 
demand faster control reaction than is possible for any  human 
being to provide. In attempting to improve fuel-efficiency, the 
aircraft designer pushes his design to the edge of instability. 
Control situations will therefore present themselves in which fast, 
accurate, and consistent action is called for. It is expected that the 
major performance bottleneck in the control chain will be the pilot 
who can seldom react as quickly and as correctly as emergencies 
may demand. For this reason, while the pilot should properly be 
in control of flight policy, it  is unreasonable to expect him  to act as 
a real-time, low-level controller of the actuators aboard the 
aircraft of the future. To take over as a low-level controller 
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(essentially an interface between the pilot and the aircraft/ 
environmental system), one requires a controller computer. This 
device would perform such critical tasks as maintaining aircraft 
stability. Such a computer cannot be manually overridden for the 
simple reason that there would be no  point in so doing; future 
aircraft are expected to be so intrinsically unstable that the pilot 
could not  possibly fly the aircraft without the computer. 

The use of a computer in controlling a process is qualitatively 
different from using the more traditional hard-wired digital 
controllers. One can model the latter type of controller relatively 
simply as a digital filter. Fault-tolerant computers used in control 
(e.g., FTMP [14], SIFT [15]) are  far more complex, owing to 
thelr fault-tolerance and capacity to degrade gracefully. Issues of 
control-task scheduling, allocation, and optimal queue control 
arise, which are, of course, quite unknown in hard-wired control. 
One also has the problem of optimal (more realistically, quasi- 
optimal) management of redundancy, and the distribution of the 
computer’s executive. 

For these reasons, one cannot simply integrate a computer into 
the feedback loop of a controlled process as one would a digital 
controller. The fact that the control computer and the controlled 
process are designed in a more or less disjoint manner only serves 
to compound the difficulty of achieving optimal and ultrareliable 
control based upon a computer. 

When computer systems are introduced whose behavior is 
critical to the safety of an aircraft,  there is the need for formal 
evaluation and validation procedures. This presupposes that there 
are performance measures to characterize the behavior of control- 
ler computers, describing precisely the goodness of the controller 
computer in the context of the application. 

What is called for is a procedure for specifying and evaluating 
controller performance, enabling systematic application, and 
providing objective results that lend themselves to formal valida- 
tion. 

To solve this problem several contortions of the conventional 
measures have been proposed. Generally, these involve represent- 
ing real-time computer performance as a vector p € RP, made up 
of such traditional measures as (conventional) reliablity, through- 
put, survivability, availability, etc. However, to compare two 
vectors, we  need to map them into a scalar quantity. One solution 
is to assign weights to the various components of the performance 
vector and form an inner product to produce a scalar. That is, if 
the weight vector is w7 = (w,, - . , wp), then the mapping is 
f:RP + R with f@) = wTp. 

This process of ascribing weights is largely subjective and is 
therefore inaccurate to begin with. Even if the weight ascription 
were completely objective, serious practical difficulties would 
remain. For example, since the components of the performance 
vector are mutually dependent (sometimes in a very complex 
manner), the weights (that are supposed to define the sensitivity of 
the scalar to the respective vector components) must  be modified 
by often very complex correction factors to account for this 
coupling. Furthermore, relating the resulting scalar to “real- 
world” performance parameters (such as operating cost,  etc.) is 
difficult. 

The performance measures we introduced in [ 11 are designed to 
get around these difficulties by expressing the performance 
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objectively in terms of the response  time of  the controller 
computer. Controller  response  time is the interval between the 
initiation of a controller job-which is a predefined program, or a 
mutually interacting set of programs-and the actuator or display 
output that results. From the point of view of the controlled 
process, the computer controlling it  is a black box whose behavior 
is exemplified by its response time and reliability. It  is  well  known 
that nonzero controller response time has a detrimental effect on 
process behavior, our measures take the form of a quantification 
of this. The performance measures are considered in Section Jl in 
some detail prior to the presentation of  an idealized example of 
their derivation. 

Our performance measures are based on the following elemen- 
tary observations. 

1) Nonzero controller response time has a negative impact on 
the behavior of the controlled process. 

2) There is a limit to how great the response time can be before 
the process behaves unacceptably. 

3) Even if this response time is kept within the above bounds, 
an incremental increase tends to lead to a deterioration in 
controlled process behavior. 

The example is that of a controller computer in charge of  an 
aircraft in its final phase of fight, just  prior to touchdown. There 
are stringent control constraints that must be met. These consist of 
limits on the speed of touchdown (both horizontal and vertical), 
the angle of attack a, and the pitch angle 8. For a definition of 
these angles, see Fig. 1 .  These constraints are variously intended 
to safeguard against running out of runway, undercarriage 
collapse, stalling, and landing either on the aircraft nose or tail. 
Insofar as this is a control problem with severe constraints, the 
problem is typical of many other critical applications, such as the 
control of nuclear reactors, the generation and distribution of 
electrical power, life-support systems, etc. Indeed, the perform- 
ance measures that we illustrate in this paper could equally well be 
used in any of the above applications. 

Fig. 2 shows the block diagram of a typical control system. The 
inputs to the controller are from sensors that provide data about 
the controlled process, and from the environment. This is 
typically fed to the controller computer at regular intervals. Data 
rates are usually low: sensors generally put out fewer than 20 
words a second. 

