
1654 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

system solvers,” in Proc. 1988 Int. Cod . Parallel Processing.
Univ. Park, PA: Penn. State UNv. Press, 1988, vol. 1, pp. 166-173.
W. Abu-Sufah and A. D. Malony, “Vector processing on the Alliant
FX18 multiprocessor,” in Proc. 1986 Int. Conf. Para//el Process-
ing.
Alliant Computer Systems Corp., FX/Series Architecture Manual,
Littleton, MA, 1986.
P. E. Bjorstad, “A large scale, sparse, secondary storage, direct linear
equation solver for structural analysis and its implementation on vector
and parallel architectures,” Parallel Comput., vol. 5, pp. 3-12, 1987.
D. A. Calahan, “Parallel solution of sparse simultaneous linear
equations,” in Proc. 11th Allerton Conf. Circuits Syst. Theory,
Univ. Illinois, Urbana, IL, 1973, pp. 729-735.
G. Dahlquist and A. Bjork, Numerical Methods. Englewood Cliffs,
NJ: Prentice-Hall, 1974.
A. K. Dave and I. S. Duff, “Sparse matrix calculations on the CRAY-
2,” Parallel Comput., vol. 5, pp. 55-64, 1987.
T. A. Davis, “PSolve: A concurrent algorithm for solving sparse
systems of linear equations,” CSRD Rep. 612, Center Supercomput.
Res. Develop., Univ. Illinois, Urbana, IL, 1986.
T. A. Davis and E. S. Davidson, “PSolve: A concurrent algorithm for
solving sparse systems of linear equations,” in Proc. 1987 Int. Cod .
Parallel Processing. Univ. Park, PA: Penn. State Univ. Press, 1987,
pp. 483-490.
E. W. Dijkstra, “Hierarchical ordering of sequential processes,” in
Operating Systems Techniques, C. A. R. Home and R. H. Perrott,
a s .
1. S. Duff, R. Grimes, J. Lewis, and B. Poole, “Sparse matrix text
problems,” SIGNUM Newsletter, vol. 17, p. 22, 1982.
I. S. Duff and J. K. Reid, “Some design features of a sparse matrix
code,’’ ACM Trans. Math. Software, vol. 5, pp. 18-35, 1979.
-, “The multifrontal solution of unsymmetric sets of linear
equations,” SIAM J. Sci. Stat. Comput., vol. 5, pp. 633-641, 1984.
I. S. Duff, “Parallel implementation of multifrontal schemes,”
Parallel Comput., vol. 3, pp. 193-204, 1986.
S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman,
“The Yale sparse matrix package, II: The non-symmetric codes,” Rep.
114, Dep. Comput. Sci., Yale Univ., 1977.
-, “Yale sparse matrix package, I: The symmetric codes,” Znt. J.
Numer. Meth. Eng., vol. 18, pp. 1145-1151, 1982.
A. George, M. T. Heath, J. W. H. Liu, and E. Ng, “Solution of sparse
positive definite systems on a shared-memory multiprocessor,” Int. J.
Parallel Programming, vol. 15, no. 4, pp. 309-325, 1986.
A. George, M. T. Heath, E. Ng, and J. W. H. Liu, “Symbolic
Cholesky factorization on a local-memory multiprocessor,” Parallel
Comput., vol. 5, pp. 85-95, 1987.
R. W. Hockney and C. R. Jesshope, Parallel Computers. Bristol,
England: Adam Hilger, 1981.
J. W. Huang and 0. Wing, “Optimal parallel triangulation of a sparse
matrix,” IEEE Trans. Circuits Syst., vol. CAS-26, pp. 726-732,
1979.
J. A. G. Jess and H. G. M. Kees, “A data structure for parallel L/U
decomposition,” IEEE Trans. Comput., vol. C-31, pp. 231-239,
1982.
H. M. Markowitz, “The elimination form on the inverse and its

Univ. Park, PA: Penn. State Univ. Press, 1986, pp. 559-566.

