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ABSTRACT

A number of trajectory or path planning algorithms
exist for calculating the joint positions, velocities, and
torques which will drive a robatic manipulator along a given
geometric path in minimum time. However, the time
depends upon the geometric path, so the traversal time of
the path should be considered again for geometric planning.
There are algorithms available for finding minimum distance
paths, but even when obstacle avoidance is not an issue
minimum (Cartesian) distance is not necessarily equivalent
to minimum time.

In this paper, we have derived a lower bound on the
time required to move a manipulator from one point to
another, and detemined the form of the path which minim-
izes this lower bound. As a numerical example, we have
applied the path solution to the first three joints of the
Bendix PACS arm, a cylindrical robot. This example does
indeed demonstrate that the derived approximate solutions
require less time than Cartesian straight-line (minimum-
distance) paths and joint-interpolated paths, i.e. those
paths for which joint positions q' are given by
q' = a' + b'A

1. INTRODUCTION

Productivity increase is the goal of the utmost impor-
tance in contemporary automation with programmable
robotic manipulators. Driving robotic manipulators as fast
as possible, i.e. minimum time control of manipulators, is an
important means of achieving this goal. Minimum time con-
trol of manipulators generates several interesting but diffi-
cult control and planning problems. This paper is intended
to treat one such problem, that is, minimum time geometric
path planning for manipulators.

Loosely speaking, the problem of minimum time control
(MTC) of a manipulator is concemed with the determination
of control signals that will drive the manipulator from a
given initial configuration to a given final configuration in as

The work reported here is supported in part by the NSF grant No.
ECS-8409938 and the US AFOSA contract No. F49620-82-C-0089. Any
opinions, findings, and conclusions or recommendations in this paper are
those of the authors and do not necessarily retflect the view of the funding
agencies.

short a time as possible, given constraints on the-megni--
tudes of the control signals and constraints on the inter-
mediate configurations of the manipulator, i.e., given that
the manipulator must not hit any obstacles. In general, it is
extremely difficult, if not impossible, to obtain an exact
closed form solutions to the MTC problem due mainly to (i)
the nonlinearity and coupling in the manipulator dynamics

and (ii) the complexity involved with collision avoidance

One way to sidestep the collision avoidance problem (ii) is
to assume that the desired geometric or spatial path has
been specified a pricri. As to the difficulty (i), aithough
there are a few suboptimal solutions derived using approxi-
mate manipulator dynamics [2,3], the MTC problem is usu-
aily divided into two subproblems, i.e., trajectory (or path)
planning and trajectory (or path) tracking, each of which
is then solved separately. From a task planner we obtain
a collision-free path in Cartesian space. This path is
transformed to the corresponding path in joint space, giving
a geometric path which is a parameterized curve in joint
space. The trajectory planner receives these geometric
paths as input and determines a time history of position,
velocity, acceleration, and joint torques which are then fed
to the trajectory tracker.

With the division outlined above, we have formulated in
{8,9] the minimum time trajectory planning (MTTP) problem
to determine controls which will drive a given manipulator
along a specified curve in joint space in minimum time, given
constraints on initial and final positions and velocities as
well as on contrbl signal magnitudes. Since a geometric
path can be described as a parameterized curve, and the
geometric path is assumed to be given, trajectory planning
is relatively simple. By introducing a single parameter which
describes the manipulator's position, the dimensionality of
the problem has been reduced considerably. The current
state (joint positions and velocities) of the manipulator can
be described in terms of the parameter used to describe
the geometric path and its time derivative. The MTTP prob-
lem is therefore essentially a hwo dimensional minimum time
control problem with some state and input constraints.

More formally, assume that the geometric path is given
in the form of a parameterized curve, say

q'=7'(A). 0= As Ager (1.1

whera q* is the position of the i -th joint, and the initiai and
final points on the trajectory correspond to the points A=0
and A= Agay fespectively. The functions f! are continuous
and differentiable, and their derivatives must be continuous



and piecewise differentiable. Also assume that the bounds
on the actuator torques can be expressed in terms of the
state of the system, i.e., the manipulator's speed and posi-
tion, so that

wPP(q.Q) < w < uf*(q,9) (1.2)

where u; is an n-dimensional wvector of actuator
torques/forces; u™®* and u™™ are n-dimensional vecrors

that represent the maximum and minimum torque bounds,
respectively; and n is the number of joints that the manipu-
lator has. (The vector inequality (1.2) denotes
component-wise inequaiities.) Given the functions f* in Eq.
(1.1), the inequality (1.2), the desired initial and final posi-
tions and velocities, and the manipulator dynamic equations
to be given in Eq. (3.1), the MTTP problem is to find
q(A\) and g(A), and hence the controls u;(A) which minimize
the traversal time 7. See [8-10] for more detailed descrip-
tions of our solution to the MTTP problem. Bobrow et al
obtained similar solutions independently of ours [1].

