A FLOATING COMMUNICATION PROCESSOR ARCHITECTURE
IN A DISTRIBUTED REAL-TIME SYSTEM

Kang G. Shin and Yogesh Muthuswamy

Real-Time Computing Laboratory
Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109-2122

ABSTRACT

The issues involved in providing hardware communication
support at each node in a distributed real-time system are studied.
First, a general architecure for each node of the system is
described. An algorithm for message handling by dedicated
hardware called a communication processor (CP) is proposed, max-
imizing the number of requests handled under the various con-
straints. Finally, a floating CP architecture is proposed to maxim-
ize the utilization of the processors at a node and provide greater
fault-tolerance in the system.

Index Terms - Distributed real-time systems, communication pro-
cessor (CP), application processor (AP), communication task (CT),
application task (AT), port, window, floating CP and AP.

1. INTRODUCTION

A single computational job can be divided into several
smaller tasks, which can then be executed in parallel after mapping
them onto different processor nodes of a distributed system. These
tasks exchange data and synchronize with each other via message
passing between the different processor nodes. Intertask communi-
cations can be accomplished by either handshaking or using the
concept of port. In case of handshaking each task waits for the
other task to be ready in order to communicate with it. A port is a
data structure associated with a task. It can be viewed as a buffer
for a task, which serves as an intermediary between a task and its
environment, and supports such communication mechanisms as
many to one, one to many and one to one. The use of ports makes
the communication between tasks more structured and provides a
cleaner interface, thus increasing the modularity of the system.

However, there are a number of difficulties associated with
the implementation of port-based communications. Ideally, a port
should always be ready to send/receive messages and there should
be no message loss in the system. Avoiding the message loss is
impossible in a real system because of finiteness of buffer sizes
and bandwidths of interconnection networks. The time delay is also
unavoidable because of the extra level of indirection introduced
with the actual implementation of the port, the extra memory
accesses and control mechanisms needed to operate on the port.
Messages may also be lost due to network contention, and node
and link failures. In a distributed real-time system each message

The work reported in this paper was supported in part by the NASA under
grant NAG-1-296 and the National Science Foundation under grant DMC-
8721492. Any opini findings, and dati p d in this publica-
tion are those of the authors and do not necessarily reflect the view of the funding
agencies.

0073-1129/80/0000/0120801.00 © 1989 IEEE

120

usually has a deadline associated with it. If a message is not
delivered before the deadline, message loss or, even worse, system
failure could follow.

The concept of port to implement intertask communications
was first proposed by Silberschatz [1]. This concept was extended
in [2] to implement intertask communications in an integrated
manufacturing system (IMS), which in essence is a distributed
real-time system. The concept of a logical communication archi-
tecture for an IMS was proposed initially in [3]. Despite the
difficulties mentioned above, we advocated in [2] port-based com-
munications based on their increased level of concurrency and vari-
ous port restrictions suitable for real-time applications, e.g., dead-
line specification. In {2], some low level communication primitives
and their supporting language syntax were also proposed. The con-
cept of a communication task (CT) as a port manipulator was intro-
duced in [4]. The use of a message processor in order to speed up
communications in a general distributed system was proposed in
[5]. However, this work neither considered real-time applications
nor attempted to devise an efficient hardware architecture to sup-
port port-based communications.

In this paper we shall propose an efficient means of mapping
the port-based communication architecture to a distributed system
with hardware communication support at each node. The architec-
ture is suitable for real-time applications because the time overhead
incurred by the execution of CT is reduced by overlapping, to the
maximum possible extent, the execution of CT on a dedicated pro-
cessor called a communication processor (CP) with that of the
application task (AT) on an application processor (AP).

The functionality of CP is analyzed. An algorithm is pro-
posed for the handling of communication requests by the CP,
which attempts to maximize the number of requests serviced by
considering task priorities, estimated service times, and so on. A
general architecture for a floating CP (AP) is proposed along with
a protocol for reconfiguration. This architecture improves the
rerformance of each node by providing more processing power for
applications or communications, whichever becomes the perfor-
mance bottleneck. Thus, the ‘‘floating architecture’ can adapt
itself to either computation-intensive or communication-intensive
problems. The fault-tolerance of each node can also be improved
by this architecture, because if one processor fails within a node,
the other processor in the node can take it over and function in a
gracefully degraded manner.

