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ABSTRACT

For any real-time system application, given a scheduling policy
and task execution time distributions, we show how to determine
closed form expressions for task scheduling delay and active task
time distributions. The active task time denotes the total time
a task is executing or waiting to be executed, including schedul-
ing delays and resource contention delays. The distributions are
used to determine the probability of dynamic failure and proces-
sor utilization, where the probability of dynamic failure is the
probability that any task will not complete before its deadline.
The opposing effects of decreasing the probability of dynamic
failure and increasing utilization are also addressed.

The analysis first addresses workloads where all tasks are peri-
odic, i.e., they are repetitively triggered at constant frequencies.
It is then extended to include the arrival of asynchronously trig-
gered tasks. The effects of asynchronous tasks on the probability
of dynamic failure and utilization are then addressed.

Indez Terms — Real-time systems, workload modeling, task
execution time modeling, real-time task scheduling.

1 INTRODUCTION

One of the challenges of computer system design and analysis
is determining a feasible task scheduling policy to meet specific
performance or reliability guidelines. Since most scheduling prob-
lems are NP-complete [1], heuristic methods have been developed
in practice to obtain acceptable solutions. Once a scheduling al-
gorithm has been proposed, however, it must be validated to
determine the probability of satisfying the performance and reli-
ability constraints.

Performance and reliability validation is especially important
in the analysis of real-time systems,. because of their increasing
use in critical applications. Such applications include aircraft
and spacecraft control, manufacturing process control, and power
generation and distribution, where controlling computer failure
could result in catastrophic losses. For these systems, a failure
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could be the result of a physical malfunction or the system not
reacting quickly enough. The latter subsumes the former and
is termed dynamic failure in [2,3]. For a real-time system, the
probability of dynamic failure is the probability that any task
will not complete before its deadline. The probability of dynamic
failure, therefore, can relate the performance effects on reliability
for real-time systems.

For a specific real-time application, the probability of dynamic
failure, denoted Py, depends on task execution time distribu-
tions and a given scheduling policy. The workload of real-time
systems consist of a fixed set of tasks which are established before
the system begins operation. Thus, it is possible to determine
the execution time distribution of all tasks expected to execute on
the system. Scheduling policies are selected based on optimizing
a desired cost function.

Most scheduling algorithm analyses assume constant task ex-
ecution times [4,5,6,7] or fixed maximum execution times [8].
Others also are restricted to specific classes of scheduling policies,
e.g., non-preemptive [9,10] or those where all tasks have identical
release or due times [11]. These methods fail in their usefulness
to determine Pyyn, because actual task execution times are data
dependent [12] and, thus, non-deterministic. The probability of
dynamic failure is trivially 1 or 0 with constant execution time
assumptions. Thus, this result is only useful for conservative
worse case studies.

There have also been scheduling studies where execution times
are non-deterministic [13,14,15,16], where most assume exponen-
tially distributed execution times. Their analysis parallels that
of the deterministic case, except expected execution times re-
place deterministic execution times. The objective is to optimize
the expected value of a cost function, e.g., expected processing
time or number of late tasks. This information is less useful than
the deterministic case for determining Py, because determinis-
tic worse case values are more informative than expected value
results.

Previous scheduling work has been directed towards determin-
ing optimal scheduling policies for certain cost functions. As ar-
gued above, the results are not directly amenable to the calcu-
lation of the probability of dynamic failure, except for the most
conservative cases. Therefore, given an optimal scheduling pol-
icy, a method is needed to determine if the resulting probability
of dynamic failure meets the given specification. This paper ad-
dresses that need.

Assuming a scheduling policy is given, the first portion of this
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paper expands on previous results to determine the active task
time distribution for each task [12,17]. The active task time de-
notes the total time a task is executing or waiting to be executed
and is not always identical to task execution time. A task may
be aborted, thus, no longer remaining active, before correctly
completing execution. Once the active task time distribution is
determined, Py, is calculated. This will determine if a schedul-
ing policy that has been optimized for some aspect is feasible by
having a small enough probability of dynamic failure.

