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Hardware-Assisted Software Clock Synchronization 
for Homogeneous Distributed Systems 
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Abstmct- Clock synchronization in the presence of faults has 
been studied extensively in recent years and several software and 
hardware solutions have been proposed. Software solutions re- 
quire nodes to exchange and adjust their individual clock values 
periodically. Since the clock values are exchanged via message 
passing, the time overhead induced by the software solutions 
can be substantial, especially if a tight synchronization is de- 
sired. Hardware solutions, on the other hand, use additional 
hardware to achieve a very tight synchronization with minimal 
time overhead. However, the prohibitive cost of the additional 
hardware limits their usefulness to small systems. 

In this paper, we propose a synchronization scheme that 
strikes a balance between the hardware requirement and the 
clock skews attainable. The proposed scheme is a software al- 
gorithm that uses minimal additional hardware to achieve rea- 
sonably tight synchronization. Unlike other software solutions, 
the guaranteed worst case skews can be made insensitive to the 
maximum variation of message transit delay in the system. The 
scheme is particularly suitable for large partially-connected dis- 
tributed systems with topologies that support simple point-to- 
point broadcast algorithms. Examples of such topologies include 
the hypercube and the mesh interconnection structures. 

Index Terms- Clock skew, distributed systems, hexagonal 
mesh, hypercube, synchronization. 

I.  INTRODUCTION 

GLOBAL time base has been widely recognized as an A mportant requirement in distributed computing systems. 
It can be used to simplify the solutions to several design prob- 
lems such as checkpointing, interprocess communication, re- 
source allocation, and transaction processing, especially in 
the presence of faults [ 111. It can also be used to implement 
features such as deadlines and timeout that are essential for 
correct operation of distributed real-time systems. 

A global time base can be established by synchronizing 
all the local clocks in the distributed system. This synchro- 
nization would not have been much of a problem had all the 
clocks including the faulty ones behaved consistently with one 
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another. However, when some of the faulty clocks can'behave 
in any arbitrary manner, clock synchronization can pose some 
serious problems. For instance, a faulty clock can make it dif- 
ficult for the other clocks to synchronize themselves by either 
omitting or sending conflicting clock information during the 
course of synchronization. This kind of arbitrary behavior is 
referred to as a Byzantine fault, and Lamport and Melliar- 
Smith were the first to develop a solution to the problem of 
synchronizing clocks in the presence of Byzantine faults [12], 
1131. Since then, the clock synchronization problem has been 
studied extensively, and several software and hardware solu- 
tions have been proposed. 

The software solutions are flexible and economical but re- 
quire additional messages to be exchanged solely for synchro- 
nization [7], [13], [15], 1201. Due to their dependence on 
message exchanges, the worst case skews guaranteed by most 
of these algorithms are greater than the maximum variation in 
message transit delay in the system. The hardware solutions, 
on the other hand, can achieve a very tight synchronization 
with minimal time overhead, but require special additional 
hardware at each node of the distributed system [9], [lo], 
1191, [22]. The cost of additional hardware precludes their 
use in large distributed systems, unless a very tight synchro- 
nization is essential. The hardware solutions also require a 
separate network of clocks that is usually different from the 
interconnection network between the nodes of the distributed 
system [19]. 

In this paper, we propose a synchronization scheme that 
strikes a balance between the hardware requirement and the 
clock skews attainable. Specifically, we shall develop a soft- 
ware solution which requires some hardware support at each 
node of the distributed system. The additional hardware re- 
quired at each node is minimal as compared to pure hardware 
solutions and our solution does not require a separate network 
of clocks. However, due to the hardware support, the worst 
case skews in our solution are insensitive to the maximum 
time required for a broadcast and are about two or three or- 
ders of magnitude tighter than most software solutions (see 
Section IV). Furthermore, the distribution of clock values by 
different nodes is spread over the entire resynchronization in- 
terval. This should be contrasted to the approach used by other 
software solutions where all the nodes broadcast their clock 
values during a specific window at the end of the resynchro- 
nization interval. Staggering the distribution of clock values 
over the entire resynchronization interval is a highly desirable 
feature because there is no abrupt degradation in the message 
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deliver times caused by the almost simultaneous broadcast of 
clock values by all the nodes in the system. 

A hardware-assisted software scheme has been proposed 
earlier by Kopetz and Ochsenreiter [24]. However, their 
scheme was mainly intended for a system in which the nodes 
are interconnected through a broadcast bus. In contrast, the 
scheme proposed here is intended for a distributed system with 
point-to-point interconnection topology. The problem here is 
more complicated because the clock messages have to be re- 
layed through several intermediate before reaching their desti- 
nation. There are also some schemes in which the worst case 
skews do not depend on the maximum variation in the mes- 
sage transit delay during a broadcast [2], [6]. In [6], clocks are 
intended for simulating the concept of rounds for distributed 
agreement algorithms rather than to keep track of elapsed time 
intervals. Hence, the definition of their clock is different from 
the definition in most other schemes [7], [9], [lo], [131, [151, 
[20], [22]. The scheme in [2] assumes that given a delay bound 
one can accurately estimate the probability of the message 
transit delay being greater than that bound. The main idea is 
to let the clock process at each node make several attempts to 
read the clock at another node. At the end of each attempt, 
the clock process can evaluate the maximum error that might 
occur if the clock value obtained in that attempt were used to 
estimate the skew. By retrying a sufficient number of times,' 
a clock process can read the clock at another node to any 
given precision with probability as close to one as desired. 
This scheme is particularly suitable for systems that have a 
master-slave arrangement in which one clock has been des- 
ignated or elected as a master and the other clocks act as 
slaves. However, this scheme is not suitable for synchroniz- 
ing large distributed systems because the algorithms to detect 
a failure of the master and to elect a new one are complex 
and time-consuming, especially in the presence of Byzantine 
faults. There is also a nonzero probability of not being able 
to synchronize the nonfaulty clocks, due to the probabilistic 
nature of the clock reading mechanism. 