Central to the operation of the system is the trigger generator. 
In most systems, this is physically part of the controller itself, but 
we separate them here  for purposes of clarity. It is the function of 
the trigger generator to initiate execution of a controller job. 
Triggers can be classed into three categories. 

1) Time-Generated  Trigger: These are generated at regular 
intervals, and lead to the corresponding controller job being 
initiated at.regular intervals. That is, these are open-loop triggers. 

2) State-Generated Trigger: These are closed-loop triggers, 
generated whenever the system is  in a particular set of states. For 
practicality, it might be necessary to space these triggers by more 
than a specified minimum duration. If time  is to be regarded as an 
implicit state variabIe, the time-generated trigger is a special case 
of the state-generated trigger. One can also have combinations of 
the two. 

3) Operator-Generated Trigger: The operator can generally 
override the automatic systems, generating and canceling triggers 
at will. 

The output of the controller is fed to  the actuators and/or the 
display panel@). Since the actuators are mechanical devices and 
the displays are meant as a human interface, the data rates here are 
usually very low. Indeed, as we  have  pointed  out elsewhere [SI, a 
controller computer gecerally (with the exception of systems 
dependent on real-time image processing) exhibits a fundamental 
dichotomy, with the I/O being carried out  at rather low rates and 
the computations having to be carried out at very  high rates owing 
to real-time constraints on control. 

A control system executes missions. These are periods of 
operation between successive periods of maintenance. In the case 
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Fig. 1.  Definition of aircraft angles [from (4)]. 
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Fig. 2. A typical real-time control system. 

of aircraft, a mission is usually a single flight.  The operating 
interval can sometimes be divided down into consecutive sections 
that can be distinguished from each other. These sections are 
called phases. For example, Meyer et al. [6] define the following 
four distinct phases in the mission lifetime of a civilian aircraft. 

1) Takeoff/cruise until VHF omnirange (VOR)/distance mea- 
suring equipment (DME) is  out of range. 

2) Cruise until VOWDME is in range again. 
3) Cruise until landing is to be initiated. 
4) Landing. 
The phase to be considered here is landing; it takes about 20 s. 

The controller job that we shall treat is the control of the aircraft 
elevator deflection during landing. 

The specific system employed is assumed to be organized as 
shown in Fig. 3. Sensors report on the four key parameters: 
altitude, descent rate, pitch angle, and pitch angle rate every 60 
ms. We have a time-generated trigger, with a time period of 60 
ms. Every 60 ms the controller computes the optimal setting of the 
elevator. There are other actuators used aboard the aircraft for 
purposes of stability, horizontal speed control, etc. We do not 
however consider them here, concentrating exclusively on the 
control of the elevator. The controller response time is nominally 
20 ms, although this can vary in practice due to failures or 
conditional branches in the executed code. 

Since the process being controlled is critical (i.e., in which 
some failures can lead to catastrophic consequences), variations of 
controller response time and other abnormal behavior by the 
controller must  be explicitly considered. For simplicity, we do not 
allow job pipelining in the controller; in other words a controller 
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Fig. 3. Aircraft  control  system  schematic. 

job must be completed or abandoned before its successor can be 
initiated. The following controller abnormalities can occur. 

i)  The controller orders an incorrect output to the actuator. 
ii) The controller response time is substantially more than 20 

ms (the nominal execution time) but less than the inter-trigger 
interval of 60 ms. 

iii) The response time is greater than 60 ms. In such a case, the 
abnormal job is abandoned and the new one initiated. We  say that 
a control trigger is missed when this happens. 

An analysis of controller performance during the landing phase 
must take each of the above abnormalities into account. 

This paper is organized as follows. In Section II we introduce 
the performance measures that will be used, and Section III 
contains a description of the controlled process. Since our goal  is 
to illustrate the use  of our performance measures and not to solve 
a control problem as such,  the controlled process studied will be 
slightly idealized in this paper. In Section IV, we derive the 
measures associated with the controlled process (the aircraft). 
Section V identifies some of important potential uses of the 
performance measures, and the paper concludes with Section VI. 

II. PERFORMANCE MEASURES 

A .  Review  of  the  Performance  Measures 

For completeness, we review briefly in this subsection the 
performance measures to be used, which were introduced in [ l ] .  

Our measures are all based on a single attribute: the probability 
distribution of the controller response time. Owing to random 
failures and conditional branches in the executed code, a 
controller computer in general exhibits stochastic behavior. 

Central to our performance measures are the concepts of 
dynamic failure and allowed or admissible state-space. Every 
critical process must operate within a state-space circumscribed 
by given constraints. This is the allowed state-space. Leaving this 
state-space constitutes dynamic failure. Dynamic failure is so 
termed since it is a failure that can occur as a result of the 
controller not responding fast enough to the environment. It 
expresses the fact that slowness of the controller can be a cause of 
catastrophic failure. In the aircraft-landing example we peat here, 
the states are the altitude, the vertical speed, the pitch angle, and 
the pitch angle rate. Each of these has an associated constraint. 
For example, the aircraft must  not  touch down with too great a 
downward velocity or the undercarriage will collapse. 

The performance of the controlled process naturally depends on 
the speed of the controller. If the controller takes longer than a 
certain duration to formulate the control, dynamic failure becomes 
possible. This duration is the hard  deadline. 

