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Reliable Broadcast in Hypercube Multicomputers 

P. RAMANATHAN AND KANG G. SHIN 

Abstract-A simple algorithm to broadcast in a hypercube multicom- 
puter containing faulty nodesAinks is proposed. The algorithm delivers 
multiple copies of the broadcast message through disjoint paths to all the 
nodes in the system. The salient feature of the proposed algorithm is that 
the delivery of the multiple copies is transparent to the processes receiving 
the message and does not require the processes to know the identity of the 
faulty processors. The processes on nonfaulty nodes that receive the 
message identify the original message from the multiple copies using some 
scheme appropriate for the fault model used. The algorithm completes in 
n + 1 steps if each node can simultaneously use all of its outgoing links. 
But if each node cannot use more than one outgoing link at a time, then 
the algorithm requires 2n steps. 

Index Terms-Distributed agreement, distributed fault-tolerant cout- 
ing, hypercube multicomputers, quorum majority. 

I. INTRODUCTION 
Several topologies have been proposed for interconnecting the 

processors of a distributed computing system. Among them, due to its 
topological richness, the binary hypercube topology has drawn 
considerable attention from both academic and industrial communi- 
ties. Both research [7] and commercial (by Intel, NCUBE, Floating 
Point Systems, Ametek, Thinking Machine, to name a few) systems 
have been built using the hypercube interconnection topology, and 
significant research efforts have been made on hypercube architec- 
tures. 

Most of the research effort on hypercube architecture has focused 
on the fault-free situation. However, the increasing use of hypercube 
multicomputers for critical applications has made their fault tolerance 
an important issue. In this paper, we present a simple algorithm for 
broadcasting in a hypercube in the presence of nodellink faults. This 
work is motivated by the need for a simple broadcast algorithm for 
implementing fault-tolerant algorithms for problems like distributed 
agreement [4], 1101 and clock synchronization t31, 191. 

Distributed agreement and clock synchronization can be achieved 
only if a nonfaulty node can correctly deliver its private value to all 
the other nonfaulty nodes in the system 131, t41, 191, [lo]. This, 
however, is not easy to achieve in the presence of faults because the 
faulty nodes can either omit, corrupt, reroute, or alter information 
passing through them. There are two possible approaches to 
overcome the problem. In the first approach, each node keeps limited 
information about the faulty nodes in the system. Fault-tolerant 
routinghroadcasting is achieved by going around the faulty nodes 
[l], [5]. This approach can be used only if it is possible to identify the 
faulty processors “on-line.” Since the overhead of identifying the 
faulty processors and passing the fault information to the other nodes 
could be quite severe, this approach is not suitable for many time- 
critical applications. In the second approach, fault tolerance is 
achieved by sending multiple copies of the message through disjoint 
paths. The nodes that receive the message identify the original 
message from the multiple copies by using some scheme that is 
appropriate for the fault model, e.g., majority voting. The second 
approach has the advantage of not having to identify the faulty 
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processors during the normal operation of the system. This advantage 
is especially important in critical real-time applications, because real- 
time systems normally cannot tolerate the time overhead required to 
identify the faulty processors. 

In this paper, we present a broadcast algorithm that delivers 
multiple copies of the message to all nodes in the hypercube through 
disjoint paths. Srikanth and Toueg [lo] have also proposed a 
broadcast algorithm that uses the multiple copy approach. However, 
their algorithm does not make explicit use of the properties of the 
hypercube topology. Their algorithm can be used in any topology 
with sufficient connectivity, but the burden of ensuring the delivery 
of multiple copies lies with the processes receiving the message. On 
receiving a broadcast message, the processes determine the number 
of copies of the same message they have already received. If the 
number of copies is less than a specified threshold, then the processes 
retransmit the message to the processes in the neighboring nodes. 

The basic idea of our algorithm is as follows. The node that wants 
to broadcast a message sends the message to all its neighbors. The 
neighbors in turn broadcast the message they received using a simple 
coordinated recursive doubling algorithm. The recursive doubling 
algorithm executed by the neighbors is coordinated such that the 
copies of the message received by a node have traveled through 
disjoint paths. The salient feature of the proposed algorithm is that the 
delivery of the multiple copies is transparent to the processes 
receiving the message and does not require the processes to know the 
identity of the faulty processors. Depending on the fault model used, 
the algorithm can tolerate either n - 1 or Ln/2J or Ln/3J node/link 
faults. The algorithm completes in n + l(2n) steps if each node can 
use all (at most one of) its outgoing links at a time. 

