
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-30, NO. 4, APRU 1985 357

A Unified Method for Evaluating Real-Time
Computer Controllers and Its Application

KANG G. SHIN, SENIOR MEMBER, IEEE, C. M. KRISHNA, MEMBER, IEEE, A N D YANN-HANG LEE, MEMBER, IEEE

Abstract-A computer-controlled system is a synergistic coupling of
the controlledprocess and the controller computer. We have defined new
performance measures for real-time controller computers based on this
coupling.

We present a systematic study of a typical critical controlled process in
the context of new performance measures that express the performance of
both controlled processes and controller computers (taken as a unit) on
the basis of a single variable: controller response time. Controller
response time is a function of current system state, system failure rate,
electrical and/or magnetic interference, etc., and is therefore a random
variable. Control overhead is expressed as monotonically nondecreasing
function of the response time and the system suffers catastrophic failure,
or dynamic fuilure, if tbe response time for a control task exceeds the
corresponding system hurd deadline, if any.

The controlled-process chosen for study is an aircraft in the final stages
of descent, just prior to landing. Control constraints are particularly
severe during this period, and great care must be taken in the design of
controllers that handle this process. First, the performance measures for
the controller are presented. Second, control algorithms for solving the
landing problem are discussed, and finally the impact of our performance
measures on the problem is analyzed, showing that the performance
measures and the associated estimation method have potential use for
designing and/or evaluating real-time controllers and controlled process.
In common with all other control techniques, the computational complex-
ity involved in obtaining these measures is susceptible to the curse of
dimensionality.

I. INTRODUCTION

T HE use of computers in the control of life-critical processes,
such as aircraft or nuclear reactors, is becoming popular

owing to the increased capability and reliability, and the reduced
cost, of modem computers and the increasing sophistication of
controlled processes.

It is becoming increasingly apparent that the highly fuel-
efficient aircraft that are expected to be in use in the next century
demand faster control reaction than is possible for any human
being to provide. In attempting to improve fuel-efficiency, the
aircraft designer pushes his design to the edge of instability.
Control situations will therefore present themselves in which fast,
accurate, and consistent action is called for. It is expected that the
major performance bottleneck in the control chain will be the pilot
who can seldom react as quickly and as correctly as emergencies
may demand. For this reason, while the pilot should properly be
in control of flight policy, it is unreasonable to expect him to act as
a real-time, low-level controller of the actuators aboard the
aircraft of the future. To take over as a low-level controller

March 28, 1984. Paper recommended by Past Associate Editor, D. M.
Manuscript received Septemher 26, 1983: revised March 4, 1984 and

Wiberg. This work was supported in part by NASA under Grant NAG 1-296.
K. S . Shin is with the Department of Electrical Engineering and Computer

Science, The University of Michigan, Ann Arbor, MI 48109.
C. M. Krishna was with the Department of Electrical Engineering, The

University of Michigan, Ann Arbor, MI 48109. He is now with the
Department of Electrical and Computer Engineering, University of Massachu-
setts, Amherst, MA 01002.

Y.-H. Lee was with the Deaprtment of Electrical Engineering, The
University of Michigan, Ann Arbor, MI 48109. He is now with IBM
Hawthorne Research Laboratory, Yorktown Heights, hl(10598.

(essentially an interface between the pilot and the aircraft/
environmental system), one requires a controller computer. This
device would perform such critical tasks as maintaining aircraft
stability. Such a computer cannot be manually overridden for the
simple reason that there would be no point in so doing; future
aircraft are expected to be so intrinsically unstable that the pilot
could not possibly fly the aircraft without the computer.

The use of a computer in controlling a process is qualitatively
different from using the more traditional hard-wired digital
controllers. One can model the latter type of controller relatively
simply as a digital filter. Fault-tolerant computers used in control
(e.g., FTMP [14], SIFT [15]) are far more complex, owing to
thelr fault-tolerance and capacity to degrade gracefully. Issues of
control-task scheduling, allocation, and optimal queue control
arise, which are, of course, quite unknown in hard-wired control.
One also has the problem of optimal (more realistically, quasi-
optimal) management of redundancy, and the distribution of the
computer’s executive.

For these reasons, one cannot simply integrate a computer into
the feedback loop of a controlled process as one would a digital
controller. The fact that the control computer and the controlled
process are designed in a more or less disjoint manner only serves
to compound the difficulty of achieving optimal and ultrareliable
control based upon a computer.

When computer systems are introduced whose behavior is
critical to the safety of an aircraft, there is the need for formal
evaluation and validation procedures. This presupposes that there
are performance measures to characterize the behavior of control-
ler computers, describing precisely the goodness of the controller
computer in the context of the application.

What is called for is a procedure for specifying and evaluating
controller performance, enabling systematic application, and
providing objective results that lend themselves to formal valida-
tion.

To solve this problem several contortions of the conventional
measures have been proposed. Generally, these involve represent-
ing real-time computer performance as a vector p € RP, made up
of such traditional measures as (conventional) reliablity, through-
put, survivability, availability, etc. However, to compare two
vectors, we need to map them into a scalar quantity. One solution
is to assign weights to the various components of the performance
vector and form an inner product to produce a scalar. That is, if
the weight vector is w7 = (w,, - . , wp), then the mapping is
f:RP + R with f@) = wTp.

This process of ascribing weights is largely subjective and is
therefore inaccurate to begin with. Even if the weight ascription
were completely objective, serious practical difficulties would
remain. For example, since the components of the performance
vector are mutually dependent (sometimes in a very complex
manner), the weights (that are supposed to define the sensitivity of
the scalar to the respective vector components) must be modified
by often very complex correction factors to account for this
coupling. Furthermore, relating the resulting scalar to “real-
world” performance parameters (such as operating cost, etc.) is
difficult.

