RSD-TR-28-88

High-Level Design of A Spray
Finishing Robot Controller

by
Theordore A. Nesse
Kang G. Shin
The DeVilbiss Company
837 Ariport Blvd.
Ann Arbor, Michigan 48104
Department of Electrical Engineering
and Computer Science

The University of Michigan
Ann Arbor, MI 48109

December 1986

CENTER FOR RESEARCH ON INTEGRATED MANUFACTURING
Robot Systems Division

COLLEGE OF ENGINEERING
THE UNIVERSITY OF MICHIGAN

ANN ARBOR, MICHIGAN 48109-1109

RSD-TR-28-86

TABLE OF CONTENTS
1. INTRODUCGTIONccuvuuniiinnroieienmiiniiceieiisnnieiisiesseesoseseasennenensnses 1
2. MODULARITY ..cooriiiiiiiiieerconnniiesotnuiieessonnnionesnnenenesaenrnssossnnnesnnnaes 2
3. FAULT-TOLERANCE CONSIDERATIONccccvvmiieviiieaeneennnenannns 4
4. ARCHITECTUREccc.... ORI PRI 6
4.1 Loesgal Architecture for Mﬂule Interconnection renrereeneranans 6
4.2 Hardware Architecture for Module Interconnectionccevvvvvennnennnn.. 8
5. SPRAY FINISHING ROBOT CONTROLLER TASKSccccceveveennnn.e. 9
5.1 Processing Modulesccoeuiiieuiiineiieiiiiiiiiiiiieiiieeeiieeiieesneesneesannans 11
5.2 Inter-Module Communication Ratec.ccoooevevieviiiiniiiniinininninnannenn. 21
6. SUMMARY oot et ettt ces e s aaee e e eaaans 22
7. REFERENCE ...ttt et et ettt s ente s s enra s 23

ABSTRACT

Modularity and fault-tolerance are essential to the design of a spray finishing robot
controller (SFRC). Vertical and horizontal communication architectures are discussed,

and a horizontal, bus-connected architecture is proposed as the best architecture for the
SFRC.

Tasks that must be supported by an SFRC are used to justify modularization deci-
sions. These tasks are then partitioned and mapped into processing modules, basing
module boundary decisions on criteria of system cost, inter-module communication
needs, task processing requirements and module complexity.

The work reported here is supported in part by the NSF under Grant No. ECS-8409938 and the US
AFOSR under Contract No. F33615-85-C-5105. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors do not necessarily reflect the view of the funding agen-
cies.

RSD-TR-28-86

1. INTRODUCTION

Most contemporary spray finishing robot controllers {(SFRC's} do not take advan-
tage of available hardware and software technologies that could lower the cost but
increase the functionality of a controlier. In some cases, the functionality of the con-
troller appears to be determined by the capabilities of the board set that has been
selected, rather than by the control needs of a spray finishing robot. As robot users
become more sophisticated and demand higher performance, increasingly cost-effective

robot controller designs will be required of robot manufacturers.

The following three limitations on the required functionality can be observed in
most popular SFRC’s {1] - [3]. First, constraints on local memory for program path
storage and limited path processing capability require that a host computer be provided
for support of robot consoles. Secondly, executable memory limitations constrain the
functionality of the controller. As a result, special options such as a vision sysﬁem inter-
face are difficult to add to the system. Processing speed limitations in the servo system
of this controiler prevent the implementation of sophisticated servo algorithms as well.
Thirdly, adding mod.ules to the system is complicated by low bandwidth, proprietary

protocol channels that are used to interconnect modules.

In these popular controliers, there is no emphasis on fauit-tolerance, as none of the
designs exhibit a coordinated apprbach to controlling hardware or software failures.
While power-up self tests and some on-line diagnostic features are provided, they provide
little help to an operator when failures occur. As these systems become more sophisti-

cated and are used in larger numbers, fauit-tolerance will become increasingly important.

This paper presents an SFRC architecture that specifically addresses the limitations

mentioned above. Modulanty is used as the guiding principle for the design, and is con-

High-Level Design 1

RSD-TR-28-88

sidered in detail in Section 2. Section 3 discusses fauit-tolerance aspects that are
appropriate for robot controllers, and an economical approach for providing a spare sys-
tem bus is proposed. The SFRC architecture is presented in Section 4. First in Section
4.1, the logical architecture, as defined by inter-module communication paths, is dis-
cussed. Then hardware architectures that can support the selected logical architecture

are discussed in Section 4.2.

