Optimal Resource Control in Periodic Real-Time Environments

Kang G. Shin*, C. M. Krishna**, and Yann-Hang Lee***

*Real-Time Computing Laboratory
Dept. of EECS
The University of Michigan
Ann Arbor, MI 48109

Abstract

Three factors determine the optimum configuration of a
multiprocessor at any epoch: the workload, the reward structure,
and the state of the computer system. We present an algorithm
for the optimal (more realistically, quasi-optimal) configuration
of such systems used in real-time applications with periodic re-
ward rates and workloads. This algorithm is based on Markov
decision theory.

Reconfiguration in most real-time systems is currently lim-
ited to reacting to individual component failure. We suggest here
that a change in the workload or the reward structure be as pow-
erful a motivation for reconfiguration as component failure. Such
changes occur naturally over the course of operation: we present
as an example an on-line transaction processing system with a
workload and reward structure that has a period of a day.

1.0 Introduction

Because multiprocessor systems can function (albeit some-
times in a degraded condition) in a very wide variety of config-
urations and environments, managing such systems is much more
difficult than managing a conventional uniprocessor machine. In
this paper, we deal with the problem of optimally controlling the
resources that make up such systems.

In real-time applications, both component failure and
workload variation can lead to significant changes in the ability
of the computer to meet the demands of the operating environ-
ment. It is quite easy to identify several cases where job arrival
and workload follow certain periodic laws. For instance, the
loading of on-line transaction processing systems typically re-

The work was performed when Yann-Hang Lee was with IBM T. J. Watson
Research Center, Yorktown Heights, NY. This work was supported in part by
NASA under grant NAG-1-296. and by the National Science Foundation under
grant NSFDMC-8504971. Any opinions, findings, and conclusions or rec-
ommendations expressed in this publication are those of the authors, and do not
necessarily express the view of the funding agencies.

CH2618-7/88/0000/0033$01.00 © 1988 IEEE

**Dept. of ECE
University of Massachusetts
Amherst, MA 01003

33

***Computer Science Dept.
University of Florida
Gainesville, FL 32611

aches its peak from 9 to 5 and diminishes at night. This kind of
periodic load distribution occurs also in other real-time systems,
for example those used in air traffic control, as also in telecom-
munication and computer networks. To achieve the greatest re-
wards from a given computer system, it is important to
reconfigure it in such a way as to optimally match (a) the current
state of the hardware (e.g., the number of processors which are
up) and (b) the current demands of the operating environment.

Two parameters characterize the operating environment:
the reward structure, and the imposed load. The former needs
some claboration. The operating environment imposes a value
on each of the many services it receives from the computer.
Putting it more formally, there is a reward (which could be nega-
tive) which accrues from each job execution, and this reward is a
function of the needs of the application. When the imposed load
changes, such a change can be quantified by the change in the
reward structure or failure rates that this causes. For example, the
reward accruing from a transaction-handling machine in a bank
is different at peak banking hours than it is at, say, midnight. Or,
a penalty may be introduced if job processing delays become ex-
cessive under heavy loading. Naturally, it would be useful to be
able to optimally configure or service the system as a function of
the prevailing application needs.

Resource control decisions also have to be made when the
computer changes due to component failures. When, for instance,
is it appropriate to summon a repairman? Which (degraded)
configuration should the system switch to, prior to repair? Or,
consider the problem of allocating channel bandwidth optimally
to members of a set of token-ring networks. Each network has a
set of users each of which pays a certain amount for a given
quality of service (e.g. waiting time). Additionally, the system
response time is a function of the load imposed on the system.
How does one allocate bandwidth amongst the various networks
so as to maximize reward (i.e., customer payment)? When sys-
tems are simple, such decisions can be made on the basis of intu-
ition alone. When they get complex, unsupported intuition is

insufficient, and must be supplemented by algorithms enabling a
more precise control. This is especially true when the perform-
ance of the system is an intricate function of parameters which
may act at cross purposes to one another.

