Checkpointing and Rollback Recovery in a Distributed System Using Common Time Base*

P. Ramanathan

Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122.

ABSTRACT

A new approach for checkpointing and rollback recovery in a distributed
computing system using a common time base is proposed in this paper. First,
a common time base is established in the system using a hardware clock
synchronization algorithm. This common time base is coupled with the idea
of pseudo-recovery block approach to develop a checkpointing algorithm
that has the following advantages: (i) maximum process autonomy, (i) no
wait for commitment for establishing recovery lines, (iii) fewer messages
to be exchanged, and (iv) less memory requirement.

Index Terms — Checkpointing, recovery block, rollback error recovery,
domino effect, pseudo-recovery points, fault-tolerant clock synchronization,
real-time systems.

1 Introduction

Concurrent processes in a critical real-time system are required to complete
their execution prior to an imposed deadline. Failing to meet such a deadline
could lead to catastrophic results. The deadlines cannot be easily met if the
processes always have to restart their execution in case of failure. Hence,
one of the issues in the design of a critical real-time system is to provide
the capability of error recovery without having to restart the processes from
the beginning.

The recovery block (RB) approach proposed in [1,2] is one way of recov-
ering from an error without a restart. In this approach, concurrent processes
save their states several times during their execution so that they can roll
back to the most recently saved state and resume their execution in case of
an error. Unfortunately, the rollback of a process can result in a cascade of
rollbacks that can push the processes back to their beginnings, i.e., a domino
effect. This results in the loss of entire computation done prior to the de-
tection of the error. In order to avoid the domino effect, Randell proposed
a conversation scheme in [2,3]. Kim also proposed a similar scheme but
with more flexibility [4]. More recently, Koo and Toueg proposed a simi-
lar scheme that requires much less overhead as compared to the Randell’s
scheme [5].

In the conversation scheme, cooperating processes enter a conversation
in order to interact with each other. Within a conversation, processes COOrI-
dinate to save their states before they interact. Processes exit a conversation
only after every process in the conversation has passed its acceptance test.
If a process does not pass its acceptance test, then all the processes in the
conversation roll back to the saved state and redo the computation using an
alternative process. This rollback or checkpointing scheme usually results
in an additional wait for the faster processes, thus degrading the utilization
of processors on which the processes are executing. Furthermore, in order
to indicate the passing of an acceptance test, each process has to broadcast
a message to all the other processes in the conversation, thereby introducing
additional overheads.

*The work reported here is supported in part by the NASA grant NAG-1-296 and the ONR
contract N00014-85-K-0531. Any opinions, findings, and lusions or dati
expressed in this paper are those of the authors and do not necessarily reflect the views of the
funding agencies.

CH2612-0/88/0000/0013/$01.00 © 1988 IEEE

To overcome the under-utilization problem, a pseudo-recovery block
(PRB) approach was proposed in [6]. In this approach, processes do not
wait for each other to coordinate the saving of states. Instead, after passing
an acceptance test, a process broadcasts a message (0 all other processes
to establish a pseudo-recovery point. A pseudo-recovery point (PRP) is de-
fined as a recovery point established without a preceding acceptance test.
So, when a process receives a message to establish a PRP, it completes its
current instruction and then saves its state without an acceptance test. Con-
sequently, a pseudo-recovery line is created whenever a process establishes
a recovery point. On detecting an error, processes roll back to a pseudo-
recovery line that has been validated later by an acceptance test in each of
the processes. Though there is no waiting for commitment in this scheme,
substantial overheads in time and space are introduced because of the large
number of PRP’s each process has to establish.

A new approach is proposed in this paper to prevent the domino effect
with little time and space overhead. The main idea in this approach is to
establish and use a common time base in the system. The common time
base is established by synchronizing the clocks of ail the processors® in
the system using a hardware synchronization algorithm(7,8,9]. This entails
some additional hardware on each processor (see [9] for an analysis of
additional hardware need) but imposes almost no time overhead on the
system performance.

Unlike the conventional algorithms, the proposed approach does not re-
quire the programmer to coordinate the interaction between the cooperating
processes. Instead, the common time base is used to coordinate the estab-
lishment of the PRP’s. The execution of each process is first synchronized
to the clock of the processor on which it is executing. An immediate con-
sequence of this synchronous execution is that each instruction in a process
takes a known number of clock cycles. This fact is coupled with the ex-
istence of the common time base to predict the relative behavior of the
cooperating processes. The expected time for processes to reach their ac-
ceptance tests is first estimated® and then these estimated times are used
to determine the times at which all the cooperating processes are asked to
establish the pseudo-recovery points.

