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Computing Time Delay and Its Effects on Real-Time Control Systems 
Kang G. Shin and Xianzhong Cui 

Abstract-The reliability of a real-time digital control computer 
depends not only on the reliability of the hardware and software 
used, but also on the time delay in computing the control output, 
because of the negative effects of computing time delay on control 
system performance. For a given fixed sampling interval, the 
effects of computing time delay are classified into the delay and 
loss problems. The delay problem occurs when the computing 
time delay is nonzero but smaller than the sampling interval, 
while the loss problem occurs when the computing time delay 
is greater than, or equal to, the sampling interval, i.e., loss of 
the control output. These two problems are analyzed as a means 
of evaluating real-time control systems. First, a generic analysis 
of the effects of computing time delay is presented along with 
necessary conditions for system stability. Then, we present both 
qualitative and quantitative analyses of the computing time delay 
effects on a robot control system, deriving upper bounds of the 
computing time delay with respect to system stability and system 
performance. 

I. INTRODUCTION 
real-time digital control computer or controller computer A can be thought of as a three-stage pipe: data acquisi- 

tion from sensors, data processing to generate controlldisplay 
commands, and outputting the results to actuators/display 
devices. Although each of the three stages will take time to 
complete, this paper is concerned only with the time taken 
by the most complicated stage, data processing, since the 
other two are much simpler and more static. More precisely, 
the time taken to execute programs that implement control 
algorithms-called the computing time delay-is the subject 
of this paper. 

A controller computer implements the underlying control 
algorithms by executing a sequence of instructions. Unlike 
analog control systems, the reliability of a digital control 
system depends not only on the MTBF (mean time between 
failures) of the controller hardware and software, but also on 
the delay in executing control algorithms on the controller 
computer. The execution time for a control algorithm is defined 
as the period from its trigger to generation of a corresponding 
control command. It is an extra time delay that is introduced 
to the feedback loop in a controlled system. Because of the 
existence of conditional branches, resource sharing delays, 
and processing exceptions, the execution time for a given 
control algorithm, or the computing time delay, is a piecewise 
continuous, random variable which is usually smaller than the 

corresponding sampling interval. Conventional controllers are 
designed without considering the computing time delay. Thus, 
it is very important to analyze the effects of computing time 
delay on control system performance when control algorithms 
are implemented on digital computers. 

The computing time delay is quite different from the usual 
system time delay and cannot be taken care of prior to putting 
a system in use due to its randomness caused by, for example, 
the data-dependent branches and loop counts in a program that 
implements the control algorithm under consideration. 

When the computing time delay is long relative to the sam- 
pling interval (but small relative to the mission lifetime), it may 
seriously affect control system performance. Depending on the 
magnitude of computing time delay relative to the sampling 
interval, its effects on the control system are classified into 
either a delay or loss problem. To be more precise, let E and 
T, denote the computing time delay and the sampling interval, 
respectively. A delay problem results when 0 < E < T,, and 
the loss problem occurs when [ 2 T,. The former represents 
the undesirable effects (for example, in terms of operational 
cost or energy) caused by a nonzero computing time delay 
smaller than the deadline (that is, the beginning of the next 
sampling interval) of a control algorithm or task,’ while the 
latter represents the case of no update of control output for 
one or more sampling intervals. 

To implement a controller on a digital computer, the sam- 
pling rate must be chosen carefully by not only satisfying 
the conditions of the Shannon’s sampling theorem, but also 
achieving the desired performance. A good example of this 
can be found in [4] where a series of robot control experiments 
were conducted for different sampling rates while keeping the 
controller gains fixed. A higher sampling rate is shown to im- 
ply improved performance and higher stiffness (or disturbance 
rejection property). Increasing the sampling rate, however, will 
make the computing time delay effects more pronounced on 
control system performance. These effects cannot be neglected, 
especially when the time constant of the plant is short and 
the order of the plant is high [6]. To remedy this problem, an 
optimal state feedback control law was proposed in [6 ] .  Instead 
of using the current-state feedback u(k) = -Kz(k) ,  the 
control input is formed as U( k) = -Kh( k - 1) - KBu( k - 
1); that is, the computing time delay is approximated to be one 
sampling interval. The sampling interval T, is chosen to be the 
same as the computation time of the control algorithm. In [2 ] ,  

measurement, and an averaging A/D device is used for the 
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an increased system order. A design procedure was proposed 
there for this equivalent discrete-time problem. 