New York: Academic, 1972, pp. 72-93.

application to linear programming,” Management Sci., vol. 3, pp.
255-269, 1957.
R. G. Melhem, “A modified frontal technique suitable for parallel
systems,” SIAM J. Sci. Stat. Comput., vol. 9, pp. 289-303, 1988.
J. W. H. Liu, “Computational models and task scheduling for parallel
sparse Cholesky factorization,” Parallel Comput., vol. 3, pp. 327-
342, 1986.
F. J. Peters, “Parallel pivoting algorithms for sparse symmetric
matrices,’’ Parallel Comput., vol. 1, pp. 99-110, 1984.
A. H. Sameh, “On some parallel algorithms on a ring of processors,”
Comput. Phys. Commun., vol. 37, pp. 159-166, 1985.
D. C. Sorenson, “Analysis of painvise pivoting in Gaussian elimina-
tion,” IEEE Trans. Comput., vol. C-34, pp. 274-278, 1985.
R. P. Tewarson, Sparse Matrices.
J. H. Wilkinson, “Error analysis of direct methods of matrix
inversion,” J. ACM, vol. 8 , pp. 281-330, 1961.
0. Wing and J. W. Huang, “A computation model of parallel solution
of linear equations,” IEEE Trans, Comput., vol. C-29, pp. 632-638,
1980.

New York: Academic, 1973.

Reliable Broadcast in Hypercube Multicomputers

P. RAMANATHAN AND KANG G. SHIN

Abstract-A simple algorithm to broadcast in a hypercube multicom-
puter containing faulty nodesAinks is proposed. The algorithm delivers
multiple copies of the broadcast message through disjoint paths to all the
nodes in the system. The salient feature of the proposed algorithm is that
the delivery of the multiple copies is transparent to the processes receiving
the message and does not require the processes to know the identity of the
faulty processors. The processes on nonfaulty nodes that receive the
message identify the original message from the multiple copies using some
scheme appropriate for the fault model used. The algorithm completes in
n + 1 steps if each node can simultaneously use all of its outgoing links.
But if each node cannot use more than one outgoing link at a time, then
the algorithm requires 2n steps.

Index Terms-Distributed agreement, distributed fault-tolerant cout-
ing, hypercube multicomputers, quorum majority.

I. INTRODUCTION
Several topologies have been proposed for interconnecting the

processors of a distributed computing system. Among them, due to its
topological richness, the binary hypercube topology has drawn
considerable attention from both academic and industrial communi-
ties. Both research [7] and commercial (by Intel, NCUBE, Floating
Point Systems, Ametek, Thinking Machine, to name a few) systems
have been built using the hypercube interconnection topology, and
significant research efforts have been made on hypercube architec-
tures.

Most of the research effort on hypercube architecture has focused
on the fault-free situation. However, the increasing use of hypercube
multicomputers for critical applications has made their fault tolerance
an important issue. In this paper, we present a simple algorithm for
broadcasting in a hypercube in the presence of nodellink faults. This
work is motivated by the need for a simple broadcast algorithm for
implementing fault-tolerant algorithms for problems like distributed
agreement [4], 1101 and clock synchronization t31, 191.

Distributed agreement and clock synchronization can be achieved
only if a nonfaulty node can correctly deliver its private value to all
the other nonfaulty nodes in the system 131, t41, 191, [lo]. This,
however, is not easy to achieve in the presence of faults because the
faulty nodes can either omit, corrupt, reroute, or alter information
passing through them. There are two possible approaches to
overcome the problem. In the first approach, each node keeps limited
information about the faulty nodes in the system. Fault-tolerant
routinghroadcasting is achieved by going around the faulty nodes
[l], [5]. This approach can be used only if it is possible to identify the
faulty processors “on-line.” Since the overhead of identifying the
faulty processors and passing the fault information to the other nodes
could be quite severe, this approach is not suitable for many time-
critical applications. In the second approach, fault tolerance is
achieved by sending multiple copies of the message through disjoint
paths. The nodes that receive the message identify the original
message from the multiple copies by using some scheme that is
appropriate for the fault model, e.g., majority voting. The second
approach has the advantage of not having to identify the faulty

Manuscript received February 21, 1988; revised July 12, 1988. This work
was supported in part by NASA Grant NAG-1-296. and ONR Contracts
NOOO14-85-K-0531 and “14-85-K-0122. Any opinions, findings, and
conclusions or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the funding agencies.