In terms of the trajectory planning problem, the
geometric path planning problem is the problem of picking
the parametric functions f". In contrast to the trajectory
planning problem, in which the desired solutions can be
expressed in terms of the position parameter A and its first
and second time derivatives, the geometric path planning
problem requires that a set of functions be chosen from an
infinite dimensional space, thereby leading to a more diffi-
cult problem to solve.

In this paper, we will develop a method for determining
an approximate minimum time geometric path for the trajec-
tory planners described in [8,10]. This is a significant
departure from most of the conventional planning methods
in which geometric path planning [4,6] is performed
without considering the robot's dynamic behavior. Specifi-
cally, we intend in this paper to consider the effects of
actuator constraints and robot dynamics in both geometric
path and trajectory planning.

This paper is organized as follows. In Section 2, we
state formally the minimum time geometric path planning
{MTGPP) problem to be soived in conjunction with trajec-
tory planning. Section 3 discusses some interesting
dynamic properties of manipulators that are useful for
deriving solutions to the MTGPP problem. In Section 4, we
present (i) an exact solution to the MTGPP problem under
certain restricted conditions, (ii) a method for finding lower
bounds on the traversal time from one point to another, and
(i) the paths which resuit from (a) minimizing the traversal
time bounds and (b) maximizing the velocity bounds derived
in [8,9]. Section & shows how our solutions are applied to
the first three joints of a cylindrical manipulator, called the
PACS amm, manufactured by the Bendix Corporation. The
paper concludes with Section 6.

2. PROBLEM STATEMENT

The minimum time trajectory planning algorithms
described in [8, 10] give the time history of manipulator's
position, velocity, and joint torques required for the minimum
time traversal of a given geometric path. However, these
algorithms give no fim indication of how to pick a geometric
path. The chosen geometric path ideally should be that
which avoids all obstacles and can be traversed with the
minimum time. In conjunction with trajectory planning, the
minimum time geometric path planning (MTGPP) problem can
be stated as follows.

Problem NTGPP:
Given the solution to the minimum time trajectory
planning problem, choose the geometric path, or
the functions f' in Eq. (1.1), so as to minimize
the traversal time.
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We will take approaches to this problem which are
totally different from the conventional control techniques
such as use of the Pontryagin's maximum principle. First,
the minimum time path will be determined for a restricted
class of robotic manipulators using some geometric tech-
niques. Second, a method will be proposed for generating
approximate minimum time geometric paths for more general
manipulators. Note that these solutions are derived for
collision-free space motions. Extension of the solutions to
the case of obstacle avoidance is also indicated in the
Conclusion. We begin in the next section with a few
dynamic properties of manipulators that are needed.

3. DYNAMIC PROPERTIES OF MANIPULATORS

In this section we will introduce some properties of
manipulators which will prove to be useful later on. Most of
these properties relate to the ''inertia space'' of the mani-
pulator, i.e., that Riemannian space which has the
manipulator's inertic matriz as its metric tensor. The
dynamic equations of a manipulator can be derived from
Lagrange's equations, and take the form

w = IV o+ ki WV RV + g (3.1)
where u; is the generalized force/torque applied to the
i-th joint, ¥ is the generalized velocity of the i-th Joint,
di; is the inertia matrix, Ry is the viscous friction matrix,
and g; is the gravitational force on the i-tk joint. The sum-
mation convention has been used here, and all sums range
from 1 to n for an n-jointed manipulator. It should also be
noted that J;;, Ry, and g; may in general be functions of
the generalized coordinates q'. The symbol [jk.i] is a
Christoffel symbol of the first kind, defined as

ki]= 1|y Y 8a
k= 2| og *og Tod

Eq. (3.1) can be written as
&
W=l YRy g
where J;; % is the absolute derivative of velocity with

respect to time. (See [11] for more details.)

