
1374 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 16, NO. 12, DECEMBER 1990

Application of Real-Time Monitoring to
Scheduling Tasks with Random Execution Times

Dieter Haban and Kang G. Shin, Senior Member, IEEE

Absfract-A real-time monitor is employed to aid in scheduling tasks
with random execution times in a real-time computing system. Scheduling
algorithms are usually based on the worst-case execution time (WET)
of each task. Due to data-dependent loops and conditional branches in
each program end m u r c e sharing delay during execution, this WET is
usually d a d t to obtain and could he several orders of magnitude larger
than the true execution time. Thus, scheduling tasks based on WET could
result in a severe under-utilization of CPU cycles and under-estimation
of the system’s schedulability.
To alleviate the above problem, we propose to use a real-time monitor

as a scheduling aid. The real-time monitor is composed of dedicated
hardware, called test and measurement processors (TMP’s), and used to
measure accurately, with minimal interference, the true execution time
which consists of pure execution time and resource sharing delay. The
monitor is a permanent and transparent part of a real-time system,
degrades system performance by less than 0.1%, and does not interfere
with the host system’s execution.

Using the measured pure execution time and resource sharing delay for
each task, we have developed a mechanism which reduces the discrepancy
between the WET and the estimated execution time. This result is then
used to decide at an earliest possible time whether or not a task can
meet its deadline. A set of example tasks are experimentally measured
in a simulated environment while varying their characteristics and the
measured data are analyzed, demonstrating the utility and power of the
proposed real-time monitor.

Index Tern- hadline, nonintrusiveness, real-time monitoring, real-
time scheduling, resource sharing delay, task execution time.

I. INTRODUCTION
ARD real-time systems are mainly characterized by their H timing constraints, because they are responsible for safety-

and time-critical control systems such as aircraft, nuclear reac-
tors, and life-support instruments. The software of hard real-time
systems features a large number of tasks which differ in priority,
timing constraints, and execution time. Ideally, every task should
meet all of its timing constraints: start at a required time and
produce results before a certain deadline. Since missing a task
deadline might cause catastrophic consequences, one of the most
important design issues in a real-time system is to schedule tasks
to meet their deadlines. Most of the scheduling work known to
date is based on a comman assumption that execution times of all
tasks to be scheduled are known apriori. However, determination
of task (program) execution time is very difficult due mainly
to data-dependent branches and loops in each program, and
unpredictable delays associated with resource sharing [9]. Since

Manuscript received October 11,1989; revised June 4,1990. Recommended
by E. Gelenbe. This work was supported in part by the International Computer
Science Institute, Berkeley, CA, under a postdoctoral grant, and by the Office
of Naval Research under Contract NOOO14-85-K-0122.

D. Haban is with Daimler Benz AG, Research Center Ulm (FUZ), Postfach
80 02 30,7000 Stuttgart 80, West Germany.

K.G. Shin is with the Red-Time Computing Laboratory, Department of
Electrical Engineering and Computer Science, University of Michigan, Ann
Arbor, MI 48109.

IEEE Log Number 9039333.

deadlines must be met even for the worst-case, real-time tasks
are usually scheduled based on their worst-case execution times
(WET’S’). Since WET could be several orders of magnitude
larger than the true execution time, scheduling tasks based on
WET may lead to a severe underutilization of CPU cycles and/or
incorrect decision on the schedulability of tasks, i.e., some tasks
are declared to be unschedulable even if they can be completed
in time. We propose that a real-time monitor be used to alleviate
this problem.

A monitor can aid in verifying their timing behavior, detecting
and locating abnormal behavior such as performance bottlenecks,
and exploiting the monitored information for resource manage-
ment, such as task scheduling and fault handling. Monitoring is
defined as the extraction of data about the activities of a compuer
system. In [3], we gave a detailed account of the software
and hardware of a monitoring tool with emphasis on measuring
the performance, understanding the behavior, and presenting the
monitored results. Such a monitoring tool was built as part of the
INCAS multicomputer project [4]. The main goal of this project
was to develop a comprehensive methodology for the design
of locally distributed systems. The experimental environment
consists of 11 nodes interconnected via a local area network.

This paper focuses on one major application of the monitoring
tool: feeding the monitored information back to the monitored
real-time system to achieve an adaptive behavior. Specifically,
the analyzed results about task execution behavior are funnelled
back to the host’s operating system and used for the dynamic
scheduling of tasks. In order to use a monitor for this purpose, it
must provide accurate, timely information about task execution
behavior. We refer to monitoring under timing constraints as real-
time monitoring. Nonintrusiveness is an important requirement
of any monitoring tool, especially when it is used during normal
operation of a real-time system.

As mentioned earlier, the execution time of a task consists of
two components: 1) pure execution time (PET), and 2) resource
sharing delay (RSD). The execution time of a task will become
identical to its PET if there is no delay in accessing shared
resources during its execution. Note that RSD is unavoidable and
varies randomly with the random fluctuation of system workload.
Our proposed real-time monitor can measure both PET and RSD
accurately, and, as we shall see, their separate measurements are
very useful for the on-line check of schedulability of tasks.

This paper describes how a real-time monitor is used to
measure the elapsed pure execution time (EPET), which is then
used on-line to calculate the anticipated pure execution time
(MET). Also presented is an architectural support consisting
of hardware and software to satisfy the requirements of mon-
itor’s nonintrusiveness, accurate measurements, and feedback.
Since use of monitored data is not limited to any particular

lSince the execution times of real-time tasks must be finite, loop counts
are limited to be finite.

0098-5589/90/120(r1374$01.00 0 1990 IEEE

HABAN AND SHIN: APPLICATION OF REAL-TIME MONITORING TO SCHEDULING TASKS 1375

scheduling policy, we focus only on how the accuracy and the
dynamic adjustment of APET can improve scheduling, rather
than developing a scheduling algorithm.

In the next section, we discuss problems associated with
existing scheduling methods that do not use any feedback, and
list the objectives of this paper. Section 111 details our approach to
improve conventional scheduling methods and presents a demon-
strative example. The real-time monitor is briefly described in
Section IV. In Section V, we give an example of measuring the
task execution behavior and using it for the dynamic scheduling
of tasks. In Section VI, various measurements with a set of tasks
are presented to show improvements in the utilization of CPU
cycles and the ratio of tasks finished in time to those missing
deadlines when the proposed real-time monitor is used as an aid
in scheduling tasks. The paper concludes with Section VII.

11. PROBLEMS WITH EXISTING SCHEDULING METHODS
Before discussing problems with existing scheduling methods,

we define the terminology to be used in this paper (see also the
Appendix). Since we abstract from an arbitrary real machine,
the time is expressed in basic CPU cycles. The worst-case pure
execution time (WPET) is the time the task will use to execute
the longest path of the program (e.g., executing each loop a
maximum number of times) without accounting for resource
sharing delay (RSD). (Since we are concerned with real-time
systems, we can assume all loop counts are finite, and so is the
WPET.) The elapsed pure execution time (EPET) of a task at
any given time t is the amount of time spent on executing the
task since its invocation until time t excluding RSD. EPET is
in general unknown a priori and can be determined only upon
task completion.

WPET is usually determined off-line prior to the execution of
a task and does not change during its lifetime. Any changes to the
task will require this time to be redetermined. The determination
of WPET is difficult due to data-dependent branches and loops,
and is often several orders of magnitude larger than the true PET.
The deviation of WPET from the true PET, however, plays an
important role in scheduling tasks. Recall that WET = WPET +
RSD. Tasks are scheduled based on WPET, RSD, their deadline,
the remaining pure execution time (RPET) and the current time.
Since the proposed monitor can extract RSD from WET and it
is easy to express the dynamic scheduling of tasks with EPET
and RPET, we shall not use RSD in the rest of the paper. (We
shall, however, show how to measure RSD with our monitor.)
Although there exist many interesting and good solutions to the
scheduling problem, there remain two major problems associated
with the determination and the accuracy of WPET and RPET as
outlined below.

The more accurate WPET approximates the true PET, the
better tasks will be scheduled. For example, based on the current
EPET, the given deadline and WPET, a task can be aborted when
it is determined to miss its deadline, thus saving valuable CPU
cycles for other time-critical tasks. However, since WPET may
be significantly larger than the true PET, a task may sometimes
be aborted even if it could meet its deadline.