As the hardware design for an SFRC must be directed toward providing effective
support for the particular needs of spray finishing robots, it is necessary to identify the
tasks that must be performed by that controller. Bé.sed on these tasks, processing
modules required for the controiler are identified in Section 5, and support for the
module boundary decisions is provided. The functions of the modules are described in
some detail, inciuding identification of some useful features lacking in contemporary

designs. The paper concludes with Section 6.

2. MODULARITY

Modular design has become standard practice in many disciplines, including robot
control design. While the benefits of modular design may seem obvious, it is useful to
examine some of them here to ensure that the expetgted benefits will be realized in this
application. Note that the benefits of modular design apply to both the hardware and

the software design of a robot controller.

The major benefits of xﬁodular design (as opposed to a highly integrated design)
include improved maintainability, reduced implementation effort and reduced system
complexity. A modular system is more readily maintained since personnel can restrict
their system re-learning to the module in need of modification. Well-defined interfaces

with other modules serve to limit the scope of the analysis required to design an effective

2 High-Level Design

RSD-TR-28-88

modification.

The benefit of reduced implementation effort is seen most clearly on systems where
a team approach is required for the design work. Once the module boundaries are
drawn and interfaces are defined, independent personnel can work efficiently on their

own areas of the design with minimal impact on the other parallel design efforts.

The reduction in impiementation effort is closely related to the reduced compiexity
that is evident in a modular design. While the overall system may be larger in a modular
implementation (more connectors and drivers for hardware, communications and func-
tion calls for software), -the resuiting system is more comprehensible as it can be

analyzed module by module.

System reliability can often be enhanced by the use of modular design techniques.
In a system where modules are looseiy-coupled, the failure of one module does not affect
the operation of other modules. If a failed module ishon-critical, system operation may
continue. Testing to build confidence in a system is also eased by modular design tech-
niques. In some cases, modules can be tested before they are integrated into the overall

system, where errors may be more difficult to locate.

Given that modularity is a desirable characteristic in a design, determining the size
of the modules for a given design can significantly affect the degree to which the benefits
of modularity are realized. A system with many small mo;iules may become burdened
by a high level of inter-module communication, while a system with a few modules may
lose the benefits noted above. Often, the application for the system may indicate reason-
able boundaries for the modules. In a robot controller, for example, the servo system is
clearly distinct from other controller functions and the interface with this module is

straightforward to design. It is therefore desirable to form a module to support the

High-Level Design 3

RSD-TR-28-88

servo control tasks. In other cases, deciding what is to be included in a module requires

careful evaluation of numerous conflicting factors.

3. FAULT-TOLERANCE CONSIDERATIONS

Modularity often forms a basis for fauit-tolerant approaches. For example, triple
modular redundancy (TMR) is based on the simultaneous operation of three modules
which provide output to a voting element [9, p. 88]. Should one module fail, the voter
will detect that its output is different from the other two modules, and only the infor-
mation with majority votes will be released. Though there are technical challenges to
implementing TMR for a robot controller, the key reason that this approach has not
been taken in existing designs is that TMR has not been demonstrated to be a cost-

effective approach to improving system reliability.

As robot controllers are rather prone to failure due to their compiexity and harsh
operating environment, some approach to tolerating failures is essential. Standby sparing
at the controller level is a typical approach that is used to achicve acceptable system
failure rates [8]. In such a standby sparing system, one robot can serve as a spare for ten
or more robots. However, standby sparing does not provide uninterrupted service when
failures occur, but is less costly than the replication of hardware that is otherwise needed

for a system that can provide uninterrupted service.

Though techniques such as TMR may not be useful for robot controilers at the
present time, there is no justification for ignoring opportunities to enhance system fault-
tolerance. There are numerous techniques available to improve the reliability of
hardware and software components of robot controilers that can be implemented
economically. One recent development that promises tc provide significant benefit to

systems designers is the availability of both parallel and serial system buses in

4 High-Level Design

RSD-TR-28-86

commercially available board level products.

