
Fault-Tolerant 
Clock Synchronization 
in Distributed Systems 

Parameswaran Ramanathan, University of Wisconsin 

Kang G. Shin, University of Michigan 

Ricky W. Butler, NASA Langley Research Center 

igital computers have become es- 
sential to critical real-time appli- 
cations such as aerospace systems, 

life support systems, nuclear power plants, 
drive-by-wire systems, and computer-in- 
tegrated manufacturing systems. Common 
to all these applications is the demand for 
maximum reliability and high performance 
from computer controllers. This require- 
ment is necessarily stringent because a 
single controller failure in these applica- 
tions can lead to disaster. For example, the 
allowable probability of failure for a com- 
mercial aircraft is specified to be less than 

per 10-hour mission because a con- 
troller failure during flight could result in a 
crash. 

Because of such stringent requirements, 
traditional methods for design and valida- 
tion of computer controllers are often in- 
adequate. Ad hoc techniques that appear 
sound under a careful failure-modes-and- 
effects analysis are often susceptible to 
certain subtle failure modes. The clock 
synchronization problem shown in Figure 
1 is a classic example. The figure shows a 
three-node system in which each node has 
its own clock. The clocks are synchronized 
by adjusting each to the median of the three 

Software algorithms 
are suitable only where 
loose synchronization 

is acceptable, and 
hardware algorithms 

are expensive. A hybrid 
scheme achieves 
reasonably tight 

synchronization and is 
cost-effective. 

clock values. This “intuitively correct” al- 
gorithm works fine as long as all the clocks 
are consistent in their behavior, as Figure 
l a  illustrates. However, if one clock is 
faulty and misinforms the other two clocks, 

the two nonfaulty clocks cannot be syn- 
chronized. For example, in Figure 1 b the 
faulty clock B reports incorrectly to clocks 
A and C. As a result, clocks A and C do not 
make any corrections because both behave 
as if they are the median clock. 

Lamport and Melliar-Smith were the first 
to study the three-clock synchronization 
problem in the presence of arbitrary fault 
behavior.’ They coined the term Byzantine 
fault to refer to the fault model in which a 
faulty clock can exhibit arbitrary behavior 
including, but not limited to, misrepresent- 
ing its value to other clocks in the system. 
They showed that in the presence of Byz- 
antine faults, no algorithm can guarantee 
synchronization of the nonfaulty clocks in 
a three-node system. They also showed 
that 3m + 1 clocks are sufficient to ensure 
synchronization of the nonfaulty clocks in 
the presence of m Byzantine faults. This 
condition later proved not only sufficient 
but also necessary for ensuring synchroni- 
zation in the presence of Byzantine faults. 

Since the initial study by Lamport and Mel- 
liar-Smith, the problem of clock synchroniza- 
tion in the presence of Byzantine faults has 
been studied extensively by several other re- 
searchers. All this attention is mainly be- 
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cause many applications require aconsistent 
view of time across all nodes of adistributed 
system, and this canbe achieved only through 
clock synchronization. 

Solutions proposed in the literature on 
clock synchronization take either a soft- 
ware or a hardware approach. The software 
approach is flexible and economical, but 
additional messages must be exchanged 
solely for synchr~nization. '-~ Because they 
depend on message exchanges, the worst- 
case skews guaranteed by most of these 
solutions are greater than the difference 
between the maximum and minimum mes- 
sage transit delay between any two nodes in 
the system. The hardware approach, on the 
other hand, uses special hardware at each 
node to achieve a tight synchronization with 
minimal time o ~ e r h e a d . ~ - ~  However, the cost 
of additional hardware precludes this ap- 
proach in large distributed systems unless a 
very tight synchronization is essential. 
Hardware solutions also require a separate 
network of clocks that is different from the 
interconnection network between the nodes 
of the distributed system.6 

Because of these limitations in the soft- 
ware and hardware approaches, research- 
ers have begun investigating a hybrid ap- 
proach. A hardware-assisted software 
synchronization scheme has been proposed 
that strikes a balance between the hard- 
ware requirement at each node and the 
clock skews a t t a i~~ab le .~  Another recently 
proposed approach is probabilistic clock 
synchronization, in which the worst-case 
skews can be made as small as desired." 
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However, depending on the desired worst- 
case skews, there is a nonzero probability 
of loss of synchronization. Also, this ap- 
proach may induce very high traffic to the 
system. 

This article compares and contrasts ex- 
isting fault-tolerant clock synchronization 
algorithms. The worst-case clock skews 
guaranteed by representative algorithms 
are compared, along with other important 
aspects such as time, message, and cost 
overhead imposed by the algorithms. 
Special emphasis is given to more recent 
developments such as hardware-assisted 
software synchronization, probabilistic 
clock synchronization, and algorithms for 
synchronizing large, partially connected 
distributed systems. 

Preliminary concepts 

First we define some of the concepts 
common to most clock synchronization 
algorithms and introduce the notation that 
will be used throughout the article (see 
sidebar on next page). We begin with the 
notion of a clock. 

Definition 1: Time that is directly ob- 
servable in some particular clock is called 
its clock time. This contrasts with the 
term real time, which is measured in an 
assumed Newtonian time frame that is 
not directly observable. 

It is convenient to define the local clock 

at a node as a mapping from real time to 
clock time. In other words, let C be a 
mapping from real time to clock time, then 
C(t) = T means that when the real time is t, 
the clock time at a particular node is T. We 
adopt the convention of using lowercase 
letters to denote quantities that represent 
real time and uppercase letters to denote 
quantities that represent clock time. Figure 
2 illustrates the concept of aclockfunction/ 
mapping. A perfect clock is one in which a 
unit of clock time elapses for every unit of 
real time. If more or less than one unit of 
clock time elapses for every unit of real 
time, the clock is said to be fast or slow, 
respectively. 