For our purposes, we will define arc length ds by the
quadratic form ds® = J;dq'dg/. Since the j&etic energy
d

dt
seen that the infinitesimal arc ds in this space is related to
the kJnetic energy of the manipulator by the formuia

B

(3.2)

of the manipulator is given by K = —;J‘, d—dt(i , it can be

The dynamic equations may now be expressed in terms
of the arc length s and the time derivatives of s. We have,
since the absolute derivative obeys the chain rule,

m=1ﬁ%§+1‘v"’+&- (8.3)
Using the relationship ¥ = % %: , then

mz,“i[,,g];_ts,,k,,f_;,,& 3.4)
::te':e Ba.;'ti = % is the unit tangent to the manipulator's

IR+ R H

Applying the product rule and chain rule to the absolute
derivative in (3.5) and using the fact that the absolute



derivative of a scalar is just its ordinary derivative gives
2
_ ds d®s ds 3.8
w-uB|%) v v e @9
The work ¥ done on the manipulator is
= fadd = [o 24 =f¢ (3.7)
w fu.dq’ fm = up'ds.

Plugging in the expression for u; from Eq. (3.6),

0p) ds i s d|ds|}ds
W=I[’vp‘%—dt + 4P zt] @
4-f&,-p‘p’ —[ds +fg‘~p‘ds, (3.8)

Using the facts that the curvature vector % is

orthogonal to the unit tangent p’ and that p* is a unit vec-
tor, i.e., that J,;p'p’ = 1, Eq. (3.8) transforms to

-~ flds) 2 |ds oind &5 o
W-j[dt =% d.s+ﬁl,pp’dtds+fg‘pds
2

= llds  oin] 35 i (3.9)

= 2[dt] + JRyp'p’ 3 ds + fapids.
The power consumed by the manipulator is just

2
- dF _ dsd% ¢ 5l ds (ds  (3.10)

o= = @ +1§,pp’[3t] YEP G

4, MINMUM TIME GEOMETRIC PATH PLANNING

As was previously pointed out, use of the maximum
principle for solving the MTGPP problem is practically impos-
sible. Altemnative approaches must be sought. In this sec-
tion we will develop three methods for generating geometric
paths. For the first two we use energy methods to derive a
lower bound on path traversal times, and for the third
method we use the velocity limits derived in [8,9].

First it will be shown that geodesics in inertia space,

i.e. solutions of the differential equations -é %stt , are
the optimal solutions to the MTGPP problem under some res-
tricted conditions. Though the conditions required in the
special case are not met by realistic manipulators, the proof
does provide a simple illustration of the method used here
for obtaining lower bounds on traversal time; the curves
which minimize the lower bound for the more general case
can then be found using essentially the same technique
used in the special case, giving an absolute lower bound on
the time required to move from one point to another. Then
the use of the derived traversal time bounds and the velo-
city limits derived in [8,9] are used to find approximations
to minimum time paths.

4.1, A Special Case

It will now be shown that if a manipulator has no fric-
tion terms and no gravitational terms and the limitations on
the joint torques consist only of limits on the total power
supplied to (or taken from) the manipulator, then the
minimum time geometric paths are geodesics in inertia
space. Formally, we have the following theorem:

Theorem 1: |f a manipulator is frictionless and has
Zzero gravitational terms, lLe. =0 and g = 0 in the
dynamic equations (3.1), and the only restrictions on the
torques applied to the manipulator arise from constant,
symmetric limits on the total power supplied to (or taken
from) the manipulator, then the minimum-time geometric path

between any two configurations of the manipulator is a
gendasic in inertia space provided that the initial and final
velocities are zero.

Proof: The total power sunk or sourced by the mani-
pulator is limited by symmetrical constant bounds, i.e.,
Ppraux<S P < Ppa. Then by Eq. (3.10), applying the con-
stant maximum power gives

- - dsd’ _ du (4.1
P‘Pmu' dtdtg -y'dt
where u = %: . Solving the differential Eq. (4.1) gives
3
S = Py, or 5= 2Pt (a.2)

since the manipulator starts at rest.
Obviously, minimizing the traversal time for a given
path requires that we maximize the '"velocity"' %ts This in

turn requires that the power P be maximized. Therefore,
the maximum distance s which can be traveled in time 1 is
given by Eq. (4.2).

Looking now at the end of the curve, we wish to have
zero velocity at the end of the motion. Again, since we wish
to minimize the traversal time, we want to stop as quickly
as possible, which requires that we drain energy from the
system as fast as possible. Applying the minimum power,

p.% = —Prnax Solving this equation gives

E]
1 2 — 3
3H = PanlT =t). or s = 5 ~2\BPo; (T -1)2(48)
where S is the total "length' of the curve which is to be
traversed and T is the (unknown) time when the destina-
tion point is reached.

