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ABSTRACT

A controller that combines self-tuning prediction and
control is proposed as a new approach to robot trajectory
tracking. The controller has two feedback loops: One is used
to minimize the prediction error and the other is designed to
make the system output track the set point input. Because the
velocity and position along the desired trajectory are given
and the future output of the system is predictable, a feedfor-
ward loop can be designed for robot trajectory tracking with
self-tuning predicted control (STPC). Parameters are
estimated on-line to account for the model uncertainty and the
time-varying property of the system.

We have described the principle of STPC, analyzed the
system performance, and discussed the simplification of the
robot dynamic equations. To demonstrate its utility and
power, the controller is simulated for a Stanford arm.

Index Terms - Robot trajectory tracking, self-tuning predicted
control (STPC), auto-regressive moving average.

1. INTRODUCTION

Because of their flexibility and capability, computer
controlled robots have become an essential component of
modern mamufacturing systems. ‘‘Optimal’’ (in some sense)
trajectory control of such a robot is very important for
improving manufacturing productivity and product quality.

When the robot moves with high speed or requires
accurate positioning or is driven by high torque motors, one
must consider its nonlinear characteristics and parameter
uncertainties. Moreover, the controller’s computational
requirements are an important issue for real-time implementa-
tion. It is well-known that an industrial robot is a nonlinear,
time-varying and highly-coupled multiple input multiple out-
put (MIMO) system. For such a system, adaptive control
appears to have advantages in handling the parameter uncer-
tainties and stringent requirements on the positioning accu-
racy and motion speed.

Adaptive robot control techniques can be categorized
into two types: model reference adaptive control (MRAC)
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and self-tuning control (STC). For STC, the dynamics of a
robotic manipulator must be described by a controlled auto-
regressive moving average (ARMAX) model. If the dynamic
coupling is neglected, then the model becomes multiple single
input single output (SISO) systems. The work described in
(1] is a typical example of multiple decoupled STC'’s, one for
each joint. This design method may also be extended to
MIMO systems, as discussed in [1] and [2].

Although the STC in [1] has the advantages of imple-
mentation simplicity and good performance, the choice of the
weight coefficient €; is crucial to system performance. It
decides not only system transient responses but also system
stability. When €;=0, the controller becomes a minimum vari-
ance controller, which is unstable for non-minimum phase
systems. If g is 100 small, the system will have large oscilla-
tions. On the other hand, if & is too large, the system
response will be very slow. The only way of choosing ¢€; is
trial and error. To remedy the difficulty in choosing the
weight coefficient, one can attempt to use a pole placement
self-tuning controller. Closed-loop system poles are assigned
to predesigned positions. The work in [3] is a good example
of direct application of the pole placement to control a Stan-
ford arm,

The STC can be realized in either joint or Cartesian
space. Because it is the robot’s end-effector, not the robot’s
joints, that performs the task, the performance may not be
acceptable at the end-effector, even if it is acceptable at the
joints. Therefore, it is highly desirable to formulate a control

law directly in the task coordinate frame [4]. An example of
hybrid control can be found in [5], where the position and
force errors were transformed first from the end-effector’s
Cartesian coordinates to those in joint space. Then, the posi-
tion and force errors at each joint were combined into one
hybrid error which was eliminated using the pole placement
STC.

Some researchers presented the results of combining the
STC with other techniques. For example, path control was
combined with visual information [6]. The position and orien-
tation of an object were determined from a binary image, and
the extracted information was used for a self-tuning con-
troller. The ideas of ‘‘resolved motion rate control’’ and
‘‘resolved acceleration control’’ were used to design a feed-
forward loop [7). They resolved the specified positions, velo-
cities and accelerations of the robot’s hand into a set of
values of joint positions, velocities and accelerations from
which the joint torques were computed. The feedback loop
was then designed using the STC to reduce the errors in the
hand’s position and velocity.



The drawback of the pole placement STC is that a time
delay appears in the closed-loop characteristic equation,
which affects system performance. This is especially true for
a system with long delays.

In this paper, we present a new approach to robot tra-
jectory tracking that combines the self-tuning prediction and
control (STPC), thus resulting in two feedback loops. One is
used to minimize the prediction error and the -other is
designed to make the system output track the set point input,
i.e., the desired robot trajectory. Using a separate predicior,
the negative effect of time delay is eliminated from the con-
troller. This controller, unlike the one in [1), does not require
to choose any weight coefficient. The performance of the
controller depends only on the convergence of the predictor,
regardless of whether or not the system is in minimum phase,
thereby making the controller more suitable for a time-
varying system like industrial robots. Because the future velo-
city and position along the desired trajectory are given and
the future output of the system is predictable, a feedforward
loop can be added to speed up the tracking operation. Unlike
the resolved motion rate or acceleration algorithms, the com-
putation of this feedforward loop is very simple, which is
important for real-time implementation.

