THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY!

NEW PERFORMANCE MEASURES FOR DESIGN AND
EVALUATION OF REAL-TIME MULTIPROCESSORS
Kang G. Shin and C. M. Krishna

CRL-TR-3383

NOVEMBER 1983

Room 1079, East Engineering Building
Ann Arbor, Michigan 48109 .
USA

Tel: (313) 763-8000

1This work was supported in part by National Aeronautics and Space Administration Grant No. NAG 1-196. Any
opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and
do not necessarily reflect the view of NASA.

ABSTRACT

Conventional performance measures such as throughpﬁt, reliability, and availability
are not by themselves alone suitable for analyzing and designing real-time multiproces-
sors. (The real-time system we focus on here consists of a computer controller and con-
trolled processes). Most of these measures treat the computer as a monolith in terms of
the services it delivers, thus failing to accurately describe the nature of diversified real-

time application tasks.

As a remedy for this problem, this report presents some new performance measures
based on computer{multiprocessor) controller response time that are (i) congruent to the
real-time applications, (ii) able to offer an objective comparison of rival computer sys-
tems, and (iii) experimentally measurable/determinable. These measures, unlike others,
provide the real-time multiprocessor controller with a natural link to controlled

processes.

In order to demonstrate their utility and power, these measures are first determined
for an example controlled process on the basis of two control performance functionals.
They are then used for an important real-time multiprocessor design application -- the

number-power tradeoff. Also, some potential applications of these measures are identi-

fied.

Index Terms --Performance measures, real-time multiprocessors, controllers and con-
trolled processes, response time, cost functions, dynamic failure, hard deadlines,

number-power tradeoff.

November 22, 1983

1. INTRODUCTION

Like every other medium of expression, performance measures for computers influ-
ence what is expressed almost as much as how it is expressed. Analyses of computer sys-
tems therefore depend greatly for their precision and relevance upon the performance

measures used.

In this report, we consider computer systems used in real-time control of critical
processes. A critical process is one whose failure can lead to loss of life, or other catas-
trophe. Such processes include aircraft, spacecraft, manufacturing processes, and power
generation and distribution. They cover a wide spectrum, but have the following in com-
mon: in all of them computers are used in control, in all of them the job load of the con-
trol computer is precisely characterized, the éharacteristics of the operating environment
are known a priori, performance criteria for the controlled processes are well-defined,
their complexity is growing rapidly, and some of these processes are likely to be so com-
plex in the near future that manual over-ride of the controlling computer is likely to be
of no use: no human operator could possibly react quickly enough to Stimuli from the
controlled process. Nowhere is this more true than in the aerospace field, where the drive
for improved fuel efficiency is expected by the beginning of the next century to lead to
civilian aircraft which are intrinsically unstable, and which require "active controls” to

keep them from crashing.

The requirements such applications impose upon the computer are stringent. They
must be extremely robust, and capable of low response times. Sinée it is their perfor-
mance within the context of the environmental demands that is crucial, the characteris-
tics of the operating environment must be incorporated into any model of computer

behavior. To express the capabilities of a real-time computer in such a context, perfor-

November 22, 1983

mance measures must quantify such characteristics as graceful degradation, throughput,

reliability, availability, and the operating environment, in the form of a unified metric.

Performance measures that at least partially meet these requirements have been
suggested by the following z’mthors. Beaudry [1] considers measures emanating from the
volume of computation from a computer éystem over a given period of operation. Mine
and Hatayama [2] consider job-related reliability, by which they mean the probability
that the system will successfully complete a certain job. Huslende [3] attempts to be as
general as possible, and presents what amounts to a re-statement of Markov modeling
with traditional measures. Chou and Abraham [4] present performance-availability
models, Castillo and Sieworek [5,6] performance-reliability models. Osaki and Nishio 7]
consider the "reliability of information”, by which they mean the expected percentage of

wrong outputs per unit time in steady state.

All these measures consider the computer system in isolation, i.e. without explicit
regard to the requirements of the operating environment. For this reason, they are quite

unsuitable for use in assessing real-time control computers.

Among all existing performance measures, Meyer's performability [8] seems to meet,
though in an abstract form, the real-time requirements discussed above. His measure
explicitly links the application with the computer by listing "accomplishment levels”,
which are expressions of how well the computer has performed within the context of the
application. His work focuses on the development of a framework for modeling and per-
formance evaluation, rather than on a method for deriving the performance measures
themselves. No guidelines are given for appropriately specifying the accomplishment lev-
els: what is provided is a set of mathematical tools for their computation, once they have

been defined. Some recent work by Meyer [9] continues this trend, developing the theory

November 22, 1983

of stochastic Petri nets.

By contrast we focus, in this report, on presenting a methodology for objectively
characterizing real-time computer performance. If one wished to translate our work into
the terms of Meyer's performability, we show how to derive a set of uncountably many
accomplishment levels that are completely objective and capable of definitive estimation

and/or measurement. It is this that makes our work complementary to that of Meyer.

This report is organized as follows. In Section 2, we introduce our performance
measures. Then, these measures are derived for example systems, thereby showing the
link they form between a controlled process and its controlling computer. In Section 3,
we trade the number of processors against their individual power. This is used as a vehi-
cle to describe an application of these measures. Further applications are suggested in

Section 4, with which this report concludes.
2. THE PERFORMANCE MEASURES

2.1. Terminology and Notation

A real-time computer executes pre-defined control jobs repeatedly, upon environ-
mental or other stimuli. System response time is defined as the time between
initiation/triggering of a control job and the actuator and/or display output that results.
This quantity is the sum of controller response time and actuation time. Environmental
or other occurrences trigger the tasks, a unique version being created as a result. This is
said to be an eztant versson as long as it continues to execute in the system. Versions of
task 1 are denoted by V,, which represents the j-th execution of task 5. Denote the
response time of a no-longer-extant version V; by RESP(V;;). The response time of an

extant version is undefined. The eztant time of a version V; triggered at time r; when

November 22, 1983

the

system is in state n; is given by E(V;,7;,n,,t) = min(t-r;, RESPA(V)).!
A controller task is said to be critical if it has an associated hard deadline [10],

which if exceeded by any of its versions, results in catastrophic or dynamic failure. Hard

deadlines do not exist for non-crstical tasks.