The authors are with the Real Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, The University of Michigan,
Ann Arbor, MI 48109.

IEEE Log Number 8824094.

0018-9340/88/1200-1654!$01.00 O 1988 IEEE

1655 IEEE TRANSACTIONS ON COMPUTERS, VOL. 31, NO. 12, DECEMBER 1988

processors during the normal operation of the system. This advantage
is especially important in critical real-time applications, because real-
time systems normally cannot tolerate the time overhead required to
identify the faulty processors.

In this paper, we present a broadcast algorithm that delivers
multiple copies of the message to all nodes in the hypercube through
disjoint paths. Srikanth and Toueg [lo] have also proposed a
broadcast algorithm that uses the multiple copy approach. However,
their algorithm does not make explicit use of the properties of the
hypercube topology. Their algorithm can be used in any topology
with sufficient connectivity, but the burden of ensuring the delivery
of multiple copies lies with the processes receiving the message. On
receiving a broadcast message, the processes determine the number
of copies of the same message they have already received. If the
number of copies is less than a specified threshold, then the processes
retransmit the message to the processes in the neighboring nodes.

The basic idea of our algorithm is as follows. The node that wants
to broadcast a message sends the message to all its neighbors. The
neighbors in turn broadcast the message they received using a simple
coordinated recursive doubling algorithm. The recursive doubling
algorithm executed by the neighbors is coordinated such that the
copies of the message received by a node have traveled through
disjoint paths. The salient feature of the proposed algorithm is that the
delivery of the multiple copies is transparent to the processes
receiving the message and does not require the processes to know the
identity of the faulty processors. Depending on the fault model used,
the algorithm can tolerate either n - 1 or Ln/2J or Ln/3J node/link
faults. The algorithm completes in n + l(2n) steps if each node can
use all (at most one of) its outgoing links at a time.

This paper is organized as follows. Section I1 describes the
problem and the notation used in the paper. Section 111 describes the
proposed algorithm. Section IV evaluates the performance of the
algorithm in terms of steps required for completion for different
communication capabilities at each node. Finally, Section V con-
cludes the paper.

11. NOTATION AND PROBLEM STATEMENT
Definition I : An n-dimensional hypercube Qn is defined recur-

1) Qo is a trivial graph with one node, and
2) Q, = Kz x Qn- l , where K2 is a complete graph with two

nodes and x is the product operation on two graphs [2].
Examples of Q1, Q2, and Q3 are shown in Fig. 1 . Each node in a

Q, can be uniquely represented by an n-bit address in such a way that
the addresses of the adjacent nodes differ in exactly one bit. For
convenience, we will number the bits in an address of a node in the
Qn from right to left as 0 to n - 1. If two adjacent nodes differ in
their ith bit, then they will be said to be in direction i with respect to
each other. For example, the node with address U = 0 1 1 1 will be said
to be in direction 1 of a Q 4 with respect to node w = 0 1 0 1 and vice
versa. It is clear from this definition that there are n distinct directions
in a Q,, denoted by do, d l , . . -, d n - l . The node in direction i with
respect to the node U will be denoted by @;(U). Also let [m] , = m
mod n , where m and n are integers.

uo and w = w,- w,-2 . . . WO in a Q, is defined as H(u, w) = {d;:u,
w;}. The elements of H(u, w) will be referred to as the Hamming
directions of the two nodes U and w.

The problem addressed in this paper can be easily stated as
follows. Given 1) an n-dimensional hypercube subject to node/link
failures, 2) there are a maximum of t nodellink faults in the
hypercube, and 3) the identity of the faulty node/links is not known,
the problem is to develop a broadcast algorithm that satisfies the
following condition.