The work in both [6] and [2], however, did not consider 
the randomness of computing time delay. Approximating the 
computing time delay with one or more sampling intervals 
and incorporating it into controller design was the basic idea 
used there. As mentioned earlier, the computing time delay 
problem must account for the random effects of data-dependent 
conditional branches/loops and the unpredictable delays in 
sharing resources during the execution of control algorithms. 
So, for a complex control system, estimating the maximum 
delay or assuming the computing time delay to be constant is in 
general neither realistic nor possible. Note that the computing 
time delay problem is not only caused by a complicated 
control algorithm, but also by those systems which require 
very short sampling intervals and/or many logical decisions 
and conditional searches (for decisions). 

From the computer system’s point of view, one may try 
to make the computing time delay as predictable as possible. 
Note, however, that we cannot completely eliminate the un- 
predictability of computing time delay, due to, for example, 
contention for using shared resources which is workload 
dependent. From the viewpoint of control algorithm design, 
it is important to know i) how the control system’s stability 
and performance are affected by a given computing time delay 
and ii) the maximum tolerable computing time delay for a 
specified control algorithm. The magnitude of the computing 
time delay and the number of output losses that the controlled 
system can tolerate are important indexes in evaluating the 
performance of any digital control algorithm. These indexes 
will inherently change with the type of control algorithms and 
systems under consideration. To demonstrate the importance 
of the computing time delay, we will evaluate this index for 
typical real-time control systems, robot control systems, which 
are briefly described below. 

Numerous robot control algorithms have been proposed and 
their computing time delays estimated. To our best knowledge, 
however, none of these has analyzed explicitly the effects 
of computing time delay on control system performance. 
For example, an adaptive control algorithm based on the 
computed torque algorithm is reported to require 17 ms on 
an MC68000 microprocessor [51, and the STP control needs 
6.7 ms on an NS32132 microprocessor [3]. These results not 
only indicate the need of high-speed microprocessors, but 
also raise an interesting question: can the system tolerate this 
extra computing time delay? A robot control system is usually 
evaluated on the basis of tracking accuracy, repetition error, 
and motion speed. For a nonlinear, time-varying system like a 
robot, the effects of computing time delay on its performance 
become significant enough to warrant a careful investigation 
of various control algorithms before using them. This is also 
true for all other time-critical control systems such as aircraft 
and life-support systems. (See [8] for an example of aircraft 
landing.) 

Another example for the analysis of computing time delay 
effects is related to the application of artificial intelligence (AI) 
to real-time control systems. In a knowledge-based control sys- 
tem, control actions are usually determined by either searching 

I I 

A digital control system in presence of computing time delay. Fig. I .  

its knowledge base or looking up tables. This, especially in the 
case of a heuristic search process, may require a significant 
amount of time relative to the sampling interval. Unlike a 
controller based on numerical computations, the time for 
symbolic reasoning and heuristic searches may vary with the 
operational conditions of the system. Therefore, both the delay 
and loss problems should be analyzed for knowledge-based 
systems. 

We will focus on analyzing the effects of computing time 
delay on the performance of control systems. Using examples, 
we will also show how a specific control system is evaluated 
in terms of computing time delay. In Section 11, we first 
review the basic concepts and definitions related to real- 
time digital control systems which were introduced in [8]. 
Then, we address the generic problem of analyzing the effects 
of computing time delay on control system performance. A 
generic criterion for the qualitative analysis of computing 
time delay effects is derived. We present in Section I11 both 
qualitative and quantitative analyses of the computing time 
delay effects on a robot control system. Upper bounds of 
the computing time delay are derived with respect to system 
stability and system performance. These upper bounds can be 
used as an extra constraint on controller design or an index 
for selection of a microprocessor to implement the control 
algorithm. The paper concludes with Section IV. 

11. EFFECTS OF COMPUTING TIME 
DELAY ON A CONTROL SYSTEM 

The basic concepts and performance measures proposed in 
[8] are best suited for the analysis of computing time delay 
effects on control system performance because they are based 
on task completion times. For completeness, some of the basic 
concepts in [8] are briefly described first. Then, a generic 
analysis of the effects of computing time delay is presented 
along with necessary conditions for system stability. 

A. Pe$omzance Measures in the Presence 
of Computing Time Delay 

As mentioned earlier, we are interested in analyzing the 
effects of computing time delay that results from the imple- 
mentation of a “well-designed‘’ control algorithm on a digital 
computer. (By “well-designed,’’ we mean that the system is 
stable and the effects of discretization are accounted for.) The 
presence of the computing time delay in a control system can 
be represented by a delay element after the D/A converter and 
hold circuit, as shown in Fig. 1. 