The measure of performance used here is based on Meyer’s
Pperformability [1]. 1t is one of the most powerful application-
sensitive metrics available today, and incorporates both the tra-
ditional measures of performance (e.g. throughput) and of
reliability. Performability formally accounts for the requirements
of the application by defining accomplishment levels. The vector
of probabilities of meeting the accomplishment levels is
performability. Suppose we identify a reward with each accom-
plishment level. Then, the expected reward rate can be obtained
from the performability of the system. This reward rate is also
defined as reward structure by Furchtgott and Meyer [2], and as
reward function by Donatiello and Iyer [3,4]. It is this reward rate
that we use to characterize the performance of the system. The
average reward received over infinite time horizon is used as an
optimization criterion for resource control in a distributed real-
time computer system.

The expected total reward accumulated during a mission
lifetime as an optimization criterion has been studied in [5] for
configuring degradable systems. The results suggest that the
system should perform not only passive reconfiguration to respond
the occurrence of a failure, but also active reconfiguration to better
adapt itself to the current needs of the operating environment.
The problem is formulated as a dynamic programming problem
with a finite horizon. It can be simplified by identifying the re-
lationships between configurations and switch times (the time
that the system performs active reconfiguration.)

The solution provided in [5] is limited to applications with
non-repairable system and with a finite mission lifetime. Its
underlying system model is represented by an acyclic Markov
process. To examine the optimal system operation in a periodic
real-time environment, additional considerations must be kept in
(1) time dependence due to the periodic nature of the
system, (2) cyclic Markov process for system states if the system
is repairable, and (3) average reward criterion. A solution meth-
odology is suggested in the paper which consists of two steps: in
the first step, an embedded Markov chain and decision process
are established to model the system between successive periods,

mind:

and in the second step, recursive computations are conducted to
search for an improved strategy and to calculate state transition
probabilities of the embedded Markov chain. We shall show that
the suggested approach converges to the optimal solution.

This paper is organized as follows. In Section 2, the optimal
system operation problem in periodic real-time environment is
stated formally. In Section 3, we construct a solution methodol-
ogy based on the strategy improvement procedure from decision

34

theory. In Section 4 we provide a numerical example, and the
paper concliudes with Section 5.

2.0 Problem Formulation

Consider a system which may exist in one of several states.
A state is a compact description of everything about the system
that it is relevant to know. At predefined instants of time, an
action or input is applied to it. The system response to that action
a is characterized by the matrix of transition rates p,(a), i.e., the
rate of a direct transition from state i to state j under action a.
Assume that there is a reward that the system generates for its
owners per unit time; a reward which is clearly a function of the
system state. Assume also that taking an action costs something
(zero is a permissible cost).

Maximizing the net reward per unit time by suitably
choosing the actions g is one of the most important problems of
decision theory. We refer the reader to [6,7,8] for an excellent
introduction to the subject. In the remainder of this section, we
formalize and elaborate on what we have said above.

Suppose our computer system has » units of some resource.
A unit of resource is defined to be the smallest part of the whole
system which may fail to operate, and which can be repaired, re-
loaded, or replaced. Examples are processors, memory modules,
1/0 channels, shared tables, file units, and data sets. A unit can
provide useful services when it is fault-free and may become un-
available or invalid in the event of failure or loss of control.

The system state space is the aggregate of all states, denoted
by &. @ is a finite set. The system state at time ¢ can be defined
as a stochastic process, S(7).

For a state i € @, the system may be in one of various op-
erational modes or may take certain actions. For instance, the
system might choose to reconfigure itself. Let A4,, be the set of all
available actions or operational modes at time 7 when S(r) = i,
and let the system choose an action a from 4,,. It is easy to see
that transitions between system states depend upon the current
state and the current action or operational mode. When the causes
for changing the availability/functionality of units are uncorre-
lated and the occurrences of failure in each unit are Markovian,
state transitions will be conditional independent of the past states
and the past actions, given the present. Thus, the system’s be-
bavior at time 7 can be fully specified by (1), a(S(t),) and the
associated p,(a(S(#),1)) , where S(1) € @ and a(S(1),1) € Ay, is
the action chosen at time r with system state S(r).