C1: If the node initiating the broadcast is nonfaulty, then all the
nonfaulty nodes in the hypercube must agree on the message
broadcast by the initiating node.

As shown below in Example 1 , C 1 is not always easy to satisfy in
the presence of faults. We will first describe a broadcast algorithm

sively as follows.

Definition 2: The direction set of two nodes U = U,-~U,-~

(C)

Fig. 1. Illustrative examples of hypercubes, (a) Q,. (b) Q2. (c) Q,.

and then determine the maximum number of faults t that the
algorithm can tolerate for different fault models. The proposed
algorithm is suitable for applications that cannot tolerate the time
overhead of identifying the faulty processors, which could in general
be quite long.

Example I: Consider the hypercube Q3 shown in Fig. 1 . Suppose
node 0 initiates a broadcast using the following recursive doubling
algorithm.

Step 1: Node 0 sends the message to node 1 .
Step 2: Nodes 0 and 1 simultaneously send the message to nodes 2

and 3, respectively.
Step 3: Nodes 0, 1, 2, and 3 simultaneously send the message to

nodes 4, 5, 6, and 7, respectively.
Now suppose node 1 is faulty. Then, at the end of the algorithm,

nodes 3, 5, and 7 may have received either an incorrect message or
no message at all and condition C1 is violated.

III. PROPOSED BROADCAST ALGORITHM
There are two aspects to any broadcast algorithm: the delivery and

the reception of messages. The delivery of messages is comprised of
algorithms used by the nodes to deliver multiple copies of the
broadcast message to all nodes. In the proposed algorithm, n copies
of the message are correctly delivered to all nodes if there are no
faults in the system, where n is the dimension of the hypercube.
However, in the presence of faults, some of the n copies may either
get lost or corrupted.

The “messages reception” is comprised of algorithms used by the
nodes to interpret and identify the correct information from the
multiple copies. The identification of the correct information from the
multiple copies is strongly dependent on the fault model used.
Sections LILA and 111-B describe the delivery and reception mecha-
nisms of the proposed algorithm.

A. The Delivery Mechanism
The delivery mechanism proceeds in two phases. In the first phase,

the node initiating the broadcast sends the message to all its
neighbors. In the second phase, the neighbors use “coordinated
recursive doubling” to broadcast the message to all the nodes. The
sequence of directions used by these neighbors in their recursive
doubling phase is coordinated so as to ensure that each node gets the
broadcast message through n disjoint paths. A formal description of
the algorithm is given below.

1656 IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988

TABLE I
PATHS THROUGH WHICH THE NODES RECEIVE THE BROADCAST

MESSAGE

Paths via
Nodc Nodcl Nodc2 Node4

045-7
4 0-1-5 0-2-6

0-1 0-24-7 04
6 0-1-3-7 0-2 04
7 0-1-3 0-2-6 0 4 5

Algorithm A:

I* m: initiating node; dk: starting direction */

for 0 I I 5 n - 1 do begin

procedure recursive-doubling (m , k)

begin

R : = { m } ;
I* R : set of nodes that have received the message*/

for each node j E R
begin

send message from j to Q [k+ ,I,,(j);
R := R U { Q r k + /] , (j) } ;

end;
end

end

Algorithm broadcast(s);
begin

I* s : initiating node */

for 0 5 i I n - 1 do begin
send message from s to e&);
recursive-doubling (Q i(s), i + 1);

end;
end.

In the absence of faults, each node gets n identical copies of the
message in the above algorithm. This is because the nodes get one
message in each of the recursive doubling sequences initiated by the n
neighbors of s. It is shown later in Theorem 1 that the paths through
which a node receives the n copies of the message are disjoint. Given
below is an example to illustrate the basic idea of the algorithm.