Hence, the analysis of the effects of computing time delay 
must be done in a continuous-time domain. Note that due to 
its randomness, the computing time delay is totally different 
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from other usual factors, such as the effects of discretization 
and system delay, which are not the subject of this paper. 

Let X c R" denote the state space and z(t)  E X the state 
of the controlled system at time t. Evolution of states from 
time t o  in the presence of a nonzero computing time delay E 
is represented by 

z( t )  = @.(t!to,z(to),u(t - I ) )  

where is the state transition map, ~ ( t )  E UA 5 U C d 
the control input at time t, UA the admissible input space, and 
U the input space. The behavior of the system is monitored 
via y ( t )  = r(t, u(t - I ) ,  z(t)) ,  where r is the output function, 
y(t) E Y c R" the output vector at time t and Y the output 
space. Let XA and YA be the allowed state space and the 
allowed output space, respectively. Note that if = 0, then 
u(t)  E UA implies z(t)  E XA and y(t) E YA. If 0 < < T,, 
the maximum computing time delay that the controlled system 
can tolerate at time t is defined as the contol system deadline 
(CSD) at that time 

&(t) = SUP {I : z( t )  E X A } .  (1) 
U(t)€Ua 

This means that if > d2(t),  then the system may move out 
of the allowed space. Note that the CSD at time t is a function 
of the state of the controlled system at t. For a control task 
performed during the interval [to,  t l ] ,  its CSD should be the 
smallest value of d q t )  for all t E [ to ,  t l ] .  For all but very 
simple cases, it is impossible to get a closed-form relationship 
between CSD's and the allowed space YA (see [8] for more on 
this). So, (1) is usually used as a conceptual definition of the 
CSD. If the computing time delay associated with a control 
task is greater than its CSD, a dynamic failure results [8], 
meaning that the system moved out of the allowed state space 
(e.g., the system moved into an unstable region). 

B. How Does the Delay Problem Affect 
the System Pe$ormance? 

As mentioned earlier, system performance and stability 
are affected by a nonzero computing delay E .  We want 
to investigate how the closed-loop system is affected by 
this nonzero computing delay. Let a closed-loop system be 
represented by 

i(t! t )  f(t ,z(t!  E ) ,  I ) ,  < < T3' ( 2 )  

Since E can usually be made small relative to the control 
mission lifetime by using parallel processing or high-speed 

microprocessors, (2) can be expanded as a Taylor series, and 
the subsequent first-order approximation gives the equation 
shown at the bottom of the page. Note that g ( t , z )  is not a 
function of E .  From (2),  we conclude that the computing time 
delay affects the system performance through a permanently 
acting perturbation. 

Since the control system is usually designed under the 
assumption of E = 0, the closed-loop system is represented by 
i ( t )  = f ( t ! z ( t ) ) .  Suppose there exists a Lyapunov function 
V ( t ,  z) which is positive definite, decrescent and 

where r( U )  belongs to class K such that the closed-loop system 
i ( t )  = f(t,z(t)) is stable.2 For 0 < E < T,, refemng to (3), 
found at the bottom of the page, we have 

which results in the following two stability conditions 

If conditions (4) and (5) hold, then there exists a 0 < 5 < T, 
small enough such that Vc(t,z) < 0. Because V ( t , z )  is a 
positive definite, decrescent function, condition (5) is satisfied. 
Thus, if condition (4) is satisfied, then there exists a 0 < E < 
T, small enough such that the closed-loop system is uniformly 
stable. Note that, though the stability analyses in discrete- 
time and continuous-time systems are not equivalent, a stable 
system in continuous time is still stable after the discretization, 
if the sampling rate is chosen properly. This fact is a basis for 
the analysis presented in this paper. 

*See. for example, Nonlinear System Analysis by M. Vidyasagar, (Pren- 
tice-Hall, 1978) for the definition of class 1;. 

+ 

I 
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C. What about Designing a Controller with 
an Assumed Maximum Value of <?  