The performance measures we introduced in [11 are designed to
get around these difficulties by expressing the performance

0018-9286/85/0400-0357$01 .OO O 1985 IEEE

358 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-30, NO. 4, APRIL 1985

objectively in terms of the response time of the controller
computer. Controller response time is the interval between the
initiation of a controller job-which is a predefined program, or a
mutually interacting set of programs-and the actuator or display
output that results. From the point of view of the controlled
process, the computer controlling it is a black box whose behavior
is exemplified by its response time and reliability. It is well known
that nonzero controller response time has a detrimental effect on
process behavior, our measures take the form of a quantification
of this. The performance measures are considered in Section Jl in
some detail prior to the presentation of an idealized example of
their derivation.

Our performance measures are based on the following elemen-
tary observations.

1) Nonzero controller response time has a negative impact on
the behavior of the controlled process.

2) There is a limit to how great the response time can be before
the process behaves unacceptably.

3) Even if this response time is kept within the above bounds,
an incremental increase tends to lead to a deterioration in
controlled process behavior.

The example is that of a controller computer in charge of an
aircraft in its final phase of fight, just prior to touchdown. There
are stringent control constraints that must be met. These consist of
limits on the speed of touchdown (both horizontal and vertical),
the angle of attack a, and the pitch angle 8. For a definition of
these angles, see Fig. 1 . These constraints are variously intended
to safeguard against running out of runway, undercarriage
collapse, stalling, and landing either on the aircraft nose or tail.
Insofar as this is a control problem with severe constraints, the
problem is typical of many other critical applications, such as the
control of nuclear reactors, the generation and distribution of
electrical power, life-support systems, etc. Indeed, the perform-
ance measures that we illustrate in this paper could equally well be
used in any of the above applications.

Fig. 2 shows the block diagram of a typical control system. The
inputs to the controller are from sensors that provide data about
the controlled process, and from the environment. This is
typically fed to the controller computer at regular intervals. Data
rates are usually low: sensors generally put out fewer than 20
words a second.

Central to the operation of the system is the trigger generator.
In most systems, this is physically part of the controller itself, but
we separate them here for purposes of clarity. It is the function of
the trigger generator to initiate execution of a controller job.
Triggers can be classed into three categories.

1) Time-Generated Trigger: These are generated at regular
intervals, and lead to the corresponding controller job being
initiated at.regular intervals. That is, these are open-loop triggers.

2) State-Generated Trigger: These are closed-loop triggers,
generated whenever the system is in a particular set of states. For
practicality, it might be necessary to space these triggers by more
than a specified minimum duration. If time is to be regarded as an
implicit state variabIe, the time-generated trigger is a special case
of the state-generated trigger. One can also have combinations of
the two.

3) Operator-Generated Trigger: The operator can generally
override the automatic systems, generating and canceling triggers
at will.

The output of the controller is fed to the actuators and/or the
display panel@). Since the actuators are mechanical devices and
the displays are meant as a human interface, the data rates here are
usually very low. Indeed, as we have pointed out elsewhere [SI, a
controller computer gecerally (with the exception of systems
dependent on real-time image processing) exhibits a fundamental
dichotomy, with the I/O being carried out at rather low rates and
the computations having to be carried out at very high rates owing
to real-time constraints on control.

A control system executes missions. These are periods of
operation between successive periods of maintenance. In the case

DRAG

\
/
/

/

HORIZONTAL

/ I \

\
\

\ x

Fig. 1. Definition of aircraft angles [from (4)].

I I

3 P E M T O P

Fig. 2. A typical real-time control system.

of aircraft, a mission is usually a single flight. The operating
interval can sometimes be divided down into consecutive sections
that can be distinguished from each other. These sections are
called phases. For example, Meyer et al. [6] define the following
four distinct phases in the mission lifetime of a civilian aircraft.

1) Takeoff/cruise until VHF omnirange (VOR)/distance mea-
suring equipment (DME) is out of range.

2) Cruise until VOWDME is in range again.
3) Cruise until landing is to be initiated.
4) Landing.
The phase to be considered here is landing; it takes about 20 s.

The controller job that we shall treat is the control of the aircraft
elevator deflection during landing.

The specific system employed is assumed to be organized as
shown in Fig. 3. Sensors report on the four key parameters:
altitude, descent rate, pitch angle, and pitch angle rate every 60
ms. We have a time-generated trigger, with a time period of 60
ms. Every 60 ms the controller computes the optimal setting of the
elevator. There are other actuators used aboard the aircraft for
purposes of stability, horizontal speed control, etc. We do not
however consider them here, concentrating exclusively on the
control of the elevator. The controller response time is nominally
20 ms, although this can vary in practice due to failures or
conditional branches in the executed code.

Since the process being controlled is critical (i.e., in which
some failures can lead to catastrophic consequences), variations of
controller response time and other abnormal behavior by the
controller must be explicitly considered. For simplicity, we do not
allow job pipelining in the controller; in other words a controller

SHIN et al.: EVALUATING REAL-TIME COMPUTER CONTROLLERS 359

SENSOXS,
GROUXD I/O PRKESSORS DISPLAY A I R C m F

AND I/O .SUFFERING 'D/A CONVERSION
.BUFFERING

.BROADCASTING .CHECKING

PILOT

Fig. 3. Aircraft control system schematic.

job must be completed or abandoned before its successor can be
initiated. The following controller abnormalities can occur.

i) The controller orders an incorrect output to the actuator.
ii) The controller response time is substantially more than 20

ms (the nominal execution time) but less than the inter-trigger
interval of 60 ms.

iii) The response time is greater than 60 ms. In such a case, the
abnormal job is abandoned and the new one initiated. We say that
a control trigger is missed when this happens.

An analysis of controller performance during the landing phase
must take each of the above abnormalities into account.

This paper is organized as follows. In Section II we introduce
the performance measures that will be used, and Section III
contains a description of the controlled process. Since our goal is
to illustrate the use of our performance measures and not to solve
a control problem as such, the controlled process studied will be
slightly idealized in this paper. In Section IV, we derive the
measures associated with the controlled process (the aircraft).
Section V identifies some of important potential uses of the
performance measures, and the paper concludes with Section VI.

II. PERFORMANCE MEASURES

A . Review of the Performance Measures

For completeness, we review briefly in this subsection the
performance measures to be used, which were introduced in [l] .