Example 2: Consider the hypercube Q3 in Fig. 1 . Let node 0
initiate the broadcast. In the first phase, node 0 sends its message to
nodes 1, 2, and 4. In the second phase, nodes 1, 2, and 4 use
coordinated recursive doubling to broadcast the message they
received from node 0 to all other nodes. In its recursive doubling,
node 1 first sends message to node 3 along d l , then 1 and 3 send
messages along d2 to nodes 5 and 7, and finally nodes 1, 3, 5, and 7
send messages along do to nodes 0, 2,4, and 6. Similarly, node 2 (4)
uses dz + do + dl (do + dl -+ dz) as the sequence of directions in its
coordinated recursive doubling. Table I shows the disjoint paths
through which nodes 1-7 receive their messages. In the table,
columns 2, 3, and 4 indicate the path through which the node in
column 1 receives its message in the recursive doubling phase
initiated by nodes 1, 2, and 4, respectively.

It is important to note that if the neighbors of the initiating node do
not coordinate the sequence of directions in their recursive doubling,
then some nodes will not receive their copies of the message through
disjoint paths. If two or more copies are received through nondisjoint
paths, then a single faulty node could corrupt more than one copy of
the message. As we will see later in Section HI-B, this could cause
severe problems in identifying the original message from the multiple
copies.

The following example illustrates the effect on the paths of the
multiple copies if the neighbors of the initiating node do not adhere to
the sequence of directions specified in Algorithm A.

Example 3: Suppose that node 2 of Q3 in Fig. 1 does not adhere to
the sequence of directions specified in Algorithm A. Let the sequence
of directions used by node 2 be do, dz, and dl. Then it is easy to verify
that node 7 will receive one message from node 0 through nodes 2 and

3 and the other message from node 0 through nodes 1 and 3, i.e.,
node 7 receives messages from node 0 through paths that are not
disjoint.

In the rest of this section, we formally prove the results indicated
by Examples 2 and 3. Let R f refer to the recursive doubling phase of
ei(s) in the above algorithm. Let P;(q) denote the path through
which node q receives a copy of the message in R;. For clarity of
presentation we will drop the superscript s from the notation. Define
Pi(q) f l Pj(q) to mean the set of nodes common to both Pi(q) and

Theorem I : In Algorithm A, Pi(q) f l Pj(q) = 0, for all nodes q
and 0 I i , j I n - 1 , i # j .

Proof: Suppose not. Then, there exist q, j , and k such that
Pj(q) f l p k (q) # 0. Without loss of generality, one can assume that
j = 0. Let p E Pi(q) fl P'(q). Let r and t be the step number in
which p receives a copy of the message in Ro and Rk, respectively.
Then, it follows from 1) aU directions in Ro are distinct, and 2) do is
the final direction in Ro that do E H(s, p) . Using similar reasoning
on Rk we get dk E H(s, p) . It also follows from the algorithm that
H (s , p) E {di:O I i I r } and H (s , p) E {di:k I i I [k + t],}.
Combining these two facts with do E H(s, p) and dk E H(s, p) we
ge t r 2 k a n d t 2 n - k.

Now consider the path from p to q. Again it follows from the
algorithm that

pj(q)-

H (p , q) E { d i : r + l ~ i ~ n - l }

E { d i : k + l s i s n - l }

and

H (p , q) c { d i : [k + t + l] , , c i ~ [k + n - l] , }

E { d i : l s i s k - l } .

This is impossible since {di:k + 1 5 i 5 n - 1) f l {di:l I i I k

B. The Reception Mechanism
As mentioned earlier, the reception mechanism is strongly

dependent on the fault model used. In this section, we will consider
the reception mechanisms for different fault models. Since the
identity of the faulty component is not known, it is not possible to
distinguish between node and link faults. So in the rest of this
discussion we will treat them to be equivalent.

First, let us consider the simple omission faults, i.e., a faulty node
either sends the message correctly or does not send any message at
all. Note that this could have been a result of either a faulty processor
or a faulty link at that node. Since copies that arrive are not
corrupted, the original message can be identified from any one of the
received copies. The broadcast is therefore guaranteed to satisfy
condition C1, if there are fewer than n faults. Hence, in the case of
simple omission fault model, the maximum number of faults that
Algorithm A can tolerate is n - 1 .