Another problem is that the lack of accurate measurement
tools makes it very difficult to determine EPET in the presence
of unpredictable delays caused by resource contention, such as
communication, synchronization and 110. Therefore, the calcu-
lation of RPET at any time during task execution is usually
inaccurate. Since whether a task will miss its deadline or not
is decided on the basis of RPET, the decision has to be based on

inaccurate values and unpredictable conditions. Moreover, the
scheduling algorithm itself uses CPU cycles to determine an
optimal schedule for tasks. This could be very complex and time-
consuming if many parameters have to be considered in order to
achieve the optimality, as is usually the case.

In order to solve and/or alleviate the above problems, we
propose to use a real-time monitor as a scheduling aid. Feeding
the monitored information about task execution back to the
operating system will enable the system to dynamically respond
to changing needs during the execution. Moreover, since the
actual behavior of a real-time system is very difficult and
expensive to simulate in an artificial environment, it is desirable
to make decisions based on the actual monitored data and update
information about the system behavior dynamically. Specifically,
we shall in the rest of the paper focus on meeting the following
requirements.

At each stage of task execution, the real-time monitor must
be designed to accurately measure EPET and RSD.
Based on measurements, the WPET must be adjusted dy-
namically to approximate the true PET.
The measurement and the processing of monitored data
should cause as little interference in time and space with
the host system as possible.
The scheduling algorithm itself should cause as little over-
head as possible in computing an optimal schedule for
tasks.

111. REAL-TIME SYSTEM MANAGEMENT

A. Measuring Elapsed Pure Execution Times
Given WPET, let RPET(t) represent the remaining pure com-

putation of a task at time t, and EPET(t) be the amount of
computation done by time t (all measured in basic CPU cycles).
The accuracy in calculating the remaining execution time is very
sensitive to the correctness of the scheduling decisions. EPET can
be calculated by using the times measured by the proposed real-
time monitor (more on this will be discussed later). The real-time
monitor will begin counting up upon the start of a task, will stop
counting as soon as the task gets blocked to wait for a resource,
and will resume counting when the task gets unblocked and
starts execution. In other words, the real-time monitor keeps track
of the pure computation time of each task without considering
delays due to resource contention and/or precedence constraints.
If a task gets blocked at time r, the remaining computation at
time t is calculated by RPET(t) = WPET - EPET(t). Then,
given deadline D at any time t’ > t when the task is ready
to startfresume execution, one calculates T = D - RPET(t) -
t’. If T > 0, then the task is still schedulable, or may meet
the deadline. If T < 0, then the task cannot be completed in
time, or a dynamic failure [8] will occur; the operator will be
informed of this first, and some form of recovery measures will
be invoked.

More specifically, the real-time monitor can be used to check
the deadline of each task continuously while the task is running,
or blocked to wait for a resource to be available. Thus, whether
or not a task will miss its deadline is detected at an earliest
possible time via the continuous monitoring of task execution.
This earliest detection of a dynamic failure will give the system
and/or the operator enough time-which would not be available
without real-time monitoring-to take actions against the failure.

~

1376 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 12, DECEMBER 1990

B. Anticipated Pure Execution Time
The calculation of RPET is based on the given WPET and the

measured EPET. Therefore, W E T is an important parameter in
determining WET, and thus, whether a task will miss its deadline
or not. However, as mentioned earlier, WPET might be several
orders of magnitude larger than the true PET, thus making the
scheduling decisions based on WPET inaccurate. With a more
accurate estimate of PET (or APET) than WPET, the error caused
by the large gap between the WPET and true PET can be reduced,
and thus, used for better scheduling of tasks.

Our main idea to counter the above problem is to take the
past execution behavior of a task into consideration for the on-
line calculation of APET as follows. A task is divided into n
disjoint parts on the basis of its structure. For example, a task
may be divided based on loops, i.e., loops and codes between
loops become parts. Fig. 1 shows an example task division into
nonoverlapping parts. The WPET of each part is determined in
the same way as for the entire task, i.e., using the longest possible
paths within the part.

Instead of considering the WPET for the entire task, we
use a vector WPETV = (WPET,, WPET,, . . . , WPET,),
where each component is the WPET for the corresponding part
of the task. In other words, W E T , is the worst-case pure
execution time for part 1, W E T z for part 2, and so on. The
sum of all components of WPETV is equal to the WPET of
the entire task, which is usually used to schedule the task, i.e.,

The real-time monitor is used to measure accurately the start
and completion of each part by placing triggering points into the
code. (The detailed implementation and mechanisms to achieve
this are described in Section V.) If part 1 of the task is completed,
the EPET of part 1, denoted by EPET,, replaces WPET, to form
APETV = (EPET,, WPET2,. , WPET,). Whenever part
i of the task is completed, the measured EPET, replaces W E T ,
in APETV. Then, the sum of APETV's components is used as
a new APET for on-line scheduling of tasks. In other words,
the measured and dynamically adjusted APE" in place of
WPTEV is used for scheduling. In general, the new APET is
much lower than the previous APET, since the WPET of one
part is replaced by the true PET of that part. The number (n) of
parts is variable and depends on the task structure and also on
the desired accuracy towards the end of task completion. Initially,
APET = W E T , meaning that M E T , = WPET, for all i. When the
task is completed, APET = PET. Fig. 2 shows the transformation
of the APET starting with WPET and ending with PET.

To demonstrate that APET approximates the true PET much
better than WPET, we plotted in Fig. 3 the difference between
WPET and the true PET as well as the difference between APET
and the true PET.

The plots in Fig. 3 are not based on the actual numbers; even
if the plots would be based on real measurements, they will vary
every time the task is executed due to random input and environ-
mental changes. The difference between APET and the true PET
is shown to decrease monotonically as task execution progresses
toward its completion, whereas the difference between WPET
and the true PET remains constant. The difference between the
true (unknown) PET and the M E T is decreased by WPET, -
EPET, whenever part i is completed. In general, this decrease is
significant, because WPET, represents the largest possible PET
for part i.

Although the actual difference WPET, - M E T , depends on a
particular task and input data, the graph indicates that APET ap-
proaches the true PET as its execution progresses to completion.

WPET = WPET,+ WPET2 + ... + WPET,.

WETl

WETz

WET3

I I .

Fig. 1. Parts of a task.

6 initial

tl: pan 1 is Completed

'2: pan 2 is CWplUed

5: part 3 is Completed

t,,: part n is complctcd

Fig. 2. Transformation of the anticipated execution time vector.

Since WPET is usually much larger than the true PET, the value
of APET - PET is getting smaller as the WET, ' s in APETV
are being replaced by EPETi's. Another result is that the more
parts we introduce, the faster APET approximates the true PET.

Obviously, the accuracy of W E T is important for the schedul-
ing decision on each task. The following two examples illustrate
that the RPET based on APET is much smaller than the RPET
computed with WPET. (Thus, use of APET will reduce the
probability of throwing out tasks as a result of incorrect decisions
on whether or not the tasks will meet their deadline.) These two
examples are based on an artificial workload generator which is
used to compute EPET,'s. The plots in Figs. 4 and 5 are obtained
from using two different sets of EPET,'s for the same task.
(Therefore, both figures used the same WPETV but different
APETV's.) Note that in Fig. 4, RPET = 158 ps after t = 13 ps
when APET is used, as compared to RPET = 735 ps based when
WPET is used. In Fig. 5, RPET = 444 ps after t = 6 ps based
on APET, as compared to W E T = 742 ps based on WPET.

It is important to observe that using an accurate PET becomes
more important as the task is getting closer to its comple-
tionldeadline. At the beginning of task execution, the task should
be schedulable for the most of times, but as the task approaches
its completioddeadline, the more urgent the monitoring of task
execution time and deadline will become. This can be taken into
account by dividing the task into larger (coarser) parts in the
beginning and into smaller (finer) parts near the end of the task.

HABAN AND SHIN: APPLICATION OF REAL-TIME MONITORING TO SCHEDULING TASKS 1377

Difference

4
.

2 3 '
0 WETI XEWl XEWI i'k :

WPET - EPETB

t
mi - APET - PET

Fig. 3. Differences between the cases of using WPET and APET.