At some point in the middie of the curve there must be
a switch from acceleration to deceleration. Let the time,
distance, and velocity at this point be denoted by {,, s,
and 4, respectively. Eqs. (4.2) and (4.3) must give identi-
cal resufts at the switching point, so we have

M= 2Prasty = RPrm(T ~t;) (4.42)
and
2 ) 3
§; = S—';—3 \/EPM (T —t.)z = E‘épma-x tF. (4.4b)

Eliminating ¢, from these equations gives
1 2
- 9 3.5 (4.5)
T= P S

The total time 7 increases monotonically with S, so minimum
distance in inertia space is, in this case, equivalent to
minimum time. Therefore the geodesic, being the curve of
shortest ""distance'' between any two points, is the optimal
geometric path. Q.E.D.

The conditions under which this proof of optimality
epplies are not realfistic, particularty the condition that
gravitational terms be absent. The proof of optimality
depends on the absence of gravitational terms because the
presence of such terms makes the power supplied to the
manipulator a function of position rather than a function
only of the kinetic energy of the manipulator. The require-
ment that the joint torques/forces be only constrained by a
total power limit for the entire manipulator is also unrealis-
tic. However, It is possible in practice to obtain bounds on
the total available power for the more general case; in the
next subsection, such bounds will be used to find bounds
on traversal times.



4.2, Traversal Time Bounds

In this subsection, we show how energy methods simi-
lar to those used in the previous subsection may be used to
obtain lower bounds on the time required to move from one
point in the robot's workspace to another. We start with Eq.
(3.10), the formula for F;, the power supplied to the man;—

2 . 3
pulator. If ye‘iswﬂte P = %:%t—:’ P, = Ryp'p %i ,
and P, = gp' e
then we have
Pg = Pg —Pf —Pg, (4.6)

We will find bounds on 7 by finding bounds on 7, 7,
and F,. But before computing these bounds, we need the
following resuit:

Lernma 1: The 2-norm of the vector pis bounded by:
Ll - Ll < pllas —= = = (4D
VAl Suld) Imd)  MAgnld)

where

Ip Ip
PTP . fa{d) = max LTP
PP 0 pp
(The quadratic form J,-jp‘pi has been written in vector form

as pTIp) Amin(d) is the smallest eigenvalue of J for all
positions q, and Am,;{J) is defined similarly.

Im(¥) = min

Proof: Since p‘ is a unit vector in inertia space, we

have J;p'p’ = pTip = 1. Then we have
7 [ .r
- = PIp 7 .| P1dp 2
1=plip= p’p= mm[ lipli
p'p »o| p'p
Likewise, we have
T [ 7
_ pdp._r pip 2
1= plip= p'p=< maXl liplt
PP »o| p'p 2

Since J is positive definite and symmetric, its eigenvectors
span R*. Expanding p in terms of the eigenvectors of J

shows that f2(J) = Apin(J) and £%(3) = Anax(Jd), which,
combined with the above inequalities, proves the lemma.

Q.E.D.

We now compute bounds on the total applied power F;.
It will be assumed here that bounds on F; arise from con-
stant bounds on the joint torques and from constant bounds

on the total applied |.wwer.1 Then, we have

Leroma 2: If ds > 0, then

ds . ds
max{Pmm, -(Et} < F < mm{Pmu; (Ei}
where Py, and Pp,,, are the minimum ﬁndml:\xa”ximum powers
U 2
that can be supplied to the robot, {= ————=, and
VAt ()
[|af2x ||, is the maximum 2-norm of the torque vector.
Proof: By definition, we have P, = u;p' %: . The

component of the torque in the direction of motion, u,p',
can be bounded by

o s

VAzin(3)

o'l < llupes|ig]lpt]l < (4.8)

We therefore have

18ounds of this form can easlly be found from motor saturation
torques and from limits on power supply currents and voltages.
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F= max{Pm, i\/%%z %} = max[Pmm- '(%]

and

. a1z ds . ds
P < mm{ Prasx: ——m_ 71?} = mm[Pmm. (;t]
Q.E.D
Lemma 8: P, is bounded by @l < P, < ¢
_ Amin(R) . _ Amax(R)
M R T @

Proof: By an argument similar to that used to derive
bounds on liplla we have
1Aﬂun(l!)llpllez < P'Rp< Anu(R)Ipll3 so that, by Lemma

Amin(R) T )\mux(R) (4.9)

Amax('l) = P Rps Am.in(J)

Multiplying by 1# gives the desired result. Q.E.D.

Lemma 4: The gravitational energy contribution P,
is bounded by -1,!/5 < B < #zég where ¥y = M E.
dt 7 dt VAmin(d) dt
Proof: We have
; , g llz
& | < lleliallp = == (4.10)
by Lemma 1. Muitiplying by % proves the lemma. Q.E.D.