The reception mechanism is more complicated if the faulty nodes
can corrupt the messages passing through them. Consider the case
when the faulty nodes do not corrupt the messages maliciously, i.e.,
non-Byzantine faults [4]. In this case, the original message can be
identified from the received copies by using simple majority voting,
i.e., the information in a received message is considered correct if
there are rn/21 copies of that information. However, since all the
copies do not arrive at the same time,' majority voting is not as
simple as in the tightly synchronous situation. The receiving
processes can assume the broadcast is complete and perform the
necessary voting only if they can establish a quorum. There are two
altemative ways of establishing a quorum [8]. A simple way of
establishing a quorum is to wait until r2n/31 copies of the broadcast
message arrive before voting on the information contained in them.
Since copies passing through faulty nodes may not arrive at all, r2n/

- 1) = 0. 0

I Some copies may not arrive at all.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 37, NO. 12, DECEMBER 1988 1657

31 or more copies will arrive only if there are fewer than or equal to
Ln/3J faults in the system. Therefore, with this approach for

establishing quorum, Algorithm A can tolerate a maximum of Ln/3J
faults.

An alternative approach for establishing a quorum is to maintain a
count of identical copies received. This approach can tolerate more
faults than the first approach but at the cost of additional overhead for
determining the establishment of a quorum. A quorum is established
when there are at least rn/21 identical messages. As a result, with this
approach, Algorithm A can tolerate a maximum of

Finally, the worst situation is when the faulty processors can
exhibit Byzantine behavior, i.e., they can behave in any arbitrary
manner including omitting, corrupting, rerouting, and even lying [4].
This case is similar to the non-Byzantine case if we are interested in
satisfying only condition C1. However, if we are interested in using
the proposed algorithm for broadcasting in distributed agreement or
clock synchronization algorithms, then we can tolerate a maximum of
Ln/3J faults [3], [4], [9], [lo].

It should be noted that irrespective of the behavior of the faulty
processors, one can tolerate a maximum of n - 1 faults if each
message is authenticated by an unforgeable digital signature 161. As
shown above, the number of faults that Algorithm A can tolerate and
the receiving mechanism depends on the fault model used.

IV. PERFORMANCE OF ALGORITHM A
In this section, we will evaluate the performance of Algorithm A in

terms of the number of steps required to complete the delivery
mechanism. It is shown in Theorems 2 and 3 below that the delivery
of the multiple copies can be completed in either 2n or n + 1 steps
depending on the communication capability of each node.

If each node can send a message through at most one outgoing link
at a time, then the algorithm requires a total of 2n steps. The node
initiating the broadcast sends the message to all its neighbors in the
first n steps. The neighbors start their coordinated recursive doubling
immediately after receiving the message. The last neighbor to receive
the message uses the last n steps for its recursive doubling. To prove
that it is feasible to complete the algorithm in 2n steps, we have to
prove that in every step each node has at most one message to send
out. Each node will have at most one message to send only if the node
initiating the broadcast (say s) sends the message to its neighbors in
the following order: a&), el@), . - a , B,,,-](s). This result is
proved in the following theorem.

Theorem 2: Let s be the node initiating the broadcast. If 1) each
node can use a maximum of one outgoing link at a time, 2) s sends the
message to its neighbors in the following order: B, o(s), B, (s), * * * ,
B, ,, - (s), and 3) the neighbors use coordinated recursive doubling as
per Algorithm A immediately upon receiving the message from s,
then all nodes will receive the n copies of the message in 2n steps.