System bus failures are catastrophic for a system with a single bus, as all communi-
cation between modules is lost. Unfortunately, this is a common failure, since any one of
many potential single point failures can disable a bus. A second bus is desirable in a
bus-based system to allow such failures to be tolerated, but the typical hardware and
software cost to implement suchk a dual bus system is difficult to justify for an industrial

robot controller.

One solution to this problem is seen in Intel Corporation’s Multibus II specification
[7], where inter-module message passing can take.place in a similar fashion on either the
main parallel system bus or on an inexpensive serial system bus. Many operations can
be carried out over either bus, with little software overhead to support a physically dis-
similar channel. By virtue of the two wire implementation, the‘ inclusion of a serial bus
incurs very little increase in hardware cost either. While this hardware cost benefit is
realized in both the Intel Multibus II specification [7] and the VMEbus specification [5],
the fact that Multibus II uses the same protocol for message communication over the
serial or parallel bus also provides the additional benefit that the software overhead is

small.

The way this pair of system buses can be used to improve the fault-tolerance of a
robot controller is as follows: During normal, fault-free operation, the parallel system bus
can be used for normal message traffic between modules. The serial bus can be idle, or
can be used to monitor the operation of the system’s modules. Should the parallel sys-
tem bus be disabled by the failure of a non-critical module, the robot controller can be
designed to suspend all non-critical inter-module message traffic, and continue operation

using the serial bus. The failed moduie can then be replaced at a convenient time, when

High-Level Design 5

RSD-TR-28-88
the robot is not required for production.
4. ARCHITECTURE

4.1. Logical Architecture for Module Interconnection

Before considering the physical means for interconnecting modules in a robot con-
troller, the logical architecture needs to be defined. The concept of vertical versus hor-
izontal communications that is useful at the system level can also be applied to the con-
troller level of a system design [8]. If the modules of a robot controller are considered to
form a hierarchical tree structure, as shown in Figure 1, simple vertical communication is
seen when a module communicates with only its child modules. A more general form of
vertical communication is observed when a module can communicate with any of its des-
cendant modules. Horizontal communications are those communications that occur
among modules that are not vertically related. If the communications are restricted to
the children of a common parent, simple horizontal communications are seen. Contem-
porary SFRC’s primarily use vertical communication architectures. The Alien Bradley
8200 [3] and Graco OM-5000 [2] controllers employ simple, vertical communications,
while the DeVilbiss TR-4500 [1] controller inciudes some horizontal communication in a
mostly vertical architecture. It has been noted in [8] that vertical communication is effi-
cient, provided that the number of child modules is small, the modules are not modified
often, the parent module is reliable and the tasks in the modules are not computation-
ally intensive. In SFRC's, the first condition is met. The second condition is difficult to
assess, but when modifications are needed in existing vertically designed controllers, the
process is labor intensive and fraught with peril of introducing insidious timing bugs.
The reliability of the parent modules is not well characterized in these controllers, but

can be assnmed to be the same a3s the child modules. The condition that tasks not be

8 High-Level Design

RSD-TR-28-86

Figure 1. Tree structure for robot controller modules.

computationally intensive is true for some modules, but not true for others such as coor-
dinate conversion modules. Thus, a vertical communication architecture may or may

not be appropriate for these controllers.

For a number of reasons related to those noted above, a horizontal architecture has
been selected for the controller design being discussed here. As increasing functionality
is required of robot controllers, to meet rising customer expectations, the above noted
conditions for the efficient use of a vertical architecture will be invalidated. The addition
of features such as visual and tactile sensing will add computationally intensive modules
to the system. A further consideration favoring the use of a horizontal architecture is
based on fault-tolerance. As the number of modules increases in a system, it becomes
increasingly likely that a carefully designed system can tolerate the failure of a module.

If this is the case, it is undesirable to have a single central controlier module that is criti-

cal to system operation [10].

High-Level Design 7

RSD-TR-28-86

4.2, Hardware Architecture for Module Interconnection

Having selected a horizontal, distributed architecture for the controller, it is now
necessary to consider the physical means for interconnecting the moduies. As a starting
point, the similarities between a robot controller and a distributed system can be noted.
In a robot controller, moduies are connected by communication links, as in a distributed
system. Robot controller modules may be physically separated, such as when an operator
interface module is remote from the main processing hardware of the controiler. Due to
the local intelligence in each module, only a limited amount of communication between

modules is required, a further similarity with distributed systems.

