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Location of a Faulty Module in a Computing 
System 

TEIN-HSIANG LIN, MEMBER, IEEE, AND U N G  G. SHIN, SENIOR MEMBER, IEEE 

Abstruct-Considering the interplay between different phases 
of fault tolerance, a new problem of locating a faulty module in a 
computing system is formulated and solved in this paper. First, 
the probability of each module being faulty or faulty probability 
is calculated using the likelihood principle from the model 
parameters for fault detection, diagnostics, error propagation, 
and error detection. Then, based on the faulty probabilities and a 
given required diagnostic coverage, the order in which modules 
are to be diagnosed and the maximum time allotted to diagnose 
each module are determined by minimizing the average total 
diagnostic time. An example is presented and analyzed to answer 
the question of whether or not a system should delay the 
diagnosis upon detection of an error until more errors are 
detected. 

Index Terms-Bayesian decision theory, detection latency, 
error propagation, fault (error) detection, fault (error) latency, 
fault location, periodic diagnostic, system level fault diagnosis. 

I. INTRODUCTION 

HE rapid progress in VLSI technology has made it T possible to build systems with a massive number of 
components for high performance and high reliability. In such 
complex systems, it is extremely difficult to locate the faulty 
component(s) upon occurrence of a failure. A new probabilis- 
tic approach to the problem of locating a fault in a multicom- 
ponent system is thus proposed in this paper by taking into 
account the effects of such mechanisms as error detection, 
error propagation, and periodic diagnostics. 

Due to the packaging and scope of each reconfigurable unit, 
it is sufficient in most systems to locate a “macro compo- 
nent,” called a module, which contains one or more faulty 
“micro” components. A module represents any well-defined 
subunit of the system; it could be a hardware unit, a software 
subrountine, or a combination of both. Each module is 
assumed to have its own independent detection mechanism(s). 

Our approach is concerned with system level fault diagnosis 
for which various models have been proposed in the literature. 
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The most notable are the model proposed in [22] and 
extensions thereof. Among them, only a couple of models are 
directly related to our work and thus will be reviewed below. 
(See Section VI for reviews on others.) 

Bossen and Hsiao [4] proposed a probabilistic model for the 
detection of intermittent and transient faults. Since intermittent 
and transient faults that had occurred during normal operation 
may disappear during off-line testing, they used the informa- 
tion gathered from detection mechanisms to isolate faults. 
Their model was implemented as an automated diagnostic 
methodology for the IBM 3081 Processor Unit [30]. New 
hardware features were added in the IBM 3081 Processor Unit 
to record the system’s status at the time of occurrence of 
errors. Thus, in most cases the faulty module can be directly 
isolated from this information without additional diagnosis. If 
direct isolation of faults is not possible, then probable faulty 
modules are tested for stuck-at faults in combinational 
networks of each of the modules. If the fault is still not found, 
modules are sequentially replaced until the system is repaired. 
The sequence of replacement is determined based on the 
numbers of circuits in each module. 

The above approach is deterministic in nature since abun- 
dant information on the fault is available, thus almost always 
reducing the number of probable faulty modules down to one. 
By contrast, our model will require only the knowledge of the 
times and places (module identity) of error detections and a 
probabilistic model of fault behavior. Based on this minimal 
information, our objective is to locate the faulty module as 
quickly as possible. For this, a human or another computer 
system is brought in upon detection of one or more errors to 
diagnose every module in the system sequentially until the 
faulty module is identified under the single faulty module 
assumption’ or all the modules are exhausted. A Bayesian 
decision approach will be used to determine the order of 
modules to be diagnosed and the maximum diagnostic times 
for individual modules. 

The paper is organized as follows. Section I1 defines the 
parameters associated with fault detection, periodic diagnos- 
tics, error propagation, and error detection. In Section 111, the 
faulty probability of each module is derived, and the optimal 
order in which modules are to be diagnosed is determined by 
using a Bayes decision criterion. In Section IV, the optimal 
diagnostic times for individual modules are determined by 
minimizing the average total diagnostic time. An example is 
then presented in Section V .  In Section VI, we compare our 
model to other system level diagnosis models and remark on 

’ Relaxation of this assumption will be addressed in Section VI 
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Fig. 1 .  Fault tolerance phases in a computing system. 

how to relax the single faulty module assumption. The paper 
concludes with Section VII. 

11. SYSTEM MODEL 
An N-module computing system is represented by a digraph 

D = ( V,  E) ,  where V = { u I ,  * a ,  u N }  denotes the set of 
nodes, E = { eij; 1 I i ,  j I N} denotes the set of directed 
edges. Each node in V represents a module in the system, and 
a directed edge eij represents a communication link2 from U; to 
u j .  Typical methods of communication between software 
modules are message passing or shared memory. Hardware 
modules can communicate via control and data signals. If 
there is no communication link from U; to U,, E will not contain 
eV, or e, is a null edge. 

The fault tolerance in a multimodule system is achieved by 
several sequential phases as shown in Fig. 1. The fault 
process determines the time, the location, and the type of a 
fault that occurs in the system. A fault may induce error(s), 
which is described by the error process. To distinguish an 
error from a fault, both are defined as follows. 

A fault is a damage, defect, or deviation from the normal 
state of the computing system on which tasks execute. 

An error is a deviation from the specification of a task. 
For example, a broken wire, an electromagnetic interfer- 

ence, or a bug in a program is a fault, whereas an incorrect 
result or an untimely control signal is an error. A thorough 
discussion on the terminology about faults and errors can be 
found in [ 131. 