For the reasons outlined above, we want deterministic algo- 
rithms for synchronization which maintain clocks that can be 
used to measure real time intervals. The scheme proposed 
in this paper is similar to the interactive convergence algo- 
rithm (CNV) in [13]. The differences arise mainly because 
CNV is intended for a fully-connected topology, as opposed 
to a partially-connected topology like the hypercube [17] or 
the mesh [l]. Although CNV could be used in a partially- 
connected system, it is not well suited for such a system due 
to the fact that the worst case skews in CNV are greater than 
the difference between the maximum and the minimum mes- 
sage transit delay in the system. In contrast, as illustrated in 
Section IV, the worst case skews in the proposed scheme are 
orders of magnitude smaller than the maximum time required 
for a reliable broadcast. In addition, the worst case skews do 
not depend on this maximum time beyond a certain limit. 

This paper is organized as follows. In Section 11, the clock 
synchronization problem is formally stated. The proposed 
software synchronization algorithm and the proof of its cor- 
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rectness are presented in Section 111. Several numerical ex- 
amples are given in Section IV. The paper concludes with 
Section V. 

11. PROBLEM STATEMENT 
Before formally stating the clock synchronization problem, 

it is necessary to introduce the notation and the terminology 
to be used here, which are similar to the ones in [13]. (They 
are repeated here for completeness.) 

Definition 1: The time that is directly observable in some 
particular clock is called its clock time. This should be con- 
trasted to the term real time, which is measured in an assumed 
Newtonian time frame that is not directly observable. 

Definition 2: Let c be a mapping from clock time to real 
time, where c(T)  = t means that at clock time T the real time 
is t. Then, two clocks C I  and c2 are said to be 6-synchronized 
at a clock time T if and only if IC 1 ( T )  - c ~ ( T )  1 5 6 .  

We adopt the convention of using lowercase letters to de- 
note quantities that represent real time and uppercase letters to 
denote quantities that represent clock time. It is convenient to 
pretend that clocks run continuously, so a clock is a continu- 
ous function on some interval. Also, the nonfaulty clocks are 
assumed to be monotonic. An implementation that achieves 
this monotonicity is discussed later in this paper. 

Definition 3: A clock c is a good clock during the real 
time interval [t 1 ,  t2] if it is a monotonic, differentiable func- 
tion on [TI, T2] where c(Ti) = ti, i = 1, 2, and for all T in 
[TI 9 T21 l%g-ll<!? 2 

for some constant p that represents the drift rate of the good 
clocks. 

The problem of clock synchronization can now be formally 
stated as follows. Consider a distributed system with N nodes 
in which a maximum of m of these nodes are faulty. Each 
node executes a clock process (CP) to maintain a time base 
for all the activities on that node. Let cp denote the clock at 
node p .  For simplicity, suppose the clocks are resynchronized 
every R seconds. Let T(') = TcO) +iR and R") be the interval 
[T('), T('+')]. Due to the correction made at the end of ev- 
ery resynchronization interval, the clock at each node can be 
viewed as a sequence of logical clocks, one for each resyn- 
chronization interval. Let c$' denote the logical clock at node 
p in the ith resynchronization. Then, c$)(T)  = cbo'(T + @), 
where .$) is the aggregate correction applied to the clock 
since the start of the system. For notational convenience, let 

C P .  
Definition 4: A node p is said to be nonfaulty up to 

time T('+') if it is nonfaulty during the real time interval 
[ c $ ) ( ~ ( ~ ) ) ,  ,(i) P (  ~ ( i + l ) ) ] .  

Using the above notation, the two clock synchronization 
conditions can be stated as 

Sl)  If nodes p and q are nonfaulty up to time T('+'), then 
W E R(') 

@) = 0 and c r '  = 

IC$)(T)  - c t ) ( ~ ) I  < 6 for some constant6. 

S2) If node p is nonfaulty up to time T('+'), then 

' This will, however, induce additional time overhead. I$+') - l$)l < c for some constant E. 



516 IEEE TRANSACTIONS ON COMPUTERS, VOL. 39, NO. 4, APRIL 1990 

Intuitively, the first condition states that the difference in clock 
times on two nonfaulty nodes is always bounded. The second 
condition states that there is a bound on the amount by which 
a clock can change its value during one resynchronization in- 
terval. 

111. PROPOSED SOLUTION 
Since the synchronization scheme proposed in this paper 

is based on Algorithm CNV, we will first briefly describe 
the algorithm as proposed in [13] .  We will then identify the 
problems of adapting the algorithm to a distributed system that 
is not fully connected, and present a solution that eliminates 
those problems. 

Algorithm CNV assumes that the clocks are initially syn- 
chronized and that they drift apart only by a bounded amount 
during a resynchronization interval. In every resynchroniza- 
tion interval, each CP reads the value of the clock at all other 
nodes. If the value of a clock read differs from the clock at its 
node by an amount greater than a threshold, CP replaces that 
value by its own clock value. CP then computes the average 
of all such values and sets the local clock to that average. In 
[ 1 3 ] ,  it is shown that this algorithm can achieve synchroniza- 
tion, and requires a minimum of 3 m  + 1 nodes to tolerate m 
faults. 

Three major problems arise when this algorithm is used 
in a distributed system that is not fully connected. First, the 
clock message received at a node may be corrupted by a faulty 
intermediate node through which it was relayed. Second, due 
to the queueing delay for clock messages, there may be a 
substantial difference between the real time at which a CP 
sends the clock value and the real time at which another CP 
receives that message. Therefore, subtracting the clock value 
in the received message from the current clock value will not 
reflect the actual skew that exists between the clocks of the 
two nodes. This problem, which is present even if the system 
is fully connected, is aggravated when system is partially- 
connected because the clock message has to be relayed through 
intermediate nodes. Third, there may be a delay between the 
receipt of a clock message from the network and the time at 
which it is processed. A similar delay is possible between the 
time at which a CP sends the message and the time at which 
the message is placed on the network. The first problem is 
eliminated in the proposed solution by using a broadcast algo- 
rithm that delivers multiple copies of the message to all CP’s 
through node-disjoint paths. The second problem is reduced 
by requiring the CP at each intermediate node to append to 
the message the delay (according to the local clock) incurred 
at that node. The third problem is handled by recording the 
time at which a clock message is sent or received. 