200 3 0 0 1

WPETV = (157,147,135,151, 158) = APETV(0)
APETV(14) = (3,4,4,2, 1)

0 I ,
1 I I I 1
3 7 1 1 13 14

EPET
t i l s 1

Fig. 4. Computation of RPET based on WPET and APET: example 1.

IV. REAL-TIME MONITORING

A. Design Requirements
We list here the requirements of real-time monitoring necessary

to support the scheduling method discussed thus far.
The hardware and software in most existing computer systems

are not designed to be monitored, although monitoring tools in
the form of stand-alone hardware devices, programs, and hybrid
tools have been available for many years. Monitoring tools can
be classified into pure hardware and pure software. A hardware
monitor is a device that is not a part of the host system. Although
such devices can be designed to have minimal or no effect on the
host system, they generally provide only limited, low-level data
about the host system activities and cannot be used to provide
any desired data about the system's execution. Especially, these
monitors have reached the frontiers of measurability in computer

systems with modern hardware, such as cache memories and
memory management units. Hardware monitors are not suited
for systems with dynamic behavior where processes are created
and migrated dynamically. On the other hand, software monitors
can extract almost any desired information and can present it
in an appropriate, user-oriented manner. These monitors are
usually contained within the host system, sharing with it the
same execution environment, and thus, producing some degree
of interference in both the timing and space of the monitored
program. Although simple software monitors, such as counters,
are incorporated into the operating system, the accuracy of these
monitors and the contents of the processed data are, due to
efficiency reasons, not well suited for the measurement and
management of real-time systems. Moreover, the interference
caused by software monitors is not acceptable in real-time
systems due to the resulting increase of system response time
and unpredictable changes to system behavior.

1378 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 16, NO. 12, DECEMBER 1990

70

60

50

40

30

20

= (157, 147, 135, 151. 158) = AF’ETV(0)
10 APETV(198) = (4. 2. 124, 63, 5)

0

4 6 130 193 198
EPET
IPS1

Fig. 5. Computation of WET based on W E T and MET: example 2.

For the above reasons, conventional monitors are not adequate
for the measurement and management of real-time systems. New
methods and tools are thus necessary to meet the following design
requirements.

Interference: The monitoring system should not change the
host system behavior and have minimal effects on the host
system performance.
Continuous monitoring during normal operation: The mon-
itoring system should be able to trace the host system,
evaluate and supervise the execution of applications, and
make information available for display and feedback in
real-time about their progress. This service is particularly
important when monitoring those programs that control
safety- and time-critical systems, such as a nuclear power
plant or an airborne system.
Integration: The instrumentation of the monitoring system
has to be incorporated into the host system during its
design phase, leading to an integrated approach. Thus, the
monitoring system can be permanently used for observation
and management functions.
Feedback: In order to allow the host system to dynamically
respond to the monitored results, the monitor must be able
to funnel its results back to the host system. This provides
the host system with up-to-date information about its own
activities, and can be used for fine performance tuning,
scheduling decisions, and error handling.
Real-time operating system support: The monitor should be
able to process the monitored data locally. In combination
with the ability to execute routine low-level, operating
system tasks, such as local load or network management,
the host operating system is relieved of processing and
management functions which could significantly increase
the response time.

B. Realization
The insufficiency of current software and hardware monitors

has led to the design of the test and measurement processor
(TMP) [3]. The hybrid approach of TMP combines the ad-

vantages of software and hardware monitors while overcoming
their deficiencies. Hybrid monitors typically consist of 1) an
independent hardware device which can perform the low level
monitoring, i.e., information gathering, and 2) software programs
executing on this device to measure, evaluate and display the host
system performance. The TMF’ meets all the design requirements
mentioned above. In this paper, we focus only briefly on the use
of the TMP for scheduling tasks and refer the interested reader
to [3].

1) TMP Principles: Efficient monitoring of task execution
times is accomplished by using events generated by the
monitored software. Events represent significant trends in the
system behavior, such as assign, resign, and block processes.
The triggering points for these events are placed in the
operating system kernel and the application code which then
provide continuous information about the system behavior.
These events are then collected, time-stamped, and processed
by the separate TMP hardware. Therefore, the TMP is capable
of executing local software for the various processing and
evaluation needs for its host concurrently with the execution of
application tasks. The analyzed results can then be displayed
locally, combined with remote results from other TMP’s,
and fed back to the host system to achieve an adaptive
behavior. By using semantic information about the monitored
programs provided by the compiler and the programming
environment, the monitoring software is able to access any
desired information, such as task deadlines, WET’S, task names,
and task priorities. Fig. 6 illustrates the principles of the TMP-
based approach.

The TMP may be viewed as an extra device responsible for
monitoring, recording, and evaluating the activities of the host
node as well as its communication activities. It was designed to
be an integral part of each node in a multicomputer system. For
applications in a distributed environment, the TMP’s exchange
data via a separate TMP network. Experiments with the TMP
in the INCAS multicomputer system showed that typically,
600-800 such events were generated every second on each
node. The host overhead caused by the TMP is shown to
be lower than 0.1%. Since this overhead is negligible, the
TMP has become a permanent part of each node. In addi-

HABAN AND SHIN: APPLICATION OF REAL-TIME MONITORING TO SCHEDULING TASKS 1379

Information

Measured and
Monitored System executing

TMP ring

Fig. 6. TMP principles.

tion, since the instrumentation is permanent within the host
system, and since the TMP can execute its own monitoring
software, the host system’s behavior is not changed by the
monitor.

The next subsections present the principle of encoding and
decoding information via events and then focus on their detection
using the TMP hardware, followed by a description of the
evaluation software used for the scheduling purpose.

2) Instrumentation of the Host System: Events represent the
only overhead introduced by the TMP-based monitor. An event
is defined as a special condition that occurs during the normal
system activity such that it can be made visible to the TMP.
There are two kinds of events, optional and standard. Optional
events are associated with the application program. They are
generated by the compilers or are placed manually into program
code. Standard events are permanent and integral parts of the
system. They are intended to support monitoring and measuring
during normal system operation.

The minimal monitored activities necessary for the desired
scheduling support include the dispatcher and the trace of the
parts of a task. Table I gives a list of the corresponding events,
each with the event class followed by a list of parameters.

Dispatcher events trace the operations of the operating system
dispatcher. The general model of a dispatcher is depicted in
Fig. 7. It includes events to represent the states of a process:
ready, blocked, running. The parameter procID (see Table I)
identifies the process object, and the parameter procNo identifies
its type. Note that dispatcher events are standard events and,
therefore, a permanent part of the system. Programs need not
be recompiled or relinked to be monitored. In the INCAS
environment, additional standard events were included to reflect
the activities of a distributed system, such as communication
traffic.

Events signaling the completion of parts of a task are inserted
by the programmer into the real-time task by using a procedure
call: EVENT (end-part, Number). The insertion of the event
end-part is not necessary for the exact measurement of task
execution times, since it can be accomplished with the standard
instrumentation set.

Optional events are inserted by the programmer at the bound-
aries of task partitioning, and APET is updated whenever a
part of each task is completed. If no optional event is inserted
into the task’s code, the task is considered to consist of only

TABLE I
LIST OF EVENTS NECFSSARY FOR TASK SCHEDULING

start process cprocID> <procNo>
stop process <procID>
assign process <procID>
resign process <procID>
ready process <procID>
block process <queueID>
end-part <number>

resign process

Fig. 7. Events representing the operations of the dispatcher.

one part and, therefore, APET is not adjusted during the entire
execution of the task. However, the insertion of the optional
events after the end of each loop can be done automatically by
the compiler.

The list of events can be expanded to keep track of other
activities, such as interrupts, change of priority, change of
deadline, and process migration, which is not addressed in this
paper.

3) Event Generation: The mechanism for generating an
execution-time event consists of a store instruction that is inserted
at a specific, well-chosen point in the program code. Since the
store instruction writes through the local processor cache, each
event is immediately visible on the system bus. The format of the
instruction is: STORE ADDR, VALUE. Each address represents
one event class (e.g., assign process), and therefore, the range
of the address field is bound to 256 addresses. The VALUE of
the store instruction serves as a parameter to specify one event
within each event class. The seven event classes listed in Table I
are sufficient for scheduling real-time tasks.