A factor that counters the benefits of minimizing Pyy, is pro-
cessor utilization. A higher processor utilization is more cost ef-
fective, because more work is accomplished with the same hard-
ware, in less time. However, as Py, decreases, utilization also de-
creases. Therefore, the benefits of each measure must be weighed
to determine a feasible schedule for a particular application.

The rest of this paper is organized as follows. The next section
introduces necessary definitions and states the specific problems
to be solved. Section 3 presents the calculation of the scheduling
delay distribution for each system task based on a given schedul-
ing policy. This result is then used to determine the active task
time probability distribution. Section 4 addresses the calculation
of the probability of dynamic failure and processor utilization,
and their countering effects. The initial analysis addresses pe-
riodically triggered tasks. Section 5 expands the analysis to in-
clude asynchronously triggered tasks. The paper concludes with
Section 6.

2 DEFINITIONS
STATEMENT

AND PROBLEM

A major function of a real-time system is the continuous,
timely reaction to system state changes and environmental con-
ditions. Thus, most system tasks are executed repetitively with
a fixed period. To maintain system stability real-time tasks have
corresponding finite deadlines. A task not completing before its
deadline results in a dynamic failure. Initially, a workload where
all system tasks are periodic is studied. Section 5 then addresses
the impact of asynchronously triggered tasks.

All analysis is performed in terms of unit cycles and multiples
of major cycles, defined as follows:

Definition 1 A unit cycle, u, is the greatest common divisor
(GCD) of all periodic task periods.

Definition 2 A major cycle is the least common multiple
(LCM) of all periodic task periods. Let M denote any multiple
of major cycles.

A unit cycle defines the maximum time interval where it can be
guaranteed that no periodic task is triggered during the interval,
except at the beginning. Specifically, the i*% unit cycle is the
time interval (i — 1)u < t < 7u, where a periodic task triggered
during the interval will be at time (¢ — 1)u. A major cycle is
the maximum time interval where the simultaneous triggering of
all periodic tasks occurs only once. By definition, periodic tasks
triggered at time iu are also triggered at time iu 4 jM, where ¢
and j are non-negative integers and 0 < i < M/u.

To determine the active task time distribution, it is necessary
to analyze the task at the subtask or instruction level. At this
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level, instruction steps can be considered to have deterministic
execution times. With this detail, accounting for scheduling and
resource contention delays is equivalent to determining the prior-
ity of the instruction steps from different tasks. Thus, the entire
analysis is based on analyzing the sequence of task instructions
executed.

A path through a task is the sequence of instructions executed
given specific initial values for all variables. The number of data
dependent branch instructions a task contains determines the
maximum number of paths. For example, if a task contains one
binary branch, it has two execution paths. If a task has two binary
branches, it may have three or four paths depending on its struc-
ture. Loops are treated as a sequence of instructions followed by
a branch to the beginning of the sequence. Because each instruc-
tion step has a deterministic execution time, each path through
a task has a deterministic total execution time.

Since there are a finite number of paths through a task! and
paths have deterministic execution times, the probability distri-
bution function (PDF) of task ezecution time is a staircase func-
tion. Therefore, for any task 7, let Z; be the task execution time
with PDF

Nz,
Fz,(t) = > pi(Zj)ust — ei( Z;)),
i=1
where Nz, is the number of paths in task j, pi(Z;) is the probabil-
ity of path i executing, and ¢;(Z;) is the deterministic execution
time of path i. The function u; is the unit step function, where

0 ift<O,
ui(t) _{ 1 otherwise.

The justification of this representation is based on work in [12,17],
where we demonstrate how to calculate pi(-) and ¢;(-) for any
real-time task.

Task execution time is the error-free time required for a task
to complete, excluding scheduling and resource contention delays
and deadline effects. The active task time is derived from the task
execution time. Initially, when a task is triggered to execute, there
may be tasks of higher priority already queued for execution. In
this case, the task would incur a scheduling delay. Once it begins
execution, the task may also be preempted by the arrival of higher
priority tasks, if the scheduling policy allows preemption. Finally,
if a task does not complete before its deadline, it is aborted.
Therefore, the active task time is the total time from when the
task is triggered to begin until it completes execution or reaches
its deadline. Task execution time is equivalent to active task time
with no scheduling or contention delays, no task preemption, and
inconsequential deadlines. Let T; denote the active task time with
PDF

Nz]
Fr,(t) = Y pi(Tj)ult - ei(T).
=1

All derivations assume an error-free environment. The execu-
tion time of a task is independent of the execution time of all
other tasks [4,18]. However, the active task time includes effects
of tasks scheduled on the same processor. To simplify notation,
context switching time is assumed to be included in the task exe-
cution time. (Note that some researchers assume context switch-
ing time is zero for task level analyses [5].)

