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Abstract

The issue of I/O device access in HARTS — a distributed
real-time computer system under construction at the Real-
Time Computing Laboratory (RTCL), The University of
Michigan — is explicitly addressed. Several candidate so-
lutions are introduced, explored, and evaluated according
to cost and complexity, reliability, and performance: (1)
“node-direct” distribution with the intra-node bus and a lo-
cal 1/0 bus, (2) use of dedicated 1/O nodes which are placed
in the hexagonal mesh as regular applications nodes but
which provide 1/O services rather than computing services,
and (3) use of a separate 1/O network which has led to the
proposal of an “interlaced” I/O network. The interlaced /O
network is intended to provide both high performance with-
out burdening node processors with I/O overhead as well as
a high degree of reliability. Both static and dynamic multi-
ownership protocols are developed for managing 1/0 device
access in this 1/0 network. The relative merits of the two
protocols are explored and the performance and accessibility
which each provide are simulated.

1 Introduction

To date, work on distributed computing systems — by which
we mean loosely-coupled networks of processing elements
— has centered on interconnection networks, programming
and communications paradigms, algorithms, and task de-
composition. However, little has been said specifically
about the I/O subsystem in a distributed environment, de-
spite its obvious importance. Work which has been done has
focused primarily on the hypercube and has not addressed
the accessibility of 1/0 devices in case of failures in the
system [9, 11], and research which looks at fault-tolerance
has not considered the multi-accessibility required by a dis-
tributed environment [7]. Clearly, a computer can process
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data no faster than it can acquire the data; this has been the
rationale behind the attention paid to memory subsystems
and increasing the accessibility and access speed of memo-
ries. But one cannot assume that data somehow appear in
memory for the computer to use and process. We must look
realistically at the accessibility and capability of I/O devices,
especially as more powerful computing systems place more
and more demands on all of their subsystems.

Distributed computing systems are being used for de-
manding applications, such as binary hypercubes for scien-
tific processing, and a variety of systems, such as HARTS
(Hexagonal Architecture for Real-Time Systems [1, 3, 4, 8]),
for real-time processing. The demands of a real-time com-
puting system include both high performance and reliability
[10). In the case of a distributed I/O subsystem, this also
means accessibility.

The focus of this paper is on developing an I/O sub-
system for HARTS, an experimental system for research
in distributed real-time computing under construction at the
RTCL. HARTS uses a wrapped hexagonal mesh as its inter-
connection topology. The wrapped hexagonal topology is
known to be quite attractive due mainly to its hardware con-
structibility, fine scalability, and fault—tolerance. (See [1, 2]
for a detailed account of the advantages of this topology and
its comparison with other topologies.) We will begin with
a brief discussion of the architecture of HARTS. Following
this we will examine a variety of ways of implementing the
I/O subsystem in this distributed environment. Although
much of what will be said will apply to many other dis-
tributed computer system topologies, we will look specifi-
cally at I/O device placement and management in HARTS.
Each proposal for the design of an I/O subsystem will be
analyzed with regard to cost and complexity, accessibility,
and performance.



Figure 1: A hexagonal mesh of dimension 3.

2 Description of HARTS

The interconnection topology used in HARTS is a C-
wrapped! hexagonal mesh (H-mesh). Each node in an H-
mesh is connected to six neighboring nodes. As the solid
lines of Fig. 1 shows, however, the peripheral nodes of a
non-wrapped H-mesh are connected to only three or four
neighbors rather than six. The C-wrapping used in HARTS
is a means of connecting every node to six other nodes to
create a homogeneous network [1]. Any node can thus be
viewed as the “center” of the network. Moreover, a trans-
parent addressing scheme can be developed for any size H-
mesh such that the shortest paths between any two nodes
can be computed with a ©(1) algorithm given the addresses
of the two nodes [1]. This addressing scheme also makes
possible a simple message routing algorithm that can be
efficiently implemented in hardware [3].

The dimension of an H-mesh is defined as the number
of nodes on its peripheral edge. Fig. 1 shows a C-wrapped
H-mesh of dimension three, with gray arrows indicating
the extra connections between the peripheral nodes. A C-
wrapped H-mesh of dimension n is comprised of p = 3n2-
3n+1 nodes, labeled 0 to 3n2 — 3n, where each node s has
six neighbors labeled [s + 1], [s+ 3n — 1}, [s + 3n = 2]p,
[s43n(n=1)]p, [s+3n? —6n+2],, and [s+3n®—6n+3],,
where p = 3n% — 3n 4 1 and [a]; denotes @ mod b [1].