Let p(i,at) be a reward rate at time ¢ associated with the
system state i and the action a € A,,. This reward rate represents
what the system can achieve, or may lose, per unit time, with
(i,a.r). In addition, we assume that there exists a cost, c(i,af) ,

with the action a taken when the system enters state i at time .
The cost c(i,a,r) represents the instantaneous cost (if any) of
taking the action a . Certainly, both the reward rate and the cost
of the system should be defined based on the job arrivals or load
condition. For instance, a reward rate in a telecommunication
system could be the number of calls connected within a unit time.
Also, the cost of carrying on subsystem maintenance during the
heavy load period is much higher than that during the light load
period.

If there is a periodicity in the reward, state transition,
available actions, or cost structures, then the system is periodic.
If, as sometimes happens, their periods are different, the least
common multiple of these becomes the system period. Let T be
the system period. The period, 7, is obtained from practical
considerations: it may be a day, a week, or any other period na-
tural to the application. We shall represent the functions p(i,a,f)
, c(i,an), plar) , and 4, in terms of the relative time within a
period. For instance, at time 1, the reward rate associated with
state i and the action a is p(i,a, 7), where ¢ =t — |t/T|T and |x]
is the greatest integer less than or equal to x.

With the system described above, we need to choose an
action at time f, given that the system is in state S(r). The action
chosen not only controls the system’s behavior (or system state
transitions), but also determines the reward or cost the system
receives during its operation. A strategy w is specified by a set of
actions, {a(i,f)|a(ijt) € A, i € ®} . Thus, given a strategy = ,
the reward accumulated during [0,7) can be expressed as

f
W,j(f)=fp(S(V),a(S(V),V), v)dv
° e}

1
- f (S(), a(SB),), I(S),), a(S(K™), v)dv
0

where S(Q) =i, v = l.ipg(v —¢) and I(ij) = 1 if i # j, or O oth-
erwise. Note that, in the above equation, the cost of switching
an action is represented by the second term.

The resource control problem arising from this model is to
determine a strategy =" such that the average expected reward
which is defined as

W (D)

T,

i+
is maximized with respect to all acceptable strategies. This is a
common problem: for instance, if a two-dyad system were to
suffer a processor failure, does it reconfigure into a one-triad
system, or into a one-dyad, one-simplex system? Another exam-
ple is choosing the recovery action to be taken when a file be-

comes inaccessible.

35

3.0 Optimization Approach

In this section, we propose an optimization approach to
solve the problem formulated in Section 2. The solution is divided
into two steps: in the first step, we show that an embedded
Markov chain can be used to model the system behavior between
successive periods, and then in the second step, an algorithm
based on Chapman-Kolmogorov equations is developed to search
for the optimal strategy.

3.1 Embedded Markov Chain and Decision Process

When the reward structure is periodic, it is convenient to
partition a strategy into separate sub-strategies. At time
t € [mT,(m + 1)T), an action a(r, i) of the m-th sub-strategy =,
is applied where m = [¢/T)and 7 = t —~ mT. In other words, each
sub-strategy consists of actions for a period T and is expressed
as 7, = {a(r,i)]i e @, 1 €[0,T}. Similarly, the optimal strat-
egy 7* is given by a set of =,* where m = 0,1,2,....

Given a set of sub-strategies, the system state transitions
are determined by the current state and the current action which,
in turn, specify the transition rate p,(as). Thus, the system can
be viewed as a time-varying Markov process. Let us examine the
system at times mT, m = 0,1,2,..., and let the system state at time
mT be s, When a sub-strategy =, is applied, the system will
transfer into state s,,, at time (m + 1)T with probability
q,(n,) = Prob{s,,; = j|s, =i} . The system can then be mod-
elled by an embedded Markov chain specified by the sequence
{s.}. Also, let w(s,, 7,) denote the performability accumulated
between mT and (m + 1)7T, which is determined by the state s,
and the sub-strategy 7,. The original optimization problem de-
fined in Section 2 is then, transformed into a discrcte Markov
decision process [6,7,8] where actions are equivalent to the sub-
strategies in ou:" periodic system and the objective function be-
comes L’El o Eow(s,,,_erm) .