In between two PRP’s each process is required to pass an acceptance test.
A PRP is considered valid only after all the processes pass their acceptance
test. If a process fails an acceptance test, then all processes roll back to a
validated PRP. If a process does not execute an acceptance test before the
time for the next PRP, then all the other processes must wait for the process
to execute its acceptance test. Since the clocks of all processors are tightly
synchronized and since the processes are synchronous to the clocks of the
processors on which they are executing, the times for establishing the PRP’s
can be so chosen that a process will almost always execute an acceptance
test before the next PRP. This fact is also used to reduce the number of
messages processes have to exchange to establish a pseudo-recovery line.
Note that this approach of coordinating the establishment of the PRP’s is
not feasible in the absence of a common time base since the times for
processes to reach their acceptance tests in an asynchronous system cannot
be estimated as accurately as in a synchronous system. Since it is not

1 Each processor in the system is assumed to have its own clock.

2The actual time for a process to reach a given point in its
different from the estimated time due to the p of loops,
delays, etc.

could be jally

difficult to equip the system with a common time base(7,8,9], use of a
common time in checkpointing is an attractive alternative,

Since an acceptance test validates a PRP, each process has to establish
only one PRP per pseudo-recovery line and preserve only two PRP’s to be
able to recover from an error without a cascade of rollbacks. This should
be contrasted to the n — 1 PRP’s per recovery lines in the PRB approach,
where n is the number of cooperating processes running concurrently on the
system. The paper also evaluates the the average probability of a process
sending a message or waiting for other processes to establish a checkpoint
based on a general distribution for error in estimated times. Then, using a
typical example, it is shown that even in the presence of a large error in the
estimated times, the average probability of a process sending a message or
waiting for other processes to establish a checkpoint is less than 3% (see
Section 5). This should be contrasted to a 100% probability of sending a
message and an almost 100% probability of wait in both the conversation
scheme and the PRB approach.

This paper is organized as follows. The necessary assumptions, notation
and terms are presented in Section 2, A checkpointing scheme that couples
the idea of PRB approach with the presence of common time base is pro-
posed in Section 3. Then, in Section 4, the checkpointing scheme is modeled
probabilistically to analyze the various overheads involved. Based on this
analysis, a numerical method for determining the optimum (in the sense to
be defined) times for establishing the PRP’s is also presented in Section 4.
In Section 5, the expected overheads are evaluated numerically for some
known distributions in the model to show that the overheads in this scheme
are quite small as compared to the other checkpointing schemes. Finally,
the paper concludes with a brief description of the merits and demerits of
the proposed scheme in Section 6.

2 Basic System Architecture

This section describes the architectural support assumed in the rest of the
paper. First, the proposed algorithm is based on the availability of acommon
time base. The common time base is established by synchronizing the clocks
of all the processors in the system. For this purpose, each processor is
assumed to have its own clock and is provided with a clock synchronization
circuitry(7,8,9]. The circuitry is comprised of a reference signal generator,
phase detector and a voltage controlled oscillator. The reference signal
generator receives some of the other clocks in the system[9] and generates
a ref e signal depending on the hardware synchronization algorithm
being used. The phase detector compares the phase of the reference signal
with the phase of the oscillator output and outputs a voltage proportional to
the phase error between the two signals. This output voltage is fed through
a filter to the voltage controlled oscillator which then adjusts the frequency
of operation depending on the magnitude of the error. The output of the
oscillator serves as the clock of the processor.

The existence of a common time base is used to predict the relative
behavior of the processes. Since the execution of a process is controlled by
the clock of the processor in which it is executing and since the clocks of all
the processors are kept in lock-step synchronization, the relative behavior
of the cooperating processes can be predicted more easily and accurately
than when the processors operate completely asynchronous of each other.
This additional ability to predict the relative behavior of the processes is
used as a key element to reduce time and space overhead of the proposed
algorithm.

Unlike the conventional checkpointing algorithms, the proposed algorithm
does not require the programmer to coordinate the interaction between the
processes. Instead, the establishment of the pseudo-recovery points is co-
ordinated using the common time base. For this purpose, each process
is provided with a pseudo-clock. ‘The pseudo-clock of each process can be
thought of as a counter that normally increments at every pulse of the corre-
sponding real clock. However, as will be described later, there are situations
where the pseudo-clocks do not increment. In fact, there are situations in
which the pseudo-clocks are forced to roll back instead of keeping up with
real time.

The pseudo-clocks of all the processes are always kept tightly synchro-
nized with respect to each other, because the clocks of all the processors
are in lock-step synchronization. In addition, the checkpointing algorithm is
such that whenever a pseudo-clock stops incrementing or whenever it rolls
back to some previous values, all the other pseudo-clocks also do the same.

Each process is also provided with three interrupts: Pseudo-Recovery
Interrupt (PRI), Acceptance Test Interrupt (ATI) and Error Interrupt (EI).
A process receives a PRI when its pseudo-clock reaches a value R; for
some j € {1, 2, .., n}, where R;’s are clock values provided to the
cooperating processes prior to their execution. It can thus be a hardware
interrupt implemented with the help of a timer. On the other hand, the ATI
is a software interrupt triggered when a process enters an acceptance test
whereas EI is either a hardware or a software interrupt triggered whenever
an error is detected in the system. It is generated in the process that detects
the error and passed on to the other processes by sending messages.

To preserve process autonomy, PRI and ATI are generated locally in
each of the process. As a result, they are not generated at the same time
in all the processes. However, since the pseudo-clocks of all the processes
are kept in tight synchrony by the checkpointing algorithm, the PRI's will
be generated within a short time interval determined by the small skews
between the synchronized clocks. That is, the time interval is equal to the
maximum skew that exists between the pseudo-clocks of all the processes.
The maximum skew between the pseudo-clocks is in turn determined by
the maximum skews that exist between the real clocks and the maximum
number of cycles it takes to execute an instruction in a process.