Given the similarities to a distributed system, it is important to explicitly consider
alternative interconnection architectures that could be used to establish communication
channels between modules in a robot controller, rather than selecting a bus on the basis
of historical precedent. There is no fundamental reason that module interconnection in a
robot controller could not use a ring or star architecture, instead of the typical bus tech-

nique.

A ring architecture is attractive as it promotes good modularization of a system by
establishing a well-structured communication system. Node failure is readily diagnosed,
and system operation can continue with a single failed node if that node is non-critical.
Handling communications to or from neighboring modules can add significantly to the

processing load for a particular module, however.

Adding a central module and implementing a star architecture avoids the problem
of burdening modules with commuzication for their neighbors, but at the expense of
adding a module for this purpose. Good modularization is supported by this technique,

but the central module becomes critical to the functioning of the system. Note that a

8 High-Level Design

RSD-TR-28-88

star architecture can be logically implemented within a bus system by constraining all

modules to communicate through a single central module.

A conventional bus architecture provides the most general interconnection scheme,
but at a high cost. Bus architectures also permit poor modularization practices in a sys-
tem by allowing high data rates between any two modules. Bus architectures are very
flexible, however, and this probably accounts for the widespread commercial availability
of hardware supporting numerous standard buses. Within a bus-connected system, a
system designer can logically specify any useful interconnection architecture, and thus
tailor standard hardware to meet the needs of a specific application. It is the commer-
cial availability of highly flexibie bus connected hardware that leads a system designer to

select a bus as the basic interconnection strategy in a-robot controller.

5. SPRAY FINISHING ROBOT CONTROLLER TASKS

Two different levels of functionality can be envisioned for a robot controller. Typi-
cally, a robot is considered as a stand-alone system, where the controller must have the
necessary functionality to support all of the operations required of the robot. In many
applications, however, it is desired to combine several robot controllers into an
integrated system that performs a single process, such as applying a top coat (of paint)
to an automobile body. In a system consisting of several integrated robot controllers,
some tasks can be eliminated from the functions that each controller is required to sup-
port. For example, the operator interface function is usually performed at a higher level

than the robot controiler in an integrated multi-robet system.

While there is a clear trend toward the use of robots in integrated systems, there
are several reasons that this design will be directed toward supporting ali of the func-

tionality required of a stand-alone robot controller. First and foremost, much of the

High-Level Design 9

RSD-TR-28-88

commercial market for finishing robots is for stand-alone systems. Second, if the design
problems for a stand-alone system are soived in a manner that is sensitive to the needs
of an integrated system, the coatroller required for an integrated configuration can be
obtained by eliminating modules from the stand-alone configuration. This design, there-
fore, is directed toward providing the full functionality required to support a stand-alone
robot system. Providing for simpie and reliabie interfacing with an integrated automa-

tion system is a key design consideration for this system, however.

The items below, then, are the tasks that a stand-alone robot controller must sup-
port:
Program Storage: A robot controller must be able to store data defining the paths
that a manipulator must traverse. Sufficient storage should be provided so that frequent
reloading of the main storage to accommodate normal production patterns is not
required. The storage must be non-volatile, withstand plant floor conditions and provide

for backup operations.

Program Playback: An obvious function of the controller is to allow playback of a
selected path. Related to this function is the need to implement servo control of the
robot. Given that it is desirable to store programs in Cartesian coordinate form to allow
them to be conveniently modified, the céntroller must alsc support kinematics functions
during program pilayback to allow conversions between Cartesian coordinate data and

the corresponding joint position (robot coordinate) data form.

Synchronization: Two types of synchronization are generally required of spray finish-

ing robots: the tracking of moving parts and coordination with other robots.

Operator Interface: In a stand-alone system, a robot controller must implement a

10 High-Level Design

RSD-TR-28-88

highly capable (‘‘user-friendly’’) operator interface to allow control of robot functions

and to indicate system status.

Path Programming: Each robot controiler must be able to interact with an operator
to create and modify programs. In addition, the controller must be able to accept pro-
grams that have been generated off-line by other systems. This implies a need for a com-

munications system that is able to handle large volumes of data.