Based on the definitions of fault and error, the detection 
phase can be divided into fault detection and error detec- 
tion. The former is concerned with detecting the manifestation 
of a fault by some means other than program execution (e.g., a 

* Not to confuse this with a connection link. 

built-in tester), while the latter deals with detecting those 
errors in program execution induced by fault(s). Hence, the 
fault location phase will be called for only after an error 
detection. The problem of locating the faulty module becomes 
complicated when error detection mechanisms are not perfect 
(i.e., have less than 100 percent coverage), since an error may 
propagate from one module to others via intermodule com- 
munication before it is detected in some module(s). 

In the remainder of this section, the above fault-tolerant 
phases will be characterized with probabilistic models. The 
density and cumulative distribution functions of a random 
variable V,  ( Vj) will be denoted as f,!‘ (fg) and F,!’ (F,!j‘), 
respectively. 

A .  Faults and Errors 
A module is said to be faulty if it contains one or more 

faults and is said to become contaminated if it contains an 
error. Let Tr, the u; ’s faulty time, denote the time instant a 
fault occurs in U;. Let T f ,  the u;’s contaminating time, 
denote the time instant the first error occurs in ui as a result of 
either the manifestation of a fault within U; or the propagation 
of error(s) from other module(s). We assume that the system 
contains at most one faulty module at a time, although the 
faulty module could contain multiple faults. An extension of 
our results to the case of multiple faulty modules will be 
addressed in Section VI. 

If ui is the faulty module, the fault latency of U;, denoted 
by Li, is defined as the time interval between vi’s faulty time 
and contaminating time. A methodology for determining the 
distribution of the faulty latency on real systems was devel- 
oped in [27]. 

The rate of fault occurrence in U; is characterized by the 
fault cycle in U;, denoted by Yi, which is the time interval 
between two consecutive faulty times of U;. In Fig. 2 ,  a time 
chart is used to illustrate the parameters defined in this 
subsection. 

B. Error Propagation 
If a module’s detection mechanism is not perfect, faults in 

that module induce errors which may then propagate to other 
modules before some module detects one or more of these 
errors. To describe error propagation in the system, a 
(propagation) path from U; to uk, written as (U;, * - * , uk) is 
defined as a directed path in D where all nodes in the path are 
distinct. Only distinct nodes in an error propagation path are 
considered, because error propagation into an already contam- 
inated module has negligible effects on the propagation 
behavior of the module. Error will propagate from ui to uk if 
there exists at least one propagation path from ui to Uk. 
Define the error propagation time from U; to u j ,  denoted by 
Xu, as the time interval between the contaminating time of U; 
and that of u j .  Clearly, Xjj holds a physical meaning only when 
Xij 2 0. Thus, the definition of Xij should be made under the 
assumption that U; is the only faulty module or the first module 
to be contaminated in the system. Under the single faulty 
module assumption, the faulty module will be the first to be 
contaminated. 

The error propagation times contain complete information 
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on the behavior of error propagation and can be measured 
experimentally. However, due to the difficulty and cost of 
measuring the error propagation times (see [28] for a detailed 
account of this), we define the direct propagation time of 
every nonnull edge e;,, denoted by B, , as the time for an error 
to propagate from ui to U, via eij .  The distribution function of 
Bjj is called the direct propagation function of e,. 

The differences between an error propagation time and a 
direct propagation time are that 1 )  the latter is associated with 
a directed edge while the former is defined for every ordered 
pair of modules, and 2) the latter accounts for error propaga- 
tion through a particular edge while the former is the minimum 
propagation time over all propagation paths between the given 
pair of modules. Since direct propagation times are defined for 
communication links in the system, without loss of generality, 
one can assume that they are independent of one another and 
their distributions do not change even if the underlying fault 
model is changed. 

The relation between Xu’s and B,’s can be obtained easily. 
First, identify all error propagation paths from U; to U, and 
calculate the error propagation time along each path by 
summing up the direct propagation times of all edges in the 
path. Then, X ,  is the minimum among all these path 
propagation times. For example, in the system graph D1 
shown in Fig. 3, 

 XI^ = min ( B I Z  + 8 2 3 ,  B14 + B45 + B53, B14 + B45 + B52 + B23, 

B12 + B24 + B45 + B53 1- (2- 1) 

Assuming that an error propagates via the push (U, , U?, u3) of 
graph D 1, the relation between B, and X ,  is shown in Fig. 2.  

Deriving the distributions of Xu’s from that of Bjj’s is not 
trivial. To perform this systematically and efficiently, two 
algorithms have been proposed in [28] where experimental 
measurements of the direct propagation times in the fault- 
tolerant multiprocessor (FTMP) were also reported. 

C.  Fault and Error Detection 
All detection mechanisms detect only errors, while faults 

have to be diagnosed by coercing them into detectable errors. 
Based on the detection methodology employed, the scheme in 
[26] classifies detection mechanisms into three types: 1) fault 
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or propagating via (U,, u 2 ,  u3) .  

detection, 2) error detection, and 3) periodic diagnostics. 
Examples of fault detection (or signal level detection in [26]) 
mechanisms are built-in self-checking circuits, error detection 
codes, and duplicate complementary circuits. Error detection 
(or function level detection in [26]) can be implemented in 
various ways, such as capability checking, acceptance test, 
invalid op-code checking, and time-out. Periodic diagnostics 
are off-line testing programs which are run periodically and 
can exercise the system’s components with imitated inputs to 
activate and then detect faults. 

The distinct feature of fault detection mechanisms is the 
immediate detection when a fault induces an error so that an 
error cannot propagate without being detected. Consequently, 
the module where a detection is made by fault detection 
mechanisms is the faulty module; the fault location phase is 
not needed after a fault detection. The faults that can be 
detected by fault detection mechanisms in a module are 
defined as FD-detectable faults. The fault detection coverage 
of U,, denoted by Cp, is the probability of a fault in U, being 
FD-detectable. Ideally, every fault should be FD-detectable 
(i.e., CT = 1 for all i ) ,  which is practically impossible. Thus, 
to complement (imperfect) fault detection mechanisms, the 
other two types of detection mechanisms must also be used. 