One can better visualize what is happening in the C-
wrapping by first partitioning the nodes of a non-wrapped

14C* stands for the word ‘continuous’,
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H-mesh into rows in three different directions. The mesh
can be viewed as composed of 2n—1 horizontal rows, 2n—1
rows in the 60-degree counter-clockwise direction, or 2n—1
rows in the 120-degree counter-clockwise direction. In each
of these partitions we label from the top the rows Ry through
Ron_o. The C-wrapping is then performed by connecting
the last node in R; to the first node in R 45 1],,., foreach
i in each of the three partitions [1].

The version of HARTS presently under construction at
the RTCL is of dimension three and composed of 19 nodes.
Each node of HARTS consists of from one to three ap-
plications processors (AP’s) (thus permitting multiproces-
sor nodes) and a custom—designed network processor (NP)
for handling inter-process communications. The nodes cur-
rently used in HARTS are VME-bus systems with 68020-
based AP’s. The NP’s front-end is a custom VLSI routing
controller designed to manage the six pairs of half—duplex
communications links and route messages between nodes.
The routing controller provides support for routing based
on packet switching, circuit switching, and virtual circuit
cut-through [6], where messages are not buffered at inter-
mediate nodes if a circuit to the next node in the message
route can be established. The design of the routing con-
troller is detailed in [3]. Also part of the NP will be a buffer
management unit to buffer messages and a general-purpose
processor to perform various functions of HARTOS, an op-
erating system being developed for HARTS [5].

HARTOS is built on top of a real-time kernel called pSOS
(by Software Components Group. Inc.), which implements
a multi-tasking environment with message exchanges and
events for communications. HARTOS extends the unipro-
cessor pSOS to provide similar communication facilities
over the network.,

3 Critiques of Candidate Solutions

Before proposing a viable solution, it is important to explore
and evaluate other candidate solutions to see what problems
are presented in trying to develop a distributed I/O subsys-
tem with high accessibility and performance together with
low cost and complexity. These alternate solutions repre-
sent the evolution by which we shall arrive at our solution,
showing the rationale for our decisions and why we did
not choose certain more obvious solutions. We shall touch
on some of these points in the discussion of the proposed
multi-ownership solution and explore them in more detail.



3.1 “Node-Direct” Distribution of I/O

Since centralizing I/O results in performance and accessibil-
ity bottlenecks, I/O devices must be physically distributed.
One way of doing this is to connect sets of I/O devices di-
rectly 1o computation nodes. In a system such as HARTS
which uses a dedicated processor to handle inter-process
communications (IPC), there are two principal methods for
connecting the I/O devices to the node: via the intra-node
bus or a separate 1/0 bus connected to either an AP or the
NP.

A. Intra-Node Bus

If I/O devices are connected to the intra-node bus via a
suitable 1/O controller (IOC), there remains the question of
which node will control and administer the devices. Log-
ically, if the NP is the “node master” (as is the case in
HARTS, since it manages all communication, both intra-
node in the case of a multiprocessor node and inter-node
communication in all cases), then it would also adminis-
ter the I/O devices. It would then be natural for all AP’s,
whether residing in the given node or not, to use the ex-
isting IPC methods for communicating with 1/0 devices.
However, if the NP is not powerful enough to take on ad-
ministration of the I/O devices, then an AP can also perform
such tasks. An AP used as the I/O administrator can be ded-
icated to this task or may perform these functions in addition
to its other duties.

This is one of simplest designs for the I/O subsystem
since all that is required is a suitable interface card for the
intra-node bus used (VME in the case of HARTS). This
gives all processors in the home node easy access to the
I/O devices, although access will probably be controlled by
a single I/O master—the NP or an AP. The accessibility of
the I/O devices depends on the correct operation of the I/0
master. If an AP serves as I/O master in addition to acting
as a general AP, it would be possible for another AP in the
(multiprocessor) node to take over should it fail.

