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Application of Real-Time Monitoring to 
Scheduling Tasks with Random Execution Times 

Dieter Haban and Kang G. Shin, Senior Member, IEEE 

Absfract-A real-time monitor is employed to aid in scheduling tasks 
with random execution times in a real-time computing system. Scheduling 
algorithms are usually based on the worst-case execution time (WET) 
of each task. Due to data-dependent loops and conditional branches in 
each program end m u r c e  sharing delay during execution, this WET is 
usually d a d t  to obtain and could he several orders of magnitude larger 
than the true execution time. Thus, scheduling tasks based on WET could 
result in a severe under-utilization of CPU cycles and under-estimation 
of the system’s schedulability. 
To alleviate the above problem, we propose to use a real-time monitor 

as a scheduling aid. The real-time monitor is composed of dedicated 
hardware, called test and measurement processors (TMP’s), and used to 
measure accurately, with minimal interference, the true execution time 
which consists of pure execution time and resource sharing delay. The 
monitor is a permanent and transparent part of a real-time system, 
degrades system performance by less than 0.1%, and does not interfere 
with the host system’s execution. 

Using the measured pure execution time and resource sharing delay for 
each task, we have developed a mechanism which reduces the discrepancy 
between the WET and the estimated execution time. This result is then 
used to decide at an earliest possible time whether or not a task can 
meet its deadline. A set of example tasks are experimentally measured 
in a simulated environment while varying their characteristics and the 
measured data are analyzed, demonstrating the utility and power of the 
proposed real-time monitor. 

Index Tern-  hadline, nonintrusiveness, real-time monitoring, real- 
time scheduling, resource sharing delay, task execution time. 

I. INTRODUCTION 
ARD real-time systems are mainly characterized by their H timing constraints, because they are responsible for safety- 

and time-critical control systems such as aircraft, nuclear reac- 
tors, and life-support instruments. The software of hard real-time 
systems features a large number of tasks which differ in priority, 
timing constraints, and execution time. Ideally, every task should 
meet all of its timing constraints: start at a required time and 
produce results before a certain deadline. Since missing a task 
deadline might cause catastrophic consequences, one of the most 
important design issues in a real-time system is to schedule tasks 
to meet their deadlines. Most of the scheduling work known to 
date is based on a comman assumption that execution times of all 
tasks to be scheduled are known apriori. However, determination 
of task (program) execution time is very difficult due mainly 
to data-dependent branches and loops in each program, and 
unpredictable delays associated with resource sharing [9]. Since 
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deadlines must be met even for the worst-case, real-time tasks 
are usually scheduled based on their worst-case execution times 
(WET’S’). Since WET could be several orders of magnitude 
larger than the true execution time, scheduling tasks based on 
WET may lead to a severe underutilization of CPU cycles and/or 
incorrect decision on the schedulability of tasks, i.e., some tasks 
are declared to be unschedulable even if they can be completed 
in time. We propose that a real-time monitor be used to alleviate 
this problem. 

A monitor can aid in verifying their timing behavior, detecting 
and locating abnormal behavior such as performance bottlenecks, 
and exploiting the monitored information for resource manage- 
ment, such as task scheduling and fault handling. Monitoring is 
defined as the extraction of data about the activities of a compuer 
system. In [3], we gave a detailed account of the software 
and hardware of a monitoring tool with emphasis on measuring 
the performance, understanding the behavior, and presenting the 
monitored results. Such a monitoring tool was built as part of the 
INCAS multicomputer project [4]. The main goal of this project 
was to develop a comprehensive methodology for the design 
of locally distributed systems. The experimental environment 
consists of 11 nodes interconnected via a local area network. 

This paper focuses on one major application of the monitoring 
tool: feeding the monitored information back to the monitored 
real-time system to achieve an adaptive behavior. Specifically, 
the analyzed results about task execution behavior are funnelled 
back to the host’s operating system and used for the dynamic 
scheduling of tasks. In order to use a monitor for this purpose, it 
must provide accurate, timely information about task execution 
behavior. We refer to monitoring under timing constraints as real- 
time monitoring. Nonintrusiveness is an important requirement 
of any monitoring tool, especially when it is used during normal 
operation of a real-time system. 

As mentioned earlier, the execution time of a task consists of 
two components: 1) pure execution time (PET), and 2) resource 
sharing delay (RSD). The execution time of a task will become 
identical to its PET if there is no delay in accessing shared 
resources during its execution. Note that RSD is unavoidable and 
varies randomly with the random fluctuation of system workload. 
Our proposed real-time monitor can measure both PET and RSD 
accurately, and, as we shall see, their separate measurements are 
very useful for the on-line check of schedulability of tasks. 

This paper describes how a real-time monitor is used to 
measure the elapsed pure execution time (EPET), which is then 
used on-line to calculate the anticipated pure execution time 
(MET). Also presented is an architectural support consisting 
of hardware and software to satisfy the requirements of mon- 
itor’s nonintrusiveness, accurate measurements, and feedback. 
Since use of monitored data is not limited to any particular 

lSince the execution times of real-time tasks must be finite, loop counts 
are limited to be finite. 
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scheduling policy, we focus only on how the accuracy and the 
dynamic adjustment of APET can improve scheduling, rather 
than developing a scheduling algorithm. 

In the next section, we discuss problems associated with 
existing scheduling methods that do not use any feedback, and 
list the objectives of this paper. Section 111 details our approach to 
improve conventional scheduling methods and presents a demon- 
strative example. The real-time monitor is briefly described in 
Section IV. In Section V, we give an example of measuring the 
task execution behavior and using it for the dynamic scheduling 
of tasks. In Section VI, various measurements with a set of tasks 
are presented to show improvements in the utilization of CPU 
cycles and the ratio of tasks finished in time to those missing 
deadlines when the proposed real-time monitor is used as an aid 
in scheduling tasks. The paper concludes with Section VII. 

11. PROBLEMS WITH EXISTING SCHEDULING METHODS 
Before discussing problems with existing scheduling methods, 

we define the terminology to be used in this paper (see also the 
Appendix). Since we abstract from an arbitrary real machine, 
the time is expressed in basic CPU cycles. The worst-case pure 
execution time (WPET) is the time the task will use to execute 
the longest path of the program (e.g., executing each loop a 
maximum number of times) without accounting for resource 
sharing delay (RSD). (Since we are concerned with real-time 
systems, we can assume all loop counts are finite, and so is the 
WPET.) The elapsed pure execution time (EPET) of a task at 
any given time t is the amount of time spent on executing the 
task since its invocation until time t excluding RSD. EPET is 
in general unknown a priori and can be determined only upon 
task completion. 

WPET is usually determined off-line prior to the execution of 
a task and does not change during its lifetime. Any changes to the 
task will require this time to be redetermined. The determination 
of WPET is difficult due to data-dependent branches and loops, 
and is often several orders of magnitude larger than the true PET. 
The deviation of WPET from the true PET, however, plays an 
important role in scheduling tasks. Recall that WET = WPET + 
RSD. Tasks are scheduled based on WPET, RSD, their deadline, 
the remaining pure execution time (RPET) and the current time. 
Since the proposed monitor can extract RSD from WET and it 
is easy to express the dynamic scheduling of tasks with EPET 
and RPET, we shall not use RSD in the rest of the paper. (We 
shall, however, show how to measure RSD with our monitor.) 
Although there exist many interesting and good solutions to the 
scheduling problem, there remain two major problems associated 
with the determination and the accuracy of WPET and RPET as 
outlined below. 

The more accurate WPET approximates the true PET, the 
better tasks will be scheduled. For example, based on the current 
EPET, the given deadline and WPET, a task can be aborted when 
it is determined to miss its deadline, thus saving valuable CPU 
cycles for other time-critical tasks. However, since WPET may 
be significantly larger than the true PET, a task may sometimes 
be aborted even if it could meet its deadline. 

Another problem is that the lack of accurate measurement 
tools makes it very difficult to determine EPET in the presence 
of unpredictable delays caused by resource contention, such as 
communication, synchronization and 110. Therefore, the calcu- 
lation of RPET at any time during task execution is usually 
inaccurate. Since whether a task will miss its deadline or not 
is decided on the basis of RPET, the decision has to be based on 

inaccurate values and unpredictable conditions. Moreover, the 
scheduling algorithm itself uses CPU cycles to determine an 
optimal schedule for tasks. This could be very complex and time- 
consuming if many parameters have to be considered in order to 
achieve the optimality, as is usually the case. 