This paper is organized as follows. Section I1 describes the 
problem and the notation used in the paper. Section 111 describes the 
proposed algorithm. Section IV evaluates the performance of the 
algorithm in terms of steps required for completion for different 
communication capabilities at each node. Finally, Section V con- 
cludes the paper. 

11. NOTATION AND PROBLEM STATEMENT 
Definition I :  An n-dimensional hypercube Qn is defined recur- 

1)  Qo is a trivial graph with one node, and 
2) Q, = Kz x Qn- l ,  where K2 is a complete graph with two 

nodes and x is the product operation on two graphs [2]. 
Examples of Q1, Q2, and Q3 are shown in Fig. 1 .  Each node in a 

Q, can be uniquely represented by an n-bit address in such a way that 
the addresses of the adjacent nodes differ in exactly one bit. For 
convenience, we will number the bits in an address of a node in the 
Qn from right to left as 0 to n - 1. If two adjacent nodes differ in 
their ith bit, then they will be said to be in direction i with respect to 
each other. For example, the node with address U = 0 1  1 1  will be said 
to be in direction 1 of a Q 4  with respect to node w = 0 1 0 1  and vice 
versa. It is clear from this definition that there are n distinct directions 
in a Q,, denoted by do, d l ,  . . -, d n - l .  The node in direction i with 
respect to the node U will be denoted by @;(U). Also let [m] ,  = m 
mod n ,  where m and n are integers. 

uo and w = w,- w,-2 . . . WO in a Q, is defined as H(u,  w) = {d;:u, 
# w;}. The elements of H(u,  w) will be referred to as the Hamming 
directions of the two nodes U and w. 

The problem addressed in this paper can be easily stated as 
follows. Given 1)  an n-dimensional hypercube subject to node/link 
failures, 2) there are a maximum of t nodellink faults in the 
hypercube, and 3) the identity of the faulty node/links is not known, 
the problem is to develop a broadcast algorithm that satisfies the 
following condition. 

C1: If the node initiating the broadcast is nonfaulty, then all the 
nonfaulty nodes in the hypercube must agree on the message 
broadcast by the initiating node. 

As shown below in Example 1 ,  C 1 is not always easy to satisfy in 
the presence of faults. We will first describe a broadcast algorithm 

sively as follows. 

Definition 2: The direction set of two nodes U = U,-~U,-~ 

(C) 

Fig. 1. Illustrative examples of hypercubes, (a) Q,. (b) Q2. (c)  Q,. 

and then determine the maximum number of faults t that the 
algorithm can tolerate for different fault models. The proposed 
algorithm is suitable for applications that cannot tolerate the time 
overhead of identifying the faulty processors, which could in general 
be quite long. 

Example I: Consider the hypercube Q3 shown in Fig. 1 .  Suppose 
node 0 initiates a broadcast using the following recursive doubling 
algorithm. 

Step 1:  Node 0 sends the message to node 1 .  
Step 2: Nodes 0 and 1 simultaneously send the message to nodes 2 

and 3, respectively. 
Step 3: Nodes 0, 1, 2, and 3 simultaneously send the message to 

nodes 4, 5, 6, and 7, respectively. 
Now suppose node 1 is faulty. Then, at the end of the algorithm, 

nodes 3, 5, and 7 may have received either an incorrect message or 
no message at all and condition C1 is violated. 

III. PROPOSED BROADCAST ALGORITHM 
There are two aspects to any broadcast algorithm: the delivery and 

the reception of messages. The delivery of messages is comprised of 
algorithms used by the nodes to deliver multiple copies of the 
broadcast message to all nodes. In the proposed algorithm, n copies 
of the message are correctly delivered to all nodes if there are no 
faults in the system, where n is the dimension of the hypercube. 
However, in the presence of faults, some of the n copies may either 
get lost or corrupted. 