I/O Control: The robot controller must be able to interact with non-programmable
(application) devices in the work cell, typically using discrete electrical output signals.
Some of this I/O support, such as spray gun triggering, must be closely synchronized
with a robot’s path. Other I/O, such as safety system monitoring, may occur asynchro-

nously to the path.

Interface with Programmable Systems: A critical function to allow a robot con-
troller to be integrated efficiently with automation systems is the ability to interface
with external programmable systems. Such an interface would allow control of robot

functions and system status indication.

Fault Diagnosis: In the event of robot system failure, the controller should be able to
ald service personnel in locating defective hardware that needs to be replaced. This
implies a need to maintain operator interface and inter-module communication even

when faults are present in the system.

5.1. Processing Modules

The above list shows the tasks that a robot controiller must support. The modules

required in a system to support those tasks must be identified. Numerous criteria were

High-Level Design 11

RSD-TR-28-88

applied to different possible configurations to select the one that is presented. Func-
tional grouping was considered so that tasks zre incorporated into modules according to
the similar functions each performs. This minimizes the amount of information that
must be transferred between modules for coordination. Limiting inter-module communi-
cation was sometimes considered independently of coordination considerations. Cost was
also a key consideration in the modularity decisions in this design. As hardware costs
increase with the number of modules, the size of the modules in this configuration tends
to be somewhat larger than might be expected for a system with modularity determined

based strictly on functionality.

Figure 2 shows the proposed architecture for the SFRC. Each block on the
diagram indicates a module formed of one or two circuit boards and processors. Two sys-
tem buses are shown connecting the modules: one high performance parallel bus and one

serial bus.

Inter-Module Communication: Before discussing the modules in detail, some com-
ments on the inter-module communication links shown in the figure is warranted. All
critical inter-module communication that normally would take place over the parallei
bus would be designed so that it could be switched to occur over the s;ariaﬂ bus if the
parallel bus fails. It would be desirable to organize inter-module communications to use
a bus independent message passing protocol so that the software required to allow the

serial bus to back up the parallel bus would be minimal.

An SCSI protocol bus [6] is specified to connect mass memory devices to the
communication/storage module. As SCSI is widely supported by suppliers of mass
memory sub-systems, many options are available for tailoring the controller’s main path

program memory to an application. Bubble memory, floppy disk, micro disk, hard disk

12 High-Level Design

RSD-TR-28-88

Figure 2. Robot controller modules.

and RAM disk sub-systems are currently available with an SCSI interface. Specialized
communication processor sub-systems can also be connected to the system through this
bus, as exemplified by the Manufacturing Automation Protocol (MAP) module shown in
the figure.

Since operator interface panels are often some distance from the console and are
connected with field wiring, RS-422 is used as the physical channel to make this connec-
tion. The protocol on this channel is not critical, as it does not interface with external

equipment. Any convenient low-level ASCII protocol can be selected for this link.

High-Level Design 13

RSD-TR-28-88

A particularly desirable feature to be designed into this system is to allow the
operating software for each module to be loaded over the system bus and stored in
electrically erasable programmable read only memory {(EEPROM) in each module. In this
way, each module can start up as soon as power is turned on, and gain the reliability
benefit of non-volatile memory for executable code. Updates to the software would be
more convenient than the typical process of physically replacing programmable read only
memory integrated circuits, though. Whether this is actually feasible or not would have
to be determined during the detailed design of the system. EEPROM components are
relatively high priced (.08 cents/bit}, and require eight times the board space that ultra-

violet erasable programmable read only memories (UVPROM) require.

Servo Module: The servo moduie communicates with the rest of the system over the
dual system buses that are specified for the design. It is unlikely that all of the
hardware needed for this module can be purchased as a standard product, as many robot
manipulators empioyvresolvers for position sensing. Resolvers require specialized analog
signal handling that is not commonly available in compact form. The module will be
configurable to support from three to eight high performance servo channels by separat-
ing the processing hardware from the interface hardware. In addition, two low perfor-
mance servo control channels wili be incorporated, along with support for synchronous

[/O operations over an RS-422 serial channel.