The two major disadvantages of this method are obvious:
poor accessibility and potentially poor performance. If other
nodes need to access the I/O devices belonging to a given
node, the I/O transactions must pass through the NP at the
home node. Should this NP fail, all access to the I/O devices
would be lost. It may be possible to replicate the 1/Q devices
in question, but this would increase the total network and
intra-node overhead (now for more than one node) required
to access the device. Even without the overhead introduced
by replication, I/O traffic, regardless of its destination, will
always pass over the home node’s intra-node bus, possibly
penalizing the home node even for remote 1/0 transactions.
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Regardless of whether or not the consumption of VME-
bus bandwidth by I/O is acceptable, it is certainly not in
keeping with the philosophy of HARTS communications,
in which traffic not bound for a node should not penalize
the performance of a node and in fact, need not even be
buffered there temporarily, i.e., virtual cut-through.

B. Local /O Bus

Connecting I/O devices to the intra-node bus increases
the traffic on this bus, perhaps beyond its bandwidth. An-
other solution is to use a separate, perhaps simpler, I/O
bus, connected to either the NP at the node or an AP. This
time it makes more sense to connect the I/O bus to the NP;
otherwise, I/O traffic bound for other nodes or AP’s must
still travel through the intra-node bus, thus defeating our
purpose.

Assuming the NP can handle the I/O service and control
overhead in addition to its primary functions, this method is
approximately as complex and cost-effective as the former.
The dedicated I/O bus need not be as versatile as the intra-
node bus, so the interfacing requirements may in fact be
simpler.

The advantage of this method is clearly that the only I/O
traffic which must travel over the local intra-bus is traffic
destined for a processor at the node itself. In a sense we
are just trading processor bandwidth for bus bandwidth, but
this is a justifiable tradeoff in that the job of the NP is
likely to be better specified than that of the rest of the node.
We will always have the problem of characterizing the NP
traffic and workload regardless of whether it handles only
I/O communications or I/O communications and rudimen-
tary administration. This method allows us to eliminate the
variable of non-local 1/O traffic from the intra-node bus.

Finally, this solution opens up the possibility of connect-
ing these 1/0 buses together to form a separate I/0 network,
allowing direct access to non-local 1/O devices without hav-
ing to use the regular IPC channels, a prospect we will be
looking at in Section 3.3.

3.2 I/O Nodes

A typical node in a distributed computing system may be
thought of as a computation node if its processors perform
strictly computational tasks as opposed to 1/Q tasks, e.g.,
I/O device drivers. Similarly, a node which serves only to
connect I/O devices to the computation nodes in the network
would be referred to as an //O node. Thus in the given
topology of the node interconnection network, some nodes
can be made to provide strictly I/O services while others
provide computational services. All I/O traffic uses the IPC



channels provided by the network.

The I/O devices at a given I/O node can be interfaced
to the intra-node bus and serviced by the NP. If sufficiently
powerful processors were used as 1/0 controllers, the operat-
ing system interface between the NP and the [/O controllers
could be the same as that between an NP and the AP’s
in an ordinary node (e.g., send and reply mailboxes) [S].
I/O—process communication (IOPC) could be handled ex-
actly like inter-computation-process communication (ICPC),
making the operation of the specialized T/O node and I/O
controllers completely transparent to the rest of the network.

However, this is one of the most complex and expensive
solutions because an NP, including routing controller and
associated hardware, must be dedicated to a group of I/O de-
vices. Decreasing the cost per 1/0 device by increasing the
number of 1/0 devices per I/O node begins to defeat the pur-
pose of distributing the I/O access in the first place. Also, all
access to 1/O devices must use the same network/protocol
as ICPC, which may or may not be a good idea depending
on the nature of IOPC traffic vs. ICPC traffic. Special care
may have to be taken to ensure adequate bandwidth for I/O
bursts as well as the timely delivery of critical inter-process
messages. If both IOPC and ICPC traffic are heavy, it may
not be economical to build enough bandwidth into the one
network to handle both traffic streams.

Access to the I/O devices at the I/O node depends on
the correct operation of the NP, a device which may well
be more complex than the average AP. However, the node-
direct designs also suffer from this vulnerability, assuming
that access to the I/O device(s) connected to a node is re-
quired outside the node (if this is never the case then the
flexibility offered by the I/O node design is probably not
needed).

All IOPC with the devices connected to a given I/O node
must take place over the H-mesh interconnection network;
however, no AP is saddled with service/control overhead
for the I/O devices and the same processor which controls
and services peripherals can also format data, handle the
results of multiple sensors, and so on.