The “messages reception” is comprised of algorithms used by the 
nodes to interpret and identify the correct information from the 
multiple copies. The identification of the correct information from the 
multiple copies is strongly dependent on the fault model used. 
Sections LILA and 111-B describe the delivery and reception mecha- 
nisms of the proposed algorithm. 

A. The Delivery Mechanism 
The delivery mechanism proceeds in two phases. In the first phase, 

the node initiating the broadcast sends the message to all its 
neighbors. In the second phase, the neighbors use “coordinated 
recursive doubling” to broadcast the message to all the nodes. The 
sequence of directions used by these neighbors in their recursive 
doubling phase is coordinated so as to ensure that each node gets the 
broadcast message through n disjoint paths. A formal description of 
the algorithm is given below. 
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TABLE I 
PATHS THROUGH WHICH THE NODES RECEIVE THE BROADCAST 

MESSAGE 

Paths via 
Nodc Nodcl Nodc2 Node4 

045-7  
4 0-1-5 0-2-6 

0-1 0-24-7 04 
6 0-1-3-7 0-2 04 
7 0-1-3 0-2-6 0 4 5  

Algorithm A:  

I* m: initiating node; dk: starting direction */ 

for 0 I I 5 n - 1 do begin 

procedure recursive-doubling ( m ,  k )  

begin 

R : =  { m } ;  
I* R :  set of nodes that have received the message*/ 

for each node j E R 
begin 

send message from j to Q [k+ ,I,,( j ); 
R := R U { Q r k + / ] , ( j ) } ;  

end; 
end 

end 

Algorithm broadcast(s); 
begin 

I* s : initiating node */ 

for 0 5 i I n - 1 do begin 
send message from s to e&); 
recursive-doubling ( Q i(s), i + 1); 

end; 
end. 

In the absence of faults, each node gets n identical copies of the 
message in the above algorithm. This is because the nodes get one 
message in each of the recursive doubling sequences initiated by the n 
neighbors of s. It is shown later in Theorem 1 that the paths through 
which a node receives the n copies of the message are disjoint. Given 
below is an example to illustrate the basic idea of the algorithm. 

Example 2: Consider the hypercube Q3 in Fig. 1 .  Let node 0 
initiate the broadcast. In the first phase, node 0 sends its message to 
nodes 1, 2, and 4. In the second phase, nodes 1, 2, and 4 use 
coordinated recursive doubling to broadcast the message they 
received from node 0 to all other nodes. In its recursive doubling, 
node 1 first sends message to node 3 along d l ,  then 1 and 3 send 
messages along d2 to nodes 5 and 7, and finally nodes 1,  3, 5, and 7 
send messages along do to nodes 0, 2,4, and 6. Similarly, node 2 (4) 
uses dz + do + dl (do + dl -+ dz) as the sequence of directions in its 
coordinated recursive doubling. Table I shows the disjoint paths 
through which nodes 1-7 receive their messages. In the table, 
columns 2, 3, and 4 indicate the path through which the node in 
column 1 receives its message in the recursive doubling phase 
initiated by nodes 1,  2, and 4, respectively. 

It is important to note that if the neighbors of the initiating node do 
not coordinate the sequence of directions in their recursive doubling, 
then some nodes will not receive their copies of the message through 
disjoint paths. If two or more copies are received through nondisjoint 
paths, then a single faulty node could corrupt more than one copy of 
the message. As we will see later in Section HI-B, this could cause 
severe problems in identifying the original message from the multiple 
copies. 

The following example illustrates the effect on the paths of the 
multiple copies if the neighbors of the initiating node do not adhere to 
the sequence of directions specified in Algorithm A. 

Example 3: Suppose that node 2 of Q3 in Fig. 1 does not adhere to 
the sequence of directions specified in Algorithm A. Let the sequence 
of directions used by node 2 be do, dz, and dl. Then it is easy to verify 
that node 7 will receive one message from node 0 through nodes 2 and 

3 and the other message from node 0 through nodes 1 and 3, i.e., 
node 7 receives messages from node 0 through paths that are not 
disjoint. 