A periodic diagnostic can usually detect more faults with 
less cost than a fault detection mechanism. The disadvantage 
is that errors may have been induced and propagated to other 
modules before the fault is diagnosed, since periodic diagnos- 
tics cannot detect faults between diagnostics. The fault 
location phase is not neccessary following a detection with 
periodic diagnostics. The faults which are not FD-detectable 
but are detectable during periodic diagnostics are defined as 
PD-detectable faults. The coverage of periodic diagnostics in 
module U,, denoted by Cp, is then the probability of a fault in 
U, being PD-detectable. Cp is a monotonically increasing 
function of the diagnostic time. Because the system will not be 
available for useful work during periodic diagnostics, the time 
for a complete diagnostic (i.e., Cp = 1 - Cp) is usually too 
long to apply frequently. It is a common practice to perform a 
short periodic diagnostic during normal operation and perform 
a complete diagnostic as such a need arises or when the system 
is idle. Periodic diagnostics do not have to be scheduled at 
uniform intervals, but the time to perform each diagnostic is 
usually fixed. The scheduling of incomplete periodic diagnos- 
tics has been studied extensively by many researchers [ 121, 
[16], [20], [21], [32], [31]. Based on these results, we will 
assume that the scheduling of periodic diagnostics on each 
module has been determined a priori and each module records 
the time when the last periodic diagnostic was performed. 

The faults that are neither FD-detectable nor PD-detectable 
are undetectable faults. Undetectable faults can be captured 
only during the fault location phase after the errors induced by 
these faults are detected by error detection mechanisms. 
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Fig. 4. A timing chart of error detections. 

As discussed above, faults are classified according to the 
type of detection mechanisms that can detect them. This 
classification implies that there is no randomness in fault 
detection and periodic diagnostics. That is, if a fault is 
undetectable, it will never be detected by fault detection 
mechanisms or periodic diagnostics. 

A module often employs several error detection mecha- 
nisms simultaneously to accelerate the error detection process. 
Errors induced by a fault proliferate until one of them is 
trapped by an error detection mechanism. The pattern of error 
proliferation depends heavily upon the system workload at the 
contaminating time, and thus, is random. Therefore, unlike 
the treatment of fault detection and periodic diagnostics, error 
detection will be modeled probabilistically . 

Based on where errors are detected in a module, error 
detection mechanisms are divided into two groups: internal 
and boundary detection schemes. For a module, internal 
detection schemes refer to all the error detection mechanisms 
which check the module’s internal structure, while the 
boundary detection schemes detect errors by checking the 
module’s outputs. For example, the capability checking and 
acceptance test are internal detection schemes, whereas the 
NMR voting on the outputs is a boundary detection scheme. 

Define the internal detection latency of U, , denoted by I , ,  
as the time interval from the u,’s contaminating time until an 
error is detected by an internal detection scheme in U,. If a 
module U, does not have any internal error detection mecha- 
nism, then I, = 00. 

Define the boundary detection latency on e,,, denoted by 
JlJ , as the time interval from the uJ’s contaminating time until 
an error is detected at the u,’s side of e,, by a boundary 
detection scheme. If there is no boundary error detection 
mechanism on e,,, then JIJ = m. Note that the starting point of 
JU is the time when an error propagates from U, to uJ. Thus, 
Prob[ JU = 01 can be intepreted as the probability of detecting 
an error just before it propagates to uJ via e,. 

For any module U,, we define the detection time as the time 
instant the first error detection is made in u, by either an 
internal or a boundary detection scheme. The detection 
latency of U,, denoted by K,, is then defined as the time 
interval from u,’s contaminating time to its detection time. 
A time chart is shown in Fig. 4 to illustrate all the latencies 
defined in this subsection. 

Denote the density and cumulative distribution functions of 
K, by c,( .) and C,( e ) ,  respectively. Traditionally, the error 
detection coverage, defined as the probability of detecting 
errors existing in a module or system, is used as a measure to 
evaluate the effectiveness of error detection mechanisms. 
However, this definition does not specify the detection latency 
which plays a key role in determining the actual coverage. It 
also implies that if an error is not detected within a certain time 

limit, the error is considered to be undetectable forever. 
Hence, it would be more appropriate to define the error 
detection coverage as a function of time, C;( t ) .  An error is 
undetectable only if its associated error latency approaches 
infinity. 

The detection latency can be viewed as a result of the 
competition among internal detection and boundary detection 
schemes, i.e., 

K;=min (Z;, Bjkl + J j k l ,  * a ,  Bjk, + Jik,) 

with { e jk l ,  . * e ,  ejk,} being the set of all outgoing edges at U;. 
Assuming that Zi, B,, and Jjj are independent, C;(t)  can be 
obtained by 

[l -C; ( t ) ]=[ l  -F;( t )][ l  -F;y( t ) ]  . - -  [ l  -F;BZJ(t)] 

where “*” denotes convolution and 

111. THE PROBLEM OF FAULT LOCATION 

When an error is detected in a module, the following two 
decisions have to be made before the faulty module can be 
located: 

1) the order of modules to be diagnosed (or the diagnostic 
order) 

2) the maximum diagnostic time for each module, i.e., 
when to stop diagnosing a module if a fault is not yet found in 
the module. 

The former is dealt with in this section and the latter will be 
treated in the next section. 

Under the single faulty module assumption, the determina- 
tion of the diagnostic order can be formulated as a Bayesian 
decision problem. The parameter space contains N hypothe- 
ses: 

Hi : U; is the faulty module for i = 1 ,  * e ,  N. 