A CP broadcasts the local clock value to all other CPs’ at a 
specified time in the resynchronization interval according to its 
clock. The broadcast algorithm is such that all CP’s receive 
multiple copies of the clock message through node-disjoint 
paths. The number of copies used in the broadcast algorithm 
depends on the maximum number of faults to be tolerated and 
the fault model for the system. When a CP receives a clock 
message sent by some other CP, it records the time (according 
to its local clock) at which the message was received. Then, in 

accordance with the broadcast algorithm, it relays the message 
to other CP’s. Before relaying the message, it appends to the 
message the time elapsed (according to its own clock) since 
the receipt of the message. At the end of a resynchronization 
interval, it computes the skews between the local clock and 
the clock of the source node for each one of the copies it 
has received. It then selects the ( m  + 1)th largest value as an 
estimate of the skew between the two clocks. It is shown in 
Section 111-D that this selected value is a good estimator of 
the clock skew between the two nodes. The average of the 
estimated skews over all nodes is used as the correction to 
the local clock. As in CNV, the proposed scheme requires a 
minimum of 3 m  + 1 nodes to tolerate m Byzantine faults. 

The above steps are explained in Section 111-C in terms 
of four concurrent tasks: CLOCK-SEND, CLOCK-RELAY, 
CLOCK-RECEIVE, and CLOCK-CORRECTION . An effi- 
cient implementation of these tasks requires some hardware 
support and a reliable broadcast mechanism. 

A .  Hardware Support 
A clock message contains the following information: the 

node at which the broadcast was initiated (namely, the ini- 
tiator), the node from which the message was most re- 
cently relayed (namely, the immediate sender), and five words 
W 1, W2, . . . , W5 shown below. The relative ordering of these 
words in the message depends on the format being used in the 
system. 

W I :  Clock time of the initiator when this message was 
transmitted. 

W, : Clock time of the immediate sender when it received 
this message. 

W3: Clock time of the immediate sender when it relayed 
this message. 

W4: Accumulated transit delay not counting the delay at 
the immediate sender. 

W5: The time on the local clock when this message was 
received. 

The hardware circuitry at each node helps in updating these 
words. When a clock message is received it updates W, with 
the local time. An interrupt is then generated to the processor 
that runs the clock tasks at that node. After the clock tasks 
have completed their processing, the message is scheduled 
for forwarding. While the message is being transmitted, the 
hardware circuitry inserts the local clock time in place of W3. 
The other operations performed on these words are explained 
in the formal description of the clock tasks later in this section. 

A special circuit is required to maintain a continuous mono- 
tone logical clock at each node. A possible solution is as 
follows. A high-frequency clock generated by a crystal os- 
cillator is divided by a programmable counter and the divided 
clock is used to increment a counter that contains the logical 
clock. The factor used to divided the high-frequency clock de- 
pends on the correction that needs to be applied to the logical 
clock. If at the end of a resynchronization interval, the correc- 
tion is positive (negative), then the factor used to divide the 
high-frequency clock is increased (decreased) from its nom- 
inal value. For example, a 32 MHz clock can nominally be 
divided by 32 to get a logical clock whose resolution is 1 ps. 
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This factor can be changed either to 36 or 28 depending on 
whether the correction is positive or negative, respectively. 

B. Reliable Broadcast 

A reliable broadcast mechanism is especially important in a 
partially-connected distributed system because a process may 
have to deliver its clock value to the other processes via sev- 
eral intermediate nodes. However, since the nonfaulty CP’s 
need not agree on the clock value at a faulty node, it is not 
necessary to use an interactive consistency algorithm [ 5 ] ,  [14] 
to correctly deliver the clock values. 

In the presence of m Byzantine faults, the following scheme 
can be used to reliably deliver the clock values. For each pair 
of nodes, determine a set of 2m + 1 node-disjoint paths. The 
CP at a nonfaulty node then individually sends 2m + 1 copies 
of the local clock value to the CP at each node through the pre- 
determined paths for that node. As shown in [23] this scheme 
does not require authentication. It requires: 1) the network to 
be 2m + 1 connected, and 2) a process should be able to iden- 
tify the node from which a received message originated and 
the node from which it was most recently relayed. These two 
requirements are necessary for any algorithm that is resilient 
to m Byzantine faults when authentication is not available [4]. 
It is shown in Theorem 1 that a CP can reliably estimate the 
skew between the local clock and the clock at another node 
from the multiple copies of the clock message it receives from 
the CP at that node. 

The above scheme, albeit very general, requires each CP to 
send a large number of messages, thus resulting in substantial 
time overhead. However, for interconnection topologies, like 
the hypercube [17] and the C-wrapped hexagonal mesh [ l ] ,  
there are reliable broadcast algorithms available [8], [16] to 
reduce this overhead. As in the scheme described above, they 
deliver 2m + 1 copies of the clock message through node- 
disjoint paths to every node in the system. But they make 
use of the properties of the topology to reduce the number 
of messages that have to be sent by a process. In fact, one 
can show that the number of messages sent by a process is 
the minimum required to guarantee a reliable delivery with- 
out using digital signatures. Due to the importance of a reli- 
able broadcast mechanism for distributed algorithms that are 
resilient to Byzantine faults, one can argue that most fault- 
tolerant distributed systems will use topologies that support 
simple broadcast algorithms similar to the ones in [8] and 
[16]. Consequently, such a broadcast mechanism will be as- 
sumed to exist in the distributed systems being synchronized. 