In the rest of this section, we formally prove the results indicated 
by Examples 2 and 3. Let R f  refer to the recursive doubling phase of 
ei(s) in the above algorithm. Let P;(q)  denote the path through 
which node q receives a copy of the message in R;.  For clarity of 
presentation we will drop the superscript s from the notation. Define 
Pi(q) f l  Pj(q)  to mean the set of nodes common to both Pi(q) and 

Theorem I :  In Algorithm A, Pi(q) f l  Pj(q)  = 0, for all nodes q 
and 0 I i ,  j I n - 1 ,  i # j .  

Proof: Suppose not. Then, there exist q,  j ,  and k such that 
Pj(q) f l  p k ( q )  # 0.  Without loss of generality, one can assume that 
j = 0. Let p E Pi(q) fl P'(q). Let r and t be the step number in 
which p receives a copy of the message in Ro and Rk, respectively. 
Then, it follows from 1) aU directions in Ro are distinct, and 2) do is 
the final direction in Ro that do E H(s,  p ) .  Using similar reasoning 
on Rk we get dk E H(s, p ) .  It also follows from the algorithm that 
H ( s , p )  E {di:O I i I r }  and H ( s , p )  E {di:k I i I [k + t],}. 
Combining these two facts with do E H(s, p )  and dk E H(s, p )  we 
ge t r  2 k a n d t  2 n - k. 

Now consider the path from p to q. Again it follows from the 
algorithm that 

pj(q)- 

H ( p , q )  E { d i : r + l ~ i ~ n - l }  

E { d i :  k + l s i s n - l }  

and 

H ( p ,  q )  c { d i :  [ k + t + l ] , , c i ~ [ k + n - l ] , }  

E { d i :  l s i s k - l } .  

This is impossible since {di:k + 1 5 i 5 n - 1) f l  {di:l I i I k 

B. The Reception Mechanism 
As mentioned earlier, the reception mechanism is strongly 

dependent on the fault model used. In this section, we will consider 
the reception mechanisms for different fault models. Since the 
identity of the faulty component is not known, it is not possible to 
distinguish between node and link faults. So in the rest of this 
discussion we will treat them to be equivalent. 

First, let us consider the simple omission faults, i.e., a faulty node 
either sends the message correctly or does not send any message at 
all. Note that this could have been a result of either a faulty processor 
or a faulty link at that node. Since copies that arrive are not 
corrupted, the original message can be identified from any one of the 
received copies. The broadcast is therefore guaranteed to satisfy 
condition C1, if there are fewer than n faults. Hence, in the case of 
simple omission fault model, the maximum number of faults that 
Algorithm A can tolerate is n - 1 .  

The reception mechanism is more complicated if the faulty nodes 
can corrupt the messages passing through them. Consider the case 
when the faulty nodes do not corrupt the messages maliciously, i.e., 
non-Byzantine faults [4]. In this case, the original message can be 
identified from the received copies by using simple majority voting, 
i.e., the information in a received message is considered correct if 
there are rn/21 copies of that information. However, since all the 
copies do not arrive at the same time,' majority voting is not as 
simple as in the tightly synchronous situation. The receiving 
processes can assume the broadcast is complete and perform the 
necessary voting only if they can establish a quorum. There are two 
altemative ways of establishing a quorum [8]. A simple way of 
establishing a quorum is to wait until r2n/31 copies of the broadcast 
message arrive before voting on the information contained in them. 
Since copies passing through faulty nodes may not arrive at all, r2n/ 

- 1) = 0. 0 

I Some copies may not arrive at all. 
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31 or more copies will arrive only if there are fewer than or equal to 
Ln/3J faults in the system. Therefore, with this approach for 

establishing quorum, Algorithm A can tolerate a maximum of Ln/3J 
faults. 

An alternative approach for establishing a quorum is to maintain a 
count of identical copies received. This approach can tolerate more 
faults than the first approach but at the cost of additional overhead for 
determining the establishment of a quorum. A quorum is established 
when there are at least rn/21 identical messages. As a result, with this 
approach, Algorithm A can tolerate a maximum of 

Finally, the worst situation is when the faulty processors can 
exhibit Byzantine behavior, i.e., they can behave in any arbitrary 
manner including omitting, corrupting, rerouting, and even lying [4]. 
This case is similar to the non-Byzantine case if we are interested in 
satisfying only condition C1. However, if we are interested in using 
the proposed algorithm for broadcasting in distributed agreement or 
clock synchronization algorithms, then we can tolerate a maximum of 
Ln/3J faults [3], [4], [9], [lo]. 