Because we are interested in maximizing the asymptotic
reward rate, the transient states have no effect on our objective
and are therefore not considered. Also, we limit ourselves to the
case where there is only one recurrent class in this Markov proc-
ess. (Recurrence follows from the fact that repair is allowed).
This is not a limiting factor: even if there are multiple classes,
each of them can be considered separately.

There are several existing results of Markov decision proc-
ess which we shall apply to solve our optimization problem. First,
since the system behavior is periodic and the state space @ is fi-
nite, the optimal sub-strategies must be stationary [10,11]. That
is, m,* = «,* for all k,/. This implies that an optimal sub-strategy
be used periodically. From Theorem 7.6 of [8], an optimal strat-
egy exists if there exists a bounded function A(i) forie @, and
a constant g such that

h(i) = maxiw(i, 7,) + 2\q,4m, () ~ g} 3)

j=1
where g is the maximal performability.

Notice that the condition in this theorem will be met auto-
matically when w(i, #,) is bounded for all i and sub-strategy =,,,
and all stationary strategies give rise to a finite and irreducible
state space. The above equation can be solved either by linear
programming or by using the Howard’s strategy improvement
procedure [6]. For each possible ,,, we need to determine both
4,(m,) and w(i, =), which, in turn, depend upon the sub-strategy
7, applied.

3.2 Optimal Sub-strategy

To apply the policy improvement procedure in our decision
process, we need to solve the following linear equation first:

~ n ~
hG, m,) = wli, 7,) + D g (m)h G, m,) — g
J=1

4

and then to search for an improved strategy.

In our algorithm (to be presented), the period is digitized
to make it suitable for digital implementation. Let K be a large
natural number, § = T/K, and let a(i, k) be the action taken when
the system is in state i and 7 € [k6,(k + 1)8) . We want to de-
termine the optimal sub-strategy

T, *(K) = {a*(ik)|ie ®, andk =0,1,.., K- 1}

Also, it is convenient here to regard p,(a, k) as the probability
that the state transition i - j occurs in the k-th time period of
duration §. This probability can be easily calculated based on the
transition rate , (a,r). With p,(a, k), p(i, a, k) and c(i,a, k) as the
state transition probability, reward rate, and cost of action a at
the k-th duration under an action a, the Chapman-Kolmogorov
backward equations can be used to calculate the state transition
probability and accumulated reward during each period. These
are represented by the following equations:

n

k) = > pylati, k) k)glk + 1)

I=1

(%)

wli, k) = p(i, a(i, k).k)é ~

= Y pulaGRkellall + 1)k + DI a(ik)alik + 1))
I=1

+ opulati, K)wll, k + 1) 6)

I=1

36

where g,(k) is the conditional probability that the system is in
state j at time K6 given it is in state i at time k8 and w(i, k) is the
reward accumulated during [k8, K5). In the right hand side of
Eq. (6), the first term indicates the reward received during the
k-th duration. The second term is the possible cost due to a new
action or transition from the k-th duration to the k+1-th. The
final term gives the accumulated reward starting from the k+1-th
duration.

Similarly, to find an improvement in ,,, we shall search for
actions a(ik) ,k = K — 1100 and i € ® , which maximize the
foliowing recursive equation:

R (J0) = p(i, alie))8

_ ipil(a(i,k))c(l,a(ik + 1)k + DHa(ik),a(lk + 1))
I=1

+ S putati k) h U, k + 1)

I=1

(@)

"l:he initial condition of the above equations should be set to
h(i,K) = h (i, w,) which is the solution of Eq. (4).

