
MINIMUM-TIME TRAJECTORY PLANNING FOR
INDUSTRIAL ROBOT§ WITH GENERAL TORQUE CONSTRAINTS

Kang G. Shin Neil D. M c K y

Department of Electrical Engineering and ComDuter Science Computer Science Department
General Motors Research Laboratories

Warren, MI 48090
The University of Michigan
Ann Arbor, Michigan 48109

ABSTRACT

There are a number of trajectory planning algorithms which
generate the joint torques/forces required to drive a robot along a
given geometric path in minimum or near-minimum time
11, 3, 5, 6,7,91. These methods make fairly specific assumptions
about the form of the joint torque/force constraints, thereby l imit
ing their applicability. A method, called the perturbntion trajectory
improvement algorithm (PTIA), is developed here which can gen-
erate the joint positions, velocities, and torques required to move a
robot along a specified geometric path in minimum time under
very general torque constraints.

The PTIA starts with a non-optimal trajectory which meets
all the required torque constraints, and perturbs the trajectory in
such a way as to always decrease the traversal time for the path.
This perturbation process continues until the torque constraints
prevent any further improvement in the traversal time. The torque
constraints may be expressed in terms of quantities related to
torque rather than torque itsell; it is possible, for example, to limit
velocity, acceleration, jerk, and motor voltage, either singly or in
combination. The perturbation trajectory planner also is very sim-
ple to implement, and many of the calculations are independent of
each other and can therefore be done in parallel. As a demonstra-
tive example, the PTIA is applied to the first three joints of the
Rendix PACS Arm.

1. INTRODUCTION
An important goal of contemporary industrial automation

with robots is to increase productivity. One way of accomplishing
this goal is to move robots as fast as possible, i.e., minimum-time
control of robots. However, due to the nonlinearity and joint cou-
plings in the robot dynamics, i t is possible to obtain only approxi-
mate solutions to the problem of direct control of robots in
minimum time [Z, 41. To circumvent this difficulty, the control of
robots is usually divided into two sequential problems: ojf-line fra-
jectory planning followed by on-line trajectory tracking. We shall
address in this paper the minimum-time trajectory planning prob-
lem.

A number of techniques have been developed for planning
minimum-time trajectories of industrial robots 11, 3, 5, 6, 7,9].
One potential problem with these methods is the assumption that
constraints on the torques/forces applied to the robot’s joints have
specific forms, thereby limiting their applicability. For example,
the method described in 161 assumes that the path consists of a
sequence of Cartesian straight line segments, and that constant

limits on Cartesian velocity and acceleration are known a priori
along each path segment. Note that it is almost impossible to select
such limits without knowing the dynamic properties and the actua-
tor characteristics of the robot. Moreover, since maximum
accelerations and velocities are assumed to be constant over some
interval, it is necessary to choose them to be the worst case bounds
thereby resulting in under-utilization of the robot’s capabilities.
To alleviate this problem, we have developed a method in (31
which uses the robot dynamics to obtain approximate velocity and
acceleration bounds at each corner or knot point of the robot’s
path.

More dramatic improvements can be found in [1,9, lo]. The
trajectory planner presented in 111 assumes that joint torque limits
are given in terms of the joint’s position and velocity, and that the
joint torque limits are mutually independent. (Note that the joint
actuator limits are dependent on each other when more than one
joint actuator share a common power source, e.g., a power supply
for DC servo motors and a pump for hydraulic actuators.) A simi-
lar trajectory planner described in 191 makes the additional assump
tion that the velocity dependence of the torque Constraints is at
most quadratic. Torque constraints which interact, as well as per-
formance indices other than minimum time, can be handled by the
trajectory planner described in [lo], but the velocity must be
discretized rather coarsely if the computations are to be performed
in a reasonable amount of time. In practice, torque limits may be
relatively complicated, and in fact there may be limits on the
derivatives of the torques because of the presence of large motor
inductances or because of the compressibility of the hydraulic fluid
used in the robot’s actuators. It is the goal of this paper to present
a minimum-time trajectory planner which is simple and also allows
such complicated torque constraints.