Using bounds derived in Lemmas 2 through 4, we are
now in a position to obtain bounds on F;.

Lemma 5. f we define = %—ts>0,2

maX{ Prin, *;u} -Pif —yu

< P, < min PM.QA] -af + Y
Proving this Lemma is just a matter of pilugging the
bounds obtained in Lemmas 2 through 4 into Eq. (4.8b).

We can now determine maximum velocities, as was
done in the previous subsection. We have the following
theorem:

Theorem 2:
then

p< mi.n[#m. j'%([1—2"‘], -*—;;-f[e”(“)—l]}

If the initial and final velocities are zero

where T is the traversal
_ ¥+ VF 49Pry

Hem = zv .

Proof: Consider two cases. In the first case, let P,

be lmited by the joint torque bounds. Then we have
~“us P < {4 so that

Vil -(V+ Qus< u%ﬁ‘s Wi+ Y+ u
But then, since we are considering positive values of ,,
Yu—-(¥+9= %S -+ (¥+ 9 (4.12)

We must have zero velocity at the beginning and end of the
path. if the (as yet unknown) traversal time is T, then

time of the path and

(4.11)

2we proved u> D in [8].



ps %{[1 _,,1‘] (4.132)

and

us L2t{erro ) (4.13b)
&

in the second case, limits are imposed by the total
power limits, i.e. Ppin € Py € Pp.e Then we have

d
Prin =912 ~Ypus pb < Pox—pf +yp (419

Again, we are only considering positive values of u; since in
general P, < 0, the lower bound in this inequality will
always be less than zero. Therefore the roots of the lower
bound occur for negative values of 1, and we cannot place
an upper bound on . On the other hand, the upper bound
has a positive root. Since we are starting at i = 0, that

value of u for which %‘;’ goes to zero cannot be exceeded,

and we have
¥+ V; + 49Pnay (4.156)

2y

KE tm =

Since inequalities (4.13a), (4.13b), and (4.15) must all be
met, the theorem follows. Q.E.D.

To find lower bounds on traversal times, consider a
manipulator, call it the super-manipulator, for which the
constraints on joint torques are such that Egs. (4.13a),
(4.13b) and (4.15) apply. Then the super-manipulator has
limits only on the 2-norm of the tangential component of the
torque vector and on the total kinetic energy. Since these
constraints apply for the original manipulator, the old
manipulator's realizable torques are a subset of the super-
manipulator's, so that the super-manipulator can do any-
thing that the original manipulator can do. Thus any path
can be traversed by the super-manipulator at least as
quickly as the actual manipulator could traverse it. Finding
the minimum traversal time for the super-manipulator there-
fore gives a lower bound on the traversal time for the origi-
nal manipulator.

Finding the lower bound on the traversal time 7 for the
super-manipulator is simple. It is just a matter of finding a
value of T such that the area under the velocity vs. time
curve is equal to the geodesic distance S between the ini-
tial and final points. Formally, we have

Theorem 3: Let the times ¢, and t; be given by

_ 1 ¥+ § (4.16a)
t,= =1
1T B Y vtm
and
1 Y+ it dium (4.16b)
to = - —————
2= T P log -

If £, and t, are both real and ¢, < £, then the minimum
traversal time 7T for the super-manipulator can be found by
solving the equation

[
Hon Y+ &t Plim 4.17)
logl ___’W"' ¢

= — = T -

¢ g | bm ¢
g Ly
vl°g|'¢'+<—%]'

If £, is not real or £, > tp then T can be found by solving
the simuitaneous equations

YLy o™y = ﬁﬁj(e’""a) -1) (4.18a)
@

(4.18b)

Lt.s‘[t' -1 (1 _3'“')]
? ?

[
s g YA Lt T4 oy p
i 1L 1) ~(T =t,)|.

Proof: Finding the distance travelled, the area under
the velocity vs. time curve, requires that we consider the
two cases described above, which correspond to (i) the
case in which the velocity limit 4, is reached, and (ii) the
case where it is not. Case (i) is relatively simple. First, we
need to know the points where the curves described in
(4.13a) and (4.13b) reach the limiting velocity u,,. These
times may be obtained from (4.13a) and (4.13b) by setting
1= 4y and solving for t. These times are just f, for
(4.13a) and t; for (4.13b). Then the area under the velo-
city vs. time curve will be given by

t
S = ]‘.‘[Lf[l —e"‘]dt
0o ¥
¢
+ };A,,.dt + }%{[e"(r") —1]dt
i is

= Hm _Hm (4.19)
7 P + i, T
[ ' [
Hm Y+ {4 Plim Hm y+¢
— B oog| =t | ) .
R RTY: v 8| ¥ c-pim

Since S is linear in T, determining T is easy.

in case (ii), we have a single switching time £,, and we
may match positions and velocities as was done in the spe-
cial case in the previous subsection. Matching velocities
gives (4.18a). Matching positions gives

o @
=S -:f%qmm -1) at

which, when integrated, gives equation (4.18b)
Q.E.D.