In Section 2, an ARMAX model is derived from the
robot dynamic equations, on which the STPC will be based.
The self-tuning predictor and parameter estimation are
described in Section 3. A predicted controller with a feedfor-
ward loop is presented in Section 4. Section 5 deals with the
analysis of system performance and the determination of the
controller parameters. Section 6 presents the simulation
results for the STPC of a Stanford arm, and the conclusion
follows in Section 7.

2. ROBOT DYNAMIC EQUATIONS AND THEIR SIM-
PLIFICATION

An ARMAX model of a system has the following form:
AG™) y(k) =Bz uk - d) + C™") k), @.1)

where AGH=T+Az7'+. +4, 27,
Bz )=Bo+B z'+. .. +B, ",

CeY=I+Ciz7'+...+C, 27,

y(r) and u(z) are respectively the n-dimensional output and
input of the system at a discrete time ¢, d mtheumedelay,
ande(r)xsamndomsequencemmzeromeanandc'—l
that describes the model uncertainty. A(z"'), Bz™') and
C(z"") are nxn matrix polynomials of z~! with the order of
n,, n, and n., respectively. If the STC is to be used for
robot trajectory tracking, the robot dynamic equations should
be converted to the same form as Eq. (2.1).

The robot dynamics are described by noanlinear second-
order differential equations:

ZD,,(O) 0; + 2‘. Zh.,k(e) 0,6, +G:®) =T, (22
j=1 j=lk=l

1<i<sn

where 0= (0, 0, ..., 0, )T is the vector representing joint
angle displacements, # is the number of joints of the robot, 6
and 6 are the joint velocity and acceleration vectors, respec-
tively, and T = (Ty, T2, oo » Ty )T is the joint torque/force vec-
tor. The first term of Eq. (2.2) represents the inertial torques,

the second term represents the Coriolis and cenirifugal forces

and the third term is the gravitational loading. The major

difficulty associated with the conversion of Eq. (2.2) to the
L] ..

form of (2.1) is the nonlinear term, Y 3 A;#(0) 0,8, and
Jj=tk=1

the coupling parameters, Dy; (), i#j, and G;(0).

Rewrite Eq. (2.2) in the following matrix form:
D(8) 0 + H(8, 8) + G(8) = . .3)

Let the operating point be the current position and velocity,

denoted by Qg = (8, ), and assume that the changes of D

around Q, is negligible, i.e., D(6, + q) = D(8;), where (q, q)

is a small perturbation around Q. Then, using the Taylor

series expansion of Eq. (2.3) about Q, and neglecting the

second and higher order terms, we get a linearized form of

Eq. (2.3):

Do q(r) + Ho q(t) + Go q(t) = u(z), 2.4
where Dy =D(8y), Hy; = aé Q°
oK, + 92‘-1 , and ueR” is the differential

% o, W,
joint torque resulting from the perturbation.

Change the differential equation (2.4) to a difference
equation using

sy = Ak +T) —q(k)

q(r) T .

Assuming the sampling intervalt T = 1, if Dy is nonsingular,
then we can get a MIMO difference equation:

A" qky =B uk - d),
where AC ) =I+A 7' +A,:72
=1+Dy" (Hy-2Dg)z™ + Dy (D= Hy + Go) 27
B:")=By=Dg', and d =2

According to {8], Eq. (2.3) for a Stanford arm can be

wnuenasas:mphﬁedsetofeqmnonsundeﬂheasmpuon
that 9,8, =0, 1 <i,j £6, and d;;=0 for all i#j. Then we

get
D(B) 6 + G®) =< (2.5)

where D(®) = diag(d;) = inertial terms, and
G(9) = Col(g;) = gravity terms. Again expanding (2.5) with
a Taylor series around the nominal position 8,(¢) and neglect-
ing the second and higher order terms, we get:
Do () + Go q(r) = u(r) 2.6
0g;
where Do = diag (¢ @) |, Go= |- |
i
If the interacting effects of gravity among joints are
neglected,' i.e., assume Gy to be a diagonal matrix, Eq. (2.6)
wili become uncoupled,

di; §i(t)+goi; ) =u(e), 15i<6. Qn

, 1Si,jsé6.
6.