It should be noted that irrespective of the behavior of the faulty 
processors, one can tolerate a maximum of n - 1 faults if each 
message is authenticated by an unforgeable digital signature 161. As 
shown above, the number of faults that Algorithm A can tolerate and 
the receiving mechanism depends on the fault model used. 

IV. PERFORMANCE OF ALGORITHM A 
In this section, we will evaluate the performance of Algorithm A in 

terms of the number of steps required to complete the delivery 
mechanism. It is shown in Theorems 2 and 3 below that the delivery 
of the multiple copies can be completed in either 2n or n + 1 steps 
depending on the communication capability of each node. 

If each node can send a message through at most one outgoing link 
at a time, then the algorithm requires a total of 2n steps. The node 
initiating the broadcast sends the message to all its neighbors in the 
first n steps. The neighbors start their coordinated recursive doubling 
immediately after receiving the message. The last neighbor to receive 
the message uses the last n steps for its recursive doubling. To prove 
that it is feasible to complete the algorithm in 2n steps, we have to 
prove that in every step each node has at most one message to send 
out. Each node will have at most one message to send only if the node 
initiating the broadcast (say s) sends the message to its neighbors in 
the following order: a&), el@), . - a ,  B,,,-](s). This result is 
proved in the following theorem. 

Theorem 2: Let s be the node initiating the broadcast. If 1) each 
node can use a maximum of one outgoing link at a time, 2) s sends the 
message to its neighbors in the following order: B, o(s), B, (s), * * * , 
B, ,, - (s), and 3) the neighbors use coordinated recursive doubling as 
per Algorithm A immediately upon receiving the message from s, 
then all nodes will receive the n copies of the message in 2n steps. 

Proof: Suppose not. Then, there exists a step k in which a node 
p has to send out more than one message. Without loss of generality 
we can assume that the messages are from the recursive doubling 
initiated by nodes go($ and e&). Clearly, k > i because otherwise 
node Q;(s) would not have initiated its recursive doubling, By 
arguments similar to that in Theorem 1, it follows that do E H(s, p). 
Since in Ri a message is sent in do only in its (n - i)th step, k z (n 
- i )  + i = n. But at step k L n, Ro is already complete. Hence, p 
will not have a message from Ro to send out. This contradicts our 
initial assumption. 0 

In contrast, if a node can send messages through all its outgoing 
links and also receive from all its incoming links simultaneously, then 
Algorithm A requires only n + 1 steps. In the first step, the source 
node s sends the message to all its neighbors. In the next n steps, the 
neighbors use the recursive doubling in Algorithm A to deliver the 
message to all nodes. The following theorem proves that there is no 
contention for the same link at any node during the entire course of 
the algorithm. 

Theorem 3: Let s be the node initiating the broadcast. If a node 

faults. 

can receive and send messages simultaneously in all its incoming and 
outgoing links, respectively, then Algorithm A requires n + 1 steps. 

Proof: Suppose not. Then, there exists a step k in which a node 
p that has to send more than one message in the same direction, say j .  
Without loss of generality, we can assume that the messages are from 
the recursive doubling initiated by nodes e&) and a&). This 
implies in step k - 1 of recursive doubling both nodes B,&) and 

0 

V. CONCLUSION 
A simple algorithm was proposed for reliable broadcast in a 

hypercube. The algorithm is particularly useful in critical real-time 
systems that cannot tolerate the time overhead of identifying the 
faulty processors on-line. The maximum number of faults the 
proposed algorithm can tolerate was determined for different fault 
models. Finally, for different communication capabilities at each 
node the performance of the algorithm was determined in terms of 
number of steps required for completion of the broadcast. The effect 
of multiple copies on the delivery times is not accounted for in this 
analysis. 

@;(s) send message in the same direction. Contradiction. 
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Concurrent Access of Priority Queues 

V. NAGESHWARA RA0 AND VIPIN KUMAR 

Abstract-The heap is an important data structure used as a priority 
queue in a wide variety of parallel algorithms (e.g., multiprocessor 
scheduling, branch-and-bound). In these algorithms, contention for the 
shared heap limits the obtainable speedup. This paper presents an 
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