If the decision time of a system, denoted by T, is the time a 
system’s normal operation is stopped due to the detection of 
error(s), the sample space is the set of fault syndromes defined 
below. The fault syndrome of a system, denoted by S, is 
defined as a record of error detections made from 0 to T,  i.e., 

s = [ u b l ,  tl;  ’”; U b a ,  t61 

where ti is the time the first error detection in Ub; is made and 6 
is the number of modules that have made error detection(s) up 
to T. The prior and posterior faulty probabilities, denoted 
respectively by T I  and ri for i = 1, - * , N ,  are then defined 
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as 

ai = Prob[ H; is true] before considering the fault syndrome S, 

ai = Prob[ H; is true] after considering the fault syndrome S 

Usually, the decision time is immediately after the system’s 
first error detection to minimize error propagation. However, 
it is possible for S to have multiple error-detecting modules, 
due mainly to the following two reasons. First, the decision 
time may be predetermined or at fixed intervals. Second, the 
decision time may be deliberately postponed to gather more 
information about error propagation. 

An action A is defined as the actual diagnostic order and 
denoted by 

A = [ a l ,  a2, a . . ,  ~ N I  
where U,] is the first module to be diagnosed, uU2 is the second, 
and so on. If the number of modules diagnosed before locating 
the faulty module is defined as the loss function 

L ( H j ,  A ) = j  if i=aj ,  

the posterior Bayesian expected loss of A will be 

N =E jn , .  
j =  I 

The Bayes decision is then the action which has the minimum 

* ,  

P ( A ) .  

N ,  P ( A )  is minimized if aul 1 aoz 1 * - 1 xu,,,. 
< 7ruj for an action A = [ a l ,  e ,  a N ] .  Construct a new 
action A ’  by exchanging a; and aj ,  i.e., A ‘  = [ a l ,  * a ,  aj ,  
. - - , a i ,  e - . ,  aN].  Then 

Theorem I :  Given the faulty probabilities ai, i = 1 ,  

Proof: Suppose there exist i and j such that i < j and 

P(A ) - P(A ‘) = i(aUj - auj) +ATuj - a,;) 

= ( j  - i)(a,  - sui) 

> 0. 

detection are considered. If we know very little a priori the 
whereabout of the fault module, a noninformative prior can 
be employed, which assigns an equal probability to all 
hypotheses. An informative prior can be determined if we 
know the previous faulty times of all modules, denoted by T,?’, 
and the distributions of fault cycles of all modules, denoted by 
F,?‘. In case U; has never been faulty, T,?’ may represent the 
time when U; was first put into operation. This informative 
prior will be calculated on the basis of our suspicion of an 
individual module being faulty, which is just the conditional 
probability that one module is faulty and others are not at time 
T. For example, our suspicion of U; being faulty is 

N 

FY( T -  TY) n ( 1  -F,’( T -  T,’)). 
j = l , j # i  

The prior probability of Hi is then the relative suspicion of U; 
being faulty, i.e., 

N 

j = l , j # r  a’= 

I 5 (F,?’( T -  T,’) fi ( 1  -F,’( T -  T,’)) 
j =  I j =  I , j # i  

3 (F:( T -  T,’) n ( 1  -F,’( T -  T,’))) 
j =  I j =  I , j # i  

B. Likelihood of Fault Syndrome 
The likelihood .C,(S) is the conditional probability of S 

given that U; is the faulty module. To determine Oe;(S), we first 
derive the density function of ui’s contaminating time given S, 
denoted by f c ( t ) .  

Let TD denote the time when the previous complete 
diagnosis on U; is done and let TP denote the time when the 
previous periodic diagnostic on U; is done. A complete 
diagnosis is assumed to have 100 percent coverage; so we are 
certain that ui is fault-free immediately after Tf if it passed the 
complete diagnosis. TD is assumed to equal T,?’ if no complete 
diagnosis has been applied since TF. Tp is assumed to equal 
TP if no periodic diagnostic has been applied since TP. In U;, 
only undetectable faults could have occurred during the 
interval between TD and TP, and only PD-detectable and 
undetectable faults could have occurred during the interval 
between TP and ti, the time of the first error detection. The 
likelihood of TF = t ,  denoted by P:(t), is then 

( 1  - CF- Cp) f y ( f  - T,?’)(l -F,?’(tI - t )  
if Tf’s  t < Tp 

if T P s t < t l  
( 1  - Cp) f y ( t  - T,?’)(l --F,?’(fl - t ) )  * 

Therefore, the Bayesian expected loss can be reduced by the 
above exchanges until the minimum is reached when a,] 1 

From Bayes’ Theorem, the posterior faulty probability ai 

l” t )=  
au2 1 2 ?TUN. 

can be calculated as 
Thus, the density function of TF is expressed as a; Oe;( S ) 

where Si( S)  is the likelihood of the fault syndrome S under 
the hypothesis Hi. 

A .  Prior Distribution of Hi 

ff(t) 

A .  
I 

By definition, TIC = Tf + L; so that the density function of 
TC can be calculated as 

The prior distribution of Hi is our subjective belief about the 
I 

location of the faulty module before the results from error f T C ( t ) = f T F ( t )  * f f ( t )  
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where "*" denotes the convolution. However, if S is given, 
TF can be no later than tl and no earlier than T f .  Hence, 
f ,"( t )  should be expressed as 

Now, the likelihood of S can be calculated as 

where Ci( S, r )  is the likelihood of S given that U, is the faulty 
module and TC = r. 

Let the error latency from U; to U,, denoted by EU,  be the 
time interval from the ui's  contaminating time to the uj's 

detection time. Then, EU is the sum of the error propagation 

fault-free system, the average total diagnostic time, denoted by 
TD, is defined as the average time from the start of the first 
diagnostic until the faulty module is identified or all the 
modules are exhausted. Given that there is a faulty module in 
the system, the system diagnostic coverage, denoted by M ,  is 
the conditional probability of locating the faulty module. Let 
@;( t )  be the percentage of faults that the diagnostic can 
discover in ui for the diagnostic time t ,  and let 4 i ( t )  = 

d@i( t ) /dt .  All +i( t)'s are assumed to be continuous functions 
on [0, m). Let D;, 1 I i I N ,  denote the optimal diagnostic 
time for ui. Our problem can be formally stated as follows. 