The paper is organized as follows. Section 2 describes the
CP, its functionality, and its relation to the other components
within a node. An algorithm for message handling by the CP is
also described. Section 3 describes the floating CP (AP) architec-
ture. A protocol for reconfiguration is also described. Section 4
concludes the paper and addresses extensions for future work.

2. THE COMMUNICATION PROCESSOR

A general node architecmre involving the Communication
Processor (CP) is depicted in Fig. 1. (Note that a few more con-
nections than those shown in Fig. 1 are needed to realize the float-
ing architecture.) The node processing power has been divided
between the communication and the application processors. When-
ever the AP comes across a task. requesting communication, that
task is put in a service queue at the CP along with the timing
details® for service.

Let there be M independent tasks executing at a node. These
may be executing on a single or multiple physical processors. For
the simplicity of analysis, the number of tasks is assumed to
remain constant within the period of interest. The tasks begin exe-
cution with some kind of pre-assigned priorities which can be
changed later by the CP. The M tasks request the CP for service
via M independent queues. The CP selects an appropriate request
to service from the M requests. (An algorithm to select the
appropriate request will be discussed later in this section.) Upon
completion of service by the CP, the task is returned via a ready
queue 10 the AP. The task can then be scheduled back onto the AP.
When a task is blocked waiting for its service to complete, other
tasks can be scheduled on the AP, thereby increasing the con-
currency in the system. The mechanism for rescheduling the task
back onto the AP, once its request has been serviced, will not be
discussed here.

The physical ports P,, ..., Py act as receiving windows for
the messages from other nodes. Note that these are called windows
to avoid any confusion with logical ports, each of which is a data
structure of a task. The various ports declared by the task resident
in a node can then be mapped onto the windows. The mapping ot
the ports to the windows can either be done statically or dynami-
cally. Each port associated with a particular task may always use a
particular window (static case), or it may use any window available
at that particular time (dynamic case). The windows can also be
treated as a resource which is acquired by the task currently exe-
cuting on the AP, with a certain number of windows reserved for
the incoming message traffic at the node. The exact nature of the
scheme used would depend on the traffic patterns and the commun-
ication characteristics of the various tasks in the system.

There are three logical buffers associated with each node: the
windows, the transit and internal buffers. The optimum number of
windows and buffer sizes depend on the message traffic in the sys-
tem. A smaller (larger) buffer size might lead to message loss
(buffer under-utilization). The processing power of the two proces-
sors has 1o be such that they work in a balanced fashion between
the CT and ATs.

Messages at a node can either be inbound or outbound. The
CP is responsible for handling both types of messages. Handling
outbound messages is relatively easy, since the time at which this
has to be done is deterministic. - In case of inbound messages a
degree of asynchrony is involved; the exact time of their arrival is
uncertain.

‘When a packet arrives at the window, and is destined for that
node, it is put in the intemnal buffer. If it is not destined for that
node, it is put in the transit buffer on its way to the destination.
The arrival of a message at its. destination node calls for the
assembly of all the packets of the message, and the recovery of the
message by the CP. The packetization of messages is also done by
the CP.

On the arrival of a message, the CP may interrupt the AP
indicating the arrival of the message. At this point the addressed

These can be specified as port restrictions as described in [2].