Ordinarily, repair to the real-time computer is not allowed while the computer is in
operation. In this connection, we define the mission lifetime as the duration of operation
between successive stages of service. We let the mission lifetime be a random variable
with probability distribution function I{t). At the beginning of a mission (i.e. immedi-

ately after service), a system is assumed to be free of faults.

2.2. Definition of the Performance Measures

Our performance measures are all based on the extant and response times. For crit-
ical tasks s, with hard deadlines t ;, the cost function is defined by:

{9.(5) if 0 <E< ¢ty

o 1
CB) =0 ifE >ty (1)

where g, is called the finite cost function of task 4, and is only defined in the interval

[0, t4], and we omit for notational convenience the arguments of Z, extant time.

For non-critical tasks, the same definition for the cost function can be used, with

the associated hard deadline set at infinity.

Let g(t) denote the number of times task ¢ is initiated in the interval [0,¢). Then,

the cumulative cost function for the task ¢ is defined as

! This does NOT imply that no state changes occur during the course of a task execution. RESP(V,-’-)
is an implicit function of n.

November 22, 1983

a{1)
F,(t) = E] 01(5(Vijrrijy"ij’ t)) (2)
=

and the system cost function is defined as

r
)= BTy 3
. =1
where r is the number of tasks in the system. Both I'; and § are clearly defective random

variables. Our performance measures are then given by:

Cost Indez, K(x) = 0!:')Prob{ﬂt)S)(}db(t) 4)
Probability of dynamic failure, pyy, = zProb{S(t)=oo}db(t) (5)
Mean Cost, M = ofoE {St) | no hard deadlines are missed}dL(t) (6)
0
Variance Cost, V= ?Var {St) | no hard deadlines are missed} dL{t) (7)
0

where E{e|e} and Var{e|e} represent conditional expectation and variance, respectively.
The prébability of dynamic failure subsumes the traditional probability of failure (called
here for distinction the probability of static failure) since thé latter can be viewed as the
probability that the expected system response time is infinity. Clearly, in the case of

non-critical tasks, the probabilities of static and of dynamic failure are equal.

The following auxiliary measures are useful when one focuses on the contribution to

the cost of individual tasks.

[e ¢}

| Cost Indez for Task 1, K(x) = fProb{I‘,(t)Sx}dL{t) (4a)
0

November 22, 1983

o0

Mean Cost for task i, M, = fE {T(t) | no hard deadlines are missed} dL(t) (5a)
0

o0
Variance Cost for task s, V;= fVar {T() | no hard deadlines are missed}dL(t) (7a)
0

The computation of these measures can sometimes be complicated by the fact that the

mission might end while one or more versions are still extant. In most instances, how-

ever, the mission lifetimes are very much longer than individual task execution times?
and the number of times tasks are executed to completion before the mission ends is also
very large. For this reason, it is usually an acceptable approximation to compute the
costs assuming that all jobs that enter the system during the mission complete executing

before the mission ends (as long as they do not miss any hard deadlines).

In what follows, we consider how to determine these performance measures, begin-

ning with the determination of the hard deadline.

2.3. Obtaining the Hard Deadline

The dynamics and the nature of the operating environment of the critical process
are both known a priori. This follows from the critical nature of the process -- for exam-
ple, the dynamics and operating environment of aircraft have both been studied care-

fully -- and advances in the theory and design of controlled processes.

The process can most conveniently be expressed by a state-space’ model. Let xER"

denote the process state, u€R™ the input vector, and ¢ the time. The input vector is

made up of two sub-vectors, u,€R™ and u,€R™. u, denotes the input delivered at the

2Por example, it could be several hours for aircraft and several days or even months for spacecraft.

3The term ”state” here has the control-theoretic meaning, and is not the same as the one frequently
used in computer performance analysis.

November 22, 1983

command of the computer, and u, the input generated and then applied by the operat-
ing environment. Also, let yERP? denote the measurement or output vector. Then, the

control system can be represented by a pair of vector equations; a state vector equation,

x(t) = £ (x(t),u(),¢) (8)

and an output equation,

y(¢) = n (x(8),u(¢),?) (9)

Catastrophic failure can follow if the process leaves the "safe” region of the state space.
For example, a boiler may explode if its temperature becomes too high. This is formally
expressed by defining an allowed state space, X (t), which defines the "safe” region of

operation.

The té,sk of the controller or real-time computer is to derive the optimal control,
u(t), as a function of the perceived process state. Since the response time, denoted by
w, is positive, we have u(t) = h(x(tw),u (t-w),t) where h expresses the control algo-
rithm for the task in question. Then, the hard deadline associated with this task is
given by the maximum value of w that may be permitted if the process is to remain in
X, with probability one. The hard deadline, defined in this general way, is a function
both of the process state at the moment of task initiation, and of time. It is a random
variable if the environment is stochastic. Consider the following example to see how the

hard deadline can be determined.

Example 1: A body of mass m is constrained to move in one dimension. Its state-
vector consists of three components: position (z,), velocity (z,), and acceleration (z;). The
allowed state-space is defined by X,={x| |z|<b, z,<00, 2;< 00} where b6>0 is a con-

stant. The body is subject to impact from either direction with equal probability. Each

November 22, 1983

impact changes the velocity of the body by k>0 units, in the appropriate direction. The
change of velocity takes place in a negligible duration. The body has devices that can
exert thrust of magnitude H in either direction. This thrust is imposed only after the
controller has recognized an impact and has determined how to react to it. It takes a
negligible amount of time to switch the thrust on or off in either direction. The
controller’s job is to bring the body to x==0. The controller operates in open-loop; when
it recognizes an impact, it computes the thrusts as a function of time, following which
the control response is assumed to be instantaneous. The problem now is to compute

the hard deadline associated with this task.