The Optimal Diagnostic Problem: Given M and 7ri, 1 I i 
5 N, determine D;, 1 5 i I N ,  which minimize TD. 

Without loss of generality, we can assume that 7rl 2 7r2 

> * * * I  nNandthediagnosticorderisA = [1,2, * . . ,N I .  
The following theorem provides a necessary condition for D; . 

Theorem 2: Given Mand 7rl 1 7r2 I * 2 7 r N ,  D;'s must 
satisfy the following equations: 

time Xij and the detection latency in u j ,  i.e., 

E.. - X . .  + K .  
11 - 11 J . 

Note that if i = j ,  EU = Kj . The spread of errors from a faulty 
U; can be characterized by the joint distribution of E;, , Ei2, 
- .  -, and EiN, called the ui's joint distribution of error 
latencies. Having the joint distribution of error latencies, 

C;(S, r)=Prob[Eibl = tl - 7, * * ,  Elba= t,- 7, 

where U, * e ,  uWN- , are the modules which had not detected 
any error. It is very complex and time consuming to 
analytically derive the joint distribution of error latencies, 
because EU's are not independent. A more practical approach 
to get Ci(S ,  r )  will be numerical simulation using random 
number generators. 

IV. OPTIMAL DIAGNOSIS PROCEDURE 

Given a system diagnostic coverage and the optimal 
diagnostic order determined earlier, we now derive the 
optimal diagnostic times for individual modules by minimizing 
the average total diagnostic time. 

Periodic diagnostics are usually self-diagnostic routines, but 
diagnostics at this stage have to be run by an independent 
system to ensure consistency and high coverage. Assuming 
that all modules are diagnosed sequentially by an independent 

ProoJ The diagnostic coverage of the system M is a 
weighted sum of all modules' individual diagnostic coverages, 
i.e., 

N 

I =  I 

According to the given diagnostic order, TD is computed as 

TD=a l  [ S D I  X I  d@l(x l )+( l  -@I(DI)) 5 Di] 
i =  I 

N N N N 
= ri S: xi d@i(Xi) + C Di- C n;@;(Di) ~ j .  

i =  1 i = l  ; = I  j = i  

(4.2) 
Let 0 be a Lagrangian multiplier. The solution for D;, 1 I i I 
N ,  must satisfy the differential equation 
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which is equivalent to 

For 1 I k I N ,  

Equation (4.4) is derived by the fundamental theorem of 
calculus that gives 

5 a l @ l ( D l )  5 OJ= 5 OJ 
I =  1 J = I  J = 1  I = I  

a l @ l ( D l )  

since a,, @,(Dl) ,  and D, are positive. From (4.3) and (4.4), we 
can derive for 1 5 k 5 N - 1, 

which is another form of (4.1) 
Using the following numerical procedure, the exact value of 

Di’s can be determined by (4.1) and the constraint M = C E 
a; @ i (  0;). 

Step 1 :  Assign an initial value to DN.  
Step 2 :  Let n : = N. 
Step 3: Let At : = D,. 
Step 4: Calculate Di, 1 I i I n - 1, according to (4.1). 
Step 5: Calculate rn = T ~ @ ~ ( D ~ )  + - 
Step 6 :  If 1 m - MI < E where E is a prespecified accuracy, 

then stop. Otherwise, do the following in sequence: 
1. If (rn - M).At < 0 then let At := -At/4. 
2. If D, + At 5 0, let D, : = 0, decrement n by 1, 

3.  Let D, : = D, + At and then go to Step 4. 

+ aNaN(DN) .  

and then go to Step 3.  

TABLE I 
THREE CASES OF FAULTY PROBABILITIES 

The unidirectional search employed in the above procedure is 
feasible because rn is a monotonically increasing function of 
Di for 1 I i 5 N. If Di = 0 in the final result, it indicates that 
ai is so small that the required diagnostic coverage can be 
achieved without even diagnosing U;. 

The value of DN should satisfy 

since 

N- 1 

I =  I 

= (1 - 7 r N )  + 7 r N @ N ( D N ) .  

The above range is useful in selecting an initial value of DN.  
If M is so close to 1 that for 1 5 i 5 N ,  @;(D;) = 1, $,(D;) 
4 1, and the tail part of & ( t )  is approximated by the 
exponential function (1 /Ai)e-t’A;, then the optimal diagnostic 
time can be approximated by 

AN- I [ (~)(5)]  
D N z l n  [( 77-N-2 )( l+DN+DN-,  
AN-2 TN+ TN- 1 AN- 2 

From this approximation, it is easy to see that when all 
modules are equally likely to be faulty (i.e., a1 = . = KN = 
l / N ) ,  the optimal diagnostic time of each module increases 
exponentially with its position in the diagnostic order. 

To see the effect of the faulty probabilities on the optimal 
diagnostic times, we consider three cases of the faulty 
probabilities for a five-module system which are tabulated in 
Table I. Diagnostic time for individual modules are assumed 
to be exponentially distributed with A, = * = As = 100. The 
choice for the units of all time variables and Ai’s are arbitrary 
but identical for the purpose of comparison. In Case 1, all five 
modules have the same faulty probability. In Case 2 (Case 3), 
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p9 Case 2 
LD Case 3 

0 
c) 

O 1  2 3 4 5 Ave. Total 
Module 

Fig. 5 .  The optimal diagnostic times in three cases. 

the faulty probability of a module is twice (three times) that of 
the next module in the diagnostic order. Using the numerical 
procedure described earlier, the optimal diagnostic times for 
all three cases under 90 percent system diagnostic coverage 
are computed and plotted in Fig. 5. The last category in Fig. 5 
is the average diagnostic time derived from (4.2) and the 
exponential distribution of diagnostic times as follows: 

i =  I 

Several conclusions can be drawn from Fig. 5 as follows. 
If two modules have the same faulty probability and the 

same distribution of diagnostic times, the one diagnosed 
earlier requires less diagnostic time, as evidenced in Case 1. 