In order to solve and/or alleviate the above problems, we 
propose to use a real-time monitor as a scheduling aid. Feeding 
the monitored information about task execution back to the 
operating system will enable the system to dynamically respond 
to changing needs during the execution. Moreover, since the 
actual behavior of a real-time system is very difficult and 
expensive to simulate in an artificial environment, it is desirable 
to make decisions based on the actual monitored data and update 
information about the system behavior dynamically. Specifically, 
we shall in the rest of the paper focus on meeting the following 
requirements. 

At each stage of task execution, the real-time monitor must 
be designed to accurately measure EPET and RSD. 
Based on measurements, the WPET must be adjusted dy- 
namically to approximate the true PET. 
The measurement and the processing of monitored data 
should cause as little interference in time and space with 
the host system as possible. 
The scheduling algorithm itself should cause as little over- 
head as possible in computing an optimal schedule for 
tasks. 

111. REAL-TIME SYSTEM MANAGEMENT 

A. Measuring Elapsed Pure Execution Times 
Given WPET, let RPET(t) represent the remaining pure com- 

putation of a task at time t, and EPET(t) be the amount of 
computation done by time t (all measured in basic CPU cycles). 
The accuracy in calculating the remaining execution time is very 
sensitive to the correctness of the scheduling decisions. EPET can 
be calculated by using the times measured by the proposed real- 
time monitor (more on this will be discussed later). The real-time 
monitor will begin counting up upon the start of a task, will stop 
counting as soon as the task gets blocked to wait for a resource, 
and will resume counting when the task gets unblocked and 
starts execution. In other words, the real-time monitor keeps track 
of the pure computation time of each task without considering 
delays due to resource contention and/or precedence constraints. 
If a task gets blocked at time r, the remaining computation at 
time t is calculated by RPET(t) = WPET - EPET(t). Then, 
given deadline D at any time t’ > t when the task is ready 
to startfresume execution, one calculates T = D - RPET(t) - 
t’. If T > 0, then the task is still schedulable, or may meet 
the deadline. If T < 0, then the task cannot be completed in 
time, or a dynamic failure [8] will occur; the operator will be 
informed of this first, and some form of recovery measures will 
be invoked. 

More specifically, the real-time monitor can be used to check 
the deadline of each task continuously while the task is running, 
or blocked to wait for a resource to be available. Thus, whether 
or not a task will miss its deadline is detected at an earliest 
possible time via the continuous monitoring of task execution. 
This earliest detection of a dynamic failure will give the system 
and/or the operator enough time-which would not be available 
without real-time monitoring-to take actions against the failure. 
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B. Anticipated Pure Execution Time 
The calculation of RPET is based on the given WPET and the 

measured EPET. Therefore, W E T  is an important parameter in 
determining WET, and thus, whether a task will miss its deadline 
or not. However, as mentioned earlier, WPET might be several 
orders of magnitude larger than the true PET, thus making the 
scheduling decisions based on WPET inaccurate. With a more 
accurate estimate of PET (or APET) than WPET, the error caused 
by the large gap between the WPET and true PET can be reduced, 
and thus, used for better scheduling of tasks. 

Our main idea to counter the above problem is to take the 
past execution behavior of a task into consideration for the on- 
line calculation of APET as follows. A task is divided into n 
disjoint parts on the basis of its structure. For example, a task 
may be divided based on loops, i.e., loops and codes between 
loops become parts. Fig. 1 shows an example task division into 
nonoverlapping parts. The WPET of each part is determined in 
the same way as for the entire task, i.e., using the longest possible 
paths within the part. 

Instead of considering the WPET for the entire task, we 
use a vector WPETV = (WPET,, WPET,, . . . , WPET,), 
where each component is the WPET for the corresponding part 
of the task. In other words, W E T ,  is the worst-case pure 
execution time for part 1, W E T z  for part 2, and so on. The 
sum of all components of WPETV is equal to the WPET of 
the entire task, which is usually used to schedule the task, i.e., 

The real-time monitor is used to measure accurately the start 
and completion of each part by placing triggering points into the 
code. (The detailed implementation and mechanisms to achieve 
this are described in Section V.) If part 1 of the task is completed, 
the EPET of part 1, denoted by EPET,, replaces WPET, to form 
APETV = (EPET,, WPET2,. , WPET,). Whenever part 
i of the task is completed, the measured EPET, replaces W E T ,  
in APETV. Then, the sum of APETV's components is used as 
a new APET for on-line scheduling of tasks. In other words, 
the measured and dynamically adjusted APE" in place of 
WPTEV is used for scheduling. In general, the new APET is 
much lower than the previous APET, since the WPET of one 
part is replaced by the true PET of that part. The number (n) of 
parts is variable and depends on the task structure and also on 
the desired accuracy towards the end of task completion. Initially, 
APET = W E T ,  meaning that M E T ,  = WPET, for all i. When the 
task is completed, APET = PET. Fig. 2 shows the transformation 
of the APET starting with WPET and ending with PET. 

To demonstrate that APET approximates the true PET much 
better than WPET, we plotted in Fig. 3 the difference between 
WPET and the true PET as well as the difference between APET 
and the true PET. 

The plots in Fig. 3 are not based on the actual numbers; even 
if the plots would be based on real measurements, they will vary 
every time the task is executed due to random input and environ- 
mental changes. The difference between APET and the true PET 
is shown to decrease monotonically as task execution progresses 
toward its completion, whereas the difference between WPET 
and the true PET remains constant. The difference between the 
true (unknown) PET and the M E T  is decreased by WPET, - 
EPET, whenever part i is completed. In general, this decrease is 
significant, because WPET, represents the largest possible PET 
for part i. 

Although the actual difference WPET, - M E T ,  depends on a 
particular task and input data, the graph indicates that APET ap- 
proaches the true PET as its execution progresses to completion. 

WPET = WPET,+ WPET2 + ... + WPET,. 

WETl 

WETz 

WET3 

I I .  

Fig. 1. Parts of a task. 

6 initial 

tl: pan 1 is Completed 

'2: pan 2 is CWplUed 

5: part 3 is Completed 

t,,: part n is complctcd 

Fig. 2. Transformation of the anticipated execution time vector. 

Since WPET is usually much larger than the true PET, the value 
of APET - PET is getting smaller as the WET, ' s  in APETV 
are being replaced by EPETi's. Another result is that the more 
parts we introduce, the faster APET approximates the true PET. 

Obviously, the accuracy of W E T  is important for the schedul- 
ing decision on each task. The following two examples illustrate 
that the RPET based on APET is much smaller than the RPET 
computed with WPET. (Thus, use of APET will reduce the 
probability of throwing out tasks as a result of incorrect decisions 
on whether or not the tasks will meet their deadline.) These two 
examples are based on an artificial workload generator which is 
used to compute EPET,'s. The plots in Figs. 4 and 5 are obtained 
from using two different sets of EPET,'s for the same task. 
(Therefore, both figures used the same WPETV but different 
APETV's.) Note that in Fig. 4, RPET = 158 ps after t = 13 ps 
when APET is used, as compared to RPET = 735 ps based when 
WPET is used. In Fig. 5, RPET = 444 ps after t = 6 ps based 
on APET, as compared to W E T  = 742 ps based on WPET. 

It is important to observe that using an accurate PET becomes 
more important as the task is getting closer to its comple- 
tionldeadline. At the beginning of task execution, the task should 
be schedulable for the most of times, but as the task approaches 
its completioddeadline, the more urgent the monitoring of task 
execution time and deadline will become. This can be taken into 
account by dividing the task into larger (coarser) parts in the 
beginning and into smaller (finer) parts near the end of the task. 



HABAN AND SHIN: APPLICATION OF REAL-TIME MONITORING TO SCHEDULING TASKS 1377 

Difference 

4 
. . . . . . . . . . . . . . . . . . . .  

2 3 '  
0 WETI XEWl XEWI i'k : 

WPET - EPETB 

t 
mi - APET - PET 

Fig. 3. Differences between the cases of using WPET and APET. 
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3 7 1 1  13 14 

EPET 
t i l s 1  

Fig. 4. Computation of RPET based on WPET and APET: example 1. 