IThis is because tasks have finite deadlines and instructions have positive
finite execution times.



Input and output communication delays are assumed to be
constant, and also included in the task execution time. QOther
researchers have assumed negligible data transfer times [10]. For
many real-time applications data is available when necessary and
there is minimal contention for resources. However, if there is
contention, the tasks that are able to execute continue and the
blocked task will incur a scheduling delay. This is analogous to
having a task with higher priority than the active task arrive and
preempt the executing task.

The analysis assumes a scheduling policy is given. Any schedul-
ing policy is acceptable, where it can be determined which pe-
riodic tasks are triggered at the beginning of each unit cycle
and relative task priorities do not change during a unit cycle.
Each task is analyzed separately, beginning with the highest pri-
ority task triggered in the first unit cycle through the last task
triggered during the interval analyzed, namely [0, M]. The ac-
tive task time of the task under study, referred to as the target
task, depends on the execution time of all tasks triggered from
the first unit cycle through the unit cycle containing the target
task’s deadline.

Assuming the scheduling policy and task execution time PDFs
are given, we show in the next section the derivation of closed
form expressions for the target task scheduling delay PDF and
the active task time PDF. Based on these distributions the prob-
ability of dynamic failure is derived. Active task time PDFs are
also used for the calculation of processor utilization. As men-
tioned earlier, the probability of dynamic failure cannot be de-
creased without affecting processor utilization. Finally, the effects
of asynchronously arriving tasks are addressed. Closed form ex-
pressions for the probability of dynamic failure under the influ-
ence of asynchronous tasks are derived.

3 SCHEDULING DELAY AND
ACTIVE TASK TIME PDFS

To determine the scheduling delay PDF for the target task, the
analysis begins at a point when the processor is idle at the start
of a unit cycle. The start of the first unit cycle is guaranteed to
be such a point, and others may exist. The target task scheduling
delay is defined to be the time from when the task is triggered
until it begins execution.

Suppose tasks j and k are triggered during the same unit cycle,
the joint distribution of their combined execution time is
Nz N,
Fz;42.(t) = Z P (Z)Pry (Zi)ua(t — €, (Z5) — cxy{(Z1))
i=1
where k1 = [i/Nz,] and k2 = i+ Nz, — Nz, [i/Nz,]. The expres-
sion [z] is defined as the smallest integer greater than or equal

to z. This equation can be recursively applied to determine the
combined distribution for any number of tasks.

Let U(i) be the combined execution time of tasks triggered
during the ™ unit cycle with higher priority than the target
task. Tasks which are required to complete before the target task
can be defined to have a higher priority. The PDF of U(%) can be
expressed as follows,

Ny

Fyp(t) = Y- 2 (Ut - ¢;(U()),
=1
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where Ny(;) is the product of the number of paths in each trig-
gered task. Without loss of generality, Fy;)(t) can be expressed
such that ¢;(U(4)) < ¢;a(U(3)), 5 = 1,..., Ny - 1.

The target task scheduling delay PDF, Fsp(t), is derived in
two steps. The first step determines the PDF of the remaining
execution time, RM, of higher priority tasks triggered before the
target task. The second step constructs the scheduling delay PDF
by including the effects of higher priority tasks triggered after the
target task.

Suppose the target task is triggered at the beginning of unit
cycle Y;r, which is at time (Yz, — 1)u, and has a hard deadline of
tq. Let Yiy be the last unit cycle where higher priority tasks can
be triggered before t4, i.e., Y3y = [£]. The remaining execution
time PDF, Frum(t), is constructed by recursively determining the
remaining execution time for each unit cycle through cycle Y,.
Let Frpy(;)(t) represent the remaining execution time PDF at the
beginning of unit cycle 7.