Since a properly functioning clock is a 
monotonic increasing function, its inverse 
function is well defined. Let c(7') = C-'(T) 
= t denote this inverse function. In the 
literature some of the results in clock 
synchronization are formulated using the 
clock function, while others are formulat- 
ed using the inverse function. We will use 
subscripts to distinguish between the dif- 
ferent clocks in the system. For example, 
C,(t) will denote the clock at node p ,  and 
CJt) the clock at node q.  A clock is con- 
sidered nonfaulty if there is a bound on the 
amount of deviation from real time for any 
given finite time interval. In other words, 
even nonfaulty clocks do not always main- 
tain perfect time. 

Definition 2: A clock c is said to be 
nonfaulty during the real-time interval 
[ t l ,  t2] if it is a monotonic, differentiable 
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function on [ T I ,  T2] where c(T,) = t,, i = 
1,2, and for all T E [ T I ,  T2] 

for some constant p. The constantp is said 
to be the drift rate of the nonfaulty clock. 

Instead of the above definition, some 
synchronization algorithms are defined 
using one of the following near-equivalent 
definitions for a nonfaulty clock: 

Definition 2a: A clock c is said to be 
nonfaulty if there exists a constant p2 
such that for i l  and t2 

Definition 2b: A clock c is said to be 
nonfaulty if there exists a constant p 3  
such that for t l  and t2 

The near equivalence of these defini- 
tions follows from the Taylor series ex- 
pansion of ( 1  + p)-I: 

(1 +p)- '=l-p+p*-pP3+p4-. . .  

For a typical value of p = the second- 
order and high-order terms can be ignored, 
thus implying p2 = p 3  = p/2. 

The above notion of a clock does not 
imply any particular implementation. In 
fact, some synchronization algorithms deal 
with hardware clocks, while others deal 
with logical clocks. Hardware clocks are 
the actual clock pulses that control circuitry 
timing; logical clocks are values derived 
from hardware clocks. For instance, a log- 
ical clock might be the value of a counter 
that is incremented once every predeter- 
mined number of pulses of the hardware 
clock. In either case, we can talk about 
synchronization in terms of the abstract 
notion of the mapping function from clock 
time to real time. The main difference will 
be in the granularity, or skew, of synchro- 
nization. 

Definition 3: Two clocks c, and c2 are said 
to be &synchronized at a clock time T if 
and only if Icl(T) - c2(T)I 2 6. A set of 
clocks are said to be wellsynchronized if 
and only if any two nonfaulty clocks in 
this set are 6-synchronized for some 
specified constant 6. 

Notations used in this article 

Clock time at node p when the real time is t 

Real time when the clock time at node p is T 

Maximum drift rate of all clocks in the system 

Maximum skew between any two nonfaulty clocks in the system 

Upper bound on the read error 

Maximum number of faulty clocks in the system 

Total number of clocks in the system 

Resynchronization interval 

Upper bound on message transit delay 

Node p's perception of its skew with respect to clock at node q 

Because of the nonzero drift rates of all 
clocks, a set of clocks does not remain well 
synchronized without some periodic re- 
synchronization. This means that the nodes 
of a distributed system must periodically 
resynchronize their local clocks to main- 
tain a global time base across the entire 
system. Synchronization requires each node 
to read the other nodes' clock values. The 
actual mechanism used by a node to read 
other clocks differs from one algorithm to 
another. In hardware algorithms the clock 
signal from each of the other nodes (or an 
appropriate subset of nodes) is an input to 
the synchronization circuitry at each node. 
In software algorithms each node either 
broadcasts its clock value to all nodes at 
specified times or sends its clock value 
individually to requesting nodes. 

Regardless of the actual reading mech- 
anism, a node can obtain only an approx- 
imate view of its skew with respect to other 
nodes in the system. Errors occur mainly 
because it takes a finite and unpredictable 
amount of time to deliver a clock signal or 
a clock message from one node to another. 
In hardware algorithms, errors are due 
mainly to the unpredictable propagation 
delays for clock signals, whereas in soft- 
ware algorithms errors are due to variation 
in the message transit delays. Most of the 
synchronization algorithms discussed in 
this article are based on the assumption 
that if two nodes are nonfaulty, the error in 
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Figure 2. The clock function. 

reading each other's clock is bounded. Since 
the actual errors that occur differ from one 
algorithm to another, we will discuss them 
further as we describe each algorithm. 

The time at which a node decides to read 
the clocks at other nodes also depends on 
the algorithm under consideration. In 
hardware algorithms, synchronization cir- 
cuitry continuously monitors the frequen- 
cy and phase of all clocks. On the basis of 
the input signals, the circuitry also updates 
the local clock continuously. Hardware 
algorithms can therefore be classified as 
continuous-update algorithms. Software 
synchronization algorithms, on the other 
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hand, are usually discrete-update algo- 
rithms; that is, correction to a local clock is 
computed at discrete time intervals. How- 
ever, software algorithms may differ in the 
way they apply this correction to the local 
clock. In some software synchronization 
algorithms the correction is applied in- 
stantaneously, whereas in others it is spread 
over a time interval. 

The time at which the correction is 
computed is determined by each node on 
the basis of its own clock. The time interval 
between successive corrections is called 
the resynchronization interval, denoted R,  
and is usually a constant known to all 
nodes. If T ( O j  denotes the time at which the 
system began its operation, then the time of 
the ith resynchronization is f l i )  = f l O )  + iR. 
The time interval R(’) = [Tc’), T” + ‘’1 is often 
called the ith resynchronization interval. 
In discrete-update algorithms, we can view 
the local clock of a node as a series of 
functions, one for each resynchronization 
interval. That is, the clock at nodep in the 
(i + 1)th resynchronization is given by 

where Cg’represents the change inp’s clock 
since the start of the system. 