This approach also requires that load distribution algo-
rithms be part of any application running on such a system
and that the application be flexible enough not to depend
on a particular number of AP’s. The effect is similar to
that of a network in which several applications processors
have failed, where the /O nodes can be visualized as the
“holes” in the computation network. Applications which
are intended to survive node failures will have to take this
effect into account anyway, so this is not a drawback for
serious fault-tolerant applications.
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3.3 T1/O Network

All of the alternate methods presented thus far require the
use of the standard IPC channels to send I/O information
to processors on remote nodes. Furthermore, they are also
dependent on the correct operation of the NP at the node ad-
ministering a given I/O device. If the NP should fail, access
to the devices administered at the node in question would be
impossible. Thus to increase the accessibility of the 1/0 de-
vices and the reliability of the system as a whole, we could
give the 1/O devices (relatively) simple control processors
which are in turn connected via a separate I/O network to
each other and to the nodes. This method is likely to be
the most expensive since it requires a completely separate
network and I/O control processors in addition to the appli-
cations and network processors already in place. However,
it has potentially the highest accessibility and performance
because it can support multiple I/O transactions in parallel
as well as providing more than one way of accessing given
devices.

The issue of what network topology to use for this sep-
arate I/O network is somewhat problematic. If we want
to provide direct contact between each of the computation
nodes and the I/O network, then we need some way of
mapping the I/O network onto the H-mesh. An important
problem is the fact that while most interconnection topolo-
gies which have been explored involve an even number of
nodes or a number of nodes which is a power of two, an
H-mesh will always have an odd number of nodes, and for
small-diameter meshes it tends to have a prime number of
nodes.

One obvious choice is to use a completely separate H-
mesh mesh for the I/O network. One way to do this would
be to give each computation node two NP’s, one for the
computation network and one for the I/O network. Al-
though this solves the mapping problem, it is an expensive
solution because it would require an additional p NP’s to
manage the communication in the I/O network where p is
the total number of nodes in the H-mesh. Moreover, access
to I/O devices still depends on the correct operation of a
complex device, the NP. There are some interesting advan-
tages to having essentially two complete H-meshes. IOPC
and ICPC could be completely separated, possibly simplify-
ing bandwidth and message scheduling and delivery issues.
Taking a different approach, it would also be possible to
“porrow” one network to deliver messages for the other.
Thus if a computation-NP decided that it could not send
an inter-process message in time, it could ask the I/O-NP
if it could send the message before its deadline on the I/O
network, possibly allowing a greater number of messages



to be delivered on time. The same applies to delivering
messages at all—if one NP ascertained that its messages to
a particular node were not getting through, it could forward
them to the other NP to see if it could successfully deliver
the messages on its network.

Despite the advantages of a separate I/O network, we
have not adopted it due mainly to the mapping problem on
the one hand and the expense of a completely separate mesh
on the other.

4 Non-Distributed I/0

Obviously, I/O does not have to be distributed in a dis-
tributed computer system; nodes can siraply be connected
to some central I/O handling facility. This may involve
using a single node as an I/O center, with I/O traffic us-
ing the standard IPC channels or some single entity acting
as the I/O center with connections to all of the compu-
tation nodes (e.g., the original NCUBE design and other
early hypercubes). Although this may be the simplest way
of handling I/O distribution, accessibility and performance
problems will make it unusable in all but a few circum-
stances. The rationale for using a distributed computer sys-
tem for a particular application is to obtain a desired ievei
of performance and/or accessibility which could not be ob-
tained (at least not as cost-effectively) with a uniprocessor
or multiprocessor architecture. Thus by centralizing /O ac-
cess, performance suffers because the I/O center becomes a
bottleneck, and accessibility suffers because the system is
susceptible to single-point failures.

We will next present our proposed I/O subsystem design
which we believe to provide the best accessibility and per-
formance at the lowest cost and complexity.

5 Multi-Owner I/0O Devices

To avoid the accessibility problems of non-distributed I/O,
we would like I/O devices to be managed or “owned” by
relatively simple, and reliable, controllers. Moreover, to im-
prove both accessibility and performance, we want multiple
access paths to these I/O devices.

The desire for simple I/O controllers presents a problem
in HARTS, because the natural tendency would be to have
I/O devices belong to individual nodes or network proces-
sors, both relatively complex and expensive devices, and
use the given IPC channels in HARTS to handle the I/O
traffic. We can still use the given IPC channels, but instead
of permanently tying down a given I/O device to one node,
we will allow several nodes to communicate with each I/O
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Figure 2: 1/0 controller placement.

device. There are at least two fundamentally different proto-
cols for managing this communication, but we will explain
the architectural considerations first and then discuss the
protocols.