Initially, FRM(I)(t) FU(I)(t)' To derive FRM(H-I)(t),
1< i <Y - 1, express Fppy)(t) as

Nami)
Fruey(t) = Y pi(RM(i))m(t — cj(RM(3))),

i=1

such that c¢;(RM(3)) < ¢j31(RM(5)), j = 1,..., Npasgsy — 1. Ini-
tially, Nrar(1) = Nyq), and is recursively defined below for i > 2.
If Frpiy(u) = 1,

Frag1)(t) = Fygan(t)-
Otherwise, let r = min {7 : v < ¢;(RM(3))} - 1. Then

Fam(i+1)(t) =

Nru(iy—r)Nu(: : ]
(N Z) VO o (RM(3))pes (UG +

9))
1— FRM(:)(“) ul(t + Tl)v

j=1

where 1y = 4 — ¢ (RM(3)) — cx, (U(i+1)), k3 = 7+ [§/Ny(igy)l,
and k4 = j + Ny(i41) — Nugs [7/Nu(i41)]- Therefore, the re-
maining execution time PDF of higher priority tasks triggered
before the target task is

Frm(t) = Frm(yrp)(t)-

NRa, the number of steps in the RM PDF, depends on the
intermediate PDFs for each RM(3).

The scheduling delay PDF is the combination of the remain-
ing execution time of previously triggered higher priority tasks
and the execution time of higher priority tasks triggered after
the target task. Fsp(t) is recursively derived from unit cycle Y,
through cycle Yiq, where Fgp;)(¢) is the scheduling delay PDF
determined through cycle i + Y, — 1. Any task triggered after ty
will not effect the target task scheduling delay. The algorithm to
determine Fsp(t) is as follows:

Step 1: (Initialization) Set i 1, where 7 is a unit cycle in-
dex. Let FSD(I)(t) = FRM(t), and NSD(]) = Npum. If
Fspay(u) = 1, go to step 3.




Step 2: (Recursion) To derive Fgp(iy1)(t), express Fsp(i)(t) as
Nsp(iy
Fspp(t)= Y pi(SD())u(t - ¢(SD()),
=1
such that ¢;(SD(i)) < ¢j+1(SD()), 5 =1,...,Nspgz) —
1. Let 7* = min {j : iu < ¢;(SD(3))} — 1. Then
Fsp(i41)(t) = Fspgy (iv) +

(Nsp(iy=r"INU(Yep +4)
Prs (SD())Pes (U(Yer + 1))ua(t — 72),

Jj=1
where 72 = ¢ (SD()) - (UYer + 9)),
ks = 4+ [§/Nyw+i], and k6 = j + Nuwe+i)-
NU(Y;,+{) [] /Nu(y".“)] . Increment ¢ by one. If

Fspuy(iu) =1ori> Yy - Yir, go to step 3. Otherwise,
repeat step 2.

Step 3: (Assignment) The scheduling delay PDF for the target
task is

Fsp(t) = Fspi)(0)-
For use in determining the active task time of the target
task, let Y, = i + Yi — 1. Yoy is the last unit cycle an-
alyzed in determining the scheduling delay of the target
task. []

The calculation of Fsp(t) is independent of the scheduling al-
gorithm, and most notably, independent of preemptive or non-
preemptive scheduling. All that is required is the capability to
determine which tasks must be completed before the target task.

The active task time PDF is recursively derived from cycle
Y,y through cycle Yy (If Yoy = Yia, only one cycle is analyzed).
Fr(;)(t) is the active task time PDF analyzed up to cycle i+ Y, —
1. Fori=1,

Fray(t) = Fsp4z(t) =
NspNz
E pM(SD)sz (Z)ul(t - CN7(SD) - CKB(Z)) ’
=1

where k7 = [i/Nz] and kg =14+ Nz — szi/Nz‘[.