Software 
synchronization 

The basic idea of software synchroniza- 
tion algorithms is that each node has a 
logical clock that provides a time base for 
all activities on that node. This logical 
clock is derived from the hardware clock 
on that node, though it usually has a much 
larger granularity than the hardware clock. 
The algorithm executed by each node for 
synchronizing the logical clocks can be 
viewed as a clock process invoked at the 
end of every resynchronization interval. 
This clock process is responsible for peri- 
odically reading the clock values at other 
nodes and then adjusting the correspond- 
ing local clock value. 

Informally, any software synchronization 
algorithm must satisfy the following two 
conditions: 

Agreement: The skew between all non- 
faulty clocks in the system is bounded. 

Accuracy: The logical clocks keep up 
with real time. 

The first condition states that there is a 
consistent view of time across all nodes in 
the system. The second condition states 

that this view of time is consistent with 
what is happening in the environment. The 
synchronization algorithms differ in the 
way these two conditions are specified, as 
well as in the way the clock processes read 
the clock values at other nodes. In some 
algorithms, a clock process requests and 
receives a clock value from each of the 
other nodes, while in other algorithms the 
clock process broadcasts its local clock 
value when it thinks it is time for a resyn- 
chronization. The other nodes receive the 
broadcast message and use the clock value 
for correcting themselves at a later time. In 
either case, the skew perceived by a receiv- 
ing clock process differs from the actual 
skew that exists between the two clocks, 
because of the errors in reading the clocks. 
These errors are due mainly to unpredict- 
able variation in the communication delay 
between the two nodes. This notion is 
formalized in the following discussion. 

Let p and q be any two nonfaulty nodes 
in the system. Let T be the clock time of 
node q when the clock process at node q 
initiates a broadcast of the local clock value. 
In other words, let the clock process at 
node q initiate a broadcast of the local 
clock value at real time c,(T). This mes- 
sage will reachp after some time delay, say 
Q. That is, the broadcast message is de- 
livered to node p at real time cq(T) + Q. At 
that instant, the clock times at nodes p and 

spectively. That is, the actual skew exist- 
ing between p and q at the instant when p 
receives this message is given by Cq(c,(T) 
+ Q )  - Cp(cq(T) + Q). However, nodep has 
no way of determining C,(c,(T) + Q )  ex- 
actly. The best it can $0 is estimate the 
delay Q by, say, 1 + p@, and compute the 
skew as follows: 

4 are C,(c,(T) + Q )  and Cq(c,(T) + Q), re- 

This means that the error in the perceived 
skew at p is 

This error is small if we can obtain a good 
estimate of the communication delay and if 
the clock drifts of p and q are comparable, 
especially during the communication delay. 
All synchronization algorithms discussed 
in this article are based on the assumption 
that if p and q are nonfaulty, then eqp is 
bounded. 

From the above discussion we can con- 
clude that the read error is not a serious 
problem if the algorithm is used to syn- 
chronize a fully connected system. How- 

ever, it can be a serious limitation in future 
distributed systems because system size is 
increasing, and it is difficult to fully con- 
nect all the nodes in a large distributed 
system. This problem has been specifically 
addressed by some of the recent algo- 
rithms.9*‘0 

Software synchronization algorithms can 
be classified as convergence algorithms 
with averaging, convergence algorithms 
without averaging, or consistency algo- 
rithms (see Figure 3). The leaves of the tree 
in Figure 3 are the representative software 
synchronization algorithms surveyed in this 
article. (For additional reading refer to 
Schneider. ’) 

Convergence-averaging algorithms. 
Convergence-averaging algorithms are 
based on the following idea: The clock 
process at each node broadcasts a “resync” 
message when the local time equals T(O) + 
iR - S for some integer i and a parameter S 
to be determined by the algorithm. After 
broadcasting the clock value, the clock 
process waits for S time units. During this 
waiting period, the clock process collects 
the resync messages broadcast by other 
nodes. For each resync message, the clock 
process records the time, according to its 
clock, when the message was received. At 
the end of the waiting period, the clock 
process estimates the skew of its clock 
with respect to each of the other nodes on 
the basis of the times at which it received 
resync messages. It then computes a fault- 
tolerant average of the estimated skews 
and uses it to correct the local clock before 
the start of the next resynchronization in- 
terval. 

The convergence-averaging algorithms 
proposed in the literature differ mainly in 
the fault-tolerant averaging function used 
to compute the correction. In algorithm 
CNV,’ each node uses the arithmetic mean 
of the estimated skews as its correction. 
However, to limit the impact of faulty 
clocks on the mean, the estimated skew 
with respect to each node is compared 
against a threshold, and skews greater than 
the threshold are set to zero before comput- 
ing the mean. In contrast, with the algo- 
rithm in Lundelius-Welch and Lynch3 
(henceforth referred to as algorithm LL), 
each node limits the impact of faulty clocks 
by first discarding the rn highest and rn 
lowest estimated skews and then using the 
midpoint of the remaining skews as its 
correction, where m is the maximum num- 
ber of faulty clocks to be tolerated. 

One main limitation of the convergence- 
averaging algorithms is that they are in- 
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tended for a fully connected network of 
nodes. As a result, the algorithms are not 
easily scalable. In addition, they all require 
known upper bounds on clock read error 
and initial synchronization of the clocks. 
The need for initial synchronization is not 
a serious problem, because there are sever- 
al algorithms to ensure it.3 However, the 
assumption about the bound on the clock 
read error is a serious problem because the 
worst-case skews guaranteed by these con- 
vergence-averaging algorithms are usually 
greater than the bound on the read error. 