121

CP : Communication processor

AP : Application processor

INTERNODE BUS
Local Memory
m l | @ for CP
4
Tafter Shared
E ‘;‘:I Memory
Internal
buffer L I
L_—. AP Local M 4
for AP

Fig. 1. The organization of a node.

task on the AP may or may not be ready to accept this message.
An alternative approach would be to let the tasks executing on the
AP queue their requests for message service, i.e., either to send or
receive, and let the CP take care of the requests. The CP has to
scan the list of requests from all of the M tasks at the node before
coming to a decision. As soon as the CP comes across a receive
request, it can scan the internal buffer to check whether the mes-
sage has arrived or not. Adopting this approach clearly involves
treating send and receive requests asymmetrically. Another option
would be to let the tasks provide some kind of estimated service
time along with their requests and then let the CP select the
appropriate request based on some criteria, treating both send and
receive requests symmetrically. If there is heavy message traffic,
the interruption of the AP by the CP could become excessive.
Moreover, the CP then becomes the slave of the AP. This is not
desirable, as the CP is envisioned to be more of a node controlier.
Asymmetric handling of the send and receive requests may intro-
duce an excessive overhead and does not reflect on the priority of
the requests served. The receive requests are accorded priority over
the send requests. Hence, the scheme of treating the send and
receive requests symmetrically is chosen here, and an algorithm to
select the appropriate request will be presented later. Note that this
scheme also takes care of the asynchrony in the receive requests. If
the requested message has not arrived in the specified time span,
the concerned task can either queue the request again, or take other
actions, such as a time-out recovery.

Handling outbound messages is relatively easy. After an
appropriate request to be serviced has been selected, the structured
message with its header, text, timing details, and destination is put
into the window. The message has to be in a packet form, which
is transparent at this stage. These packets have to be reassembled
before being put into the intemal buffers at their destination nodes.
Some routing function has to be built into the window so that the
packet may be routed to the next node. This requires intelligence at
each window so that the transit messages are routed without the
CT’s intervention. The window could have a finite state machine,
which will compare the address on the header of the packet with
the address of all the ports associated with the tasks executing on
the node. If the packet was destined for the node, then it places the
packet in its internal buffers, else the packet is forwarded to the
next node.

The local memory of the CP in Fig. 1 stores the various rou-
tines required by the CP to implement its functions, whereas the
various application tasks are stored in the local memory of the AP.
The AP and CP communicate via shared memory.

In case of a single AT per node, there is a corresponding CT
executing on the CP. The CP need not make a special effort to
identify which particular AT it is servicing at a particular point in
time. The CP’s main functions include receipt and disposal of mes-
sages, intra-node communications, and time-handling for real-time
tasks. Extensions could be made to fault handling. For example, if,
due to some transient fault, the message failed to reach its destina-
tion, the CP could retransmit the message after a certain period of
time.

2.1. An Algorithm for Selecting Requests

Each task resident at a node executing on the AP has its own
independent queue to the CP at that node where the task queues its
message service requests to the CP. An algorithm is necessary for
the CP 1 select an appropriate request from these queues. Assume
that within the queue for a particular task the requests are serviced
on a first-come-first-serve (FCFS) basis. The requests are assumed
to be queved up in chronological order. Thus, the CP has to select
a request from the head of one of M queues. The CP cannot
usually draw up a detailed schedule in advance because the list of
requests changes dynamically and the selection is priority-based.
The most important request at each instant is selected over the less
important requests which may have arrived earlier in time.

Each request is assumed to have a service time estimate,
deadline, and a priority (might be the same as the one associated
with the issuing task). Some simple schemes are to select the
request with the highest priority, or the one with least time to
elapse of deadline, or the one with minimum service time. In the
algorithm described below, it is assumed that the priorities of the
requests reflect the time criticality of the various tasks. The m < M
requests,? one from the head of each queue, are arranged in order
of decreasing priorities. If they have the same priority, the request
with the smaller service time is placed first. The first feasible
request is one, which, if selected and serviced, will guarantee the
completion of all higher priority requests than the selected request
in time. If the service times estimates are exact, then this scheme
is optimal in terms of the number of requests serviced, subject to
the constraint that requests with a higher priority than any of the
requests serviced shall not remain unserviced.

For the convenience of presentation of the algorithm, the fol-
lowing notation is introduced.

M: the number of tasks resident at the node.
t: the time instant a request to be serviced is selected.
d;(t) : the deadline of request i.
s;(t) : the estimated service time of request i.
p;(t): the priority of request i.
Ci(t): the estimated completion time of request i, i.e.,
Ci(0) = 5:(1) + XLs;0),
Jjsi
FS; : The ordering of requests with priorities higher than that

of request i such that for each task k¥ < i in the ordering,
Ci(t) < di(2). In other words, this is a feasible schedule
for request i.