Unlike the PRI’s, the ATI’s in different processes do not necessarily
occur within a short time interval. They are governed by the presence of
loops, recursions, waiting times for shared resources, and other overheads
in each of the processes. Hence, the proposed algorithm coordinates the
establishment of the pseudo-recovery lines while retaining the asynchrony
in the execution of the acceptance tests.

3 Proposed Checkpointing Scheme

Let Py, P,, ..., and Py be the N cooperating processes in the system. They
satisfy the following assumptions.

Al: Each process executes independently of others except when accessing
shared resources.

A2: The processes are executing on reliable Processors.

A3: The processes are synchronous to the clock of the processor on which
they are executing.

A4: The programmer makes no effort to coordinate the interaction between
the processes.

Al is a requirement rather than an assumption. A2 is made for con-
vienience of presentation. The proposed scheme tolerates software design
faults and not hardware operational faults. Hardware operational faults like
failure of processors on which the processes are executing can be tolerated
by using either redundant or spare processors. Since the emphasis of this
paper is not on tolerating such hardware failures, we assume that the pro-
cesses are executing on reliable processors. A3 and A4 are based on the
availability of the common time base and distinguish our approach from the
other checkpointing algorithms. Let n; be the number of acceptance tests
in process P; and let n = min; n;. P; chooses n out of its n; acceptance
tests for the checkpointing algorithm. Even though failure to pass any one
of the n; acceptance tests will trigger a rollback, only the chosen n accep-
tance tests will be considered by the checkpointing algorithm to establish
the PRP’s. The choice of these n acceptance tests does not have to be
necessarily based on any criteria. However, the overheads involved in the
checkpointing algorithm will be less if the processes choose their accep-
tance tests in such a manner that all processes execute a chosen acceptance
test at the same time. So, to minimize the overheads, P; should choose an
acceptance test that is closest (in estimated time) to an acceptance test of a
process P; that has only n acceptance tests. For clarity of presentation, we

will henceforth assume that all processes have the same number of accep-
tance tests, namely, the chosen n acceptance tests. In particular, we will
assume that an ATI occurs only when a process enters one of the chosen
acceptance tests.

The expected time for a process to reach each of its acceptance tests is
estimated prior 1o its execution. This is made possible by the existence
of a common time base and the fact that the processes are synchronous
to the real-time clock. However, it is only “expected” because: (i) of the
presence of loops and recursions, and (i) the waiting times for shared re-
sources, the overhead due 10 interrupts, etc., are not known a priori. Using
these expected times, the time at which all processes establish their PRP’s
is calculated. The time for the j** PRP is so chosen that all processes are
expected to have completed their j*» acceptance test but not their j + 1,
Each process establishes its PRP when its pseudo-clock reaches the deter-
mined time (indicated by the arrival of a PRI).

However, before establishing a PRP, it checks whether it has executed
an acceptance test since the last PRP. Since the times for establishing the
PRP are appropriately chosen in accordance with the predicted behavior of
the process, the process would have almost always executed an acceptance
test since the last PRP. In the rare instances when it has not executed an
acceptance test, the process broadcasts a message to all other processes
in the system indicating it. On receiving such a message every process
stops incrementing its pseudo-clock and waits for those processes that have
not yet executed their acceptance test. Once they execute their acceptance
test, messages are once again sent to all processes indicating it. After all
processes have passed their acceptance test, processes start incrementing
their pseudo-clocks and resume their normal operation. If a process fails
its acceptance test, then all processes roll back to a PRP that has been later
validated by an acceptance test. Similarly, before executing an acceptance
test, each process checks whether or not it has established a PRP since the
last acceptance test. If it has not established one, it waits till it receives the
next PRI, establishes a PRP and then starts executing the acceptance test.

In order to describe this algorithm more formally, we define the following
primitives:

receive(text, process_id): Receives the message fext from the process
whose identity is process.id.

broadcast(text, process.id): Process processid broadcasts the message
text to all processes.

wait(condition): Process halts until the condition becomes true.

The issue of implementing these three primitives in the presence of faults
is non-trivial, There are several papers in literature that have addressed this
issue [10,11]. In this paper we will assume the existence of such an imple-
mentation and concenterate on developing and analyzing a checkpointing
algorithm using these primitives.