In addition to the read error, the worst- 
case skews depend on the time interval 
between the resynchronizations, the clock 
drift rates, the number of faults to be toler- 
ated, the total number of clocks in the 
system, and the duration of the time inter- 
val during which the clock processes read 
the clock values at other nodes. However, 
among all these factors, the read error has 
the greatest impact on the worst-case skew. 
LamportandMelliar-Smith' show the worst- 
case skew for algorithm CNV to be 

max ([N/N - 3rn][2~ + p(R + 2[(N - m)/ 
NlS)I,60 + PR I 

where 6o is the maximum skew after the 
initial synchronization, N is the total num- 
ber of clocks in the system, rn is the max- 
imum number of faults to be tolerated, S is 
the duration of the time interval during 
which clock processes read the clock val- 
ues at other nodes, and E is the assumed 
bound on the read error. Similarly, in Lun- 
delius-Welch and Lynch3 the worst-case 
skew of algorithm LL was shown to be 

p +E+P(7P+ U+4E) +4$(2 +p)(P + U )  

where U is the maximum message transit 
delay between any two nodes in the system, 
E is such that U - 2~ is the minimum mes- 
sage transit delay between any two nodes in 
the system, and p is roughly 4(& + pR). 

Since, typically, p is on the order of 
R is on the order of a few seconds, U 

and S are on the order of a few milliseconds, 
and E is on the order of a few microseconds, 
pU << E and PE << E. Dropping the higher 
order terms, the worst-case skew of algo- 
rithm CNV' is approximately 

while the worst-case skew of the algorithm 
LL3 is 5~ + 4pR. Superficially, this seems 
to indicate that algorithm LL is better than 
algorithm CNV. However, because of the 
nature of the clock-reading process, the 

Software algorithms 

I I 
Convergence Consistency 

Averaging Nonaveraging COM 
1 I 

CSM 

CNV LL HSSD ST 

Figure 3. Classification of software synchronization algorithms. 

read error in algorithm LL is much larger 
than that in algorithm CNV, and the worst- 
case skews of the two algorithms are actu- 
ally comparable. This is an example of the 
many pitfalls encountered in comparing 
clock synchronization algorithms. 

Convergence-nonaveraging algo- 
rithms. Like algorithms CNV and LL, 
convergence-nonaveraging algorithms are 
discrete-update algorithms. However, they 
do not use the principle of averaging to 
synchronize nonfaulty clocks. Instead, each 
node periodically seeks to be the system 
synchronizer. All the nonfaulty nodes know 
the time at which the nodes try to become 
the system synchronizer. If all the nodes 
are nonfaulty, only one becomes the syn- 
chronizer. If the synchronizer fails, the 
algorithm is designed so that the remaining 
nonfaulty nodes effectively take over and 
synchronize despite the faulty synchroniz- 
er's erroneous behavior. 

Like convergence-averaging algorithms, 
convergence-nonaveraging algorithms also 
require initial synchronization and a bound 
on the maximum message transit delay in 
the system. However, convergence-non- 
averaging algorithms do not require a fully 
connected network of nodes. Instead, they 
require an authentication mechanism that 
the nodes can use to encode their messages 
in such a way that no other node can gen- 
erate the same message or alter the mes- 
sage without detection. This can be achieved 
by using either digital signatures* or an 
appropriate broadcast a l g ~ r i t h m . ~  As long 
as all nonfaulty nodes can communicate 
with each other, the convergence-nonaver- 

aging algorithms will ensure that they are 
synchronized. However, the worst-case 
skew between the nonfaulty clocks is a 
strong function of the maximum message 
transit delay in the system. This means that 
as the connectivity decreases, the worst- 
case skew guaranteed by the algorithms 
increases. 

In convergence-nonaveraging algo- 
rithms, a node resynchronizes its clock 
either when its local clock reaches the time 
for the next resynchronization or when it 
receives a signed message from other nodes 
indicating that they have resynchronized 
their clocks. To prevent faulty nodes from 
falsely triggering a resynchronization, each 
node performs a validity check before re- 
acting to any message. The validity check's 
exact nature depends on the algorithm. In 
Halpern et al.,* a node considers a resyn- 
chronization message to be valid and hence 
is willing to resynchronize even before its 
clock reaches the time for the next resyn- 
chronization only if 

(1) all signatures in the message are 
valid, indicating that the message is 
authentic; 

(2) the time stamp on the message cor- 
responds to the time for the next 
resynchronization -that is, for the 
ith resynchronization, the message 
should have a time stamp 7f ' )  = Po) + 
iR; and 

(3) the message is received sufficiently 
close to the time for resynchroniza- 
tion - that is, a message with k 
distinct signatures should be received 
when the local time lies in the inter- 
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val (F’)  - kU, fl’)), where U is the 
maximum message transit delay be- 
tween any pair of nodes in the sys- 
tem. 

In Srikanth and T o ~ e g , ~  however, a node 
considers all resynchronization messages 
suspicious. Therefore, a node is willing to 
resynchronize before its clock reaches the 
time for the next resynchronization only if 
it receives amessage from m + 1 other nodes 
indicating that they have resynchronized. 
This is done to ensure that at least one 
nonfaulty node’s clock has reached the 
time for resynchronization. 

The main limitation of convergence- 
nonaveraging algorithms is that the worst- 
case skew is greater than the maximum 
message transit delay between any pair of 
nodes. For instance, the worst-case skews 
of the algorithms in Halpern et al.* and 
Srikanth and Toueg4 are (1 + p ) U  + p ( 2  + 

+ U(  1 + p ) ,  respectively. Since all the terms 
are positive, the worst-case skew is great- 
er than the maximum message transit de- 
lay, U ,  in both algorithms. Since U can be 
on the order of tens of milliseconds, espe- 
cially in a large, partially connected dis- 
tributed system, the worst-case skews 
offered by these algorithms are also on 
the order of tens of milliseconds, which 
may not be acceptable in many applica- 
tions. 