Generally, the diagnostic time for any module increases 
(and decreases) with its faulty probability, but the amount of 
increase (decrease) is larger for those modules diagnosed later. 

The average total diagnostic time is shorter when there are 
larger disparities in the faulty probabilities. For example, Case 
1 (Case 3) has the least (most) disparity in the faulty 
probabilities and, thus, the longest (shortest) average total 
diagnostic time. 

In Fig. 6, the average total diagnostic times are computed 
for all three cases with the system diagnostic coverage ranging 
from 81 to 98 percent. The average total diagnostic time is 
observed to increase substantially when the system diagnostic 
coverage approaches 1. 

V. NUMERICAL EXAMPLE 
An example is presented here to demonstrate the use of our 

model for locating a faulty module. For a given distribution of 
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o: Cosel ~ t :  Case2 e: Case3 
0 P 

1 I 
%.SO 0.85 0.86 0.89 0.92 0.95 0.98 

System Diagnostic Coverage 

Fig. 6. Average total diagnostic time versus system diagnostic coverage in 
three cases. 

each basic random parameter introduced thus far, the follow- 
ing will be computed for the example system: 

1) the prior faulty probabilities, 
2) the likelihoods of two types of fault syndromes, 
3) the posterior faulty probabilities, 
4) the optimal diagnostic times for individual modules. 
All random parameters, except for .Tij’s and Bij’s, are 

assumed to be exponentially distributed. Jij is assumed to have 
the following density function: 

The discrete probability at Jij = 0 is to describe the 
instantaneous detection coverage of the boundary detection 
mechanisms. 

From our experiments on FTMP [28], Bij’s are found to 
have multimodal distributions. Hence, the Bo’s will be 
assumed to have a bimodal distribution, i.e., 

En ( p i ,  U;) with probability qij 
B. .= 

lJ En ( p;,  U;) with probability 1 - qij 

where % ( p ,  U) denotes a normally distributed random 
variable with mean p and standard deviation U. 

The likelihoods of fault syndromes are obtained via simula- 
tion because of the analytic difficulty discussed in Section 11. 
To increase accuracy, every independent random parameter in 
our model is generated by an independent random generator in 
the simulation. One million sets of data are generated for the 
example. 

Two types of fault syndromes are considered: 1) the single- 
detection type where the decision time is set at the detection 
time of the first error-detecting module of the system, and 2) 
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TABLE 11 
DISTRIBUTION OF RANDOM PARAMETERS 

Variable Distribution Parameters 

1 J, ,  1 Hybrid 1 <ij = 0.2 

n1j = 100 

1 Bij I Bimodal Normal I q,j = 0.6 I 

TABLE Ill 
CONSTANT PARAMETERS 

the double-detection type where the decision time is set at the 
detection time of the second error-detecting module of the 
system. The single-detection and double-detection types of 
fault syndromes will be written as (9, T) ,  (9, T - dt; ,  3, T) ,  
respectively, where T i s  the decision time and 9 and 3 are the 
first and second error-detecting modules. To obtain the 
double-detection type of fault syndrome, the system has to 
delay diagnosis for time dt from the first error detection. Will 
the average total diagnostic time for the double-detection type 
of fault syndrome be shorter than that for the single-detection 
type? Our example will answer this question. Since there is a 
small probability that the delay for the second error-detecting 
module is unrealistically long, the system will stop waiting 
after some predetermined time. The delay is set to be no 
longer than 100 units of time because there are very few 
double-detection syndromes with a delay longer than 100 in 
our simulation. 

The example system is represented by the graph D1 as 
shown in Fig. 3.  For all nodes and edges of D1, the associated 
random parameters are assumed to have the distributions in 
Table 11. The assumed values for the constant parameters of 
D1 are tabulated in Table 111. 

Among the simulation results for all single-detection and 
double-detection types of fault syndrome, we present only a 
subset of them that are deemed interesting. The prior faulty 
probabilities for individual modules are calculated to be ?r { = 
0.348, 1 ~ ;  = 0.267, ?ri = 0.193, ?r: = 0.126, and a; = 
0.066. The posterior faulty probabilities for syndromes (4, T 
- dt; 1, T) ,  (4, T - dt; 2 ,  T ) ,  (4, T - dt; 3, T ) ,  and (4, T 
- dt; 5 ,  T )  are plotted in Figs. 7-10 where the point for dt = 
0 is actually the result of syndrome (4, T ) .  

As shown in Fig. 7 where u4 is the first error-detecting 

0 :  v1  a: V2 e:  v3 A: V4 
x :  v 5  

di of Fault Syndrome (4.T-dt: 1,T) 

Fig. 7 .  The posterior faulty probabilities for fault syndrome (4, T - dt; 1, 
T )  in D1. 