This trajectory planner begins with an arbitrary trajectory
meeting all the constraints and always alters the trajectory M) as to
reduce the traversal time without violating any constraints until a
$ 3 1 : f ; ~ (o r y solution is obtained. This planner is an iterative
algorithm and is called the Perturbation Trajectory Improvement
Algorithm (PTIA). The method is very easy to use and implement
yet very powerful. Also, it is quite different from any known tra-
jectory planners.

The remainder of the paper is divided into four sections. We
state the minimum-time trajectory planning problem in the next
section. Section 3 describes the PTIA, and gives a simple example
of its application. Section 4 analyzes the amount of computation
required by the PTIA. In Section 5, the algorithm is applied to the
first three joints of a real robot, and some complications regarding
the application of jerk constraints are discussed. Section 6 con-
cludes the paper.

The work reported here is supported in part by the NSF grant No. ECS-8409938 and the US AFOSR contract Nos. F49620-82-C-
0089 and F3361b85-C-5105. Any opinions, findings, and conclusions or recommendations in this paper are those of the authors
and do not necessarily reflect the view of the funding agencies.

412
CH2282-2/86/0000/0412801.00 0 1986 IJ3EE

2. PROBLEM STATEMENT
The approach to trajectory planning described here assumes,

as do the trajectory planners described in [1,9, 101, that the
geometric path to be followed by the robot is given as a parameter-
ized curve in joint space, i.e., the joint positions q' are given by

where X is a scalar parameter used to specify geometric paths and
n the number of joints that the robot has. It should be noted that
in practice the geometric paths are given in Cartesian space.
While i t is in general difficult to convert a curve in Cartesian space
to that in joint space, it is relatively easy to perform conversion for
individual points. One can then pick a sufficiently large number of
points on the Cartesian path, convert to points in joint space, and
use some sort of interpolation technique (e.& cubic s p h e s or
straight line segments) to obtain a similar path in joint space (see
151 for an example). The resulting joint path is assumed to have
the form of Q. (1).

As in Eq. (l), the parameter X is sufficient to represent d l
joint positions, and hence referred to as a poaition variable. The
speed p = - of the manipulator may be plotted versus the p s i -

tion X. The speeds and positions of the robot's joints can then be
found from the values of X and p and the parametric functions f ' .
It is well-known that the dynamics of a robot take the general form

dX
df

u, = J , , ~ J + l jk,i l& ;1' + R,, 4 + g, (2)

where u, is the if* generalized force, q' is the i generalized
coordinate, J,, is the inertia matrix, the symbol

l j k , i] d [3 + 3 8JJt is a Christoffel symbol of the
2 8q' 8q' +&I' 1

first kind and represents an array of Coriolis coefficients, R,, is the
viscous friction matrix, and g, is the gravitational torque vector.
By plugging the parametric functions given in Eq. (1) into these
dynamic equations (2), joint torques/forces can be calculated in
terms of X, p, f and their derivatives as follows (see 191 for a
detailed derivation).

X = p (3 4

Ut = J,, (X)- p + J,, (X)- p2
d f ' . d2f
dX d X 2

The controller inputs (e.g., voltages or currents) are related to the
applied torques/forces, so that control input constraints can also be
calculated in terms of these quantities, Le., X, p, f and their
derivatives.

Also assume that joint toque constraints are expressed in
terms of joint positions and velocities,

u E E(q,i) = E (W (4 4
and the jerk constraints in terms of positions, velocities and
accelerations,

where E : R" X R " -+ R" is an admissible input function,
F : R" XR" xR" + R is a jerk function, and K , a constant.

It is further assumed that one phase trajectory (p vs. X plot)
can be found which meets all constraints. (In practice, a trajectory
with zero velocity usually suffices.) This trajectory can then be
perturbed to find the one with the shortest traversal time. This
perturbation process is made particularly simple by the fact that
minimizing time is equivalent to maximizing velocity, Le.,

(51

subject to the torque constraints (3a), (3b), (4a) and (4b), where

X(t/)=X, is the final position. Here Lo and f f denote the initial
and final times, where t / is left free. The minimum-time trajec-
tory planning problem is tben to maximize p, 80 the phase trajec-
tory should always be pushed upward without violating the torque
constraints.

a. PERTURBATION TRAJECTORY IMPROVEMENT
ALGORITHM

In practice, a trajectory planner must deal with a variety of
arbitrary parametric curves; two representations for curves which
immediately suggest themselves are splines and simple sequences of
(interpolation) points. We choose to use the latter representation,
Le., the curve (1) is represented as an ordered sequence of points
(+) , q (k)) ; this proves to be the most naturat representation for the
application of the PTIA.