We define a cost function Ca(t) associated with controller 
response time ,$ for controller job CY. The cost function takes the 
following form: 

where ga( .  ) is a suitable continuous nondecreasing function of the 
response time and 7 d a  is the hard deadline associated with the job 
CY. Clearly, since the environment influences the quality  of system 
performance, the cost function is implicitly a function of the 

system state. Also, if 7 d a  is a fmite quantity in some region of the 
state-space, the job is critical in that region. The determination of 
the hard deadline is treated in detail in Sections 11-B and C and that 
of ga( a )  is considered briefly below. 

For controller response times less than the hard deadline, the 
cost function in (1) above is continuous, monotonically nonde- 
creasing, and therefore always bounded for finite response time. 
For consistency, it  is assumed that the costs accrue as the 
execution proceeds. 

The functions (called the finite cost functions) g,(.) can be 
obtained using the performance indexes of the controlled process. 
These performance indexes are well-known to control theory and 
express the consumed energy,  fuel, time, or some other physical 
parameters associated with the trajectory of the system as it travels 
from its initial to its final state. See, for example, [2], [3], for 
details. The cost of running the controlled process over,  say, an 
interval of time [to, t i] ,  is usually expressed by: 

where E[ - I -1 represents conditional expectation, f o  is the instanta- 
neous index of performance at time t ,  and x(t) E R", u(t) E R', 
and y( t )  E Rm represent the state, input, and measurement 
vectors, respectively. u(t) consists of two compnents, namely, 
the control input u,(t) E R'c  and the environmental input uxt) E 
R'e. A good representation for ga(E) is given by 

where q a ( q )  = expected contribution of u, to €)(to, t f )  if response 
time of that particular execution of job a is 7. 

A version is an instance of the execution of a controller job. 
Versions are numbered in sequence of initiation: successive 
versions of job i being denoted by V,,, . . , Vi,. The response 
time associated with a version K j  is denoted by RESP( Kj ) .  

Let q;(t) represent the number of versions executed for job i 
over the interval [0, t), and r the number of distinct jobs. Then 
define 

; = I  j = l  

Let L(t) denote the probability distribution function of the 
mission lifetime which is defined as the operating interval 
duration between two successive service stages. 

Our performance measures are then'  as follows. 
Probability  of  Dynamic  Failure, p d y n :  This is the probability 

that over the operating interval, at least one hard deadline is 
missed for whatever reason. For  our purposes, a hard deadline is 
missed whenever the controller produces no output within the 
deadline or an erroneous output. This probability incorporates 
within it the probability of static failure, which is the probability 
that so massive a hardware failure has occurred that the system 
utilization is greater than unity. Static failure probability has 
erroneously been treated in most of the literature as expressing the 

considered  here. For our purposes, the measures listed here are  sufficient. 
' There  are  other  performance  measures  developed in [l], but not 
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total probability of failure. This is  most decidedly not the case in 
real-time control systems. 

Mean  Modified Cost, A? E{ System  Never 
Suffers Dynamic Failure) dL(t): It can be shown that, for 
physical systems, this integral always exists since the mission 
lifetime is always finite. The qualifier “modified” is used 
because, implicit in the analysis, is the assumption that all initiated 
control jobs finish executing by the time the mission ends. This 
assumption need  not always hold, but does not introduce any 
significant inaccuracy in our calculations, since the mission 
lifetime is usually much.:longer (e.g., several hours for aircraft 
and even several days or months for spacecraft) than the execution 
time  of a job (this is at most a few seconds). Were this assumption 
not introduced, computing the mean cost would be a very tedious 
process. 

The performance measures can be used to rank rival controller 
computers and to help design improvements to existing controllers 
in the context of the control application.. Typically, the 
probability of dynamic failure is  used as a passlfail test for 
candidate controllers. This test can be very severe: for example, 

is the specification for failure probability adopted by  NASA 
for controller computers of the next decade handling a 10 h 
civilian flight. The mean cost is then employed to rank controllers 
that have passed the dynamic failure criterion. For further details, 
see [l]. 

Note  that all parameters associated with these performance 
measures can either be definitively estimated or objectively 
measured. Also, the measures specifically incorporate the con- 
trolled process into a determination of the controller’s capabili- 
ties. This is, as  far as we know, a novel approach which ensures 
that the performance measures are specifically indicative of the 
controller performance in a given application. For this reason, 
these measures are intrinsically more reliable and effective than 
others in use. 

B. Hard  Deadlines 

. .  

Roughly speaking, hard deadlines are deadlines that  must be 
met  if catastrophic failure is  to be avoided by a critical process. In 
other words, it is the deadline that, if met by the controller in 
(correctly) formulating its response, ensures that the system 
remains in its allowed state-space. Traditionally, it has  been 
assumed by controller designers that the hard deadlines for each 
critical controller job are somehow “given.” Unfortunately, this 
presupposes a precise definition of the hard deadline and a means 
for obtaining it. Neither seems to exist in the literature. 