procedure pseudorecovery.interrupt;
begin
pseudo_clock backup := pseudo_clock;
if (not AT flag) then
begin
slow .= true;
broadcast (“not completed AT, my.id),
disableclock := true;
pseudoclock := pseudoclock-backup;
end;
else begin
for k=1to N, k # ¢
if receive (“not completed AT, k) then
begin
receive_flag := true;
count := count + 1;
end;
if (not receive_flag) then
begin

checkpoint_valid := checkpoint-new;
checkpoint_new := current.state;
end
else begin
disable_clock := true;
pseudo_clock := pseudo._clock _backup;
while receive_flag do
if receive (“completed AT”, k) then
begin
count := count - 1;
if count=0 then receive_flag := false;
end;
disable_clock := false;
pseudoclock := pseudo_clock backup;
end;
end;
end;
AT flag := false;
end; /* pseudorecovery._interrupt */

procedure at_interrupt;
begin
if AT flag then
begin
wait (pseudorecovery interrupt)
execute (acceptance test)
end
else begin
execute (acceptance test)
if slow then
begin
broadcast (“completed AT”, my-id);
AT _flag := true;
slow := false;
pseudorecovery.interrupt;
end;
end;
end; /* at.interrupt */

procedure error.interrupt;
current_state := checkpoint.valid;
end /* error_interrupt */

procedure clock;
if (not disable_clock) then
increment (C;);
end /* clock */

The procedures used in the above algorithm can be described informally
as follows.
Procedure Pseudorecovery Interrupt: This procedure is executed when
a process receives a PRI, i.e., when its pseudo-clock reaches a time to set
up a PRP. AT flag indicates whether it has passed an acceptance test since
the 1ast PRP. If it has not passed an acceptance test, it sets the slow flag
and broadcasts a message “not completed AT” to all the other processes.
Otherwise, it checks the incoming messages to ensure that all other processes
have also passed an acceptance test since the last PRP.

There are several ways of checking the incoming messages to ensure all
other processes have passed their acceptance test. One easy way is to assume
that all processes would have passed their acceptance test and proceed with
normal execution. If there is at least one process that has not passed an
acceptance test since the last PRP, then a message “not completed AT” will
be sent to all other processes. On receipt of such a message, the processes
roll back to the state at the time of last PRI. While doing so, they also roll
back their pseudo-clocks to the time of the last PRI and disable its increment
until it gets a message “completed AT” from all the slow processes.

Procedure AT Interrupt: In order to prevent a process from running ahead
of all the other processes, a process is allowed (0 establish only one accep-
tance test between any two successive pseudo-recovery lines. So if a process
gets two ATT’s before getting a PRI, then it has to wait for a PRI, This is
ensured by checking the AT flag variable whenever an ATI occurs.

If it is the first ATT after a PRI, then the process checks whether it is
running slower than the others, i.e., are there some processes waiting for
it to complete this acceptance (indicated by slow). If so, it broadcasts
a “completed AT” message to all other processes. If all processes have
finished their acceptance tests, then it proceeds with the normal execution,
else it waits for others to finish. The detection of an error during the
execution of an AT results in an Error Interrupt.

Procedure Error.Interrupt: This is executed whenever an error occurs in
the system. The errors are detected during the execution of an acceptance
test®. The procedure rolls back the processes to a valid state, i.c., a PRP
that has been validated by an acceptance test, and then allows each of the
processes to proceed from that point on by using an alternative path [2,3].

Procedure Clock: This procedure just describes the incrementing of
pseudo-clocks. When the disable_clock is true (happens when one of the
processes is waiting for some other process(es) to finish their acceptance
test), the pseudo clock does not increment.

Figure 1 illustrates the algorithm for three processes Py, P; and Ps. The
thick (thin) lines indicate the estimated (actual) time for establishing the
§** and j + 1** acceptance tests and the dotted line indicates the time at
which the j** PRI was issued. In Figure 1a, all processes complete their
5** acceptance test before receiving the j** PRI and no process reaches the
J+ 1" acceptance test before receiving the J** PRI So, no messages are
sent and no process waits for another process to establish a checkpoint. In
Figure 1b, P, does not complete its j** acceptance test before receiving the
7*» PRL So it sends a message to the other two processes when it receives
the j** PRI In Figure 1c, Py reaches its j + 1'* acceptance test before it
receives the j** PRI It, therefore, waits till it receives the j*» PRI before
executing the acceptance test. There are no messages exchanged in this
situation.

The highlight of our approach lies in that the need of message exchange
and waits in the above algorithm is minimized by the prediction of process
execution behavior with a common time base. A detailed analysis of its
performance is the subject of the next section.

4 Analysis of Checkpointing Scheme

In this section, a probabilistic model is developed to characterize the check-
pointing scheme described in Section 3. This model will be used to analyze
the expected overhead of the proposed scheme. To facilitate the analysis,
we shall use the following notation.

n Number of checkpoints.

AT; The j*» acceptance test.

PRP; The j*» pseudo-recovery point.

Wij Random variable representing the uncertainity in the
expected time for P; to reach AT;.

Xij Wii — Wij_i.

T.j (Ai;) Time required by P; to reach AT;
without (with) the checkpointing overhead.

H;; Waiting time by P; at PRP;.

A% (A%) The real-time at which P; receives (establishes)the j** PRL

fx (Fx) Density (distribution) of a random variable X.

M, i max; VV,'J'

mj min,- VV(,

R; The pseudo-clock time at which all processes

receive their j*» PRI.

3The chosen as well as the additional acceptance tests can trigger an EI

4.1 Probabilistic Model

To model the performance of the proposed checkpointing scheme, we make
the following assumptions.

MA1L: W;; and Wy, k # i, are independent of each other for all j, I.

MAZ2: Given W;;, the time required by P; to reach AT} without waiting
for other processes during the checkpointing, denoted by, T;;, has a
density fTa,-IW-,'-

MA3:
.

where k; is a design parameter.
MA4: Ry = A% = 0 for all i.