C .  Detailed Description 
A CP is comprised of four concurrent tasks. The operations 

of these four tasks required can be described in terms of the 
following basic functions. 
local-time( ) Returns the current time on the local 

clock. 
btime@) Returns the time at which p is supposed 

to broadcast its clock message in the 
current resynchronization interval. 
Initiates broadcast of k copies of a 
clock message with time set at t .  

initiate-bcast(k, t )  

1. loop 
2. 
3. 
4. endif; 
5 .  endloop; 

if (local-time( ) = btirne(p)) 
initiate-bcast(2m + 1,  local_tirne( )); 

Fig. 1. CLOCK-SEND task at node p 

wl(M), . . . ,w5(M) 

receive( ) 

initiator(A4) 

select(skews, 1) 

The five clock words in the message 
M .  
Blocks until a clock message arrives 
and returns the received message. 
Returns the node at which the broadcast 
of message M was initiated. 
skews is an array of estimated skews 
with respect to a particular node com- 
puted from copies of clock messages 
received from the CP at that node. The 
function select( ) orders these skews 
and returns the Ith value. 

CLOCK-SEND: The CLOCK-SEND task is responsible 
for initiating a reliable broadcast in each resynchronization 
interval, as shown in Fig. 1. The time at which the broadcast 
takes place depends on the node and is staggered throughout 
the resynchronization interval. This alleviates the problem of 
transient loading which would otherwise occur due to the al- 
most simultaneous broadcast of clock messages. The reliable 
broadcast delivers 2m + 1 copies of the message to each CP 
through node-disjoint paths if all CP’s adhere to the broadcast 
algorithm. However, if some nodes are faulty and do not ad- 
here to the broadcast algorithm, then fewer than 2m + 1 copies 
may be delivered. Given that there are at most m faulty nodes 
in the system, each CP will receive at least m + 1 copies re- 
layed through nonfaulty nodes. It is shown in Theorem 1 that 
the CP’s at all nonfaulty nodes can reliably estimate the clock 
skew from the copies received. 

Due to contention for network resources there may be a 
time delay between the initiation of a broadcast (i.e., line 3 
of Fig. 1) and the time at which the copies are transmitted 
on the network. To account for this delay, the time on the 
local clock is inserted in W I  and W2 while the broadcast 
is being initiated. Also, the cumulative transit delay W4 is 
initialized to 0. During transmission, the hardware circuitry 
at that node will insert the current time in place of W3. The 
delay between the initiation of the broadcast and the time at 
which the copy was transmitted, indicated by (W3 - W2), 
will be accumulated in W4 by the CLOCK-RELAY task of 
the node that is receiving this message. 

CLOCK-RELAY: The CLOCK-RELAY task (Fig. 2) 
gets activated when a clock message broadcast by some other 
CP is received. It is responsible for relaying the message to 
other CP’s as per the broadcast algorithm. It is also responsi- 
ble for updating the words W1, . . . , W5 in the clock message. 

The CLOCK-RELAY task checks whether the initiator 
specified in the message is supposed to be broadcasting its 
clock value at this time instant. This check is used to suppress 
spurious messages generated from faulty nodes. This is pos- 
sible if there is a bound on the time to complete a broadcast, 
say U. If the message is authentic, (W3 - W2) is added to 
W4 to accumulate the transit delay incurred by the message at 
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1. constant MAXEROADCASTSIME = U ;  

3. M := receive( ); 
4.  source := initiator(M); 
5. 
6 .  

8. 
9. endif; 
10. endloop; 

2. loop 

if ( Ilocal-time( ) - btime(source)l 5 MAXBROADCAST-TIME ) 
w4(M) := w4(M) + w3(M) - wZ(M); 

relay the message according to the broadcast algorithm; 
7. w2(M) := w5(M); 

Fig. 2. CLOCK-RELAY task. 

1. constant MAXBROADCAST-TIME = U ;  
2. loop 
3. M := receive( ); 
4. source := initiator(A4); 
5. 
6. copy := Curreut.copy[source]; 
7. 
8. 
9. endif; 
10. endloop; 

if ( IIocal-time( ) - btime(source)l 5 MAXBROADCAST-TIME ) 

Delta[source][copy] := w5(M) - (w4(M) t w3(M) - wZ(M)) - wl(M);  
Current-copy(source] := Current-copy[source] + 1; 

Fig, 3. CLOCK-RECEIVE task. 

1. constant THRESHOLD = A; 
2. loop 
3. 
4. totalskew := 0 
5. 
6. 
7. if (Skewlq] > THRESHOLD) 
8. Skew[q] = 0; 
9. endif; 
10. 
11. endfor; 
12. 
13. endif; 
14. 
15. endloop; 

if  (localfime( ) = resynctime( )) 

for q = 1 to NUMBER-OF-PROCESSES 
SkewIq] := select(Delta[q), m + 1); 

totalskew := totalskew + Skew[q]; 

correction := totalskew f NUMBER-OF-PROCESSES; 

initialize Currentxopy, etc. for the next resynchronization interval; 

Fig. 4. CLOCK-CORRECTION task. 

the immediate sender. This node now becomes the immediate 
sender for the next step. 

CLOCK-RECEIVE: When a message is received, the 
CLOCK-RECEIVE task (Fig. 3) first verifies the authentic- 
ity of the message. It then computes the skew between the 
local clock and the clock at the node where the broadcast 
was initiated and adjusts the skew by subtracting the accu- 
mulated delay. This operation is performed for each copy 
that is received and the resulting skews are passed on to the 
CLOCK-CORRECTION task. 

CLOCK-CORRECTION: The CLOCK-CORRECTION 
task (Fig. 4) corrects the local clock based on the skews cal- 
culated by CLOCK-RECEIVE. It first selects the estimated 
skew for a particular node from the values computed for 
the copies received from that node. If the estimated skew is 
greater than a threshold, A ,  it is replaced by zero. The choice 
of A follows from the proof of correctness (see Lemma 5). 
The correction applied to the local clock is the average of the 
estimated skews over all nodes. 