0 :  v1 *: v2  e :  vs A :  v4 
x :  v 5  

/ 

O O  10 20 30 40 50 60 70 80 90 !DO 

dt of Fault Syndrome (4,T-dt; 2,T) 

Fig. 8 .  The posterior faulty probabilities for fault syndrome (4, T - dt, 2, 
T )  in D1. 

module of the system, its faulty probability (about 0.5) is the 
highest among all the modules in D1. However, if ul 
subsequently detects an error, u I  's faulty probability becomes 
the highest at about 0.9, because it is much easier for an error 
to propagate from U, to u4 than from u4 to U,. In Fig. 8, where 
u2 will detect an error after u4, if the delay dt < 60, u2 has the 
highest faulty probability; but, if the delay dt L 60, u4 again 
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0: V I  *: v 2  e:  v3 A: v 4  
x :  v 5  

0 = - I - - ”  

0 0  10 20 30 40 50 60 70 80 90 100 

a: v1 *: v 2  e: v 3  A: V4 
x:  v5 

A 

‘ 0  22 x) 20 50 40 50 60 70 80 90 100 

dt of Fault Syndrome (4.T-dt; 3.T) dt of Fault Syndrome (4.T-dt; 5.T) 

Fig. 9. The posterior faulty probabilities for fault syndrome (4, T - dt; 3,  Fig. 10. The posterior faulty probabilities for fault syndrome (4, T - dt; 5 ,  
T )  in D1. T) in D1. 

has the highest faulty probability. This is because errors 
propagating from v4 to v2 via v5 take about twice the time than 
propagating from v2 to v4 and the detection coverages of v2 and 
v4 are the same. Note that VI also has a moderate faulty 
probability since errors are also likely to elude the detection 
mechanisms in v1 and propagate to v2 and v4. In Fig. 9, if dt is 
small, all modules except u2 would have some nonzero faulty 
probabilities, but when dt becomes larger, v4 will dominate 
others in the faulty probability. Fig. 10 is typical for those 
syndromes where the first error-detecting module has an 
output link to the second error-detecting module. The longer 
the delay, the higher the faulty probability of the first error- 
detecting module will result. 

Fig. 11 compares the average total diagnostic times for all 
the syndromes shown in Figs. 7-10. It shows that not all 
double-detection fault syndromes lead to shorter average 
diagnostic times than single-detection fault syndromes do. 
There is the time delay ( d t )  penalty for the double-detection 
type. Then, how can we justify the use of the double-detection 
type? Given that v4 has made the first error detection, the 
likelihoods of obtaining those different double-detection fault 
syndromes are derived and listed in Table IV. It is apparent 
that a double-detection fault syndrome may increase the 
average total diagnostic time over the single-detection type 
only with a probability of 0.091. To evaluate these two types 
of faulty syndromes further, we calculate and compare the 
time overheads each of which is defined as the mean time from 
the first error detection until the end of diagnosis. The results 
are listed in Table V. It can be concluded that if the first error 
detection is made in U ] ,  v2, or v 3 ,  it is better to diagnose the 
system immediately; otherwise, it would be better to wait for a 
second error detection. 

O O  (0 20 30 40 SO 60 70 80 90 100 

dt of Fault Syndrome (1.T-dt;J.T) 

Fig. 1 1 .  Average total diagnostic times for fault syndromes with u4 being the 
first error-detecting module in R 1 .  

VI. REMARKS 

System level fault diagnosis has been dealt with in numerous 
papers U], VI, [lo], V11, [181, WI, 1221, P91, 1241, W l .  
The models used/proposed in these papers will collectively be 
referred to as the PMC model. The basic framework of the 
PMC model is a system consisting of modules which are 
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TABLE IV 
THE LIKELIHOODS OF GETTING DIFFERENT FAULT SYNDROMES 

Fault Svndmme Likelihood 

(4,T - dt;l ,T) 19.8% 

(4,T - d t ;2 ,T)  26.2% 

(4,T - d t ;S ,T)  9.1% 

44.9.w (4, T - dt ;  5, T )  

TABLE V 
TIME OVERHEADS FOR SINGLE- AND DOUBLE-DETECTION FAULT 

SYNDROMES IN D1. 

(error- [single-detection I doubledetection I 
detecting module 

1 

3 

4 

5 

timeovemead I timeovemead I 

218.33 232.14 

370.28 283.01 

358.27 1 318.91 1 

capable of diagnosing other modules via available test links 
between modules. The object of the PMC model is to identify 
the faulty module(s) using the test results from all modules. 
Interesting problems in the PMC model are 1) determination 
of the number of faulty modules which can be identified for a 
given set of test links, 2) assignment of test links to be able to 
diagnose 1 faulty modules, and 3) development of algorithms 
to identify faulty modules from test results. 

There are three major differences between our model and 
the PMC model as discussed below. The first difference lies in 
our assumption that an independent fault-free system is 
available to diagnose all modules. In our model, a module can 
be defined at a lower level since it is not required to diagnose 
other modules and there must be test links from the indepen- 
dent system to all modules. In the PMC model, an independent 
fault-free system is also required to collect and analyze the test 
results. The second difference is that we consider fault 
diagnosis as the next step to error detection while in the PMC 
model fault diagnosis does not consider any interplay between 
different phases of fault tolerance. We can therefore use the 
fault syndrome to determine the posterior faulty probabilities 
and the diagnostic order. In an extension of the PMC model 
[ 151, the failure rates of individual modules are considered. 
The third difference is in the assumption on the diagnosis 
itself. The PMC model assumes that every diagnosis is 
complete, i.e., a nonfaulty module can always diagnose a 
faulty module. This unrealistic assumption is relaxed some- 
what in [3] and [Z] where incomplete diagnosis is considered. 
In our model, not only that all diagnoses are incomplete but the 
diagnostic coverage is assumed to be an increasing function of 
the diagnostic time. 

Although our model and the PMC model have different 
assumptions and approaches, they could complement each 
other. One interesting problem is how to minimize the 

diagnosis time for a PMC model, using partial test results and 
sequential decision theory. 