M; if M; > mjy
Mj +kj+ (i1 — Mj) i mjp > M

The programmer inserts the acceptance tests within the processes. For
each acceptance test, he will usually have a desired point (time) in the
process where he would like to insert it. The desired point will be based
on the number of acceptance tests he wants to insert and the estimated total
execution time for the processes [12]. The acceptance tests cannot, however,
be inserted at any arbitrary point in the process since one may not be exactly
aware of the state a process should be in at every point in its execution (for
verification by an acceptance test). So the acceptance tests will be inserted
at a feasible point closest to the desired point. After insertion the expected
time to reach an acceptance test will therefore differ from the desired time.
We can model this uncertainity in the expected time to reach an acceptance
test as a random variable distributed around the desired time for inserting
that acceptance test. Section 5 illustrates this aspect by using a specific
example.

MAL states that the random variable representing the uncertainity in the
expected time for P; to reach AT; is independent of that for P, to reach
the AT; for all k # 4. This arises from the assumption that each process
executes independently of others except when accessing shared resources.
MA2 states that due to unpredictable waits for shared resources and other
overheads the actual time for P; to reach its j** acceptance test will differ
from the expected time. The distribution of the actual time of an acceptance
test around the expected time is defined by MA2, MA3 defines the class of
functions considered in the analysis for determining the times to establish
the PRP’s. Since our checkpointing algorithm requires every process to
have completed the j** acceptance test and not the j + 1*, it is reasonable
to assume that the time for the j** PRI should be somewhere in between
M; and mj,,. This particular class of functions is chosen to make the
analysis tractable. MA4 specifies the initializing conditions.

There are three factors that contribute to the checkpointing overhead: (i)
the overhead to save states, (i) the overhead due to messages, and (iii)
overhead due 1o waiting. The overhead due to saving of states depends
directly on the number of times a process has to save its state. It can be
reduced substantially at the cost of additional hardware as shown in [13).
The overhead due to messages occurs when a process does not complete
its j* acceptance test before it receives its j** PRI, while the overhead
due to waiting occurs when a process receives its j + 1'* ATI before it
receives its j** PRI Since PRI’s are based on time rather than points in
execution whereas ATI’s correspond to points in execution, the probability of
a message being sent at the j** PRP depends on the time interval between
the start of the process and the j** PRI. When the overhead due to the
checkpointing scheme is zero, P; executes for R; time units before the j*h
PRI. But in practice, due to the waiting times at the previous checkpoints,
P; gets A, — Zi;ll H;, time units for execution before the j*» PRI Since
the processes prevent their pseudo-clocks from incrementing while waiting
at the PRP’s, A;{i - i;i H;; > R;. This result is proved more formally in
Theorem 1. For proving the theorem it is convenient to define the following
function.

Definition; Let C; be a mapping from real-time to the pseudo-time on
process P; such that C;(t) = T means that the pseudo-time on P; at
real-time ¢ is 7.

1 2 3
L
(a)
P P P
1 2 3
(c)

P P
2 3
(b)

Mean Time for ATj

Actual Time for ATj

Time for PRPj

Mean Time for ATj+l

Actual Time for AT,

J+

Figure 1: Illustration of checkpointing algorithm.

Time

1

Theorem 1 Let AY; and R; be the respective real-time and the pseudo-time
at which process P, receives the j** PRI. Also let Hii be the waiting time
at the k™ PRP. Then, A% — Y1 Hy, > R;.

Proof: Since a process might have to wait for some other processes (in-
cluding itself) to complete the kth acceptance test before establishing the k**
PRP, A, is not necessarily equal to A, where A, is the real-time at which
P; establishes the k** PRP. However, since the processes do not increment
their pseudo-clocks while some process is waiting, Ci(A%) = Ci(43)
for all 5.

In the time interval between the establishment of the k' PRP and the
receiving of the k + 1** PRI, the pseudo-clocks of all processes keep up
with real-time. As a result, C;(A%,,,) — Ci(A%) = Af,, — A4 for
all 4, k. Also, since a process that has not completed its k** acceptance
test when it received the k** PRI continues to run while the others are
waiting for it to complete the acceptance test, Hix < A% — A%. From
these observations, the theorem can be proved as follows.

j j-1
Al D (A - 48)+ Z(A:'ilz - AR
k=1 k=1

J -1
SRR+ D (Ah - A%
k=1 k=1

-1
Rj+ 3 (4 - A3
k=1

j-1
> Ri+) Hy.
k=1

In other words, A% — i) Hi > R;. Q.ED.

The above theorem implies that the time interval between two successive
PRI’s does not depend on the waiting times at the previous PRI’s. Conse-
quently, the total time that a process gets to execute before receiving the
7™ PRI does not depend on the waiting times at the previous PRI’s. So
the probability of a message being sent does not depend on the waiting
times at each PRP. The probability of a message being sent can therefore
be estimated by considering the situation in which there is no checkpointing
overhead, i.e., the estimation of the probability of P; sending a message can
be done by using T;; instead of 4;;.