The trajectory planning process consists of assigning values of
the "velocity" p and "acceleration" p at each point. For the sake
of simplicity, consider only those constraints which can be
expressed in terms of position- and velocitydependent bounds on
the torque (as in Eq. (aa)), i.e., ignore jerk constraints for the time
being. Then all constraints can ultimately be given a8 X- and
p4ependent constraints on I;, or equivalently constraints on *

d X
;tc shown in 191. In terms of the (X,p) plot, each point is assigned a
. c n ! nf allowable slopes. In fact, having the torque constraint (4a) is
equivalent to assigning a pair of vectors to each point in the X - p
phase plane. One vector represents t h e maximum possible slope
when the system is accelerating (i.e. p is .maximized) and the other
represents the slope for deceleration(i.e. p is minimized). This pair
of vectors looks like a pair of scissors, and as the position in the
phase plane changes, the angles of both the upper and lower jaws
of the pair of scissors change. The phase trajectories must, a t
every point of the phase plane, point in a direction which lies
between the jaws of the scissors. At particular points of the phase
plane, though, the jaws of the scissors close completely, allowing
only a single value for the slope. At other points tbe S C ~ ~ S O I S may
try to go past the closed position, allowing no trajectory at all.
This phenomenon determines the admissible region of the phase
plane. Note that the boundary of the admissible region passes
through those points which have only a single vector associated
with them, corresponding to those states where only a single
acceleration value is permitted.

In the discrete approximation, having the maximum and
minimum slope sets limits on the differences between the values of
p at adjacent interpolation points. The process of trajectory plan-
ning requires that the initial and final points of the curve have zero
velocity (or some other fixed velocity) and that the velocities a t all
the intermediate points be as large as possible, consistent with the
slope constraint that the velocities at neighboring pointa not differ
too much.

One approach to the solution of this problem is to try to
push the speed higher at each individual point. The value of p can
be pushed higher a t each point in succession until none of the vel-
cities can be made any larger. If we call this Algorithm A, then we
have

Algorithm A
Al. Set all velocities to values which are realizable (usually all

A2. Push each intermediate point of the curve as high as possible

A3. If any of the velocities were changed in step A2, go back to

zeroes).

consistent with the slope constraints.

step A 2 , otherwise exit.

As a practical matter, the search required to find the highest
possible velocity in step A2 of Algorithm A may be fairly expen-
sive, especially since i t may be repeated many times for a single
point. A simpler approach is to just try adding a particular incre-
ment to each velocity, and then make the increment smaller on

413

successive passe% of the algorithm. This gives

Algorlthm A’ :
Al’. Set all velocities to values which are realizable (usually all

A2’. Set the current increment to some large value.
A3’. Push each intermediate point of the curve up by an amount

equal to the current increment, if this is consistent with the
slope constraints.

A4’. If any of the velocities were changed in step A3’, go back to
step A3’.

stop. Otherwise halve the increment and go to A3’.

zeroes).

A5’. If the current increment is smaller than the desired tolerance,

Algorithm A‘ is really just a combination of gradient and
binary search techniques. The direction in which the curve must
move (i.e. the gradient direction) is known a priori, since increasing
the velocity always decreases the traversal time, and the amount of
the change is successively halved, as in a binary search, until some
desired accuracy is achieved. Clearly, this algorithm will terminate
in a finite number of steps. Algorithm A’ is very simple, except
possibly for the slope constraint check required in step A3’. This
requires a knowledge of the dynamics and actuator characteristics
of the robot. Note that as discussed earlier inadmissible regions are
determined by the slope constraints. However, this check is a sim-
ple “go/no go” check, and can be isolated as a single function call.
(Hereafter this function will be called the conalrninf function.)
Hence the trajectory planner can be used with other robots by
changing a single, though possibly complicated, function.