5.1 Interconnection Architecture

We will cluster I/O devices together and give them a con-
troller to manage access to the devices. However, the con-
troller can be made simple because we will be using simple
data links to the HARTS nodes (presumably serial since the
standard inter-node links in HARTS are serial, but this is not
required). The I/O controller need only be able to handle
sending and receiving simple messages via a set of full-
duplex links, not providing virtual cut-through capabilities
and other features of a full-blown NP. To keep the number
of I/O controllers and the number of I/O links down to a
reasonable number, we will restrict the number of 1/O con-
trollers (I0C’s) to be no greater than the number of compu-
tation nodes in the mesh, p. This will have certain benefits
for one of the management protocols explained later.

Now that we have established the potential number of I/O
stations, we need to decide how many nodes each I0C will
be connected to. If we assume the maximum number of
IOC’s in an H3, for example, then Fig. 2 suggests a logical
connection scheme. Each IOC can be thought of as being in
the center of one of the upward-pointing triangles created by
this representation of the hexagonal mesh interconnections
and the IOC is then connected to each of the nodes which



make up this triangle. This gives three possible avenues of
access to each IOC. Note that if the maximum number of
10C’s are used, the number of I/O links required will be
equal to the number of standard communication links, or
9n? —9n + 3 for an H,,. There is no particular reason that
one could not similarly place IOC’s at the (logical) center
of the downward-pointing triangles as well, allowing for up
to 2p I0C’s, but this will double the maximum possible
number of 1/O links required and will disturb certain ho-
mogeneous effects of limiting the number of 10C’s to the
number of nodes, as we will see shortly.

5.2 Management Protocol

The first management protocol we will look at assigns one
node to each IOC as its owner, but with the important pro-
vision that the owner can be changed if the original owner
becomes faulty. In this protocol one of the IOC links is
defined to be the primary or active link and the rest remain
inactive as spares. The second protocol allows the 10C
owner to be defined dynamically, allowing for greater ac-
cessibility in some cases and fewer average hops required
to reach the IOC owner. In this protocol the IOC decides
which link will be active at any given time.

Let us call the three nodes to which an IOC is connected
its “1/O partners.” We will number these nodes 0,1,and 2,
where 0 is the “left partner,” 1 is the “upper partner,” and 2
is the “right partner” (see Fig. 3). For the purpose of our
discussion, we will label each IOC with the node number
of its left partner. This only a notational convenience for
explaining the ownership protocols; IOC’s themselves have
no real identity as far as the system in general is concerned.
The relevant labels are those of the I/O partners (for rout-
ing the I/O messages within the network) and those of the
I/O devices themselves (so that they can be located in the
network and their I/0 partners identified).

5.2.1 Static Ownership

Under this protocol each IOC is initially assigned an owner
node through which all /O traffic will pass until such a time
as the the owner fails or becomes unreachable. In this case
a new owner is chosen, which then retains ownership until it
fails or can longer reach the IOC. To access a particular 1/0
device, a process broadcasts an I/O inquiry on the network,
similar to the process for finding a message exchange in
HARTOS [5]. This inquiry contains the system name of the
desired 1/0 device. The owner of the IOC which controls
the /O device will find the device name in its I/O name
server and respond to the I/O inquiry. The process desiring
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Figure 3: 1/O controller partners.

1/0 service will then send its requests to that particular node.

Upon boot-up, each IOC sends a message to its default
owner node, partner 0, to notify the node that it owns
the JOC. This message contains information regarding the
I/O devices this controller has at its disposal, their system
names, boot-up status, etc. During its operation, the I0C
periodically sends a test message to its owner to ascertain
the owner’s status. If it fails to obtain a satisfactory re-
sponse from its owner node (e.g., time-out), the IOC will
attempt to find itself a new owner. When a suitable partner
has been found, the JOC will declare this partner its new
owner and send the I/O device information to it.

The owner and the TOC also agree in advance on the
frequency at which the IOC will send the test message to
the owner. The owner can then use this information to
detect missing test messages and attempt to communicate
with the IOC to see if the link is still operational. If it
cannot establish a satisfactory dialogue with the IOC, it will
resign as owner and go about its regular business. It is then
up to the IOC to recognize the situation on its end as just
explained (which it will, assuming it is operating correctly)
and find itself a new owner. Furthermore, each time the
owner receives a test message from the IOC or its watch-
dog timer wakes it up to check the IOC, the owner will
evaluate the status of its mesh links. If it finds that none
of its mesh links are functioning, it will send a resignation
message to the JOC informing it that it is resigning as the
10C owner and that it should choose a new owner. If it
cannot communicate this information, then the 10C will
have already detected the unreachability of the owner and



will choose a new owner on its own. In either case the
owner resigns.