4.2 Estimation of the Overhead

The overhead due to messages occurs when a process does not complete its
Jj** acceptance test before the time R; while the overhead due to waiting
occurs a process reaches its j + 1** acceptance test before R;. The overhead
due to saving of states occurs each time a process has to establish a pseudo-

recovery point.

The probability that P; does not complete its Jj*™* acceptance test before
R; can be expressed as P{T}; > R;}.

00
P(T; >R} = /Op{n,>z;1z,-=z}dz
.

0

[
o EP{T,‘J' > 2, Ry < u}|yzsdz,

@
where

P{T; > 4;R; < z)
/,:uP{T"" > 6M; = timyy < Hﬁﬂ

0
0
[x:o EP

Eq. (2) can be evaluated from the joint distribution of Tij» M; and miy.

}dtl
L‘;’“ﬂ} s, dts.
r
(3]

{Tij >HEM; <uymyyg <

Since W;; and Wy, are assumed to be independent for all k # ¢, the joint
distribution of T;;, M; and m;,; can be expressed as

P{Ty < ; Mj < z215mj40 < 25)
= P{EA1A2(BI + Ble)}
= P{EAB\}P{A2} P{EA, B;} P{A,B;)
(3)

where, Ay = Wi <z, Apg=(Vi#i Wi <z1), By =Wijy < 2,
By=(Vi#1i Wi; > z,),and E = T}; < t. Bach term in the right-hand
side of Eq. (3) can be evaluated as follows:

P{EA,B,}

Z1
=/ PATi; S tWi; = 1}P{Xij1 < 22 — 13} P{W;; = 11 }dt,
;=0

2y

= FT-j!W-;'(tIWij = tl)FX-;‘h(Z? - tx)fw., (ll)dtl “)
1=0
N
P{4s} = [T - Fw,,(22)) ®
iz
P{EA, B}
21
= P{T;; < Wi = tl}P{X,'jH > zy — tl}P{W;j =ty }dt;
t,=0

21

Frw; UWy = t1)(1 - Fx,;,, (22 — 1)) fw, (t1)dt; (6)
1=0

N
P{4;B3} = [] Fw,;(z1) -

=1
1#i

z

{/hoFT,,lw”(tltl)(l = Fxpj (22 — ‘1))fWr:(t1)d‘1} :
ty=

i

9

Similarly, it is also possible to evaluate the probability of a process wait-
ing at the § + 1** acceptance test because it has not established the jth PRP,

-ie, P{T41 < R }.

P{T;j+1 < R;} =

00
[PiTin <iry = 23as
::OO

a
o 3o P{T41 S 5 Ry S ullumsdz, ®)

where
P{Tj41 <t R; <2}
% —(1- k)t
/ P{Tij41 S, M; =t;myy < z—(b—&}dtl

1=

7
® 9 z—(1—k;)t
/ - P{Ti <M Suymyyy < ——(_JL}lu:tldtl-
t,=0 Ou kj
()]
Since W;; and Wy, are independent for all k # 1, the joint distribution of
Tij+1, M; and mj,; can be expressed as
P{Tij41 < t; M5 < 21;mjq1 < 29}
= P{E 'A1Ay(B1 + B1 By)}
= P{E'A1B1}P{As} + P{E ' A, By} P{4, 5}
(10)

where, £/ = Tj;4q < t. Among the four terms on the right-hand side of
Eq. (10), P{A2} and P{A,B;} can be evaluated from Egs. (5) and (7),

respectively. The remaining two terms can be evaluated as follows:
P{E'A1B:}
Zy z23—1)
= / / [P{Tij41 < tIWi; = t1 + 12} P{Xij40 = 12}
t,=0 Jt=0
P{W;; = t1}dtydty]

Z) 23—ty
= [0[0 [FT.j+x|W-j(thii =t +t2)fxnj+1(t2)
120 Jtp=
fw.,(t1)dtadt] (11
P{E 'AiB:}
Z1 oo
=/ / [P{Tijz1 < tIWij = t1 + 12} P{Xij41 = t2}
0 23-1,
P{W;; = t1}dtadt1]
2y 00
= [Pt Wy =+)12
1= Za—1%y
fw,;(t)dtadts] . 12)

The overhead due to saving of states depends on: (i) the number of times
a process has to save its state and (i) the architecture of the system. In
particular, it do¢s not depend on R; or any other parameter specific to the
proposed algorithm. Since the proposed algorithm requires a process o save
its states only orice every pseudo-recovery line as compared to N — 1 in
the PRB approach (where N is the number of cooperating processes in the
system), this overhead is substantially less in the proposed algorithm when
compared with the PRB approach.

The above equations for various overheads can be used to determine an
“optimal” (to be defined below) value for the design parameter k;. Ideally,
the optimal value for k; should be such that the expected time overhead
as a result of using the proposed checkpointing algorithm is minimum.
However, since the time overhead due to the additional messages cannot
be easily evaluated, we will use the weighted average of the probability of
sending a message and probability of waiting as the objective function to
be minimized. The design problem can thus be stated as:

Minimize

wm * P{Tij > R;} + (1 —wm)* P{Ti41 < R;} with respect to R;
Subject to:

R = { M; if Mj > mjq

7 M; + kj + (mjp1 — M) ifmjp 2 M
where k; is a design parameter and 0 < wm < 1 is a weighting factor. Since
k; is the only design parameter in R;, choosing value for R; is equivalent to
choosing a value for k;. However, this problem is not analytically tractable
even for simple distributions. Therefore, an optimal value for k; has to be
determined numerically as follows.