The hard deadline is only a function of the state and X,. In computing it, we do
not need to take into account the possibility of a second impact before the controller has
finished responding to the first, since the state of the process contains all necessary infor-

mation.

The allowed state space is static and simply connected, so that if when the body is
brought to rest for the first time following the impact it is in X, it must have been
within X, throughout the period following the impact, assuming only that it was within
X, at the moment of impact. Therefore, we have only to compute the position of the
body when it first comes to rest (after the impact) as a function of the response time, £,
and set the hard deadline equal to the largest £ for which the body comes to rest within
X, Let the initial state of the body be xJ=[z;, 2,;, 7). Since the impact duration and
the switch-off or on time for the thrust are assumed to be zero, we can always take

23/~=0. Define

t = ' "g[z?f*'kl l: t, = l '%n{[z?l*k] I

10

November 22, 1983

By an elementary derivation, we arrive at the following.

Case 1, 2p;<-k:

HE HE
t; (x,)=min b+ zy; + (mith)ty + om b+ 2, + (k) + o

~(z2i + k) ’ k- z;

For future convenience, denote the right hand side of the above by),

Case 2, |25 <k:
b k)t HY b k Ht
t{x,)=min} ° i~ (22Hk)t + T + 5y + (2K, + om
Zo + k ’ k- Ty
Denote the right hand side of the above equation by),
Case 3, 2,,>k:
HE HE
t{x,)=mi bz (zmpt k)t + om b- 2~ (ni-K)t; + om

i+ k n- k

Denote the right hand side of the above equation by #°).

(10)

(11)

(12)

If the velocity imparted to the body upon an impact is not constant at k, but is a

random variable (which would be more realistic) the magnitude of which has probability

distribution function Fj,,,., then the hard deadline will be a random variable, whose

distribution Fyis a function of the state at the moment of impact. The following can be

written down by inspection:

Case 1, 2,; < 0:

11

November 22, 1983

{,(2) with probability Vg, 0co (]224]) (13)
ty (x) = £1) with probability 1 - Fipppe ”“2"‘)

Case 2, 2,,>0:

(2) with probability 1 — Fippaet (122]) 14
ty (x,~)={t(a) with probability Fipooct (1221) "

We could similarly treat the case when the allowed state-space is stochastic.

The above example is meant only to illustrate the hard deadlines and should not
lull the reader into a false sense of security. Obtaining closed-form expressions for the
deadlines of any but the most trivial systems and static allowed space is usually
extremely difficult, if not impossible. For ‘example, if we relax the assumption that the
controller acts in open-loop, the equations of motion become too difficult to solve exactly

in closed form.

It is generally necessary to resort to numerical methods to obtain deadlines for
real-life systems. Since most of the state-spaces one uses in practice have uncountably
many points, we must define hard deadlines as functions of sets of states, not of the
states themselves if the entire allowed state-space is to be covered. Subdividing the
state-space into these subsets while keeping errors low is not always easy. For an exam-
ple of subdivision where the application is the control of aircraft elevator deflections, see
[11].

A further remark is in order here. The hard deadlines are not dependent upon the
performance functional (time, energy, etc.) that the controller is attempting to optimize,
since the paramount duty of the controller is to keep the system within the allowed

state-space, and only secondarily to optimize the performance functional.

12

November 22, 1983

2.4. Obtaining the Finite Cost Functions

Performance functionals have been known for a long time in control theory as
optimization criteria and measures of controlled process performance. We exploit this
fact to derive the control-computer cost functions, by linking directly the performance of

the controller to the value of the controlled process performance functional that results.

Performance functionals in control theory are functionals of system state and input
and express the cost of running the process over some interval [t, t,]. The performance

functionals can be stated as:

9("0: tO’ t/) = _’;:/E [fo (x(t)r u(t): X, t) l y(r), to S T< t]dt (15)

where x(t,) = x,, and f; is the instantaneous performance functional at time ¢. Since the
controller response time affects the state trajectory of the controlled process, it affects
the performance functional as well. If we use the expected contribution to the perfor-
mance functional, ©(x,, fy, ¢), of the control delivered as a result of executing task ¢

with response time £, we can derive the finite cost function as:

Q(x,8) - (x,0) for 0 < € < ¢y

9{(x,€) ={ 0 (18)

otherwsse

where ()(x,£) denotes the contribution to ©(xy, &, t;) of a task with response time §, and
initiated when the process state was x. By doing so, we can directly couple the response

time of the controller to the fuel, energy, or other commodity by the controlled process.

Notice that while we use response time to compute the cost function, the finite
costs were originally defined as functions of the extant time. The latter is the case since
we wish costs to accrue as the execution proceeds, so that the system cost function is

continuous. This ensures if two systems are compared under an identical load with the

13

November 22, 1983

first faster than the second with regard to a particular task, that the faster system will
never exhibit a mean cost greater than the slower system as long as both have approxi-

mately the same probability of dynamic failure.

" The possibility of correlation of successive tasks can complicate calculations consid-
erably. To see this, take the system in the example above. If a second impact comes in
before the system haé finished reacting to the first, then, the energy or time to be
expended will not, in general, be the sum of the energies or the times that would have to
be expended if the second impact had arrived after the system had finished reacting to
the first (i.e. had arrived at x=0). Assuming that successive tasks are decoupled leads
to a certain ﬁeasure of "double-counting” of the energy or time spent. The same remark

would apply to fuel, force, or any other performance functional used for the controlled

process.

Due to this double-counting, assuming that successive tasks are decoupled leads to
an upper bound to the energy, time, or other quantity expended. If we find an upper
bound acceptable, we can simplify our computations greatly. If exact figures are called
for, a detailed and complicated model has to be worked out in which each instance of
inter-task coupling is itemized and its probability of occurrence computed. Whether or

not this is worth the effort depends entirely on the requirements of the analysis.