One of the unique features in Srikanth 
and Toueg’s algorithm is that the accuracy 
of the logical clocks is guaranteed to be 
optimal in the sense that the drift rate of the 
logical clocks is the same as the drift rate of 
the underlying hardware clocks. This is not 
necessarily the case with other software 
clock synchronization algorithms, where 
the logical clocks are guaranteed only to be 
within a linear envelope of the hardware 
clocks. Furthermore, in contrast to the al- 
gorithm in Halpern et al., Srikanth and 
Toueg’s algorithm does not require aclock 
value to be sent in a resynchronization 
message. This characteristic can be used 
to eliminate some of the possible failure 
modes observed in a clock synchroniza- 
tion scheme. 

p ) R  and [R(1 + P )  + U l W  + p H 1  + P ) I  

Consistency algorithms. Consistency- 
based algorithms use a completely differ- 
ent principle than convergence-based al- 
gorithms. They treat clock values as data 
and try to ensure agreement by using an 
interactive consistency algorithm.” This 
is a distributed algorithm that ensures 
agreement among nonfaulty nodes on the 
private value of a designated sender node 
through a series of message exchanges. By 

“agreement” we mean the following two 
conditions are satisfied: 

receive three “copies” of p’s value: one 
directly from p and the other two from the 

(1) All nonfaulty nodes agree on the 
sender’s private value. 

(2) If the sender is nonfaulty, the value 
agreed on by the nonfaulty nodes equals 
the sender’s private value. 

Note that nonfaulty nodes must agree on 
the sender’s private value regardless of 
whether the sender is faulty or not. How- 
ever, if the sender is faulty, the value agreed 
on by the nonfaulty nodes need not equal 
the sender’s private value. 

With consistency-based algorithms, at 
the end of every resynchronization interval 
each node treats its local time as a private 
value and uses an interactive consistency 
algorithm to convey this value to other 
nodes. From the clock values thus obtained 
from all the other nodes, each node computes 
an estimate of the skew with respect to 
every other node. Each node then uses the 
median skew to correct the local clock at 
the start of the next resynchronization in- 
terval. 

Like convergence algorithms, consis- 
tency-based algorithms require a bound on 
the read error. Read errors occur in these 
algorithms because there can be a slight 
difference between the times at which two 
nodes, sayp and q, decide on the clock value 
of another node, say r .  Consequently, al- 
thoughp andq will agree on the clock value 
of r ,  the estimate of the skew they compute 
between their own clocks and r’s clock 
might be slightly different. In addition to a 
bound on the read error, consistency-based 
algorithms also require certain conditions 
for correctly executing an interactive con- 
sistency algorithm. These requirements 
include conditions on the minimum num- 
ber of nodes, sufficient connectivity, and a 
bound on the message transit delay. Lam- 
port, Shostak, and Pease provide more 
details on these requirements.” 

Note that these algorithms require no 
assumption about initial synchronization. 
Nor do they require a direct connection 
between all the nodes, although the algo- 
rithms described by Lamport and Melliar- 
Smith’ do require such a connection. 

The following example should clarify 
the basic idea of these algorithms. Consid- 
er a four-node system with a maximum of 
one Byzantine fault. In an interactive 
consistency algorithm,’2 a node p would 
convey its private value to other nodes 
using the following scheme: Nodep would 
send its value to every other node, which in 
turn would relay the value to the two re- 
maining nodes. That is, each node would 

other two nodes. Each node would then 
estimatep’s value to be the median of the 
values in the three copies. This scheme can 
be modified for clock synchronization by 
letting each node independently use the 
interactive consistency algorithm to convey 
its clock value to other nodes. At the end of 
four applications of the interactive con- 
sistency algorithm (one for each node), the 
local clock at each node could be adjusted 
to equal the median of the other nodes’ 
clock values. 

This clock synchronization scheme can 
be further extended to situations with more 
than one Byzantine fault, just like the inter- 
active consistency algorithm.I2 However, 
this will require at least m + 1 rounds of 
message exchange, where m is the maxi- 
mum number of faults to be tolerated, and 
this implies more overhead. The worst- 
case skew guaranteed by consistency-based 
algorithms, however, is usually smaller 
than those guaranteed by the convergence- 
based algorithms. For example, if the total 
number of clocks in the system equals 3m 
+ 1, then the worst-case skew of algorithm 
COM in Lamport and Melliar-Smith was 
shown to be (6m + 4 ) ~  + (4m + 3)pS  + pR 
as opposed to (6m + 2 ) ~  + (4m + 2)pS + (3m 
+ 1)pR foralgorithmCNV,’ where&,S,and 
R are as described earlier under “Conver- 
gence-averaging algorithms.” 

The number of messages required for 
consistency-based algorithms can be re- 
duced by using digital signatures to au- 
thenticate the messages. This is true of 
algorithm CSM in Lamport and Melliar- 
Smith. Algorithms with authentication re- 
quire fewer messages and fewer nodes to 
tolerate a given number of faults. They also 
achieve a tighter skew than algorithms that 
do not use authentication. 

Probabilistic synchronization. The 
main limitation of the algorithms discussed 
above is that the worst-case skew depends 
heavily on the maximum read error. This 
can be a serious problem in future distrib- 
uted systems because read errors are likely 
to increase with system size. To remedy 
this problem, Cristian proposed a proba- 
bilistic synchronization scheme in which 
the worst-case skews can be made as small 
as desired.” However, the overhead im- 
posed by the synchronization algorithm 
increases drastically as we reduce the skew. 
Furthermore, unlike other algorithms we 
have discussed, this algorithm does not 
guarantee synchronization with probabili- 
ty one. In fact, there is a nonzero probabil- 
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ity of loss of synchronization, and this 
probability increases with adecrease in the 
desired skew. 

Cristian’s idea is to assume that the 
probability distribution of message transit 
delay is known and let each node make 
several attempts to read the other clocks. 
After each attempt, the node can calculate 
the maximum error that might occur if the 
clock value obtained in that attempt were 
used to determine the correction. By retrying 
often enough, a node can read the other 
clocks to any given precision with prob- 
ability as close to one as desired. This 
scheme is particularly suitable for systems 
having a master-slave arrangement in 
which one clock has been designated or 
elected master and the other clocks act as 
slaves. 