Unfortunately, Egs. (4.20) cannot be solved for ¢, in
closed form. However, we can still use these equations to
prove that T increases monotonically with S, and thus
prove that the optimal path for the super-manipulator is a
geodesic. This being known, the geodesic distance S
between the initial and final points can be calculated, and
Eq. (4.20) can be solved numerically.

Theorem 4: The minimum traversal time I for the
super-manipulator increases monotonically with the geo-
desic length S of the traversed path.

Proof: To prove that T increases monotonically with S
we will show that ;—‘ST > 0. If case (i) of Theorem 3 holds,

then the result is obvious. Case (i) is slightty more compli-
cated. First, we differentiate (5.23a) and (4.20) with
respect to the switching time £,, giving
v, _ (4| 2T __1]

e (4.21a)

dt,
(4.21b)

[a‘(“') —1] .

%([ 1-—e _'t']

= 45 _y+¢
a, ¢

d4r

a, !




Solving (4.21a) for ar , plugging into (4.21b), solving

L ]
(4.21b) for £, and dividing 25 by 4T gives
as ' ¥+t

.r ] -‘
ar ) 3 l?’[l—e .]
w’[1 + e’:i:::[)l -e"””]]

(4.22)

which is greater than zero. Q.E.D.

If the actual lower bound is required, then Eq. (5.23a)
may be solved for 7. To do this, we may make use of the
equations for ¢, and ¢,. The maximum velocity u, can be
varied In these equations until t, = {; = {,; then this value
of t, can be used in (4.21a), which can be solved for T.

4.3. Approximate Minimum Time Paths

In this subsection we consider two methods for gen-
erating geometric paths which are approximately minimum
time. The first method uses the traversal time bounds
derived in the previous, section and the second method
uses the velocity bounds derived in [8, 9].

First, consider the lower bounds on traversal time. If
these bounds are good estimates of the actual traversal
times, then minimizing the lower bound should approximately
minimize the traversal time. Since the lower bound increases
monotonically with the geodesic length S of the traversed
curve, geodesics (minimum-length curves) must minimize the
lower bound. The ''near optimal'' paths may then be deter-

mined by solving the differential equations for a geodesic,
namely -dﬁs[ %1 = 0. This method of generating near-

minimum time paths can be applied to most practical robots;
however, it places no penalties on forces which are orthog-
onal to the traversed path, so that path curvature is not
penalized. If any further constraints are applied which force
the introduction of curvature terms, then ignoring the mag-
nitude of the curvature terms could make the lower bound a
poor estimate of the actual traversal time, causing a poor
choice of path. The minimization of lower bounds leads to
the selection of shortest-distance paths in inertia space,
which could have corners at which the manipulator must
come to a complete stop. Path segments of high curvature
also slow the manipulator down. Thus it is necessary to
strike a compromise between curves of shortest distance
and curves of smallest curvature. (This naturally leads to
the second method of generating near-minimum time
geometric paths.)

In order to reach such a compromise, we choose as an
objective function the product of the length of the curve
and some measure of the total curvature. This, of course,
requires some quantitative measure of both curvature and
distance in an n-dimensional space where n is the number
of manipulator joints. One obvious measure of total curva-
ture Iis the reciprocal of the maximum velocity, as computed
in [8,9]. If the path is expressed in terms of an arbitrary
parameter )\, then the expression

T~

would appear to be a good choice, where u= X and .. (})
Is the velocity limit at position A. This expression is
independent of the parameterization chosen, and
increases both as the length of the curve increases and as
the curvature increases.