There is also an irritating anomaly. Since the mean costs are defined by an expecta-
tion that is conditioned on not failing in the mission lifetiﬁle, it is possible to construct
pathological examples where a system with a probability of dynamic failure of, say, 0.5
over a given lifetime, will exhibit a lower mean cost over that lifetime than another that
has a pg,, of 1071% we shall see examples of them in Section 3. Such cases are, however,

generally no more than an academic curiosity.

14

November 22, 1983

Example 2: Consider again the controlled process described in Example 1. This time,

we set out to compute the finite cost function associated with the task under review.

As before, assume that the state of the body at the moment of impact is given by
xT=|z,,2,;,2;]. We make the assumption that a function that provides an upper bound
of the cost expended is sufficient so that it is not necessary to consider the correlative
effect of successive jobs. We provide cost functions relating to two different cbntrol poli-
cies.

Case A: Assume that the duty of the controller is to bring the body back to x=0
within as short a time period as possible. (Note that x=0 means that all three com-
ponents -- position, velocity, and acceleration -- are zero). The cost function is the time
taken. This is the well-known minimum-time problem in optimal control theory [13]. If,
after thg impact, the body is moving away from z,=0, it must be stopped, and brought
back using bang-bang control. If it is moving toward z,==0, depending on the velocity
after impact and the response time -of ‘the controller, the body is either first accelerated
toward z;=0 and then decelerated, or first brought to a stop on the other side of z;=0
and then brought back to thé origin using bang-bang control. The derivation of the
time taken is elementary, if tedious, and is excluded. See the Appendix for expressions
of the finite cost function under such a control policy. The case when the velocity
imparted upon impact is not constant, but a random variable, can be handled as in
Example 1.

Case B: Suppose the controller is to minimize the energy expended while, after every
impact, keeping the body within the allowed state-space. Then, the control policy is
simply to bring the system to rest anywhere inside X,, and the cost function is in terms

of energy. If the controller computer responds to an impact within the hard deadline, it

15

November 22, 1983

can by definition, keep the system from failing. As may easily be verified, the energy
expended in doing this is the energy required to bring the body to rest, which is equal to
the energy of the body immediately after impact. Therefore, as long as the allowed
state-space is not violated, the energy expended will remain the same no matter what
the response time (assuming that the response time is within the hard deadlines derived
in the preceding section). So, the finite cost function over the entire allowed state-space
is here identically zero, which signifies that, as long as the hard deadlines are honored, it
makes no difference to the overhead under this control policy, as to what the response

time may be.

This example has served to emphasize the intimate relation between control policy
and controller (finite) cost function. The same system, with the same constraints on the
allowed state-space, has different cost functions based on what the duty of the controller

is. It reflects our goal of having the cost functions express the control overhead in the

contezt of the application.

Once again, it should be noted that the simplicity of the above expository examples
does not usually exist in real-life systems. Real-life analyses are much m‘ore difficult, and
the same comments as applied to py,, above apply to the mean cost, too. There is also
one additional complication. The controller is to optimize the performance functional
subject to the condition that the system must not leave the allowed state-space, if this is
at all possible. Such a difﬁcult& did not arise in this simple example, but it can some-
times prove difficult to design optimal control policies under this requirement. This,

however, is a problem for the designer of the controlled process, not of the controlling

computer.

16

November 22, 1983

Also, see [11] for a computation of the cost function in a realistic case.

2.6. Remark on Finite Cost Functions

It is not necessary that the process performance functional that is used to derive
the cost function (e.g. energy, fuel, time, etc.) be the same as the process performance
fu.nctional that the system is trying to optimize. For example, the system may be given
the task of optimizing fuel, and the cost function may be measuring the extra energy
consumed as a result of controller delay. However care should be taken to ensure that
the two functionals (the one used to optimize the procesé, and the one used to express
the cost with) do not conflict. For the functionals not to conflict, the optiq,lal control
actions (i.e. the controller decisions) taken on the basis of ‘one functional should be ident-
ical to the optimal control actions that would have been taken on the basis of the other.
For> example, if the fuel consumed were linearly relgted to the energy expended, the cost
function could be expressed in terms of energy, while the controller was trying to minim-

ize the fuel used.

To see why conflicts must not be allowed, assume in the system of the above exam-
ple, that the job of the controller is to minimize the time taken in bringing the body
back to the origin, while the cost function is in terms of energy. Take the instance in
which the speed of the body after the impact is a slow motion toward z,==0. The con-
troller should in such a case apply full thrust throughout the motion, first speeding the
body up toward z=0, and then slowing it down to reach x=0 in minimum time. How-
ever, since the cost function is in terms of energy, not time, it is easy to see that the
shorter the time period over which the controller exerts thrust, the smaller is the value

of the cost measured. Thus, over a certain range of states, the cost function would actu-

17

November 22, 1983

ally decrease with an increase in response time. This is not only counter-intuitive, but
also results in inefficient operation. Task priorities, scheduling policies, etc., for the con-
trol computer are meant to be derived to optimize the mean cost as expressed by the
cost functions. If inconsistencies such as the above arise, the operating system of the
controller would tend to oppose the goals inherent in its own applications software,

resulting in an unsatisfactory overall computer-controlled system.

In what follows, we consider how to apply our performance measures to the design

of real-time multiprocessors.

3. THE NUMBER-POWER TRADEOFF AND ITS APPLICATION

TO COMPUTER DESIGN

The number-power tradeoff problem can be stated as follows [12]. It appears intui-
tively obvious if there are no device failures, that a system with a single processor with
mean service time (exponentially distributed) of 1/p is. more efficient than an N--
processor (N>1) system with each processor providing exponential service at raté p/N.
When failure is allowed for in the model, the above assertion is no longer obvious, and
may not even be true in specific instances. So, we ask the question, "Given that the
total processing power (number of processors X service rate per processor, called here
the number-power product) is fixed at p, what is the optimal number, N, of processors,
that the system should start out with for a specific mission lifetime?” We extend an

adaptation of this problem to demonstrate the use of our performance measures to real-

time computers.