IV. REAL-TIME MONITORING 

A.  Design Requirements 
We list here the requirements of real-time monitoring necessary 

to support the scheduling method discussed thus far. 
The hardware and software in most existing computer systems 

are not designed to be monitored, although monitoring tools in 
the form of stand-alone hardware devices, programs, and hybrid 
tools have been available for many years. Monitoring tools can 
be classified into pure hardware and pure software. A hardware 
monitor is a device that is not a part of the host system. Although 
such devices can be designed to have minimal or no effect on the 
host system, they generally provide only limited, low-level data 
about the host system activities and cannot be used to provide 
any desired data about the system's execution. Especially, these 
monitors have reached the frontiers of measurability in computer 

systems with modern hardware, such as cache memories and 
memory management units. Hardware monitors are not suited 
for systems with dynamic behavior where processes are created 
and migrated dynamically. On the other hand, software monitors 
can extract almost any desired information and can present it 
in an appropriate, user-oriented manner. These monitors are 
usually contained within the host system, sharing with it the 
same execution environment, and thus, producing some degree 
of interference in both the timing and space of the monitored 
program. Although simple software monitors, such as counters, 
are incorporated into the operating system, the accuracy of these 
monitors and the contents of the processed data are, due to 
efficiency reasons, not well suited for the measurement and 
management of real-time systems. Moreover, the interference 
caused by software monitors is not acceptable in real-time 
systems due to the resulting increase of system response time 
and unpredictable changes to system behavior. 
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Fig. 5.  Computation of WET based on W E T  and MET: example 2. 

For the above reasons, conventional monitors are not adequate 
for the measurement and management of real-time systems. New 
methods and tools are thus necessary to meet the following design 
requirements. 

Interference: The monitoring system should not change the 
host system behavior and have minimal effects on the host 
system performance. 
Continuous monitoring during normal operation: The mon- 
itoring system should be able to trace the host system, 
evaluate and supervise the execution of applications, and 
make information available for display and feedback in 
real-time about their progress. This service is particularly 
important when monitoring those programs that control 
safety- and time-critical systems, such as a nuclear power 
plant or an airborne system. 
Integration: The instrumentation of the monitoring system 
has to be incorporated into the host system during its 
design phase, leading to an integrated approach. Thus, the 
monitoring system can be permanently used for observation 
and management functions. 
Feedback: In order to allow the host system to dynamically 
respond to the monitored results, the monitor must be able 
to funnel its results back to the host system. This provides 
the host system with up-to-date information about its own 
activities, and can be used for fine performance tuning, 
scheduling decisions, and error handling. 
Real-time operating system support: The monitor should be 
able to process the monitored data locally. In combination 
with the ability to execute routine low-level, operating 
system tasks, such as local load or network management, 
the host operating system is relieved of processing and 
management functions which could significantly increase 
the response time. 

B. Realization 
The insufficiency of current software and hardware monitors 

has led to the design of the test and measurement processor 
(TMP) [3]. The hybrid approach of TMP combines the ad- 

vantages of software and hardware monitors while overcoming 
their deficiencies. Hybrid monitors typically consist of 1) an 
independent hardware device which can perform the low level 
monitoring, i.e., information gathering, and 2) software programs 
executing on this device to measure, evaluate and display the host 
system performance. The TMF’ meets all the design requirements 
mentioned above. In this paper, we focus only briefly on the use 
of the TMP for scheduling tasks and refer the interested reader 
to [3]. 

1) TMP Principles: Efficient monitoring of task execution 
times is accomplished by using events generated by the 
monitored software. Events represent significant trends in the 
system behavior, such as assign, resign, and block processes. 
The triggering points for these events are placed in the 
operating system kernel and the application code which then 
provide continuous information about the system behavior. 
These events are then collected, time-stamped, and processed 
by the separate TMP hardware. Therefore, the TMP is capable 
of executing local software for the various processing and 
evaluation needs for its host concurrently with the execution of 
application tasks. The analyzed results can then be displayed 
locally, combined with remote results from other TMP’s, 
and fed back to the host system to achieve an adaptive 
behavior. By using semantic information about the monitored 
programs provided by the compiler and the programming 
environment, the monitoring software is able to access any 
desired information, such as task deadlines, WET’S, task names, 
and task priorities. Fig. 6 illustrates the principles of the TMP- 
based approach. 

The TMP may be viewed as an extra device responsible for 
monitoring, recording, and evaluating the activities of the host 
node as well as its communication activities. It was designed to 
be an integral part of each node in a multicomputer system. For 
applications in a distributed environment, the TMP’s exchange 
data via a separate TMP network. Experiments with the TMP 
in the INCAS multicomputer system showed that typically, 
600-800 such events were generated every second on each 
node. The host overhead caused by the TMP is shown to 
be lower than 0.1%. Since this overhead is negligible, the 
TMP has become a permanent part of each node. In addi- 
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Fig. 6. TMP principles. 

tion, since the instrumentation is permanent within the host 
system, and since the TMP can execute its own monitoring 
software, the host system’s behavior is not changed by the 
monitor. 

The next subsections present the principle of encoding and 
decoding information via events and then focus on their detection 
using the TMP hardware, followed by a description of the 
evaluation software used for the scheduling purpose. 

2) Instrumentation of the Host System: Events represent the 
only overhead introduced by the TMP-based monitor. An event 
is defined as a special condition that occurs during the normal 
system activity such that it can be made visible to the TMP. 
There are two kinds of events, optional and standard. Optional 
events are associated with the application program. They are 
generated by the compilers or are placed manually into program 
code. Standard events are permanent and integral parts of the 
system. They are intended to support monitoring and measuring 
during normal system operation. 

The minimal monitored activities necessary for the desired 
scheduling support include the dispatcher and the trace of the 
parts of a task. Table I gives a list of the corresponding events, 
each with the event class followed by a list of parameters. 

Dispatcher events trace the operations of the operating system 
dispatcher. The general model of a dispatcher is depicted in 
Fig. 7. It includes events to represent the states of a process: 
ready, blocked, running. The parameter procID (see Table I) 
identifies the process object, and the parameter procNo identifies 
its type. Note that dispatcher events are standard events and, 
therefore, a permanent part of the system. Programs need not 
be recompiled or relinked to be monitored. In the INCAS 
environment, additional standard events were included to reflect 
the activities of a distributed system, such as communication 
traffic. 

Events signaling the completion of parts of a task are inserted 
by the programmer into the real-time task by using a procedure 
call: EVENT (end-part, Number). The insertion of the event 
end-part is not necessary for the exact measurement of task 
execution times, since it can be accomplished with the standard 
instrumentation set. 

Optional events are inserted by the programmer at the bound- 
aries of task partitioning, and APET is updated whenever a 
part of each task is completed. If no optional event is inserted 
into the task’s code, the task is considered to consist of only 

TABLE I 
LIST OF EVENTS NECFSSARY FOR TASK SCHEDULING 

start process cprocID> <procNo> 
stop process <procID> 
assign process <procID> 
resign process <procID> 
ready process <procID> 
block process <queueID> 
end-part <number> 

resign process 

Fig. 7. Events representing the operations of the dispatcher. 

one part and, therefore, APET is not adjusted during the entire 
execution of the task. However, the insertion of the optional 
events after the end of each loop can be done automatically by 
the compiler. 

The list of events can be expanded to keep track of other 
activities, such as interrupts, change of priority, change of 
deadline, and process migration, which is not addressed in this 
paper. 

3) Event Generation: The mechanism for generating an 
execution-time event consists of a store instruction that is inserted 
at a specific, well-chosen point in the program code. Since the 
store instruction writes through the local processor cache, each 
event is immediately visible on the system bus. The format of the 
instruction is: STORE ADDR, VALUE. Each address represents 
one event class (e.g., assign process), and therefore, the range 
of the address field is bound to 256 addresses. The VALUE of 
the store instruction serves as a parameter to specify one event 
within each event class. The seven event classes listed in Table I 
are sufficient for scheduling real-time tasks. 

4)  Hardware Implementation: The TMP hardware is con- 
nected to a system bus and monitors events on this bus with 
negligible impacts on the measured system. Fig. 8 shows the 
TMP hardware and its integration into a computer node. The 
specific parts of the current TMP hardware consist of a M68000- 
based processor with 1 Mbyte of local memory, a dual RS-232 
port for local interface, a network interface to other TMP’s, and 
an event processing unit (EPU). The processor is used for the 
execution of monitoring software including low-level monitoring 
and evaluation routines as well as operating system functions. 
The monitoring software running on the TMP can collect and 
process up to 13000 events per second per node, which is ten 
times more than the average number of collected events. We 
leave out the details of the TMP hardware features but emphasize 
only the collection of the events, since the latter is essential for 
scheduling tasks. 