D. Proof of Correctness 
In this section, we show that the proposed solution can 

ensure synchronization if the following assumptions hold in 
the system. 

Al) For all nodes p and q,  Ic,(T(O)) - c,(T(”)) < 60, 
where 60 is a constant. 

A2) If node p is nonfaulty during the time interval [t 1 ,  iz], 
then c p  is a good clock during the interval, i.e., 

A3) In a reliable broadcast initiated from a nonfaulty node, 
all copies relayed through nonfaulty nodes are delivered within 
a time bound U. 

A4) Suppose S1 and S2 hold for i and node p is nonfaulty 
up to time T(’+’). Also suppose that the CP at a nonfaulty 
node q sends a message containing q’s  clock value to p at 
some time TO in R(’) according to q ’ s  clock. This message 
reaches p through a relay (possibly empty) of nodes. The 
CP at each relay node alters the words W1, . . . , W5 in the 
message as described in CLOCK-RELAY. From the message 
received, the CP at p computes a value Aqp as described in 
CLOCK-RECEIVE. If all the relay nodes are nonfaulty, then 

Ic$’(To + A q p  + Q )  - Q - c;’(To)) < 6 

where Q = W5 - (W4 + W3 - W2) is an estimate of the total 
transit delay incurred by the message and E is a constant. 

A5) The upper bound U on the time required to complete 
a reliable broadcast is such that U 5 R f N ,  where R is the 
resynchronization interval and N is the number of nodes in 
the system. 

Intuitively, A1 states that clocks are initially 60- 
synchronized to each other. A scheme to achieve this initial 
synchronization is described later. A2 states that if a node 
is nonfaulty, then so is its clock. In other words, no dis- 
tinction is made between a faulty clock and a faulty node. 
A3 states that there is an upper bound U on the time to 
complete a reliable broadcast. In A4, cz’(T0 + A,, + Q) 
is the real time at which the message is received at p and 
c:’(To) is the real time at which the message was sent from 
q. Since Q is the total delay incurred by the message in tran- 

the skew at p based on this message. Therefore, A4 states that 
if all CP’s adhere to the scheme for broadcasting and relay- 
ing the clock messages, then the error in estimating the skew 
is bounded. This assumption is reasonable because the errors 
occur, in most part, due to: 1) the transit delay incurred at an 
intermediate node is measured using a discrete logical clock 
as opposed to a continuous clock, and 2) the logical clock 
at an intermediate node drifts from real time while measur- 
ing the delay incurred at a node. The existence of a bound 
then follows from the observation that the time required for 
a broadcast is bounded, the drift rates of nonfaulty clocks 
are bounded, and the nonfaulty clocks have a known finite 
resolution. 

A5 states that a broadcast initiated by a CP will always 
complete before the next CP initiates its broadcast. As a result, 
in the proposed scheme, at most one CP will be broadcasting 
its clock value at any given time. It is shown later in this paper 
that for typical values of all relevant parameters in the system, 
A5 is not a very restrictive assumption. 

Given these assumptions, it can be proved that the nonfaulty 
clocks will remain synchronized throughout the operation of 
the system. Due to the inherent complexity of the notation, 
an informal explanation of the lemmas is first presented. The 
lemmas are similar to the ones in [13]. The differences arise 
mainly because the worst case skews in the proposed scheme 
are shown to be less than the maximum transit delay during a 
broadcast and because of the modeling assumption that a CP 
may have to use a few relay nodes to convey its clock value 

sit, cp  (‘1 (To+A,, +Q)  -Q -c:’(To) is the error in estimating 
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to other CP’s. A few additional lemmas are required to show 
that the faulty relay nodes cannot prevent synchronization. 

Lemma 1 states that for a good clock II units of clock 
time elapse in approximately H units of real time. Lemma 2 
deals with the perceived skew between two nonfaulty nodes, 
stating that there is a bound on the estimated skew between 
two nonfaulty nodes. This bound is used in Lemma 6 to prove 
that the impact of faulty nodes can be controlled. In Lemma 
4 it is shown that it does not matter (to a limited extent) at 
what time the CP at a nonfaulty node initiates a broadcast of 
its clock value in a resynchronization interval. Lemma 5 states 
that the difference between the skew perceived at p between p 
and r and the skew perceived at q between q and r is bounded 
when p ,  q, and r are nonfaulty. Theorem 1 and Lemma 3 deal 
with the case when some of the relay nodes are faulty. Finally, 
Theorem 2 combines these lemmas to prove the correctness 
of the proposed scheme. 

Lemma 1: If clock synchronization condition S1 holds for 
i and node p is nonfaulty up to time T(’+2) ,  then for any II 
such that < R and any T in R(’) :  

(c$’(T + rI) - [c$’(T) + rI]l < en. 2 
Proof: Follows easily from A2. W 

Lemma 2: Suppose S1 holds for i, and nodes p and q are 
nonfaulty up to time T(’+’). If the CP at q sends its clock value 
to the CP at p through several nonfaulty relay nodes, then 
skew Aqp  estimated at p for this message using the proposed 
algorithm is such that 

P 
2 
P 

& + € + - . U  
l 4 P l  5 

1 L 2  

Proof: Let To be the time according to q ’ s  clock at 
which it sent the message to p .  Also let Q denote the to- 
tal delay encountered by the message as indicated by words 
“1, . . . , W5. Then by repeated application of triangle inequal- 
ity we get 

JAqp 1 = Ic;’(To) - c;’(To + Q + n q p )  + Q 
+ c$’(To + Q + A q p )  -  TO) - Q - A q p  I 