Two observations are in order here. Firstly, we tacitly assume that processors with
any prescribed power are available. This is not true, although a wide variety of proces-

sors is available. Secondly, such a tradeoff depends for its resolution upon the cost

18

November 22, 1983

functions and hard deadlines introduced above. It is this second point we pursue here.
Specifically, we set out to determine for an example control computer, the configurations
that meet specifications of reliability, and the sensitivity of reliability and the mean cost,
to changes in the number-power product under different operating conditions of hard
deadline and mission lifetime. Implicit in all this will be the tradeoff between device

redundancy and device speed.

3.1. System Description and Analysis

We use the multiprocessor system in Figure 1 to demonstrate the idea. Assume that
there is a single job class that enters the system as a Poisson process with rate \, and
which requires an exponentially distributed amount of service with mean 1/u. Then the
system at any given time is an M/M/c queue (if the small dispatch time is ignored),
where ¢ is the number of processors functioning at that time. The distribution function

for the response time for an M/M/c queue is well known [14]. It is given by:

D = o+ pWOH1 -) + p{L - WAO{1 - el
A-(c-1)p

Fypm. (f) = (17)

where W,(0) is the probability that, when there are ¢ processors functional, at least one

functional processor is free. This is given by:

=118 300 30)| &

This distribution function is not defined unless cu > \.

Assume that the hard deadline has a probability distribution function F, and that
the finite cost function for the task is denoted by g (as in Eq. (16)). Let the processors

fail according to an exponential law with rate p,. Also, let n be the smallest integer for

19

November 22, 1983

which np>\ -- clearly, if there are fewer than n processors functioning, the utilization

exceeds unity, and failure takes place with certainty.

The system fails if a hard deadline is violated, or if there are fewer than n proces-

sors functioning.* When the system is in a state 1>n, the rate at which failure can hap-
pen is equal to the product of the task input rate and the probability that the response
time of the system exceeds the hard deadline. If we assume that steady state is achieved
between each state transition (i.e. between processor failures), then the probability distri-
bution function of the response time at state i is always given by Fjq. Such an
assumption is valid, since the Mean Time Between Failures for components used in such
systems typically ranges from 1,000 to 10,000 hours. The probability of dynamic failure
can therefore be computed using the Markov model in Figure 2. Denoting the probabil-
ity of being in state ¢ by m;, the quantity A1 — Fypy ()] by a(j,t), the failure state by fasl

and the number of processors at start-up by N, the following balance equations can be

written
) = ~[Np, + f (N,E) dFLE) IrMt), mp(0)=1 (19a)
l(t) = —[‘”p+f dFA&)]”t(t) (i+l)"p7ri+l(t)a ".0(0)=01 for n$i<c (lgb)
"/a'l E {f 76) dFa(f)}ﬂ'l(t) + ”I‘p’rn(t)’ T fail (0)=0' (190)

Clearly, pgy (t) = 77 (2) so that a solution of the above equations yields the probability
of dynamic failure. Implicit in these calculations is the assumption that the hard dead-

line is very much smaller than the mission lifetime or the sojourn time in the various

4 We do not consider here the failure of the interconnection net, or of the dispatcher. Taking account
of these is easy, but would obscure the analysis somewhat.

20

November 22, 1983

states. This is invariably the case in practice.

To compute the mean finite cost over the mission lifetime, we first have to evaluate
the distribution function of the response time, conditioned on the event that no hard
deadline is violated. This distribution function for a ¢-processor system, denoted by

Flimite is given by:

ini ® Fau {€)

RO = [T dFa(7) 20

MM J;’ Fry {7) (20)
where the function is only defined for arguments less than the associated hard deadline.

Then, the mean cost is defined by:
N oo oo € it
M= 5[[[xrd0) olr) dFiss () dPde) dio (21)
c=n

The above expressions are used in the following section to obtain values for the probabil-

ity of dynamic failure, and the mean cost as a function of the mission lifetime.

3.2. Numerical Results and Discussion

In what follows, it is assumed that the job arrival rate, A=100, and that the pro-

cessor failure rate is up==10". All time units are in hours.

Figure 3 is the probability of dynamic failure when the task is non-critical, i.e. the
deadline is at infinity. In such cases, the probability of dynamic failure reduces to being
the probability of static faslure, namely the probability of failure of hardware com-
ponents to the point when the system utilization exceeds 100 9. This is because catas-
trophic failure does not occur in this case until the system is overloaded. This explains

the monotonic nature of the plot.

Figure 4 shows the probability of dynamic failure when the task is critical with the

deadlines for the respective curves noted in the figure. The number-power product is

21

November 22, 1983

2200. The curves that result for the failure plot form an inverted bell. The portions of
the failure curve where the slope is positive can be explained as follows. When the
number of processors increases, the response time distribution is skewed to the right.
This in turn increases the probability of failing to meet the hard deadline to a greater
extent than the static failure probability is reduced by the addition of further redun-
dancy. The positive slope is the result of this tendency. When the hard deadline is
smaller, the premium on speed is increased, and as a result, the trough of the curves

moves to the left.

In the region corresponding to the fewest processors, there tends to be a tradeoff
between dynamic failure probability and the number of processors, leading to a negative
slope for the failure curves. When there are few processors, the fault-tolerance is less and
the probability of static failure is therefore gréater. Since the total processing power of
the processor set is fixed, the few processors each have greater power, and the mean
waiting time is low. This accounts for the very small nafure of the non-static component
of the failure probability. As the speeds of the individual processors are decreased, but
their numbers increased commensurately, the static failure probability drops, but the
probability of missing the hard deadline increases. In the area of the curve where the
slope of the probability of failure is negative, the benefits accrued from adding redun-
dancy outweigh the negative impact of the lowered individual speeds that result; else-
where the reverse is the case. Notice that the curve corresponding to a deadline of 0.01

has no region of negative slope. This means that 2200 is a number-power product that is

too small with respect to that hard deadline.