4) Hardware Implementation: The TMP hardware is con-
nected to a system bus and monitors events on this bus with
negligible impacts on the measured system. Fig. 8 shows the
TMP hardware and its integration into a computer node. The
specific parts of the current TMP hardware consist of a M68000-
based processor with 1 Mbyte of local memory, a dual RS-232
port for local interface, a network interface to other TMP’s, and
an event processing unit (EPU). The processor is used for the
execution of monitoring software including low-level monitoring
and evaluation routines as well as operating system functions.
The monitoring software running on the TMP can collect and
process up to 13000 events per second per node, which is ten
times more than the average number of collected events. We
leave out the details of the TMP hardware features but emphasize
only the collection of the events, since the latter is essential for
scheduling tasks.

The EPU consists of a local event buffer, a comparator, a
clock, and an overflow counter. The local event buffer of the
EPU is used as a FIFO for collecting sequences of events. The
depth of the FIFO is 16 entries. This depth was determined
to cope with a high arrival rate of events, and is based on
experiences gained with an earlier prototype. Each entry in the

1380 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 12, DECEMBER 1990

4

IC1

8 32 36 4

Fig. 8. The TMP hardware.

t

ork

event buffer consists of the event class, the event parameter,
the timestamp (in ,us), and control information (CPU mode,
overflow marker). We never experienced any overflow of the
TMP buffers. The comparator of the EPU is responsible for
checking the addresses on the host bus. If an address falls
within the range which represents event classes, the matched
address and the next data on the bus are stored in the event
buffer, along with the local time. The last byte of the address
determines the event class; thus, it is the only byte stored by the
EPU. The low-level implementation of the TMP ensures that the
address range representing events does not interfere with the main
memory. The timer of the EPU is to measure the time difference
between events. The resolution of this timer guarantees that no
two successive events will have the same time. For example,
in the current implementation, a time quantum of 1 ,us is used,
thereby allowing up to 19 hours of measurements before the
counter overflows.

Finally, we note that the TMP has access to the memory of the
host processor. This property is used to feed the results processed
by the TMP back to the host operating system. For fault-tolerance
and reliability purposes, it is possible to add more than one TMP
to each node without disturbing others. Thus, each TMP runs the
same event processing software, and funnels results back to the
host system which then extracts the necessary data.

V. ANALYSIS OF MONITQRED DATA FOR TASK SCHEDULING
After collecting the information about a program’s execution,

raw data must be processed and analyzed to assist in scheduling
tasks. The TMP hardware is responsible for the nonintrusive
collection of run-time data based on the standard and optional
events mentioned above. Fig. 9 shows the software components
residing in the TMP. The TMP software allows for flexibility and
comprises the monitoring sofrware, which processes and analyzes
incoming events, and system management functions.

Fig. 9. Software components residing in the TMP.

In particular, the scheduler itself consumes a significant amount
of time to “optimally” determine which task to be scheduled
next [5]. Thus, the scheduler is made to run on the TMP
while keeping the dispatcher to run on the host system. The
scheduler supplies the dispatcher with the task identifier of the
next task to be scheduled. A watchdog process running on the
TMP is responsible for checking whether or not a task will meet
the deadline at an earliest possible time during task execution.
Another component which is loaded into the TMP memory is
the information provided by the compiler and the programming
environment about the real-time system to be monitored. This
information is structured as a database with a hash function
for fast access to the information stored therein, such as task
deadlines and WPET for each task. Note that the scheduler
does not always have to be executed by the TMP. In such a
case, the TMP can feed information about the execution of each
task back to the host’s scheduler which, in turn, determines the
next task to be scheduled by using the CPU cycles of the host
system.

A. Measuring EPET and RSD of Each Task
In this subsection, we focus on the measurement of EPET

and RSD. Based on the foregoing event instrumentation, events
signal state transitions of a task from running to blocked, blocked
to ready, and ready to running. Since each event is stored with
a local timestamp, the TMP software can accurately measure
elapsed times between events.

Upon occurrence of the event assign process <procID>, the
monitoring software is informed that the process with the iden-
tifier <procID> has been activated (running). Thus, all the
subsequent events (end-part, block) will follow from the ac-
tivities of that process until a next assign process event.

The time difference between assign process and resign process
or blockprocess determines the EPET of a process. The time
difference between block process and ready process determines
the blocked time of a process. Cumulative execution and blocked
times are stored in information tables for each process. Let T,
be the timestamp of event assignprocess, T , by the timestamp
of event resign process, Tbhk be the timestamp of event block
process, TE+ be the timestamp of event ready process, T,,, be
the timestamp of event startprocess, TSmp be the timestamp of
event stop process, TFt be the timestamp of event end part,
RSDblock be the time a process spent in the blocked queue, and
RSDE+ be the time a process spent in the ready queue. Then,
we can compute the following time parameters. Initially, EPET =

HABAN AND SHIN APPLICATION OF REAL-TIME MONITORING TO SCHEDULING TASKS

0, RSDblock = 0, and RSDreadY = 0. Upon occurrence of an event
block process, one can compute:

EPET = EPET + (Tbiock - T,,,),
upon occurrence of an event resign process:

EPET = EPET + (T‘,, - T,,,),
upon occurrence of an event ready process:

RSDbiock = RSDbiock + (T r e a d y - Tbiock),
upon occurrence of an event assign process:

R S D r e a d y = R S D r e a d y + (Tass - Tready),
or if the task has been invoked and Tready is undefined:

RSDread, = R S D r e a d y + (Tass - Tstart).
Since the processor itself is a resource, the time a process

spends in the ready queue waiting to be assigned to the processor
is included in RSD. Thus, RSD is computed as RSD = RSDbrock +

Since we can use the computation of RSDrea+ and RSDblock
for other purposes, such as performance tuning and detection of
bottlenecks, the TMP keeps track of these activities. Besides, the
parameter <queueID> of the event block process allows the TMP
software to compute RSDblock separately for each wait condition.
However, it would be sufficient to compute only EPET for each
task, since RSD for a particular task at any time can be easily
computed by subtracting EPET from its lifetime. (The lifetime
of a process is the actual real-time minus the timestamp of the
event start time of this process.)

RTDrea, *

B. Measurement of M E T
To determine EPETj of a task, the TMP software computes

the PET between two successive events end-part 4 - l > and
end-part <i> triggered by the task. For simplicity, we assume
that the occurrence of the event start(stop) process determines
the start of the first (last) part. Process switching times are taken
into account when computing EPET,. Note that the EPET of a
particular process is updated upon occurrence of events resign
process or block process. Recall that EPET(t) represents the
EPET at time t. Ti is used to store an intermediate result of
the computation;. The algorithm shown in Fig. 10 is devised by
looking at the actions of the essential event sequence.

C. Deadline Check

The watchdog process is responsible for checking at any
time t whether a task in progress will miss its deadline or not.
Checking of the schedulability of a task is usually performed
when a task is ready to starthewme execution. However, since
missing a deadline also depends on the time a process is blocked,
the deadline check must also be done during the waiting for
resources. To deal with this, the watchdog process running on
the TMP continuously checks whether or not each active task
will miss its deadline even while it is in the ready or blocked
queue. A task is assigned to the processor only if its RPET is
smaller than the difference between the deadline and the current
time. The task may not be completed before its deadline if it is

1381

assignprocess dDl> + Tms-l

endpart ti-l> + Ti = EPET(Tms - 1) + Tp.rt-i.1 Tars_]

resign process dD1>

... other processes are executing

assign process dD1> + TmSTz

-+ EPET = WET + T,, - Tms-l

...
end part d> -+ EPETi = EPET(T,, - 2) + Tw,-i - Tms-z - Tj

Fig. 10. Algorithm to determine EPETj.

blocked once or more during its remaining execution. Thus, the
watchdog process checks whether or not the deadline will be met
using the following algorithm which is executed periodically at
fixed, but selectable, time intervals.

When a task is blocked at time t , RPET(t) = WPET - EPET(t)
does not change with t. Given deadline D , at any time t‘ > t when
the algorithm is invoked, one calculates T = D - RPET(t) - t’.
While the task is blocked, t‘ is the only value that changes. IF T <
0, then the task will miss its deadline, which will be detected by
the watchdog process. The watchdog process will signal this to
the host’s operating system which, in turn, can initiate a recovery
action. Note that the watchdog process does not consume any
CPU cycle of the host system.