Our measures are all based on a single attribute: the probability
distribution of the controller response time. Owing to random
failures and conditional branches in the executed code, a
controller computer in general exhibits stochastic behavior.

Central to our performance measures are the concepts of
dynamic failure and allowed or admissible state-space. Every
critical process must operate within a state-space circumscribed
by given constraints. This is the allowed state-space. Leaving this
state-space constitutes dynamic failure. Dynamic failure is so
termed since it is a failure that can occur as a result of the
controller not responding fast enough to the environment. It
expresses the fact that slowness of the controller can be a cause of
catastrophic failure. In the aircraft-landing example we peat here,
the states are the altitude, the vertical speed, the pitch angle, and
the pitch angle rate. Each of these has an associated constraint.
For example, the aircraft must not touch down with too great a
downward velocity or the undercarriage will collapse.

The performance of the controlled process naturally depends on
the speed of the controller. If the controller takes longer than a
certain duration to formulate the control, dynamic failure becomes
possible. This duration is the hard deadline.

We define a cost function Ca(t) associated with controller
response time ,$ for controller job CY. The cost function takes the
following form:

where ga(.) is a suitable continuous nondecreasing function of the
response time and 7 d a is the hard deadline associated with the job
CY. Clearly, since the environment influences the quality of system
performance, the cost function is implicitly a function of the

system state. Also, if 7 d a is a fmite quantity in some region of the
state-space, the job is critical in that region. The determination of
the hard deadline is treated in detail in Sections 11-B and C and that
of ga(a) is considered briefly below.

For controller response times less than the hard deadline, the
cost function in (1) above is continuous, monotonically nonde-
creasing, and therefore always bounded for finite response time.
For consistency, it is assumed that the costs accrue as the
execution proceeds.

The functions (called the finite cost functions) g,(.) can be
obtained using the performance indexes of the controlled process.
These performance indexes are well-known to control theory and
express the consumed energy, fuel, time, or some other physical
parameters associated with the trajectory of the system as it travels
from its initial to its final state. See, for example, [2], [3], for
details. The cost of running the controlled process over, say, an
interval of time [to, t i] , is usually expressed by:

where E[- I -1 represents conditional expectation, f o is the instanta-
neous index of performance at time t , and x(t) E R", u(t) E R',
and y(t) E Rm represent the state, input, and measurement
vectors, respectively. u(t) consists of two compnents, namely,
the control input u,(t) E R'c and the environmental input uxt) E
R'e. A good representation for ga(E) is given by

where q a (q) = expected contribution of u, to €)(to, t f) if response
time of that particular execution of job a is 7.

A version is an instance of the execution of a controller job.
Versions are numbered in sequence of initiation: successive
versions of job i being denoted by V,,, . . , Vi,. The response
time associated with a version K j is denoted by RESP(Kj) .

Let q;(t) represent the number of versions executed for job i
over the interval [0, t), and r the number of distinct jobs. Then
define

; = I j = l

Let L(t) denote the probability distribution function of the
mission lifetime which is defined as the operating interval
duration between two successive service stages.

Our performance measures are then' as follows.
Probability of Dynamic Failure, p d y n : This is the probability

that over the operating interval, at least one hard deadline is
missed for whatever reason. For our purposes, a hard deadline is
missed whenever the controller produces no output within the
deadline or an erroneous output. This probability incorporates
within it the probability of static failure, which is the probability
that so massive a hardware failure has occurred that the system
utilization is greater than unity. Static failure probability has
erroneously been treated in most of the literature as expressing the

considered here. For our purposes, the measures listed here are sufficient.
' There are other performance measures developed in [l], but not

360 IEEE TRANSACTIONS ON AUTOMATIC COhTROL. VOL. AC-30, NO. 4, APRIL 1985

total probability of failure. This is most decidedly not the case in
real-time control systems.

Mean Modified Cost, A? E{ System Never
Suffers Dynamic Failure) dL(t): It can be shown that, for
physical systems, this integral always exists since the mission
lifetime is always finite. The qualifier “modified” is used
because, implicit in the analysis, is the assumption that all initiated
control jobs finish executing by the time the mission ends. This
assumption need not always hold, but does not introduce any
significant inaccuracy in our calculations, since the mission
lifetime is usually much.:longer (e.g., several hours for aircraft
and even several days or months for spacecraft) than the execution
time of a job (this is at most a few seconds). Were this assumption
not introduced, computing the mean cost would be a very tedious
process.

The performance measures can be used to rank rival controller
computers and to help design improvements to existing controllers
in the context of the control application.. Typically, the
probability of dynamic failure is used as a passlfail test for
candidate controllers. This test can be very severe: for example,

is the specification for failure probability adopted by NASA
for controller computers of the next decade handling a 10 h
civilian flight. The mean cost is then employed to rank controllers
that have passed the dynamic failure criterion. For further details,
see [l].

Note that all parameters associated with these performance
measures can either be definitively estimated or objectively
measured. Also, the measures specifically incorporate the con-
trolled process into a determination of the controller’s capabili-
ties. This is, as far as we know, a novel approach which ensures
that the performance measures are specifically indicative of the
controller performance in a given application. For this reason,
these measures are intrinsically more reliable and effective than
others in use.

B. Hard Deadlines

. .

Roughly speaking, hard deadlines are deadlines that must be
met if catastrophic failure is to be avoided by a critical process. In
other words, it is the deadline that, if met by the controller in
(correctly) formulating its response, ensures that the system
remains in its allowed state-space. Traditionally, it has been
assumed by controller designers that the hard deadlines for each
critical controller job are somehow “given.” Unfortunately, this
presupposes a precise definition of the hard deadline and a means
for obtaining it. Neither seems to exist in the literature.