In Figure 5, the dependence of the probability of dynamic failure on the number-

power product for a mission lifetime of 10 hours is considered. Each point on the curves

22

November 22, 1983

represents the configuration yielding the lowest possible failure probability for the
number-power product represented. The label of each point on this plot is the number of
processors in the configuration for which this lowest failure probability is achieved. As
the product increases, the o;;timal configuration tends to contain more processors: this
also is due to the lowering of the non-static component of the dynamic failure probabil-

ity when the product is increased.

Naturally, the curves are monotonically non-increasing. They serve to show the
marginal gain in maximum achievable reliability that is to be had on increasing the
number-power product at each point for the class of systems under consideration.
Notice the "elbows” in the plot. These occur when the minimum failure probability con-
figuration changes, and are the result of a tradeoff between the static and non-static
components of the failure probability. The py,, drops exponehtially with an increase in
the product as long as the static component is a small fraction of pyy,. When the non-
static compbnent drops to sufficiently below the static component value, the optimal
configuration changes, and the static component once'a.gain becomes negligible compared
to the non-static component. This race continues indefinitely and is portrayed in Figure
6. The discrete nature of the processors causes the elbows: if the number of processors

were a continuous quantity, they would not appear.

The probability of dynamic failure is used as a pass-fail test for control computers.
Plots such as Figure 5 can be used in this connection. As an example, let the mission
lifetime be 10 hours, and the specified probability of dynamic failure equal to 1077 over
that period. Let the system parameters be those of the model in this section. Then,
corresponding to each of the four deadlines considered, we can obtain graphically from

Figure 5, the minimum number-power product that is required to satisfy the pg,, specifi-

23

November 22, 1983

cations. These products are listed in Table 1. Any system that has a smaller product

than this must be rejected, no matter what its other credentials may be.

When this stage of the evaluation is complete, one has a set of acceptable confi-
gurations. Only after this point does the mean cost come into consideration. The mean
costs associated with each of the points in Figure 5 is graphed in Figure 7, where the fin-
ite cost function, g, has been taken as equal to the response time for demonstrative pur-
pose. The curves take the form of a sawtooth wave, with each upward transition occur-
ring when the optimal configuration increases by one. Clearly, the greater the power of

each processor, the smaller is the mean cost.

In Figure 8 (A, B, and C), we show the effects on py,, of changing mission lifetime
for various values of the hard deadline, t; In the light of the preceding discussion, these
plots should be largely self-explanatory. It is worth pointing out, however, that as the
lifetime. increases, the optimal configuration contains a larger number of processors. The
trough (around the optimal point) becomes shallower as one increases the mission life-
time, until finally, it disappears to be replaced by a shallow trough one unit to the right.
As the lifetime increases still further, the new trough deepens, then begins to become
shallow. Whether or not the cycle continues depends upon the hard deadline: it will con-
tinue so long as the number-power product is sufficiently large to cope with the hard
deadline at the lifetimes used; the plot will rise monotonically to a failure probability of

one if this is not the case (cf. Figure 3).

In Figure 9 (A, B, and C), we show the associated Mean Costs per unit time of
operation using the same cost function as was used in Figure 7. In all three curves, we
may note the anomaly mentioned in Section 2: as the lifetime increases, and as the

number of processors increases, there is a region over which the mean costs per hour

24

November 22, 1983

actually drop. It is most pronounced in Figure 9A, where the probability of dynamic
failure is close to unity under almost all configurations. This anomaly, of course, is due
to the fact that the mean costs are computed on a response-time distribution that is con-
ditioned on the system’s not failing. Thus, on comparing Figures 9A, 9B, and 9C, we
see that the system operating in the longest hard deadline, and therefore having greater
reliability exhibits a higher mean cost per hour in some configurations than its identical
counterparts that operate under more difficult conditions. If this causes undue irrita-
tion, the anomaly can be made to vanish by redefining the finite cost function for a task

1 to be:

gt(t) if ¢ S td
Y ={g,(t,,) it ¢> ¢ 22)

introducing the following functions:

al?)

as(t) = Elgl(E(V.;,T.',',n.-,-,t)) (23)
’:“.—

A= £y (24)
=

and defining the mean and variance costs to be:

Mean Approzimate Cost (MAC) = ?E{ﬂ(t)} dI[¢) (25)
0
Variance Approzimate Cost (VAC) = fVar{ﬂ(t)} dIf¢t) (26)
0

It is easy to see that MAC>Mean Cost always, and that the approximate costs
approach the accurate costs when the probability of dynamic failure is small. Indeed, the
anomaly does not appear until the probability of dynamic failure is significant. Since the

applications under consideration are all critical processes, py,, is always small for the

25

November 22, 1983

accepted configurations, and the configurations that exhibit this anomaly will be rejected

by the py,, pass-fail test, and their mean costs need never be computed.

3.3. Extension

The number-power tradeoff can easily be extended to make it very useful in the
process of design. The reader will have noticed that in the cost functions with which we
measure the goodness of controller performance, no account is taken of controller
hardware cost. All that the cost functions express is the control overhead incurred in
actually running the process. Indeed, we may regard the mean costs as average operating
overheads. It is not easy directly to incorporate the hardware cost into the cost functions
themselves. Instead, one may consider the set of hardware configurations available for a
particular hardware cost outlay. Then, constant-cost plots can be drawn, showing the
range of performance (in terms of probability of dynamic failure and average operating
costs) that is available for any particular hardware cost outlay. From similar curves, one
may arrive at the minimum finite average operating cost associated with a particular

hardware cost given that specifications for the probability of dynamic failure are met.

This approach can easily be illustrated with the number-power tradeoff considered
here. When the hardware cost of a processor is proportional to its processing speed, the
curves in Figure 4 become dynamic failure curves for a particular hardware cost. Curves
such as Figure 8 can be used to identify the configurations that meet requirements for
the probability of dynamic failure for given mission lifetimes, and the sensitivity of Payn

to changes in mission lifetime.