VI. EXPERIMENTAL MEASUREMENTS AND ANALYSIS
Experiments are conducted on a system with and without

the proposed real-time monitor (RTM), showing improvements
by the RTM in both the utilization of CPU cycles and the
ratio of tasks completed in time to those missing deadlines.
Measurements are taken in a simulated environment to provide
the same condition for every experiment: the same sequence of
scheduled tasks, no RSD except waiting in the dispatcher’s ready
queue, and the same APETV of a task during a given sequence
of measurements. Task data are taken from real measurements
with the TMP on an M68000 system [3]. Since the TMP-based
real-time monitor measures both EPET and RSD accurately, the
unpredictable RSD is extracted away from WPET. Thus, the
dynamic scheduling of tasks can easily be expressed with EPET
and RPET only.

The following experiments are conducted on 10 tasks of the
same type, each with WPETV = (361, 459, 259, 359, 263),
and thus, WPET = 1701. All time parameters are measured in
ps. Three sequences of measurements with different APETV’s
are considered to evaluate the efficiency of our method when
WPET - PET is large, medium, and small. During a given
sequence of measurements, a particular task’s APETV remains
unchanged, but each task has a different APETV. In the first
sequence, WPET is on the average one order of magnitude greater
than PET. In the second sequence, WPET is about five times
larger than PET. In the third sequence, WPET is only twice
larger than PET. During a sequence of measurements, the task
deadline D is the only variable. For simplicity, but without loss
of generality, we assume all tasks to start at the same time,
say 0, and have the same deadline D . Since all ten tasks have
the same priority and deadline during an experiment, tasks are
switched based on a round-robin policy. Two different systems,
one with the proposed RTM and the other without the RTM,
are used to execute the program formed by these ten tasks.
The first system is aided by the RTM in scheduling tasks and

1382 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16, NO. 12, DECEMBER 1990

time

300
300
300
300
350
496
848
873

lo00
1064

continuously checking schedulability, whereas the second system

when a task is ready to resume. Unlike the first system, the
second system cannot take the inaccuracy of EPET and RSD,
and thus, the inaccuracv of WET, into account when testing

A. First Sequence of Measurements

larger than
follows~

a constant wpET and checks schedulability Only In the first sequence of measurements, WpET is ten times
for the ten tasks are computed as

task

6 XXX
7 XXX
8XXX
9XXX
1 XXX
2XXX
3 XXX
4XXX
5XXX
0 finished

task WPET WET

W E T

1701
575
589
612

1390
1349
1345
621
967
780

WET PET

1651 210
479 97
509 81
522 91

1290 370
1249 334
1245 314
470 152
793 175
504 277

550
696
777
868
911
952
956

1120
1145
1222

1 XXX
2XXX
3 XXX
4XXX
5 XXX
6XXX
7XXX
8XXX
9XXX
0 finished

for schedulability. With this setup, our experimental results wic
indicate the degree of schedulability improvement via real-time
monitoring. Another source of improvement via the RTM-that
is not reflected in the following measurements-is to save the
time required for the system without the RTM to execute the
scheduling algorithm. We will refer to the system with the RTM
as the RTM case and to the system without the RTM as the
NO-RTM case.

The CPU utilization is computed as the CPU cycles consumed
by the ten tasks during a sequence of measurements divided
by the CPU cycles the ten tasks will consume in case their
execution is completed in time. The CPU cycles consumed by
those tasks which will eventually miss their deadlines form the
wasted time. In the following measurements, WPET is always
kept constant at 1701 for the NO-RTM case, and therefore,

I I I I I I

Task APETV APETV APETV APETV APETV I I (1) I (2) I (3) I (4) I (5)

11 65 97 85 19
5 178 9 34 88

23 6 50 20 53
145 2 5 21 7 *

3 26 15 9 44

96 109
27 35 23 1

9 9 113 4 9 199

is -not presented. Since the RTh4's ability of measuring RSD
accurately eliminates the need of considering RSD for sched-
uling tasks, the deadline D can be made not to depend on
the unpredictable RSD, and thus, is not set to the number of
tasks multiplied by WPET which would always be 17010. With
D = 17 010, all tasks will always finish in time. Tasks which
missed their deadlines are marked with XXX in the tables given
below.

During this sequence, 6 experiments are performed while
varying deadlines to be 2000,2200, 2500, 2800, 3300, and 3500,
and keeping APETV and WPET unchanged. These deadlines are
chosen based on the following observation: the first deadline is
close to the one before which all tasks will not be completed,
the last deadline is approximately equal to the time before which
all tasks will finish. All the other deadlines represent significant
states between these two extremes.

I Deadline = 2000

I RTM CPU-uti1 = 0.50 wasted 4.69 % I NO-RTM CPU-uti1 = 0.25 wasted 47.43 %

PET EPET time WET

1701
1701
1701
1701
1651
1651
1651
1651
1651
1424

6XXX
7XXX
8XXX
9XXX
3XXX
4 finished
2 finished
5 finished
0 finished
1 finished

1701
1701
1701
1701
1701
575
621
967
780
748

1701
1701
1701
1701
1651
479
470
793
504
435

81
370
91

334
210
97

152
175
277
314

0
0
0
0

50
97

152
175
277
314

300
300
300
300
350
350
350
350
350
526

152 50
210 50
97

175
277 277

I Deadline = 2200

CPU-uti1 = 0.58 wasted 28.61 % I RTM I NO-RTM CPU-uti1 = 0.34 wasted 61.89 %

EPET time I task WET I PET I EPET I time

50
97
81
91

100
100
100
152
175
277

1651
1651
1651
1651
1651
1651
1651
1651
1651
1424

314
152
210
97

175
81

370
91

334
277

50
50
50
50
50
50
50
50
50

277

550
550
550
550
550
550
550
550
550
726

4 finished
6 finished
8 finished

9 x x x

2 finished
5 finished
0 finished

HABAN AND SHIN: APPLICATION OF REALTIME MONITORING TO SCHEDULING TASKS 1383

task

4 finished
6 finished
3 x x x
8 finished
7 x x x
lXXX
2 finished
5 finished
0 finished
9 finished

Deadline = 2500

WPET

575
589

1701
612

1390
1345
621
967
780
657

CPU-uti1 = 0.76 wasted 24.89 %

PET

NO-RTM CPU-uti1 = 0.50 wasted 56.87 %

EPET time task RPET RPET PET EPET time

task WPET RPET PET

479
509

1601
522

1240
1195
470
793
504
324

EPET time

97
81

210
91

370
314
152
175
277
334

task

97
81

100
91

150
150
152
175
277
334

RPET

746
827
900
918

1261
1306
1320
1345
1522
1606

task

4 finished
6 finished
8XXX
9 x x x
lXXX
2 x x x
3 x x x
5 x x x
7 x x x
0 finished

WPET

1604
1620
1651
1651
1601
1601
1601
1601
1601
1424

RPET

97
81
91

334
314
152
210
175
370
277

PET EPET time

97
81
50
50

100
100
100
100
100
277

task

746
827
878
878
928
928
928
928
928

1054

RPET PET

Deadline = 2800

RTM CPU-uti1 = 1.00 wasted 0.00 % NO-RTM CPU-uti1 = 0.64 wasted 59.43 %

PET EPET time

4 finished
6 finished
8 finished
2 finished
5 finished
3 finished
0 finished
1 finished
9 finished
7 finished

575
589
612
621
967
725
780
748
657
783

479
509
522
470
793
516
504
435
324
414

97
81
91

152
175
210
277
314
334
370

97
81
91

152
175
210
277
314
334
370

746
827
918

1420
1495
1705
1832
1996
2080
2100

4 finished
6 finished
8 finished
7 x x x
9 x x x
lXXX
2 x x x
3 x x x
5 x x x
0 finished

1604
1620
1610
1601
1601
1551
1551
1551
1551
1424

97
81
91

370
334
314
152
210
175
277

97
81
91

100
100
150
150
150
150
277

746
827
918

1219
1219
1269
1269
1269
1269
1345

Deadline = 3300

NO-RTM CPU-uti1 = 0.90 wasted 26.35 %

time

1420
1495

210 1705
277 1832

1883
250 1883
314 1896

4 finished
6 finished
8 finished
2 finished
5 finished
3 finished
0 finished
1 finished
9 finished
7 finished