If Yy Y,qg or the scheduling algorithm is non-
preemptive, Fr(t) = Frq)(t). Otherwise, to derive Friyn(t),
1 <1 < Yia — Yoy, express Frg;)(t) as

Nr(iy

Fri() = 3 pi(T@)m(t - (T()),
j=1

such that ¢;(T(¢)) < ¢;41(T(9)), j L., Ny — 1. Let
#=min {j : (Yoy — Yor + ©)u < ¢;(T(2))} — 1. Then

FPriity(t) = Froy (Yoy — Yir +1)u) +

(N7(iy=F)NU(vey +9)
Pro (T(0))Prso (U (Yey + 9))ua(t — 73),

i=t

where 73 = €xy (T(i)) = €55 (U(Yey +1))s 89 = 7 + [i/Nuvy +9) s
and K10 = J + Ny(v,+i) = NUu(vey+i) [3/Nv(v.,+9]- Finally,

Fr(t) = Frey,y-ve,+1(®)-
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4 P4y AND PROCESSOR
UTILIZATION

Let Tj(i) be the active task time of the j* task triggered at
the beginning of unit cycle i. The probability of dynamic failure,
Pyyn, for the bounded time interval [0, M), is the probability that
any task triggered during the interval will not complete before
its deadline. If t4(T;(¢)) is the deadline for task Tj(), then

[M/u]
Pyn=1- [[ TP (id(Tj(i))) .

=1 J

Recall that the active task time PDF is relative to the task
triggering time. To determine processor utilization, it is necessary
to express all active task time distributions in a common time
frame. Let A;(i) be the absolute active task time, where A;(i) =
(i — 1)u + T;(:) and has the PDF

Fy;0®) = {

Given Fy,(;)(t), the probability that the processor is idle at time
t, L(t), is

0 if0<t<(i-1u,
Fr,i)(t — (i — 1)u) otherwise.

Lt/
Lty = I I1 Fa;0(®)-

=1 j
This is equivalent to the probability that the lowest priority ac-
tive task at the beginning of unit cycle |¢/u| has completed before
t. A necessary condition for periodic task scheduling policies is
that L(t) = 1 at the end of a major frame. A scheduling policy
with L(t) = 1 at the end of a major frame is termed a periodic
feasible schedule. If L(t) # 1, the processor is unable to handle
the periodic task load, guaranteeing that at least one task even-
tually will miss its deadline. Therefore, if L(t) # 1 at the end of
a major frame, Pgyn = 1.

The processor utilization at time ¢, UT(t), is defined to be
the fraction of time the processor was executing tasks during the
interval [0,%] [4]. In terms of the processor idle time,

UT(t) = [1 - fé—L(:)ﬁ} x 100%.

Therefore, the processor utilization for the interval [0, M] is
UT(M).

For a fixed set of tasks and given schedule, varying the length
of the unit cycle (which implies proportional changes in the task
triggering periods) will affect the probability of dynamic failure
and processor utilization. A longer unit cycle reduces the prob-
ability of dynamic failure by allowing more time for tasks to
complete before others are triggered.? However, this also reduces
processor utilization. The inverse is also true, where a shorter unit
cycle increases both utilization and the probability of dynamic
failure.

A parametric plot of Py, versus utilization can be produced
to demonstrate the effects of altering the unit cycle length. For
example, Figure 1 shows three possible plots. Plots A and C
assume task deadlines are a function of the unit cycle length.

2This is always true if task deadlines are dependent on unit cycle length.
If deadlines are independent, there may be a minimum Pay, where increasing

the cycle length has no effect.
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Figure 1: Unit Cycle Effects on Py, and Utilization

For these cases, Py, and utilization approach 0 as u increases.
It should be noted, however, that it is not necessary to have
deadlines be a function of unit cycle length for Pyyn — 0 as
u — oo. Plot A is a case where Py, = 1 before 100% utilization
is attained. This occurs when the unit cycle is short enough to
guarantee that a task will miss its deadline. If active task times
and deadlines for all tasks are multiples of each other, a trace like
plot C is possible. In this situation, 100% utilization is attained
before Py, = 1. Finally, if a single task deadline is independent
of cycle length, it may not be possible to achieve Pyyn = 0 as
the unit cycle is increased. A plot similar to plot B would then
result.

Independent of active task times and deadlines of tasks, all
parametric Py, /utilization plots demonstrate that utilization
approaches 100% and Pay,, — 1 as u — 0. Also, as u increases uti-
lization approaches 0%. Plots derived from experimental results
are shown in the next section.