Both of these schemes are required to handle the own-
ership issue correctly. If only the first method were used,
where the IOC assumes all the responsibility of checking
the link, then we could have the new owner send a mes-
sage to the old owner to inform it that it is no longer the
owner. If it could not send this message, it means only
that the old owner is not reachable by the new owner. The
old owner could still be reachable by other nodes request-
ing I/O service and there would be no way to prevent the
old owner from responding to these requests and trying to
service them. If only the second method were used, then an
owner which found itself unable to communicate success-
fully with its IOC could try to inform the I/O partners that
a new owner needed to be chosen, but it may be unable
t0 communicate with them due to mesh link failures. Thus
the IOC is given the task of finding itself a new owner if
the old owner becomes unreachable since only if the IOC
itself fails or all three partners have failed is it impossible
to find a new owner. The owner is given the responsibility
of revoking its ownership status if it finds itself unable to
reach its IOC.

If a process requesting I/O service does not obtain a re-
sponse to its inquiry, then either there is no owner for the
I0C (which can be because the IOC itself is faulty, because
all links between the IOC and its partner nodes have failed,
or because all of its partners are faulty) or the owner of the
I0C is unreachable. In either case, the I/O device in ques-
tion is unreachable and the situation should be handled in
the same manner regardless of the cause—no node will re-
ply to the I/O service inquiry and the process must execute
whatever contingency plan it has. (An obvious plan is to
retry one or more times before bringing in more expensive
recovery methods.)

We still need a method of finding a new owner for the IOC
when it determines that its old owner is no longer reachable.
The I0C can maintain the status of its three links/partners
(the TOC has no way of distinguishing between a link fail-
ure and a partner node failure). When looking for a new
owner, it polls each of the remaining intact partners, ask-
ing them how many other I0C’s they each own and how
many of their mesh links are still intact, information which
a computation node can and should maintain. It will then
choose the partner with the greatest number of functional
links, to increase the chances of other nodes reaching the
owner, and if each of two remaining partners have the same
number of operating links, it will choose the partner which
owns the fewest IOC’s. If no distinction can be made on
this basis, it will choose a new owner at random.

138

This management protocol is desirable for a number of
reasons. First, it is simple to implement and efficient be-
cause the only overhead involved with establishing a part-
ner’s right to access to the IOC occurs when a new owner
is being chosen. Second, for certain I/O devices it is desir-
able to perform some level of the I/O device management
in some predetermined node. For a disk, for example, this
might involve maintaining some level of the file system on
the owner node. Otherwise, the IOC might have to be made
more complex to handle this function. But under this man-
agement protocol it is possible for the owner of an I0C to
be unreachable to a particular process desiring 1/0O service
while there is another partner of the IOC which is reachable
by that process. Thus if this other partner were the owner
instead of the current owner, the process in question would
be able to obtain I/O service. In Fig. 4 we have an example
where a process in node 13 wants service from IOC 18, but
since node 18 is the owner and is not reachable from 13, it
cannot obtain service. If node 0 were the owner instead of
18, it could obtain service. Also one I0C partner may be
closer to the node requesting service than the current owner.
If ownership could be determined per request instead of re-
maining in effect until the owner is forced to resign due
to failures, we could provide faster average service. These
two factors make up the rationale for the next management
protocol using dynamic ownership.

5.2.2 Dynamic Ownership

Under this protocol the owner of an IQC is determined on a
per-request basis. A process desiring I/O service will send
its request to the nearest partner of the IOC it wants to ac-
cess. This partner will then petition the IOC for access,
which the IOC will grant as soon as it is free. To access a
particular I/O device, a process broadcasts an I/O inquiry on
the network. This inquiry contains the system name of the
desired I/O device. Each partner of the IOC which controls
the 1/O device in question will find the device name in its
I/O name server and respond to the I/O inquiry. The process
desiring 1/O service will then collect the responses to its in-
quiry and after a certain time-out period it will compute the
closest partner and sends its I/O request to this node. The
time-out period is necessary because the process requesting
service has no way of knowing how many partners are op-
erational or can currently reach the IOC. This may result
in a request being to a node which is not the closest if the
closest node does not respond within the time-out period.
Upon boot-up, each IOC will send a message to each
of its partner nodes. This message contains information
regarding the I/O devices this controller has at its disposal,