We summarize the computation suggested above in the fol-
lowing algorithm which determines the optimal sub-strategy =,*

Algorithm for Optimal Sub-Strategy:
1. Select an arbitrary strategy

o = {a(ik) i€ @, k=0,1,..,K = 1, a(ik) € 444}.

2. Foreachi=1,2,..,n, calculate the state transition proba-
bility and reward between periods mT and (m + 1)T. This
can be done by solving Eqns. (5) and (6) iteratively, with the
initial conditions ¢,(K) =0 if j#i, 1 otherwise, and
w(i,K) = 0. Then, g,(7,) and w(i, =,) are set to ¢,(0) and
w(i, 0), respectively.

3. We must solve the set of linear equations (4), which de-
scribes the embedded Markov chain between successive pe-
riods. Note that, since [g,(7,))] is a transition matrix, the set
of equations (4) is dependent, and thus, 4 (i, #,.) cannot be
uniquely determined. This is not a limiting factor in practice
since it is easy to S.l'“’w that only the relative, and not the
absolute, values of (i, m,)) affect our search for the optimal
actions. We can set one of the & (i, ,,) to some value, and
solve for the rest.

N .

4. With h(i.K) = h(j, ,), we search for those actions a(ik)
which maximize % (i,k) of Eq. (7) for k= K —~ 1 to 0, and
ied.

A
5. Letwn, ={aik)|ie® k=0,1,..,K—-1} K r, =7,
then stop the algorithm with 7,* = /.
@, =7, , and go to step 2.

Otherwise, set

For finite K, this algorithm yields nearly-optimizing, but not
necessarily optimal, actions, since the actions are taken at specific
epochs in the operating interval (namely, at multiples of §). Itis
easy to show, from the fundamentals of dynamic programming,
that the algorithm tends to be optimal as K - = [10,11]. It is
trivial to show (by contradiction) that if there are two numbers
k, and k,, with k, = mk, for some natural number m > 1, then the
algorithm with K = k, yields a policy which is at least as good as
that with K = k,. This nearly-optimal issue is less troublesome
from a practical standpoint than it first appears, since, for ex-
ample, reconfiguration of a computer system is too expensive (in
terms of time overhead) to be performed frequently. é can then
be chosen appropriately. For instance, in the numerical example
that follows, we use 6 = 3 minutes. This means that reconfig-
uration can take place up to 20 times an hour: something that
should be perfectly adequate for the example in question.

Theorem: The above algorithm converges.

Proof: We exploit the well-known fact that the strategy-
improvement procedure converges for homogeneous systems.
For every periodic system S, with finite action set 4, transition
functions ¢{(»), and a reward structure, we can construct a
discrete-time (with time-period T') homogeneous system S, with
finite action set A,, transition functions g’(»), and a reward
structure, such that

@ for every policy 7, in the periodic system, there is a corre-
sponding action 4, € 4, such that ¢i'(r,) = ¢(a,),

e the expected reward per time T accruing as a result of taking
action a, with S, in state & is equal to the reward per period
(of length T) due to policy 7, with S, in the corresponding
state p at the beginning of the period.

Clearly, running the strategy-improvement procedure for
S, is equivalent to running it for S,. Convergence is thus estab-
lished.

0

4.0 Optimal Operation of an On-line Transaction
Processing System

Consider a transaction processing system which has a peri-
odic job arrival rate A(r) with a period of 24 hours. The job arrival
rate is shown in Figure 1: it is low until about 7:00 in the morning,

37

and then rises to its peak value by 8:00. This value is maintained,
with a break of an hour at noon, until 5:00 in the evening, after
which it declines.

The system consists of ten processors which can be grouped
into several operation units which are either dyads or triads. Thus,
a single processor failure can be detected if dyads are used or
masked immediately if triads are used. We further assume that
the system must be configured entirely in triads or entirely in
dyads. The reward rate the system receives is assumed to be the
product of the arrival rate and the number of operation units.
Given there are i processors available, the reward rate is
A(DOLi/2] or A(r)Li/3] at time ¢ when the system is configured
in dyads or triads, respectively.