Hard deadlines can  be obtained most easily when individual 
controller actions are decoupled from each other and the process 
is simple. For an example in which this is the case, see [l]. 
However, when there is a considerable coupling between individ- 
ual controller jobs,  i.e., when two or more controller jobs 
mutually affect each other, or when  no closed-form solutions are 
available for the process state equations, obtaining a hard deadline 
for each can be difficult. For example, in the aircraft landing 
problem, the controller has over the 20 s or so that it takes to 
complete  the landing, and compute  the  elevator  deflection a number 
of times (in our example, about 330 times). The constraints are on 
thefinalvalues (except for the angle of attack), Le., as long as the 
aircraft touches down’ on the runway  without over- or under- 
shoot, with  an acceptable velocity and at a proper pitch angle, 
dynamic failure has not occurred. The problem here is  that  it  is 
not just a single controller action that determines whether 
catastrophic failure will occur or not; it  is the cumulative effect of, 
in this case, 330 or so distinct controller actions. How then is one 
to allocate deadlines to the individual actions? 

It  is clear that we need a more carefully defined framework to 
handle these problems in a feasible manner. Let the state of the 
controlled process at time t be denoted by x(t).  State transitions 
are characterized by a mapping 9: T X T X X X U -+ X where 
T C R represents the time region, X C R” the state-space, and U 

c R’ the input space; that is, 

x(tl) = w l ,  to, u)  (5 )  

where u E U represents the inputs applied to the process in the 
interval [ t o ,  t , ) ,  i.e., the control history of the process, beginning 
at to. Let Q C U be the admissible input space, and X ,  c X the 
allowed state-space. Then, the unconditioned hard  deadline 
associated with controller job CY triggered at to when the system is 
in state x(t0) is given by 

7 d a ( X ( f o ) )  E 25 SUP {T(‘$(fo+T, lo, X(@, u ) E x ~ } .  (6) 

Thus, for every point in the state-space, we have for each critical 
job a corresponding hard deadline. When closed-form solutions 
for the hard deadlines as a function of the state and the input are 
not available, the unconditioned hard deadlines ‘are generally 
almost impossible to obtain. A case in  point is the aircraft-landing 
example that we consider below. 

To remedy this, we allow for the calculation of the infimum 
over only a subset of the admissible input or state-space, and 
define conditional hard  deadlines. Assume  that the sets w C Q 
and u C X ,  are specified, and also that x(&) E u. The 
conditional hard deadline of job a, denoted by ~ d ~ . ~ . ~ ,  is defined 
as 

~~ulo,o(x(to)) = inf sup ( ~ 1 d ( t ~ + 7 ,  to, x(to), u ) E u } .  (6a) 

In this paper, we calculate for the aircraft-landing case study, the 
hard deadlines conditioned on the assumption that  the elevator 
deflection applied in every instance is dictated by a predefined 
control law [defined later in (I  3)] .  

If the environment is stochastic in character, the hard deadline 
is a random variable. Assuming that the environment is stochasti- 
cally stationary leads to the existence of the distribution function 
of the hard deadline. Notice that the concept of a random hard 
deadline is a significant departure from the conventional approach 
where a hard deadline is assumed to be given as a deterministic 
constant. 

u E w  

C. Allowed  State-Space  and Its Decomposition 

When closed-form solutions are not available for the hard 
deadlines, a numerical solution must be derived. To do this, we 
divide the allowed state-space down into disjoint state-subsets 
which are aggregates of states in  which the system exhibits 
roughly the same behavior. Even if there do not exist clear 
boundaries for these state-subsets, one can always force the 
allowed state-space to  be divided into state-subsets so. that a 
suffkient safety margin can be provided.. In each such state- 
subset, each critical controller job has a unique hard deadline and 
finite cost function. f o r  convenience, a controller “task” is 
defined as a controller job operating within a designated state- 
subset. By definition, each task has a state-independent cost 
function. 

Remarks: In some state-subsets, a job described in general as 
“critical” might not  be critical in the sense that even if the 
execution delay associated with it is infinity, catastrophic failure 
does not occur. That is, the associated hard deadline may be 
infinity for a particular state-subset. What does usually  happen  in 
these circumstances is  that the system moves into a new state- 
subset-or at the least toward the state-subset boundary-in  which 
the dangers of catastrophic failure are  greater. In this state-subset, 
the requirements on controller delay are more stringent, and there 
might  well  be a hard deadline, representing a critical task. Thus a 
“critical” job need  not be truly critical in every state-subset, it 
only has to map into a critical task in at least one state-subset. 
Also, these state-suhets  are job-related. i.e.. the same allowed 
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state-space can divide into a different set of state-subsets for each 
control job. 

Let  Si for i = 0, 1 ,  * . , s be disjoint state-subsets of X ,  with 
X ,  = U f= Si and let Jdenote a controller job.  Then, we need the 
projection: ( J ,  X,) + ((TO, So), (T l ,  SI), * . a ,  (Ts,Ss)) where Ti 
is the controller task generated by executing J in Si. With each 
controller task, we may  now define a hard deadline without the 
mutual coupling problem mentioned above. 

I )  Allowed  State-Space: The allowed state-space is the set of 
states that the system must  not leave if catastrophic failure is  not to 
occur. Consider the two sets of states X i  and X :  defined as 
follows. 

i) Xj, is the set of states that the system must reside in  if 
catastrophic failure is not to occur immediately. For example, we 
may define in the aircraft landing problem, a situation in  which 
the aircraft flies upside down as unacceptable to the passengers 
and as constituting failure. Notice that terminal constraints are not 
taken into consideration here unless the task in question is 
executed just prior to mission termination. 

ii) X ;  is the set of acceptable states given the terminal 
constraints, i.e., it is the set of states from which, given the 
constraints that apply, it becomes possible to satisfy the terminal 
constraints. 