Proof: Suppose not. Then, there exists a step k in which a node
p has to send out more than one message. Without loss of generality
we can assume that the messages are from the recursive doubling
initiated by nodes go($ and e&). Clearly, k > i because otherwise
node Q;(s) would not have initiated its recursive doubling, By
arguments similar to that in Theorem 1, it follows that do E H(s, p).
Since in Ri a message is sent in do only in its (n - i)th step, k z (n
- i) + i = n. But at step k L n, Ro is already complete. Hence, p
will not have a message from Ro to send out. This contradicts our
initial assumption. 0

In contrast, if a node can send messages through all its outgoing
links and also receive from all its incoming links simultaneously, then
Algorithm A requires only n + 1 steps. In the first step, the source
node s sends the message to all its neighbors. In the next n steps, the
neighbors use the recursive doubling in Algorithm A to deliver the
message to all nodes. The following theorem proves that there is no
contention for the same link at any node during the entire course of
the algorithm.

Theorem 3: Let s be the node initiating the broadcast. If a node

faults.

can receive and send messages simultaneously in all its incoming and
outgoing links, respectively, then Algorithm A requires n + 1 steps.

Proof: Suppose not. Then, there exists a step k in which a node
p that has to send more than one message in the same direction, say j .
Without loss of generality, we can assume that the messages are from
the recursive doubling initiated by nodes e&) and a&). This
implies in step k - 1 of recursive doubling both nodes B,&) and

0

V. CONCLUSION
A simple algorithm was proposed for reliable broadcast in a

hypercube. The algorithm is particularly useful in critical real-time
systems that cannot tolerate the time overhead of identifying the
faulty processors on-line. The maximum number of faults the
proposed algorithm can tolerate was determined for different fault
models. Finally, for different communication capabilities at each
node the performance of the algorithm was determined in terms of
number of steps required for completion of the broadcast. The effect
of multiple copies on the delivery times is not accounted for in this
analysis.

@;(s) send message in the same direction. Contradiction.

r11

r21
r31

r41

r51

6 1

r71

r81

r91

r101

REFERENCES
M . 4 . Chen and K. G. Shin, “Message routing in an injured
hypercube,” in Proc. Third Conf. Hypercube Concurrent Comput.
Appl., to be published.
F. Harary, Graph Theory.
L. Lamport and P. M. Melliar-Smith, “Synchronizing clocks in the
presence of faults,” J. ACM, vol. 32, Jan. 1985.
L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Trans. Programming Languages Syst., vol. 4 , pp.
382-401, July 1982.
T. C. Lee and J. P. Hayes, “Routing and broadcasting in faulty
hypercube computers,” in Proc. Third Conf. Hypercube Concurrent
Comput. Appl., to be published.
R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public key cryptosystems,” Commun. ACM,
vol. 21, pp. 120-126, Feb. 1978.
C. L. Seitz, “The Cosmic cube,” Commun. ACM, vol. 28, pp. 22-
33, Jan. 1985.
K. G. Shin and J. W. Dolter, “Alternative majority voting methods for
real-time computing systems,” IEEE Trans. Reliability, to be
published.
T. K. Srikanth and S. Toueg, “Optimal clock synchronization,” J .

-, “Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms,” Tech. Rep. 84-623, Dep. Comput. Sci., Cornell
Univ., July 1984.

Reading, MA: Addison-Wesley, 1969.

ACM, vol. 34, pp. 626-645, July 1987.

Concurrent Access of Priority Queues

V. NAGESHWARA RA0 AND VIPIN KUMAR

Abstract-The heap is an important data structure used as a priority
queue in a wide variety of parallel algorithms (e.g., multiprocessor
scheduling, branch-and-bound). In these algorithms, contention for the
shared heap limits the obtainable speedup. This paper presents an

Manuscript received February 25, 1988; revised July 12, 1988. This work
was supported by Army Research Office Grant DAA 29-84-K-OO60 to the
Artificial Intelligence Laboratory, and Office of Naval Research Grant
“14-86-K-0763 to the Department of Computer Science, University of
Texas, Austin.

The authors are with the Department of Computer Science, University of
Texas, Austin, TX 78712.

IEEE Log Number 8824093.

0018-9340/88/1200-1657$01.~ O 1988 IEEE