The processing card will incorporate the processor, memory, serial I/O ‘and system
bus interfaces required by this module. The task performed by this module requires a
high performance processor to reduce the level of complexity for the software. Advanced
servo techniques for stabilizing high speed manipulators, such as the implementation of

digital notch filters, will also require significant processor resources. Though the memory

i4 High-Level Design

RSD-TR-28-88

requirements for this module are quite modest, enough memory should be available so

that diagnostic and off-line functions can be supported.

The support for the synchronous I/O is quite simple. During playback, each point
received by the servo module will have information attached to it defining the state of
the synchronous outputs. Whenever this information changes, a message will be
dispatched over a serial channel to remote hardware that de-multiplexes the I/O for use
by application hardware. During teach operation, messages received on the serial chan-
nel from the remote hardware will define the state of the synchronous I/O data that is
attached to the points being taught. The control of spray gun triggering, paint fan con-
trol and electrostatic voltage control are examples of I/O operations that must be syn-

chronized. Note that analog I/O is required as well as digital I/O.

To interface with a separate card that implements the hardware interface with the
external servo hardware, a local bus will be used. The Multibus II iLBX or VMXbus
would be well suited for this. Though the servo interface card could not be purchased as
a standard product, the processor board that drives it is a likely candidate for the use of

a standard design.

The servo interface card does not contain any processing power, but provides a site
for the conversion and buffering hardware required to interface with external equipment.
Several configurations of this board are required, as different designs are used to match
the controller to various external servo systems, thus containing the system hardware
changes required for alternate manipulators to ome electronic assembly. The various
boards should be designed to accommodate incremental encoders, absolute encoders,
resolvers, tachometers and potentiometers as measuring system input. Output {rom the

card is designed to drive servo valves directly, or drive the external amplifiers required

High-Level Design 15

RSD-TR-28-88

for electric servo systems.

A critical design characteristic of these cards 13 a configuration register system that
allows the servo processor card to identify the particular card that is installed in a sys-
tem, and is able to counfigure the servo interface card under software control. In this
module, and all others, the use of programming switches and jumpers will be aveided as
incorrectly set manual configuration devices are a frequent cause of field hardware
failures. Self-test circuitry is required too, to allow the processor card to perform off-line

testing of the servo interface card.

The system partitioning that leads to this module is particularly simple to justify,
as noted earlier. All of the servo axes in a robot system must be closely coordinated, and
therefore should be controlied in the same moduie. The computational needs of this task
approaches the capacity of a single processor, and therefore additional tasks cannot be
placed in this module.

Main Storage/Communications Module: This module wiil implement the main
storage for the path programs, and also support communication with external pro-
grammable equipment; primanly for the purpose of transferring path programs. In the
event that an integrated network interface is implemented, 1t would also interface
through this module. Network operations affecting only main storage are handled
directly by this module, but other commands and status operations wili be forwarded to

the Operator Interface Module for arbitration.

The main reason for including the communications support in this module is that
the communication with the host computer fcr path data transfer results in a great deal
of data to be handled by the storage module. Placing the communication support in the

same module as the storage hardware allows this process to cccur without adding traffic

16 High-Level Design

RSD-TR-28-80

on the main system bus. The storage module would also have a surplus of processing
power, without the addition of the communications function to its workload. While the
decision to combine these functions is somewhat inconsistent with good practice for
modularizing a system to reduce complexity, it is assumed that the use of a standard
operating system for this module will allow a very simple interface with the mass
storage, leaving only straightforward work to implement communications between the
storage module and the rest of the system. This combination provides for low system
bus usage and efficient use of processing resources with an acceptable increase in module

complexity.

Some communication protocols are processing intensive, and require specialized
hardware for implementation. MAP is an example of one. such protccol. Using MAP, the
system architecture can accommodate the specialized processor without major changes
by implementing the communications processor module as a device on the SCSI bus. A
high bandwidth path is establishe_d into the main storage module in this way, without

changes to the rest of the system.

The selection of the hardware used for main storage depends on several factors
which may be application-dependent, such as the environment the controller must with-
stand, number and type of programs required and cost sensitivity of the customer. The
SCSI interface and use of 2 standard operating system for this module will allow a wide

variety of devices to be supported.