In the design of real-time systems, two important parameters
are the maximum probability of dynamic failure and a minimum
utilization. The Pyyn/utilization plot can be used to determine
whether a specific schedule satisfies these criteria and identifies
the feasible unit cycle lengths. For some applications, one crite-
rion is more critical. The design goal is to satisfy the less critical
criterion while guaranteeing adherence of the more critical one.
For example, the probability of dynamic failure is important for
flight control systems. It is imperative for a control system to
remain below a maximum Pyyr. Utilization is a lesser concern.
However, for many industrial control applications utilization is
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as important as Py, because of cost considerations. For these
systems a design should remain below a maximum Pyyy for reli-
ability reasons and maximize utilization to reduce costs.

5 EFFECTS OF ASYNCHRONOUS
TASK ARRIVALS

In addition to periodic tasks, real-time systems must allow for
the possibility of asynchronously triggered tasks.® Any task that
is not periodic is considered to be asynchronous. For this anal-
ysis, it is assumed that asynchronous tasks have higher priority
than the target task. Obviously, the case where an asynchronous
task has lower priority than the target task is identical to the
situation analyzed earlier. The random arrival of tasks, thus, has
the potential of increasing the the probability of dynamic failure.

Asynchronous tasks are triggered through random effects, such
as human input, environmental status, or special internal condi-
tions. For this reason asynchronous task arrivals are assumed to
be Poisson distributed with rate ). If there are multiple asyn-
chronous tasks with different active task time PDFs, the exact
measurement of the probability of dynamic failure must handle
the arrival of each type of task. Let Tj(a) be the active task time

of the j* asynchronously triggered task.

To simplify notation, all asynchronous tasks are assumed to
have the same PDF which is an upper bound of all asynchronous
task PDFs. Specifically, let Tmaz(a) be the active task time of a
pseudo asynchronous task representing the maximum active time
of all asynchronous tasks, i.e., Tinaz(a) = max Tj(a). Then

P @)(®) = [ Fryo)@).
i

The Pyyy, calculated in this manner is an upper bound of the true
probability. Since, Py, constraints are defined as a maximum
value, determining only an upper bound is acceptable. This anal-
ysis can be easily extended to account for the individual PDFs
of all asynchronous tasks. However, the complexity of the evalu-
ation is increased. The exact calculation of Py, would then be
possible.

To determine an upper bound of Pyyn, namely Pj,.., for the
interval [0, M] in the presence of asynchronous tasks, the asyn-
chronous arrival times that produce the maximum potential
scheduling delay must be identified. To achieve this, the following
lemma and theorems are necessary.

Lemma 1 For a periodic feasible schedule, the mazimum num-
ber of active periodic tasks occurs at the beginning of a major

frame.

Proof: By definition, a major frame is the least common multiple
of all task periods. Therefore, all periodic tasks are triggered
simultaneously at the beginning of any major frame. Q.£.D

Theorem 1 For a periodic feasible schedule, pp a single

asynchronous task is triggered during unit cycle i. By only vary-
ing the arrival time of the asynchronous task, Pyyn is mazimized
when the asynchronous task is triggered at the beginning of the
unit cycle.

3For brevity, asynchronously triggered tasks will also be referred to as
asynchronous tasks.




Proof: Maximizing Py, is equivalent to maximizing the preemp-
tion delay for each periodic task. Let ¢, be the arrival time of
the asynchronous task, (i — 1)u < t,, < iu. Periodic tasks can
only be triggered at the beginning of a unit cycle, because the
unit cycle is the greatest common divisor of all periodic task pe-
riods. Therefore, no periodic task is triggered at time ¢, where
(= 1)u < t < ty. Let Pyyn(z) be the probability of dynamic
failure when the asynchronous task arrives at time z. If the asyn-
chronous task arrives at to, — €, where 0 < € < t4 — (i — )u,
no periodic task will complete sooner than if the asynchronous
task arrived at t,r. In other words, all periodic tasks are either
unaffected or delayed. Therefore, Piyn(tar — €) 2 Pyyn(tar)- Payn
is, therefore, maximized when € = t;; — (i — 1)u. Q.£.D

Theorem 2 For a periodic feasible schedule, suppose n asyn-
chronous tasks are triggered during a major frame. By only vary-
ing the arrival time of the n asynchronous tasks, Pyyn is maxzi-
mized when all n periodic tasks arrive simultaneously at the be-
ginning of a major frame.