When a processor in a dyad fails, there is a penalty incurred
since the job that is interrupted must be restarted. We express
this through a penalty multiplier which sets the penalty for failure
equal to the arrival rate at the failure moment times the multiplier.
However, if a processor in a triad fails, errors can be masked by
voting, and no job recovery is necessary. The penalty for
processor failure is zero in this configuration.

There is a repairman on call. We have the choice of
summoning him if he is away, and of keeping him or sending him
away if he is on-site. The cost rate of keeping a repairman per
unit time is also assumed to be periodic with a period of 24 hours.
The rate is shown in Figure 2. As one might imagine, this rate is
greatly magnified when a repairman is called in after normal

business hours.

The state of the system expresses two things: whether the
repairman is present or absent, and how many processors are
functional. That is,
& ={(,¢)]ie{01,2,3,.,10}, ¢ € {present, absent }}. The
action taken by the system as it enters each state is to decide what
to do with the repairman (whether to call, keep, or send him
away), and how to configure the system (into dyads or triads).
There is a cost associated with summoning the repairman and a
cost per unit time for keeping him. As explained above, there is
a penalty incurred when a dyad fails. The system receives a re-
ward per unit time equal to the number of groups (dyads or triads)
functioning minus any costs incurred due to the action at that
state,

Processors fail, and are repaired (if the repairman is pres-
ent), according to an exponential law with mean p3' and p;?, re-
spectively. More specifically, the following symbols will be used
for this example.

u,: repair rate.
: failure rate.
r,: cost per hour of keeping the repairman.

r,: cost per hour of summoning the repairman.

Expected
reword
per howr
300
100 re A A 4 L A 1 L 1 1 ' J
[] 4] ? 1" 20 o
Time of doy
Figure 1. Reward Function
10
molliplier

] 0 2 0 2 2
Time of day

Cosl rote for keeping -,

Figure 2. Cost of Keeping the Repairman

We have set K = 480, i.e., the day is divided down into 480
3-minute segments. We also assume that if the repairman is called
at time k8, he arrives at time (k + 1)5.

Numerical results are presented in Figures 3 to 7. Figure 3
deals with the effect of r,, i.e., the cost of having the repairman
on-site, on the optimal action. As expected, the system tends to
use him less when he is more expensive. As 7 increases, it be-
comes better to send the repairman away during particularly ex-
pensive periods (e.g., during the lunch hour or in the evening),
and to accept the additional cost, ,, of summoning him later. A
sample trajectory is plotted in Figure 3b. The system starts the
day (0:00 hours) with eight processors functional, and the
repairman away. At 4:00 AM, a processor fails (point b). Still,
the repairman is not called until 6:00 AM, when the cost of
keeping him is sufficiently low. With the repairman present, the
system is brought up to eight functional processors by about 9:00
AM, (point e), to nine processors (point f) by about 10:00 AM,
and fully functional (point g) around 11:00 AM. At this point,
the repairman is sent away. The sample path for the second half

38

Mo of precessors
0123 4 86789810

0123 4 3586789000
™

Mo of precessors

0:00—T~¥=r—T—7T"T
send
repairmen
eway
600 8:00)
1C Time
oldoy of doy
call
12:00 repairman 12:00/ repairmen
18:00 \ 18:00
n
b don't call
repairman
24:00
With repairmon present With repairmon absent
3a. r, = 1000
Yo of prosesers o of preceseors
01234 35678080 01 234 567a90
T Ty L A e e 7
sond
8 epatrmen don’t colt
ewey Tepsirmen
S
——— !
00 | - 00| &
[L Time
Tume
o doy o o ooy
Boop e cuit e
1200 b repatrmen 12:00 repuirmen
@ot-
1800 + 18:00 gon't catt
repairmon ™
)
oend
repairmen "
24:00 24:00 o
With repairmon present With repairmon absent
3b. 7, = SO00
Mo of precessors. No of precessors
0123 4 85 67 8¢10 0123 4 567 84910
0:00 — ——r—r—rr— 00— T T
sond don't call
"’;‘::‘"‘ n'av:u.n
600 $:00
Tome .I"-u et
of doy woy
Leep
1200 ¢ -— 12:00
don’t call
repairman
18:00 18:00
send
repairman
awey
b
24:00 2
With repoirman present With repoirmon absent
3¢. 1, = 25000