5 Ic$’(To) -  TO + Q + A q p )  + QI 
+ (c;’(To + Q + Aqp) - [c$’(To) + Q + AqplI 

<_ (c$’(To) - c$’(To>J 

+ (c$’(To) - c$’(To + Q + A q p )  + QI  

+ zlQl+ zIAqPI* 
P P 

This implies 

(1 - ;) ’ la,, 1 5 Ic$’(To) - c$’(To)l 

+ (c!’(To) - c;’(To + Q + A 4 ~ )  + Q I  
+ ; I Q 1  

P 5 6 + E + IQ 1 (hypothesis and A4) 

5 6 + e  + :U (by A3). 2 

Hence proved. 
Informally, Lemma 2 states that the Aqp calculated from a 

clock message is bounded if all the intermediate nodes through 
which the message was relayed are nonfaulty. However, all the 
intermediate nodes may not necessarily be nonfaulty and a CP 
may not be able to identify the messages that have been relayed 
through faulty intermediate nodes. Similarly, A4 holds only if 
all the intermediate nodes are nonfaulty. These two problems 
are overcome by using a reliable broadcast that delivers multi- 
ple copies of a clock message to all CP’s through node-disjoint 
paths. A receiving CP estimates the skew Aqp from the mul- 
tiple copies it has received, as shown in CLOCK-RECEIVE. 
In Theorem 1 and its corollary, it is shown that the estimated 
Aqp satisfies the bound specified in Lemma 2. Furthermore, 
the bound specified in A4 can be changed to account for the 
fact that the selected copy may have passed through some 
faulty nodes. 

Theorem 1: Suppose q uses CLOCK-RECEIVE to esti- 
mate the skew between p’s  clock and its own clock based on 
the messages it receives in a reliable broadcast initiated from 
p .  Then, the estimated skew is either equal to the computed 
skew from a copy that was relayed only through nonfaulty 
nodes, or there are two copies that have been relayed only 
through nonfaulty nodes such that the estimated skew lies be- 
tween the computed skews for these two copies. 

Proof: Since the system is assumed to have a maximum 
of m faults, and since the reliable broadcast tries to deliver 
2m + 1 copies, at least m + 1 copies are relayed through non- 
faulty nodes. By A3 these m + l  copies will be delivered within 
U time units. Consequently, the CP at q can unambiguously 
determine the number of copies it will receive. 

Suppose 2m + 1 - t copies are received at q for some 
0 5 t 5 m. There are two possible cases: a) t < m and b) 
t = m. When t < m there are more than m i- 1 copies. Since 
the skew estimated at q is the ( m  + 1)th largest value, there are 
m computed skews smaller than and greater than the estimated 
skew. The statement of theorem follows from this observation 
and the hypothesis that there are only m faults in the system. 

When t = m all the copies that have been relayed through 
faulty nodes are lost. Consequently, all the copies that have 
been received were relayed only through nonfaulty nodes. 

Corollary I :  Suppose p uses CLOCK-RECEIVE-ta&sti- 
mate the skew, A q p ,  between q ’ s  clock and its own clock 
based on the messages its receives in a reliable broadcast ini- 
tiated by q.  Then 

Hence proved. 

Proofi Follows from Theorem I and Lemma 2. W 
Lemma 3: Suppose S1 holds for i ,  and nodes p and q 

are nonfaulty up to time T(‘+’). Also suppose the CP at q 
uses a reliable broadcast at time To according to its clock to 
convey q’s  clock value and p uses CLOCK-RECEIVE and 
CLOCK-CORRECTION to estimate the skew A q p .  If Q is 
the total transit delay as computed for the copy of the clock 
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message that was used to estimate the skew, then Proof: Let TO be as in Lemma 3.  Then 

@'(T + II + Q + A q p )  - Q - c$)(T + n)l 
= (c"'(T0 + T + II + Q + A,, -To) 

Proof: If the copy used to estimate the skew was re- 
layed only through nonfaulty nodes, then the lemma follows 
from A4. So the more interesting case is when it was re- 
layed through at least one faulty node. In this case, it follows 
from Theorem 1 that there are at least two copies relayed only 
through nonfaulty nodes, say through paths P I  and P2, such 
that the estimated skew lies between the skews computed from 
these two copies. Let Q I  and Q2 be the accumulated transit 
delays, and let AqP(P1) and Aqp(P , )  be the computed skews 
from the clock messages that were relayed through paths P1 
and P2, respectively. 

Without loss of generality, we can assume that 
Aqp(PI )  5 A q p  <_ Aqp(P2).  Adding and subtracting a few 
terms to the inequality AqP(Pl )  5 Aqp we get 

Using Lemma 1, A4, Corollary 1, and a few substitutions, 
the above equation can be shown to be equivalent to 

c$'(To) - c$'(To) - p ( 6  + v> + Aqp(P1) 
2 (1 - 

Lemma 5: Suppose S1 holds for i ,  and nodes p ,  q, and r 
are nonfaulty up to time T(jt2). Also suppose the CP at r uses 
a reliable broadcast to convey its clock value, and suppose p 
and q use CLOCK-RECEIVE and CLOCK-CORRECTION 
to estimate the skew between their clock and r's clock. Let 
&,(a) and &,,(b) be the estimated skews at p and q, re- 
spectively, at the end of line 9 in CLOCK-CORRECTION 
with threshold A = (6 + E + p / 2  . U)/(1 - p / 2 ) .  Let Q(") 
and Q@) denote the total transit delay computed at p and q, 
respectively, from the copy used to estimate the skew. Then 
for any T in R(') 

Ic$)v) + a r p ( a >  - [ct)(T)  + i~~,(b)]l 
P I 2 ( i  +2pR) + ~ ( - ;) + 

Pro08 It follows from Corollary 1 that when A is cho- 
sen as in the hypothesis, lArq(a)l 5 A and lArq(b)l 5 A .  
SO &,(a) = Arp(a )  and arq(b) = Arq(b), where A,,(a) 
and Arq(b) are the estimate of the skews at the end of line 
6 of CLOCK-CORRECTION. For notational simplicity, let 
Arp Arp(a)  and Arq e Arq(b) .  Then 