The EPU consists of a local event buffer, a comparator, a 
clock, and an overflow counter. The local event buffer of the 
EPU is used as a FIFO for collecting sequences of events. The 
depth of the FIFO is 16 entries. This depth was determined 
to cope with a high arrival rate of events, and is based on 
experiences gained with an earlier prototype. Each entry in the 
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Fig. 8. The TMP hardware. 
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event buffer consists of the event class, the event parameter, 
the timestamp (in ,us), and control information (CPU mode, 
overflow marker). We never experienced any overflow of the 
TMP buffers. The comparator of the EPU is responsible for 
checking the addresses on the host bus. If an address falls 
within the range which represents event classes, the matched 
address and the next data on the bus are stored in the event 
buffer, along with the local time. The last byte of the address 
determines the event class; thus, it is the only byte stored by the 
EPU. The low-level implementation of the TMP ensures that the 
address range representing events does not interfere with the main 
memory. The timer of the EPU is to measure the time difference 
between events. The resolution of this timer guarantees that no 
two successive events will have the same time. For example, 
in the current implementation, a time quantum of 1 ,us is used, 
thereby allowing up to 19 hours of measurements before the 
counter overflows. 

Finally, we note that the TMP has access to the memory of the 
host processor. This property is used to feed the results processed 
by the TMP back to the host operating system. For fault-tolerance 
and reliability purposes, it is possible to add more than one TMP 
to each node without disturbing others. Thus, each TMP runs the 
same event processing software, and funnels results back to the 
host system which then extracts the necessary data. 

V. ANALYSIS OF MONITQRED DATA FOR TASK SCHEDULING 
After collecting the information about a program’s execution, 

raw data must be processed and analyzed to assist in scheduling 
tasks. The TMP hardware is responsible for the nonintrusive 
collection of run-time data based on the standard and optional 
events mentioned above. Fig. 9 shows the software components 
residing in the TMP. The TMP software allows for flexibility and 
comprises the monitoring sofrware, which processes and analyzes 
incoming events, and system management functions. 

Fig. 9. Software components residing in the TMP. 

In particular, the scheduler itself consumes a significant amount 
of time to “optimally” determine which task to be scheduled 
next [5]. Thus, the scheduler is made to run on the TMP 
while keeping the dispatcher to run on the host system. The 
scheduler supplies the dispatcher with the task identifier of the 
next task to be scheduled. A watchdog process running on the 
TMP is responsible for checking whether or not a task will meet 
the deadline at an earliest possible time during task execution. 
Another component which is loaded into the TMP memory is 
the information provided by the compiler and the programming 
environment about the real-time system to be monitored. This 
information is structured as a database with a hash function 
for fast access to the information stored therein, such as task 
deadlines and WPET for each task. Note that the scheduler 
does not always have to be executed by the TMP. In such a 
case, the TMP can feed information about the execution of each 
task back to the host’s scheduler which, in turn, determines the 
next task to be scheduled by using the CPU cycles of the host 
system. 

A. Measuring EPET and RSD of Each Task 
In this subsection, we focus on the measurement of EPET 

and RSD. Based on the foregoing event instrumentation, events 
signal state transitions of a task from running to blocked, blocked 
to ready, and ready to running. Since each event is stored with 
a local timestamp, the TMP software can accurately measure 
elapsed times between events. 

Upon occurrence of the event assign process <procID>, the 
monitoring software is informed that the process with the iden- 
tifier <procID> has been activated (running). Thus, all the 
subsequent events (end-part, block) will follow from the ac- 
tivities of that process until a next assign process event. 

The time difference between assign process and resign process 
or blockprocess determines the EPET of a process. The time 
difference between block process and ready process determines 
the blocked time of a process. Cumulative execution and blocked 
times are stored in information tables for each process. Let T, 
be the timestamp of event assignprocess, T ,  by the timestamp 
of event resign process, Tbhk be the timestamp of event block 
process, TE+ be the timestamp of event ready process, T,,, be 
the timestamp of event startprocess, TSmp be the timestamp of 
event stop process, TFt be the timestamp of event end part, 
RSDblock be the time a process spent in the blocked queue, and 
RSDE+ be the time a process spent in the ready queue. Then, 
we can compute the following time parameters. Initially, EPET = 
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0, RSDblock = 0, and RSDreadY = 0. Upon occurrence of an event 
block process, one can compute: 

EPET = EPET + (Tbiock - T,,,), 
upon occurrence of an event resign process: 

EPET = EPET + (T‘,, - T,,,), 
upon occurrence of an event ready process: 

RSDbiock = RSDbiock + ( T r e a d y  - Tbiock), 
upon occurrence of an event assign process: 

R S D r e a d y  = R S D r e a d y  + (Tass - Tready), 
or if the task has been invoked and Tready is undefined: 

RSDread, = R S D r e a d y  + (Tass - Tstart). 
Since the processor itself is a resource, the time a process 

spends in the ready queue waiting to be assigned to the processor 
is included in RSD. Thus, RSD is computed as RSD = RSDbrock + 

Since we can use the computation of RSDrea+ and RSDblock 
for other purposes, such as performance tuning and detection of 
bottlenecks, the TMP keeps track of these activities. Besides, the 
parameter <queueID> of the event block process allows the TMP 
software to compute RSDblock separately for each wait condition. 
However, it would be sufficient to compute only EPET for each 
task, since RSD for a particular task at any time can be easily 
computed by subtracting EPET from its lifetime. (The lifetime 
of a process is the actual real-time minus the timestamp of the 
event start time of this process.) 

RTDrea, * 

B. Measurement of M E T  
To determine EPETj of a task, the TMP software computes 

the PET between two successive events end-part 4 - l >  and 
end-part <i> triggered by the task. For simplicity, we assume 
that the occurrence of the event start(stop) process determines 
the start of the first (last) part. Process switching times are taken 
into account when computing EPET,. Note that the EPET of a 
particular process is updated upon occurrence of events resign 
process or block process. Recall that EPET(t) represents the 
EPET at time t. Ti is used to store an intermediate result of 
the computation;. The algorithm shown in Fig. 10 is devised by 
looking at the actions of the essential event sequence. 

C. Deadline Check 

The watchdog process is responsible for checking at any 
time t whether a task in progress will miss its deadline or not. 
Checking of the schedulability of a task is usually performed 
when a task is ready to starthewme execution. However, since 
missing a deadline also depends on the time a process is blocked, 
the deadline check must also be done during the waiting for 
resources. To deal with this, the watchdog process running on 
the TMP continuously checks whether or not each active task 
will miss its deadline even while it is in the ready or blocked 
queue. A task is assigned to the processor only if its RPET is 
smaller than the difference between the deadline and the current 
time. The task may not be completed before its deadline if it is 

____ 

1381 

assignprocess dDl> + Tms-l 

endpart ti-l> + Ti = EPET(Tms - 1) + Tp.rt-i.1 Tars_] 

resign process dD1> 

... other processes are executing 

assign process dD1> + TmSTz 

-+ EPET = WET + T,, - Tms-l 

... 
end part d> -+ EPETi = EPET(T,, - 2) + Tw,-i - Tms-z - Tj 

Fig. 10. Algorithm to determine EPETj. 

blocked once or more during its remaining execution. Thus, the 
watchdog process checks whether or not the deadline will be met 
using the following algorithm which is executed periodically at 
fixed, but selectable, time intervals. 

When a task is blocked at time t ,  RPET(t) = WPET - EPET(t) 
does not change with t. Given deadline D ,  at any time t‘ > t when 
the algorithm is invoked, one calculates T = D - RPET(t) - t’. 
While the task is blocked, t‘ is the only value that changes. IF T < 
0, then the task will miss its deadline, which will be detected by 
the watchdog process. The watchdog process will signal this to 
the host’s operating system which, in turn, can initiate a recovery 
action. Note that the watchdog process does not consume any 
CPU cycle of the host system. 