Figure 3. Effect of Changing s,
7, = 30000, g, = 0.01, g = 1.0, penalty multiplier=300

of the day can be interpreted in the same way: at night, for ex-
ample, with the reward rate down and the repairman expensive,
even a bad succession of failures does not prompt the summoning
of the repairman: not unless there are fewer than two processors
functional is the repairman summoned.

Figure 4 considers the effect of the penalty incurred on
dyad/triad failure: as the penalty increases, it shows that the
system configures itself more and more into triads. When the
penalty is 200, the only triad formed is when there are only three
processors functional: this is obvious since with just that many
processors available, there will be as many triads as there can be

dyads. As the penalty for failure increases, triads are preferred
more and more, despite the reduction in throughput that results.
When the penalty is 300, the system now configures into triads
when there are 9 functioning processors as well. As the penalty
rises to 400, this is the case for 6 and 7 functional processors in
addition to those mentioned above. Finally, when the penalty is
600, the system is always configured into triads except when there
are not sufficient processors to make up even one triad.

penaity 400 dyad
muitiplier

no. of processors functional

Figure 4. Effect of Failure Penalty on Configuration
7, = 1000, 7, = 30000, #u,=001, g =10

The change in penalty of failure also affects how the
repairman is handled. In Figure 5, we plot the repairman curves
for two penalty multipliers: 200 and 500. As one might expect,
when the failure penalty is large, the repairman is called sooner
and retained longer.

In Figure 6, we consider the case when the penalty is con-
stant and not a function of time, and show how the changing re-
ward rate affects the optimum configuration. Below three
functional processors, there is no decision to be taken: the system
has to work in a dyad. When, for instance, there are nine
processors functioning, the system is configured into triads from
midnight to 7:12 AM, when it switches to dyads. It switches back
to triads at 12:12 PM, and back again to dyads at 1:12 PM.
Finally, at 5:00 PM, when the reward rate begins to drop, the
system goes back to operating in triads.

.o
0123 4 567 8910
T ™ T
-y don't
celt
:00)
o doy of day
Soep call
12:00 - repeirmen C 12:00 repatrman
L
1900 [18:00 r_J
L r{_
vend Pl dem
t sway ! I call
24:00 L > 1
With repairmon present With repairman obsent
— 1} — i)
tipier-500 tipier-200

Figure S. Effect of Failure Penalty on Repairman
#, = 1000, s, = 30000, u,m 001, u=10

no. of processors

time 2 dyed SR R R

.5

24:00

Figure 6. Effect of Time of Day on Configuration with a Constant
Penalty of 10000.

39

Figure 7 considers the effect of increasing the cost of
summoning the repairman. The repairman is now kept for a
greater number of states when the cost of summoning him be-
comes very great: it is better to pay the cost of keeping the
repairmen under such circumstances. When 7, = 10° , the
repairman is sent away only when all processors are functioning,
and it is eight o’clock in the evening (the time when the reward
rate is very small and the cost of keeping the repairman is espe-
cially large).

While all these trends are intuitively clear and don’t need a
sophisticated algorithm to determine, the exact epochs at which
the repairman should be called or sent away, and the system
configured into triads or dyads, cannot be obtained through intu-
ition alone, and do require an algorithm such as this one.

5.0 Discussion

In this paper, we have studied the problem of optimally
controlling resources and system operations in periodic real-time
environments. The problem is of great practical significance be-
cause gracefully-degrading systems are being used more and more
in such commercial fields as banking, communication and process
control. Such a environment often has a periodic job arrival or
workload. It is also possible to estimate more or less accurately,
running costs, the benefits from having a certain throughput at
various times, repair costs, etc. We have proposed an algorithm
which uses an embedded Markov decision process to model sys-
tem behavior over a period. Optimal control of the kind described
here is the key to achieving good performance and availability.