In order to use (4.23), the vaiue of the maximum velo-
city up..(A) is required. in [8,9] we have derived this
bound in terms of the manipulator's torque bounds and its
dynamic equations. The set of admissible accelerations u is

(4.23)
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given by a set of inequalities of the form

uPiP < Mip+ Qi+ Ru+ S < upes (4.24)
where
dr’! d2ri o . adfd dfk
R=Ry2 5 =g

For a given position A and velocity u, these inequalities
gives a range of accelerations y, and so may be thought of
as assigning upper and lower acceleration bounds to each
point (A,4) in the phase plane. Since these inequalities must
hold for aill joints of the manipulator, the acceleration must
fall between the greatest of the lower acceleration bounds
and the least of the upper bounds. When one of the upper
acceleration bounds is smaller than one of the lower
acceleration bounds for some phase point (A,u), there are
no accelerations which will keep the manipulator on the
desired path. Thus the acceleration bounds generate res-
trictions on the velocities at the phase points which can be
encountered during a traversal of the path. These relation-
ships can be thought of as assigning velocity limits to a
given position A

Now consider a frictionless manipulator, i.e. one for
which the quantities K, are zero. Also assume that at every
point on the path the manipulator is capable of stopping and
hoiding its position. Then we have

u‘ilnins S‘-S u‘_ma.x

at all points on the path. (This will hereafter be referred to
as the ''strong manipulator assumption''.) If the parameter A
is defined to be the arc length s in inertia space, then & is
Jjust the inertia matrix J;; muitiplied by the curvature vector

(4.25a)

% But if the path chosen is a geodesic, the curvature

vector is zero, and hence g = 0. Then the inequality
(4.24) reduces to

ufits Hu+ § < ute (4.25b)
which is independent of the veiocity u, and by the strong
manipulator assumption is satisfied identicalty for [4,= 0. But
if the bounds on L are independent of y, there can be no
velocity limits; in other words, u.,.(A) = =, so that the
integrand of (4.23) is zero. Thus in this case the optimal
solution coincides with that obtained from minimizing traver-
sal times.

it may appear at first that the geodesic, since it max-
imizes velocity bounds, must be the true minimum time path.
However, as shown in [8,9] the manipulator must meet
acceleration as well as velocity constraints. It would then
be expected that along the optimal geometric path the
maximum acceleration would be maximized during an
accelerating portion of the path and the minimum accelera-
tion would be minimized during a decelerating portion. This
does not happen along a geodesic, but a similar
phenomenon occurs: the acceleration bounds ''spread out'.
To see this, note that velocity limits occur because the
acceleration bounds become very close. Since the velocity
bounds have been eliminated by choosing a geodesic as the
path, the acceleration bounds must never get close. Hence
maximizing velocity bounds also gives a large range of
accelerations to choose from. This would lead one to
expect that geodesics are good, if not optimal, choices for
geometric paths.

In summary, we have two criteria for selecting near-
minimum time geometric paths for a manipulator, one based
on the minimization of a lower bound on the manipulator's
traversal time and the other based on the minimization of



the product of the path's length and its curvature. In either
case, when the near-optimal path is determined, the path is
found to be a geodesic in inertia space. This geodesic can
be constructed by solving a set of differential equations
and applying appropriate boundary conditions.

5. EXAMPLES

To demonstrate the utility of the solutions described
above, the traversal times for various geometric path have
been calculated, using the method of [8,9], for the Bendix
PACS arm. This arm is cylindrical in configuration, and is
driven by fixed-field D.C. motors. Only the dynamics of the
first three joints are considered here (see Figure 1). We
construct three paths, a straight line, a geodesic, and a
joint-interpolated curve. (The joint-interpolated curve has
the form q¢* = g} + AM(q} —qi), where 0 < A< 1 and g and
q} are the points at which the curve starts and finishes.)

Both construction of geodesics and trajectory planning
require that the dynamic equations (3.1) of the robot be
known. In particular, the inertia matrix and Coriolis coeffi-
cients are needed in order to construct geodesics. For the
first three joints of the manipulator the inertia matrix takes
the form

J -Kr + Bt® o o 6.1
Jij = 0 Mg 0
0 0 M,

where @' = § @ = 7, and ¢ = z. The constants A, and
M, are the masses which the r and z axes must move. J;
is the moment of inertia around the 3 axis when r is zero.
The K term is present because the center of mass of the
structure for the r joint does not coincide with the 8 axis
when r is zero. The values of J;, X, M;, and ¥,, along with
friction coefficlents and actuator characteristics, may be
found in [7]. The Christoffel symbols of the first kind
(Coriolis coefficients) are found by differentiating Jy.
Those symbols which are non-zero are

[121] = [281,1] = M,r —g, [11,2]= & K _ur (520
The gegd_eslcs are solutions of the equations
0= J“u + [jk,i]% % . Plugging Egs. (5.1)

through (5.2b) into this equation gives the equations of the
geodesics as

2
0= (i —Kr + M;rz)u + (2Myr — g—: %;’ (8.32)
g lfadlg e
0= i 2 d%s (6.3¢)

in addition, we have the normality condition
2
- z)| 49 dr
(J; Kr+H,r)[ds] +”‘[ds
The geodesics are found by solving these equations numer-
ically.
The gravitational terms for this manipulator are partic-

ularly simple; the gravitational forces on the r and 4 joints
are zero, and the force on the 2 joint is M,g.