VI. EXPERIMENTAL MEASUREMENTS AND ANALYSIS 
Experiments are conducted on a system with and without 

the proposed real-time monitor (RTM), showing improvements 
by the RTM in both the utilization of CPU cycles and the 
ratio of tasks completed in time to those missing deadlines. 
Measurements are taken in a simulated environment to provide 
the same condition for every experiment: the same sequence of 
scheduled tasks, no RSD except waiting in the dispatcher’s ready 
queue, and the same APETV of a task during a given sequence 
of measurements. Task data are taken from real measurements 
with the TMP on an M68000 system [3]. Since the TMP-based 
real-time monitor measures both EPET and RSD accurately, the 
unpredictable RSD is extracted away from WPET. Thus, the 
dynamic scheduling of tasks can easily be expressed with EPET 
and RPET only. 

The following experiments are conducted on 10 tasks of the 
same type, each with WPETV = (361, 459, 259, 359, 263), 
and thus, WPET = 1701. All time parameters are measured in 
ps. Three sequences of measurements with different APETV’s 
are considered to evaluate the efficiency of our method when 
WPET - PET is large, medium, and small. During a given 
sequence of measurements, a particular task’s APETV remains 
unchanged, but each task has a different APETV. In the first 
sequence, WPET is on the average one order of magnitude greater 
than PET. In the second sequence, WPET is about five times 
larger than PET. In the third sequence, WPET is only twice 
larger than PET. During a sequence of measurements, the task 
deadline D is the only variable. For simplicity, but without loss 
of generality, we assume all tasks to start at the same time, 
say 0, and have the same deadline D .  Since all ten tasks have 
the same priority and deadline during an experiment, tasks are 
switched based on a round-robin policy. Two different systems, 
one with the proposed RTM and the other without the RTM, 
are used to execute the program formed by these ten tasks. 
The first system is aided by the RTM in scheduling tasks and 
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time 

300 
300 
300 
300 
350 
496 
848 
873 

lo00 
1064 

continuously checking schedulability, whereas the second system 

when a task is ready to resume. Unlike the first system, the 
second system cannot take the inaccuracy of EPET and RSD, 
and thus, the inaccuracv of WET, into account when testing 

A. First Sequence of Measurements 

larger than 
follows~ 

a constant wpET and checks schedulability Only In the first sequence of measurements, WpET is ten times 
for the ten tasks are computed as 

task 

6 XXX 
7 XXX 
8XXX 
9XXX 
1 XXX 
2XXX 
3 XXX 
4XXX 
5XXX 
0 finished 

task WPET WET 

W E T  

1701 
575 
589 
612 

1390 
1349 
1345 
621 
967 
780 

WET PET 

1651 210 
479 97 
509 81 
522 91 

1290 370 
1249 334 
1245 314 
470 152 
793 175 
504 277 

550 
696 
777 
868 
911 
952 
956 

1120 
1145 
1222 

1 XXX 
2XXX 
3 XXX 
4XXX 
5 XXX 
6XXX 
7XXX 
8XXX 
9XXX 
0 finished 

for schedulability. With this setup, our experimental results wic 
indicate the degree of schedulability improvement via real-time 
monitoring. Another source of improvement via the RTM-that 
is not reflected in the following measurements-is to save the 
time required for the system without the RTM to execute the 
scheduling algorithm. We will refer to the system with the RTM 
as the RTM case and to the system without the RTM as the 
NO-RTM case. 

The CPU utilization is computed as the CPU cycles consumed 
by the ten tasks during a sequence of measurements divided 
by the CPU cycles the ten tasks will consume in case their 
execution is completed in time. The CPU cycles consumed by 
those tasks which will eventually miss their deadlines form the 
wasted time. In the following measurements, WPET is always 
kept constant at 1701 for the NO-RTM case, and therefore, 

I I I I I I 

Task APETV APETV APETV APETV APETV I I (1) I (2) I (3) I (4) I (5) 

11 65 97 85 19 
5 178 9 34 88 

23 6 50 20 53 
145 2 5 21 7 *  

3 26 15 9 44 

96 109 
27 35 23 1 

9 9 113 4 9 199 

is -not presented. Since the RTh4's ability of measuring RSD 
accurately eliminates the need of considering RSD for sched- 
uling tasks, the deadline D can be made not to depend on 
the unpredictable RSD, and thus, is not set to the number of 
tasks multiplied by WPET which would always be 17010. With 
D = 17 010, all tasks will always finish in time. Tasks which 
missed their deadlines are marked with XXX in the tables given 
below. 

During this sequence, 6 experiments are performed while 
varying deadlines to be 2000,2200, 2500, 2800, 3300, and 3500, 
and keeping APETV and WPET unchanged. These deadlines are 
chosen based on the following observation: the first deadline is 
close to the one before which all tasks will not be completed, 
the last deadline is approximately equal to the time before which 
all tasks will finish. All the other deadlines represent significant 
states between these two extremes. 

I Deadline = 2000 

I RTM CPU-uti1 = 0.50 wasted 4.69 % I NO-RTM CPU-uti1 = 0.25 wasted 47.43 % 

PET EPET time WET 

1701 
1701 
1701 
1701 
1651 
1651 
1651 
1651 
1651 
1424 

6XXX 
7XXX 
8XXX 
9XXX 
3XXX 
4 finished 
2 finished 
5 finished 
0 finished 
1 finished 

1701 
1701 
1701 
1701 
1701 
575 
621 
967 
780 
748 

1701 
1701 
1701 
1701 
1651 
479 
470 
793 
504 
435 

81 
370 
91 

334 
210 
97 

152 
175 
277 
314 

0 
0 
0 
0 

50 
97 

152 
175 
277 
314 

300 
300 
300 
300 
350 
350 
350 
350 
350 
526 

152 50 
210 50 
97 

175 
277 277 

I Deadline = 2200 

CPU-uti1 = 0.58 wasted 28.61 % I RTM I NO-RTM CPU-uti1 = 0.34 wasted 61.89 % 

EPET time I task WET I PET I EPET I time 

50 
97 
81 
91 

100 
100 
100 
152 
175 
277 

1651 
1651 
1651 
1651 
1651 
1651 
1651 
1651 
1651 
1424 

314 
152 
210 
97 

175 
81 

370 
91 

334 
277 

50 
50 
50 
50 
50 
50 
50 
50 
50 

277 

550 
550 
550 
550 
550 
550 
550 
550 
550 
726 

4 finished 
6 finished 
8 finished 

9 x x x  

2 finished 
5 finished 
0 finished 
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task 

4 finished 
6 finished 
3 x x x  
8 finished 
7 x x x  
lXXX 
2 finished 
5 finished 
0 finished 
9 finished 

Deadline = 2500 

WPET 

575 
589 

1701 
612 

1390 
1345 
621 
967 
780 
657 

CPU-uti1 = 0.76 wasted 24.89 % 

PET 

NO-RTM CPU-uti1 = 0.50 wasted 56.87 % 

EPET time task RPET RPET PET EPET time 

task WPET RPET PET 

479 
509 

1601 
522 

1240 
1195 
470 
793 
504 
324 

EPET time 

97 
81 

210 
91 

370 
314 
152 
175 
277 
334 

task 

97 
81 

100 
91 

150 
150 
152 
175 
277 
334 

RPET 

746 
827 
900 
918 

1261 
1306 
1320 
1345 
1522 
1606 

task 

4 finished 
6 finished 
8XXX 
9 x x x  
lXXX 
2 x x x  
3 x x x  
5 x x x  
7 x x x  
0 finished 

WPET 

1604 
1620 
1651 
1651 
1601 
1601 
1601 
1601 
1601 
1424 

RPET 

97 
81 
91 

334 
314 
152 
210 
175 
370 
277 

PET EPET time 

97 
81 
50 
50 

100 
100 
100 
100 
100 
277 

task 

746 
827 
878 
878 
928 
928 
928 
928 
928 

1054 

RPET PET 

Deadline = 2800 

RTM CPU-uti1 = 1.00 wasted 0.00 % NO-RTM CPU-uti1 = 0.64 wasted 59.43 % 

PET EPET time 

4 finished 
6 finished 
8 finished 
2 finished 
5 finished 
3 finished 
0 finished 
1 finished 
9 finished 
7 finished 