Also, one can study any other tradeoffs that may exist between the hardware cost

or the number-power product and the minimum mean cost per lifetime associated with

26

November 22, 1983

such a cost or product,

The computer studied here is simple; however, it can be extended in some useful
directions relatively easily. It is easy to take care of the case when the hardware cost or
the finite cost function is a more complicated function of the processing speed. More
complicated multiprocessors require a more involved analysis, but the basic ideas should

now be clear.

4. CONCLUSION

In this report, we have proposed performance measures for computers used in the
control of critical processes. The principal differences between our measures and those of

others are summarized in Table 2.

Studying the behavior of the controlled system as a function of the computer
response time provides a means for the effective design of computer controllers in the
context of controlled processes. As we saw in the examples in Section 2, this includes
such things as control policy. This means that while the cost function is defined expli-
citly in terms of the controller response time, ail facets of the controlled process are

implicitly included in the calculations.

Due to the objectivity of the cost functions, they can be used with some confidence
for the design of real-time control computers (architecture and operating system design)
as optimization criteria. The probability of dynamic failure is to be used as a pass-fail
criterion with comparison of rival systems on the basis of the mean cost limited to sys-
tems exhibiting an acceptably low probability of dynamic failure. The inclusion of

hardware or life-cycle costs into the analysis is also possible, as indicated in Section 3.3.

27

November 22, 1983

In addition to the applications treated in Scction 3, the cost functions arc useful as

criterion functions in the following areas:

(1) Optimal placement of checkpoints for backward error recovery.
(2) Optimal task allocation and reallocation strategies.

(3) Optimal control of queues at shared resources.

(4) Optimal routing policies at interconnection networks.

(5) Measuring sensitivity of reliability and operating overhead on the redundancy and

bandwidth of the interconnection links.
(6) Optimal event-handling and time scheduling.

The design procedures used at present for control computers are ad-hoc, principally
because of the lack of adequately objective means for the characterization of controller
performance. The expression, through a scalar metric, of the performyance of the con-
troller in the context of the process it is controlling, is important in making the con-
troller design and evaluation process systematic. All facets of the controller-controlled
process relationship are taken into account in the performance measures here presented:
while the measures are explicitly functions of the response time of the controller, they
are implicitly functions of the characteristics of the controlled process. It is this fusion of
controller and controlled process characteristics that is novel, and that distinguishes the
work presepted in this report from those of others. The chief utility of these measures is

also derived from this accounting of the synergistic coupling between controller and con-

trolled process.

ACKNOWLEDGMENT

The authors are grateful to Yann-Hang Lee, Ricky W. Bulter, Milton Holt, and the

28

November 22, 1983

anonymous referees for their constructive comments on the material presented in this

report,

November 22, 1983

References

1]

(2]

(8]

[4]

[6]

(6]

[7]

[8]

[9]

[10]

[11]

M. D. Beaudry, "Performance-Related Reliability Measures for Computing
Sustems,” IEEE Trans. Comput., Vol. C-27, No. 8, pp. 540-547, June 1978.

H. Mine and K. Hatayama, "Performance Evaluation of a Fault-Tolerant Com-
puting System,” Proc. 1979 Int’l Symp. Fault-Tolerant Comput., Madison, WI
pp. 59-62, June 1979.

)

R. Huslende, "A Combined Evaluation of Performance and Reliability for
Degradable Systems,” Proc. SIGMETRICS Conf. on Meas. and Model. of
Comp. Sys., pp. 157 - 164, September 1981.

T. C. K. Chou and J. A. Abraham, "Performance/Availability Model of Shared
Resource Multiprocessors,” IEEE Trans. Reliability, Vol. R-29, No. 1, pp. 70-76,
April 1980.

X. Castillo and D. P. Sieworek, "A Performance Reliability Model for Comput-
ing Systems,” Proc. 1980 Int'l Symp. Fault-Tolerant Comput., pp. 187-192,
October 1980.

X. Castillo and D. P. Sieworek, "Workload, Performance, and Reliability of
Digital Computing Systems,” Proc. 1981 Int’l Symp. Fault-Tolerant Comput.,
pp. 84-89, June 1981.

S. Osaki and T. Nishio, Reliability Evaluation of Some Fault-Tolernat Computer

Architectures,” Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1980.

J. F. Meyer, "On Evaluating the Performability of Degrading Computer Sys-
tems,” IEEE Trans. Comput., Vol. C-29, No. 6, pp. 501-509, June 1980.

J. F. Meyer, ”Performability Modelling of Distributed Real-Time Systems,” Int’l
Workshop on Applied Mathematics and Performance/Reliability Models of
Computer/ Communications Systems, University of Pisa, Pisa, Italy, pp. 345-
356, September 1983.

G. K. Manacher, "Production and Stabilization of Real-Time Task Schedules,”
J. ACM, Vol. 14, No. 3, pp. 439-465, July 1967.

K. G. Shin, C. M. Krishna, and Y.-H. Lee, "The Application to the Aircraft
Landing Problem of a Unified Method for Characterizing Real-Time Systems,”
Proc. IEEE Real-Time Systems Sympossum, Arlington, VA, December 1983.

30

November 22, 1983

[12] P. J. B. King and I. Mitrani, "The Effect of Breakdown on the Performance of
Multiprocessor Systems,” in F. J. Kylstra, ed., Performance ’81, pp. 201-211,
North-Holland, Amsterdam, 1981.

[13] D. E. Kirk, Optimal Control Theory, Prentice Hall, Englewood Cliffs, NJ, 1970.

[14] D. Gross and C. M. Harris, Fundamentals of Queueing Theory, John Wiley,
New York, 1974.

31

November 22, 1983

APPENDIX: EXPRESSIONS FOR FINITE COST FUNCTION

Finite cost functions for Example 2 in Section 2.4 can be expressed by an if-then-else
construct as follows:
if X;;x5;>0 then

if | xy | >k then
g, €) = k) + tilx k)]
else
glxi,€) = = (i sgnlxz)k, €) + tolx;, ~sgn(xa)k, ¢)

else

if |xy | >k then
gl 6) = 3 [taxik,€) + toxi ko)

else
gli) = = a0, ~sgnlxz)k, &) + tox;, sgn(xz)k,)

end if;

where a = H/mv y(x2i)k)=x2i+kr xi=(xli)x2i)T’.