575
589
612
621
967
725
780
748
657
783

479
509
522
470
793
516
504
435
324
414

97
81
91

152
175
210
277
314
334
370

97
81
91

152
175
210
277
314
334
370

746
827
918

1420
1495
1705
1832
1996
2080
2100

4 finished
6 finished
8 finished
2 finished
5 finished
3 finished
0 finished
7 x x x
9 x x x
1 finished

1604
1620
1610
1549
1526
1491
1424
1451
1451
1387

97
81
91

152
175
210
277
370
334
314

1384 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 16, NO. 12, DECEMBER 1990

RTM CPU-uti1 = 1.00 wasted 0.00 % NO-RTM CPU-uti1 = 1.00 wasted 0.00 %

88
80
81
30
72

134
135
57
83
31

60
74
86
2

119
104
91
4

52
91

RTM CPU-uti1 = 0.82 wasted 59.01 % NO-RTM CPU-uti1 = 0.59 wasted 79.65 %

WPET RPET PET time I task RPET PET EPET time EPET

97
81
91

152
175
210
277
314
334
370

575
589
612
621
967
725
780
748
657
783

479
509
522
470
793
516
504
435
324
414

97
81
91

152
175
210
277
314
334
370

746
827
918

1420
1495
1705
1832
1996
2080
2100

1604
1620
1610
1549
1526
1491
1424
1387
1367
1331

97
81
91

152
175
210
277
314
334
370

97
81
91

152
175
210
277
314
334
370

746
827
918

1420
1495
1705
1832
1996
2080
2100

4 finished
6 finished
8 finished
2 finished
5 finished
3 finished
0 finished
1 finished
9 finished
7 finished

4 finished
6 finished
8 finished
2 finished
5 finished
3 finished
0 finished
1 finished
9 finished

I I 1

-
Task APETV APETV 7 J - T It is obvious that if all tasks finish in time, the CPU utilization

is optimal since no time will be wasted. This sequence of
experiments shows that the RTM case significantly improves the
CPU utilization due to the fact that for a given deadline the more
tasks finish in time, the less CPU cycles will be wasted. The CPU
utilization of the RTM case is approximately twice as large as that
of the NO-RTM case while the time wasted on executing tasks
missing deadlines is only a half of the NO-RTM case. When the
RTM is used, the significant difference between W E T and PET
results in a significant increase in the ratio of finished tasks to
thrown-out tasks. For example, when D = 2800, the system with
the RTM can complete all 10 tasks in time, whereas the system
without the RTM will throw 6 out of 10 tasks (since W E T is
used to determine schedulability).

APETV
(1)

APETV
(2)

0
1
2
3
4
5
6
7
8
9

82
74
15

114
4

68
4

62
136
76

120
63

113
70

115
107
121
113
120
92

90

89
56
53

During this sequence, 6 experiments are conducted while vary-
ing deadlines to be 3500, 3750, 4000, 4500, 4750, and 5000,
and keeping APETV and W E T unchanged. These deadlines
represent significant states and are larger than those in the first
sequence, since the tasks need more CPU cycles to complete.

B. Second Sequence of Experiments

APETV for the ten tasks are computed as follows.
WPET is now set to be five times greater than PET and

I task I WPET WET I PET EPET time I task I RPET PET EPET I time

1276
449
756
522
512
422
482
516
467
434 I 447

291
503
447
343
317
351
317
356
325

200
291
300
350
300
317
300
317
350
325

2225
2540
2745
2979
2989
3007
3019
3024
3034
3049

9 x x x
l X X X
2 x x x
3 x x x
4 x x x
5 x x x
6XXX
7 x x x
8XXX
0 hished

1551
1501
1501
1501
1501
1501
1501
1501
1501
1254

343
291
356
317
317
503
351
325
447
447

1476
739

1056
872
812
738
782
832
817
758

1 finished

3 finished

4 finished

7 finished

2000
2000

200 2000
2000

447 2196

HABAN AND SHIN: APPLICATION OF REAL-TIME MONITORING TO SCHEDULING TASKS 1385

task

Deadline = 3750

WPET

CPU-uti1 = 0.89 wasted 16.68 %

8XXX
1 finished
5 x x x
3 finished
4 finished
7 finished
9 finished
2 finished
6 finished
0 finished

NO-RTM CPU-uti1 = 0.66 wasted 81.73 %

1476
739

1056
738
832
758
812
817
782
872

task

1 finished
8XXX
3 finished
4 finished
7 finished
9 finished
2 finished
6 finished
0 finished
5 finished

RPET

WPET

739
1476
738
832
758
812
817
782
872
935

PET

EPET time

29 1
356
317
317
503
35 1
325
447
343
447

250
250
250
250
250
250
250
250
250
447

EPET time RPET PET EPET time

time time EPET task

5 x x x
6XXX
7 x x x
8XXX
9 x x x
lXXX
2 x x x
3 x x x
4 x x x
0 finished

RPET

1501
1501
1501
1501
1501
1451
1451
1451
1451
1254

1226
449
756
422
516
434
470
462
432
426

447
291
503
317
317
325
343
356
35 1
447

250
291
300
317
317
325
343
356
35 1
447

2525
2590
2995
3057
3074
3149
3192
3248
3249
3296

2250
2250
2250
2250
2250
2300
2300
2300
2300
2446

447
343

250
356
317 250
317 250
447 447

Deadline = 4000

CPU-uti1 = 0.94 wasted 7.14 % CPU-uti1 = 0.72 wasted 83.42 % NO-RTM

task RPET PET RPET PET I EPET time

449
1226
422
516
434
470
462
432
426
433

29 1
447
317
317
325
343
356
35 1
447
503

29 1
250
317
317
325
343
356
35 1
447
503

2590
2775
3057
3074
3199
3242
3298
3349
3396
3499

1-
2 x x x
3 xxx
4 x x x
5 x x x
6-
7 x x x
8XXX
9 xxx
0 finished

1451
1451
1451
1451
1451
1451
1451
1451
1451
1254

2550
2550
2550
2550
2550
2550
2550
2550
2550
2606

Deadline = 4500

RTM CPU-uti1 = 1.00 wasted 0.00 % NO-RTM

task WPET RPET PET

739
738
832
758
812
817
782
872
913
935

449
422
516
434
470
462
432
426
467
433

291
317
317
325
343
356
35 1
447
447
503

29 1
317
317
325
343
356
35 1
447
447
503

2590
3107
3124
3249
3342
3398
3449
3546
3643
3696

1 finished
3 finished
4 x x x
5 x x x
6XXX
7 x x x
8XXX
9 x x x
2 x x x
0 finished

1410
1384
1401
1401
1401
1401
1401
1401
1351
1254

29 1
317
317
503
35 1
325
447
343
356
447

29 1
317
300
300
300
300
300
300
350
447

2590
3107
3108
3108
3108
3108
3108
3108
3158
3204

1 finished
3 finished
4 finished
7 finished
9 finished
2 finished
6 finished
0 finished
8 finished
5 finished

1386 IEEE TRANSACTIONS ON SOFPUARE ENGINEERING, VOL. 16, NO. 12, DECEMBER 1990

PET

I Deadline = 4750 I

EPET time

0
1
2
3
4
5
6
7
8
9

152
179
125
142
14

148
9

132
131
76

d 0.00 %

EPET

NO-RTM

time

RTM

task

CPU-uti1

432
426
467

= 1.00 waste'

35 1
447
447

WPET W E T
~

1 finished
3 finished
4 finished
7 finished
9 finished
2 finished
6 finished
0 finished
8 finished
5 finished

739
738
832
758
812
817
782
872
913
935

29 1
317
317
325
343
356
35 1
447
447
503

2590
3107
3124
3249
3342
3398
3449
3546
3643
3696

1 finished
3 finished
4 finished
7 finished
9 finished
2 finished
6XXX
8XXX
0 finished
5XXX

1410
1384
1384
1376
1358
1345
1351
1351
1254
1301

291
317
317
325
343
356
351
447
447
503

29 1
317
317
325
343
356
350
350
447
400

2590
3107
3124
3249
3342
3398
3449
3449
3495
3496

Deadline = 5000

RTM CPU-uti1 = 1.00 wasted 0.00 % NO-RTM CPU-uti1 = 1.00 wasted 0.00 %

RPET PET EPET I time task RPET PET [EPET I time task

1 finished
3 finished
4 finished
7 finished
9 finished
2 finished
6 finished
0 finished
8 finished
5 finished

449
422
516
434
470
462
432
426
467
433

291
317
317
325
343
356
351
447
447
503

291
317
317
325
343
356
351
447
447
503

2590
3107
3124
3249
3342
3398
3449
3546
3643
3696

1 finished
3 finished
4 finished
7 finished
9 finished
2 finished
6 finished
0 finished
8 finished
5 finished

1410
1384
1384
1376
1358
1345
1350
1254
1254
1198

29 1
317
317
325
343
356
35 1
447
447
503

291
317
317
325
343
356
35 1
447
447
503

2590
3107
3124
3249
3342
3398
3449
3546
3643
3696

APETV APETV JT Although the tasks consume more CPU cycles to finish and
N E T is adjusted in smaller steps, the RTM case shows again
a much better ratio of finished tasks to cancelled tasks. The
CPU utilization in the RTM case is always better than that in
the NO-RTM case while wasting significantly less CPU time.
For example, when D = 4000, the RTM case misses only one
deadline, whereas the NO-RTM case cancels 9 of 10 tasks (since
their deadlines cannot be met according to WPET).