The worst case size for this main memory can be estimated for a typical application
as follows.
Assumptions:

-10 hours of path execution required

High-Level Design 17

RSD-TR-28-88

-18 bits resolution per axis

- 8 axes

- 8 bits resolution for path velocity

-48 bits of miscellaneous information per position

-10% storage overhead for directory, pointers

-5 mm accuracy desired at 1000 mm/sec velocity

-50 mm radius as tightest curve allowed for 1000 mm/sec

e

-‘*average radius’ for a path curve is 200 mm

To reproduce a 50 mm radius with the desired accuracy, the point {position) spac-
ing must be less than 43.8 mm, as shown in Figure 3. At 1000 mm/sec, the peak
number of points per second for the system to handle will be 23 points per second in
order to reproduce the 50 mm radius. An average data rate can be calculated in a simi-
lar manner from the 200 mm radius. The required minimum point spacing for the aver-

age case is 88.9 mm, yielding an average required rate of 10 points per second.

Figure 3. Caiculation of minimum point spacing.

18 High-Level Design

RSD-TR-28-88

The number of bytes per position can be calculated based on the assumptions as

follows:

(16 bits per axis) X (8 axes) + { 8 bits velocity information)

+ (48 bits misc. information) = 184 bits (total bits per position)

(184 bits/pos.) X (1.1 overhead) = 202 bits per position

(202 bits/pos.) / (8 bits/byte) = 25 bytes per position.

This can be combined to give the desired memory size for the robot:
(10 hrs. per robot) X (3600 secs. per hr.) X (10 points per sec.) X (25 bytes per point)

= 9 megabytes per robot.

The estimate is highly sensitive to the paths that are executed, as straight paths
dramatically reduce the volume of data required. The memory size required can change
by an order of magnitude depending on the installation, but the estimate is consistent
with observations of currently operational finishing robots containing one megabyte of
local memory. In many cases, these controllers are connected to a host computer to pro-

vide additional memory.

Math Module: A module is required in the system to perform kinematics, linear inter-
polation and path velocity control. In a robot that is taught by leading the manipulator,
forward kinematics must be performed to calculate the Cartesian data that is to be
stored. During playback, data must be converted to robot coordinates {joint positions)
for servo control. Like the servo module, this module will need a high performance pro-
cessor. Some kinematics algorithms require large memory areas for tables, and therefore

this module should be capable of interfacing with up to one megabyte of memory.

High-Level Design 19

RSD-TR-28-88

Operator Interface Module: Operator interface, programmable systems interface and
asynchronous 1/O are the three types of 1/O supported by this module. The operator
interface function comsists of interaction with an operator panel over a serial RS-422
communication link. Messages to the operator are translated from the internal system
message format to a form intelligible to the operator. .Likewise, commands from the
operator are converted to the internal message format. Menu or graphic manipulation to
communicate with the operator will be invisibie to the rest of the system until a com-
mand is selected that requires service of a module other than the Operator Interface

module.

The programmable systems interface implements essentially the same functionality
as the operator interface, but the data format is appropriate to communication with an
external computer. As the data rate on this channel is not significant (a few bytes per

second on the average), RS-422 is appropriate for this channei as well.

Asynchronous 1/O also occurs over serial communication channels, much like that
used for the synchronous I/O controiled by the serve processor. This I/O is not subject
to the need to be synchronized with the manipulator path. Monitoring the internal tem-

perature of a control console is an example of an asynchronous monitoring task. As long

as it occurs at least every few minutes, the exact timing is not critical.

Diagnostics/Safety Module: An independent, simple, low performance processor is
included in the system for the purpose of monitoring the operation of the system and
aiding in diagnosing failures. During system start-up, this module interrogaies the rest of
the modules in the system to check the results of the seif-test performed by each. During
system operation, this processor can interrogate other processors to verify their correct

operation in a general sense. A hard failure of the servo module, for example, could

20 High-Level Design

R8D-TR-28-88
result in an unsafe condition. Upon detecting loss of control by the servo processor, this

module will initiate a controlled system shutdown.

In the event of a system fatiure, this module will initiate resident diagnostic rou-
tines to identify the failed hardware. While this module normally interfaces with the
operator through the Operator Interface module, a failure in that module will disable the
operator panel. For this reason, the Diagnostics/Safety module implements a simple
interface for a standard ASCII terminal, to allow communication with the diagnostics

system if the Operator Interface module fails.