Partition the interval between the M; and m;,, into a finite number of
intervals. A simple regular grid can be used for this partitioning. (One
can also use more complicated partitioning schemes for better optimization
[14].) Choose a value of k; from each of these intervals. Compute the
objective function for each of these chosen values of k;. The value of k;
that gives rise to the minimum objective function can be approximated as
the optimal value of k;. This algorithm can be stated more formally as:

function objective(R;);
return wy, * P{T; > R;} + (1—wm) * P{Tyn1 < R}

procedure optimal_k;0;
begin
if (M; < m;41) then
partition [M;, m;1] into intervals Iy, I, ..., I

else

partition [m; 1, M;] into intervals I, I, ..
for some k; € L,1<i<l

Y Y

begin
if (M; < mj41) then
R; = Mj;
else

Ry =M; + k; » (mjy1 — My
optk [i] := objective(R;);
end
return min; optk [i];
end.

5 Numerical Examples

The overheads described in the previous section were evaluated using nu-
merical integration techniques for some known distribution and the fol-
lowing results were obtained. To account for differences in the processes
under consideration, the expected time for processes 0 reach the j** ac-
ceptance test was assumed to be normally distributed around j * inter-at
with variance var.at, where inter_at and var.at are known parameters,
i., fw,,(t) is normal with mean j * inter-at and variance var-at. Given
the expected time for a process to reach its j*h acceptance test, the actual
time (without the checkpointing overhead) was also assumed to be nor-
mally distributed around the expected time with variance j * var-eze, ie.,
fTulwu(thiJ’ = t;) is normal with mean ¢, and variance j ¥ var_exe. This
accounted for the variation in number of times certain loops were executed,
waiting times for shared resources, interrupt service overhead, etc. This
variance increases linearly with the number of checkpoint because longer
the execution time, more the resources it has to access and hence greater
the uncertainity.

The probability of a process sending a message at the sixth PRP for
different values of k; is shown in Figure 2. The figure clearly indicates
the variation in this probability with changes in the parameters var-at and
var_eze. As expected, the probability of a process sending a message
increases with the var_eze for constant inter_at and var_at. However, the
probability of a process sending a message does not always increase with
var.at for constant inter_at and var_eze. As seen from Figure 2, when
k; = 0, the probability of sending a message decreases as the variance is
increased whereas when k; = 1 the probability increases with increasing
variance. The reason for this behavior can be explained as follows.

Consider two variances var-aty
and var.at, such that var.at; > var-atz. For clarity of presentation,
let us refer to the situation with var_at, and var.at; as S1 and S2, re-
spectively, and let k; ~ 0. This implies R; ~ M;. Since the spread of
W;;'s around j * inter-at is larger in S1 than in S2, more processes are
likely to have their W;;’s much smaller than M; in S1 than in S2. Since

¢ 0.200 - (4,25,6)
% - (4,25,9)
] - (9,25,9)
E 0.150 e
W
o L
fey
£ 0.100 1
—
-
Q
3 0.050 1
9 0.
H
7]
0.000 T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: Probability of message vs. kj.

25, 6)

- (4,

Probability of wait
o

0.
0. 1
1.0
Figure 3: Probability of wait vs. k;.

o

- 0.101

+

-

~

4 0.084

] .

r

o

M

& 0.064

L

o]

& 0.044

©

H g

g

© 0.024

ke 1

[0}

L

-5‘ 0.00 T T T a T T 1

- 0.0 0.2 0.4 0.6 0.8 1.0

]

= k

Figure 4: Weighted average of probabilities of message and wait vs. k;.

var_eze is the same in both cases, and since smaller W;; implies smaller
P{T;; > R;}, the probability of a process sending a message is smaller in
S1 than in S2. On the other hand, if k; ~ 1, then R; ~ mj;;. Also mj4
is more likely to be smaller in S1 than in S2. Similarly, M; is more likely
to be larger in S1 than in S2. So R; will be closer to M; in S1 than in S2.
Hence, if W;; = Mj, then P; is more likely to send a message in S1 than
in S2. When R; &~ m;,,, the probability of processes with W;; < M;’s
is insignificant irrespective of var_at. Consequently, the probability of a
process sending a message increases with var_at when k; ~ 1.

The probability of a process waiting at the seventh acceptance test, be-
cause it has established its sixth PRP, is also shown in Figure 3. The figure
clearly shows the variation in this probability with changes in the parameters
var-at and var_ere. Here again, the probability of wait always increases
with var_eze but increases with var_at when k; ~ 0 and decreases with
var_at when k; ~ 1. The reasons are similar but the roles of k; ~ 0 and
k; ~ 1 are reversed.