2Because some of M queues may be empty, the number of requests to be
scheduled at a given time for service by the CP is less than or equal to M. But,

we will always assume M requests to be scheduled, making error on the safe
side.

122

M
Also, let S,' = E.Sj(l) and D,* = max;,;d;(t).
]=l
The lowest priority request is chosen and an attempt is made
to build a feasible schedule (in any order of request priorities) from
the other requests which have priorities higher than the chosen
request using the closest deadline scheduling policy. If this attempt
fails, then there is no way to satisfy this request without sacrificing
some higher priority request. Hence, the request is dropped from
further consideration, and suitable indication given to the task
which generated this request. If this attempt succeeds, then that
request is chosen for servicing at that particular time instant.
Proposition 1: For any FS;, t+ sj(t) < d;(¢) for all
J<i.
When we choose a request i, the estimated service times of all the
requests whose priorities are higher than that of { should be such
that if any of them is scheduled at the current instant, they should
complete before their deadline. This is because if they did not do
so, we would have an ordering which does not satisfy the requisite
condition for a feasible schedule.

Proposition 2: For any FS;, D, — ¢t > ¥5;(¢).
jsi
If this proposition does not hold, there would be no way to satisfy

all requests with higher priority than i, and hence the schedule is
no longer feasible.

Proposition 3: Suppose there is a set of requests whose
deadlines can be met. Then, the schedule in which the request with
the earliest deadline is scheduled first always meets all deadlines.

The above result is borrowed from the work by Jensen ef.
al6 . Using the above three propositions, the CP uses the follow-
ing algorithm to select a request from the M queues.

1. Arrange all the requests into a list PL in order of decreasing
priorities and index them accordingly.

2. Select the next request i from PL and set VT = ¢, the instant
of selection.

3. IfD/ -1t <Ys;(t), gotostep 2.
jsi

For any request j < i, if ¢ +5;(t) 2 d;(z), then go to step 2.

5. Armange all requests into a list DL in order of increasing
deadlines.

Sa. Choose the next request & from DL .

5b. If VT +5,(t) < dp(2), then VT :=VT +5,(t), go to
step Sa.

5c. If DL # @ then go to step 2 else a feasible schedule

has been generated and request i is declared as the
chosen request.

The algorithm described above selects requests to be serviced
on the basis of their priorities, while maximizing the number of
requests serviced. The performance of this algorithm will depend
very much on the basis for the assignment of priorities. For
example, if the priorities were just assigned based on the closest
deadline, this algorithm reduces to the closest deadline scheduling.
(No attempt has been made here to either define the basis for the
priorities, or evaluate its impact on the performance, though, since
it is not the main intent of this paper.)

2.2. Functions of the CP

Let AT, and CT , be respectively an AT and the CT assigned
to node o. In the absence of CT, when another task sends a mes-
sage t0 AT, it has to wait till AT, receives the message. One of
the main purposes of using a CT s to avoid the overhead caused
by handshaking. The sender task now sends its message irrespec-
tive of whether or not the receiver task is ready. CT, receives and
then directs the message to an appropriate port of AT, while ser-
vicing a receive request from that task. CT, has to keep track of
how many ports AT, has and what are the various restrictions
associated with them. Each port can be associated with an internal
buffer to store the messages which are addressed to the task resid-
ing at that node or all the buffers of all the ports could be com-
bined into one in order to minimize space. However, this could
lead to the dangerous case of a particular port not having space for
its messages. A message arriving at a node may be destined for
that node (terminal message) or for another node (transit message).

The terminal messages are handled differently. If AT, has
executed a receive command and is waiting for a message from its
sender task, then the terminal message which has just arrived is
given to AT, if the AT ,’s receive request is currently being ser-
viced by the CP. Another possible situation is that AT, has not
yet executed the receive command, but a message has arrived at
that port. This message is stored in the internal buffer. When AT,
requests a message and this request is selected to be serviced, then
CT , scans the internal buffer and gives the message from the port
specified by the task. Since each port does not have a specific slot
in the physical memory, the buffer search will have to be exhaus-
tive. In case no port is specified, then some built-in rules, like
prioritizing the ports, can be followed.