5.2. Inter-Module Communication Rate

Having selected a configuration for the controlier and considered the processing
load for each module, it is necessary to ensure that the inter-module communication can
be supported efficiently. It is important to note that each processing module is self-

contained in this design. No processor fetches instructions using the system bus.

Figure 4 shows the system data flow when program playback is initiated by the

operator. The messages generated are as follows:

e Operator Int. to Storage/Comm.: start playback - negligible data rate
o Storage/Comm. to Math: data to be converted - 250 bytes/sec.

e Math to Servo: actuator positions - 2500 bytes/sec.

Program teach operations follow a similar pattern:

o /O to Storage/Comm.: prepare for teach - negligible data rate

s Storage/Comm. to Servo: start teach - negligible data rate

» Servo to Math: points to compress/convert - 2500 bytes/sec.

High-Level Design 21

RSD-TR-28-86

e Math to Storage/Comm.: points to store - 250 bytes/sec,
e I/O to Servo: halt teach - negligible data rate

As these data rates are orders of magnitude less than the capacity of even a typical
synchronous serial bus (2 megabytes/sec), messages will pass essentially instantaneously.
In addition, there are no inter-mcdule communication needs that will result in the
transfer of large blocks of data, further ensuring the timely transmission of inter-module

messages.

6. SUMMARY

The high level design of an SFRC has been presented based on the tasks such a
controller must perform. The tasks that must be supported by the controller are: Pro-

gram Storage, Program Playback, Synchronization, Operator Interface, Path Program-

Figure 4. System data flow.

22 High-Level Design

RSD-TR-28-88

ming, I/O Control, Interface with Programmable Systems and Fault Diagnosis.

A bus architecture was selected as the physical means to interconnect the modules
that were defined. A horizontal inter-module communications architecture was chosen,
where no module has central authority in the system. Communication paths are esta-
blished between any two moduies which need to communicate, with control passed along
the chain of modules thus established. It was shown that the inter-module message
traffic will require orders of magnitude iess bandwidth than current 32 bit buses can pro-

vide.

Based on functional partitioning, limiting inter-module communication and cost
factors, the following modules were defined to form the system: Servo Module, Main
Storage/Communications Module, Math Module, Operator Interface Module and

Diagnostics/Safety Module.

This design provides a balance between numerous conflicting constraints. Safety
and fault-tolerance were addressed in the design, but with consideration of the cost and
complexity that could be tolerated for an industrial system. The design provides for sim-
plicity, as only a minimum number of modules are specified. The characteristics of the
module hardware are such that much of the hafdware can be purchased off-the-shelf,

reducing design costs.

REFERENCES

[1] The DeVilbiss Company, “TR-4500 Operator’s Manual”, The DeVilbiss Company,
Toledo, Ohio, September 1985.

[2] Graco Robotics, “OM-5000 Operation Manual,” Graco Robotics Inc., Livonia,
Michigan, 1983.

High-Level Design 23

T

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Allen-Bradley Company, ‘‘Series 8200 Robot Control Specifications,” Allen-Bradley
Company, Highland Heights, Ohio, September 1983.

““Robots man the paint booth at GM-Orion”, Robotics Today, pp. 52-53, April
1985.

VMEDbus Specification Manual, Motorola Inc., Pub. no. M6BKVMEB(D1), October
1981.

Computer and Business Equipment Manufacturer’s Association, “‘Draft proposed
American National Standard for Information Systems - Small Computer System
Interface’, Standard No. X3. 131-198x Revision 17-B, December 13, 1985.

Multibus II Bus Architecture Specification Handbook, Intel Corporation, Order
Number 146077-B, 1983.

K. G. Shin, ‘“Intertask communications in an integrated multi-robot system”,
Center for Research on Integrated Manufacturing, The University of Michigan,
RSD-TR-4-85. Also to appear in IEEE J. Rcbotics and Automation.

T. Anderson and P. A. Lee, Fault tolerance -- Principles and Practice, Prentice
Hall, London, 1981.

S. Miyamoto, et. al., “FMPA: A Fault-Tolerant Multi-Microprocessor System Based
on Autonomous Decentralization Concept”, Digest of Papers, FTCS-13, pp. 4-9,
1983.

iLBX, iPSB, iSSB and Multibus are trademarks of Intel Corporation.

24

High-Level Design