Proof: Select one of the n asynchronous tasks. By Theorem 1,
for the single asynchronous task, Payn((i — 1)u) > Payn(t) for
(i — 1)u < t < éu, where unit cycle ¢ is within the major frame.
Therefore, to determine the arrival time within the major frame
that generates the maximum Pyyn, through varying the triggering
time of the single asynchronous task, the only times that need to
be considered are the beginning of unit cycles. By Lemma 1, the
maximum number of periodic tasks are delayed when the arrival
is at the beginning of the first unit cycle. Thus, the maximum
Pyyn that can be generated by a single asynchronous task is when
it arrives at the beginning of the major frame. To complete the
proof, repeat the process for the other (n—1) asynchronous tasks.
Q.ED

To determine P, for the interval [0, M], the upper bound for
Py, is calculated for a fixed number, varying from 0 to Nes (Nas
is defined below), of asynchronous tasks. The Py, values are
then weighted by the probability of having the respective num-
ber of asynchronous task triggered. Because the arrival process
of the asynchronous tasks is Poisson, there is a non-zero proba-
bility of having any finite number of tasks triggered during the
interval [0, M]. This would result in a prohibitive number of tasks
for practical analysis. However, N,, is the maximum number of
asynchronous tasks that actually need to be considered.

Recall from earlier representations of the active task time
PDFs, ¢(T;(i)) is the minimum execution time for the 7t pe-
riodic task triggered during the ¢** unit cycle. Similarly, let
¢i(Tj(a)) be the minimum execution time for the jth asyn-
chronous task. Ny, is the minimum integer such that

M/u
M- 3 T el i)
Nyy>—2 30—

*” " mina(I3)

J
Based on this definition, if N,, or more asynchronous tasks arrive
during the interval [0, M), at least one task is guaranteed to miss
its deadline. This implies Py, = 1 for this case.

Let N(t) equal the number of Poisson arrivals in the bounded
interval [0,¢]. As shown in [19], for any finite 7,

PrN() = n] = e_)‘t%‘)—n.
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Table 1: Pr{N(M) > Ng,] when Ngs =5

M| Pr[N(M) > 5]
0.1 7.66780e-08
0.01 8.26421e-13
0.001 | 5.81725€-18
0.0001 | 1.34871e-18

Let [Payn, | i asyn. tasks] represent the probability of dynamic
failure over the interval [0, M) given that i asynchronous tasks
are triggered. The exact value of Pay, over the interval [0, M]
now becomes
Pyyn = PI[N(M) > Nysl+
Nas—1
" Pr[N(M) = i][Payn | i asyn. tasks]
i=0
Nas—1
=1- Y Pr[N(M)=d+
i=0
M)

i!

Ng,—1
e—AM E

=0

[Payn | ¢ asyn. tasks].

Finally, because only the upper bound on Pgyyn is calculated for
each amount of asynchronous task arrivals

Nas—1

Pi.=1- 3 PiN(M)=i+
=0

Nas—1

i
QiMT) [max Pyyn | ¢ asyn. tasks].

Regardless of the value of N, Table 1 shows that for all practical
considerations Pr[N(M) > 5] can be considered negligible for
typical values of AM.

To determine [max Pyyn | ¢ asyn. tasks], the active task time
PDF for each periodic task is calculated with the additional ef-
fects, if any, of ¢ asynchronous tasks. Recall from the previous sec-
tion that U(1) represents the combined execution time of all tasks
triggered during the first unit cycle with higher priority than the
target task. Based on Theorem 2, to determine max Payn, U(1)
should include the i asynchronous tasks if the target task has
lower priority than asynchronous tasks. The remaining analysis
is identical.

To study the effects of unit cycle length on Py, and utiliza-
tion, a lower bound on utilization is needed. A lower bound on
utilization in the presence of asynchronous tasks is the same value
determined in the previous section when no asynchronous tasks
were considered, namely UT(M ). Parametric plots can be pro-
duced to evaluate the relative changes of P, and UT(M) by
varying the unit cycle length under the influence of asynchronous
tasks.