2a l Xii I “y2(x2ixk)_23 I Y(x2i»k) | €

T(xi;kyf) = 4ay(x2i’k)
ty(x,k,€) = € + ly(xzi,k)iuﬁ)l

32

November 22, 1983

| x4 | - | y(xq,k) | (+7(x;,k,€)) 7(x;k,€) it €< 2a | x5; | -y¥(xz1.k)

E+1(x, k, &)+ a 9 2a | y(xq;,k) |
t (Xi,k,f) =
2 £+ ¥ (xai.k) +2 \/y “(xaik) T xii |- Tylxaik) | § otherwise
2a a’ a

33

Hard Deadline

Number-Power Product

0.010 7165
0.025 2126
0.050 1496
0.075 1180

Required p4, =107
Mission Lifetime = 10 hours

Table 1. Minimum Number-Power Product for Various Hard Deadlines.

Other Measures

Our Measures

—

Wide applicability to almost all
applications of fault-tolerant,
| gracefully degrading systems.

Limited applicability. Aims
specifically at real-time, espe-
cially at control, applications.

Measures express performance in
rather gross terms.

Measures express performance in
rather exact terms.

Performance measured with
respect to the computer system
alone.

Performance measures specifical-
ly designed to reflect the over-
head of the computer on the ap-
plication.

Table 2. Comparisonr of Traditional and New Methods of Characterizing Performance

Processors

A., i=1,

Dispatcher

cee, T

T

S

l

V

To Actuators

Figure 1. A real-timme multiprocessor.

Figure 2. Markov model for number-power tradeoff.

PROB. OF DYN. FAILURE

10~°

10—10

1071

10720

1 0—25

10730

10—35

T

:: ML=125

L ML=25

B ML=Mission Lifetime ML=5

| ML=1
L W R T

Figure 3. Dependence of probability of dynamic failure on processor
number when tasks are non-critical.

PROB. OF DYN. FRILURE

-
t.=0.010
;4 —— it : + 4
td—-O . 025
1 5 td=0 .050
10° T :
4 td=0 .075
10°% T
14
109 T A
Mumber-Power Product=2200
T Misgion Lifetime=10 hours
107124
0.00 2.00 4.00 6.00 8.00 10.00
NO. OF PROCESSORS

Figure 4. Dependence of probability of dynamic failure on hard
deadlines and number of processors.

-
1 -t
e10? T
s
-
4
= 1
.
=
> -t
Q
(18
107" T
o
Q
o
& A
-1+
109 T
-t
to J- t —04075 t =0 5 =
4=0- 4=0-0 £4=0.02 B
0 2000 1000 6000 2000 10000

NO-POWER PRODUCT

Figure 5. Minimum achievable probability of dynamic failure.

OF DYN. FRILURE

PROB

1 -
4 Nonstatic £q=0.010
(3 processors)
-3 -+
10 static
1 (1 proc)
L1075 T - '
static Nonstatic
T (2 proc.) (4 processors)
Monstatic
10&‘-~ (1 processor)
static
-1 (3 proc.)
T Nonstatic
107124 (2 processors)
0 2000 1000 6000 3000 10000

NO-POWER PRODUCT

Figurc 6. Race betwecen static and non-static components of
probability of dynamic failure.

: -T

1 —re

€103 T
o)
-
—

= d
.
=

> —
fom |
S

J10°% T
o
Q
[+

& 1

10977

1 £4=0.025
~+ £ 4=0.01
107124
0 92000 4000 6000 2000 10000

NO-POWER PRODUCT

Figure 7. Mean cost for configurations of Figure 5.

PROB. OF DYN. FRILURE

(A)

R S A -
JML=25 ;
ML=5
[=1
10% T
T—
-+ t4=0.01
105 + ML=Mission Lifetime
4 No.-Power Product=1000
10° 7T
107124
0.00 2.00) 6.00 8.00 10.00
SORS

... 4.00
- NO. OF PROCE

Figure 8. Probability of dynamic failure for a constant
number-power product.

(B)

T
4 , "
1)
ML=125
w -3 —+
% 10 ”
|
E 4 " ML=25
=
> -+
E A WML=5
Q 10—6 —
o
a X
e |
“MI=1
— M
td=0 .05
-0 -4
10 ML=Mission Lifetime
-+ No.-~Power Product=1000
10-!2 -
0.00 2.00 .0 8.00 10.00

4.00 6.00
NO. OF PROCESSORS

_ .
(©)

1 ——e
2103 T
«
.)
—
H 4
L.
=
> ——
o
S

1075 T
= ' t.=0.10
g 1 d—o.
' MIL=Mission Lifetime

NMo.-Power Product=1000
109 7T
e
107124
0.00 2.00 4.00 6.00 8.00 10.00
NO. OF PROCESSORS

MEBN COST PER HOUR

0.20 (A)
0.6 T
0.12 + —_—
t.,=0.010

ML=2 d ‘ ' ' .

0.08 + ML=Mission Lifetlme
‘ No.-Power Product=1000

0.04 +

MIL,=125
0.00 iL e : e

0.00 2.00 6,00 8.00 10,00

4.00
NO. OF PROCESSORS

Figure 9. Mean cost for a constant numher-power product.

MEBN COST PER HOUR

1.00 1

080T

0.60 1

0.40 T

0.20 T

0.00

(B)

ML=1

d:O' 05

ML=Mission Lifetime

No.-Power Product
= 1000

ML=5

ML=25
ML=125

4

L
v

0.00

2.00 8.00 10.00

4.00 6,00
NO. OF PROCESSORS

MEAN COST PER HOUR

A

.00 +

ML
ML=5
ML=25
MIL=125
0.80 T
0.60 1
0.40 +
0.20 T
: . 4 +- ¥ 16.00
0.00 ¥ 6.00 8.00
0.00 2.00 N(‘,‘;O%F PROCESSORS