'The error from this will be comp d for
bymno&mnganaddmmahemmtoachpmtARMAXmodet




Replacing differential with difference leads to:
d gtk +2T)Y-2q;(k +T) + q; (k)

i 2

T-

+ goi 9i(k) = u;(k).

Again by'letting the sampling interval T = 1, we get
ACYqk)=BE Y utk - d) (2.8)
AC Y =1+a,z +a,272 B = b,

i * 8ai and b= -1 (Note that
d; # 0 for all i.) Considering the modeling error and system
disturbance, a disturbance term C(z™') e (k) is added to Eq.
(2.8), where e(k) is an uncorrelated random sequence with
zero mean, and C(z™') is a polynomial of z~! with unknown
coefficients. A scalar term A (k) can be added to this equation
to express the gravity coupling effects [3]. Then the final
equation becomes

ACYqR)=BE Y uk —dy+ CC™Y e(k) + h(k).

where

d=2, a|=—2, as=

2.9)

Because the linearization is achieved around the operat-
ing point, if the operating point is changed, the linearization
should be repeated, i.e., the parameters of Eq. (2.9) are time-
varying. For a time-varying system, the application of adap-
tive control algorithms is natural. Note, however, that for the
STPC we do not linearize the robot dynamic equations every
time the operating point is changed. Instead, the change of
the operating point is handled by on-line estimation of the
model parameters.

3. SELF-TUNING PREDICTOR AND PARAMETER
ESTIMATION

For a SISO system described by

AC Yy =B Yut-d)+Ciz Yeq) 3.1)
define the prediction error

B(r+k) = y(t+k) - F+kit) (3.2)
Substituting (3.2) into (3.1), we get [9]

Ae)=B u(t—d)-A $@it-k)+C e(t). 3.3

Eq. (3.3) represents a new system in which the input is the
prediction y(t/r—k), the output is the prediction error &(r),
u(r—d) is a measurable noise and e(¢r) is an unmeasurable
noise. We want to determine an input §(t/t—k) to minimize
some cost functional resulting from the prediction error.

For the system (3.3), the expected squared prediction
error is used as the cost functional, i.e.,

J = E [E¥(t+k)]. (3.4)
Define an identity

C=E A +:*F (3.5
where E, and F are polynomials of :~', and

deg (Eg)=k — 1, deg (F)=n —1 and n is the order of
system (3.3). Now, the problem is to derive the optimal input
by minimizing J, which is a typical minimum variance con-
trol problem. To minimize J, we get the optimal predictor

§ae+kin) =BT Lty + =F— e, 3.6)
A EpA ’
The prediction error associated with Eq. (3.6) is
E(t+k) = Eq e(r+k). 3.7

531

Since deg (Eg) =k — 1, the prediction error is a & — 1-th
order moving average sum of e(¢).

Although Eq. (3.6) gives the optimal predictor, the
parameters, A, B, Eq and F, are unknown. These parameters
are estimated on-line as outlined below. If C in Eq. (3.5) is

*
equal 1o 1, then A = k;——"— Plugging this into Eq.

0
(3.3), we get

E(t+k)=—EgA §(t+k/t)+ F €(r) +

B Equ(@+k—d) +Ege(t+k).
Let F=P, EyjA=-Q and B Ey=R, where
deg P)=n -1, deg Q)=n +k -1, and
deg (R)=n +k — 1. Then, the parameter estimation model
becomes

E+k)=0Q F(t+k/t) + P e(t) + R u(t+k—=d) + n(t+k),

(3.8)

where n(t+k)=Eg e(t+k). The recursive least squares
(RLS) method can be used to estimate the parameters in Eq.
(3.8). The number of estimated parameters is 3n + 2k ~ 1.
Let P, 0 and R be the estimates of P, @, and R, respec-
tively. Then, using the estimated parameters, the predictor
Eq. (3.6) becomes

Fu+kity=(1 + Q) F+k/t) + P e(t) + R u(t+k—d). (3.9)

4. THE PREDICTED CONTROLLER WITH A FEED-
FORWARD LOOP

For the system (3.1), define a performance index

J=E {[[I‘y(t+d)—d>y,(t)}2+ [Ao u(r)ﬂ e } @n

The problem is then to choose an input to minimize (4.1).
Because y(t+d) =€(t+d) + §(++d/t) and €(z+d) is only
related to the noise input e (¢), Eq. (4.1) becomes

J=E {[r st - 03,0] + [doui] }+

E {[r s(rm)]z}z E {[r s(t+d)}2}.