575 
589 
612 
621 
967 
725 
780 
748 
657 
783 

479 
509 
522 
470 
793 
516 
504 
435 
324 
414 

97 
81 
91 

152 
175 
210 
277 
314 
334 
370 

97 
81 
91 

152 
175 
210 
277 
314 
334 
370 

746 
827 
918 

1420 
1495 
1705 
1832 
1996 
2080 
2100 

4 finished 
6 finished 
8 finished 
7 x x x  
9 x x x  
lXXX 
2 x x x  
3 x x x  
5 x x x  
0 finished 

1604 
1620 
1610 
1601 
1601 
1551 
1551 
1551 
1551 
1424 

97 
81 
91 

370 
334 
314 
152 
210 
175 
277 

97 
81 
91 

100 
100 
150 
150 
150 
150 
277 

746 
827 
918 

1219 
1219 
1269 
1269 
1269 
1269 
1345 

Deadline = 3300 

NO-RTM CPU-uti1 = 0.90 wasted 26.35 % 

time 

1420 
1495 

210 1705 
277 1832 

1883 
250 1883 
314 1896 

4 finished 
6 finished 
8 finished 
2 finished 
5 finished 
3 finished 
0 finished 
1 finished 
9 finished 
7 finished 

575 
589 
612 
621 
967 
725 
780 
748 
657 
783 

479 
509 
522 
470 
793 
516 
504 
435 
324 
414 

97 
81 
91 

152 
175 
210 
277 
314 
334 
370 

97 
81 
91 

152 
175 
210 
277 
314 
334 
370 

746 
827 
918 

1420 
1495 
1705 
1832 
1996 
2080 
2100 

4 finished 
6 finished 
8 finished 
2 finished 
5 finished 
3 finished 
0 finished 
7 x x x  
9 x x x  
1 finished 

1604 
1620 
1610 
1549 
1526 
1491 
1424 
1451 
1451 
1387 

97 
81 
91 

152 
175 
210 
277 
370 
334 
314 
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RTM CPU-uti1 = 1.00 wasted 0.00 % NO-RTM CPU-uti1 = 1.00 wasted 0.00 % 

88 
80 
81 
30 
72 

134 
135 
57 
83 
31 

60 
74 
86 
2 

119 
104 
91 
4 

52 
91 

RTM CPU-uti1 = 0.82 wasted 59.01 % NO-RTM CPU-uti1 = 0.59 wasted 79.65 % 

WPET RPET PET time I task RPET PET EPET time EPET 

97 
81 
91 

152 
175 
210 
277 
314 
334 
370 

575 
589 
612 
621 
967 
725 
780 
748 
657 
783 

479 
509 
522 
470 
793 
516 
504 
435 
324 
414 

97 
81 
91 

152 
175 
210 
277 
314 
334 
370 

746 
827 
918 

1420 
1495 
1705 
1832 
1996 
2080 
2100 

1604 
1620 
1610 
1549 
1526 
1491 
1424 
1387 
1367 
1331 

97 
81 
91 

152 
175 
210 
277 
314 
334 
370 

97 
81 
91 

152 
175 
210 
277 
314 
334 
370 

746 
827 
918 

1420 
1495 
1705 
1832 
1996 
2080 
2100 

4 finished 
6 finished 
8 finished 
2 finished 
5 finished 
3 finished 
0 finished 
1 finished 
9 finished 
7 finished 

4 finished 
6 finished 
8 finished 
2 finished 
5 finished 
3 finished 
0 finished 
1 finished 
9 finished 

I I 1 

- 
Task APETV APETV 7 J - T  It is obvious that if all tasks finish in time, the CPU utilization 

is optimal since no time will be wasted. This sequence of 
experiments shows that the RTM case significantly improves the 
CPU utilization due to the fact that for a given deadline the more 
tasks finish in time, the less CPU cycles will be wasted. The CPU 
utilization of the RTM case is approximately twice as large as that 
of the NO-RTM case while the time wasted on executing tasks 
missing deadlines is only a half of the NO-RTM case. When the 
RTM is used, the significant difference between W E T  and PET 
results in a significant increase in the ratio of finished tasks to 
thrown-out tasks. For example, when D = 2800, the system with 
the RTM can complete all 10 tasks in time, whereas the system 
without the RTM will throw 6 out of 10 tasks (since W E T  is 
used to determine schedulability). 

APETV 
(1) 

APETV 
(2) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

82 
74 
15 

114 
4 

68 
4 

62 
136 
76 

120 
63 

113 
70 

115 
107 
121 
113 
120 
92 

90 

89 
56 
53 

During this sequence, 6 experiments are conducted while vary- 
ing deadlines to be 3500, 3750, 4000, 4500, 4750, and 5000, 
and keeping APETV and W E T  unchanged. These deadlines 
represent significant states and are larger than those in the first 
sequence, since the tasks need more CPU cycles to complete. 

B. Second Sequence of Experiments 

APETV for the ten tasks are computed as follows. 
WPET is now set to be five times greater than PET and 

I task I WPET WET I PET EPET time I task I RPET PET EPET I time 

1276 
449 
756 
522 
512 
422 
482 
516 
467 
434 I 447 

291 
503 
447 
343 
317 
351 
317 
356 
325 

200 
291 
300 
350 
300 
317 
300 
317 
350 
325 

2225 
2540 
2745 
2979 
2989 
3007 
3019 
3024 
3034 
3049 

9 x x x  
l X X X  
2 x x x  
3 x x x  
4 x x x  
5 x x x  
6XXX 
7 x x x  
8XXX 
0 hished 

1551 
1501 
1501 
1501 
1501 
1501 
1501 
1501 
1501 
1254 

343 
291 
356 
317 
317 
503 
351 
325 
447 
447 

1476 
739 

1056 
872 
812 
738 
782 
832 
817 
758 

1 finished 

3 finished 

4 finished 

7 finished 

2000 
2000 

200 2000 
2000 

447 2196 
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task 

Deadline = 3750 

WPET 

CPU-uti1 = 0.89 wasted 16.68 % 

8XXX 
1 finished 
5 x x x  
3 finished 
4 finished 
7 finished 
9 finished 
2 finished 
6 finished 
0 finished 

NO-RTM CPU-uti1 = 0.66 wasted 81.73 % 

1476 
739 

1056 
738 
832 
758 
812 
817 
782 
872 

task 

1 finished 
8XXX 
3 finished 
4 finished 
7 finished 
9 finished 
2 finished 
6 finished 
0 finished 
5 finished 

RPET 

WPET 

739 
1476 
738 
832 
758 
812 
817 
782 
872 
935 

PET 

EPET time 

29 1 
356 
317 
317 
503 
35 1 
325 
447 
343 
447 

250 
250 
250 
250 
250 
250 
250 
250 
250 
447 

EPET time RPET PET EPET time 

time time EPET task 

5 x x x  
6XXX 
7 x x x  
8XXX 
9 x x x  
lXXX 
2 x x x  
3 x x x  
4 x x x  
0 finished 

RPET 

1501 
1501 
1501 
1501 
1501 
1451 
1451 
1451 
1451 
1254 

1226 
449 
756 
422 
516 
434 
470 
462 
432 
426 

447 
291 
503 
317 
317 
325 
343 
356 
35 1 
447 

250 
291 
300 
317 
317 
325 
343 
356 
35 1 
447 

2525 
2590 
2995 
3057 
3074 
3149 
3192 
3248 
3249 
3296 

2250 
2250 
2250 
2250 
2250 
2300 
2300 
2300 
2300 
2446 

447 
343 

250 
356 
317 250 
317 250 
447 447 

Deadline = 4000 

CPU-uti1 = 0.94 wasted 7.14 % CPU-uti1 = 0.72 wasted 83.42 % NO-RTM 

task RPET PET RPET PET I EPET time 

449 
1226 
422 
516 
434 
470 
462 
432 
426 
433 

29 1 
447 
317 
317 
325 
343 
356 
35 1 
447 
503 

29 1 
250 
317 
317 
325 
343 
356 
35 1 
447 
503 

2590 
2775 
3057 
3074 
3199 
3242 
3298 
3349 
3396 
3499 

1- 
2 x x x  
3 xxx 
4 x x x  
5 x x x  
6- 
7 x x x  
8XXX 
9 xxx 
0 finished 

1451 
1451 
1451 
1451 
1451 
1451 
1451 
1451 
1451 
1254 

2550 
2550 
2550 
2550 
2550 
2550 
2550 
2550 
2550 
2606 

Deadline = 4500 

RTM CPU-uti1 = 1.00 wasted 0.00 % NO-RTM 

task WPET RPET PET 

739 
738 
832 
758 
812 
817 
782 
872 
913 
935 

449 
422 
516 
434 
470 
462 
432 
426 
467 
433 

291 
317 
317 
325 
343 
356 
35 1 
447 
447 
503 

29 1 
317 
317 
325 
343 
356 
35 1 
447 
447 
503 

2590 
3107 
3124 
3249 
3342 
3398 
3449 
3546 
3643 
3696 

1 finished 
3 finished 
4 x x x  
5 x x x  
6XXX 
7 x x x  
8XXX 
9 x x x  
2 x x x  
0 finished 