Figure 4: Unreachable static owner.

their system names, boot-up status, etc. During operation
each 10C will monitor its links for access requests coming
from its partners. When it receives a valid request, it will
declare the sending partner to be the current “owner” and
allow it to send an I/O request. While it is servicing the
request it will send back deferment messages to any other
partners requesting access and place these requests on its
deferred queue. Upon receipt of a deferment message, a
partner requesting 1/O access will refrain from sending any
more requests and wait until it has been granted access.
When it has finished servicing the current request, the I0C
will grant access to the next pariner on its deferred queue.

In addition to leaving IOC’s accessible where static own-
ership would make them inaccessible, this protocol also
takes into account the fact that one partner may be closer to
a node requesting service than the other partner. Since this
protocol chooses the closest of the partners that respond,
the 1/O traffic may have fewer hops to travel. However,
its disadvantages are that it is more difficult to implement,
it involves arbitration overhead after each 1/O request has
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been serviced, and it may be undesirable because there is
no single node through which all /O requests will travel
and which could perform some 1/O management tasks.

53 Simulation of Static vs. Dynamic Owner-
ship

In order to determine how much of an advantage dynamic
ownership offers over static ownership, a simulator was
written to evaluate the average accessibility of IOC’s and
the average number of hops required to reach the owner of
an TOC from each node in an Hj. This simulator is similar
in function to the one used in [8] for evaluating a fault-
tolerant message routing algorithm for HARTS. It tests the
effects of link failures alone and the combined effect of link
and node failures on accessibility and shortest-path distance
to JOC owners.

Mesh links (links between nodes) and IOC links (links
from IOC’s to their partners) are assumed to fail with equal
probability. This is a reasonable assumption since the phys-



ical implementation of these two types of links is likely to
be similar. Moreover, the failure of a link of either type is
assumed to be as likely as the failure of any other link of
that type. In the simulations that we ran, we also assumed
that nodes are always more likely to fail than links of any
type, because processors are more complex than links. The
ratio of the probability of node failure to the probability of
link failure is a parameter in the simulation.

The simulator works by selecting a random set of IOC
links, node links, and processor nodes to declare faulty and
then testing to see if a path exists between each node and
each IOC owner, if one exists. Note that in the.case of
the dynamic ownership protocol, an IOC owner is a partner
with an intact IOC link. If a path does exist, this fact and
the length of the path (measured in “hops,” the number of
links which must be traversed) are noted. This process is
repeated a sufficient number of times to assure consistent
results (between 0.7 and 1.2 million) for each total number
of failures in the system.

Initially, only the effect of link failures was simulated.
Here, numbers of faulty links between 0 and 85 were simu-
lated for both static and dynamic ownership. The simulator
computes the average number of hops a message must travel
from source to destination (IOC owner, not the IOC itself)
and the number and percentage of messages which were and
were not deliverable,

The effects of combined node and link failures are then
simulated. Again, the total number of failures is varied,
this time between five and 85 in increments of five, and the
relative probability of node vs. link failures is used to de-
clare this number of components faulty. The same statistics
are measured as for the case where only link failures were
tested.

Although the dynamic ownership can indeed improve
the reachability of I/O devices, the improvement is not
significant—no more than 3% better than static ownership
in the best case. Naturally, with relatively few link fail-
ures, the difference is negligible. Thus dynamic ownership
may not be worth implementing for this reason, especially
if /O management can be simplified by using static own-
ership instead. Moreover, dynamic ownership both places
greater demands on the IOC and results in somewhat higher
protocol (arbitration) overhead.

When both node and link failures are taken into account,
the average improvement in reachability achieved by dy-
namic ownership is even less. However, it should be noted
that when considering the combined effect of node and link
failures, the net effect on the system of a 50% component
failure rate is much more deleterious than in the case where
only link failures are considered, so the apparent loss of im-
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provement in the dynamic case may make little difference in
practice because so much of the system’s processing power
hias been lost.

However, Fig. 5 shows that in all cases we can
substantially reduce the average shortest-path length by us-
ing dynamic ownership rather than static. With as many as
50% of the links faulty, the improvement is still at least 0.35
hops shorter average path length. If I/O traffic is expected
to be high, especially with large transfers, then dynamic
ownership may well be worthwhile in order to improve I/O
performance, with the additional benefit of a slight improve-
ment in I/O accessibility.