Note that leaving X' means that no matter how  good our 
subsequent control, faihre has occurred.' On the other hand, 
altering the allowed input space, i.e., changing the control 
available can affect the set X:.  The allowed state-space is then 
defined as X ,  = X i  n X i .  

Obtaining state-space X i  can be difficult in practice. The curse 
of dimensionality ensures that even systems with four or five state 
variables make unacceptable demands on computation resources 
for the accurate determination of the allowed state-space. How- 
ever, while  it can be very difficult to obtain the entire allowed 
state-space, it  is  usually  much easier to obtain a reasonably large 
subset X:  C X,. By defining this subset as the actual allowed 
state-space, (i.e.? by artificially restricting the range of allowed 
states), we make a conservative estimate for the allowed state- 
space, and by so doing, err on the side of safety. Also, the 
information we need about X ,  may be determined to as great a 
precision as we are willing to invest in computing resources. 

In what follows, to avoid needless pedantry, we shall refer to 
the artificially restricted allowed state-space, X;, simply as the 
"allowed state-space. " 

2) On Obtaining  the  State-Subsets: The method  we  employ is to 
quantize the state continuum in much the same way as analog 
signals are quantized into digital ones. Intervals of hard deadlines 
and expected operating cost (i.e., the mean of the cost function 
conditioned on the controller delay time, and using the distribu- 
tion of the latter) are defined. Then, points are allocated to state- 
subsets corresponding to these intervals. To take a concrete 
example, consider a state-space X C R" that is to be subdivided 
on the basis of the hard deadlines. The first step is to define a 
quantization for the hard deadlines. Let this be A. Then, define 
state-subset S, as containing all states in which the hard deadline 
lies in the interval [(i - l)A, iA). Alternatively, one might define 
a sequence of numbers AI,  A2, * such that the state-subsets were 
defined by intervals with the A's  as their endpoints. This would 
correspond to quantizing with variable step sizes. With this 
complete, the individual state-subsets thus derived can be further 
divided using mean cost or some other function of the finite cost 
function as a quantization criterion. 

The size of each state-subset will depend on the process state 
equations, the environment, and how  much computing effort it is 
judged to be worth spending on obtaining the state-subset. 
Naturally, all other things being equal, the smaller a state-subset 
the greater the accuracy of the inherent approximation. 

36 1 

leaving X, the system has failed catastrophically before the  next  control could 
* Strict1  spealung, of course, there can be no subsequent  control since by 

be implemented. 
Y 

D. Computational Complexity 

When closed-form solutions are available for the state equa- 
tions, they  can be solved backwards from the terminal constraints 
to obtain analytical results for X i .  When closed-form solutions 
are not available, numerical techniques must be used, and solving 
differential equations backwards can give rise to numerical 
instability. In the most general case, the amount of computations 
required increases rapidly with the number of state variables and 
the complexity of the state equations; therefore, the exact amount 
of required computations depends on the solution approach 
employed and the actual system under consideration. 

One begins by deriving the optimal trajectory, which requires 
the problem- and solution-specific amount of computations. Then, 
obtaining X :  consists of searching the n-dimensional state-space 
surrounding this trajectory. In general, this becomes an exhaus- 
tive search for the boundary of X:.  If the search is confined to an 
(n  + 1) dimensional parallelopiped (the n + 1 th dimension 
represents time) with edge lengths k l ,  k,, . . , k,, ,, and the 
digital resolution is A, then defining mi = rkj/Al , i = 1 ,  . . . , n 
+ 1 ,  the state equations must be solved O(n;'t mi) times. The 
values for ki must be set by the user. 

In the event that X i  is known to be convex, a binary search can 
be instituted along one of the dimensions, reducing the search 
complexity to O(ml * mj - ,m, - I * * mnT I log2 m,) where m, = 
max {ml ,  e . . ,  m,}. 

As for the cost functions and the hard deadlines, these must also 
be derived, in general, by an exhaustive analysis. The allowed 
state-space is quantized, and deadlines and cost functions must be 
found for each of the resulting "cells. " 

It is therefore clear that for a process with large n, these 
methods become prohibitively expensive. Two comments are now 
in order. The first is that this approach is not  uniquely susceptible 
to the curse of dimensionality: all optimal control theory 
techniques suffer this problem when complex processes are 
considered. The second comment is that, in certain cases, 
additional knowledge about the process dynamics can be used to 
improve the efficiency of the search for the X :  boundary, and for 
the hard deadlines and cost functions. 

III. THE CONTROLLED PROCESS 

The controlled process is an aircraft, in the phase of landing. 
The model and the optimal control solution used are due to Ellert 
and Merriam [4]. 

The aircraft dynamics are characterized by the equations: 

i d t )  = ~ I I X I ( ~  + b 1 2 M )  + bI3x3(O + cllmdt, 5 )  (74 

*2( t )  = x1 ( 0  (7b) 

23(t) = 632xZ(t) + b 3 3 X 3 ( 4  (74 

X 4 ( 0  = X 3 ( 0  (74  

where xI is the pitch angle rate, x2 the pitch angle, x3 the altitude 
rate, and x4 the altitude. m, denotes the elevator deflection, which 
is the sole control employed. The constants bi, and cI1 are given in 
Table I. Recall that denotes controller response time. 