1410 
1384 
1401 
1401 
1401 
1401 
1401 
1401 
1351 
1254 

29 1 
317 
317 
503 
35 1 
325 
447 
343 
356 
447 

29 1 
317 
300 
300 
300 
300 
300 
300 
350 
447 

2590 
3107 
3108 
3108 
3108 
3108 
3108 
3108 
3158 
3204 

1 finished 
3 finished 
4 finished 
7 finished 
9 finished 
2 finished 
6 finished 
0 finished 
8 finished 
5 finished 



1386 IEEE TRANSACTIONS ON SOFPUARE ENGINEERING, VOL. 16, NO. 12, DECEMBER 1990 

PET 

I Deadline = 4750 I 

EPET time 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

152 
179 
125 
142 
14 

148 
9 

132 
131 
76 

d 0.00 % 

EPET 

NO-RTM 

time 

RTM 

task 

CPU-uti1 

432 
426 
467 

= 1.00 waste' 

35 1 
447 
447 

WPET W E T  
~ 

1 finished 
3 finished 
4 finished 
7 finished 
9 finished 
2 finished 
6 finished 
0 finished 
8 finished 
5 finished 

739 
738 
832 
758 
812 
817 
782 
872 
913 
935 

29 1 
317 
317 
325 
343 
356 
35 1 
447 
447 
503 

2590 
3107 
3124 
3249 
3342 
3398 
3449 
3546 
3643 
3696 

1 finished 
3 finished 
4 finished 
7 finished 
9 finished 
2 finished 
6XXX 
8XXX 
0 finished 
5XXX 

1410 
1384 
1384 
1376 
1358 
1345 
1351 
1351 
1254 
1301 

291 
317 
317 
325 
343 
356 
351 
447 
447 
503 

29 1 
317 
317 
325 
343 
356 
350 
350 
447 
400 

2590 
3107 
3124 
3249 
3342 
3398 
3449 
3449 
3495 
3496 

Deadline = 5000 

RTM CPU-uti1 = 1.00 wasted 0.00 % NO-RTM CPU-uti1 = 1.00 wasted 0.00 % 

RPET PET EPET I time task RPET PET [ EPET I time task 

1 finished 
3 finished 
4 finished 
7 finished 
9 finished 
2 finished 
6 finished 
0 finished 
8 finished 
5 finished 

449 
422 
516 
434 
470 
462 
432 
426 
467 
433 

291 
317 
317 
325 
343 
356 
351 
447 
447 
503 

291 
317 
317 
325 
343 
356 
351 
447 
447 
503 

2590 
3107 
3124 
3249 
3342 
3398 
3449 
3546 
3643 
3696 

1 finished 
3 finished 
4 finished 
7 finished 
9 finished 
2 finished 
6 finished 
0 finished 
8 finished 
5 finished 

1410 
1384 
1384 
1376 
1358 
1345 
1350 
1254 
1254 
1198 

29 1 
317 
317 
325 
343 
356 
35 1 
447 
447 
503 

291 
317 
317 
325 
343 
356 
35 1 
447 
447 
503 

2590 
3107 
3124 
3249 
3342 
3398 
3449 
3546 
3643 
3696 

APETV APETV JT Although the tasks consume more CPU cycles to finish and 
N E T  is adjusted in smaller steps, the RTM case shows again 
a much better ratio of finished tasks to cancelled tasks. The 
CPU utilization in the RTM case is always better than that in 
the NO-RTM case while wasting significantly less CPU time. 
For example, when D = 4000, the RTM case misses only one 
deadline, whereas the NO-RTM case cancels 9 of 10 tasks (since 
their deadlines cannot be met according to WPET). 

Task I YY APETV 
(2) 

APETV 
(5)  

224 
164 
113 
70 

235 
217 
101 
125 
20 

142 

178 
169 
189 
135 
142 
124 
155 
255 
143 
161 

167 
144 
157 
112 
121 
224 
181 
164 
152 
178 

196 
240 
258 
121 
237 
198 
205 
233 
153 
193 

C. Third Sequence of Experiments 
In the third sequence of measurements, WPET is set to be twice 

as large as PET, and APETV's for the ten tasks are computed 
as follows. 

During this sequence, 6 experiments are conducted while varying 
deadlines to be 1800, 5500, 6500, 7500, 8000, and 8250, and 
keeping APETV and WPET unchanged. 



HABAN AND SHIN: APPLICATION OF REAL-TIME MONITORING TO SCHEDULING TASKS 1387 

task 

3 finished 
8 finished 
2 xxx 
9 x x x  
4 x x x  
7 x x x  
O X X X  
lXXX 
5 x x x  
6 finished 

Deadline = 1800 
I 

WPET 

981 
968 

1106 
1079 
1034 
1034 
1076 
1034 
1011 
968 

RTM CPU-uti1 = 0.12 wasted 5.17 % I NO-RTM CPU-uti1 = 0.12 wasted 5.17 % 

task WPET RPET I PET EPET I time I task RPET PET time 

100 
0 100 
0 100 

50 150 
917 966 

2 x x x  
3 x x x  
4 x x x  
5 x x x  
6XXX 
7 x x x  
8XXX 
9 x x x  
lXXX 
0 finished 

1701 
1701 
1701 
1701 
1701 
1701 
1701 
1701 
1701 
1243 

1701 
1701 
1701 
1701 
1701 
1701 
1701 
1701 
1651 
327 

0 
0 
0 
0 
0 
0 
0 
0 

50 
917 

100 
100 
100 
100 
100 
100 
100 
100 
150 
966 

2 x x x  
3 x x x  
4 x x x  
5 x x x  
6XXX 
7 x x x  
8XXX 
9 x x x  
lXXX 
0 finished 

1701 
1701 
1701 
1701 
1701 
1701 
1701 
1701 
1651 
784 

842 
580 
749 
91 1 
65 1 
909 
599 
750 
896 
917 

842 
580 
749 
91 1 
65 1 
909 
599 
750 
896 
917 

Deadline = 5500 

RTM CPU-uti1 = 0.65 wasted 100.00 % NO-RTM CPU-uti1 = 0.59 wasted 80.35 % 

task WPET RPET PET EPET time task I RPET PET I EPET I time 

5 x x x  
O X X X  
lXXX 
7 x x x  
6XXX 
8XXX 
3 x x x  
9 xxx 
4 x x x  
2 x x x  

1246 
1257 
1224 
1138 
968 
968 
981 
901 

1034 
1106 

796 
757 
724 
638 
468 
468 
43 1 
40 1 
484 
506 

911 
917 
896 
909 
65 1 
599 
580 
750 
749 
842 

450 
500 
500 
500 
500 
500 
550 
500 
550 
600 

4705 
4744 
4777 
4863 
5033 
5033 
5070 
5100 
5100 
5150 

4 x x x  
5 x x x  
6XXX 
7 x x x  
8XXX 
9 x x x  
lXXX 
2 x x x  
3 x x x  
0 finished 

1301 
1301 
1301 
1301 
1301 
1301 
1251 
1251 
1251 
784 

749 
91 1 
65 1 
909 
599 
750 
896 
842 
580 
917 

400 
400 
400 
400 
400 
400 
450 
450 
450 
917 

4200 
4200 
4200 
4200 
4200 
4200 
4250 
4250 
4250 
4666 

Deadline = 6500 

CPU-uti1 = 0.79 wasted 70.38 % NO-RTM CPU-uti1 = 0.72 wasted 83.81 % 

RPET PET I EPET time task I RPET PET EPET time 

402 
370 
506 
479 
434 
434 
426 
384 
361 
318 

580 
599 
842 
750 
749 
909 
917 
896 
91 1 
65 1 

5679 
5928 
5995 
6022 
6067 
6067 
6075 
6117 
6140 
6179 

6XXX 
7 x x x  
8XXX 
9 x x x  
lXXX 
2 x x x  
3 x x x  
4 x x x  
5 x x x  
0 finished 