Hard deadlines can be obtained most easily when individual
controller actions are decoupled from each other and the process
is simple. For an example in which this is the case, see [l].
However, when there is a considerable coupling between individ-
ual controller jobs, i.e., when two or more controller jobs
mutually affect each other, or when no closed-form solutions are
available for the process state equations, obtaining a hard deadline
for each can be difficult. For example, in the aircraft landing
problem, the controller has over the 20 s or so that it takes to
complete the landing, and compute the elevator deflection a number
of times (in our example, about 330 times). The constraints are on
thefinalvalues (except for the angle of attack), Le., as long as the
aircraft touches down’ on the runway without over- or under-
shoot, with an acceptable velocity and at a proper pitch angle,
dynamic failure has not occurred. The problem here is that it is
not just a single controller action that determines whether
catastrophic failure will occur or not; it is the cumulative effect of,
in this case, 330 or so distinct controller actions. How then is one
to allocate deadlines to the individual actions?

It is clear that we need a more carefully defined framework to
handle these problems in a feasible manner. Let the state of the
controlled process at time t be denoted by x(t). State transitions
are characterized by a mapping 9: T X T X X X U -+ X where
T C R represents the time region, X C R” the state-space, and U

c R’ the input space; that is,

x(tl) = w l , to, u) (5)

where u E U represents the inputs applied to the process in the
interval [t o , t ,) , i.e., the control history of the process, beginning
at to. Let Q C U be the admissible input space, and X , c X the
allowed state-space. Then, the unconditioned hard deadline
associated with controller job CY triggered at to when the system is
in state x(t0) is given by

7 d a (X (f o)) E 25 SUP {T(‘$(fo+T, lo, X(@, u) E x ~ } . (6)

Thus, for every point in the state-space, we have for each critical
job a corresponding hard deadline. When closed-form solutions
for the hard deadlines as a function of the state and the input are
not available, the unconditioned hard deadlines ‘are generally
almost impossible to obtain. A case in point is the aircraft-landing
example that we consider below.

To remedy this, we allow for the calculation of the infimum
over only a subset of the admissible input or state-space, and
define conditional hard deadlines. Assume that the sets w C Q
and u C X , are specified, and also that x(&) E u. The
conditional hard deadline of job a, denoted by ~ d ~ . ~ . ~ , is defined
as

~~ulo,o(x(to)) = inf sup (~ 1 d (t ~ + 7 , to, x(to), u) E u } . (6a)

In this paper, we calculate for the aircraft-landing case study, the
hard deadlines conditioned on the assumption that the elevator
deflection applied in every instance is dictated by a predefined
control law [defined later in (I 3)] .

If the environment is stochastic in character, the hard deadline
is a random variable. Assuming that the environment is stochasti-
cally stationary leads to the existence of the distribution function
of the hard deadline. Notice that the concept of a random hard
deadline is a significant departure from the conventional approach
where a hard deadline is assumed to be given as a deterministic
constant.

u E w

C. Allowed State-Space and Its Decomposition

When closed-form solutions are not available for the hard
deadlines, a numerical solution must be derived. To do this, we
divide the allowed state-space down into disjoint state-subsets
which are aggregates of states in which the system exhibits
roughly the same behavior. Even if there do not exist clear
boundaries for these state-subsets, one can always force the
allowed state-space to be divided into state-subsets so. that a
suffkient safety margin can be provided.. In each such state-
subset, each critical controller job has a unique hard deadline and
finite cost function. f o r convenience, a controller “task” is
defined as a controller job operating within a designated state-
subset. By definition, each task has a state-independent cost
function.

Remarks: In some state-subsets, a job described in general as
“critical” might not be critical in the sense that even if the
execution delay associated with it is infinity, catastrophic failure
does not occur. That is, the associated hard deadline may be
infinity for a particular state-subset. What does usually happen in
these circumstances is that the system moves into a new state-
subset-or at the least toward the state-subset boundary-in which
the dangers of catastrophic failure are greater. In this state-subset,
the requirements on controller delay are more stringent, and there
might well be a hard deadline, representing a critical task. Thus a
“critical” job need not be truly critical in every state-subset, it
only has to map into a critical task in at least one state-subset.
Also, these state-suhets are job-related. i.e.. the same allowed

SHIN et 01.: EVALUATING REAL-TIME COMPUTER CONTROLLERS

state-space can divide into a different set of state-subsets for each
control job.

Let Si for i = 0, 1 , * . , s be disjoint state-subsets of X , with
X , = U f= Si and let Jdenote a controller job. Then, we need the
projection: (J , X,) + ((TO, So), (T l , SI), * . a , (Ts,Ss)) where Ti
is the controller task generated by executing J in Si. With each
controller task, we may now define a hard deadline without the
mutual coupling problem mentioned above.

I) Allowed State-Space: The allowed state-space is the set of
states that the system must not leave if catastrophic failure is not to
occur. Consider the two sets of states X i and X : defined as
follows.

i) Xj, is the set of states that the system must reside in if
catastrophic failure is not to occur immediately. For example, we
may define in the aircraft landing problem, a situation in which
the aircraft flies upside down as unacceptable to the passengers
and as constituting failure. Notice that terminal constraints are not
taken into consideration here unless the task in question is
executed just prior to mission termination.

ii) X ; is the set of acceptable states given the terminal
constraints, i.e., it is the set of states from which, given the
constraints that apply, it becomes possible to satisfy the terminal
constraints.

Note that leaving X' means that no matter how good our
subsequent control, faihre has occurred.' On the other hand,
altering the allowed input space, i.e., changing the control
available can affect the set X:. The allowed state-space is then
defined as X , = X i n X i .

Obtaining state-space X i can be difficult in practice. The curse
of dimensionality ensures that even systems with four or five state
variables make unacceptable demands on computation resources
for the accurate determination of the allowed state-space. How-
ever, while it can be very difficult to obtain the entire allowed
state-space, it is usually much easier to obtain a reasonably large
subset X: C X,. By defining this subset as the actual allowed
state-space, (i.e.? by artificially restricting the range of allowed
states), we make a conservative estimate for the allowed state-
space, and by so doing, err on the side of safety. Also, the
information we need about X , may be determined to as great a
precision as we are willing to invest in computing resources.