The phase of landing takes about 20 s. Initially, the aircraft is  at 
an altitude of 100 feet, traveling at a horizontal speed of 256 ft/s. 
This latter velocity is assumed to be  held constant over the entire 
landing interval. The rate of descent at the beginning of this phase 
is 20 Ws. The pitch angle is ideally to be  held constant at 2". Also, 
the motion of the elevator is restricted by mechanical stops. It is 
constrained to be between - 35 ' and 15'. For linear operation, 
the elevator may  not operate against the elevator stops for nonzero 
periods of time during this phase. Saturation effects are not 
considered. Also not considered are wind gusts and other random 
environmental effects. 

The constraints are as follows. The pitch angle must lie between 



362 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-30, NO. 4, APRIL 1985 

TABLE II 
WEIGHTING FACTORS 

Weighting Factor Value 

TABLE I 
FEEDBACK VALUES 

Feedback Term Value 

611 -0.600 

0" and 10" to avoid landing on the nosewheel or on the tail, and 
the angle of attack (see Fig. 1) must be held to less than 18" to 
avoid stalling. The vertical speed with which the aircraft touches 
down must be less than around 2 ft/s so that the undercarriage can 
withstand the force of landing. 

The desired altitude trajectory (feet) is given by 

while the desired rate of ascent (WS) is 

The desired pitch angle is 2" and the desired pitch angle rate is 0" 
per s. 

The performance index (for the aircraft) chosen by Ellert and 
Marriam and suitably adapted here to take account of the nonzero 
controller response time 4 is given by 

@(E)= 1" e& C;) dt (10) 

where I represents time, and [to, tf] is the interval under 
consideration, and 

10 

ern& 4 ) = 4 h ( t ) [ h d ( t ) - X q ( t ) 1 2 + 4 b ( t ) [ ~ d ( t ) - X ~ ( t ) 1 2  

+ 4e(O[x,(t) - XZ(t)l 

+ 4tj(t)[Xld(t) -x1(t)12 + [mdt, Ell2 (1 1 )  

where the d-subscripts denote the desired (i.e., ideal) trajectory. 
To ensure that the touchdown conditions are met, the weights q5 
must  be impulse weighted. Thus, we define: 

M t )  = +&) + h p o  - t )  (12a) 

~ b ( t ) = 4 3 ( ~ ) + ~ 3 , r f 6 ( 2 0 - t )  (12b) 

where the functions Q must be given suitable values, and 6 denotes 
the Diracdelta function. The values of the are given based on a 
study of the trajectory that results. The chosen values are listed in 
Table II. 

The control law for the elevator deflection is given by 

m( t ,  8 = w , 2 W s t k d t  - 4 )  - k d t  - t)xI(t - 8 - klz(t - W2(t - 0 
- kl3(t - $)x3(t - E )  - k14(t - E)X4(t - (1 3) 

where the aircraft parameters are given by: K, = - 0.95 SKI, T, 
= 2.5 s, w, = 1 rades-', and the constants k are the feedback 
parameters derived (as shown in [4]) by solving the Riccati 
differential equations that result upon minimizing the process 
performance index. For these differential equations we refer the 
reader to [4]. 

IV. DERIVATION OF PERFORMANCE MEASURES 

We consider here only one controller task: that  of computing 
the elevator deflection so as to follow the desired landing 
trajectory. The inputs for the controller here are the sensed values 
of the four states. 

We seek the following information. As the controller response 
time increases, how much extra overhead is added to the 
performance index? Also, it is intuitively obvious that too great a 
response time will lead to a violation of the terminal (landing) 
conditions, thus resulting in a plane crash. This corresponds to 
dynamic failure, and we are naturally interested in determining 
the range of controller response times that permit a safe landing. 

The control for various values of fiied controller response time 
is computed using (13) and is shown in Fig. 4. Due to  the absence 
of any random effects, elevator deflections for all the response 
times considered tend to the same value as the end of the landing 
phase (20 s) is approached, although much larger controls are 
needed initially. In the presence of random effects, the divergence 
between controls needed in the low  and the high values of 
controller response time is even more marked. We present an 
example of this in Fig. 5 .  The random effect considered here is the 
elevator being stuck at - 35" for 60 ms 8 s into the landing phase 
due to a faulty controller order.  The controlled process is assumed 
in Fig. 5 to be in the state-subset in which the landing job maps 
into a noncritical .task (defined in the sequel as So). The diagrams 
speak for themselves. We shall show later that this demand on 
control is fully represented by the nature of the derived cost 
function. Also, above a certain threshold value for controller 
response time, we  would expect the system to become unstable. 
This is indeed the case  in the present problem, although this point 
occurs beyond a response time of 60 ms for all points in the 
allowed state-space (obtained in the next section), which cannot 
by definition occur here. 

A.  Allowed State-Space 

In this subsection, we derive the allowed state-space of the 
aircraft  system. To do so, note that in Ellert and Mezriam's 
model, X> does not exist. The reason is  that the state equations do 
not take into account the angle of attack. In the idealized model we 
are considering, it  is implicitly assumed that the constraint on the 
angle of attack is always honored, so that the only constraints to be 
considered are the terminal constraints. 

The terminal constraints have been  given earlier but are 
repeated here for convenience. The touchdown speed  must be less 
than 2 ft/s in the vertical direction, and the pitch angle at 
touchdown must lie between 0" and 10". To avoid overshooting 
the runway, touchdown must occur at between 4864 and 5120 ft  in 
the horizontal direction from the moment the landing phase 
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Fig. 4. Elevator deflection. 