1201 
1201 
1201 
1201 
1151 
1151 
1151 
1151 
1151 
784 

65 1 
909 
599 
750 
896 
842 
580 
749 
911 
917 

500 
500 
500 
500 
550 
550 
550 
550 
550 
917 

5300 
5300 
5300 
5300 
5350 
5350 
5350 
5350 
5350 
5666 

580 
599 
600 
600 
600 
600 
650 
650 
650 
65 1 
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RTM CPU-uti1 = 0.98 wasted 33.91 % 

task WPET RPET PET EPET time 

3 finished 98 1 402 580 580 5679 
8 finished 968 370 599 599 5928 
6 finished 968 318 65 1 65 1 6629 
4 finished 1034 286 749 749 6928 
9 finished 1079 330 750 750 7078 
2 finished 1106 265 842 842 7470 
5 x x x  1235 385 91 1 850 7616 

Deadline = 7500 

NO-RTM CPU-uti1 = 0.92 wasted 51.41 % 

task RPET PET EPET time 

3 finished 1121 580 580 5679 
8 finished 1102 599 599 5928 
6 finished 1050 65 1 65 1 6629 
4 finished 952 749 749 6928 
9 XXX 1001 750 700 7029 
1 XXX 95 1 896 750 7079 
2XXX 95 1 842 750 7079 

RTM CPU-uti1 = 0.91 wasted 41.83 % 

7 x x x  1198 348 909 850 7653 
O X X X  1243 343 917 900 7658 I 1 finished 1 1178 I 283 I 896 I 896 I 7666 

NO-RTM 

5 XXX 95 1 911 750 7079 
7 XXX 95 1 909 7079 I 0 finished 1 784 I 917 1 ;;: I 7195 

CPU-uti1 = 0.85 wasted 68.69 % 

task 

3 finished 
8 finished 
6 finished 
4 finished 
9 x x x  
lXXX 
2 x x x  

WPET 

RPET PET 

1121 580 
1102 599 
1050 65 1 
952 749 

1001 750 
95 1 896 
95 1 842 

RPET 

5xxx 
7 x x x  
0 finished 

PET 

95 1 911 
95 1 909 
784 917 

EPET I time 

EPET 

task 

time 

RPET I PET 

3 

EPET 

task 

time 

WPET 

3 finished 
8 finished 
6 finished 
4 finished 
9 finished 
2 finished 
1 finished 
0 finished 
5 finished 
7 finished 

981 
968 
968 

1034 
1079 
1106 
1178 
1243 
1235 
1198 

981 
968 
968 

1034 
1243 
1235 
1198 
1178 
1079 
1106 

402 
370 
318 
286 
493 
485 
448 
428 
330 
265 

580 
599 
65 1 
749 
917 
91 1 
909 
896 
750 
842 

580 
599 
65 1 
749 
750 
750 
750 
750 
750 
842 

5679 
5928 
6629 
6928 
7008 
7016 
7053 
7073 
7078 
7170 

3 finished 
8 finished 
2 x x x  
4 x x x  
5 x x x  
6XXX 
7 x x x  
9 x x x  
lXXX 
0 finished 

1121 
1102 
1051 
1051 
1051 
1051 
1051 
1051 
1001 
784 

580 
599 
842 
749 
91 1 
65 1 
909 
750 
896 
917 

580 
599 
650 
650 
650 
650 
650 
650 
700 
917 

5679 
5928 
6479 
6479 
6479 
6479 
6479 
6479 
6529 
6695 

3 finished 
8 finished 
6 finished 
4 finished 

7 x x x  
lXXX 
9 finished 
2 finished 

Deadline = - 
.92 RTM CPU-uti1 0.98 wasted 33.91 % 

task WPET RPET PET I EPET 

finished 
finished 
finished 
finished 
finished 
finished 
xxx 
xxx 
xxx 
finished 

98 1 
968 
968 

1034 
1079 
1106 
1235 
1198 
1243 
1178 

402 
370 
318 
286 
330 
265 
385 
348 
343 
283 

580 
599 
65 1 
749 
750 
842 
850 
850 
900 
896 

5679 
5928 
6629 
6928 
7078 
7470 
7616 
7653 
7658 
7666 

580 
599 
65 1 
749 
700 
750 
750 
750 
750 
917 

5679 
5928 
6629 
6928 
7029 
7079 
7079 
7079 
7079 
7195 

580 
599 
65 1 
749 
750 
842 
91 1 
909 
917 
896 

Deadline = 8250 

CPU-uti1 = 1.00 wasted 0.00 % NO-RTM CPU-uti1 = 0.95 wasted 42.97 % 

RPET EPET PET PET 

580 
599 
65 1 
749 
750 
842 
896 
917 
911 
909 

time 

5679 
5928 
6629 
6928 
7078 
7470 
7666 
7783 
7794 
7803 

task 

3 finished 
8 finished 
6 finished 
4 finished 
9 finished 
lXXX 
2 x x x  
5xxx 
7 x x x  
0 finished 

RPET 

1121 
1102 
1050 
952 
95 1 
90 1 
90 1 
90 1 
901 
784 

time 

5679 
5928 
6629 
6928 
7078 
7379 
7379 
7379 
7379 
7445 

EPET 

580 
599 
65 1 
749 
750 
800 
800 
800 
800 
917 

402 
370 
318 
286 
330 
265 
283 
327 
325 
290 

580 
599 
65 1 
749 
750 
842 
896 
917 
91 1 
909 

580 
599 
65 1 
749 
750 
896 
842 
911 
909 
917 

D = 1800 is selected to demonstrate an extreme case in which 
both the system with and without the RTM process only one 
task while throwing out all the others. An anomaly occurs when 
D = 5500; the system with the RTM attempts to process all 
10 tasks but misses all deadlines, while the system without the 
RTM throws 9 out of 10 tasks very early and, therefore, saves 
resources to finish one task in time. However, this occurs very 
rarely, and all our subsequent measurements show that even when 
the difference between W E T  and APET is small, the RTM case 

finishes more tasks and wastes less CPU cycles than the NO-RTM 
case. 

VII. CONCLUSION 
We proposed to use a real-time monitor as an aid in scheduling 

tasks with random execution times in real-time computing sys- 
tems. The real-time monitor based on the TMP is transparently 
integrated into the system, measures and monitors the task exe- 
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cution without altering the system behavior and with negligible 
interference. One essential feature of the monitor is that the 
measured results are fed back to the operating system in order to 
achieve an adaptive behavior. Specifically, the feedback is used 
to aid in scheduling tasks and checking on-line whether or not 
task deadlines can be met. 

The TMP measures precisely the EPET of each task by 
separating RSD from the actual task execution time. The mea- 
sured EPETs are then used to compute the RPET of the task. 
In addition, measurements about the past execution behavior 
of a task are used to update its APET. It is shown that this 
N E T  approximates PET more accurately than WPET which 
is fixed over a task’s lifetime but could be much larger than 
the corresponding PET. Various experiments with a set of tasks 
show that the ratio of tasks finished in time to tasks missing their 
deadlines is significantly higher when the system is equipped with 
the proposed real-time monitor. Moreover, the CPU utilization is 
improved significantly while the percentage of wasted time due 
to cancellation of tasks or missing deadlines is decreased. The 
TMP’s ability to execute arbitrary software is used to perform 
real-time system management functions, such as the scheduler 
and the watchdog process, thus making 1) the scheduler not use 
any CPU cycles of the host system and 2) the watchdog process 
not cause any overhead to the host system. 

The architectural support with the TMP has made the above 
results possible. Note that the real-time monitor based on the 
TMP can also be used in distributed and parallel systems to 
aid in debugging, program animation, understanding of parallel 
behavior, load balancing, etc. 

WET 
PET 
EPET 
APET 
APETV 
WPET 
WPETV 
RSD 
RPET 

APPENDIX 
LIST OF ACRONYMS 

Worst-case execution time. 
Measured pure execution time. 
Elapsed pure execution time. 
Anticipated pure execution time. 
Anticipated pure execution time vector. 
Worst-case pure execution time. 
Worst-case pure execution time vector. 
Resource sharing delay. 
Remaining pure execution time. 
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