In what follows, to avoid needless pedantry, we shall refer to
the artificially restricted allowed state-space, X;, simply as the
"allowed state-space. "

2) On Obtaining the State-Subsets: The method we employ is to
quantize the state continuum in much the same way as analog
signals are quantized into digital ones. Intervals of hard deadlines
and expected operating cost (i.e., the mean of the cost function
conditioned on the controller delay time, and using the distribu-
tion of the latter) are defined. Then, points are allocated to state-
subsets corresponding to these intervals. To take a concrete
example, consider a state-space X C R" that is to be subdivided
on the basis of the hard deadlines. The first step is to define a
quantization for the hard deadlines. Let this be A. Then, define
state-subset S, as containing all states in which the hard deadline
lies in the interval [(i - l)A, iA). Alternatively, one might define
a sequence of numbers AI, A2, * such that the state-subsets were
defined by intervals with the A's as their endpoints. This would
correspond to quantizing with variable step sizes. With this
complete, the individual state-subsets thus derived can be further
divided using mean cost or some other function of the finite cost
function as a quantization criterion.

The size of each state-subset will depend on the process state
equations, the environment, and how much computing effort it is
judged to be worth spending on obtaining the state-subset.
Naturally, all other things being equal, the smaller a state-subset
the greater the accuracy of the inherent approximation.

36 1

leaving X, the system has failed catastrophically before the next control could
* Strict1 spealung, of course, there can be no subsequent control since by

be implemented.
Y

D. Computational Complexity

When closed-form solutions are available for the state equa-
tions, they can be solved backwards from the terminal constraints
to obtain analytical results for X i . When closed-form solutions
are not available, numerical techniques must be used, and solving
differential equations backwards can give rise to numerical
instability. In the most general case, the amount of computations
required increases rapidly with the number of state variables and
the complexity of the state equations; therefore, the exact amount
of required computations depends on the solution approach
employed and the actual system under consideration.

One begins by deriving the optimal trajectory, which requires
the problem- and solution-specific amount of computations. Then,
obtaining X : consists of searching the n-dimensional state-space
surrounding this trajectory. In general, this becomes an exhaus-
tive search for the boundary of X:. If the search is confined to an
(n + 1) dimensional parallelopiped (the n + 1 th dimension
represents time) with edge lengths k l , k,, . . , k,, ,, and the
digital resolution is A, then defining mi = rkj/Al , i = 1 , . . . , n
+ 1 , the state equations must be solved O(n;'t mi) times. The
values for ki must be set by the user.

In the event that X i is known to be convex, a binary search can
be instituted along one of the dimensions, reducing the search
complexity to O(ml * mj - ,m, - I * * mnT I log2 m,) where m, =
max {ml , e . . , m,}.

As for the cost functions and the hard deadlines, these must also
be derived, in general, by an exhaustive analysis. The allowed
state-space is quantized, and deadlines and cost functions must be
found for each of the resulting "cells. "

It is therefore clear that for a process with large n, these
methods become prohibitively expensive. Two comments are now
in order. The first is that this approach is not uniquely susceptible
to the curse of dimensionality: all optimal control theory
techniques suffer this problem when complex processes are
considered. The second comment is that, in certain cases,
additional knowledge about the process dynamics can be used to
improve the efficiency of the search for the X : boundary, and for
the hard deadlines and cost functions.

III. THE CONTROLLED PROCESS

The controlled process is an aircraft, in the phase of landing.
The model and the optimal control solution used are due to Ellert
and Merriam [4].

The aircraft dynamics are characterized by the equations:

i d t) = ~ I I X I (~ + b 1 2 M) + bI3x3(O + cllmdt, 5) (74

*2(t) = x1 (0 (7b)

23(t) = 632xZ(t) + b 3 3 X 3 (4 (74

X 4 (0 = X 3 (0 (74

where xI is the pitch angle rate, x2 the pitch angle, x3 the altitude
rate, and x4 the altitude. m, denotes the elevator deflection, which
is the sole control employed. The constants bi, and cI1 are given in
Table I. Recall that denotes controller response time.

The phase of landing takes about 20 s. Initially, the aircraft is at
an altitude of 100 feet, traveling at a horizontal speed of 256 ft/s.
This latter velocity is assumed to be held constant over the entire
landing interval. The rate of descent at the beginning of this phase
is 20 Ws. The pitch angle is ideally to be held constant at 2". Also,
the motion of the elevator is restricted by mechanical stops. It is
constrained to be between - 35 ' and 15'. For linear operation,
the elevator may not operate against the elevator stops for nonzero
periods of time during this phase. Saturation effects are not
considered. Also not considered are wind gusts and other random
environmental effects.

The constraints are as follows. The pitch angle must lie between

362 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-30, NO. 4, APRIL 1985

TABLE II
WEIGHTING FACTORS

Weighting Factor Value

TABLE I
FEEDBACK VALUES

Feedback Term Value

611 -0.600

0" and 10" to avoid landing on the nosewheel or on the tail, and
the angle of attack (see Fig. 1) must be held to less than 18" to
avoid stalling. The vertical speed with which the aircraft touches
down must be less than around 2 ft/s so that the undercarriage can
withstand the force of landing.

The desired altitude trajectory (feet) is given by

while the desired rate of ascent (WS) is

The desired pitch angle is 2" and the desired pitch angle rate is 0"
per s.

The performance index (for the aircraft) chosen by Ellert and
Marriam and suitably adapted here to take account of the nonzero
controller response time 4 is given by

@(E)= 1" e& C;) dt (10)

where I represents time, and [to, tf] is the interval under
consideration, and

10

ern& 4) = 4 h (t) [h d (t) - X q (t) 1 2 + 4 b (t) [~ d (t) - X ~ (t) 1 2

+ 4e(O[x,(t) - XZ(t)l

+ 4tj(t)[Xld(t) -x1(t)12 + [mdt, Ell2 (1 1)

where the d-subscripts denote the desired (i.e., ideal) trajectory.
To ensure that the touchdown conditions are met, the weights q5
must be impulse weighted. Thus, we define:

M t) = +&) + h p o - t) (12a)

~ b (t) = 4 3 (~) + ~ 3 , r f 6 (2 0 - t) (12b)

where the functions Q must be given suitable values, and 6 denotes
the Diracdelta function. The values of the are given based on a
study of the trajectory that results. The chosen values are listed in
Table II.