Trajectory planning also requires knowledge of the
robot's actuator characteristics. To detemine actuator
characteristics, consider a DC servo consisting of a voltage
source, a resistance R™, an Inductance L, and an ideal
motor, i.e., a device which generates a torque proportional
to the current passing through it. The voltage source is the

2 2
+i,| B =169
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power supply, the resistance Is the sum of the voitage
source resistance and the motor winding resistance, and
the inductance is the inductance of the motor windings.

It wil be assumed here that the inductance L can be
neglected. This frequently is the case for D.C. motors,
since the electrical time constant of such systems is gen-
erally much shorter than the mechanical time constant.
Given that the torque 7is proportional to the current, i.e.
7= k™/, it can be shown from conservation of power that
the voitage V,, across the ideal motor is just k™, where
is angular velocity. Since, if the motor is not in saturation,

W, -V V, —&™
7= k™/and [ = ——lt = 2 “ where ¥, is the

source voltage, we can solve for torque in terms of voltage
and angular velocity, giving

m my2

Assuming the power supply has constant voitage limits of
ymir and V™2% this gives torque limits of
k7 min _ (k7)? k7 [y
— ymn - RS TS — YW w.
™ R™ ™ m
In addition, at some point the iron in the motor saturates,
with the result that increasing the curmrent through the

motor has no effect on the torque. This yields two more
(constant) torque limits, so we also require that

<% < < P

Taking the gear ratio k9 into account, this gives torque lim-
its of

(5.5)

(5.6a)

(58b)

A o el R 0 ,
w m“[ e T T
and
maz — 7= o il ax kim)z J (6.7b)
WEEmRI T B R 9

A trajectory planner for this robot was written in the C
programming language and run under the UNiX3 operating
system on a VAX-11/780% The trajectory planner was
used to generate trajectories for a straight line, a geo-
desic, and a joint interpolated curve, each of which
extended from the Cartesian point (0.7,0.7,0.1) to (0.4,-
0.4,0.4), all coordinates being measured in meters. Phase
plane plots (plots of the speed u versus position A), plots
of position q vs. time, and plots of motor voltage vs. time
are shown in Figures 2a through 4c. Figures 2a through 2c
are for the straight fine, Figures 3a through 3c are for the
joint interpolated curve and Figures 4a through 4c are for
the geodesic. The traversal times for these paths are
1.782, 1.796, and 1.688 seconds respectively, showing
that the geodesic does indeed have the shortest traversa
time.

6. CONCLUSIONS

Two methods (excluding the special case) have been
proposed for finding geometric paths which allow a robotic
manipulator to move from one point to another in minimum
time or approximately minimum time; if obstacle avoidance is
not a consideration, both methods yield the same result.
While these methods do not directly address the problem of
obstacle avoidance, they do demonstrate that the problem
of choosing minimum time paths is not simple, and in particu-
lar they show that minimum time is not in general equivalent
to minimum Cartesian distance.

3yNIX is atrademark of Bel! Laboratorles.
QYAX is atrademark of Digital Equipment Corporation.



Two approaches to the obstacle avoidance problem
suggest themselves. If the geodesic which connects the
desired initial and final positions of the manipulator happens
to pass through an obstacle, then we may piece together
geodesics to give a path which has shortest geodesic,
rather than Cartesian, distance. This again has the disad-
vantage that the path will have corners at which the mani-
pulator must stop, but these corners could presumably be
rounded off, as in [6].

On the other hand, Eq. (4.23) provides a means of
evaluating the ''goodness'' of any given path without actu-
ally calculating the path's traversal time. If several paths
can be found which avoid collisions with obstacles, then
each one can be evaluated and the best one chosen on the
basis of formula (4.23). This presumes that some method
can be developed for generating collision-free paths
quickly. It also presumes that at least some of the paths
generated by the algorithm are reasonably close to the
optimal path. But since minimization of the product of curva-
ture and distance gives paths with short traversal times,
some guidelines for generating paths are now available.
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Figure 3a. Phase plane plot for joint-interpolated path

Figure 3b. Joint position vs. time for joint-interpolated path .
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