Another important characteristic of the constraint function is
locality. In the case discussed above, the constraints are expressed
in terms of X, p , and * We need two points to determine the

slope 2 so the constraint depends only upon two points. There-
lore when a point of the curve has i ts p value changed, it is con-
strained only by the two adjacent points (due to the slope con-
straints); the rest of the curve has no influence. This allows much
calculation to proceed in parallel. Step A3’ of Algorithm A‘ can be
divided into two sequential steps, one which increments the odd
numbered points and one which increments the even numbered
ones.’ Since the even numbered points stay the same while the odd
numbered ones are being incremented, and vice versa, the points
either side of the incremented points remain stationary, so that the
constraint checks are valid. (If all points were tested simultane-
ously, then i t is possible, for example, to increment two adjacent
points; since in each case the constraint check would be made on
the assumption that the other point was remaining stationary, it is
possible that the new configuration would not meet the required
constraints.)

It is easily seen that the process in Algorithm A’ can be
extended to more complicated constraints. For example, constraints
on the jerk (the derivative of the torque or acceleration) only
require a more complicated constraint function, i.e., both Eqs. (4a)
and (4b). Of course in this case the constraint function needs three
points to calculate second derivatives of the speed. Thus the con-
straints on a single point will be functions of fur0 points either side
of the point being checked, rather than one point. This alfects the
degree of parallelism which can be achieved; step A3’ would require
three pasws instead of two. It also affects the convergence
properties of the algorithm, as will be seen later in the examples of
Section 5.

d X ’

d l ’

As a simple illustration of how the algorithm works, consider
a simple one-dimensional problem. Suppose we wish to move an
object of mass m from z=O to z=4. Further, suppose that there
is no friction, and that there are constant bounds on the magnitude
of the applied force. There will be only one parametric function f ,

which may be taken to be the identity function, so that X=z. We
then have

If we consider X-intervals of length 1, then the discrete approxima-
tion to the parameterized “curve” will have 5 points. The accelera-
tion p = p - can be approximated as ’ der

d X

The torque constraints then become

If we use m = 1, F,, = 2, and X,, - X, = 1 for all i , this
reduces to

I p:+1- P? I 5 4. (9)
Now consider what happens if Algorithm A is applied. We may
look at the intermediate points of the curve in sequence. First,
point 1 can be raised by 2, since the adjacent points have p values
of zero (i.e. p o = p p O) , and I 9 - 0’ I = 4. Raising &he middle
point, point 2, we are constrained by the fact that p3 = 0, which
limits p2 to 2 also. Likewise, we may change ps to 2. This com-
pletes step 2 of Algorithm A. Since some of the p values changed,
we try to increase them again. This dime only point 2 can be
raised, giving a value of p2 = 2fi . On the next pass, no p values
change, so Algorithm A terminates. It is easily verified that the
solution obtained from Algorithm A is indeed the optimal solution
to the discretized problem. (Fig. 1 shows the discretized trajectory
after passes zero, one, and two of Algorithm A.)

Now look at what happens when we use Algorithm A‘ . Say
we start with an increment of 2. Then the result of the first pass of
Algorithm A‘ is the same as the result of the first pass of Algo-
rithm A, namely p1 = p2 = ps = 2. If the increment is cut to 1,
then there is no change. Cutting the increment to 1/ 2, we may
raise the middle point to 2.5. Continuing in this fashion, the mid-
dle point gets closer and closer to 2&, the correct result. (Fig. 2
shows the trajectory alter passes zero, one, three, and four of A l p
ritbm A’ .)

4. (COMPUTATPBNAL REQUIREMENTS
The PTIA, unlike dynamic programming [IO], requires rela-

tively little memory; it requires only one floating point number per
interpolation point. However, computation of the CPU time
requirements is interesting.