Generally speaking, there are two scheduling schemes in 
implementing control algorithms, as shown in Fig. 1. In both 
schemes, the computing time delay is present. As an alterna- 
tive, the schedule may also be arranged as 1) sample system 
outputs, 2) compute the control action, 3) output the control 
signal to actuators, 4) update the state estimate and/or control 
parameters, and 5) wait for the next sampling interval and 
repeat. Clearly, at Step 2, the output is computed based on 
the control parameters which were updated in the previous 
sampling interval. That is, the control parameters updated at 
Step 4 of the current sample interval will affect the control 
output at Step 3 of the next sampling. Therefore, even the 
time consumed at Steps 1 and 2 are very short, the computing 
time at Step 4 will still affect the delay in the loop. 

For a stand-alone control system with a simple control 
algorithm, using a dedicated computer, and without processing 
exceptions, it may be not difficult to estimate the interval 
which [ lies in. Therefore, when designing a controller, 
one may attempt to handle the computing time delay by 
using an assumed maximum value of E .  As was discussed in 
[9], however, except those systems without using exceptions 
and having relative simple control algorithms, it is usually 
impossible to get a precise value of 5 due to the randomness 
in executing data-dependent branches and loops and sharing 
resources during the execution of control programs. Moreover, 
in what follows, we will show that this kind of impreciseness 
in < may fail any attempt of using an assumed maximum 
value. Suppose the controlled plant is described by Go(.) = 
G1(s)ePdn, where d 2 0 is the system time delay and 
not necessarily an integral multiple of the sampling interval. 
Suppose the computing time delay is < = [0Ts, 0 < 50 < 1, 
then the equivalent controlled plant is approximated by 

G ( s )  = Gl(s)e-T",T = d + 
Let d = L0Ts - doT, for some L0,O 5 do < 1, then 

T = LOT,, + (Eo - do)T, ZE LT, - mTs.O < m < 1 
and m = 1 - ((0 - d o ) ,  
and m = €0 - do. 

L = LO + 1 if <O > do 
if <O 5 do. { L = Lo 

where 

Now, the controlled plant can be represented as 

G ( s )  = G1 (s)enLTss.  

Let G( z )  be the controlled plant G( s) in discrete-time domain, 
then by the hold equivalent (zero-order hold), we get 

where Z (  G(s)~-"s represents the z-transform of the 

G( s ) emT" 
time-domain function of . Therefore, the comput- 
ing time delay will affect the'open-loop zeros, poles at the 
origin, and the gain. This can be verified by the following 
simple example. 

e-1.5s 

l + s  
Example: Suppose G(s)  = - ,T, = 1. By the hold 

equivalent, the controlled plant in discrete-time domain is 

z + 0.0652 G o . ~ ( z )  = 0.5934 ,if < = 0.6,or (6) 
z3(2 - 0.3679) 

z+2.4872 . G ~ J , ~ ( z )  = 0.1813 , d  < = 0.3. (7) 
z2(2  - 0.3679) 

Obviously, a controller designed for (6) by assuming a maxi- 
mum computing time delay may not work well for (7). 

D. How Does the LASS Problem Affect System Performance? 

The loss problem is quite different from the delay problem. 
Let k denote a discrete-time index, and suppose at time k the 
computer controller fails to update the control output. Because 
of the D/A converter and the hold circuit, the output of the 
computer controller does not change when a loss problem 
occurs; that is, u(k - 1) is used over two sampling intervals 
instead of one sampling interval. For example, loss of one 
controller's output at time k for the aircraft landing problem 
in [8] keeps the elevator deflection unchanged, but the aircraft 
does not remain at the same position. At time k + 1 the 
controller computer collects a new sample y(k + 1) and 
calculates the corresponding control output u(k + 1). Thus, 
loss of one control output is equivalent to the case when 
the controller computer fails to update the output during any 
one sampling interval over the entire mission lifetime. Let 
Au(k) u(k) - u(k - l), then -Au(k) can be treated as 
a disturbance added to the system control input at time k .  
Because this could occur randomly at any time during the 
mission, the failure to deliver a control output can be treated as 
a random disturbance to the system. If the computer again fails 
to deliver a control output at time k + 1, then the actual control 
is still the same asu(k-1). Let Au(kf1) ZE u(k+l)-u(k-1) 
and suppose E[Au(k)]  = 0. Since the correlation matrix 
E[Au(k)AuT(k + l)] may not necessarily be zero, this may 
be a correlated random disturbance. 

For all but simple systems, it is difficult to accurately 
analyze the effects of computing time delay for the following 
reasons: 

1) It is not easy to derive the allowed state space XA, as 
pointed out in [8]. 

2) The computing time delay is a random variable, and 
its effects may change throughout the entire mission 
lifetime. 

3) Different control systems have different structures, thus 
requiring a separate analysis for each control system. In 
other words, only case-by-case analyses are possible. 