J becomes the minimum when the first term attains the
minimum. The first term is only related to the measured sys-
tem input and output. The problem then becomes to choose
an input to minimize

Jy= {I‘ F@+dit) - y,(t)} + {Ao u(t)}. 4.2)

The control that minimizes J, is given by

[ ] ~Ty(e+d/
u(t)= Y, ) Ay(t t), where A=—Ar°1°l.
oY

4.3)

From Eq. (4.3) and considering Eq. (3.6) and (3.1), the
closed-loop system can be written as

Bd:* ¥ (t) FTB: Cc
- = ety + = e(r).
AATTE AL, AA+TE) O+t

()=

“+.4



Using Eq. (3.5) and &(t) = Eg e(¢), we get

B @ CA+E,BT

. 45
2a+r8 7O aasre °© @.5)

The characteristic equation is AA + T 8 =0 for which A
and I can be chosen to make the system stable and provide
the desired performance. Block diagrams for the system dis-
cussed thus far are given in Fig. 1.

In the case of robot trajectory tracking, the future set
point input of the system is given as the desired motion tra-
jectory of the robot’s end-effector, and the system’s future
output is predictable (via the predicted controller). Thus,
these two signals can be combined into a feedforward loop,
wiuch improves the system’s tracking speed and accuracy.

A feedforward loop is added to the controller (4.3) so
that the new control becomes

u’(£) = uy(t) + us(r) (4.6)

y@)=

_ Dy (0)-T y(e+dir)
- A
The linearity of the controlled system allows this loop to be

analyzed separately from the rest of the system. For exam-
ple, one can simply choose G (z™') = G, = constant. Then

uxr) = {y,(t+1) - y‘(r+d+1/:)} Go @.7)

and the closed-loop system becomes

Bz
Y2 =

{y,(t+l) — J(e+d+1ir) }Go + -i— et). @48)
The system block diagram is shown in Fig. 2.

5. DETERMINATION OF THE CONTROLLER
PARAMETERS

The performance of the closed-loop system (4.5) is
determined by the characteristic equation
AA+BT=0. 3.1

The pole placement method can be used to move poles in the
z—plane. Let the desired characteristic equation be

T=1+t,z"" 41,272 5.2

To get the desired performance, choose A and I' such that
AA +BT'=T. Recall that

A D=1+a,z7'+a, 22, B Y)=b,
We can choose deg (A)=0and deg (I") =1 to get:
(Mo+boYo)+(hoa +bom )z +(Agay) 272

=14tz +1y270 (5.3)

0 bof M= | 5.4)
a: 0 0| I )

or a)

The sohution of Eq. (5.4) would be the desired parameters.

The stationary gain of the closed-loop system can be
determined by the @ in Eq. (4.7). Apply the final-value
theorem of z-transform to y(¢):

+ {y,(m) - y‘(:+d+1/:)}c;.
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lim y(t) = lim ==
t—peo 2l

=

Suppose y,(¢r) is a unit step input, or Z(y'("))=7'_f'

BHAD
AMAD +B) (D)
wants to let the output track the set point input y,(¢), he can
choose d(1) = ADMAD+ BT

B(l)

The feedforward gain, G, determines the feedforward
effects on system performance. The value of G, should be
chosen experimentally using the amplitude of set point
changes and the open-loop gain of the system.

Then we get lim y(t)= If one
1 —yoo

6. SIMULATION RESULTS

The STPC algorithm is applied to control a Stanford
arm, which is modeled as multiple SISO systems, one for
each joint, as follows.

A Y q@) =8, we~d) + b (1) + £;(t) 6.1)

where Ai(z") =1 +4a; Z-l +4;2 2-2, Bi(z"l) = b.'o

d=2, a;==-2, 15i56
a.,=dﬁ+8w b= L
i2 dii + Yio du

Refer to [8] for the values of d; and g;, and note that the
values are for the case of ‘‘no load” in the robot’s hand.
Inputs are joint torques/forces and outputs are joint angular

The desired end-effector path is a straight line segment,
P, P,—> P, where P,=(-80.95, 106,409,) and
P,=(-312,-12,50.0). The time of motion is 0.66
second. The initial and final speeds are set to zero and the
sampling interval is chosen to be 0.01 sec.

The predictor for the system (6.1) is written as

Eq A

B
QeI = 2 (k=) + Ai h(e+k) + & (0).