Obviously, the computation time must increase at least
linearly with the number of interpolation points on the curve, that
is, the size of X intervals. In fact, the time increases as the square
of the number of interpolation points. To see why this is so, con-
sider what happens when the number of interpolation points is
doubled. Since there are twice as many points to check on each
pass of the algorithm, the computation time must increase by a
factor of two. Recalling that the (torque constraints translate into
slope constraints, it is clear that the ratio of the amount by which
a p-value may be raised to the distance between X-values will be
approximately constant. Therefore halving the spacing of the inter-
polation points halves the size of the steps which can be taken in
the p direction, thus doubling the number of steps. This factor oP
two times the factor of two which results directly from doubling
the number of points gives a factor of four increase in computation
time. If doubling the number of interpolation points quadruples the
computation time, then the time dependence is quadratic in the
number of points, i.e., 0 (N f where N x is the number of the X
intervals.

‘Thus, step A$ reqnircs two passea

414

6. NUMERICAL EXAMPLES
For comparison purposes, we will use the same example robot

considered in [lo] and [SI. This robot is the Bendix PACS arm,
which is cylindrical in configuration and is driven by fixed-field DC
motors. (We consider only the first three joints.) The dynamics
and actuator characteristics of this robot are given in 181.

First we consider only constraints on joint torques/forcea and
motor voltages, without considering constraints on their deriva-
tives. The torque and voltage constraints can be found in [SI. The
perturbation trajectory planner was written in the C programming
language, and run on a VAX-11/780 under the Unix operating sys-
tem. The planner was tried with a straight-line path, a geodesic in
“inertia space” (see [8]), and a joint interpolated path. (The
joint-interpolated path has the form q’ = q: + p (q; - q:), where
0 5 p 5 1 and q: and q; are the points at which the curve starts
and finishes.) The traversal times for these paths.are 1.79 seconds,
1.59 seconds and 1.80 seconds respectively. Plots of p vs. X, joint
positions vs. time, and motor voltage vs. time are shown in Figs. 3a
through 3c. The traversal times and the various plots are virtually
identical to the solutions obtained in [SI.

To demonstrate the application of the perturbation technique
to problems in which there are Constraints on the derivatives of the
torques, Le., jerk constraints (4b), we consider the same problem
with the additional constraint that the time derivatives of the joint
torques and forces be less than 100, i.e., K, =lo0 for all 15i I n .
The time derivatives of the torques are computed using the iden-
tity

Thr. derivative -2 was estimated by calculating the difference
+ ;.en the applied torques on successive intervals and dividing bs
the average of the lengths of the intervals. For a straight-line path
with 25 interpolation points, the traversal time is 2.04 seconds.
The p vs. X plot is shown in Fig. 4. For 50 points, the traversal
time is 2.26 seeonds; the phase plane plot is shown in Fig. 5. Note
that the trajectory has a “bump” in it; the process has not con-
verged to the proper solution. To understand why this happens,
consider the situation shown in Fig. 6. The solid line shows the
current trajectory, and the dashed lines show what happens when
either of the two interior points is raised. In either case, a jerk
limit is exceeded, even though the jerk constraint would very possi-
bly be met if 60th points were raised simultaneously. Neither point
can move before the other does, resulting in a sort of “deadlock”.
Similar situations can occur with longer sequences of points. If jerk
constraints are to be included, then obviously we must prevent this
sort of situation from occurring. One way to accomplish this is to
perform the trajectory planning operation several times with some
added constraints, relaxing the constraints each time the trajectory
is “improved”. The constraints used here were simple velocity lim-
its. On each pass, the velocity limit is raised. If the velocity incro
ment is small enough, the top of the phase trajectory remains flat,
and the regions of high inflection which cause the anomalies in the
phase trajectory never get a chance to appear. With this modifica-
tion, a velocity increment of 0.1 a t each pass gives the results plot-
ted in Figs. 7a through 7c for a straight line with 50 points. 100
points and a velocity increment of 0.025 gives the results plotted in
Fig. 8a through &. The calculated traversal times are 2.03 seconds
in both cases.

6. CONCLUSION

d u
dX

A minimum-time trajectory planning scheme has been
presented which (i) is extremely simple for actual implementation,
and (ii) allows the use of very general types of torque constraints.
This trajectory planner has been shown to give the same results as
the trajectory planner described in [9] for the paths and torque
constraints given in [SI. In addition, this scheme has been applied
to a case where there are limits on jerk as well as torque.