Ic$)v) + &,,(a> - [c$)(T)  + ~ r q ( b > l ~  

= (c$'(T) + Arp + Q(") - Q(") + Q(b)  

Now by adding and subtracting a few terms on the left-hand + Q(b)  - Q ( " ) I  
side and then using Lemma 1 and A4, we get 

\ ' I  
+ Q(b) - Q(') I + ~ (&+€+U) 

(1 - ;) This proves one side of the required inequality. To prove the 
other side, we can start with Aqp 5 Aqp(P2) and show that 

I (c$)(T + Arp + Q'"') - cY'(T) - Q(@I 

+ Ic$)(T + Arq + Q@)) - c?'(T) - Q(b)l 
p ( 6  + E + U )  C$)(TO + Q + A 4 P  ) - Q - c$'(To) 5 E + 

Hence, the lemma follows. 
Lemma 4: Suppose S1 holds for i ,  and nodes p and q 

at q uses a reliable broadcast algorithm and that the CP 

- 2) are nonfaulty up to time T('+'). Also suppose that the CP 

at p estimates the skew Aqp as in CLOCK-RECEIVE and 
CLOCK-CORRECTION. If Q is the total transit delay as 

(6 + E + U) from Lemma 4. 5 2 ( i  + 2pR) + ~ P 

(1 - s) 
computed from the copy used to estimate the skew, then for 
any II such that Ill < R and any T i n  R(') Lemma 6: Suppose S1 holds for i ,  and nodes p and q 

are nonfaulty up to time T('+2). Also suppose that p and 4 
IC$'(T + II + Q + Aqp) - Q - ct'(T + H)l 5 + 2pR. use CLOCK-RECEIVE and CLOCK-CORRECTION to es- 
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timate the skew between their clock and the clock at node r. 
Let &,,(a) and L,,(b) be the estimated skews at p and q, 
respectively, at the end of line 9 in CLOCK-CORRECTION. 
Then for any T in R(‘) 

Ic$)(T) + &,(a) - [ct’(T) + Arq(b)]l 5 6 + 2A.  
Proof: By the hypothesis that S1 holds for i, we have 

Ic$)(T) - c!)(T)I < 6. 

Since h,, and Er, are by definition no larger than A ,  the 
result follows. 

Theorem 2: If A1-A5 hold and if 
a) 3m < N and the interconnection network is 2m + 1 con- 

nected 

then the algorithm presented in the previous section satisfies 
Conditions S1 and S2 with C = A .  

Proof: Let A, and A, be the correction com- 
puted at p and q, respectively, at the end of line 12 in 
CLOCK-CORRECTION. Condition S2 holds because the 
correction to the local clock is the average of N terms, each 
less than A .  Condition S1 can be proved by induction on i. 
For i = 0, A1 implies that two nonfaulty clocks that are syn- 
chronized to within 60 at time T(O) will remain synchronized to 
within 60 +pR at time T(’ )  = T(O) + R.  Condition S1 follows 
from A1 and the hypothesis. 

Now suppose that S1 holds for i. We need to prove that it 
holds for i + 1. Assume that p and q are both nonfaulty up to 
time T(i+2). For clarify of presentation, we will use Er, and 
Erg without explicitly specifying the nodes through which the 
clock values were relayed from r t o p  and q. Also let T denote 
T(’+’). Then for any T’ in R(’+’) we have 

Ic$+’)(T’) - c$+l)(T’)l 

5 Ic$+’)(T) - c~+’)(T)I + pR by A2 

= Ic$’(T + A,) - c$’(T + A ,)I + PR 
from the algorithm 

(c$)(T) + A, - [ct’(T) + A,]( + PR + ;(A, + A,) 

from Lemma 1 

r = l  

E .  Initial Synchronization 
There are several ways of ensuring that A1 is satisfied. The 

simplest scheme is to assume that all nodes are nonfaulty at 
startup and select one of them as a master. After making sure 
that all nodes are operational, the master can broadcast its 
clock value to all other nodes. The CP’s can use the scheme 
proposed in this paper to correct the local clock to the value 
received from the master. 

If it is not possible to ensure that all nodes are nonfaulty 
at startup, then a more complicated scheme is necessary for 
initial synchronization. First, use an existing initial synchro- 
nization algorithm such as the ones in [7] and [15]. At the 
end of this phase, the worst case skew will be larger than the 
difference between the maximum and the minimum message 
transit delay. To reduce it further, repeatedly use the proposed 
algorithm until the skew is below the required limit. Before 
each repetition, calculate the worst case skew at that itera- 
tion and set the threshold A to that value. This scheme will 
converge exponentially as long as the total number of nodes 
N > 3m + 1, which will usually hold in large distributed sys- 
tems. The proof that this will converge follows easily from 
the proof of Theorem 2. 

IV. DISCUSSION AND NUMERICAL EXAMPLES 

The expression for 6 in Theorem 2 can be simplified by 
making certain approximations that hold in most distributed 
systems, namely, p . U << 6 ,  A << R ,  E << U ,  and p . U << E .  

These approximations are reasonable, since for most practical 
applications, E is around 20-30 ps, p is around lop6,  U is 
around 200-300 ms, and R is on the order of seconds. From 
the exact expression, it is also clear that 6 << U .  Using these 
approximations, the second hypothesis in Theorem 2 can be 
restated as 

2(N - m)(E + 2pR) + 2mc + pRN 
( N  - 3rn) 

6 > max > 60 + PR}. 