More specifically, each node periodical- 
ly sends a message to the master node 
requesting its clock value. When the mas- 
ter receives this request, it responds with a 
message saying “The time is T.” When the 
response reaches the requesting node, i t  
calculates the total round trip delay ac- 
cording to its own clock. If D is the round 
trip delay as measured by a node p ,  and if 
q is the master node, then Cristian proved 
that if nodesp and q are nonfaulty, the local 
time at node q when p receives the re- 
sponse message lies in the interval 

where U,,,,, is the minimum message transit 
delay between p and q. Therefore, the 
maximum read error is D( 1 + 2p) - 2Urn,,. 

It follows from this result that if the 
round trip delay is small (close to 2Urnj,), 
then so is the read error. Cristian’s algorithm 
uses this observation to limit the read error. 
Each node is allowed to read the master’s 
clock repeatedly until the round trip delay 
is such that the maximum read error is 
below a given threshold. Once a node reads 
the master’s clock to the desired precision, 
it sets its clock to that value. 

One limitation of this approach is the 
need to restrict the number of read attempts, 
since these are directly related to the 
overhead imposed by the algorithm. This 
implies that a node may not always be able 
to read the master’s clock to the desired 
precision and hence could result in loss of 
synchronization. A second limitation is 
that it is not fault tolerant, since it is not 
easy to detect the master’s failure. Fur- 
thermore, algorithms to designate or elect 
a new master are fairly complex and time- 
consuming. 

Hardware 
synchronization 

The principle of hardware synchroniza- 
tion algorithms is that of a phase-locked 
loop. The hardware clock at each node is an 
output of the voltage-controlled oscillator. 
The voltage applied to the oscillator comes 
from a phase detector whose output is 
proportional to the phase error between the 
phase of its clock (the output of the voltage- 
controlled oscillator it is controlling) and a 
reference signal generated by using the 
other clocks in the system. Thus, by ad- 
justing the frequency of each individual 
clock to the reference signal, the clocks can 
always be kept in lock-step with respect to 
one another. 

Algorithms. One of the first hardware 
synchronization algorithms resilient to 
Byzantine faults was proposed originally 
by T.B. Smith. This algorithm was devel- 
oped to synchronize the processors of the 
fault-tolerant multiprocessor (FTMP). l 3  The 
FTMP uses only four clocks and was ex- 
pected to tolerate a maximum of one Byz- 
antine fault, so Smith’s algorithm was 
specifically developed for that situation. In 
the algorithm, each clock observes the other 
three clocks continuously and determines 
its phase difference with each of them. 
These phase differences are arranged in an 
ascending order, and the clock corre- 
sponding to the median phase difference is 
selected as the reference signal. Each clock 
uses a phase-locked loop to synchronize 
itself with the reference signal it selected. 

The worst-case skew in this algorithm 
depends on the characteristics of the phase- 
locked loop. Smith did not characterize 
this worst-case skew, but experimental 
results on the FTMP have shown that the 
skews are around 50 nanoseconds. This 
should be compared with the skews in the 
software synchronization algorithms, which 
are on the order of microseconds. Surpris- 
ingly, this algorithm does not easily gen- 
eralize to a situation in which more than 
one Byzantine fault must be tolerated. This 
is because with a median select algorithm 
it is possible for Byzantine failures to par- 
tition the set of clocks into two or more 
separate “cliques” that are internally syn- 
chronized but are not synchronized with 
other cliques. 

As an illustration, consider a system of 
seven clocks. Such a system should be able 
to mask the failure of two clocks. Suppose 
that the five nonfaulty nodes (clocks) are 
named a, b, e ,  d, and e and the faulty nodes 

(clocks) are named x and y. If the trans- 
mission delays between clocks are negli- 
gible, then the order of arrival of the clock 
signals from the nonfaulty nodes should be 
the same at all the nodes. If the faulty 
clocks behave erratically, their order may 
be seen differently by different nodes. 
Consider the following ordering of signals 
as seen by the various nodes in the system: 

Order seen by a: x y a b c d e 
Order seen by b: x y  a b c d e 
Order seen by c: a b c d e x y 
Order seen by d: a b c d e x y 
Order seen by e: a b c d e x y 

Now suppose each node uses the median 
select algorithm to select a reference signal 
to synchronize its own clock. In the above 
example, this would mean that each node 
selects the third clock, not counting its own, 
as the reference signal; that is, nodes a, b, 
c, d, and e will synchronize to nodes b, a, d, 
c, and e,  respectively. As a result, there are 
two nonsynchronizing cliques, [ a ,  b )  and 
[ c, d, e ) .  By nonsynchronizing cliques we 
mean that a and b are synchronized to each 
other and e,  d, and e are synchronized to each 
other, but there is nothing to prevent a and 
b from drifting far apart from c, d, and e .  

To overcome this problem, Krishna, Shin, 
and Butler proposed that each node p use 
the f p ( N ,  m)th clock signal as the reference 
signal instead of the median signal, where 

and where N is the total number of clocks, 
m is the maximum number of faults to be 
tolerated, and A,, is the position of nodep in 
the perceived order of the arriving clock 
signals at node p .  They showed that if N Z 
3m + 1, then this function for selecting the 
reference signal will ensure that all the 
nonfaulty nodes remain synchronized re- 
gardless of how the faulty nodes b e h a ~ e . ~  

For the situation above, N = 7, m = 2, and 

Thus, a synchronizes to b, b synchronizes 
to c, c synchronizes to e ,  d synchronizes to 
e ,  and e synchronizes to c. This sequence of 
synchronization among the nodes results 
in a single clique containing all five non- 
faulty nodes. 