The control law for the elevator deflection is given by

m(t , 8 = w , 2 W s t k d t - 4) - k d t - t)xI(t - 8 - klz(t - W2(t - 0
- kl3(t - $)x3(t - E) - k14(t - E)X4(t - (1 3)

where the aircraft parameters are given by: K, = - 0.95 SKI, T,
= 2.5 s, w, = 1 rades-', and the constants k are the feedback
parameters derived (as shown in [4]) by solving the Riccati
differential equations that result upon minimizing the process
performance index. For these differential equations we refer the
reader to [4].

IV. DERIVATION OF PERFORMANCE MEASURES

We consider here only one controller task: that of computing
the elevator deflection so as to follow the desired landing
trajectory. The inputs for the controller here are the sensed values
of the four states.

We seek the following information. As the controller response
time increases, how much extra overhead is added to the
performance index? Also, it is intuitively obvious that too great a
response time will lead to a violation of the terminal (landing)
conditions, thus resulting in a plane crash. This corresponds to
dynamic failure, and we are naturally interested in determining
the range of controller response times that permit a safe landing.

The control for various values of fiied controller response time
is computed using (13) and is shown in Fig. 4. Due to the absence
of any random effects, elevator deflections for all the response
times considered tend to the same value as the end of the landing
phase (20 s) is approached, although much larger controls are
needed initially. In the presence of random effects, the divergence
between controls needed in the low and the high values of
controller response time is even more marked. We present an
example of this in Fig. 5 . The random effect considered here is the
elevator being stuck at - 35" for 60 ms 8 s into the landing phase
due to a faulty controller order. The controlled process is assumed
in Fig. 5 to be in the state-subset in which the landing job maps
into a noncritical .task (defined in the sequel as So). The diagrams
speak for themselves. We shall show later that this demand on
control is fully represented by the nature of the derived cost
function. Also, above a certain threshold value for controller
response time, we would expect the system to become unstable.
This is indeed the case in the present problem, although this point
occurs beyond a response time of 60 ms for all points in the
allowed state-space (obtained in the next section), which cannot
by definition occur here.

A. Allowed State-Space

In this subsection, we derive the allowed state-space of the
aircraft system. To do so, note that in Ellert and Mezriam's
model, X> does not exist. The reason is that the state equations do
not take into account the angle of attack. In the idealized model we
are considering, it is implicitly assumed that the constraint on the
angle of attack is always honored, so that the only constraints to be
considered are the terminal constraints.

The terminal constraints have been given earlier but are
repeated here for convenience. The touchdown speed must be less
than 2 ft/s in the vertical direction, and the pitch angle at
touchdown must lie between 0" and 10". To avoid overshooting
the runway, touchdown must occur at between 4864 and 5120 ft in
the horizontal direction from the moment the landing phase

SHIN et ai.: EVALUATING REAL-TIME COMPUTER CONTROLLERS 36.7

I

I

Fig. 4. Elevator deflection.

:t

i

Fig. 5 . Elevator deflection with abnormality.

begins. The horizontal velocity is assumed to be kept constant
throughout the landing phase at 256 ft/s (this would constitute a
separate controller job; we do not consider here how that is to be
done). Thus, touchdown should occur between 19 and 20 s after
the descent phase begins. The only control is the elevator
deflection which must be kept between - 35' and I5 '.

The restriction that we place on the allowed state-space, X : , is
for ease of representation. We define allowed "component state-
spaces" for the individual components of the state-vector such
that any point in the four-dimensional state-space whose individ-
ual components each lie in the corresponding component state-
spaces is in the overall allowed state-space. The component state-
spaces are determined by perturbing the state-values around the
desired trajectory and determining the maximum perturbation
possible under the requirement that no terminal constraint be
violated. They were obtained by a search process and are plotted
in Fig. 6. It should again be stressed that what we plot in Fig. 6 is
a subset of X,.

B. Designation of State-Subsets

We subdivide the allowed state-space found above using the
method described in Section 11. The criterion used is the hard
deadline, since the finite cost function (derived in the next
subsection) is found not to vary greatly within the whole of the
allowed state-space. The value of A chosen is 60 ms. In other
words, we wish to consider only the case where a trigger is
"missed."

The allowed state-space in Fig. 6 is subdivided into two state-
subsets So and SI. These correspond to the deadline intervals [120,
03) and [60, 1201, respectively. So is the noncritical region
corresponding to the [120, 03) interval. Here, even if the
controller exhibits any of the abnormalities considered in the
Introduction, the airplane will not crash. In other words, if the
controller orders an incorrect output, exhibits an abnormal
execution delay, or simply provides no output at all before the
following trigger, the process will still survive at the end of the
current inter-trigger interval if, at the beginning of that interval, it
was in So.

On the other hand, if the process is in SI at the beginning of a
inter-trigger interval, it may safely endure a delay in controller
response. However, if the controller behaves abnormally in either
providing no output at all for the current trigger cycle or in
ordering an incorrect output, there is a positive probability of an
air crash.

Notice that we explicitly consider only missing a single trigger,
not the case when two or more triggers might be missed in
sequence. This is because dynamic failure is treated here as a
function of the state at the moment of triggering. If two successive
triggers are missed, for example, we have to consider two distinct
states, namely the states the process is in at the moment of those
respective triggers. To speak of deadline intervals beyond 120 ms
is therefore meaningless in this case since the triggers occur once
every 60 ms. This is why the second deadline interval considered
is [120, a), not [120, 180).

The hard deadline may conservatively be assumed to be 60 ms
in SI. By definition it is infinity in SO.

C. Finite Cost Functions

As indicated in the preceding sub-section, the finite coSt does not
vary greatly within the entire allowed state-space. It is therefore
sufficient to find a single cost function for So or SI.