To be more specific on the points discussed thus far, we 
will analyze the computing time delay effects for a typical 
real-time control system in the next section. 

111. EXAMPLE: A ROBOT CONTROL SYSTEM 

The generic analysis of computing time delay effects can 
only be solidified with real control systems, because the 
computing time delay is an application-sensitive measure. In 
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this section we will therefore analyze a robot control system 
in detail. 

To analyze a robot control system under a permanently 
acting perturbation, we need to know the system dynamic 
equation and the control algorithm to be used. The dynamics 
of a robot arm can be written as 

(8) 

where H ( q )  is the n x n inertia matrix, C(q,q)q, an vector 
representing the centrifugal and Coriolis forces, G(q), the 
gravitational loading vector, q, the vector of joint position, and 
T ,  the vector of torque/force exerted by joint actuators [l]. 

We will analyze the robot control system both qualitatively 
and quantitatively. The qualitative analysis is based on the 
generic stability criterion (4). For the quantitative analysis, we 
will demonstrate how the effects of computing time delay can 
be analyzed and evaluated in practice. 

H(q)S + C(q, 414 + G(Q) = 

A. Qualitative Analysis 

Let the controller be represented by T = c(q, 4, E ) .  Note that 
the controller is originally designed by assuming E = 0. By 
letting 2 1  4, one can describe the closed-loop 
system by 

(9) 

q and 2 2  

4 4  E )  = f(t, z( t ,  0, E )  

5 = [zT,5~] 

where 
T 

and 
f(t> 4t, 0' E )  = 

1 5 2  

[8(21)-1(-C(51,52)z2 - G(m) + ~ ( 5 1 , 2 2 , E ) )  ' 

For qualitative analysis, referring to (3), we get the standard 
form of system with a permanently acting perturbation as 

4 t .  E )  = f ( t ,  4 4  O ) , O )  + Ed4 5). 
From (9), we get 

1 
where 

d 
8 5 2  

a22 = H(zl)-1-(-C(zl,z2)z2 + C ( Z l , Z 2 : 0 ) ) .  

Because each term of g ( t , z )  is bounded above in t, 
sup 1 1  g( t , z )  ((< o, that is, stability condition (4) 

t2to .I1511 < P  

is satisfied. Thus, we conclude that there exists a 0 < E < T, 
small enough such that the closed-loop system is uniformly 
stable. 

B. Quantitative Analysis with Respect to System Stability 

For any quantitative analysis of the effects of computing 
time delay, it is necessary to specify the control algorithm 
to be used. In the robot control system, the controller is 
T = c(q,q,O). If the system parameters in (8) are known, 
then one can choose the control torque/force vector as 

(10) 
- Kp(q(t) - Q d ( t ) )  (11)  

7 = H ( q ) u ( t )  + C(q, $4 + G(q) 
4 t )  = i i d ( t )  - Kv(!i(t) - 

where qd is the desired joint positions and K , ,  K p  the matrices 
of controller gains. This is the well-known computed torque 
algorithm, on which several adaptive algorithms (for example, 
[7]) are proposed in the presence of unknown parameters. 
Taking Laplace transform of (1  l),  we get 

(12) 

where U(s),Qd(s) and A(s) are the Laplace transforms of 
u(t ) ,qd( t )  and 6(t) = q( t )  - qd( t ) ,  respectively. Plugging 
(10) and (1 1) into (8), taking Laplace transform, and noting 
that H ( q )  is nonsingular, we get 

( s 2 1  + ( sK,  + K p ) )  A(s) = 0, that is,s21 + sK, + K ,  = 0. 

(13) 
If there is a nonzero computing time delay, that is, the control 
output at time t is computed based on the sample at time 
t - E ,  S ( t )  must be replaced by 6 ( t  - E ) .  When the controller 
is actually implemented on a digital computer, the reference 
input Gd(t) does not change during one sampling interval, and 
thus, (12) and (13) become 

U ( S )  = s2Qd(s) - (K,s  + Kp)A(s )  

U ( s , < )  = s2Qd(s) - (sK, + Kp)e-scA(s) ,  
(s21+ ( s K ,  + K p ) e - " E ) A ( s )  = 0. 

and 

Because 5 < T, and T, is small enough to recover the 
continuous-time signals, one can approximate 1 - Es 
to get 

s2(1 - K,<) + s (K,  - KpE) + K p  = 0. (14) 