The problem with Krishna, Shin, and 
Butler’s scheme is that selection of the 
reference signal is based on the position of 
the local clock in the perceived sequence 
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Figure 4. Percentage of reduction over a fully connected network versus system 
size. 

of the incoming clock signals. This com- 
plicates the hardware at each node because 
the hardware must order the incoming clock 
signals and dynamically choose a reference 
signal by identifying the local clock’s po- 
sition in the ordered sequence. To overcome 
this problem, Vasanthavada and Marinos 
proposed a slight variation of the above 
scheme, using two reference signals instead 
of one.8 

In their scheme it is not necessary to 
generate the complete sequence of all in- 
coming signals. Instead, i t  is sufficient to 
identify the (m + 1)th and the ( N  - m - 1)th 
clocks in the temporal sequence. This is 
easy to do in hardware because we can 
count the clock signals that have arrived 
and record the identity of the (m + 1)th and 
the ( N  - m - 1)th clock signals. The aver- 
age phase difference of the local clock with 
respect to these two clock signals is used to 
correct the local clock in the subsequent 
cycles. 

Eliminating major limitations in 
hardware synchronization. The main 
advantage of the above hardware syn- 
chronization algorithms is that the worst- 
case skews are several orders of magnitude 
smaller than those in software synchroni- 
zation algorithms. However, these hardware 
synchronization algorithms have two ma- 
jorlimitations. The first is that the hardware 
synchronization algorithms as described 
above require a fully connected network of 
clocks. Because of the many interconnec- 

tions in a fully connected network, this 
requirement means that the reliability of 
synchronization would be determined by 
the failure rates of these interconnections 
rather than by the failure rate of the clocks. 
Furthermore, the large number of intercon- 
nections would cause problems of fan-in 
and fan-out. 

The second limitation is that the above 
hardware synchronization algorithms are 
based on the assumption that the trans- 
mission delays are negligible compared 
with other parameters relevant to the algo- 
rithms. In a large system, the physical sep- 
aration between a pair of clocks can be 
enough to result in non-negligible trans- 
mission delays. A significant difference in 
the transmission delays between two pairs 
of nonfaulty clocks can change the order in 
which a nonfaulty clock perceives other 
nonfaulty clocks and thus affect the selection 
of the reference signal. 

These two limitations can be eliminated 
from any of the above algorithms with the 
help of the recent developments surveyed 
below. 

Interconnection problem. Shin and Ra- 
manathan recently proposed an intercon- 
nection strategy for synchronizing a large 
distributed system using any of the above 
hardware synchronization algorithms6 
Their interconnection strategy requires only 
20-30 percent of the total number of in- 
terconnections in afully connected network. 

The idea behind their strategy is to 

synchronize the clocks in the system at two 
different levels. The clocks are first parti- 
tioned into several clusters. Each clock 
then synchronizes itself not only with re- 
spect to all the clocks in its own cluster but 
also with one clock from each of the other 
clusters. As aresult of this mutual coupling 
between the clusters, the clusters remain 
synchronized with respect to each other, 
and the system as a whole remains well 
synchronized. 

Shin and Ramanathan formulate the 
problem of partitioning the clocks into 
clusters as a small integer-programming 
problem. The objective is to minimize the 
total number of interconnections subject to 
the constraint that the fault tolerance re- 
quirement is satisfied. For each clock, the 
solution to the integer-programming 
problem identifies all other clocks that it 
should monitor. Shin and Ramanathad 
show that this interconnection strategy does 
not result in loss of synchronization and 
the worst-case skew increases by a factor 
of three as compared with the skew in a 
fully connected network of clocks. 

The reduction in the total number of 
interconnections over a fully connected 
network as a function of system size is 
shown in Figure 4. It follows from this plot 
that the percentage of reduction increases 
with system size; this is precisely the sit- 
uation in which the number of intercon- 
nections is a serious problem. 

Transmission delay problem. The ef- 
fects of transmission delay in phase-locked 
loops have been studied extensively in the 
communication area but not in the presence 
of Byzantine faults. Shin and Ramanathan’ 
show that it is easy to incorporate ideas 
from the communication area to take into 
account the presence of Byzantine faults 
and non-negligible transmission delays. 

Figure 5 illustrates their underlying idea 
and shows the hardware required at node i 
to determine the exact phase difference 
between its clock and the clock at node j .  
Instead of one phase detector for every 
node pair, as in other algorithms, this solu- 
tion requires two phase detectors and an 
averager. The inputs to the first phase de- 
tector, PD1, are theclock signals fromnodes 
i and j .  Since the clock signal from node j 
encounters a delay in reaching node i, the 
phase difference detected by PDI does not 
represent the true phase difference between 
the two clocks. 

The inputs to the second phase detector, 
PD2, are the clock signals from node; and 
the clock signal from node i that is returned 
from node j .  In other words, the clock signal 
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that node j is monitoring is returned to node 
i to be compared with the signal from node 
j .  Because of the transmission delays, the 
phase difference detected by PD2 also does 
not represent the true phase difference be- 
tween the two clocks. However, Shin and 
Ramanathan prove that the average of the 
outputs of PD, and PD,, e,,, is proportional 
to the exact phase difference between the 
clocks at nodes i and j regardless of the 
transmission delays. 

This true phase difference can then be 
used for any hardware synchronization al- 
gorithm. The disadvantages of this approach 
are the need for two phase detectors instead 
of one and the doubling of the number of 
interconnections. However, when this so- 
lution is combined with Shin and Ra- 
manathan’s interconnection scheme, we 
get a viable solution even for a very large 
distributed system. 

Hybrid synchronization 

Earlier we noted that the main drawback 
of software synchronization algorithms is 
that the worst-case skews are at least as 
large as the variation in the message transit 
delay in the system. This can be a serious 
problem in a large distributed system be- 
cause this variation can be substantial. For 
example, in some systems worst-case mes- 
sage transit delays as large as 100 times the 
mean message transit delay have been ob- 
served. In other words, the worst-case skews 
in such systems would be at least this large 
if a software clock synchronization algo- 
rithm were adopted. At the other extreme, 
hardware algorithms achieve very tight 
skews with minimal overhead. The skews 
in hardware algorithms are typically on the 
order of tens of nanoseconds,8 as opposed 
to tens of milliseconds in the software 
algorithms. However, the hardware schemes 
are prohibitively expensive, especially in 
large distributed systems. 