The CT has to maintain the list of all ATs resident in that
node and the ports associated with them along with their modes of
usage. This can either be stored as a table or as a tree which might
allow dynamic creation of ports as and when the situation
demands.

The CP is interrupted every time a message arrives, the
arrival of a message referring to the assembly of all the packets of
the message. The packet level handling is done by the windows,
each of which is a finite state machine, as mentioned earlier. It
compares the addresses of all the ports associated with the node,
and takes suitable measures, like putting the packet in the intemnal
buffer if it is addressed to a task located in that node, and transter-
ring the packet to the window of the next node if it is not a termi-
nal message. Overflow transit message packets, if any, are handled
by the CP.

The timer task is the task executing at a node, which is
responsible for all the timing information provided at that node.
For all practical purposes it can be considered a part of the CT and
has to execute on the CP. It should inquire the CT whether it
requires timing information and take the required action like signal-
ling to the CT when the time has run out.

The CT is subdivided into the user level, mapping level, rout-
ing level, and the primitve level (see (4] for more on this). The
user level calls the mapping level to ascertain the destination
address. The mapping level then uses the routing function to deter-
mine the next node for the message and calls the primitive to send
the message. In the present discussion, the user and the mapping
level functions are performed by the CP. The routing and the prim-
itive level functions are performed by the windows. Some of rout-
ing level functions are also performed by the CP, forming an over-
lapping zone between the CP and the windows.

123

The basic mode of communication between the AP and the
CP is via shared memory. In addition, there should be provisions
for hardware communication between the two processors like a set
of flags to signal any abnormal condition® which might arise. The
fault handling in this system is limited to recognizing the time-out
exceptions and calling the appropriate recovery routines. For exam-
ple, if task A sends a message to task B but does not get the ack-
nowledgement (reply) in the specified time, then the recovery pro-
cedure is initiated by the CP which might involve retransmitting
the message to B and waiting for a reply if the message is
sufficiently important to do that, or ignoring it if the message has
lost its meaning after that particular time span.

3. FLOATING COMMUNICATION PROCESSOR ARCHI-
TECTURE

In the node architecture where an AP is assisted by a CP to
perform the various tasks assigned to that particular node, the AP
may run out of tasks to execute and remain idle. It is also possible
for the CP to run out of requests to service and remain idle (this is
more likely if the tasks are computation intensive). Note that the
CP has been used to improve the performance and the utilization of
the AP, removing as much of the communication overhead as pos-
sible from it. The situation where the AP is blocked (or remains
idle) is undesirable. Moreover, the CP, instead of remaining idle
(computation intensive tasks), can relieve the AP of some of its
load. This motivates the need for a floating CP. In this architec-
ture, there are two equally powerful processors at the node and
both of them are capable of executing the application as well as the
communication tasks. The central idea is that the system can be
reconfigured according to the load at a particular time. For exam-
ple, if the processor assigned to function as an AP has run out of
tasks, then it can switch to become a CP and then relieve the other
processor of some of the load at that instant. This would remove
the probability of a processor having to remain idle while the other
processor is overloaded, and hence improve utilization. This
approach also improves fault-tolerance of the system, since if one
of the two processors fails, then the remaining fault-free processor
can function as the AP and CP in a gracefully degraded mode.

The flexibility introduced in terms of a floating CP is not
entirely without overhead. Nomnally, the CP is a specialized pro-
cessor and need not be as complex and as powerful as the AP.
Other problems raised by this approach are the reconfiguration
overhead, and the memory contention problems when both the pro-
cessors are executing the same class of tasks. These issues, though
important, will not be addressed here.