To illustrate the determination of the optimal values for k;, the plots of
weighted average of the probability of message and probability of wait for
different weighting factors (w.,) are shown in Figure 4. The plot of the
weighted average for optimum values of k; against the number of check-
points is shown in Figure 5. Figures 4 and 5 correspond to a var-ere,
inter_at and var.at of 4, 25 and 9, respectively. From these plots it is
clear that the weighted average of the probabilities of message and wait is
only 2% in this example. This should be contrasted to the aimost 100%
probability of wait and 100% probability of message in the conversation

20

w0
A
5 0.0417 - w, =0.2
5‘ 1 - w, = 0.4
9 =0.6
2 .03 * ¥n
N
o5
]
U3
o]
o 0.027
o
o
191
o
5 0.01-
—
o
5
-
2 0.00+— — T !
& 0 2 4 6 8 10

Number of checkpoints

Figure 5: Weighted average of probabilities of message and wait vs. kj.

scheme. Hence, the overheads involved in the checkpointing scheme pro-
posed in this paper is far less than the other checkpointing schemes.

6 Conclusion

The checkpointing algorithm proposed in this paper has all the desirable
features with little time and space overhead. Processes have to establish
only one PRP per pseudo-recovery line and preserve only two PRP’s. The
paper also presented a model to evaluate the probabilities of exchanging
messages or waiting for some other process (for checkpointing purposes).
The average probability of exchanging messages or waiting for some other
process was evaluated for a typical example and was shown to be only 2%
for this example. A low probability of sending a message or waiting some
other process is expected in most cases, although it may vary somewhat
with the nature of cooperating processes.

The additional overheads in this scheme as compared to other schemes are
(i) the need for a common time base and (ii) the need to know the expected
times for reaching the acceptance tests a priori. If a hardware synchroniza-
tion algorithm is used to establish the common time base, then the time
overhead on the system is almost minimal. The cost of the additional hard-
ware (see [9] for an analysis of hardware cost) is easily compensated by the
reduced overhead in the checkpointing algorithm.

The expected times for reaching acceptance tests have to be estimated only
once for every process. This can be easily done by executing the process
repeatedly prior to their actual execution (mission). Since processes are
repeatedly executed prior to the mission to ensure that there are no bugs in
the program, these estimates can be obtained at no extra cost. Hence, the
checkpointing algorithm proposed in this paper has high potential use for
real-time applications.

Acknowledgement

The authors would like to thank the anonymous referees for their useful
comments.

References

[1] J. Horning, H. C. Lauer, P. M. Melliar-Smith, and B. Randell, A Pro-
gram Structure for Error Detection and Recovery, pp. 171-187, vol. 16
of Lecture Notes in Computer Science, New York: Springer-Verlag,
1974.

[2] B. Randell, “System Structure for Software Fault Tolerance”, IEEE
Trans. Software Eng., vol. SE-1, no. 2, pp. 220-232, June 1975.

[3] B. Randell, P. A. Lee, and P. C. Treleaven, “Reliability Issues in
Computing System Design”, ACM Comput. Surveys, vol. 10, no. 2, pp.
123-168, June 1978.

{4] K. H. Kim, “Approaches to Mechanization of the Conversation Scheme
Based on Monitors”, IEEE Trans. Software Eng., vol. SE-8, no. 3, pp.
189-197, May 1982.

[5} R. Koo, and S. Toueg, “Checkpointing and Rollback-Recovery for
Distributed Systems”, /EEE Trans. Software Eng., VoL SE-13, no. 1,
pp. 23-31, January 1987.

(6] K. G. Shin and Y.- H. Lee, “Evaluation of Error Recovery Blocks Used
for Cooperating Processes”, IEEE Trans. Software Eng., vol. SE-10, no.
6, pp. 692-700, November 1984.

71 J. L. W. Kessels, “Two Designs of a Fault-Tolerant Clocking System”,
IEEE Trans. Comput., vol. C-33, no. 10, pp. 912-919, October 1984.

[8] C.M. Krishna, K. G. Shin, and R. W. Butler, “Ensuring Fault Tolerance
of Phase-Locked Clocks”, IEEE Trans. Comput., vol. C-34, no. 8, pp.
752756, August 1985.

[9] K. G. Shin and P. Ramanathan, *“Clock Synchronization of a Large
Multiprocessor System in the Presence of Malicious Faults”, IEEE
Trans. Comput., vol. C-36, no. 1, pp. 2-12, January 1987.

[10] L. Lamport, “Using time instead of timeout for fault-tolerant dis-
tributed systems”, ACM Trans. Programming Languages and Systems,
vol. 6, no. 2, pp. 254-280, April 1984.

[11] 1. Lee and S. B. Davidson, “Adding time to synchronous process
communication”, IEEE Trans. Comput., vol. C-36, no. 8, pp. 113-124,
August 1987.

{12} K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal Checkpointing of
Real-Time Tasks”, IEEE Trans. Comput., vol. C-36, no. 11, pp. 1328~
1341, November 1987.

[13] Y.- H. Lee and K. G. Shin, “Design and Evaluation of a Fault-Tolerant
Multiprocessor Using Hardware Recovery Blocks”, IEEE Trans. Com-
put., vol. C-33, no. 2, pp. 113-124, February 1984.

[14] D. G. Luenberger, Linear and Nonlinear Programming, second ed.,
Addison Wesley, 1984.

21