To illustrate the effects of asynchronous tasks on the proba-
bility of dynamic failure and utilization, experiments were per-
formed on the experimental system in the Real-Time Computing
Laboratory, The University of Michigan. The computing system



is a Motorola 68080/VME bus based system running the real-
time kernel pSOS [20]. Using a synthetic workload generator,
seven tasks were created with structures similar to a control task
from an aircraft transport and automatic landing simulation.

The synthetic workload consisted of of three tasks with a trig-
gering period of one unit cycle, two tasks with a two unit cy-
cle period, and one task with an eight unit cycle period. A sin-
gle asynchronous task had an exponentially distributed interar-
rival duration. During execution, a rate monotonic preemptive
scheduling algorithm was implemented with asynchronous tasks
given higher priority than periodic tasks. The plots in Figures 2-4
present the results of varying the duration of the unit cycle and
the asynchronous task interarrival rate. For all three plots, the
points denoted by ‘+’ symbols are for a workload that does not
include the single asynchronous task. Workloads with an asyn-
chronous task interarrival rate of 0.05 and 0.025 sec! are shown
by the ‘X’ and ‘Y’ symbols, respectively.

Figure 2 illustrates how Py, increases as the unit cycle length
decreases. As expected, triggering asynchronous tasks at faster
rates also increases the probability of dynamic failure. A point
worth noting is that the probability of an asynchronous task ar-
riving during a particular unit cycle decreases when the unit cy-
cle length is shortened. Thus, the effects of asynchronous tasks
are reduced. Figure 3 shows similar results, where shortening the
unit cycle length or increasing the asynchronous tasks interarrival
time increases utilization.

A parametric plot of Pyyn versus utilization as a function of
unit cycle length is shown in Figure 4. This plot vividly illus-
trates the effects of asynchronous task arrivals on the countering
effects of the probability of dynamic failure and utilization. I
asynchronous tasks are included, one may not be able to achieve
a minimum utilization percentage and still have an acceptable
probability of dynamic failure. For example, suppose the anal-
ysis of a system produces results shown in Figure 4 and a de-
sign constraint requires a minimum utilization of 80% with a
maximum Py, of 0.2. The plot shows that the system will not
meet the constraints if the asynchronous task interarrival rate is
greater that 0.05 sec™!. In this manner, an acceptable range of
task interarrival rates can be defined to meet Pyyn and utilization
constraints.

6 CONCLUSION

Given a scheduling policy and task execution time distribu-
tions, we have shown how to calculate closed form expressions
for the scheduling delay and active task time PDFs of all tasks.
The derivation of task execution time PDFs is based on results
in previous work [12,17]. With this information, the probability
of dynamic failure for the system and processor utilization was
calculated.

Because tasks triggered early in a major cycle have an effect
on tasks triggered later, a recursive approach to determining the
active task time PDF of all tasks is evident. The first target task
analyzed should be the highest priority periodic task triggered
during the first unit cycle. The remaining tasks from the first
unit cycle are then analyzed sequentially, based on their relative
priorities. Each subsequent task analyzed can use the active task
time PDFs derived from earlier triggered tasks of lower priority.
Although, the methodology presented in this paper allows tasks
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to be analyzed in any order, if the active task time PDFs of all
tasks is desired, this approach will minimize the total calculations
required.

In the calculation of Pyyn, it was assumed that the probabil-
ity an asynchronous task misses its deadline is negligible. This is
justified, because asynchronous task interarrival times are much
longer than their execution times, and usually have higher prior-
ity than periodic tasks. A natural extension of this work would
account for the possibility of near coincident asynchronous task
arrivals.

It should be noted that because of environmental constraints,
it may not be possible to alter the duration of the unit cycle.
However, deadlines can be varied independent of the unit cycle
and have the same effect.

The results of this paper can be used to identify trouble spots
in scheduling algorithms, i.e., determine if an “optimal” schedul-
ing algorithm based on some cost function is feasible. As noted
in the introduction, most scheduling policies do not account for
non-deterministic task execution times. Therefore, when these
algorithms are implemented with random execution times, they
may be infeasible due to an unacceptably high probability of dy-
namic failure. This work aids in identifying this problem.
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