3.1. A Reconfiguration Protocol

The architecture of a node is depicted in Fig. 2. A typical
node consists of two processors, say P, and P,. Let the state of
the system be represented by the ordered pair (a,b) where a = A
if P, is the AP, and @ = C if P, is the CP. Similarly, b represents
the state of P,. The system can thus be powered up from any of
the possible states shown in the Markov model of the system in
Fig. 3. Note that the transitions from (C, C) to (A, A) are not
allowed, as at any instant only one processor is allowed to change
state. (More on this will be discussed later.)

The crucial aspect is the common memory between the two
processors (Fig. 2). The memory holds the task control blocks and
queues. In this architecwre, P, (P,) can take its input from the
computation queue if it is functioning as the AP at that instant, and
from the communication queue if it is a CP at that time. There are

3For example, failure may occur due to time-out exception.

Common
Memory
4
A
[4
A A
P 1 P 2
(AP,CP) (AP,CP)
4 4
A A
AT mem CT mem

Fig. 2. Floating CP (AP) architecture.

two queues, CT queue for communication requests and AT queue
for computation requests, both kept in the common memory. The
queue locations are known to both the processors. If a processor is
an AP at any instant, it takes its input from the AT queue and
when the task generates a communication request, it enqueues the
request onto the CT queue.

If a processor is functioning as an AP at a particular point in
time, it selects the first encountered AT requiring computation ser-
vice from the AT queue. In case the AT queue is empty, it
switches to become a CP, and looks in the CT queue for the next
task (requiring communication service) to execute. Both the queues
cannot be empty, as it is assumed that the number of tasks at a
node is non-zero and constant.

The reconfiguration might be as simple as reloading the con-
tents of a few registers, since the processors are identical. When
the processor acting as AP discovers that there are no ATs to be
serviced, it can issue a supervisory call to the operating system,
which will reload the reconfiguration register. Then, the processor
will start looking for tasks in the other queue. Thus, the processor
looks for a task to execute in a particular queue, depending on the
contents of the reconfiguration register. The other additional infor-
mation regarding where to look for the task code can be incor-
porated into the task control block.

Since both the AT and CT queues are placed in the common
memory of the two processors, only one processor can access a
queue at a time, and hence only one processor can switch mode at
a given time, i.e., the transitions from (C, C) to (A, A) are not
necessary in the Markov model.

Once a processor accesses the common memory, it should
take complete control of the memory until it obtains a task to ser-
vice. This is easy to visualize because, if the other processor is
allowed to put a task into the queue when this processor is still
looking at the queue, incorrect reconfiguration might take place.

The state diagram of the system is shown in Fig. 3 with the
various conditions on which the transitions take place. This can be
further simplified by merging states (A,C) and (C,A), thereby
resulting in a modified state diagram in Fig. 4. The protocol for
reconfiguration is described by the flowchart in Fig. 5. The system
is normally assumed to be in state (C,A) or (A,C), which is the
state H in the modified state diagram. On encountering exceptions
(empty AT queue or empty CT queue), appropriate action is taken.
Suppose a processor is the AP at a given time. If the AT queue is

124

A: AT queue empty B: CT queue empty
C: CT queue non-empty D: AT queue non-empty
B
D
o]
A
Fig. 3. State diagram for floating CP (AP) architecture.

A : State (A,A) - both AP's

H : State (A,C) or (C,A) - normal mode, one AP, one CP.

C : State (C,C) - both CP's.

Fig. 4. Modified (reduced) state diagram.
empty, it reconfigures itself to a CP and services the next available
task in the CT queue. After servicing this task it puts the task back
in the AT queue, and reconfigures itself back into the AP. The
overhead incurred in this scheme increases with the number of
reconfigurations performed during the course of execution.

3.2. Performance Improvement

The improvement obtainable by using the floating CP archi-
tecture over the fixed CP architecture is analyzed in this section.
The architecture with the fixed CP is always in state H of Fig. 4.
In the case of fixed architecture, the states A and C represent situa-
tions where one of the processors (AP or CP) is blocked. In these
states both the processors are doing useful work in the case of
floating CP architecture. Thus, the overall time spent by the system
in states A and C represents the improvement obtainable by using
the floating CP architecture.