Another approach to system level fault diagnosis is based on 
comparison [6] ,  [8], [14]. The idea behind this approach is to 
detect and identify the faulty units with user tasks. Assuming 
that a set of identical processing units are available, a task (or 
job) will be executed on a selected pair of processing units and 
the results from both units are compared. Disagreement 
between the results indicates that one of the processing units is 
faulty. The faulty processing unit may be identified when a 
sufficient number of comparisons are made. Although the 
comparison can be carried out by hardware matchers [17] or 
any processing unit other than the units that had executed the 
task [14], an independent system is required to collect and 
analyze the comparison results. The advantages of this 
approach are that 1) it covers transient and intermittent faults, 
2) it does not have the hardware and software overheads of 
detection mechanisms and diagnostic programs. It can even 
utilize the idle time of the processing units to execute 
duplicated tasks [7]. However, usefulness of the comparison 
approach is limited because a) it only covers the faults in the 
processing units, b) it may take a very long time to diagnose 
the faulty units executing user tasks, and c) it does not consider 
intertask communications and hence error propagation among 
tasks. 

A fault can be diagnosed only if it is active during diagnosis. 
When a fault syndrome is obtained, we do not know whether it 
is the result of a transient, intermittent, or permanent fault. To 
derive the optimal diagnostic time for each module, the system 
diagnostic coverage is determined first under the assumption 
that the fault is permanent. The determination of this diagnos- 
tic coverage is an interesting problem in its own right, which is 
related to system reconfiguration and error recovery. If no 
faults are found after diagnosing all the modules, the fault 
could be transient or intermittent or permanent but non- 
diagnosable. At that time, the posterior faulty probabilities can 
still be used, in deciding what to do next. 

In this paper, we assumed that there is at most one faulty 
module in the system, i.e., the single faulty module assump- 
tion. (There could be multiple faults in the faulty module, 
though.) To extend our model to the case of multiple faulty 
modules, the number of hypotheses in the parameter space of 
the Bayesian decision problem has to be increased as follows: 

HIJ : U, and uJ are the faulty modules for 1 I i < j 5 N, 

: U,, uJ , and uk are the faulty modules for 1 5 i < j 5 N ,  

Then, the same approach for the case of single faulty module 
can be used to obtain the posterior likelihood of each 
hypothesis being true. However, the complexity in calculating 
these likelihoods will increase dramatically. 

The main issue in using our model for real systems is how to 
collect the necessary statistics and estimate the distributions of 
the parameters introduced in our model. This issue is 
discussed below from two different viewpoints. First, the 
difficulty in obtaining the information on input parameters is 
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inevitable and is the price to pay for any realistic model like 
ours. As mentioned in Section 11, we have already developed 
methodologies to measure direct propagation times and the 
distribution of fault latencies on real systems [27], [28]. The 
error latency and coverage have also been measured by some 
other researchers [9], [25] to evaluate different detection 
mechanisms. Similar methodologies are expected to be devel- 
oped in the future to monitor the behavior of faults and errors. 
It is also important to note that the parameters introduced in 
our model are also needed to model other phases of fault 
tolerance. 

Second, distributions of the random parameters in our 
model do not have to be exact to be useful. The faulty module 
is actually diagnosed by the diagnostic programs applied to 
each module. All these distributions are used to decide the 
diagnostic order and the diagnostic time. It is meaningless to 
verify that a parameter follows a certain distribution, because 
the distribution is just a summary of our past information about 
the parameter. If we know little about a parameter, a uniform 
distribution will be used for the parameter. If a time parameter 
is more likely to be short than long, then an exponential 
distribution can be used for the parameter. This applies to the 
determination of the prior faulty probabilities as well as other 
parameters. The key idea is to make the best use of available 
information for fault diagnosis, instead of assuming the perfect 
(or very accurate) information about faults and errors. 

VII. CONCLUSION 
In this paper, we have formulated and solved a new problem 

of locating a faulty module. The distinguishing characteristics 
of our model as compared to other models on system level 
fault diagnosis are the consideration of 1) the information from 
other phases of fault tolerance, 2 )  the time overheads of fault 
diagnosis, and 3) the imperfectness of diagnostic coverage. 

Based on the likelihood principle, the faulty probabilities for 
individual modules have been calculated from parameters of 
fault detection, periodic diagnostic, error propagation, and 
error detection. The optimal diagnostic order of modules is 
then found to be the decreasing order of the faulty probabili- 
ties. Given a system diagnostic coverage and the optimal 
diagnostic order, the optimal diagnostic time for each module 
is then determined to minimize the average total diagnostic 
time. A numerical example is presented and discussed, and the 
following conclusions have. been drawn. First, the disparity in 
the modules’ faulty probabilities has a great effect on 
shortening the average total diagnostic time. Second, in most 
cases the faulty probabilities show large disparities so that it is 
worthwhile to compute the faulty probabilities for individual 
modules before actual diagnosis. Third, delaying diagnosis 
until the second error detection can sometimes improve the 
total diagnostic time overhead. The determination of the 
optimal delay period for diagnosis purpose is an interesting 
future problem. 

APPENDIX 
LIST OF VARIABLES 

FV 
f V 
FC 

Distribution function of the random variable VI .  
Density function of the random variable Vi 
Distribution function of the random variable v,. 

Density function of the random variable V I J .  
Fault cycle of U,. 
Fault latency of U,. 
Coverage of fault detection in U,. 
Coverage of the periodic diagnostic in U,. 
Direct propagation time from U, to U,. 
Error propagation time from U, to U,. 
Internal detection latency in U, 
Boundary detection latency on e,, . 
Detection latency in U,. 
Hypothesis of U, being the faulty module. 
Prior Prob[H,] . 
Posterior Prob[ H I ] .  
Fault syndrome. 
Fault syndrome’s likelihood function if HI is true. 
Error latency for the error originated from U, and 
detected in U,. 
Last time a repair was done on U,. 
Last time a thorough diagnostic was done on U,. 
Last time a periodic diagnostic was done on U,. 
The contaminating time of U,. 
The faulty time of U,. 
The decision time of the system. 
Percentage of faults that the diagnostic can uncover 
in U, and 9, = d+,/dt .  
Optimal diagnostic time for U,. 
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