6.2)

When compared with Eq. (3.6), Eq. (6.2) has only one
additional term, A;(r). Similarly, the parameter estimation
model can be obtained as:

) =1; §;(t/t—k) + P; &;(t—k) + R, u;(¢—d) + H; +n;(r).

(6.3)
Since n, =2 and n, =0, we get
1,' =-1+ li,l Z;I + ... + Ii.k-H Z-‘(k+l). P,' =p,-‘o +p,'|| Z_l
R"=r,~’o+r"‘| Z—l+ ...... +ri,k 12_(k-”, H,'=H,'0+H"|Z-l.
Then, the vector of estimated parameters becomes
X =ligs oo Ligars Pigs Pists Tign Tists woes Tigors HilT
(6.4)
and the vector of measured values is:
¢ = [§ie-Ve-1-k), ... §;(t-1-k/t=2k-1), € (t2k),
g (t-1-k), u;(¢t~d), ..., ue+l-k—d), 1I7. (6.5)



That iS, Si(()=—qi(t/t_k)+¢i Xi +ni(‘)-

The number of estimated parameters is 3 + 2k + 1.

Since we have already obtained the one and two step-
ahead pridiction, to reduce the computation time, a three
step-ahead predictor can be obtained as:

(6.6)

éi(t+3/r) =-a;, q,'(t+2’t) ~4a;n in([+1”) + b‘-‘o ll,-(f) + h,'.

6.7)

The one step ahead predictor is used for the pole placement
calculation based on Eq. (5.4). Because deg (Eq;) =k — 1, if
k=1, then R; = B; and I; = -A;. Thus, the parameters in
Eq. (6.7) become ¥; = (a4 ~@i2 Pigw Pinv bio HIT
Two and three step-ahead predictors are respectively used to
calculate the feedback and feedforward parts of the controller.

Some of simulation results are plotted in Figs. 3 - 5.
Figs. 3(a) and 4 are the trajectories of joint 3 and 4 with the
desired closed-loop characteristic equation
T=1-15:"'4069:% and Fig. 3(b) is with
T =1-152"4065z"2 The results for the other joints
are similar to these and, thus, omitted. From these plots, it is
obvious that the feedforward loop improves the behavior of
the controller. The square root average emors of each joint
are tabulated below.

Joint || No feedforward | With feedforward
1 0.002 rad 0.001 rad
2 0.010 rad 0.005 rad
3 0.361 cm 0.145 cm
4 0.006 rad 0.001 rad
5 0.012 rad 0.008 rad
6 0.005 rad 0.002 rad

Table 1. Square root average position error of each joint.

Fig. 5 shows the convergence of 1 and 2 step-ahead
predictors for joint 3. The 1 step-ahead predictor needed
about 6 sampling intervals for settling, whereas the 2 step-
ahead predictor needed about 9 intervals. In the beginning of
operation, we can even open the controller loop and keep the
predictors only. After the predictors have converged, the con-
troller loop is closed so that any large fluctuation is avoided
during the initial transient period.

The computation time required by the controller is an
important consideration for real-time implementation. Table 2
shows the number of multiplications and additions for each
joint controller in one sampling interval. When popular 32-
bit microprocessors, such as MC68020 and NS 32132, are
used, the required computation time for the STPC algorithm
is listed in Table 3.

These figures indicate the feasibility of implementing the

STPC algorithms in real-time on popular 32-bit microproces-
sors.
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Subroutine Multiplication | Addition |
1 step-ahead predictor 99 74
& parameter estimator
2 step-ahead predictor 156 121
& parameter estimator
3 step-ahead predictor 3 3
coatroller with 10 8
feedforward
Total 268 203

Table 2. Number of multiplications and additions.

Micro- Multiplication | Addition Required

processor computing time
MC68020 5.68 us 1.2 ps 10.6 ms
(32 bit,

12.5 MHZ)

NS§32132 3.6 ps 0.8 us 6.76 ms
(32 bit,

10 MHZ)

Table 3. Required computation time.

7. CONCLUSION

The self-tuning predicted control is presented as an
attractive method for robot ftrajectory tracking. Using the
information of future position, a feedforward loop is shown
to improve the system performance. Because of the separation
between the predictor and the controller, the system is easily
adjustable. The controller does not require any prior
knowledge on the manipulator dynamic parameters. The
computation time analysis shows that this algorithm can be
implemented in real-time by using a popular 32-bit micropro-
Cessor.
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Fig. 2. Self-tuning control system with feedforward.
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