(4.1) 

One can now characterize 6*, the minimum worst case skew 
that can be guaranteed in any given system using our scheme, 
i.e., 6*  is the minimum value of 6 that satisfies (4.1) given N ,  
m,  p ,  E ,  and U. Since N ,  m,  p ,  E ,  and U are characteristics 
of the system, the only parameter that can be controlled is 
R. It is easy to verify that the minimum 6 which satisfies the 
(4.1) increases with R.  From A5 we know R 2 N .  U and 
therefore, 

{ 

2(N - m)(c + 2pNU) + 2mc + pN2U 
( N  - 3m) 

6* =max 3 

60 + pNU} . (4.2) 

Clearly, 6* << U for most practical systems. As a result, the 
minimum worst case skew that can be guaranteed is substan- 
tially less than the minimum worst case skew guaranteed by 
other software synchronization algorithms [7], [ 131, [ 151, [20] 
where the worst case skews are greater than U. This implies 
that the skews which can be guaranteed by our scheme are 
very tight as compared to existing software synchronization 
algorithms. - 

1 .  In addition to this significant advantage, another major ad- 
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Fig. 5 .  A C-wrapped hexagonal mesh of dimension 3.  

vantage of our scheme is that 6*  increases gradually with U. 
This should be contrasted to an almost linear increase in the 
minimum worst case skew with respect to U in existing soft- 
ware synchronization algorithms. Some of these aspects are 
illustrated with examples for C-wrapped hexagonal mesh and 
hypercube topologies. 

A C-wrapped hexagonal mesh topology [ 1 1 ,  [21] is a regu- 
lar, homogeneous graph in which each node has six neighbors. 
The graph can be visualized as a simple hexagonal mesh with 
wrap links added to the nodes on the periphery. A simple 
hexagonal mesh looks like a set of concentric hexagons with 
a central node, where each hexagon has one more node on 
each edge than the one immediately inside of it. It can be 
defined succinctly as follows. 

Definition 5: A C-wrapped hexagonal mesh of dimen- 
sion e is comprised of 3e(e - 1 )  + 1 nodes, labeled from 
0 to 3e(e - l ) ,  such that each node s has six neighbors 

+ 113e2-3e+l, 1s + 3e - 113e2-3e+1> 1s + 3e - 2 1 3 e 2 - 3 e t l 9  

[ ~ - 1 1 3 e 2 - 3 e + 1 9  1s -3e+113e2-3e+l? and [ ~ - 3 e  +213e2-3e+1, 
where [a]b denotes a mod b .  

Fig. 5 shows a C-wrapped hexagonal mesh of dimension 
3 .  This topology is currently being used for the construc- 
tion of two experimental distributed systems: the HARTS at 
the Real-Time Computing Laboratory at The University of 
Michigan [ 11, and the Mayfly systems at Hewlett Packard Re- 
search Laboratories [ 3 ] .  An attractive feature of this topology 
is that it supports a simple reliable broadcast mechanism that 
is resilient to two Byzantine faults with minimal overhead [8] .  

A hypercube topology is also a regular, homogeneous 
graph. Each node in an n-dimensional hypercube, Q,,, has 
n neighbors. A Q n  also supports a simple reliable broad- 
cast algorithm that delivers n copies of the message through 
node-disjoint paths [16]. It has been used as an interconnec- 
tion topology in both research [18] and commercial systems 
by Intel, NCUBE, Floating Point Systems, Ametek, Think- 
ing Machine, to name a few. It can be defined formally as 
follows. 

250 
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mesh. (b) Hypercube. 
Fig. 6. 6' versus U when rn = 2 ,  p = IOW6, t = 20 ps. (a) Hexagonal 

Definition 6: A hypercube of dimension n is comprised 
of 2" nodes, labeled from 0 to 2" - 1 ,  such that two nodes 
are neighbors if and only if the binary representation of their 
labels differ by one and only one bit. 

Fig. 6 shows the variation in 6*  with respect to U for the C- 
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Fig. 7.  6 versus U when R = 40 s for hexagonal mesh, R = 130 s for 
hypercube. (a) Hexagonal mesh. (b) Hypercube. 

wrapped hexagonal mesh and hypercube topologies. Clearly, 
skews on the order 100 p s  can be guaranteed even in large 
systems using our scheme. When U varies from 50 to 250 
ms as in this figure, the minimum worst case skews in [7], 
[13], [lS], and [20] will also vary linearly from SO to 250 
ms, as compared to the SO-700 p s  variation in our scheme. 
Another observation that can be made from the figure is that 
better skews can be achieved in a C-wrapped hexagonal mesh 
as compared to a hypercube due to the sparse connectivity of 
a hypercube in comparison to a hexagonal mesh.2 

Fig. 7 shows the variation in the worst case skews that can 
be guaranteed in the above two topologies with respect to 
the maximum time required for broadcast when the resynchro- 
nization interval R is significantly greater than the minimum 
resynchronization interval necessary for synchronization, i.e., 
R > N .  U .  This figure illustrates how the worst case skews 
can be made insensitive to the maximum time required for 
broadcast at the cost of tightness of synchronization. 

V. CONCLUSION 

A hardware-assisted software synchronization scheme was 
proposed in this paper. The two main advantages of this 
scheme are 1) skews on the order 100-200 p s  can be easily 

*For those dimensions greater than 6,  a hypercube will have a denser 
connectivity than a C-wrapped hexagonal mesh, though. 

achieved even in large partially-connected distributed systems, 
2) the guaranteed worst case skews can be made insensitive to 
the maximum time required for broadcast. These two aspects 
are in sharp contrast with the existing software synchronization 
algorithms. The additional hardware required at each node to 
obtain these advantages is similar to the support necessary to 
ensure timely delivery of messages. This kind of support is 
commonly available in distributed real-time systems. 

Another advantage of the proposed scheme is that the broad- 
cast of clock values from different nodes is staggered through- 
out the resynchronization interval, instead of being lumped at 
the end of the interval as in most software synchronization 
algorithms. This avoids a sudden increase in network traffic 
caused by almost simultaneous broadcast of clock values from 
all nodes. 

A possible drawback of our scheme is that it is only suit- 
able for topologies that support efficient reliable broadcast 
mechanisms. This is not a serious problem, however, since 
most fault-tolerant distributed systems require reliable broad- 
cast mechanisms for various other regions. Consequently, the 
scheme proposed in this paper has high potential for synchro- 
nizing large distributed systems. 
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