The determination of the cost function is carried out as a direct
application of its definition. That is, the process differential
equations are solved with varying values of 4. The value of [
cannot be greater than the inter-trigger interval of 60 ms since, by
assumption, no job pipelining is allowed and the controller
terminates any execution in progress u p n receiving a new

3 64 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-30, NO. 4, APRIL 1985

4.00 8.00 12.00 16.00 20.m
TIME ISEC)

(b)

I 4.00 E.00 12.00 16.00 20.00
TIHE 15ECI

(d)

Fig. 6. (a)Allowed state-space: altitude. @) Allowed state-space: descent
rate. (c) Allowed state-space: pitch angle. (d) Mowed state-space: pitch
angle rate.

SHIN et at.: EVALUATING REM-TIME COMPUTER CONTROLLERS

trigger. The finite cost function is defined as3

g(0 = * (E) - W) . (14)

This function is found by computation to be approximately the
same over the entire allowed state-space as defined in Fig. 6.

In Fig. 7, the finite cost function is plotted. The costs are in
arbitrary units. Bear in mind that these measures are the result of
an idealized model. We have, for example, ignored the effects of
wind gusts and other random effects of the environment. When
these are taken into account, the demands on controller speed get
even greater, Le., the costs increase.

The reader should compare the nature of the cost function to the
plots showing elevator deflection in Fig. 4, and notice the
correlation between the marginal increase in cost with increased
execution delay and the marginal increase in control needed, also
as a function of the execution delay.

V. APPLICATIONS OF THE MEASURES

By objectively associating a cost with incremental controller
response delay, it becomes possible to use these performance
measures in the design and evaluation of real-time control
systems.

It is not difficult to see why the measures should be so useful.
The distribution of the hard deadline and the shape of the finite
cost function, together with job execution time distributions,
contain almost all the information about the controlled process
that is needed by the controller designer.

We briefly indicate some of the applications below.
1) Task Scheduling: Efficient task scheduling on the controller

computer requires that the tasks be assigned priorities objectively
and appropriately. The cost functions make this possible, by
specifying deadlines and the cost of incremental controller
response delay. Dynamic control of queues in front of shared
resources is also facilitated.

2) Task AZlocation: Since the cost functions are objective, they
can be used as appropriate criterion functions in the allocation of
control tasks to processors in a multiprocessor controller. The
criterion function that comes immediately to mind is the expected
total cost of operation, as exemplified by the cost functions and
the multiprocessor response time distribution. The objective
would be to minimize this mean cost, subject to constraints on the
probability of dynamic failure. This would be a considerable
advance over current allocation criteria [9] which are based on
intuitive and ad-hoc measures of performance.

3) Specification and Evaluation of Controllers: The mean
cost and the probability of dynamic failure can be used to specify
and rank controller computers for control applications. Generally,
one would envisage a maximum tolerable probability of dynamic
failure being specified. As long as this overriding constraint was
satisfied, one would then be interested in minimizing the control
overhead as represented by the mean cost. A multiplicity of
controllers that all passed the dynamic failure criterion could then
be ranked in the order of the total expected cost associated with
them.

4) Optimal Number of Checkpoints: Checkpoints [lo] are
authenticated copies of status information about currently execut-
ing computer jobs. They store intermediate results so that if a
failure is detected, it might be possible to avoid reexecution of the
entire job affected, and to restart computation from one of these
intermediate points. The problem of how many checkpoints
should be used is relevant since the establishment of a checkpoint
takes time, which is a nonreplenishable resource. We have shown
[111 that our performance measures can be used to determine the
optimal number of checkpoints.

Recall that " Q) represents the contribution to the performance index by a

job under consideration, the subscript on has been suppressed.
version that takes (units of time to compute. Since there is only one controller

365

..
*.
1Q.M 20.W 30.M 4O.M 50.M EQOO

OELQY (flSEc]
Fig. 7. Finite cost function.

5) Optimal Management of Redundancy: The probability of
failure of controllers used in critical applications such as the one
considered above is usually far lower than the probability of
failure of any one of its components. One favorite means of
enhancing overall system reliability over that of individual
components is to use NMR clusters, i.e., clusters of N processors
each executing the same job and voting on the results [12]. It is
traditionally assumed that an increase in the s i e of the cluster
leads to an increase in overall reliability. This is true as long as the
applications are not time-critical. Unfortunately, for time-critical
control applications, this is not the case: the time overheads
imposed by management of redundancy is considerable. For
example, in the SIFT aircraft-control computer currently under
test at the NASA Langley Research Center, the above overheads
for a 5-MR cluster account for about 78 percent of the execution
time [13]. This overhead grows rapidly with increase in cluster
size. There is therefore a tradeoff here: as the cluster size
increases, the probability of a crippling hardware failure declines,
but the nonstatic component of the failure probability increases.
The optimal size of an NMR cluster depends on the resolution of
this tradeoff. Our cost functions and hard deadlines have shown
themselves effective in this matter.

VI. DISCUSSION

In this paper, we have presented a unified method for
evaluating controller computers, and considered an important
application in controlkr design.

Central to our paper is the idea that it is possible to objectively
quantify the performance of a controller by linking it to the
controlled process. Owing to this objectivity, there are many
possible extensions to this work. One extension, currently under
study, is the issue of distributed control, and the cost of
transmitting global status information to all the local controllers.
For guaranteed reliability, the local controllers require a complete
knowledge of the global state of the system. This, however, has a
cost in terms of the extra response times exhibited by the overall
controller. If the local controllers have less than complete
information, their actions cannot be optimal and might even be
incorrect. However, the response time of the controller could be
significantly reduced, with errors occurring rarely enough to
make that an improvement. Readers will recognize this formula-
tion as an example of the application of Markov decision theory
with costly information with the cost functions for the controller
jobs now providing the cost of status information.

366 IEEE TRANSAClTONS ON AUTOMATIC CONTROL, VOL. AC-30, NO. 4, APRIL 1985

It would be useful at this point to review what we believe is the
main contribution of this work.

That the controller delay, i.e., feedback delay, is detrimental to
the performance of a controlled process is well known. For some
reason, however, there has been (to our knowledge) no attempt to
systematically link the effect of feedback delay to the design of the
controller computer. The purpose of this work has therefore been
to show the following.