In this paper, we discussed on-line transaction processing
systems. However, this algorithm should be useful wherever a
multiprocessor system has to cope with a job load that has a
roughly periodic structure (no job loading is ever exactly peri-
odic). Examples are real-time embedded systems, local-area
networks, etc.

Acknowledgement

The authors would like to thank the referees for many helpful
comments that improve the paper.

No. of

No. of precesvors
01234 587 8910

processers
D123 4 95678910

g —rrr [T T
r send
don’l coll
—— repatrman
600 | B — $:00]
Time Time
of doy of ey
Rovp call
1200 vepoirman 12:00| repairman
18:00 | 18:00
______-—'_
L
osond
dom’t cell
sepairmen
2400 24:00
With repairmon present With repairmon absent
Ta. r, = 5000
No. of
° 0123485867890
000 Y T T
3
don't call
repatrman
s
800 800}
Time Time
ooy | of gey
call
1200 m:'«”-n 1200} repairmen
8:00 18:00
dom’t call
repatrmen
send
repairmen
awey
24:00 24:00
With repoairman present With repairmon absent
0. 7, = 50000
Ne. of precessors No. of
01 23 4 %5 67 8910 0123 4 567089
000 [yt e
send
repuirman don't call
hid repairmen
600 |- 600
call
Time Time fepairman
o ooy of doy
soep
12:00 repairmen 12:00
18:00 y don't call
18:00
send
repairman
awvey
24:00 2000
With repairmon present With repoirmon obsent
Tc. r, = 100000

Figure 7. Effect of Summoning-Cost on Repairmun
7, = 3000, p, = 0.01, 5, = 1.0, penalty multiplier = 300

References

(1

[2]

(31

(4

(5]

[6]

7]
[8]
91
{10]

(1]

J. F. Meyer, "Closed-form Solutions of Performability,"
IEEE Trans. Computers, Vol. C-31, No. 7, pp. 648-657,
July 1982.

D. G. Furchtgott and J. F. Meyer, "A Performability Sol-
ution Method for Degradable Nonrepairable Systems,"
IEEE Trans. Computers, Vol. C-33, No. 6, pp. 550-554,
June 1984.

L. Donatiello and B. R. Iyer, "Analysis of a Composite
Performance Reliability Measure for Fault Tolerant Sys-
tems," Research Report RC-10325 IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, Jan. 1984, (to
appear in Journal of the ACM).

B. R. Iyer, L. Donatiello, and P. Heidelberger, "Analysis
of Performability for Stochastic Models of Fault-Tolerant
Systems," Research Report RC-10719 IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, Sep.
1984, (to appear in IEEE Trans. Computers).).

Y.-H. Lee and K. G. Shin, "Optimal Reconfiguration
Strategy for a Degradable Multi-Mudule computing Sys-
tem," Journal of ACM Vol. 34, No. 2, April 1987, pp.
326-348.

R. A. Howard, Dynamic Probabilistic Systems, Vol. II:
Semi-Markov and Decision Processes. New York: Wiley,
1971.

C. Derman, Finite State Markovian Decision Processes, Ac-
ademic Press, 1970.

S. M. Ross, Applied Probability Models with Optimization
Applications, Holden-Day, 1970.

E. B. Dynkin and A. A. Yushkevich, Controlled Markov
Processes, Springer-Verlag, 1979.

A. Federgruen and H. C. Tijms, "The Optimality Equation
in Average Cost Denumerable State Semi-Markov Decision
Problems, Recurrency Conditions and Algorithms," J. Ap-
plied Probability, Vol. 15, 1978, pp. 356-373.

R. Bellman, "Functional Equations in the Theory of Dy-
namic Programming -- IV, A Direct Convergence Proof,"
Annals Math. Vol. 65, pp. 215-223, March 1957.

41