From Figs. 6 and 7 we can see that although dynamic
ownership always results in a shorter average path length,
the difference grows less and less as the probability of node
failure increases, as mentioned above for deliverability.

These are the relative differences in performance between
the two protocols; the simulations also show that even with
half of the links faulty, 85% of I/O traffic can still be routed.
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In the case where both node and link failures are considered,
this number drops dramatically as the ratio of node to link
failures increases, again due to the very serious effects of
so many processor failures.

This is, of course, assuming a routing algorithm which
can always find the shortest path, even in a faulty mesh.
The simple algorithm proposed in [8] is not perfect, but
even under 50% link failures, it fails to deliver only less
than 10% of actually deliverable messages.

5.4 I0OC Architecture

We have assumed that the connection between the IOC’s and
their partner nodes is the same as that used to connect the
processor nodes themselves. In HARTS this implies the use
of high-speed full-duplex serial lines. Other mechanisms are
certainly possible, but given that there may well be good
reasons for physically isolating IOC’s from the processor
nodes, serial links will offer the most flexibility.

An IOC must therefore provide three serial links as its
interface to the partner nodes as well as some interface to
whatever I/O devices it actually services. This could be
SCSI or ESDI in the case of mass-storage devices, IEEE-
488 or RS-232/422 in the case of instrumentation, or cus-
tom/proprietary interfaces or buses as needed.

Two problems must be addressed in an effective 10C
design: general applicability of the JOC and the communi-
cation protocol used on the I/O links to the partner nodes.
One way to address both of these concerns without neces-
sarily limiting the actual I/O device interface would be to
implement a time-division multiplexed (TDM) serial proto-
col and allow several I/O processors to use the I/O links in
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turn. This provides greater flexibility because the only stan-
dard to which an 1/O processor need conform is that of the
TDM protocol—it is free to use whatever interface is most
appropriate for the I/O devices for which it is responsible.
1t may also offer an arbitrary level of services as well, rang-
ing from simple one-way data transmission in the case of a
sensor interface, to file-system support in the case of a disk
interface. It also permits a wide variety of 1/O processors
to be used.

Today’s high-speed microprocessors are more than capa-
ble of implementing this style of IOC design with sustained
transfer rates well in excess of 5 megabits/second. Keeping
in mind that the total bandwidth of the I/O links is shared
among some number of 1/O processors residing at a clus-
ter, this should be adequate. If a high-performance device
requires greater bandwidth, it would be possible for it to
be allocated more than one time-slot in the TDM protocol,
provided the I/O processor could keep up.

This approach has the effect of turning an “I/O controller”
into an “I/O cluster” consisting of one to n processors,
where n is determined by the exact nature of the TDM
protocol used. Fig. 8 illustrates this design. This in turn
offers a degree of scalability to the IOC concept. Instead
of forcing all I/O traffic at the level of a given IOC to pass
through a single processor, multiple I/O processors can ¢as-
ily be used to support devices which require more processor
attention. Moreover, this further increases the reliability of
the /O cluster. If one I/O processor should fail, there would



simply be a wasted time-slot in the transport protocol (as-
suming that the processor had not failed in such a manner
as to disrupt the protocol). Other processors would be able
to continue operation.

Thus not only is there flexibility in the number of I0C’s
used in a particular system, there is flexibility in the number
of the I/O processors in a given 1/O cluster. This flexibility
and the multiple connectivity of the IOC’s permit an I/O
system with a high degree of performance, accessibility,
and scalability.

6 Conclusion

We have examined a variety of solutions for implementing
a distributed I/O subsystem for HARTS: node-direct con-
nection, where nodes own sets of I/O devices, dedicated
1/O nodes, separate I/0 network, and multi-owner I/O con-
trollers. The multi-owner method is judged to be the best
solution in terms of cost and complexity, accessibility, and
performance. It is scalable with the hexagonal mesh itself
and allows simultaneous access to I/O controllers. It has
many of the accessibility benefits of the separate I/O net-
work while using a simple, less expensive interconnection
scheme. We have developed two different management pro-
tocols, static ownership and dynamic ownership, which offer
different advantages and options. Static ownership is sim-
pler and allows certain I/O device management processes to
reside on an owner node. Dynamic ownership makes nodes
accessible in instances where they would not be accessible
under static ownership, and can also reduce the distance
which I/O traffic must travel.
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