:t 

i 

Fig. 5 .  Elevator deflection with abnormality. 

begins. The horizontal velocity is assumed to be kept constant 
throughout the landing phase at 256 ft/s (this would constitute a 
separate controller job; we do not consider here how that is to be 
done). Thus, touchdown should occur between 19 and 20 s after 
the descent phase begins. The only control is the elevator 
deflection which must be kept between - 35' and I5 '. 

The restriction that  we place on the allowed state-space, X : ,  is 
for ease of representation. We define allowed "component state- 
spaces" for the individual components of the state-vector such 
that  any point in the four-dimensional state-space whose individ- 
ual components each lie in the corresponding component state- 
spaces is  in the overall allowed state-space. The component state- 
spaces are determined by perturbing the state-values around the 
desired trajectory and determining the maximum perturbation 
possible under the requirement that no terminal constraint be 
violated. They were obtained by  a search process and are plotted 
in Fig. 6. It should again be stressed that  what  we plot in Fig. 6 is 
a subset of X,.  

B. Designation of State-Subsets 

We subdivide the allowed state-space found above using the 
method described in Section 11. The criterion used is the hard 
deadline, since the finite cost function (derived in the next 
subsection) is found not to vary greatly within the whole  of the 
allowed state-space. The value of A chosen is 60 ms. In other 
words, we wish to consider only the case where a trigger is 
"missed." 

The allowed state-space in Fig. 6 is subdivided into two state- 
subsets So and SI. These correspond to the deadline intervals [120, 
03) and [60, 1201, respectively. So is the noncritical region 
corresponding to the [120, 03) interval. Here, even if the 
controller exhibits any of the abnormalities considered in the 
Introduction, the airplane will not crash. In other words, if the 
controller orders an incorrect output, exhibits an abnormal 
execution delay, or simply provides no output at all before the 
following trigger, the process will still survive at the end of the 
current inter-trigger interval if, at the beginning of  that interval, it 
was in So. 

On the other hand, if the process is  in SI at the beginning of a 
inter-trigger interval, it  may safely endure a delay in controller 
response. However, if the controller behaves abnormally in either 
providing no output at all for the current trigger cycle or in 
ordering an incorrect output, there is  a positive probability of  an 
air crash. 

Notice that we explicitly consider only missing a single trigger, 
not the case when two or more triggers might be missed  in 
sequence. This is because dynamic failure is treated here as a 
function of the state at the moment of triggering. If two successive 
triggers are missed, for example, we have to consider two distinct 
states, namely the states the process is in at the moment  of those 
respective triggers. To speak of deadline intervals beyond 120 ms 
is therefore meaningless in this case since the triggers occur once 
every 60 ms. This is why the second deadline interval considered 
is [120, a), not [120, 180). 

The hard deadline may conservatively be assumed to be 60 ms 
in SI. By definition it  is infinity in SO. 

C. Finite Cost Functions 

As indicated  in the preceding sub-section, the finite coSt does not 
vary greatly within the entire allowed state-space. It is therefore 
sufficient to find a single cost function for So or SI. 

The determination of the cost function is carried out as a direct 
application of its definition. That is, the process differential 
equations are solved with varying values of 4. The value of [ 
cannot be greater than the inter-trigger interval of 60 ms since, by 
assumption, no job pipelining is allowed and the controller 
terminates any execution in progress u p n  receiving a new 
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Fig. 6. (a)Allowed state-space: altitude. @) Allowed state-space:  descent 
rate. (c) Allowed state-space: pitch angle. (d) Mowed state-space:  pitch 
angle  rate. 
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trigger. The finite cost function is defined as3 

g(0 = * ( E )  - W ) .  (14) 

This function is found by computation to be approximately the 
same over the entire allowed state-space as defined in Fig. 6. 

In Fig. 7, the finite cost function is plotted. The costs are in 
arbitrary units. Bear  in  mind that these measures are the result of 
an idealized model. We have, for example, ignored the effects of 
wind gusts and other random effects of the environment. When 
these are taken into account, the demands on controller speed  get 
even greater, Le., the costs increase. 

The reader should compare the nature of the cost function to the 
plots showing elevator deflection in Fig. 4, and notice the 
correlation between the marginal increase in cost with increased 
execution delay and the marginal increase in control needed, also 
as a function of the execution delay. 

V. APPLICATIONS OF THE MEASURES 

By objectively associating a cost with incremental controller 
response delay, it becomes possible to use these performance 
measures in the design and evaluation of real-time control 
systems. 

It is  not difficult to see why the measures should be so useful. 
The distribution of the hard deadline and the shape of the finite 
cost function, together with job execution time distributions, 
contain almost all the information about the controlled process 
that is needed  by the controller designer. 

We briefly indicate some of the applications below. 
1) Task  Scheduling: Efficient task scheduling on the controller 

computer requires that the tasks be assigned priorities objectively 
and appropriately. The cost functions make this possible, by 
specifying deadlines and the cost of incremental controller 
response delay. Dynamic control of queues in front of shared 
resources is also facilitated. 