To  remove the inherent limitations of 
both the hardware and software approaches, 
Ramanathan, Kandlur, and Shin recently 
proposed a hybrid synchronization scheme 
that strikes a balance between the clock 
skews attainable and the hardware require- 
ment.9Their scheme is particularly suitable 
for large, partially connected homogeneous 
distributed systems with point-to-point 
interconnection topologies such as hyper- 
cubes or meshes. 

This hybrid scheme is similar to algorithm 
CNV.’ As in CNV, each node has a clock 
process that is responsible for maintaining 
the time on that node. At a specified time in 
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Figure 5. Elimination of transmission delay effects. 

the resynchronization interval, a clock 
process broadcasts the local clock value to 
all other clock processes. The broadcast 
algorithm is such that all clock processes 
receive multiple copies of the clock mes- 
sage through node-disjoint paths. The 
number of copies used in the broadcast 
algorithm depends on the maximum num- 
ber of faults to be tolerated and the fault 
model for the system. When a clock pro- 
cess receives a clock message sent by some 
other clock process, it records the time 
(according to its local clock) at which the 
message was received. Then, in accordance 
with the broadcast algorithm, i t  relays the 
message to other clock processes. 

Before relaying the message, a clock 
process appends to the message the time 
elapsed (according to its own clock) since 
receipt of the message. At the end of the 
resynchronization interval, it computes the 
skews between the local clock and the 
clock of the source node for each copy it 
has received. The clock process then selects 
the ( m  + 1)th largest value as an estimate of 
the skew between the two clocks. The av- 
erage of the estimated skews over all nodes 
is used as the correction to the local clock. 
As in CNV, a minimum of 3m + 1 nodes is 
required to tolerate m Byzantine faults. 

Ramanathan, Kandlur, and Shin’s algo- 
rithm has several advantages over the algo- 
rithms discussed earlier. First, the sending 
of clock values by different nodes occurs 
throughout the resynchronization interval 
rather than during the last S time units of 
the interval. For hypercube and mesh ar- 
chitectures, they show that the resynchro- 
nization interval in their algorithm is so 

large that there is at most one node broad- 
casting its clock value at any given time. 
This prevents abrupt degradation in the 
message delivery times, which occurs when 
all nodes in the system broadcast clock 
values almost simultaneously. Second, the 
only hardware requirement at each node is 
for time-stamping of clock messages. The 
third, and probably most important, advantage 
is that the worst-case skews are about two to 
three orders of magnitude tighter than the 
skews in software schemes. Furthermore, be- 
cause of the hardware support, the worst- 
case skews are insensitive to variations in 
message transit delay in the system. 

To compare the hybrid synchronization 
scheme with the various software and 
hardware synchronization schemes, con- 
sider the worst-case skew this algorithm 
guarantees. Ramanathan, Kandlur, and Shin 
show that this worst-case skew is 

+- 6 , + p N U )  
(N-3m)’  

where the notation is the same as that used 
for characterizing algorithm CNV under 
“Convergence-averaging algorithms.” The 
slight difference between the above ex- 
pression and the corresponding expression 
for algorithm CNV is that for algorithm 
CNV the read error E incorporated the ef- 
fects of message transit delays between 
any two of the system nodes. This is be- 
cause algorithm CNV was intended for a 
fully connected system in which the mes- 
sage transit delays are very small. In con- 
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trast, the algorithm in the hybrid scheme is 
intended for a partially connected system 
in which the message transit delay can be 
fairly large. Therefore, the effect of mes- 
sage transit delay ( U )  on the skew has been 
separated from the effect of other read 
errors (E). 

The key conclusion we can draw from 
the above expression is that the worst-case 
skew is not an explicit function of U as in 
most software synchronization algorithms 
but a function of p . U. As a result, for 
typical values of p = and E = 20 mi- 
croseconds, Ramanathan, Kandlur, and Shin 
show that the worst-case skew in a 512- 
node hypercube with m = 2 is less than 200 
microseconds even when the maximum 
message transit delays are as large as 50 
milliseconds. These skews are still much 
larger than those achieved by hardware 
synchronization algorithms, but the cost of 
hardware synchronization for a system this 
large would be exorbitant. 

lock synchronization is an impor- 
tant matter in any fault-tolerant dis- C tributed system and has been ex- 

tensively studied in recent years. Unfortu- 
nately, the various solutions proposed are 
difficult to compare because they are pre- 
sented under different notations and as- 
sumptions. Additional difficulty arises be- 
cause of slight differences in the assumptions 
made by the different synchronization al- 
gorithms. In this article we classified and 
presented several software and hardware 
synchronization algorithms as well as a 
hybrid synchronization algorithm, all us- 
ing a consistent notation. We also identi- 
fied the assumptions each algorithm makes. 

Software algorithms require nodes to 
exchange and adjust their individual clock 
values periodically. Since the clock values 
are exchanged via message passing, the 
time overhead these algorithms impose can 
be substantial, especially if a tight synchro- 
nizationis desired. They are therefore suitable 
for applications that can tolerate a loose 
synchronization between the system nodes. 

Hardware algorithms, on the other hand, 
use special hardware to ensure a very tight 
synchronization. Although the overhead 
they impose on the system is minimal, the 
hardware algorithms are too expensive to 
use for all but small systems. 

The hybrid scheme is cost-effective and 
achieves a reasonably tight synchroniza- 
tion. It is also suitable for synchronizing 
large, partially connected systems and hence 
is the most viable scheme for future dis- 
tributed systems. H 
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