One may choose K, =diag[K,,] ,Kp =diag[K,;], K,, , Kpz > 
0. i = 1 , 2 ,  * * , n, such that the closed-loop system becomes 
uncoupled, linear, and exponentially stable. Then, (15) be- 
comes 

S ~ ( ~ - K ~ ~ ~ ) + S ( K , ~ - K ~ ~ ~ ) + K ~ ~  = o , i  = 1 , 2 , - +  (15) 

We can derive from (15) the least upper bound of E for system 
stability 

< iqf ( m i n { s  L}),z = 1 , 2 , . . . , n  . (16) 
K p i  ' K v i  

This upper bound of E can be viewed as a CSD with respect to 
system stability and used as an extra constraint when selecting 
controller gains. 
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C. Quantitative Analysis with Respect to 
Real-Time Pe$ormance 

In practice, we not only need to know the least upper bound 
of [ with respect to system stability, but also the quantitative 
performance changes caused by it. As stated before, the 
controller is designed under the assumption of [ = 0. If the 
controller gains are diagonal matrices, then (13) becomes 

(17) 

Comparing this with the standard form of a second order 
system s2 + 2<,w,,s + w i z  = 0, we choose 

K u , = 2 < t ~ , , , K p l  = w ; , , i = 1 , 2 , . . . , n  (18) 

where <z and w,, are the closed-loop damping ratio and the 
natural frequency of subsystem i, respectively. 

We consider the relative displacement of closed-loop system 
poles from their originally-designed positions as a result of 
the nonzero computing time delay. Let s, be the actual pole 
position which is moved from its desired position Sd due to 
the presence of [ > 0. s d  and sa are given by (17) and (15), 
respectively, as 

s2 + Ku,s + Kpl = 0,  i = 1 , 2 , .  . . . n. 

s d  = --KU, 1 + , a d z , a n d  
2 

sa = 

We define the maximum relative displacement of poles as the 
performance tolerance 

(19) 

Therefore, from (18) and (19), if the performance tolerance cy 
is specified, we get 

This is the upper bound of [ with respect to the performance 
tolerance for the computed torque algorithm. It can be viewed 
as a CSD with respect to system performance, and used as 
an index to select a microprocessor to implement the control 
algorithm. 

The computed torque algorithm (10) is based on the assump- 
tion that the parameters of (8) are completely known. They 
are in fact unknown, however, or not known precisely. Some 
adaptive schemes may be used to estimate these parameters 
and then implement the computed torque algorithm or varia- 
tions thereof [7]. If it is assumed that the estimators give the 
true values and a perfect tracking of time-varying parameters, 
then performance changes can be analyzed separately while 
figuring the time consumed by the estimators in the computing 

time delay. This implies that (16) and (20) can also be 
used as an approximate analysis for adaptive control methods 
which are based on the computed torque algorithm. Since 
the parameter estimators and the adaptive algorithm require 
a longer computing time delay than nonadaptive ones, it is 
important to analyze the effects of computing time delay. 

Thus far, we have analyzed a typical robot control system in 
terms of the computing time delay. Note that in this example, 
both the system dynamic equation and the control algorithm 
are provided in closed form. There are many complex control 
systems, however, for which the system dynamic equations 
are either unknown or known only qualitatively. For such a 
system, one cannot describe the control actions in closed-form. 
This implies that the effects of computing time delay in such 
complex systems need to be evaluated with simulations andor 
experiments. 

IV. CONCLUSION 

The increasing use of digital computers to implement real- 
time controllers has made it essential to carefully study the 
effects of computing time delay on the stability and perfor- 
mance of controlled systems. This computing time delay is 
different from the usual system time delay; it is a random 
delay resulting from the execution of control programs on a 
digital computer. 

Effects of the computing time delay on control system 
performance are classified into the delay and loss problems, 
which are then analyzed for both general and special cases. A 
generic criterion is derived for the qualitative analysis of the 
delay problem. Since any quantitative analysis requires the 
detailed knowledge of the controlled system and the control 
algorithm to be used, we have chosen a prototypical real-time 
control system with a commonly-used control algorithms-a 
robot control system with the computed torque algorithm-to 
give a detailed account of computing time delay effects. For 
such a system, upper bounds of computing time delay for 
system stability and performance are derived as an extra 
constraint on controller design and microprocessor selection 
for control algorithms. Both the qualitative and quantitative 
analyses of the robot control system have demonstrated how 
system performance is affected by the computing time delay 
and how a given system can be evaluated based on the 
computing time delay. 
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