1) It is possible, from a series of relatively simple observations,
to derive a set of performance measures that are objective, and
that are more appropriate to control applications than other
performance measures, of which performability [5] is a notable
example. Without performance measures of this kind, the quasi-
optimal design of controller computers (including the algorithms
used to control the computers themselves) and their validation
would be difficult.

2) Using performance measures such as the ones presented, one
can abstract into a compact form the needs of the controlled
process. Given the hard deadlines, the cost functions, and the
control algorithms, one can then proceed to design the controller
computer without any extra detailed knowledge of the controlled
process. This also has the useful side effect of making the design
interface between the controller computer and the controlled
process “clean,” making for greater reliability of design, and
lowered developmental costs.

The two disadvantages of this approach are 1) that when the
controlled process is very complex, the computational resources
needed to calculate the performance measures may be very large,
and 2) a performance index that is “natural” to the controlled
process must exist for this approach to be feasible. We have already
considered the first disadvantage ip Section II. We can see no
way of relaxing the second limitation, since the absence of a
natural performance index for the controlled process means that it
is impossible to accurately quantify the performance of that
process (or indeed to state precisely what is meant by “perform-
ance”). Since our whole approach focuses on quantifying the
impact that increments in controller response time have on the
performance of the controlled process, if the latter cannot be
defined, neither can the impact of response time increments.

ACKNOWLEDGMENT

The authors thank the anonymous referees for their careful
reading of the manuscript, and their useful suggestions. The
assistance of R. Butler and M. Holt of the NASA Langley
Research Center is also acknowledged.

REFERENCES

C. M. Krishna and K. G . Shin, “Performance measures for multipro-
cessor controllers.” in Performance ’83. A. K. Aerawala and S. K.
Tripathi, Eds. A m s t e r G , The Netheilands: Nth-Holland, May

D. E. Kirk, Opfimal Control Theory. Englwood Cliffs, NJ:
1983, pp. 229-250.

A. P. Saae. Ootimurn Systems Control. Englewood Cliffs, NJ:
Prentice-Hall, 1970.

.~~~~~ ~

Prentice-Ad, 1370.
F. J. Ellert and C. W.’Meniam, “Synthesis of feedback controls using
optimization theory-An example,” IEEE Trans. Automat. Confr.,

L. T. Wu, “Models for evaluating the performability of degradable
vol. AC-8, pp. 89-103, Apr. 1963.

computing systems,” Univ. Michigan, Ann Arbor, Comput. Res. Lab.

J . F. Meyer et a/ . , “Performability evaluation of the SIm computer,’’
Rep. CRL-TR-7-82, June 1982.

J . H. Wensley ef al., “Design study of software-implemented fault-
IEEE Trans. Comput., vol. C-29, pp. 501-509, June 1980.

tolerance computer,” NASA Contract. Rep. 3011, 1982.
K. G . Shin and C. M. Krishna, “A distributed microprocessor system
for controlling and managing military aircraft,” in Proc. Dbrribufed
Data Acquisition, Comput. Contr. Symp., Miami, FL, Dec. 1980,
pp. 156-166.

-

[9] W. W. Chu et al., “Task allocation in distributed data processing,”
Compur., vol. 13, pp. 57-70, Nov. 1980.

[lo] K. M. Chandy, “A survey of analytic models of rollback and recovery
strategies,’’ Comput., vol. 8, pp. 40-47. May 1975.

[l 11 C. M. Krishna, K. G . Shin. and Y. H. Lee, “Optimization criteria for
checkpoint placement.” Comm. ACM, vol. 27, pp. 1008-1012, Oct.
1984.

[12] D. P. Siewiorek, “Reliability modeling of compensating module
failures in majority voted redundancy,” IEEE Trans. Compuf., vol.
C-24, pp. 525-533, May 1975.

[I31 D. Palumbo and R. Butler, “SIFT-A prelimiary evaluation,” in
Roc . Fiffh Digital Avionics Symp., Seattle, WA, Oct. 1983.

[14] A. L. Hopkins et al., “FTMP-A highly reliable fault-tolerant
multiprocessor for aircraft,” Proc. IEEE. vol. 6 6 , pp. 1221-1239,

[15] J. H. Wensley el al., “SlFT;Design and analysis of a fault-tolerant
Oct. 1978.

computer for aircraft control, Proc. IEEE, vol. 66, pp. 1240-1255,
Oct. 1978.

Kang G . Shin (S’75-M’78-SM’83) received the
B.S. degree in electronics engineering from Seoul
National University, Seoul, Korea, in 1970, and the
M.S. and Ph.D. degrees in electrical engineering
from Cornell University, Ithaca, N Y , in 1976 and
1978, respectively.

From 1978 to 1982 he was an Assistant Professor
at Rensselaer Polytechnic Institute, Troy, N Y . He
was also a Visiting Scientist at the U.S. Air Force
Flight Dynamics Laboratory in 1979 and at Bell
Laboratories, Holmdel, NJ, in 1980, where his

HSork was concerned with distributed airborne computing and cache memory
architecture. respectively. He taught short courses for the IBM Computer
Science Series in the area of computer architecture. Since September 1982, he
has been with the Department of Electrical Engineering and Computer
Science, The University of Michigan, Ann Arbor, where he is currently an
Associate Professor. His current teaching and research interests are in the
areas of distributed real-time and fault-tolerant computing, computer
architecture, and robot control, planning,,and programming.

Dr. Shin is a member of the Association for Computing Machinery, Sigma
Xi, and Phi Kappa Phi.

C. M. Krislma (S’84-MM) received the B.Tech.
degree from the Indian Institute of Technofogy, DeIhi,
India, in 1979, the M.S. degree from Rensselaer
Polytechnic Instimte, Troy, N Y , in 1980, and the
Ph.D. degree from the University of Michigan, Ann
Arbor, in 1984, all in ela%ical engineering.

Since September 1984, he has been on the Faculty
of the Department of Electrical and Computer
Engineering, University of Massachusetts,

modeling, queueing and scheduling theory, and
distributed architectures and operating systems.

. . h- ‘e-:. ’i Amherst. His research interests include reliability