Task I YY APETV
(2)

APETV
(5)

224
164
113
70

235
217
101
125
20

142

178
169
189
135
142
124
155
255
143
161

167
144
157
112
121
224
181
164
152
178

196
240
258
121
237
198
205
233
153
193

C. Third Sequence of Experiments
In the third sequence of measurements, WPET is set to be twice

as large as PET, and APETV's for the ten tasks are computed
as follows.

During this sequence, 6 experiments are conducted while varying
deadlines to be 1800, 5500, 6500, 7500, 8000, and 8250, and
keeping APETV and WPET unchanged.

HABAN AND SHIN: APPLICATION OF REAL-TIME MONITORING TO SCHEDULING TASKS 1387

task

3 finished
8 finished
2 xxx
9 x x x
4 x x x
7 x x x
O X X X
lXXX
5 x x x
6 finished

Deadline = 1800
I

WPET

981
968

1106
1079
1034
1034
1076
1034
1011
968

RTM CPU-uti1 = 0.12 wasted 5.17 % I NO-RTM CPU-uti1 = 0.12 wasted 5.17 %

task WPET RPET I PET EPET I time I task RPET PET time

100
0 100
0 100

50 150
917 966

2 x x x
3 x x x
4 x x x
5 x x x
6XXX
7 x x x
8XXX
9 x x x
lXXX
0 finished

1701
1701
1701
1701
1701
1701
1701
1701
1701
1243

1701
1701
1701
1701
1701
1701
1701
1701
1651
327

0
0
0
0
0
0
0
0

50
917

100
100
100
100
100
100
100
100
150
966

2 x x x
3 x x x
4 x x x
5 x x x
6XXX
7 x x x
8XXX
9 x x x
lXXX
0 finished

1701
1701
1701
1701
1701
1701
1701
1701
1651
784

842
580
749
91 1
65 1
909
599
750
896
917

842
580
749
91 1
65 1
909
599
750
896
917

Deadline = 5500

RTM CPU-uti1 = 0.65 wasted 100.00 % NO-RTM CPU-uti1 = 0.59 wasted 80.35 %

task WPET RPET PET EPET time task I RPET PET I EPET I time

5 x x x
O X X X
lXXX
7 x x x
6XXX
8XXX
3 x x x
9 xxx
4 x x x
2 x x x

1246
1257
1224
1138
968
968
981
901

1034
1106

796
757
724
638
468
468
43 1
40 1
484
506

911
917
896
909
65 1
599
580
750
749
842

450
500
500
500
500
500
550
500
550
600

4705
4744
4777
4863
5033
5033
5070
5100
5100
5150

4 x x x
5 x x x
6XXX
7 x x x
8XXX
9 x x x
lXXX
2 x x x
3 x x x
0 finished

1301
1301
1301
1301
1301
1301
1251
1251
1251
784

749
91 1
65 1
909
599
750
896
842
580
917

400
400
400
400
400
400
450
450
450
917

4200
4200
4200
4200
4200
4200
4250
4250
4250
4666

Deadline = 6500

CPU-uti1 = 0.79 wasted 70.38 % NO-RTM CPU-uti1 = 0.72 wasted 83.81 %

RPET PET I EPET time task I RPET PET EPET time

402
370
506
479
434
434
426
384
361
318

580
599
842
750
749
909
917
896
91 1
65 1

5679
5928
5995
6022
6067
6067
6075
6117
6140
6179

6XXX
7 x x x
8XXX
9 x x x
lXXX
2 x x x
3 x x x
4 x x x
5 x x x
0 finished

1201
1201
1201
1201
1151
1151
1151
1151
1151
784

65 1
909
599
750
896
842
580
749
911
917

500
500
500
500
550
550
550
550
550
917

5300
5300
5300
5300
5350
5350
5350
5350
5350
5666

580
599
600
600
600
600
650
650
650
65 1

1388 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 16, NO. 12, DECEMBER 1990

RTM CPU-uti1 = 0.98 wasted 33.91 %

task WPET RPET PET EPET time

3 finished 98 1 402 580 580 5679
8 finished 968 370 599 599 5928
6 finished 968 318 65 1 65 1 6629
4 finished 1034 286 749 749 6928
9 finished 1079 330 750 750 7078
2 finished 1106 265 842 842 7470
5 x x x 1235 385 91 1 850 7616

Deadline = 7500

NO-RTM CPU-uti1 = 0.92 wasted 51.41 %

task RPET PET EPET time

3 finished 1121 580 580 5679
8 finished 1102 599 599 5928
6 finished 1050 65 1 65 1 6629
4 finished 952 749 749 6928
9 XXX 1001 750 700 7029
1 XXX 95 1 896 750 7079
2XXX 95 1 842 750 7079

RTM CPU-uti1 = 0.91 wasted 41.83 %

7 x x x 1198 348 909 850 7653
O X X X 1243 343 917 900 7658 I 1 finished 1 1178 I 283 I 896 I 896 I 7666

NO-RTM

5 XXX 95 1 911 750 7079
7 XXX 95 1 909 7079 I 0 finished 1 784 I 917 1 ;;: I 7195

CPU-uti1 = 0.85 wasted 68.69 %

task

3 finished
8 finished
6 finished
4 finished
9 x x x
lXXX
2 x x x

WPET

RPET PET

1121 580
1102 599
1050 65 1
952 749

1001 750
95 1 896
95 1 842

RPET

5xxx
7 x x x
0 finished

PET

95 1 911
95 1 909
784 917

EPET I time

EPET

task

time

RPET I PET

3

EPET

task

time

WPET

3 finished
8 finished
6 finished
4 finished
9 finished
2 finished
1 finished
0 finished
5 finished
7 finished

981
968
968

1034
1079
1106
1178
1243
1235
1198

981
968
968

1034
1243
1235
1198
1178
1079
1106

402
370
318
286
493
485
448
428
330
265

580
599
65 1
749
917
91 1
909
896
750
842

580
599
65 1
749
750
750
750
750
750
842

5679
5928
6629
6928
7008
7016
7053
7073
7078
7170

3 finished
8 finished
2 x x x
4 x x x
5 x x x
6XXX
7 x x x
9 x x x
lXXX
0 finished

1121
1102
1051
1051
1051
1051
1051
1051
1001
784

580
599
842
749
91 1
65 1
909
750
896
917

580
599
650
650
650
650
650
650
700
917

5679
5928
6479
6479
6479
6479
6479
6479
6529
6695

3 finished
8 finished
6 finished
4 finished

7 x x x
lXXX
9 finished
2 finished

Deadline = -
.92 RTM CPU-uti1 0.98 wasted 33.91 %

task WPET RPET PET I EPET

finished
finished
finished
finished
finished
finished
xxx
xxx
xxx
finished

98 1
968
968

1034
1079
1106
1235
1198
1243
1178

402
370
318
286
330
265
385
348
343
283

580
599
65 1
749
750
842
850
850
900
896

5679
5928
6629
6928
7078
7470
7616
7653
7658
7666

580
599
65 1
749
700
750
750
750
750
917

5679
5928
6629
6928
7029
7079
7079
7079
7079
7195

580
599
65 1
749
750
842
91 1
909
917
896

Deadline = 8250

CPU-uti1 = 1.00 wasted 0.00 % NO-RTM CPU-uti1 = 0.95 wasted 42.97 %

RPET EPET PET PET

580
599
65 1
749
750
842
896
917
911
909

time

5679
5928
6629
6928
7078
7470
7666
7783
7794
7803

task

3 finished
8 finished
6 finished
4 finished
9 finished
lXXX
2 x x x
5xxx
7 x x x
0 finished