2) Task AZlocation: Since the cost functions are objective, they 
can be  used as appropriate criterion functions in the allocation of 
control tasks to processors in a multiprocessor controller. The 
criterion function that comes immediately to mind  is the expected 
total cost of operation, as exemplified by the cost functions and 
the multiprocessor response time distribution. The objective 
would be to minimize this mean cost, subject to constraints on the 
probability of dynamic failure. This would  be a considerable 
advance over current allocation criteria [9] which are based on 
intuitive and ad-hoc measures of performance. 

3) Specification and Evaluation of Controllers: The mean 
cost and the probability of dynamic failure can be used to specify 
and rank controller computers for control applications. Generally, 
one would envisage a maximum tolerable probability of dynamic 
failure being specified. As long as this overriding constraint was 
satisfied, one would then be interested in minimizing the control 
overhead as represented by the mean cost. A multiplicity of 
controllers that all passed the dynamic failure criterion could then 
be ranked in the order of the total expected cost associated with 
them. 

4) Optimal  Number of Checkpoints: Checkpoints [lo] are 
authenticated copies of status information about currently execut- 
ing computer jobs. They store intermediate results so that if a 
failure is detected, it  might be possible to avoid reexecution of the 
entire job affected, and to restart computation from one of these 
intermediate points. The problem of  how  many checkpoints 
should be used  is relevant since the establishment of a checkpoint 
takes time, which is a nonreplenishable resource. We have shown 
[ 111 that our performance measures can be used  to determine the 
optimal number of checkpoints. 

Recall that " Q )  represents  the  contribution to the  performance  index  by  a 

job under  consideration,  the  subscript  on  has been suppressed. 
version that takes ( units of time to compute. Since there is only one controller 
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Fig. 7. Finite cost function. 

5 )  Optimal  Management of Redundancy: The probability of 
failure of controllers used in critical applications such as the one 
considered above is usually far lower than the probability of 
failure of  any one of its components. One favorite means of 
enhancing overall system reliability over that of individual 
components is to use NMR clusters, i.e., clusters of N processors 
each executing the same job and voting on the results [12]. It is 
traditionally assumed that an increase in the s i e  of the cluster 
leads to an increase in overall reliability. This is true as long as the 
applications are not time-critical. Unfortunately, for time-critical 
control applications, this is  not the case: the time overheads 
imposed by management of redundancy is considerable. For 
example, in the SIFT aircraft-control computer currently under 
test at the NASA Langley Research Center, the above overheads 
for a 5-MR cluster account for about 78 percent of the execution 
time [13]. This overhead grows rapidly with increase in cluster 
size. There is therefore a tradeoff here: as the cluster size 
increases, the probability of a crippling hardware failure declines, 
but the nonstatic component of the failure probability increases. 
The optimal size of an NMR cluster depends on the resolution of 
this tradeoff. Our cost functions and hard deadlines have shown 
themselves effective in this matter. 

VI.  DISCUSSION 

In this paper, we have presented a unified method for 
evaluating controller computers, and considered an important 
application in controlkr design. 

Central to our paper is the idea that it  is possible to objectively 
quantify the performance of a controller by linking it to the 
controlled process. Owing to this objectivity, there are many 
possible extensions to this work. One extension, currently under 
study, is the issue of distributed control, and the cost of 
transmitting global status information to all the local controllers. 
For guaranteed reliability, the local controllers require a complete 
knowledge of the global state of the system. This, however, has a 
cost in terms of the extra response times exhibited by the overall 
controller. If the local controllers have less than complete 
information, their actions cannot be optimal and might even be 
incorrect. However, the response time of the controller could be 
significantly reduced, with errors occurring rarely enough to 
make that an improvement. Readers will recognize this formula- 
tion as an example of the application of Markov decision theory 
with costly information with the cost functions for the controller 
jobs now providing the cost of status information. 
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It would be useful at this point to review what  we believe is the 
main contribution of this work. 

That the controller delay, i.e., feedback delay, is detrimental to 
the performance of a controlled process is  well known. For some 
reason, however, there has been (to our knowledge) no attempt to 
systematically link the effect of feedback delay to the design of the 
controller computer. The purpose of this work has therefore been 
to show the following. 

1) It is possible, from a series of relatively simple observations, 
to derive a set of performance measures that are objective, and 
that are more appropriate to control applications than other 
performance measures, of which performability [5] is  a notable 
example. Without performance measures of this kind, the quasi- 
optimal design of controller computers (including the algorithms 
used to control the computers themselves) and their validation 
would be difficult. 

2) Using performance measures such as the ones presented, one 
can abstract into a compact form the needs of the controlled 
process. Given the hard deadlines, the cost functions, and the 
control algorithms, one can then proceed to design the controller 
computer without any extra detailed knowledge of the controlled 
process. This also has the useful side effect of making the design 
interface between the controller computer and the controlled 
process “clean,” making for greater reliability of design, and 
lowered developmental costs. 

The two disadvantages of this approach are 1) that  when the 
controlled process is very complex, the computational resources 
needed to calculate the performance measures may  be very large, 
and 2) a performance index that is “natural” to the controlled 
process must  exist for this approach to be feasible. We have  already 
considered  the  first  disadvantage ip Section II. We can see no 
way of relaxing the second limitation, since the absence of a 
natural performance index for the controlled process means that  it 
is impossible to accurately quantify the performance of that 
process (or indeed to state precisely what  is  meant by “perform- 
ance”). Since our whole approach focuses on quantifying the 
impact that increments in controller response time have on the 
performance of the controlled process, if the latter cannot be 
defined, neither can the impact of response time increments. 
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