Since the PTIA is simple but general enough to accommodate

various realistic constraints, it has high potential use for automati-
cally generating trajectories of the growing number of industrial
robots.

REFERENCES

J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “On the
Optimal Control of Robotic Manipulators with Actuator
Constraints,’’ Proceeding8 of the 1989 Automatic Control
Conference, pp. 782-787, June lB3.

M. E. Kahn and B. Roth, “The Near-Minimum-Time Con-
trol of Open-Loop Articulated Kinematic Chains,’’ A S M E
Journal of Dmamic System, Meaaurement, and Conlro6,
pp. 164-172, September 1971.

B. K. Kim and K. G. Shin, “Minimumtime path planning
for robot arms and their dynamics,” IEEE Trana. System,
Man, and Cybernetics, vol. SMC-15, no. 2, pp. 213-223,
March/April 1985.

B. K. Kim and K. G. Shin, “Suboptimal Control of Indus-
trial Manipulators with a Weighted Minimum Time-Fuel
Criterion,” IEEE Trana. on Automatic Control, vol. AC-30,
no. 1, pp. 1-10, January 1985.

C. - S. Lin, P. - R. Chang, and J. Y. S. Luh, “Formulation
and Optimization of Cubic Polynomial Joint Trajectories
For Mechanical Manipulators,’’ IEEE Trans. on Automatic
Control, vol. AC-28, no. 12, pp. 1066-1074, December 1983.

J. Y. S. Luh and C. S. Lin, “Optimum Path Planning for
Mechanical Manipulators,” A S M E Journal of Dynamic Sya-
temu, Measurement, and Control, vol. 102, pp. 142-151,
June 1981.

J. Y. S. Luh and M. W. Walker, “Minimum-Time Along
The Path for a Mechanical Arm,” Proceedings of the IEEE
Conference on Deciaion and Control, pp. 755-759,
December 1977.

K. G. Shin and N. D. McKay, “Selection of Near
Minimum-Time Geometric Paths for Robotic Manipula-
tors,” Proceeding8 of the 1985 ACC, pp. 346-355, June
1985 (also to appear in IEEE Trona. on Automatic Control,
vol. AC-31, no. 6, June 1986).

K. G. Shin and N. D. McKay, “Minimum-Time Control of
a Robotic Manipulator with Geometric Path Constraints,”
IEEE Tranaactione o n Automatic Control, vol. AC-30, no.
6, pp. 531-541, June 1985.

K. G. Shin and N. D. McKay, “Robot Path Planning Using
Dynamic Programming,” Proceeding8 of the CDC, pp.
1629-1635, Dec. 1984 (also to appear in IEEE Trans. on
Automatic Control, vol. AC-31, no. 6, June 1986).

415

1000

0 750

0 500

0 250

Fig. 3a. Phase plane plot for straight line.

0 500 1000 -..._.. -.. -..,

-20

- 4 0 - i 1

I
Fig. 3c. Motor voltage vs. time for straight line.

Fig. 2. Results of Algorithm A

I
I

-0 750

-1.000

Fig. 3b. Joint position vs. time for straight line.

6 000

5 000

4.00c

3 00c

2 ooc

1 floc

Fig. 4. Phase plane plot for straight line, 25 interpolation
points, with jerk constraints.

416

6.000

5 000

4 000

3 000

2.000

1.000

Fig. 5. Phase plane plot for straight line, 50 interpolation
points, with jerk constraints.

Fig. 7. Phase plane plot for straight line, 50 interpolation
points, velocity increment 0.1.

0 1 2 3

Fig. 6. Illustration of "deadlock" which may occur when
jerk constraints are applied.

6.000

5 000

4 000

3 000

2 000

1.000

Fig. 8a. Phase plane plot for straight line, 100 interpolat,ion
points, velocity increment 0.025.

Fig. &.

- l o o 0 1 Fig. 8b. Position vs. time for straight line, 100 interpolation points, velocity increment o.~25.
Motor voltage vs. time for straight line, 100 interpolation

points, velocity increment 0.025.

417