RPET

1121
1102
1050
952
95 1
90 1
90 1
90 1
901
784

time

5679
5928
6629
6928
7078
7379
7379
7379
7379
7445

EPET

580
599
65 1
749
750
800
800
800
800
917

402
370
318
286
330
265
283
327
325
290

580
599
65 1
749
750
842
896
917
91 1
909

580
599
65 1
749
750
896
842
911
909
917

D = 1800 is selected to demonstrate an extreme case in which
both the system with and without the RTM process only one
task while throwing out all the others. An anomaly occurs when
D = 5500; the system with the RTM attempts to process all
10 tasks but misses all deadlines, while the system without the
RTM throws 9 out of 10 tasks very early and, therefore, saves
resources to finish one task in time. However, this occurs very
rarely, and all our subsequent measurements show that even when
the difference between W E T and APET is small, the RTM case

finishes more tasks and wastes less CPU cycles than the NO-RTM
case.

VII. CONCLUSION
We proposed to use a real-time monitor as an aid in scheduling

tasks with random execution times in real-time computing sys-
tems. The real-time monitor based on the TMP is transparently
integrated into the system, measures and monitors the task exe-

HABAN AND SHIN: APPLICATION OF REAL-TIME MONITORING TO SCHEDULING TASKS 1389

cution without altering the system behavior and with negligible
interference. One essential feature of the monitor is that the
measured results are fed back to the operating system in order to
achieve an adaptive behavior. Specifically, the feedback is used
to aid in scheduling tasks and checking on-line whether or not
task deadlines can be met.

The TMP measures precisely the EPET of each task by
separating RSD from the actual task execution time. The mea-
sured EPETs are then used to compute the RPET of the task.
In addition, measurements about the past execution behavior
of a task are used to update its APET. It is shown that this
N E T approximates PET more accurately than WPET which
is fixed over a task’s lifetime but could be much larger than
the corresponding PET. Various experiments with a set of tasks
show that the ratio of tasks finished in time to tasks missing their
deadlines is significantly higher when the system is equipped with
the proposed real-time monitor. Moreover, the CPU utilization is
improved significantly while the percentage of wasted time due
to cancellation of tasks or missing deadlines is decreased. The
TMP’s ability to execute arbitrary software is used to perform
real-time system management functions, such as the scheduler
and the watchdog process, thus making 1) the scheduler not use
any CPU cycles of the host system and 2) the watchdog process
not cause any overhead to the host system.

The architectural support with the TMP has made the above
results possible. Note that the real-time monitor based on the
TMP can also be used in distributed and parallel systems to
aid in debugging, program animation, understanding of parallel
behavior, load balancing, etc.

WET
PET
EPET
APET
APETV
WPET
WPETV
RSD
RPET

APPENDIX
LIST OF ACRONYMS

Worst-case execution time.
Measured pure execution time.
Elapsed pure execution time.
Anticipated pure execution time.
Anticipated pure execution time vector.
Worst-case pure execution time.
Worst-case pure execution time vector.
Resource sharing delay.
Remaining pure execution time.

REFERENCES

D. Haban and W. Weigel, “Global events and global breakpoints
in distributed systems,” in Proc. 21st Hawaii Znt. Conf System
Sciences, vol. 11, Jan. 1988, pp. 166-175.
D. Haban and D. Wybranietz, “Monitoring and measuring parallel
systems,” in Proc. 3rd Annu. Parallel Processing Symp., vol. 2,
Mar. 1989, pp. 499-513.
-, “A hybrid monitor for behavior and performance analysis
of distributed systems,” IEEE Trans. Software Eng. (Special Issue
on Experimental Computer Science), vol. 16, no. 2, pp. 197-211,
Feb. 1990.
J. Nehmer et al., “Key concepts of the INCAS multicom-
puter project,” IEEE Trans. Software Eng., vol. SE-13, no. 8,
pp. 913-923, 1987.
D. Peng and K.G. Shin, “Static allocation of periodic tasks
with precedence constraints in distributed real-time systems,” in
Proc. 9th Int. Conf Distributed Computing Systems, June 1989,
pp. 190-198.

[6] K.G. Shin and H. Lee, “Port manipulator for the distributed
realization of an integrated manufacturing system,” Int. J . Comput.
Syst. Sci. Eng., vol. 3, no. 1, pp. 21-31, Jan. 1988.

[7] K. G. Shin and Y. K. Muthuswamy, “Message communications in a
distributed real-time system with a polled bus,” in Proc. 22ndAnnu.
Hawaii Int. Conf System Sciences, vol. 11, Jan. 1989, pp. 703-711.

[8] K.G. Shin, C.M. Krishna, and Y.-H. Lee, “A unified method
for evaluating real-time computer controllers and its applications,”
IEEE Trans. Automat. Contr., vol. AC-30, no. 4, pp. 357-366,
Apr. 1985.

[9] M. H. Woodbury, “Analysis of execution time of real-time tasks,”
in Proc. 1986 Real-Time Systems Symp., Dec. 1986, pp. 89-96.

Dieter Haban received the Diploma and Ph.D.
degrees in computer science from the University
of Kaiserslautern, West Germany, in 1984 and
1988, respectively.

From 1984 to 1988 he was Faculty Research
Assistant in Computer Science at the University
of Kaiserslautern. In 1988 and 1989, he was a
visiting researcher at the International Computer
Science Institute at the University of California,
Berkeley, where he was engaged in the areas
of very large distributed systems and real-time

systems. Currently, he is wiih the research center of Daimler-Benz
AG, Stuttgart, West Germany. He also gives lectures on distributed
systems at the University of Stuttgart. His research interests are centered
around distributed and parallel systems, operating systems, programming
environments, computer integrated manufacturing, debugging, and mon-
itoring.

Dr. Haban is a member of the German Computer Society (GI).

Kang G. Shin (S’75-M’78-SM’83) received
the B.S. degree in electronics engineering from
Seoul National University, Seoul, Korea, in
1970, and the M.S. and Ph.D. degrees in
electrical engineering from Cornel1 University,
Ithaca, NY, in 1976 and 1978, respectively.

He is a Professor in the Department of
Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, which he
joined in 1982. He has been very active and
authored/coauthored over 180 technical papers

in the areas of fault-tolerant computing, distributed real-time computing,
computer architecture, and robotics and automation. In 1987, he
received the Outstanding Paper Award from the IEEE TRANSACTIONS
ON AUTOMATIC CONTROL for a paper on robot trajectory planning. He
also received the Research Excellence Award from the University of
Michigan in 1989. In 1985, he founded the Real-Time Computing
Laboratory, where he and his colleagues are currently building a 19-
node hexagonal mesh multicomputer, called HARTS, to validate various
architectures and analytic results in the area of distributed real-time
computing. From 1970 to 1972 he served in the Korean Army as an
ROTC officer and from 1972 to 1974 he was on the research staff of the
Korea Institute of Science and Technology, Seoul, Korea, working on
the design of VHF/UHF communication systems. From 1978 to 1982
he was an Assistant Professor at Rensselaer Polytechnic Institute, Troy,
NY. He was also a visiting scientist at the U.S. Airforce Flight Dynamics
Laboratory in Summer 1979 and at Bell Laboratories, Holmdel, NJ, in
Summer 1980. During the 1988-1989 academic year, he was a Visiting
Professor in the CS Division, Department of Electrical Engineering and
Computer Science, UC Berkeley.

Dr. Shin was the Program Chairman of the 1986 IEEE Real-
Time Systems Symposium (RTSS), the General Chairman of the 1987
RTSS, and the Guest Editor of the 1987 August special issue of
IEEE TRANSACTIONS ON COMPUTERS on Real-Time Systems. He is a
Distinguished Visitor of the IEEE Computer Society. He is a member
of ACM, Sigma Xi, and Phi Kappa Phi.