For the purpose of analysis, the model of the system is
assumed to be the one shown in Fig. 6. The time spent by the sys-
tem in states A and C in Fig. 4 is the same as the time spent by
the system in states (0,n) and (n,0). The probability of the system
being in state (0,n) or (n,0) is given by

P@)+PC)=0RADD - ey o= Lo
(I—Pn+) Hep

The fractional improvement of the floating architecture over the
fixed architecture is plotted in Fig. 7. This plot reveals the sharp
improvement in performance possible when the number of tasks at
the node is small or the server ratio is small. This can be explained

Exception!

Is CT queue empty?

Flip to AP.

Error
handier

Is AT queue empty?

Put CTin CT queue.

Flip to CP.

Fig. 5. A reconfiguration protocol for CP.

number of tasks

02 03 A4 o5 +6
7 o3 [_E] A0
1
.9,
nA .8.
) n g 7
‘Qp - service rate of CP A #of tasks queued and ready to run on the AP g 6.
s
mp - sarvice rate of AP E_ .5.
I'IC # of tasks queued and ready to run on the CP - .4
AP : Application processor 3
CP : Communication processor (nA. nc) : state of the system .2
-1 v T T v v v v
0 1 2 .3 7 8

" server ratios
Queueing model of the node.

Fig. 7. Performance of Floating Cp architecture

Mp o "clp

. "
—_—,
o,n ‘nlp (1,n-1 An;p ‘map

Markov Chain model of the system

Fig. 6. Model of the node.

125

by observing that if there are fewer tasks at a node, they are ser-
viced faster, leading to idling of the quicker processor, i.e., the CP
in the case of computation intensive tasks. On the other hand, if
the server ratio p is small, then most of the time is spent in the
AP, whereas the CP remains idle most of the time, and hence the
sharp improvement possible by using this approach.

4. CONCLUSION

In this paper, various issues involved in the communications
aspects of distributed real-time system were studied. Particularly,
addition of extra hardware at each node, in the form of a communi-
cation processor (CP), was analyzed. An algorithm for message
handling by the CP was proposed, which maximized the number of
requests serviced in time after taking into account the priorities of
the requests. A floating CP (AP) architecture was proposed, which
is different from the communication architectures proposed by oth-
ers to date. In addition to improving the utilization, the floating
architecture can improve fault-tolerance of the system.

Although the work described in this paper provides a good
foundation, many issues remain to be resolved before an effective
communications architecture can be realized for a distributed real-
time system. The floating CP architecture promises to improve
utilization and fault-tolerance. However, the overhead introduced
by the reconfiguration process has to be studied further. The tra-
deoff between the performance improvement and the overhead of
reconfiguration needs to be analyzed. All of these are matter of
our future inquiry.

REFERENCES

[11 A. Silberschatz, ‘‘Port-directed communication,”” The
Computer Journal, vol. 24, pp. 78-82, 1981.

2] K. G. Shin and M. E. Epstein, ‘‘Intertask communications
in an integrated multirobot system,’’ JEEE J. Robotics and
Automation, vol. RA-3, no. 2, pp. 90-100, April 1987.

3] K. G. Shin, M. E. Epstein, and R. A. Volz, ‘‘A module
architecture for an integrated multirobot system,’” Proc. of
18th Hawaii Int'l Conference on System Sciences, pp.
120-129, Jan. 1985.

4] K. G. Shin and H. K. Lee , ‘‘Port manipulator for the dis-
tributed realization of an integrated manufacturing sys-
tem,”” Computer Systems Science and Engineering, vol. 3,
no. 1, pp. 21-31, Jan. 1988.

[S] U. Ramachandran, ‘‘Hardware Support for Interprocess
Communication,”” Computer Sciences Technical Report
#667, Department of Computer Science, University of
Wisconsin, Madison, WI, September 1986.

[61 E. D. Jensen , C. D. Locke , and H. Tokuda, ‘“‘A time
driven scheduling model for real-time operating systems,’’
Proc. IEEE Real-Time Systems Symposium, pp. 112-122,
1985.

126

